This file is indexed.

/usr/include/trilinos/Zoltan2_Metric.hpp is in libtrilinos-zoltan2-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
// @HEADER
//
// ***********************************************************************
//
//   Zoltan2: A package of combinatorial algorithms for scientific computing
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine      (kddevin@sandia.gov)
//                    Erik Boman        (egboman@sandia.gov)
//                    Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER

/*! \file Zoltan2_Metric.hpp
 *  \brief Metric class and namespace methods to compute quality metrics.
 *  \todo Add graph and hypergraph metrics.
 */

#ifndef ZOLTAN2_METRIC_HPP
#define ZOLTAN2_METRIC_HPP

#include <Zoltan2_StridedData.hpp>
#include <Zoltan2_PartitioningSolution.hpp>
#include <Tpetra_Map.hpp>
#include <Tpetra_CrsMatrix.hpp>
#include <Zoltan2_GraphModel.hpp>

#include <Epetra_SerialDenseVector.h>

#include <cmath>
#include <iomanip>
#include <iostream>

namespace Zoltan2{

///////////////////////////////////////////////////////////////////
// Classes
///////////////////////////////////////////////////////////////////

/*! \brief A class containing the metrics for one measurable item.
 */

template <typename scalar_t>
  class MetricValues{

private:
  void resetValues(){
    scalar_t *tmp = new scalar_t [evalNumMetrics];
    memset(tmp, 0, sizeof(scalar_t) * evalNumMetrics);
    values_ = arcp(tmp, 0, evalNumMetrics, true);
  }
  ArrayRCP<scalar_t> values_;
  std::string metricName_;
  multiCriteriaNorm mcnorm_;   // store "actualNorm + 1"

public:

/*! \brief  Enumerator for offsets into metric data.
 *
 *  When part sizes are all uniform, it is sufficient to 
 *  look at totals per part.  For non-uniform part sizes, the
 *  total is not really significant, but rather the min, max and
 *  average part imbalances.  We provide both types of metrics.
 */
enum metricOffset{
  evalLocalSum,    /*!< the total on this process */
  evalGlobalSum,   /*!< the global total on all parts */
  evalGlobalMin,   /*!< the minimum across all parts */
  evalGlobalMax,   /*!< the maximum across all parts */
  evalGlobalAvg,   /*!< the global sum divided by the number of parts */
  evalMinImbalance, /*!< the imbalance of best balanced part */
  evalAvgImbalance, /*!< the average of the part imbalances */
  evalMaxImbalance, /*!< the worst, which is the overall imbalance */
  evalNumMetrics    /*!< the number of metric values_ */
};

/*! \brief Print a standard header 
     \todo This method is static and the header is the same for
  every type of MetricValues object.  But when we add metrics for
  graph and hypergraph, we may need to look at which type of metric
  are set in order to decide what header to print.  So it would
  be a member method instead of static.
 */
static void printHeader(std::ostream &os);

/*! \brief Print a standard line of data that fits under the header. */
void printLine(std::ostream &os) const;

/*! \brief Constructor */
MetricValues(std::string mname) : 
  values_(), metricName_(mname), mcnorm_(multiCriteriaNorm(0)) { 
    resetValues();}

/*! \brief Constructor */
MetricValues() : 
  values_(), metricName_("unset"), mcnorm_(multiCriteriaNorm(0)) { 
    resetValues();}

/*! \brief Set or reset the name.  */
void setName(std::string name) { metricName_ = name;}

/*! \brief Set or reset the norm.  */
void setNorm(multiCriteriaNorm normVal) { 
  mcnorm_ = multiCriteriaNorm(normVal+1);}

/*! \brief Set the sum on the local process.  */
void setLocalSum(scalar_t x) { values_[evalLocalSum] = x;}

/*! \brief Set the global sum.  */
void setGlobalSum(scalar_t x) { values_[evalGlobalSum] = x;}

/*! \brief Set the global minimum across parts.  */
void setGlobalMin(scalar_t x) { values_[evalGlobalMin] = x;}

/*! \brief Set the global maximum across parts.  */
void setGlobalMax(scalar_t x) { values_[evalGlobalMax] = x;}

/*! \brief Set the global average (sum / numParts).  */
void setGlobalAvg(scalar_t x) { values_[evalGlobalAvg] = x;}

/*! \brief Set the imbalance of the least imbalanced part. */
void setMinImbalance(scalar_t x) { values_[evalMinImbalance] = x;}

/*! \brief Set the imbalance of the worst imbalanced part. 
     This is what we normally call the imbalance of a partition.
*/
void setMaxImbalance(scalar_t x) { values_[evalMaxImbalance] = x;}

/*! \brief Set the average imbalance of all parts. */
void setAvgImbalance(scalar_t x) { values_[evalAvgImbalance] = x;}

/*! \brief Get the name of the item measured. */
const std::string &getName() const { return metricName_; }

/*! \brief Get the norm.  */
multiCriteriaNorm getNorm() { return multiCriteriaNorm(mcnorm_-1);}

/*! \brief Get the sum on the local process. */
scalar_t getLocalSum() const { return values_[evalLocalSum];}

/*! \brief Get the global sum for all parts. */
scalar_t getGlobalSum() const { return values_[evalGlobalSum];}

/*! \brief Get the global minimum across all parts. */
scalar_t getGlobalMin() const { return values_[evalGlobalMin];}

/*! \brief Get the global maximum across all parts. */
scalar_t getGlobalMax() const { return values_[evalGlobalMax];}

/*! \brief Get the average of the sum over all parts. */
scalar_t getGlobalAvg() const { return values_[evalGlobalAvg];}

/*! \brief Get the imbalance of the least imbalanced part. */
scalar_t getMinImbalance() const { return values_[evalMinImbalance];}

/*! \brief Get the imbalance of the most imbalanced part. 
     This is what we normally call the imbalance of a partition.
*/
scalar_t getMaxImbalance() const { return values_[evalMaxImbalance];}

/*! \brief Get the average of the part imbalances. */
scalar_t getAvgImbalance() const { return values_[evalAvgImbalance];}

};  // end class

/*! \brief A class containing the metrics for one measurable item.
 */

template <typename scalar_t>
  class GraphMetricValues{

private:
  void resetValues(){
    scalar_t *tmp = new scalar_t [evalNumMetrics];
    memset(tmp, 0, sizeof(scalar_t) * evalNumMetrics);
    values_ = arcp(tmp, 0, evalNumMetrics, true);
  }
  ArrayRCP<scalar_t> values_;
  std::string metricName_;

public:

/*! \brief  Enumerator for offsets into metric data.
 */
enum metricOffset{
  evalGlobalSum,   /*!< the global total on all parts */
  evalGlobalMax,   /*!< the maximum across all parts */
  evalNumMetrics    /*!< the number of metric values_ */
};

/*! \brief Print a standard header
 */
static void printHeader(std::ostream &os);

/*! \brief Print a standard line of data that fits under the header. */
void printLine(std::ostream &os) const;

/*! \brief Constructor */
GraphMetricValues(std::string mname) :
  values_(), metricName_(mname) {
  resetValues();}

/*! \brief Constructor */
GraphMetricValues() : 
  values_(), metricName_("unset") { 
    resetValues();}

/*! \brief Set or reset the name.  */
void setName(std::string name) { metricName_ = name;}

/*! \brief Set the global sum.  */
void setGlobalSum(scalar_t x) { values_[evalGlobalSum] = x;}

/*! \brief Set the global maximum across parts.  */
void setGlobalMax(scalar_t x) { values_[evalGlobalMax] = x;}

/*! \brief Get the name of the item measured. */
const std::string &getName() const { return metricName_; }

/*! \brief Get the global sum for all parts. */
scalar_t getGlobalSum() const { return values_[evalGlobalSum];}

/*! \brief Get the global maximum across all parts. */
scalar_t getGlobalMax() const { return values_[evalGlobalMax];}

};  // end class

template <typename scalar_t>
  void MetricValues<scalar_t>::printLine(std::ostream &os) const
{
  std::string label(metricName_);
  if (mcnorm_ > 0){
    multiCriteriaNorm realNorm = multiCriteriaNorm(mcnorm_ - 1);
    std::ostringstream oss;
    switch (realNorm){
      case normMinimizeTotalWeight:   // 1-norm = Manhattan norm 
        oss << metricName_ << " (1)";
        break;
      case normBalanceTotalMaximum:   // 2-norm = sqrt of sum of squares
        oss << metricName_ << " (2)";
        break;
      case normMinimizeMaximumWeight: // inf-norm = maximum norm 
        oss << metricName_ << " (inf)";
        break;
      default:
        oss << metricName_ << " (?)";
        break;
    }

    label = oss.str();
  }

  os << std::setw(20) << label;
  os << std::setw(12) << std::setprecision(4) << values_[evalGlobalMin];
  os << std::setw(12) << std::setprecision(4) << values_[evalGlobalMax];
  os << std::setw(12) << std::setprecision(4) << values_[evalGlobalAvg];
  os << std::setw(2) << " ";
  os << std::setw(6) << std::setprecision(4) << values_[evalMinImbalance];
  os << std::setw(6) << std::setprecision(4) << values_[evalMaxImbalance];
  os << std::setw(6) << std::setprecision(4) << values_[evalAvgImbalance];
  os << std::endl;
}

template <typename scalar_t>
  void MetricValues<scalar_t>::printHeader(std::ostream &os)
{
  os << std::setw(20) << " ";
  os << std::setw(36) << "------------SUM PER PART-----------";
  os << std::setw(2) << " ";
  os << std::setw(18) << "IMBALANCE PER PART";
  os << std::endl;

  os << std::setw(20) << " ";
  os << std::setw(12) << "min" << std::setw(12) << "max" << std::setw(12) << "avg";
  os << std::setw(2) << " ";
  os << std::setw(6) << "min" << std::setw(6) << "max" << std::setw(6) << "avg";
  os << std::endl;
}

template <typename scalar_t>
  void GraphMetricValues<scalar_t>::printLine(std::ostream &os) const
{
  std::string label(metricName_);

  os << std::setw(20) << label;
  os << std::setw(12) << std::setprecision(4) << values_[evalGlobalSum];
  os << std::setw(12) << std::setprecision(4) << values_[evalGlobalMax];
  os << std::endl;
}

template <typename scalar_t>
  void GraphMetricValues<scalar_t>::printHeader(std::ostream &os)
{
  os << std::setw(20) << " ";
  os << std::setw(24) << "----------SUM----------";
  os << std::endl;

  os << std::setw(20) << " ";
  os << std::setw(12) << "sum" << std::setw(12) << "max";
  os << std::endl;
}

///////////////////////////////////////////////////////////////////
// Namespace methods to compute metric values
///////////////////////////////////////////////////////////////////

/*! \brief Find min, max and sum of metric values.
 *   \param v  a list of values
 *   \param stride  the value such that \c v[offset + stride*i]
 *             will be included in the calculation for all possible i.
 *   \param offset  the offset at which calculation will begin.
 *   \param min  on return, min will hold the minimum of the values.
 *   \param max  on return, max will hold the maximum of the values.
 *   \param sum on return, sum will hold the sum of the values.
 */
template <typename scalar_t>
 void getStridedStats(const ArrayView<scalar_t> &v, int stride, 
   int offset, scalar_t &min, scalar_t &max, scalar_t &sum)
{
  if (v.size() < 1) return;
  min = max = sum = v[offset];

  for (int i=offset+stride; i < v.size(); i += stride){
    if (v[i] < min) min = v[i];
    else if (v[i] > max) max = v[i];
    sum += v[i];
  }
}

/*! \brief Find max and sum of graph metric values.
 *   \param v  a list of values
 *   \param stride  the value such that \c v[offset + stride*i]
 *             will be included in the calculation for all possible i.
 *   \param offset  the offset at which calculation will begin.
 *   \param max  on return, max will hold the maximum of the values.
 *   \param sum on return, sum will hold the sum of the values.
 */
template <typename scalar_t>
 void getStridedStats(const ArrayView<scalar_t> &v, int stride, 
   int offset, scalar_t &max, scalar_t &sum)
{
  if (v.size() < 1) return;
  max = sum = v[offset];

  for (int i=offset+stride; i < v.size(); i += stride){
    if (v[i] > max) max = v[i];
    sum += v[i];
  }
}

/*! \brief Compute the total weight in each part on this process.
 *
 * \param env the Environment for error messages
 * \param numberOfParts the number of Parts with respect to 
 *          which weights should be computed.
 * \param parts the part Id for each object, which may range 
 *         from 0 to one less than \c numberOfParts
 * \param vwgts \c vwgts[w] is the StridedData object 
 *    representing weight index
 *    \c w.  vwgts[w][i] is the \c w'th weight for object \c i.
 * \param mcNorm the multiCriteria norm, to be used if the number of weights
 *           is greater than one.
 * \param weights on return, \c weights[p] is the total weight for part 
      \c p. \c weights is allocated by the caller
 *
 * \todo - Zoltan_norm() in Zoltan may scale the weight. Do we ever need this?
 */

template <typename scalar_t, typename lno_t, typename part_t>
  void normedPartWeights(
    const RCP<const Environment> &env,
    part_t numberOfParts,
    const ArrayView<const part_t> &parts,
    const ArrayView<StridedData<lno_t, scalar_t> > &vwgts,
    multiCriteriaNorm mcNorm,
    scalar_t *weights)
{
  env->localInputAssertion(__FILE__, __LINE__, "parts or weights", 
    numberOfParts > 0 && vwgts.size() > 0, BASIC_ASSERTION);

  int numObjects = parts.size();
  int vwgtDim = vwgts.size();

  memset(weights, 0, sizeof(scalar_t) * numberOfParts);

  if (numObjects == 0)
    return;

  if (vwgtDim == 0) {
    for (lno_t i=0; i < numObjects; i++){
      weights[parts[i]]++;
    }
  }
  else if (vwgtDim == 1){
    for (lno_t i=0; i < numObjects; i++){
      weights[parts[i]] += vwgts[0][i];
    }
  }
  else{
    switch (mcNorm){
      case normMinimizeTotalWeight:   /*!< 1-norm = Manhattan norm */
        for (int wdim=0; wdim < vwgtDim; wdim++){
          for (lno_t i=0; i < numObjects; i++){
            weights[parts[i]] += vwgts[wdim][i];
          }
        }  // next weight index
        break;
       
      case normBalanceTotalMaximum:   /*!< 2-norm = sqrt of sum of squares */
        for (lno_t i=0; i < numObjects; i++){
          scalar_t ssum = 0;
          for (int wdim=0; wdim < vwgtDim; wdim++)
            ssum += (vwgts[wdim][i] * vwgts[wdim][i]);
          weights[parts[i]] += sqrt(ssum);
        }
        break;

      case normMinimizeMaximumWeight: /*!< inf-norm = maximum norm */
        for (lno_t i=0; i < numObjects; i++){
          scalar_t max = 0;
          for (int wdim=0; wdim < vwgtDim; wdim++)
            if (vwgts[wdim][i] > max)
              max = vwgts[wdim][i];
          weights[parts[i]] += max;
        }
        break;

      default:
        env->localBugAssertion(__FILE__, __LINE__, "invalid norm", false,
          BASIC_ASSERTION);
        break;
    } 
  } 
}

/*! \brief Given the local partitioning, compute the global sums in each part.
 *
 *   \param env   Environment for error handling
 *   \param comm   communicator
 *   \param part   \c part[i] is the part ID for local object \c i
 *   \param vwgts  \c vwgts[w] is the StridedData object 
 *       representing weight index \c w. The number of weights
 *       (which must be at least one  TODO  WHY?) is taken to be \c vwgts.size().  
 *   \param mcNorm the multiCriteria norm, to be used if the number of weights is
 *             greater than one.
 *   \param numParts  on return this is the global number of parts.
 *   \param numNonemptyParts  on return this is the number of those
 *          parts that are non-empty.
 *   \param metrics on return points to a list of named MetricValues objects 
 *     that each contains the global min, max and avg over parts of 
 *     the item being measured. The list may contain "object count",
 *     "normed weight", "weight 1", "weight 2" and so on in that order.
 *     If uniform weights were given, then only "object count" appears.
 *     If one set of non-uniform weights were given, then
 *     "object count" and "weight 1" appear.  Finally, if multiple
 *     weights were given, we have "object count", then "normed weight",
 *     then the individual weights "weight 1", "weight 2", and so on.
 *   \param globalSums If weights are uniform, the globalSums is the
 *      \c numParts totals of global number of objects in each part.
 *     Suppose the number of weights is \c W.  If
 *     W is 1, then on return this is an array of length \c 2*numParts .
 *     The first \c numParts entries are the count of objects in each part,  
 *     and the second is the total weight in each part.
 *     If \c W is greater than one, then the length of this array is 
 *     \c (2+W)*numParts .
 *     The first \c numParts entries are the count of objects in each part.  
 *     The next \c numParts entries are the sum of the normed weights in 
 *     each part.  
 *     The final entries are the sum of the individual weights in each part,
 *     by weight index by part number.  The array is allocated here.
 *
 * globalSumsByPart() must be called by all processes in \c comm.
 * The imbalance metrics are not yet set in the MetricValues objects, 
 * because they require part size information.
 */

template <typename scalar_t, typename lno_t, typename part_t>
  void globalSumsByPart( 
    const RCP<const Environment> &env,
    const RCP<const Comm<int> > &comm, 
    const ArrayView<const part_t> &part, 
    int vwgtDim,
    const ArrayView<StridedData<lno_t, scalar_t> > &vwgts,
    multiCriteriaNorm mcNorm,
    part_t &numParts, 
    part_t &numNonemptyParts,
    ArrayRCP<MetricValues<scalar_t> > &metrics,
    ArrayRCP<scalar_t> &globalSums)
{
  env->debug(DETAILED_STATUS, "Entering globalSumsByPart");
  //////////////////////////////////////////////////////////
  // Initialize return values

  numParts = numNonemptyParts = 0;

  int numMetrics = 1;                       // "object count"
  if (vwgtDim) numMetrics++;                // "normed weight" or "weight 1"
  if (vwgtDim > 1) numMetrics += vwgtDim;   // "weight n"

  typedef MetricValues<scalar_t> mv_t;
  mv_t *newMetrics = new mv_t [numMetrics];
  env->localMemoryAssertion(__FILE__, __LINE__, numMetrics, newMetrics); 
  ArrayRCP<mv_t> metricArray(newMetrics, 0, numMetrics, true);

  metrics = metricArray;

  //////////////////////////////////////////////////////////
  // Figure out the global number of parts in use.
  // Verify number of vertex weights is the same everywhere.

  lno_t localNumObj = part.size();
  part_t localNum[2], globalNum[2];
  localNum[0] = static_cast<part_t>(vwgtDim);  
  localNum[1] = 0;

  for (lno_t i=0; i < localNumObj; i++)
    if (part[i] > localNum[1]) localNum[1] = part[i];

  try{
    reduceAll<int, part_t>(*comm, Teuchos::REDUCE_MAX, 2, 
      localNum, globalNum);
  }
  Z2_THROW_OUTSIDE_ERROR(*env)

  env->globalBugAssertion(__FILE__,__LINE__,
    "inconsistent number of vertex weights",
    globalNum[0] == localNum[0], DEBUG_MODE_ASSERTION, comm);

  part_t nparts = globalNum[1] + 1;

  part_t globalSumSize = nparts * numMetrics;
  scalar_t * sumBuf = new scalar_t [globalSumSize];
  env->localMemoryAssertion(__FILE__, __LINE__, globalSumSize, sumBuf);
  globalSums = arcp(sumBuf, 0, globalSumSize);

  //////////////////////////////////////////////////////////
  // Calculate the local totals by part.

  scalar_t *localBuf = new scalar_t [globalSumSize];
  env->localMemoryAssertion(__FILE__, __LINE__, globalSumSize, localBuf);
  memset(localBuf, 0, sizeof(scalar_t) * globalSumSize);

  scalar_t *obj = localBuf;              // # of objects

  for (lno_t i=0; i < localNumObj; i++)
    obj[part[i]]++;

  if (numMetrics > 1){

    scalar_t *wgt = localBuf + nparts; // single normed weight or weight 1
    try{
      normedPartWeights<scalar_t, lno_t, part_t>(env, nparts, 
        part, vwgts, mcNorm, wgt);
    }
    Z2_FORWARD_EXCEPTIONS
  
    // This code assumes the solution has the part ordered the
    // same way as the user input.  (Bug 5891 is resolved.)
    if (vwgtDim > 1){
      wgt += nparts;         // individual weights
      for (int vdim = 0; vdim < vwgtDim; vdim++){
        for (lno_t i=0; i < localNumObj; i++)
          wgt[part[i]] += vwgts[vdim][i];
        wgt += nparts;
      }
    }
  }

  // Metric: local sums on process

  int next = 0;

  metrics[next].setName("object count");
  metrics[next].setLocalSum(localNumObj);
  next++;

  if (numMetrics > 1){
    scalar_t *wgt = localBuf + nparts; // single normed weight or weight 1
    scalar_t total = 0.0;
  
    for (int p=0; p < nparts; p++){
      total += wgt[p];
    }

    if (vwgtDim == 1)
      metrics[next].setName("weight 1");
    else
      metrics[next].setName("normed weight");

    metrics[next].setLocalSum(total);
    next++;
  
    if (vwgtDim > 1){
      for (int vdim = 0; vdim < vwgtDim; vdim++){
        wgt += nparts;
        total = 0.0;
        for (int p=0; p < nparts; p++){
          total += wgt[p];
        }

        std::ostringstream oss;
        oss << "weight " << vdim+1;

        metrics[next].setName(oss.str());
        metrics[next].setLocalSum(total);
        next++;
      }
    }
  }

  //////////////////////////////////////////////////////////
  // Obtain global totals by part.

  try{
    reduceAll<int, scalar_t>(*comm, Teuchos::REDUCE_SUM, globalSumSize,
      localBuf, sumBuf);
  }
  Z2_THROW_OUTSIDE_ERROR(*env);

  delete [] localBuf;

  //////////////////////////////////////////////////////////
  // Global sum, min, max, and average over all parts

  obj = sumBuf;                     // # of objects
  scalar_t min=0, max=0, sum=0;
  next = 0;

  ArrayView<scalar_t> objVec(obj, nparts);
  getStridedStats<scalar_t>(objVec, 1, 0, min, max, sum);

  metrics[next].setGlobalMin(min);
  metrics[next].setGlobalMax(max);
  metrics[next].setGlobalSum(sum);
  metrics[next].setGlobalAvg(sum / nparts);
  next++;

  if (numMetrics > 1){
    scalar_t *wgt = sumBuf + nparts;        // single normed weight or weight 1
  
    ArrayView<scalar_t> normedWVec(wgt, nparts);
    getStridedStats<scalar_t>(normedWVec, 1, 0, min, max, sum);

    if (vwgtDim > 1)
      metrics[next].setNorm(multiCriteriaNorm(mcNorm));

    metrics[next].setGlobalMin(min);
    metrics[next].setGlobalMax(max);
    metrics[next].setGlobalSum(sum);
    metrics[next].setGlobalAvg(sum / nparts);
    next++;
  
    if (vwgtDim > 1){
      for (int vdim=0; vdim < vwgtDim; vdim++){
        wgt += nparts;       // individual weights
        ArrayView<scalar_t> fromVec(wgt, nparts);
        getStridedStats<scalar_t>(fromVec, 1, 0, min, max, sum);

        metrics[next].setGlobalMin(min);
        metrics[next].setGlobalMax(max);
        metrics[next].setGlobalSum(sum);
        metrics[next].setGlobalAvg(sum / nparts);
        next++;
      }
    }
  }

  //////////////////////////////////////////////////////////
  // How many parts do we actually have.

  numParts = nparts;
  obj = sumBuf;               // # of objects

  /*for (part_t p=nparts-1; p > 0; p--){
    if (obj[p] > 0) break;
    numParts--;
    }*/

  numNonemptyParts = numParts; 

  for (part_t p=0; p < numParts; p++)
    if (obj[p] == 0) numNonemptyParts--;

  env->debug(DETAILED_STATUS, "Exiting globalSumsByPart");
}

/*! \brief Given the local partitioning, compute the global weighted cuts in each part.
 *
 *   \param env   Environment for error handling
 *   \param comm   communicator
 *   \param graph Graph model
 *   \param part   \c part[i] is the part ID for local object \c i
 *   \param numParts  on return this is the global number of parts.
 *   \param metrics on return points to a list of named GraphMetricValues cuts 
 *     that each contains the global max and sum over parts of 
 *     the item being measured. The list may contain "cut count", or
 *     "weight 1", "weight 2" and so on in that order.
 *     If uniform weights were given, then only "cut count" appears.
 *     If one set of non-uniform weights were given, then
 *     "weight 1" appear.  Finally, if multiple
 *     weights were given, we have
 *     the individual weights "weight 1", "weight 2", and so on.
 *   \param globalSums If weights are uniform, the globalSums is the
 *      \c numParts totals of global number of cuts in each part.
 *     Suppose the number of weights is \c W.  If
 *     W is 1, then on return this is an array of length \c numParts .
 *     The \c numParts entries are the total weight in each part.
 *     If \c W is greater than one, then the length of this array is 
 *     \c W*numParts .
 *     The entries are the sum of the individual weights in each part,
 *     by weight index by part number.  The array is allocated here.
 *
 * globalWeightedCutsByPart() must be called by all processes in \c comm.
 */

template <typename Adapter>
  void globalWeightedCutsByPart( 
    const RCP<const Environment> &env,
    const RCP<const Comm<int> > &comm, 
    const RCP<const GraphModel<typename Adapter::base_adapter_t> > &graph,
    const ArrayView<const typename Adapter::part_t> &part, 
    typename Adapter::part_t &numParts, 
    ArrayRCP<GraphMetricValues<typename Adapter::scalar_t> > &metrics,
    ArrayRCP<typename Adapter::scalar_t> &globalSums)
{
  env->debug(DETAILED_STATUS, "Entering globalWeightedCutsByPart");
  //////////////////////////////////////////////////////////
  // Initialize return values

  numParts = 0;

  int ewgtDim = graph->getNumWeightsPerEdge();

  int numMetrics = 1;                       // "cut count" or "weight 1"
  if (ewgtDim > 1) numMetrics = ewgtDim;   // "weight n"

  typedef typename Adapter::scalar_t scalar_t;
  typedef typename Adapter::gno_t gno_t;
  typedef typename Adapter::lno_t lno_t;
  typedef typename Adapter::node_t node_t;
  typedef typename Adapter::part_t part_t;
  typedef StridedData<lno_t, scalar_t> input_t;

  typedef GraphMetricValues<scalar_t> mv_t;
  typedef Tpetra::CrsMatrix<part_t,lno_t,gno_t,node_t>  sparse_matrix_type;
  typedef Tpetra::Map<lno_t, gno_t, node_t>                map_type;
  typedef Tpetra::global_size_t GST;
  const GST INVALID = Teuchos::OrdinalTraits<GST>::invalid ();

  using Teuchos::as;

  mv_t *newMetrics = new mv_t [numMetrics];
  env->localMemoryAssertion(__FILE__,__LINE__,numMetrics,newMetrics); 
  ArrayRCP<mv_t> metricArray(newMetrics, 0, numMetrics, true);

  metrics = metricArray;

  //////////////////////////////////////////////////////////
  // Figure out the global number of parts in use.
  // Verify number of vertex weights is the same everywhere.

  lno_t localNumObj = part.size();
  part_t localNum[2], globalNum[2];
  localNum[0] = static_cast<part_t>(ewgtDim);  
  localNum[1] = 0;

  for (lno_t i=0; i < localNumObj; i++)
    if (part[i] > localNum[1]) localNum[1] = part[i];

  try{
    reduceAll<int, part_t>(*comm, Teuchos::REDUCE_MAX, 2, 
      localNum, globalNum);
  }
  Z2_THROW_OUTSIDE_ERROR(*env)

  env->globalBugAssertion(__FILE__,__LINE__,
    "inconsistent number of edge weights",
    globalNum[0] == localNum[0], DEBUG_MODE_ASSERTION, comm);

  part_t nparts = globalNum[1] + 1;

  part_t globalSumSize = nparts * numMetrics;
  scalar_t * sumBuf = new scalar_t [globalSumSize];
  env->localMemoryAssertion(__FILE__, __LINE__, globalSumSize, sumBuf);
  globalSums = arcp(sumBuf, 0, globalSumSize);

  //////////////////////////////////////////////////////////
  // Calculate the local totals by part.

  scalar_t *localBuf = new scalar_t [globalSumSize];
  env->localMemoryAssertion(__FILE__,__LINE__,globalSumSize,localBuf);
  memset(localBuf, 0, sizeof(scalar_t) * globalSumSize);

  scalar_t *cut = localBuf;              // # of cuts

  ArrayView<const gno_t> Ids;
  ArrayView<input_t> vwgts;
  //size_t nv =
  graph->getVertexList(Ids, vwgts);

  ArrayView<const gno_t> edgeIds;
  ArrayView<const lno_t> offsets;
  ArrayView<input_t> wgts;
  //size_t numLocalEdges =
  graph->getEdgeList(edgeIds, offsets, wgts);
  // **************************************************************************
  // *************************** BUILD MAP FOR ADJS ***************************
  // **************************************************************************

  Array<gno_t> vertexGIDs;
  RCP<const map_type> vertexMapG;

  // Build a list of the global vertex ids...
  vertexGIDs.resize(localNumObj);
  gno_t min;
  min = as<gno_t> (Ids[0]);
  for (lno_t i = 0; i < localNumObj; ++i) {
    vertexGIDs[i] = as<gno_t> (Ids[i]);

    if (vertexGIDs[i] < min) {
      min = vertexGIDs[i];
    }
  }

  gno_t gmin;
  Teuchos::reduceAll<int, gno_t>(*comm,Teuchos::REDUCE_MIN,1,&min,&gmin);

  //Generate Map for vertex
  vertexMapG = rcp(new map_type(INVALID, vertexGIDs(), gmin, comm));

  // **************************************************************************
  // ************************** BUILD GRAPH FOR ADJS **************************
  // **************************************************************************

  RCP<sparse_matrix_type> adjsMatrix;

  // Construct Tpetra::CrsGraph objects.
  adjsMatrix = rcp (new sparse_matrix_type (vertexMapG, 0));

  part_t justOne = 1;
  ArrayView<part_t> justOneAV = Teuchos::arrayView (&justOne, 1);

  for (lno_t localElement=0; localElement<localNumObj; ++localElement){

    //globalRow for Tpetra Graph
    gno_t globalRowT = as<gno_t> (Ids[localElement]);

    for (lno_t j=offsets[localElement]; j<offsets[localElement+1]; ++j){
      gno_t globalCol = as<gno_t> (edgeIds[j]);
      //create ArrayView globalCol object for Tpetra
      ArrayView<gno_t> globalColAV = Teuchos::arrayView (&globalCol,1);

      //Update Tpetra adjs Graph
      adjsMatrix->insertGlobalValues(globalRowT,globalColAV,justOneAV);
    }// *** edge loop ***
  }// *** vertex loop ***

  //Fill-complete adjs Graph
  /*adjsMatrix->fillComplete (adjsMatrix->getRowMap());

  // **************************************************************************
  // ************************ BUILD IDENTITY FOR PARTS ************************
  // **************************************************************************

  RCP<sparse_matrix_type> Ipart;

  // Ipart: Identity matrix for part numbers
  Ipart = rcp (new sparse_matrix_type (vertexMapG, 0));

  for (lno_t localElement=0; localElement<localNumObj; ++localElement) {
    part_t justPart = part[localElement];
    ArrayView<part_t> justPartAV = Teuchos::arrayView (&justPart, 1);

    // globalRow for Tpetra Matrix
    gno_t globalRowT = as<gno_t> (Ids[localElement]);

    gno_t globalCol = as<gno_t> (Ids[localElement]);
    //create ArrayView globalCol object for Tpetra
    ArrayView<gno_t> globalColAV = Teuchos::arrayView (&globalCol,1);

    //Update Tpetra Ipart matrix
    Ipart->insertGlobalValues(globalRowT,globalColAV,justPartAV);
  }// *** vertex loop ***

  //Fill-complete parts Matrix
  Ipart->fillComplete (Ipart->getRowMap());

  // Create matrix to store adjs part
  RCP<sparse_matrix_type> adjsPart = 
    rcp (new sparse_matrix_type(adjsMatrix->getRowMap(),0));
  Tpetra::MatrixMatrix::Multiply(*adjsMatrix,false,*Ipart,false,
				 *adjsPart); // adjsPart:= adjsMatrix * Ipart
  Array<gno_t> Indices;
  Array<part_t> Values;

  if (!ewgtDim) {
    for (lno_t i=0; i < localNumObj; i++) {
      const gno_t globalRow = Ids[i];
      size_t NumEntries = adjsPart->getNumEntriesInGlobalRow (globalRow);
      Indices.resize (NumEntries);
      Values.resize (NumEntries);
      adjsPart->getGlobalRowCopy (globalRow,Indices(),Values(),NumEntries);

      for (size_t j=0; j < NumEntries; j++)
	if (part[i] != Values[j])
	  cut[part[i]]++;
    }

  // This code assumes the solution has the part ordered the
  // same way as the user input.  (Bug 5891 is resolved.)
  } else {
    scalar_t *wgt = localBuf; // weight 1
    for (int edim = 0; edim < ewgtDim; edim++){
      for (lno_t i=0; i < localNumObj; i++) {
	const gno_t globalRow = Ids[i];
	size_t NumEntries = adjsPart->getNumEntriesInGlobalRow (globalRow);
	Indices.resize (NumEntries);
	Values.resize (NumEntries);
	adjsPart->getGlobalRowCopy (globalRow,Indices(),Values(),NumEntries);

	for (size_t j=0; j < NumEntries; j++)
	  if (part[i] != Values[j])
	    wgt[part[i]] = wgt[part[i]] + wgts[offsets[i] + j];
      }
      wgt += nparts;         // individual weights
    }
    }*/

  //////////////////////////////////////////////////////////
  // Obtain global totals by part.

  try{
    reduceAll<int, scalar_t>(*comm, Teuchos::REDUCE_SUM, globalSumSize,
      localBuf, sumBuf);
  }
  Z2_THROW_OUTSIDE_ERROR(*env);

  delete [] localBuf;

  //////////////////////////////////////////////////////////
  // Global max and sum over all parts

  cut = sumBuf;                     // # of cuts
  scalar_t max=0, sum=0;
  int next = 0;

  ArrayView<scalar_t> cutVec(cut, nparts);
  getStridedStats<scalar_t>(cutVec, 1, 0, max, sum);

  metrics[next].setName("cut count");
  metrics[next].setGlobalMax(max);
  metrics[next].setGlobalSum(sum);

  if (ewgtDim){
    scalar_t *wgt = sumBuf;        // weight 1
  
    for (int edim=0; edim < ewgtDim; edim++){
      ArrayView<scalar_t> fromVec(wgt, nparts);
      getStridedStats<scalar_t>(fromVec, 1, 0, max, sum);

      std::ostringstream oss;
      oss << "weight " << edim+1;

      metrics[next].setName(oss.str());
      metrics[next].setGlobalMax(max);
      metrics[next].setGlobalSum(sum);
      next++;
      wgt += nparts;       // individual weights
    }
  }

  numParts = nparts;

  env->debug(DETAILED_STATUS, "Exiting globalWeightedCutsByPart");
}

/*! \brief Compute the imbalance
 *  \param numParts the number of parts supplied, which is the
 *             length of the \c vals array.
 *  \param targetNumParts the number of parts desired, which is the
 *             length of the \c psizes array if it is defined.
 *  \param psizes  if part sizes are not uniform then <tt> psizes[p]</tt>
 *        is the part size for part \c p, for \c p ranging from zero
 *        to one less than \c targetNumParts.  Part sizes must sum to one.
 *        If part sizes are uniform, \c psizes should be NULL.
 *  \param sumVals is the sum of the values in the \c vals list.
 *  \param vals  <tt> vals[p] </tt> is the amount in part \c p, for \c p
 *          ranging from zero to one less than \c numParts.
 *  \param min  on return, min will be the minimum (best) 
 *           imbalance of all the parts.
 *  \param max  on return, max will be the maximum imbalance of all the parts.
 *  \param avg  on return avg will be the average imbalance across the parts.
 *
 * Imbalance is a value between zero and one.  If \c target is the desired
 * amount in part \c p and \c actual is the actual amount in part \c p, then
 * the imbalance is:
    \code
           abs(target - actual) / target
    \endcode
 *
 * If the part is supposed to be empty (\c target is zero), then no
 * imbalance is computed for that part.  If \c actual for that part
 * is non-zero, then other parts are too small and the imbalance will
 * be found in those other parts.
 */

template <typename scalar_t, typename part_t>
  void computeImbalances(part_t numParts, part_t targetNumParts,
    const scalar_t *psizes, scalar_t sumVals , const scalar_t *vals, 
    scalar_t &min, scalar_t &max, scalar_t &avg)
{
  min = sumVals;
  max = avg = 0;

  if (sumVals <= 0 || targetNumParts < 1 || numParts < 1)
    return;

  if (targetNumParts==1 || numParts==1){
    min = max = avg = 0;  // 0 imbalance
    return;
  }

  if (!psizes){
    scalar_t target = sumVals / targetNumParts;
    for (part_t p=0; p < numParts; p++){
      scalar_t diff = abs(vals[p] - target);
      scalar_t tmp = diff / target;
      avg += tmp;
      if (tmp > max) max = tmp;
      if (tmp < min) min = tmp;
    }
    part_t emptyParts = targetNumParts - numParts;  
    if (emptyParts > 0){
      if (max < 1.0)
        max = 1.0;       // target divided by target
      avg += emptyParts;
    }
  }
  else{
    for (part_t p=0; p < targetNumParts; p++){
      if (psizes[p] > 0){
        if (p < numParts){
          scalar_t target = sumVals * psizes[p];
          scalar_t diff = abs(vals[p] - target);
          scalar_t tmp = diff / target;
          avg += tmp;
          if (tmp > max) max = tmp;
          if (tmp < min) min = tmp;
        }
        else{
          if (max < 1.0)
            max = 1.0;  // target divided by target
          avg += 1.0;
        }
      }
    }
  }

  avg /= targetNumParts;
}

/*! \brief Compute the imbalance in the case of multiple part sizes.
 *
 *  \param numParts the number of parts supplied, which is the
 *             length of the \c vals array.
 *  \param targetNumParts the number of parts desired, which is the
 *             length of the \c psizes array if it is defined.
 *  \param numSizes the number of part size arrays
 *  \param psizes  is an array of \c numSizes pointers to part size arrays.
 *         If the part sizes for index \c w are uniform, then
 *         <tt>psizes[w]</tt> should be NULL.  Otherwise it should
 *         point to \c targetNumParts sizes, and the sizes for each
 *         index should sum to one.
 *  \param sumVals is the sum of the values in the \c vals list.
 *  \param vals  <tt> vals[p] </tt> is the amount in part \c p, for \c p
 *          ranging from zero to one less than \c numParts.
 *  \param min  on return, min will be the minimum (best) imbalance 
 *          of all the parts.
 *  \param max  on return, max will be the maximum imbalance of all the parts.
 *  \param avg  on return avg will be the average imbalance across the parts.
 *
 * Imbalance is a value between zero and one.  If \c target is the desired
 * amount in part \c p and \c actual is the actual amount in part \c p, then
 * the imbalance is:
    \code
           abs(target - actual) / target
    \endcode
 *
 * If the part is supposed to be empty (\c target is zero), then no
 * imbalance is computed for that part.  If \c actual for that part
 * is non-zero, then other parts are too small and the imbalance will
 * be found in those other parts.
 */

template <typename scalar_t, typename part_t>
 void computeImbalances(part_t numParts, part_t targetNumParts,
   int numSizes, ArrayView<ArrayRCP<scalar_t> > psizes,
   scalar_t sumVals , const scalar_t *vals, 
   scalar_t &min, scalar_t &max, scalar_t &avg)
{
  min = sumVals;
  max = avg = 0;

  if (sumVals <= 0 || targetNumParts < 1 || numParts < 1)
    return;

  if (targetNumParts==1 && numParts==1){
    min = max = avg = 0;  // 0 imbalance
    return;
  }

  bool allUniformParts = true;
  for (int i=0; i < numSizes; i++){
    if (psizes[i].size() != 0){
      allUniformParts = false;
      break;
    }
  }

  if (allUniformParts){
    computeImbalances<scalar_t, part_t>(numParts, targetNumParts, NULL,
      sumVals, vals, min, max, avg);
    return;
  }

  double uniformSize = 1.0 / targetNumParts;
  ArrayRCP<double> sizeVec(new double [numSizes], 0, numSizes, true);
  for (int i=0; i < numSizes; i++){
    sizeVec[i] = uniformSize;
  }

  for (part_t p=0; p < numParts; p++){

    // If we have objects in parts that should have 0 objects,
    // we don't compute an imbalance.  It means that other
    // parts have too few objects, and the imbalance will be
    // picked up there.

    if (p >= targetNumParts)
      break;

    // Vector of target amounts: T

    for (int i=0; i < numSizes; i++)
      if (psizes[i].size() > 0)
        sizeVec[i] = psizes[i][p];

    Epetra_SerialDenseVector target(View, sizeVec.getRawPtr(), numSizes);
    target.Scale(sumVals);
    double targetNorm = target.Norm2();

    // If part is supposed to be empty, we don't compute an
    // imbalance.  Same argument as above.

    if (targetNorm > 0){

      // Vector of actual amounts: A

      Epetra_SerialDenseVector actual(numSizes);
      for (int i=0; i < numSizes; i++)
        actual[i] = vals[p] * -1.0;
      
      actual += target;

      //  |A - T| / |T|

      scalar_t imbalance = actual.Norm2() / targetNorm;

      if (imbalance < min)
        min = imbalance;
      else if (imbalance > max)
        max = imbalance;
      avg += imbalance; 
    }
  }

  part_t numEmptyParts = 0;

  for (part_t p=numParts; p < targetNumParts; p++){
    bool nonEmptyPart = false;
    for (int i=0; !nonEmptyPart && i < numSizes; i++)
      if (psizes[i].size() > 0 && psizes[i][p] > 0.0)
        nonEmptyPart = true;

    if (nonEmptyPart){
      // The partitioning has no objects for this part, which
      // is supposed to be non-empty.
      numEmptyParts++;
    }
  }

  if (numEmptyParts > 0){
    avg += numEmptyParts;
    if (max < 1.0)
      max = 1.0;       // target divided by target
  }

  avg /= targetNumParts;
}

/*! \brief Compute imbalance metrics for a distribution.
 *
 *   \param env   The problem environment.
 *   \param comm  The problem communicator.
 *   \param ia the InputAdapter object which corresponds to the Solution.
 *   \param solution the PartitioningSolution to be evaluated.
 *   \param mcNorm  is the multicriteria norm to use if the number of weights
 *           is greater than one.  See the multiCriteriaNorm enumerator for
 *           \c mcNorm values.
 *   \param numParts on return is the global number of parts in the solution
 *   \param numNonemptyParts on return is the global number of parts to which 
 *                                objects are assigned.
 *   \param metrics on return points to a list of named MetricValues objects 
 *     that each contains the global min, max and avg over parts and
 *     also imbalance measures of 
 *     the item being measured. The list may contain "object count",
 *     "normed weight", "weight 1", "weight 2" and so on in that order.
 *     If uniform weights were given, then only "object count" appears.
 *     If one set of non-uniform weights were given, then
 *     "object count" and "weight 1" appear.  Finally, if multiple
 *     weights were given, we have "object count", then "normed weight",
 *     then the individual weights "weight 1", "weight 2", and so on.
 *
 *  objectMetrics() must be called by all processes in \c comm.  
 *  See the metricOffset enumerator in the MetricValues class for the 
 *  interpretation of the metric quantities.
 *   \todo check that part sizes sum to one if we're doing COMPLEX_ASSERTION
 */

template <typename Adapter>
  void objectMetrics(
    const RCP<const Environment> &env,
    const RCP<const Comm<int> > &comm,
    multiCriteriaNorm mcNorm,
    const RCP<const Adapter> &ia,
    const RCP<const PartitioningSolution<Adapter> > &solution,
    typename Adapter::part_t &numParts,
    typename Adapter::part_t &numNonemptyParts,
    ArrayRCP<MetricValues<typename Adapter::scalar_t> > &metrics)
{
  env->debug(DETAILED_STATUS, "Entering objectMetrics");

  typedef typename Adapter::scalar_t scalar_t;
  typedef typename Adapter::lno_t lno_t;
  typedef typename Adapter::part_t part_t;
  typedef StridedData<lno_t, scalar_t> sdata_t;

  // Local number of objects.

  size_t numLocalObjects = ia->getLocalNumIDs();

  // Parts to which objects are assigned.

  const part_t *parts = solution->getPartListView();
  env->localInputAssertion(__FILE__, __LINE__, "parts not set", 
    ((numLocalObjects == 0) || parts), BASIC_ASSERTION);
  ArrayView<const part_t> partArray(parts, numLocalObjects);

  // Weights, if any, for each object.

  int nWeights = ia->getNumWeightsPerID();
  int numCriteria = (nWeights > 0 ? nWeights : 1);
  Array<sdata_t> weights(numCriteria);

  if (nWeights == 0){
    // One set of uniform weights is implied.
    // StridedData default constructor creates length 0 strided array.
    weights[0] = sdata_t();
  }
  else{
    for (int i=0; i < nWeights; i++){
      int stride;
      const scalar_t *wgt;
      ia->getWeightsView(wgt, stride, i); 
      ArrayRCP<const scalar_t> wgtArray(wgt, 0, stride*numLocalObjects, false);
      weights[i] = sdata_t(wgtArray, stride);
    }
  }

  // Relative part sizes, if any, assigned to the parts.

  part_t targetNumParts = solution->getTargetGlobalNumberOfParts();
  scalar_t *psizes = NULL;

  ArrayRCP<ArrayRCP<scalar_t> > partSizes(numCriteria);
  for (int dim=0; dim < numCriteria; dim++){
    if (solution->criteriaHasUniformPartSizes(dim) != true){
      psizes = new scalar_t [targetNumParts];
      env->localMemoryAssertion(__FILE__, __LINE__, numParts, psizes);
      for (part_t i=0; i < targetNumParts; i++){
        psizes[i] = solution->getCriteriaPartSize(dim, i);
      }
      partSizes[dim] = arcp(psizes, 0, targetNumParts, true);
    }
  }

  ///////////////////////////////////////////////////////////////////////////
  // Get number of parts, and the number that are non-empty.
  // Get sums per part of objects, individual weights, and normed weight sums.

  ArrayRCP<scalar_t> globalSums;

  try{
    globalSumsByPart<scalar_t, lno_t, part_t>(env, comm, 
      partArray, nWeights, weights.view(0, numCriteria), mcNorm,
      numParts, numNonemptyParts, metrics, globalSums);
  }
  Z2_FORWARD_EXCEPTIONS

  ///////////////////////////////////////////////////////////////////////////
  // Compute imbalances for the object count.  
  // (Use first index of part sizes.) 

  scalar_t *objCount  = globalSums.getRawPtr();
  scalar_t min, max, avg;
  psizes=NULL;

  if (partSizes[0].size() > 0)
    psizes = partSizes[0].getRawPtr();

  computeImbalances<scalar_t, part_t>(numParts, targetNumParts, psizes,
      metrics[0].getGlobalSum(), objCount, 
      min, max, avg);

  metrics[0].setMinImbalance(1.0 + min);
  metrics[0].setMaxImbalance(1.0 + max);
  metrics[0].setAvgImbalance(1.0 + avg);

  ///////////////////////////////////////////////////////////////////////////
  // Compute imbalances for the normed weight sum.

  scalar_t *wgts = globalSums.getRawPtr() + numParts;

  if (metrics.size() > 1){
  
    computeImbalances<scalar_t, part_t>(numParts, targetNumParts, 
      numCriteria, partSizes.view(0, numCriteria),
      metrics[1].getGlobalSum(), wgts,
      min, max, avg);
  
    metrics[1].setMinImbalance(1.0 + min);
    metrics[1].setMaxImbalance(1.0 + max);
    metrics[1].setAvgImbalance(1.0 + avg);

    if (metrics.size() > 2){

    ///////////////////////////////////////////////////////////////////////////
    // Compute imbalances for each individual weight.

      int next = 2;
  
      for (int vdim=0; vdim < numCriteria; vdim++){
        wgts += numParts;
        psizes = NULL;
  
        if (partSizes[vdim].size() > 0)
           psizes = partSizes[vdim].getRawPtr();
         
        computeImbalances<scalar_t, part_t>(numParts, targetNumParts, psizes,
          metrics[next].getGlobalSum(), wgts, min, max, avg);
  
        metrics[next].setMinImbalance(1.0 + min);
        metrics[next].setMaxImbalance(1.0 + max);
        metrics[next].setAvgImbalance(1.0 + avg);
        next++;
      }
    }

  }
  env->debug(DETAILED_STATUS, "Exiting objectMetrics");
}

/*! \brief Print out a header and the values for a list of metrics.
 */

template <typename scalar_t, typename part_t>
  void printMetrics( std::ostream &os,
    part_t targetNumParts, part_t numParts, part_t numNonemptyParts, 
    const ArrayView<MetricValues<scalar_t> > &infoList)
{
  os << "NUMBER OF PARTS IS " << numParts;
  if (numNonemptyParts < numParts)
    os << " (" << numNonemptyParts << " of which are non-empty)";
  os << std::endl;
  if (targetNumParts != numParts)
    os << "TARGET NUMBER OF PARTS IS " << targetNumParts << std::endl;

  std::string unset("unset");

  MetricValues<scalar_t>::printHeader(os);

  for (int i=0; i < infoList.size(); i++)
    if (infoList[i].getName() != unset)
      infoList[i].printLine(os);

  os << std::endl;
}

/*! \brief Print out a header and the values for a single metric.
 */

template <typename scalar_t, typename part_t>
  void printMetrics( std::ostream &os,
    part_t targetNumParts, part_t numParts, part_t numNonemptyParts, 
    const MetricValues<scalar_t> &info)
{
  ArrayView<MetricValues<scalar_t> > infoList(&info, 1);
  printMetrics( os, targetNumParts, numParts, numNonemptyParts, infoList);
}


/*! \brief Compute the norm of the vector of weights.
 */
template <typename scalar_t>
  scalar_t normedWeight(ArrayView <scalar_t> weights, 
    multiCriteriaNorm norm)
{
  size_t dim = weights.size();
  if (dim == 0)
    return 0.0;
  else if (dim == 1)
    return weights[0];
 
  scalar_t nweight = 0;

  switch (norm){
    case normMinimizeTotalWeight:   /*!< 1-norm = Manhattan norm */

      for (size_t i=0; i <dim; i++)
        nweight += weights[i];

      break;
     
    case normBalanceTotalMaximum:   /*!< 2-norm = sqrt of sum of squares */
      for (size_t i=0; i <dim; i++)
        nweight += (weights[i] * weights[i]);

      nweight = sqrt(nweight);

      break;

    case normMinimizeMaximumWeight: /*!< inf-norm = maximum norm */

      nweight = weights[0];
      for (size_t i=1; i <dim; i++)
        if (weights[i] > nweight)
          nweight = weights[i];

      break;

    default:
      Environment env;  // default environment
      env.localBugAssertion(__FILE__, __LINE__, "invalid norm", false,
        BASIC_ASSERTION);
      break;
  } 

  return nweight;
}

/*! \brief Compute the norm of the vector of weights stored as StridedData.
 */
template<typename lno_t, typename scalar_t>
  scalar_t normedWeight(ArrayView<StridedData<lno_t, scalar_t> > weights, 
     lno_t idx, multiCriteriaNorm norm)
{
  size_t dim = weights.size();
  if (dim < 1)
    return 0;

  Array<scalar_t> vec(dim, 1.0);
  for (size_t i=0; i < dim; i++)
    if (weights[i].size() > 0)
       vec[dim] = weights[i][idx];

  return normedWeight(vec, norm);
}

} //namespace Zoltan2
#endif