This file is indexed.

/usr/share/octave/packages/nan-2.8.1/train_lda_sparse.m is in octave-nan 2.8.1-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
function [CC] = train_lda_sparse(X,G,par,tol)
% Linear Discriminant Analysis for the Small Sample Size Problem as described in
% Algorithm 1 of J. Duintjer Tebbens, P. Schlesinger: 'Improving
% Implementation of Linear Discriminant Analysis for the High Dimension/Small Sample Size
% Problem', Computational Statistics and Data Analysis, vol. 52, no. 1, pp. 423-437, 2007.  
% Input:
%               X                 ......       (sparse) training data matrix
%               G                 ......       group coding matrix of the training data
%               test              ......       (sparse) test data matrix
%               Gtest             ......       group coding matrix of the test data
%               par               ......       if par = 0 then classification exploits sparsity too
%               tol               ......       tolerance to distinguish zero eigenvalues
% Output:
%               err               ......       Wrong classification rate (in %)
%               trafo             ......       LDA transformation vectors
%
% Reference(s): 
% J. Duintjer Tebbens, P. Schlesinger: 'Improving
% Implementation of Linear Discriminant Analysis for the High Dimension/Small Sample Size
% Problem', Computational Statistics and Data Analysis, vol. 52, no. 1, 
% pp. 423-437, 2007.
%
% Copyright (C) by J. Duintjer Tebbens, Institute of Computer Science of the Academy of Sciences of the Czech Republic,
% Pod Vodarenskou vezi 2, 182 07 Praha 8 Liben, 18.July.2006. 
% This work was supported by the Program Information Society under project
% 1ET400300415.
%
%
% Modified for the use with Matlab6.5 by A. Schloegl, 22.Aug.2006
%
%	$Id$
%       This function is part of the NaN-toolbox
%       http://pub.ist.ac.at/~schloegl/matlab/NaN/

% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 3
% of the  License, or (at your option) any later version.
% 
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Step (1)
%p = length(X(1,:));n = length(X(:,1));g = length(G(1,:));
G = sparse(G);
[n,p]=size(X); 
g = size(G,2);

for j=1:g
        nj(j) = norm(G(:,j))^2;
end
Dtild = spdiags(nj'.^(-1),0,g,g);
Xtild = X*X';
Xtild1 = Xtild*ones(n,1);
help = ones(n,1)*Xtild1'/n - (ones(1,n)*Xtild'*ones(n,1))/(n^2); 
matrix = Xtild - Xtild1*ones(1,n)/n - help;
% eliminate non-symmetry of matrix due to rounding error:
matrix = (matrix+matrix')/2;
[V0,S] = eig(matrix);
% [s,I] = sort(diag(S),'descend');
[s,I] = sort(-diag(S)); s = -s; 

cc = sum(s<tol);

count = n-cc;
V1 = V0(:,I(1:count));
D1inv = diag(s(1:count).^(-1.0));
Dhalfinv = diag(s(1:count).^(-0.5));
Dhalf = diag(s(1:count).^(0.5));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Step (2)
help2 = V1*D1inv;
M1 = Dtild*G'*Xtild;
B1 = (G*(M1*(speye(n)-1/n))-help)*help2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Step (3)
opts.issym = 1;opts.isreal = 1;opts.disp = 0;
%if 0, 
try,
        [V0,S,flag] = eigs(B1'*B1,g-1,'lm',opts);
        EV = Dhalfinv*V0;
        [s,I] = sort(-diag(S)); s = -s; 
        %else
catch
        % needed as long as eigs is not supported by Octave
        [V0,S] = eig(B1'*B1);
        flag   = 0;
        [s,I]  = sort(-diag(S)); s = -s(I(1:g-1));
        EV = Dhalfinv * V0(:,I(1:g-1));
        I = 1:g-1;
end;
%EV = Dhalfinv*V0;
%[s,I] = sort((diag(S)),'descend');
%[s,I] = sort(-diag(S)); s = -s; 
if flag ~= 0,
        'eigs did not converge';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Step (4)
for j=1:g-1,
        C(:,j) = EV(:,I(j))/norm(EV(:,I(j)));
end
cc = 0;
for j=1:g-1,
        if (1-s(j))<tol
                cc = cc+1;
                V2(:,j) = EV(:,I(j));
        else
                break
        end
end
if cc > 0
        [Q,R] = qr(V2,0);
        matrix = B1*Dhalf*Q;
        [V0,S] = eig(matrix'*matrix);
        %[s,I] = sort(diag(S),'descend');
        [s,I] = sort(-diag(S)); s = -s; 
        for j=1:cc
                C(:,j) = Q*V0(:,I(j));
        end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Step (5)
C1 = help2*Dhalf*C;
trafo(:,1:g-1) = X'*C1 - (X'*ones(n,1))*(ones(1,n)*C1/n);
for j=1:g-1
        trafo(:,j) = trafo(:,j)/norm(trafo(:,j));
end
CC.trafo = trafo; 

if par == 0
%    X2 = full(test*X');
%    [pred] = classifs(C1,M1,X2);
        CC.C1 = C1;
        CC.M1 = M1;
        CC.X  = X;
else
%    M = Dtild*G'*X;
%    [pred] = classifs(trafo,M,test);
        CC.C1 = trafo; 
        CC.M1 = Dtild*G'*X;
end