/usr/include/trilinos/Stokhos_FlatSparse3Tensor.hpp is in libtrilinos-stokhos-dev 12.4.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 | // @HEADER
// ***********************************************************************
//
// Stokhos Package
// Copyright (2009) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Eric T. Phipps (etphipp@sandia.gov).
//
// ***********************************************************************
// @HEADER
#ifndef STOKHOS_FLAT_SPARSE_3_TENSOR_HPP
#define STOKHOS_FLAT_SPARSE_3_TENSOR_HPP
#include "Kokkos_Core.hpp"
#include "Stokhos_Multiply.hpp"
#include "Stokhos_ProductBasis.hpp"
#include "Stokhos_Sparse3Tensor.hpp"
#include "Teuchos_ParameterList.hpp"
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
namespace Stokhos {
/** \brief Sparse product tensor with replicated entries
* to provide subsets with a given coordinate.
*/
template< typename ValueType , class ExecutionSpace >
class FlatSparse3Tensor {
public:
typedef ExecutionSpace execution_space ;
typedef typename execution_space::size_type size_type ;
typedef ValueType value_type ;
private:
typedef Kokkos::View< size_type[] , execution_space > coord_array_type ;
typedef Kokkos::View< value_type[], execution_space > value_array_type ;
typedef Kokkos::View< size_type[], execution_space > entry_array_type ;
typedef Kokkos::View< size_type[], execution_space > row_map_array_type ;
coord_array_type m_k_coord ;
coord_array_type m_j_coord ;
value_array_type m_value ;
entry_array_type m_num_k ;
entry_array_type m_num_j ;
row_map_array_type m_k_row_map ;
row_map_array_type m_j_row_map ;
size_type m_nnz ;
size_type m_flops ;
public:
inline
~FlatSparse3Tensor() {}
inline
FlatSparse3Tensor() :
m_k_coord() ,
m_j_coord() ,
m_value() ,
m_num_k() ,
m_num_j() ,
m_k_row_map() ,
m_j_row_map() ,
m_nnz(0) ,
m_flops(0) {}
inline
FlatSparse3Tensor( const FlatSparse3Tensor & rhs ) :
m_k_coord( rhs.m_k_coord ) ,
m_j_coord( rhs.m_j_coord ) ,
m_value( rhs.m_value ) ,
m_num_k( rhs.m_num_k ) ,
m_num_j( rhs.m_num_j ) ,
m_k_row_map( rhs.m_k_row_map ) ,
m_j_row_map( rhs.m_j_row_map ) ,
m_nnz( rhs.m_nnz ) ,
m_flops( rhs.m_flops ) {}
inline
FlatSparse3Tensor & operator = ( const FlatSparse3Tensor & rhs )
{
m_k_coord = rhs.m_k_coord ;
m_j_coord = rhs.m_j_coord ;
m_value = rhs.m_value ;
m_num_k = rhs.m_num_k ;
m_num_j = rhs.m_num_j ;
m_k_row_map = rhs.m_k_row_map ;
m_j_row_map = rhs.m_j_row_map ;
m_nnz = rhs.m_nnz;
m_flops = rhs.m_flops;
return *this ;
}
/** \brief Dimension of the tensor. */
KOKKOS_INLINE_FUNCTION
size_type dimension() const { return m_k_row_map.dimension_0() - 1 ; }
/** \brief Number of sparse entries. */
KOKKOS_INLINE_FUNCTION
size_type entry_count() const
{ return m_j_coord.dimension_0(); }
/** \brief Begin k entries with a coordinate 'i' */
KOKKOS_INLINE_FUNCTION
size_type k_begin( size_type i ) const
{ return m_k_row_map[i]; }
/** \brief End k entries with a coordinate 'i' */
KOKKOS_INLINE_FUNCTION
size_type k_end( size_type i ) const
{ return m_k_row_map[i] + m_num_k(i); }
/** \brief Number of k entries with a coordinate 'i' */
KOKKOS_INLINE_FUNCTION
size_type num_k( size_type i ) const
{ return m_num_k(i); }
/** \brief k coordinate for k entry 'kEntry' */
KOKKOS_INLINE_FUNCTION
const size_type& k_coord( const size_type kEntry ) const
{ return m_k_coord( kEntry ); }
/** \brief Begin j entries with a k entry 'kEntry' */
KOKKOS_INLINE_FUNCTION
size_type j_begin( size_type kEntry ) const
{ return m_j_row_map[kEntry]; }
/** \brief End j entries with a k entry 'kEntry' */
KOKKOS_INLINE_FUNCTION
size_type j_end( size_type kEntry ) const
{ return m_j_row_map[kEntry] + m_num_j(kEntry); }
/** \brief Number of j entries with a k entry 'kEntry' */
KOKKOS_INLINE_FUNCTION
size_type num_j( size_type kEntry ) const
{ return m_num_j(kEntry); }
/** \brief j coordinate for j entry 'jEntry' */
KOKKOS_INLINE_FUNCTION
const size_type& j_coord( const size_type jEntry ) const
{ return m_j_coord( jEntry ); }
/** \brief Value for j entry 'jEntry' */
KOKKOS_INLINE_FUNCTION
const value_type & value( const size_type jEntry ) const
{ return m_value( jEntry ); }
/** \brief Number of non-zero's */
KOKKOS_INLINE_FUNCTION
size_type num_non_zeros() const
{ return m_nnz; }
/** \brief Number flop's per multiply-add */
KOKKOS_INLINE_FUNCTION
size_type num_flops() const
{ return m_flops; }
template <typename OrdinalType>
static FlatSparse3Tensor
create( const Stokhos::ProductBasis<OrdinalType,ValueType>& basis,
const Stokhos::Sparse3Tensor<OrdinalType,ValueType>& Cijk,
const Teuchos::ParameterList& params = Teuchos::ParameterList())
{
typedef Stokhos::Sparse3Tensor<OrdinalType,ValueType> Cijk_type;
// Compute number of k's for each i
const size_type dimension = basis.size();
std::vector< size_t > k_coord_work( dimension , (size_t) 0 );
size_type k_entry_count = 0 ;
for (typename Cijk_type::i_iterator i_it=Cijk.i_begin();
i_it!=Cijk.i_end(); ++i_it) {
OrdinalType i = index(i_it);
k_coord_work[i] = Cijk.num_k(i_it);
k_entry_count += Cijk.num_k(i_it);
}
// Compute number of j's for each i and k
std::vector< size_t > j_coord_work( k_entry_count , (size_t) 0 );
size_type j_entry_count = 0 ;
size_type k_entry = 0 ;
for (typename Cijk_type::i_iterator i_it=Cijk.i_begin();
i_it!=Cijk.i_end(); ++i_it) {
for (typename Cijk_type::ik_iterator k_it = Cijk.k_begin(i_it);
k_it != Cijk.k_end(i_it); ++k_it, ++k_entry) {
OrdinalType k = index(k_it);
for (typename Cijk_type::ikj_iterator j_it = Cijk.j_begin(k_it);
j_it != Cijk.j_end(k_it); ++j_it) {
OrdinalType j = index(j_it);
if (j >= k) {
++j_coord_work[k_entry];
++j_entry_count;
}
}
}
}
/*
// Pad each row to have size divisible by alignment size
enum { Align = Kokkos::Impl::is_same<ExecutionSpace,Kokkos::Cuda>::value ? 32 : 2 };
for ( size_type i = 0 ; i < dimension ; ++i ) {
const size_t rem = coord_work[i] % Align;
if (rem > 0) {
const size_t pad = Align - rem;
coord_work[i] += pad;
entry_count += pad;
}
}
*/
// Allocate tensor data
FlatSparse3Tensor tensor ;
tensor.m_k_coord = coord_array_type( "k_coord" , k_entry_count );
tensor.m_j_coord = coord_array_type( "j_coord" , j_entry_count );
tensor.m_value = value_array_type( "value" , j_entry_count );
tensor.m_num_k = entry_array_type( "num_k" , dimension );
tensor.m_num_j = entry_array_type( "num_j" , k_entry_count );
tensor.m_k_row_map = row_map_array_type( "k_row_map" , dimension+1 );
tensor.m_j_row_map = row_map_array_type( "j_row_map" , k_entry_count+1 );
// Create mirror, is a view if is host memory
typename coord_array_type::HostMirror
host_k_coord = Kokkos::create_mirror_view( tensor.m_k_coord );
typename coord_array_type::HostMirror
host_j_coord = Kokkos::create_mirror_view( tensor.m_j_coord );
typename value_array_type::HostMirror
host_value = Kokkos::create_mirror_view( tensor.m_value );
typename entry_array_type::HostMirror
host_num_k = Kokkos::create_mirror_view( tensor.m_num_k );
typename entry_array_type::HostMirror
host_num_j = Kokkos::create_mirror_view( tensor.m_num_j );
typename entry_array_type::HostMirror
host_k_row_map = Kokkos::create_mirror_view( tensor.m_k_row_map );
typename entry_array_type::HostMirror
host_j_row_map = Kokkos::create_mirror_view( tensor.m_j_row_map );
// Compute k row map
size_type sum = 0;
host_k_row_map(0) = 0;
for ( size_type i = 0 ; i < dimension ; ++i ) {
sum += k_coord_work[i];
host_k_row_map(i+1) = sum;
host_num_k(i) = 0;
}
// Compute j row map
sum = 0;
host_j_row_map(0) = 0;
for ( size_type i = 0 ; i < k_entry_count ; ++i ) {
sum += j_coord_work[i];
host_j_row_map(i+1) = sum;
host_num_j(i) = 0;
}
for ( size_type i = 0 ; i < dimension ; ++i ) {
k_coord_work[i] = host_k_row_map[i];
}
for ( size_type i = 0 ; i < k_entry_count ; ++i ) {
j_coord_work[i] = host_j_row_map[i];
}
for (typename Cijk_type::i_iterator i_it=Cijk.i_begin();
i_it!=Cijk.i_end(); ++i_it) {
OrdinalType i = index(i_it);
for (typename Cijk_type::ik_iterator k_it = Cijk.k_begin(i_it);
k_it != Cijk.k_end(i_it); ++k_it) {
OrdinalType k = index(k_it);
const size_type kEntry = k_coord_work[i];
++k_coord_work[i];
host_k_coord(kEntry) = k ;
++host_num_k(i);
for (typename Cijk_type::ikj_iterator j_it = Cijk.j_begin(k_it);
j_it != Cijk.j_end(k_it); ++j_it) {
OrdinalType j = index(j_it);
ValueType c = Stokhos::value(j_it);
if (j >= k) {
const size_type jEntry = j_coord_work[kEntry];
++j_coord_work[kEntry];
host_value(jEntry) = (j != k) ? c : 0.5*c;
host_j_coord(jEntry) = j ;
++host_num_j(kEntry);
++tensor.m_nnz;
}
}
}
}
// Copy data to device if necessary
Kokkos::deep_copy( tensor.m_k_coord , host_k_coord );
Kokkos::deep_copy( tensor.m_j_coord , host_j_coord );
Kokkos::deep_copy( tensor.m_value , host_value );
Kokkos::deep_copy( tensor.m_num_k , host_num_k );
Kokkos::deep_copy( tensor.m_num_j , host_num_j );
Kokkos::deep_copy( tensor.m_k_row_map , host_k_row_map );
Kokkos::deep_copy( tensor.m_j_row_map , host_j_row_map );
tensor.m_flops = 5*tensor.m_nnz + dimension;
return tensor ;
}
};
template< class Device , typename OrdinalType , typename ValueType >
FlatSparse3Tensor<ValueType, Device>
create_flat_sparse_3_tensor(
const Stokhos::ProductBasis<OrdinalType,ValueType>& basis,
const Stokhos::Sparse3Tensor<OrdinalType,ValueType>& Cijk,
const Teuchos::ParameterList& params = Teuchos::ParameterList() )
{
return FlatSparse3Tensor<ValueType, Device>::create( basis, Cijk, params );
}
template <typename ValueType, typename Device>
class BlockMultiply< FlatSparse3Tensor< ValueType , Device > >
{
public:
typedef typename Device::size_type size_type ;
typedef FlatSparse3Tensor< ValueType , Device > tensor_type ;
template< typename MatrixValue , typename VectorValue >
KOKKOS_INLINE_FUNCTION
static void apply( const tensor_type & tensor ,
const MatrixValue * const a ,
const VectorValue * const x ,
VectorValue * const y )
{
const size_type nDim = tensor.dimension();
// Loop over i
for ( size_type i = 0; i < nDim; ++i) {
VectorValue ytmp = 0;
// Loop over k for this i
const size_type nk = tensor.num_k(i);
const size_type kBeg = tensor.k_begin(i);
const size_type kEnd = kBeg + nk;
for (size_type kEntry = kBeg; kEntry < kEnd; ++kEntry) {
const size_type k = tensor.k_coord(kEntry);
const MatrixValue ak = a[k];
const VectorValue xk = x[k];
// Loop over j for this i,k
const size_type nj = tensor.num_j(kEntry);
const size_type jBeg = tensor.j_begin(kEntry);
const size_type jEnd = jBeg + nj;
for (size_type jEntry = jBeg; jEntry < jEnd; ++jEntry) {
const size_type j = tensor.j_coord(jEntry);
ytmp += tensor.value(jEntry) * ( a[j] * xk + ak * x[j] );
}
}
y[i] += ytmp ;
}
}
KOKKOS_INLINE_FUNCTION
static size_type matrix_size( const tensor_type & tensor )
{ return tensor.dimension(); }
KOKKOS_INLINE_FUNCTION
static size_type vector_size( const tensor_type & tensor )
{ return tensor.dimension(); }
};
} /* namespace Stokhos */
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
#endif /* #ifndef STOKHOS_FLAT_SPARSE_3_TENSOR_HPP */
|