This file is indexed.

/usr/share/octave/packages/nan-2.8.1/train_sc.m is in octave-nan 2.8.1-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
function [CC]=train_sc(D,classlabel,MODE,W)
% Train a (statistical) classifier
% 
%  CC = train_sc(D,classlabel)
%  CC = train_sc(D,classlabel,MODE)
%  CC = train_sc(D,classlabel,MODE, W)
%	weighting D(k,:) with weight W(k) (not all classifiers supported weighting)
%
% CC contains the model parameters of a classifier which can be applied 
%   to test data using test_sc. 
%   R = test_sc(CC,D,...) 
%
%   D		training samples (each row is a sample, each column is a feature)	
%   classlabel	labels of each sample, must have the same number of rows as D. 
% 		Two different encodings are supported: 
%		{-1,1}-encoding (multiple classes with separate columns for each class) or
%		1..M encoding. 
% 		So [1;2;3;1;4] is equivalent to 
%			[+1,-1,-1,-1;
%			[-1,+1,-1,-1;
%			[-1,-1,+1,-1;
%			[+1,-1,-1,-1]
%			[-1,-1,-1,+1]
%		Note, samples with classlabel=0 are ignored. 
%
%  The following classifier types are supported MODE.TYPE
%    'MDA'      mahalanobis distance based classifier [1]
%    'MD2'      mahalanobis distance based classifier [1]
%    'MD3'      mahalanobis distance based classifier [1]
%    'GRB'      Gaussian radial basis function     [1]
%    'QDA'      quadratic discriminant analysis    [1]
%    'LD2'      linear discriminant analysis (see LDBC2) [1]
%		MODE.hyperparameter.gamma: regularization parameter [default 0] 
%    'LD3', 'FDA', 'LDA', 'FLDA'
%               linear discriminant analysis (see LDBC3) [1]
%		MODE.hyperparameter.gamma: regularization parameter [default 0] 
%    'LD4'      linear discriminant analysis (see LDBC4) [1]
%		MODE.hyperparameter.gamma: regularization parameter [default 0] 
%    'LD5'      another LDA (motivated by CSP)
%		MODE.hyperparameter.gamma: regularization parameter [default 0] 
%    'RDA'      regularized discriminant analysis [7]
%		MODE.hyperparameter.gamma: regularization parameter 
%		MODE.hyperparameter.lambda =
%		gamma = 0, lambda = 0 : MDA
%		gamma = 0, lambda = 1 : LDA [default]
%		Hint: hyperparameter are used only in test_sc.m, testing different 
%		the hyperparameters do not need repetitive calls to train_sc, 
%		it is sufficient to modify CC.hyperparameter before calling test_sc. 	
%    'GDBC'     general distance based classifier  [1]
%    ''         statistical classifier, requires Mode argument in TEST_SC	
%    '###/DELETION'  if the data contains missing values (encoded as NaNs), 
%		a row-wise or column-wise deletion (depending on which method 
%		removes less data values) is applied;  
%    '###/GSVD'	GSVD and statistical classifier [2,3], 
%    '###/sparse'  sparse  [5] 
%		'###' must be 'LDA' or any other classifier 
%    'PLS'	(linear) partial least squares regression 
%    'REG'      regression analysis;
%    'WienerHopf'	Wiener-Hopf equation  
%    'NBC'	Naive Bayesian Classifier [6]     
%    'aNBC'	Augmented Naive Bayesian Classifier [6]
%    'NBPW'	Naive Bayesian Parzen Window [9]     
%
%    'PLA'	Perceptron Learning Algorithm [11]
%		MODE.hyperparameter.alpha = alpha [default: 1]
%		 w = w + alpha * e'*x
%    'LMS', 'AdaLine'  Least mean squares, adaptive line element, Widrow-Hoff, delta rule 
%		MODE.hyperparameter.alpha = alpha [default: 1]
%    'Winnow2'  Winnow2 algorithm [12]
%
%    'PSVM'	Proximal SVM [8] 
%		MODE.hyperparameter.nu  (default: 1.0)
%    'LPM'      Linear Programming Machine
%                 uses and requires train_LPM of the iLog CPLEX optimizer 
%		MODE.hyperparameter.c_value = 
%    'CSP'	CommonSpatialPattern is very experimental and just a hack
%		uses a smoothing window of 50 samples.
%    'SVM','SVM1r'  support vector machines, one-vs-rest
%		MODE.hyperparameter.c_value = 
%    'SVM11'    support vector machines, one-vs-one + voting
%		MODE.hyperparameter.c_value = 
%    'RBF'      Support Vector Machines with RBF Kernel
%		MODE.hyperparameter.c_value = 
%		MODE.hyperparameter.gamma = 
%    'SVM:LIB'    libSVM [default SVM algorithm)
%    'SVM:bioinfo' uses and requires svmtrain from the bioinfo toolbox        
%    'SVM:OSU'   uses and requires mexSVMTrain from the OSU-SVM toolbox 
%    'SVM:LOO'   uses and requires svcm_train from the LOO-SVM toolbox 
%    'SVM:Gunn'  uses and requires svc-functios from the Gunn-SVM toolbox 
%    'SVM:KM'    uses and requires svmclass-function from the KM-SVM toolbox 
%    'SVM:LINz'  LibLinear [10] (requires train.mex from LibLinear somewhere in the path)
%            z=0 (default) LibLinear with -- L2-regularized logistic regression
%            z=1 LibLinear with -- L2-loss support vector machines (dual)
%            z=2 LibLinear with -- L2-loss support vector machines (primal)
%            z=3 LibLinear with -- L1-loss support vector machines (dual)
%    'SVM:LIN4'  LibLinear with -- multi-class support vector machines by Crammer and Singer
%    'DT'	decision tree - not implemented yet.  
%
% {'REG','MDA','MD2','QDA','QDA2','LD2','LD3','LD4','LD5','LD6','NBC','aNBC','WienerHopf','LDA/GSVD','MDA/GSVD', 'LDA/sparse','MDA/sparse', 'PLA', 'LMS','LDA/DELETION','MDA/DELETION','NBC/DELETION','RDA/DELETION','REG/DELETION','RDA','GDBC','SVM','RBF','PSVM','SVM11','SVM:LIN4','SVM:LIN0','SVM:LIN1','SVM:LIN2','SVM:LIN3','WINNOW', 'DT'};
%
% CC contains the model parameters of a classifier. Some time ago,     
% CC was a statistical classifier containing the mean 
% and the covariance of the data of each class (encoded in the 
%  so-called "extended covariance matrices". Nowadays, also other 
% classifiers are supported. 
%
% see also: TEST_SC, COVM, ROW_COL_DELETION
%
% References: 
% [1] R. Duda, P. Hart, and D. Stork, Pattern Classification, second ed. 
%       John Wiley & Sons, 2001. 
% [2] Peg Howland and Haesun Park,
%       Generalizing Discriminant Analysis Using the Generalized Singular Value Decomposition
%       IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8), 2004.
%       dx.doi.org/10.1109/TPAMI.2004.46
% [3] http://www-static.cc.gatech.edu/~kihwan23/face_recog_gsvd.htm
% [4] Jieping Ye, Ravi Janardan, Cheong Hee Park, Haesun Park
%       A new optimization criterion for generalized discriminant analysis on undersampled problems.
%       The Third IEEE International Conference on Data Mining, Melbourne, Florida, USA
%       November 19 - 22, 2003
% [5] J.D. Tebbens and P. Schlesinger (2006), 
%       Improving Implementation of Linear Discriminant Analysis for the Small Sample Size Problem
%	Computational Statistics & Data Analysis, vol 52(1): 423-437, 2007
%       http://www.cs.cas.cz/mweb/download/publi/JdtSchl2006.pdf
% [6] H. Zhang, The optimality of Naive Bayes, 
%	 http://www.cs.unb.ca/profs/hzhang/publications/FLAIRS04ZhangH.pdf
% [7] J.H. Friedman. Regularized discriminant analysis. 
%	Journal of the American Statistical Association, 84:165–175, 1989.
% [8] G. Fung and O.L. Mangasarian, Proximal Support Vector Machine Classifiers, KDD 2001.
%        Eds. F. Provost and R. Srikant, Proc. KDD-2001: Knowledge Discovery and Data Mining, August 26-29, 2001, San Francisco, CA.
% 	p. 77-86.
% [9] Kai Keng Ang, Zhang Yang Chin, Haihong Zhang, Cuntai Guan.
%	Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface.
%	IEEE International Joint Conference on Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence). 
%	1-8 June 2008 Page(s):2390 - 2397
% [10] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. 
%       LIBLINEAR: A Library for Large Linear Classification, Journal of Machine Learning Research 9(2008), 1871-1874. 
%       Software available at http://www.csie.ntu.edu.tw/~cjlin/liblinear 
% [11] http://en.wikipedia.org/wiki/Perceptron#Learning_algorithm
% [12] Littlestone, N. (1988) 
%       "Learning Quickly When Irrelevant Attributes Abound: A New Linear-threshold Algorithm" 
%       Machine Learning 285-318(2)
% 	http://en.wikipedia.org/wiki/Winnow_(algorithm)
 
%	$Id: train_sc.m 9601 2012-02-09 14:14:36Z schloegl $
%	Copyright (C) 2005,2006,2007,2008,2009,2010 by Alois Schloegl <alois.schloegl@gmail.com>
%       This function is part of the NaN-toolbox
%       http://pub.ist.ac.at/~schloegl/matlab/NaN/

% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 3
% of the  License, or (at your option) any later version.
% 
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.

        if nargin<2,
                error('insufficient input arguments\n\tusage: train_sc(D,C,...)\n');
        end
        if nargin<3, MODE = 'LDA'; end
        if nargin<4, W = []; end
        if ischar(MODE)
                tmp = MODE;
                clear MODE;
                MODE.TYPE = tmp;
        elseif ~isfield(MODE,'TYPE')
                MODE.TYPE='';
        end

        if isfield(MODE,'hyperparameters') && ~isfield(MODE,'hyperparameter'),
                %% for backwards compatibility, this might become obsolete
                warning('MODE.hyperparameters are used, You should use MODE.hyperparameter instead!!!');
                MODE.hyperparameter = MODE.hyperparameters;
        end

        sz = size(D);
        if sz(1)~=size(classlabel,1),
                error('length of data and classlabel does not fit');
        end

        % remove all NaN's
        if 1,
                % several classifier can deal with NaN's, there is no need to remove them.
        elseif isempty(W)
                %% TODO: some classifiers can deal with NaN's in D. Test whether this can be relaxed.
                %ix = any(isnan([classlabel]),2);
                ix = any(isnan([D,classlabel]),2);
                D(ix,:) = [];
                classlabel(ix,:)=[];
                W = [];
        else
                %ix = any(isnan([classlabel]),2);
                ix = any(isnan([D,classlabel]),2);
                D(ix,:)=[];
                classlabel(ix,:)=[];
                W(ix,:)=[];
                warning('support for weighting of samples is still experimental');
        end

        sz = size(D);
        if sz(1)~=length(classlabel),
                error('length of data and classlabel does not fit');
        end
        if ~isfield(MODE,'hyperparameter')
                MODE.hyperparameter = [];
        end

        if 0,
                ;
        elseif ~isempty(strfind(lower(MODE.TYPE),'/delet'))
                POS1 = find(MODE.TYPE=='/');
                [rix,cix] = row_col_deletion(D);
                if ~isempty(W), W=W(rix); end
                CC   = train_sc(D(rix,cix),classlabel(rix,:),MODE.TYPE(1:POS1(1)-1),W);
                CC.G = sparse(cix, 1:length(cix), 1, size(D,2), length(cix));
                if isfield(CC,'weights')
                        W = [CC.weights(1,:); CC.weights(2:end,:)];
                        CC.weights = sparse(size(D,2)+1, size(W,2));
                        CC.weights([1,cix+1],:) = W;
                        CC.datatype = ['classifier:statistical:',lower(MODE.TYPE)];
                else
                        CC.datatype = [CC.datatype,'/delet'];
                end

        elseif ~isempty(strfind(lower(MODE.TYPE),'nbpw'))
                error('NBPW not implemented yet')
                %%%% Naive Bayesian Parzen Window Classifier.
                [classlabel,CC.Labels] = CL1M(classlabel);
                for k = 1:length(CC.Labels),
                        [d,CC.MEAN(k,:)] = center(D(classlabel==CC.Labels(k),:),1);
                        [CC.VAR(k,:),CC.N(k,:)] = sumskipnan(d.^2,1);
                        h2_opt = (4./(3*CC.N(k,:))).^(2/5).*CC.VAR(k,:);
                        %%% TODO
                end


        elseif ~isempty(strfind(lower(MODE.TYPE),'nbc'))
                %%%% Naive Bayesian Classifier
                if ~isempty(strfind(lower(MODE.TYPE),'anbc'))
                        %%%% Augmented Naive Bayesian classifier.
                        [CC.V,L] = eig(covm(D,'M',W));
                        D = D*CC.V;
                else
                        CC.V = eye(size(D,2));
                end
                [classlabel,CC.Labels] = CL1M(classlabel);
                for k = 1:length(CC.Labels),
                        ix = classlabel==CC.Labels(k);
                        %% [d,CC.MEAN(k,:)] = center(D(ix,:),1);
                        if ~isempty(W)
                                [s,n] = sumskipnan(D(ix,:),1,W(ix));
                                CC.MEAN(k,:) = s./n;
                                d = D(ix,:) - CC.MEAN(repmat(k,sum(ix),1),:);
                                [CC.VAR(k,:),CC.N(k,:)] = sumskipnan(d.^2,1,W(ix));
                        else
                                [s,n] = sumskipnan(D(ix,:),1);
                                CC.MEAN(k,:) = s./n;
                                d = D(ix,:) - CC.MEAN(repmat(k,sum(ix),1),:);
                                [CC.VAR(k,:),CC.N(k,:)] = sumskipnan(d.^2,1);
                        end
                end
                CC.VAR = CC.VAR./max(CC.N-1,0);
                CC.datatype = ['classifier:',lower(MODE.TYPE)];


        elseif ~isempty(strfind(lower(MODE.TYPE),'lpm'))
                if ~isempty(W)
                        error('Error TRAIN_SC: Classifier (%s) does not support weighted samples.',MODE.TYPE);
                end
                % linear programming machine
                % CPLEX optimizer: ILOG solver, ilog cplex 6.5 reference manual http://www.ilog.com
                MODE.TYPE = 'LPM';
                if ~isfield(MODE.hyperparameter,'c_value')
                        MODE.hyperparameter.c_value = 1;
                end
                [classlabel,CC.Labels] = CL1M(classlabel);

                M = length(CC.Labels);
                if M==2, M=1; end   % For a 2-class problem, only 1 Discriminant is needed
                for k = 1:M,
                        %LPM = train_LPM(D,(classlabel==CC.Labels(k)),'C',MODE.hyperparameter.c_value);
                        LPM = train_LPM(D',(classlabel'==CC.Labels(k)));
                        CC.weights(:,k) = [-LPM.b; LPM.w(:)];
                end
                CC.hyperparameter.c_value = MODE.hyperparameter.c_value;
                CC.datatype = ['classifier:',lower(MODE.TYPE)];


        elseif ~isempty(strfind(lower(MODE.TYPE),'pla')),
                % Perceptron Learning Algorithm

                [rix,cix] = row_col_deletion(D);
                [CL101,CC.Labels] = cl101(classlabel);
                M = size(CL101,2);
                weights   = sparse(length(cix)+1,M);

                %ix = randperm(size(D,1));      %% randomize samples ???
                if ~isfield(MODE.hyperparameter,'alpha')
                        if isfield(MODE.hyperparameter,'alpha')
                                alpha = MODE.hyperparameter.alpha;
                        else
                                alpha = 1;
                        end
                        for k = rix(:)',
                                %e = ((classlabel(k)==(1:M))-.5) - sign([1, D(k,cix)] * weights)/2;
                                e = CL101(k,:) - sign([1, D(k,cix)] * weights);
                                weights = weights + alpha * [1,D(k,cix)]' * e ;
                        end

                else %if ~isempty(W)
                        if isfield(MODE.hyperparameter,'alpha')
                                W = W*MODE.hyperparameter.alpha;
                        end
                        for k = rix(:)',
                                %e = ((classlabel(k)==(1:M))-.5) - sign([1, D(k,cix)] * weights)/2;
                                e = CL101(k,:) - sign([1, D(k,cix)] * weights);
                                weights = weights + W(k) * [1,D(k,cix)]' * e ;
                        end
                end
                CC.weights  = sparse(size(D,2)+1,M);
                CC.weights([1,cix+1],:) = weights;
                CC.datatype = ['classifier:',lower(MODE.TYPE)];


        elseif  ~isempty(strfind(lower(MODE.TYPE),'adaline')) || ~isempty(strfind(lower(MODE.TYPE),'lms')),
                % adaptive linear elemente, least mean squares, delta rule, Widrow-Hoff,

                [rix,cix] = row_col_deletion(D);
                [CL101,CC.Labels] = cl101(classlabel);
                M = size(CL101,2);
                weights  = sparse(length(cix)+1,M);

                %ix = randperm(size(D,1));      %% randomize samples ???
                if isempty(W)
                        if isfield(MODE.hyperparameter,'alpha')
                                alpha = MODE.hyperparameter.alpha;
                        else
                                alpha = 1;
                        end
                        for k = rix(:)',
                                %e = (classlabel(k)==(1:M)) - [1, D(k,cix)] * weights;
                                e = CL101(k,:) - sign([1, D(k,cix)] * weights);
                                weights = weights + alpha * [1,D(k,cix)]' * e ;
                        end

                else %if ~isempty(W)
                        if isfield(MODE.hyperparameter,'alpha')
                                W = W*MODE.hyperparameter.alpha;
                        end
                        for k = rix(:)',
                                %e = (classlabel(k)==(1:M)) - [1, D(k,cix)] * weights;
                                e = CL101(k,:) - sign([1, D(k,cix)] * weights);
                                weights = weights + W(k) * [1,D(k,cix)]' * e ;
                        end
                end
                CC.weights  = sparse(size(D,2)+1,M);
                CC.weights([1,cix+1],:) = weights;
                CC.datatype = ['classifier:',lower(MODE.TYPE)];


        elseif ~isempty(strfind(lower(MODE.TYPE),'winnow'))
                % winnow algorithm
                if ~isempty(W)
                        error('Classifier (%s) does not support weighted samples.',MODE.TYPE);
                end

                [rix,cix] = row_col_deletion(D);
                [CL101,CC.Labels] = cl101(classlabel);
                M = size(CL101,2);
                weights  = ones(length(cix),M);
                theta = size(D,2)/2;

                for k = rix(:)',
                        e = CL101(k,:) - sign(D(k,cix) * weights - theta);
                        weights = weights.* 2.^(D(k,cix)' * e);
                end

                CC.weights = sparse(size(D,2)+1,M);
                CC.weights(cix+1,:) = weights;
                CC.datatype = ['classifier:',lower(MODE.TYPE)];

        elseif ~isempty(strfind(lower(MODE.TYPE),'pls')) || ~isempty(strfind(lower(MODE.TYPE),'reg'))
                % 4th version: support for weighted samples - work well with unequally distributed data:
                % regression analysis, can handle sparse data, too.

                if nargin<4,
                        W = [];
                end
                [rix, cix] = row_col_deletion(D);
                wD = [ones(length(rix),1),D(rix,cix)];

                if ~isempty(W)
                        %% wD = diag(W)*wD
                        W = W(:);
                        for k=1:size(wD,2)
                                wD(:,k) = W(rix).*wD(:,k);
                        end
                end
                [CL101, CC.Labels] = cl101(classlabel(rix,:));
                M = size(CL101,2);
                CC.weights = sparse(sz(2)+1,M);

                %[rix, cix] = row_col_deletion(wD);
                [q,r] = qr(wD,0);

                if isempty(W)
                        CC.weights([1,cix+1],:) = r\(q'*CL101);
                else
                        CC.weights([1,cix+1],:) = r\(q'*(W(rix,ones(1,M)).*CL101));
                end
                %for k = 1:M,
                %       CC.weights(cix,k) = r\(q'*(W.*CL101(rix,k)));
                %end
                CC.datatype = ['classifier:statistical:',lower(MODE.TYPE)];


        elseif ~isempty(strfind(MODE.TYPE,'WienerHopf'))
                % Q: equivalent to LDA
                % equivalent to Regression, except regression can not deal with NaN's
                [CL101,CC.Labels] = cl101(classlabel);
                M = size(CL101,2);
                CC.weights = sparse(size(D,2)+1,M);
                cc = covm(D,'E',W);
                %c1 = classlabel(~isnan(classlabel));
                %c2 = ones(sum(~isnan(classlabel)),M);
                %for k = 1:M,
                %       c2(:,k) = c1==CC.Labels(k);
                %end
                %CC.weights  = cc\covm([ones(size(c2,1),1),D(~isnan(classlabel),:)],2*real(c2)-1,'M',W);
                CC.weights  = cc\covm([ones(size(D,1),1),D],CL101,'M',W);
                CC.datatype = ['classifier:statistical:',lower(MODE.TYPE)];


        elseif ~isempty(strfind(lower(MODE.TYPE),'/gsvd'))
                if ~isempty(W)
                        error('Classifier (%s) does not support weighted samples.',MODE.TYPE);
                end
                % [2] Peg Howland and Haesun Park, 2004
                %       Generalizing Discriminant Analysis Using the Generalized Singular Value Decomposition
                %       IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8), 2004.
                %       dx.doi.org/10.1109/TPAMI.2004.46
                % [3] http://www-static.cc.gatech.edu/~kihwan23/face_recog_gsvd.htm

                [classlabel,CC.Labels] = CL1M(classlabel);
                [rix,cix] = row_col_deletion(D);

                Hw = zeros(length(rix)+length(CC.Labels), length(cix));
                Hb = [];
                m0 = mean(D(rix,cix));
                K = length(CC.Labels);
                N = zeros(1,K);
                for k = 1:K,
                        ix   = find(classlabel(rix)==CC.Labels(k));
                        N(k) = length(ix);
                        [Hw(ix,:), mu] = center(D(rix(ix),cix));
                        %Hb(k,:) = sqrt(N(k))*(mu(k,:)-m0);
                        Hw(length(rix)+k,:) = sqrt(N(k))*(mu-m0);  % Hb(k,:)
                end
                try
                        [P,R,Q] = svd(Hw,'econ');
                catch   % needed because SVD(..,'econ') not supported in Matlab 6.x
                        [P,R,Q] = svd(Hw,0);
                end
                t = rank(R);

                clear Hw Hb mu;
                %[size(D);size(P);size(Q);size(R)]
                R = R(1:t,1:t);
                %P = P(1:size(D,1),1:t);
                %Q = Q(1:t,:);
                [U,E,W] = svd(P(1:length(rix),1:t),0);
                %[size(U);size(E);size(W)]
                clear U E P;
                %[size(Q);size(R);size(W)]

                %G = Q(1:t,:)'*[R\W'];
                G = Q(:,1:t)*(R\W');   % this works as well and needs only 'econ'-SVD
                %G = G(:,1:t);  % not needed

                % do not use this, gives very bad results for Medline database
                %G = G(:,1:K); this seems to be a typo in [2] and [3].
                CC = train_sc(D(:,cix)*G,classlabel,MODE.TYPE(1:find(MODE.TYPE=='/')-1));
                CC.G = sparse(size(D,2),size(G,2));
                CC.G(cix,:) = G;
                if isfield(CC,'weights')
                        CC.weights  = sparse([CC.weights(1,:); CC.G*CC.weights(2:end,:)]);
                        CC.datatype = ['classifier:statistical:', lower(MODE.TYPE)];
                else
                        CC.datatype = [CC.datatype,'/gsvd'];
                end


        elseif ~isempty(strfind(lower(MODE.TYPE),'sparse'))
                if ~isempty(W)
                        error('Classifier (%s) does not support weighted samples.',MODE.TYPE);
                end
                % [5] J.D. Tebbens and P.Schlesinger (2006),
                %       Improving Implementation of Linear Discriminant Analysis for the Small Sample Size Problem
                %       http://www.cs.cas.cz/mweb/download/publi/JdtSchl2006.pdf

                [classlabel,CC.Labels] = CL1M(classlabel);
                [rix,cix] = row_col_deletion(D);

                warning('sparse LDA is sensitive to linear transformations')
                M = length(CC.Labels);
                G  = sparse([],[],[],length(rix),M,length(rix));
                for k = 1:M,
                        G(classlabel(rix)==CC.Labels(k),k) = 1;
                end
                tol  = 1e-10;

                G    = train_lda_sparse(D(rix,cix),G,1,tol);
                CC.datatype = 'classifier:slda';
                POS1 = find(MODE.TYPE=='/');
                %G = v(:,1:size(G.trafo,2)).*G.trafo;
                %CC.weights = s * CC.weights(2:end,:) + sparse(1,1:M,CC.weights(1,:),sz(2)+1,M);

                CC = train_sc(D(rix,cix)*G.trafo,classlabel(rix),MODE.TYPE(1:POS1(1)-1));
                CC.G = sparse(size(D,2),size(G.trafo,2));
                CC.G(cix,:) = G.trafo;
                if isfield(CC,'weights')
                        CC.weights = sparse([CC.weights(1,:); CC.G*CC.weights(2:end,:)]);
                        CC.datatype = ['classifier:statistical:',lower(MODE.TYPE)];
                else
                        CC.datatype = [CC.datatype,'/sparse'];
                end

        elseif ~isempty(strfind(lower(MODE.TYPE),'rbf'))
                if ~isempty(W)
                        error('Classifier (%s) does not support weighted samples.',MODE.TYPE);
                end

                % Martin Hieden's RBF-SVM
                if exist('svmpredict_mex','file')==3,
                        MODE.TYPE = 'SVM:LIB:RBF';
                else
                        error('No SVM training algorithm available. Install LibSVM for Matlab.\n');
                end
                CC.options = '-t 2 -q';   %use RBF kernel, set C, set gamma
                if isfield(MODE.hyperparameter,'gamma')
                        CC.options = sprintf('%s -c %g', CC.options, MODE.hyperparameter.c_value);  % set C
                end
                if isfield(MODE.hyperparameter,'c_value')
                        CC.options = sprintf('%s -g %g', CC.options, MODE.hyperparameter.gamma);  % set C
                end

                % pre-whitening
                [D,r,m]=zscore(D,1);
                CC.prewhite = sparse(2:sz(2)+1,1:sz(2),r,sz(2)+1,sz(2),2*sz(2));
                CC.prewhite(1,:) = -m.*r;

                [classlabel,CC.Labels] = CL1M(classlabel);
                CC.model = svmtrain_mex(classlabel, D, CC.options);    % Call the training mex File
                CC.datatype = ['classifier:',lower(MODE.TYPE)];


        elseif ~isempty(strfind(lower(MODE.TYPE),'svm11'))
                if ~isempty(W)
                        error('Classifier (%s) does not support weighted samples.',MODE.TYPE);
                end
                % 1-versus-1 scheme
                if ~isfield(MODE.hyperparameter,'c_value')
                        MODE.hyperparameter.c_value = 1;
                end

                CC.options=sprintf('-c %g -t 0 -q',MODE.hyperparameter.c_value);  %use linear kernel, set C
                CC.hyperparameter.c_value = MODE.hyperparameter.c_value;

                % pre-whitening
                [D,r,m]=zscore(D,1);
                CC.prewhite = sparse(2:sz(2)+1,1:sz(2),r,sz(2)+1,sz(2),2*sz(2));
                CC.prewhite(1,:) = -m.*r;

                [classlabel,CC.Labels] = CL1M(classlabel);
                CC.model = svmtrain_mex(classlabel, D, CC.options);    % Call the training mex File

                FUN = 'SVM:LIB:1vs1';
                CC.datatype = ['classifier:',lower(FUN)];


        elseif ~isempty(strfind(lower(MODE.TYPE),'psvm'))
                if ~isempty(W)
                        %%% error('Classifier (%s) does not support weighted samples.',MODE.TYPE);
                        warning('Classifier (%s) in combination with weighted samples is not tested.',MODE.TYPE);
                end
                if ~isfield(MODE,'hyperparameter')
                        nu = 1;
                elseif isfield(MODE.hyperparameter,'nu')
                        nu = MODE.hyperparameter.nu;
                else
                        nu = 1;
                end
                [m,n] = size(D);
                [CL101,CC.Labels] = cl101(classlabel);
                CC.weights = sparse(n+1,size(CL101,2));
                M = size(CL101,2);
                for k = 1:M,
                        d = sparse(1:m,1:m,CL101(:,k));
                        H = d * [ones(m,1),D];
                        %%% r = sum(H,1)';
                        r = sumskipnan(H,1,W)';
                        %%% r = (speye(n+1)/nu + H' * H)\r; %solve (I/nu+H’*H)r=H’*e
                        [HTH, nn] = covm(H,H,'M',W);
                        r = (speye(n+1)/nu + HTH)\r; %solve (I/nu+H’*H)r=H’*e
                        u = nu*(1-(H*r));
                        %%% CC.weights(:,k) = u'*H;
                        [c,nn] = covm(u,H,'M',W);
                        CC.weights(:,k) = c';
                end
                CC.hyperparameter.nu = nu;
                CC.datatype = ['classifier:',lower(MODE.TYPE)];

        elseif ~isempty(strfind(lower(MODE.TYPE),'svm:lin4'))
                if ~isfield(MODE.hyperparameter,'c_value')
                        MODE.hyperparameter.c_value = 1;
                end

                [classlabel,CC.Labels] = CL1M(classlabel);
                M = length(CC.Labels);
                CC.weights = sparse(size(D,2)+1,M);

                [rix,cix] = row_col_deletion(D);

                % pre-whitening
                [D,r,m]=zscore(D(rix,cix),1);
                sz2 = length(cix);
                s = sparse(2:sz2+1,1:sz2,r,sz2+1,sz2,2*sz2);
                s(1,:) = -m.*r;

                CC.options = sprintf('-s 4 -B 1 -c %f -q', MODE.hyperparameter.c_value);      % C-SVC, C=1, linear kernel, degree = 1,
                model = train(W, classlabel, sparse(D), CC.options);    % C-SVC, C=1, linear kernel, degree = 1,
                weights = model.w([end,1:end-1],:)';

                CC.weights([1,cix+1],:) = s * weights(2:end,:) + sparse(1,1:M,weights(1,:),sz2+1,M); % include pre-whitening transformation
                CC.weights([1,cix+1],:) = s * CC.weights(cix+1,:) + sparse(1,1:M,CC.weights(1,:),sz2+1,M); % include pre-whitening transformation
                CC.hyperparameter.c_value = MODE.hyperparameter.c_value;
                CC.datatype = ['classifier:',lower(MODE.TYPE)];


        elseif ~isempty(strfind(lower(MODE.TYPE),'svm'))

                if ~isfield(MODE.hyperparameter,'c_value')
                        MODE.hyperparameter.c_value = 1;
                end
                if any(MODE.TYPE==':'),
                        % nothing to be done
                elseif exist('train','file')==3,
                        MODE.TYPE = 'SVM:LIN';        %% liblinear
                elseif exist('svmtrain_mex','file')==3,
                        MODE.TYPE = 'SVM:LIB';
                elseif (exist('svmtrain','file')==3),
                        MODE.TYPE = 'SVM:LIB';
                        fprintf(1,'You need to rename %s to svmtrain_mex.mex !! \n Press any key to continue !!!\n',which('svmtrain.mex'));
                elseif exist('svmtrain','file')==2,
                        MODE.TYPE = 'SVM:bioinfo';
                elseif exist('mexSVMTrain','file')==3,
                        MODE.TYPE = 'SVM:OSU';
                elseif exist('svcm_train','file')==2,
                        MODE.TYPE = 'SVM:LOO';
                elseif exist('svmclass','file')==2,
                        MODE.TYPE = 'SVM:KM';
                elseif exist('svc','file')==2,
                        MODE.TYPE = 'SVM:Gunn';
                else
                        error('No SVM training algorithm available. Install OSV-SVM, or LOO-SVM, or libSVM for Matlab.\n');
                end

                %%CC = train_svm(D,classlabel,MODE);
                [CL101,CC.Labels] = cl101(classlabel);
                M = size(CL101,2);
                [rix,cix] = row_col_deletion(D);
                CC.weights = sparse(sz(2)+1, M);

                % pre-whitening
                [D,r,m]=zscore(D(rix,cix),1);
                sz2 = length(cix);
                s = sparse(2:sz2+1,1:sz2,r,sz2+1,sz2,2*sz2);
                s(1,:) = -m.*r;

                for k = 1:M,
                        cl = CL101(rix,k);
                        if strncmp(MODE.TYPE, 'SVM:LIN',7);
                                if isfield(MODE,'options')
                                        CC.options = MODE.options;
                                else
                                        t = 0;
                                        if length(MODE.TYPE)>7, t=MODE.TYPE(8)-'0'; end
                                        if (t<0 || t>6) t=0; end
                                        CC.options = sprintf('-s %i -B 1 -c %f -q',t, MODE.hyperparameter.c_value);      % C-SVC, C=1, linear kernel, degree = 1,
                                end
                                model = train(W, cl, sparse(D), CC.options);    % C-SVC, C=1, linear kernel, degree = 1,
                                w = -model.w';
                                Bias = -model.bias;
                                w = -model.w(:,1:end-1)';
                                Bias = -model.w(:,end)';

                        elseif strcmp(MODE.TYPE, 'SVM:LIB');    %% tested with libsvm-mat-2.9-1
                                if isfield(MODE,'options')
                                        CC.options = MODE.options;
                                else
                                        CC.options = sprintf('-s 0 -c %f -t 0 -d 1 -q', MODE.hyperparameter.c_value);      % C-SVC, C=1, linear kernel, degree = 1,
                                end
                                model = svmtrain_mex(cl, D, CC.options);    % C-SVC, C=1, linear kernel, degree = 1,
                                w = cl(1) * model.SVs' * model.sv_coef;  %Calculate decision hyperplane weight vector
                                % ensure correct sign of weight vector and Bias according to class label
                                Bias = model.rho * cl(1);

                        elseif strcmp(MODE.TYPE, 'SVM:bioinfo');
                                % SVM classifier from bioinformatics toolbox.
                                % Settings suggested by Ian Daly, 2011-06-06
                                options = optimset('Display','iter','maxiter',20000, 'largescale','off');
                                CC.SVMstruct = svmtrain(D, cl, 'AUTOSCALE', 0, 'quadprog_opts', options, 'Method', 'LS', 'kernel_function', 'polynomial');
                                Bias = -CC.SVMstruct.Bias;
                                w = -CC.SVMstruct.Alpha'*CC.SVMstruct.SupportVectors;

                        elseif strcmp(MODE.TYPE, 'SVM:OSU');
                                [AlphaY, SVs, Bias] = mexSVMTrain(D', cl', [0 1 1 1 MODE.hyperparameter.c_value]);    % Linear Kernel, C=1; degree=1, c-SVM
                                w = -SVs * AlphaY'*cl(1);  %Calculate decision hyperplane weight vector
                                % ensure correct sign of weight vector and Bias according to class label
                                Bias = -Bias * cl(1);

                        elseif strcmp(MODE.TYPE, 'SVM:LOO');
                                [a, Bias, g, inds]  = svcm_train(D, cl, MODE.hyperparameter.c_value); % C = 1;
                                w = D(inds,:)' * (a(inds).*cl(inds)) ;

                        elseif strcmp(MODE.TYPE, 'SVM:Gunn');
                                [nsv, alpha, Bias,svi]  = svc(D, cl, 1, MODE.hyperparameter.c_value); % linear kernel, C = 1;
                                w = D(svi,:)' * alpha(svi) * cl(1);
                                Bias = mean(D*w);

                        elseif strcmp(MODE.TYPE, 'SVM:KM');
                                [xsup,w1,Bias,inds] = svmclass(D, cl, MODE.hyperparameter.c_value, 1, 'poly', 1); % C = 1;
                                w = -D(inds,:)' * w1;

                        else
                                fprintf(2,'Error TRAIN_SVM: no SVM training algorithm available\n');
                                return;
                        end

                        CC.weights(1,k) = -Bias;
                        CC.weights(cix+1,k) = w;
                end
                CC.weights([1,cix+1],:) = s * CC.weights(cix+1,:) + sparse(1,1:M,CC.weights(1,:),sz2+1,M); % include pre-whitening transformation
                CC.hyperparameter.c_value = MODE.hyperparameter.c_value;
                CC.datatype = ['classifier:',lower(MODE.TYPE)];


        elseif ~isempty(strfind(lower(MODE.TYPE),'csp'))
                CC.datatype = ['classifier:',lower(MODE.TYPE)];
                [classlabel,CC.Labels] = CL1M(classlabel);
                CC.MD = repmat(NaN,[sz(2)+[1,1],length(CC.Labels)]);
                CC.NN = CC.MD;
                for k = 1:length(CC.Labels),
                        %% [CC.MD(k,:,:),CC.NN(k,:,:)] = covm(D(classlabel==CC.Labels(k),:),'E');
                        ix = classlabel==CC.Labels(k);
                        if isempty(W)
                                [CC.MD(:,:,k),CC.NN(:,:,k)] = covm(D(ix,:), 'E');
                        else
                                [CC.MD(:,:,k),CC.NN(:,:,k)] = covm(D(ix,:), 'E', W(ix));
                        end
                end
                ECM = CC.MD./CC.NN;
                W   = csp(ECM,'CSP3');
                %%% ### This is a hack ###
                CC.FiltA = 50;
                CC.FiltB = ones(CC.FiltA,1);
                d   = filtfilt(CC.FiltB,CC.FiltA,(D*W).^2);
                CC.csp_w = W;
                CC.CSP = train_sc(log(d),classlabel);


        else          % Linear and Quadratic statistical classifiers
                CC.datatype = ['classifier:statistical:',lower(MODE.TYPE)];
                [classlabel,CC.Labels] = CL1M(classlabel);
                CC.MD = repmat(NaN,[sz(2)+[1,1],length(CC.Labels)]);
                CC.NN = CC.MD;
                for k = 1:length(CC.Labels),
                        ix = classlabel==CC.Labels(k);
                        if isempty(W)
                                [CC.MD(:,:,k),CC.NN(:,:,k)] = covm(D(ix,:), 'E');
                        else
                                [CC.MD(:,:,k),CC.NN(:,:,k)] = covm(D(ix,:), 'E', W(ix));
                        end
                end

                ECM = CC.MD./CC.NN;
                NC  = size(CC.MD);
                if strncmpi(MODE.TYPE,'LD',2) || strncmpi(MODE.TYPE,'FDA',3) || strncmpi(MODE.TYPE,'FLDA',3),

                        %if NC(1)==2, NC(1)=1; end                % linear two class problem needs only one discriminant
                        CC.weights = repmat(NaN,NC(2),NC(3));     % memory allocation
                        type = MODE.TYPE(3)-'0';

                        ECM0 = squeeze(sum(ECM,3));  %decompose ECM
                        for k = 1:NC(3);
                                ix = [1:k-1,k+1:NC(3)];
                                dM = CC.MD(:,1,k)./CC.NN(:,1,k) - sum(CC.MD(:,1,ix),3)./sum(CC.NN(:,1,ix),3);
                                switch (type)
                                        case 2          % LD2
                                                ecm0 = (sum(ECM(:,:,ix),3)/(NC(3)-1) + ECM(:,:,k));
                                        case 4          % LD4
                                                ecm0 = 2*(sum(ECM(:,:,ix),3) + ECM(:,:,k))/NC(3);
                                                % ecm0 = sum(CC.MD,3)./sum(CC.NN,3);
                                        case 5          % LD5
                                                ecm0 = ECM(:,:,k);
                                        case 6          % LD6
                                                ecm0 = sum(CC.MD(:,:,ix),3)./sum(CC.NN(:,:,ix),3);
                                        otherwise       % LD3, LDA, FDA
                                                ecm0 = ECM0;
                                end
                                if isfield(MODE.hyperparameter,'gamma')
                                        ecm0 = ecm0 + mean(diag(ecm0))*eye(size(ecm0))*MODE.hyperparameter.gamma;
                                end

                                CC.weights(:,k) = ecm0\dM;

                        end
                        %CC.weights = sparse(CC.weights);

                elseif strcmpi(MODE.TYPE,'RDA');
                        if isfield(MODE,'hyperparameter')
                                CC.hyperparameter = MODE.hyperparameter;
                        end
                        % default values
                        if ~isfield(CC.hyperparameter,'gamma')
                                CC.hyperparameter.gamma = 0;
                        end
                        if ~isfield(CC.hyperparameter,'lambda')
                                CC.hyperparameter.lambda = 1;
                        end
                else
                        ECM0 = sum(ECM,3);
                        nn = ECM0(1,1,1);       % number of samples in training set for class k
                        XC = squeeze(ECM0(:,:,1))/nn;           % normalize correlation matrix
                        M  = XC(1,2:NC(2));             % mean
                        S  = XC(2:NC(2),2:NC(2)) - M'*M;% covariance matrix

                        try
                                [v,d]=eig(S);
                                U0 = v(diag(d)==0,:);
                                CC.iS2 = U0*U0';
                        end

                        %M  = M/nn; S=S/(nn-1);
                        ICOV0 = inv(S);
                        CC.iS0 = ICOV0;
                        % ICOV1 = zeros(size(S));
                        for k = 1:NC(3),
                                %[M,sd,S,xc,N] = decovm(ECM{k});  %decompose ECM
                                %c  = size(ECM,2);
                                nn = ECM(1,1,k);% number of samples in training set for class k
                                XC = squeeze(ECM(:,:,k))/nn;% normalize correlation matrix
                                M  = XC(1,2:NC(2));% mean
                                S  = XC(2:NC(2),2:NC(2)) - M'*M;% covariance matrix
                                %M  = M/nn; S=S/(nn-1);

                                %ICOV(1) = ICOV(1) + (XC(2:NC(2),2:NC(2)) - )/nn

                                CC.M{k}   = M;
                                CC.IR{k}  = [-M;eye(NC(2)-1)]*inv(S)*[-M',eye(NC(2)-1)];  % inverse correlation matrix extended by mean
                                CC.IR0{k} = [-M;eye(NC(2)-1)]*ICOV0*[-M',eye(NC(2)-1)];  % inverse correlation matrix extended by mean
                                d = NC(2)-1;
                                if exist('OCTAVE_VERSION','builtin')
                                        S = full(S);
                                end
                                CC.logSF(k)  = log(nn) - d/2*log(2*pi) - det(S)/2;
                                CC.logSF2(k) = -2*log(nn/sum(ECM(:,1,1)));
                                CC.logSF3(k) = d*log(2*pi) + log(det(S));
                                CC.logSF4(k) = log(det(S)) + 2*log(nn);
                                CC.logSF5(k) = log(det(S));
                                CC.logSF6(k) = log(det(S)) - 2*log(nn/sum(ECM(:,1,1)));
                                CC.logSF7(k) = log(det(S)) + d*log(2*pi) - 2*log(nn/sum(ECM(:,1,1)));
                                CC.logSF8(k) = sum(log(svd(S))) + log(nn) - log(sum(ECM(:,1,1)));
                                CC.SF(k) = nn/sqrt((2*pi)^d * det(S));
                                %CC.datatype='LLBC';
                        end
                end
        end
end

function [CL101,Labels] = cl101(classlabel)
        %% convert classlabels to {-1,1} encoding

        if (all(classlabel>=0) && all(classlabel==fix(classlabel)) && (size(classlabel,2)==1))
                M = max(classlabel);
                if M==2,
                        CL101 = (classlabel==2)-(classlabel==1);
                else
                        CL101 = zeros(size(classlabel,1),M);
                        for k=1:M,
                                %% One-versus-Rest scheme
                                CL101(:,k) = 2*real(classlabel==k) - 1;
                        end
                end
                CL101(isnan(classlabel),:) = NaN; %% or zero ???

        elseif all((classlabel==1) | (classlabel==-1)  | (classlabel==0) )
                CL101 = classlabel;
                M = size(CL101,2);
        else
                classlabel,
                error('format of classlabel unsupported');
        end
        Labels = 1:M;
        return;
end


function [cl1m, Labels] = CL1M(classlabel)
        %% convert classlabels to 1..M encoding
        if (all(classlabel>=0) && all(classlabel==fix(classlabel)) && (size(classlabel,2)==1))
                cl1m = classlabel;

        elseif all((classlabel==1) | (classlabel==-1) | (classlabel==0) )
                CL101 = classlabel;
                M = size(classlabel,2);
                if any(sum(classlabel==1,2)>1)
                        warning('invalid format of classlabel - at most one category may have +1');
                end
                if (M==1),
                        cl1m = (classlabel==-1) + 2*(classlabel==+1);
                else
                        [tmp, cl1m] = max(classlabel,[],2);
                        if any(tmp ~= 1)
                                warning('some class might not be properly represented - you might what to add another column to classlabel = [max(classlabel,[],2)<1,classlabel]');
                        end
                        cl1m(tmp<1)= 0; %% or NaN ???
                end
        else
                classlabel
                error('format of classlabel unsupported');
        end
        Labels = 1:max(cl1m);
        return;
end