This file is indexed.

/usr/include/pcl-1.7/pcl/features/feature.h is in libpcl-dev 1.7.2-14build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2010-2011, Willow Garage, Inc.
 *  Copyright (c) 2012-, Open Perception, Inc.
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 *
 */

#ifndef PCL_FEATURE_H_
#define PCL_FEATURE_H_

#if defined __GNUC__
#  pragma GCC system_header 
#endif

#include <boost/function.hpp>
#include <boost/bind.hpp>
// PCL includes
#include <pcl/pcl_base.h>
#include <pcl/search/search.h>

namespace pcl
{
  /** \brief Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares
    * plane normal and surface curvature.
    * \param covariance_matrix the 3x3 covariance matrix
    * \param point a point lying on the least-squares plane (SSE aligned)
    * \param plane_parameters the resultant plane parameters as: a, b, c, d (ax + by + cz + d = 0)
    * \param curvature the estimated surface curvature as a measure of
    * \f[
    * \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
    * \f]
    * \ingroup features
    */
  inline void
  solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix,
                        const Eigen::Vector4f &point,
                        Eigen::Vector4f &plane_parameters, float &curvature);

  /** \brief Solve the eigenvalues and eigenvectors of a given 3x3 covariance matrix, and estimate the least-squares
    * plane normal and surface curvature.
    * \param covariance_matrix the 3x3 covariance matrix
    * \param nx the resultant X component of the plane normal
    * \param ny the resultant Y component of the plane normal
    * \param nz the resultant Z component of the plane normal
    * \param curvature the estimated surface curvature as a measure of
    * \f[
    * \lambda_0 / (\lambda_0 + \lambda_1 + \lambda_2)
    * \f]
    * \ingroup features
    */
  inline void
  solvePlaneParameters (const Eigen::Matrix3f &covariance_matrix,
                        float &nx, float &ny, float &nz, float &curvature);

  ////////////////////////////////////////////////////////////////////////////////////////////
  ////////////////////////////////////////////////////////////////////////////////////////////
  ////////////////////////////////////////////////////////////////////////////////////////////
  /** \brief Feature represents the base feature class. Some generic 3D operations that
    * are applicable to all features are defined here as static methods.
    *
    * \attention
    * The convention for a feature descriptor is:
    *   - if the nearest neighbors for the query point at which the descriptor is to be computed cannot be
    *     determined, the descriptor values will be set to NaN (not a number)
    *   - it is impossible to estimate a feature descriptor for a point that doesn't have finite 3D coordinates.
    *     Therefore, any point that has NaN data on x, y, or z, will most likely have its descriptor set to NaN.
    *
    * \author Radu B. Rusu
    * \ingroup features
    */
  template <typename PointInT, typename PointOutT>
  class Feature : public PCLBase<PointInT>
  {
    public:
      using PCLBase<PointInT>::indices_;
      using PCLBase<PointInT>::input_;

      typedef PCLBase<PointInT> BaseClass;

      typedef boost::shared_ptr< Feature<PointInT, PointOutT> > Ptr;
      typedef boost::shared_ptr< const Feature<PointInT, PointOutT> > ConstPtr;

      typedef typename pcl::search::Search<PointInT> KdTree;
      typedef typename pcl::search::Search<PointInT>::Ptr KdTreePtr;

      typedef pcl::PointCloud<PointInT> PointCloudIn;
      typedef typename PointCloudIn::Ptr PointCloudInPtr;
      typedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;

      typedef pcl::PointCloud<PointOutT> PointCloudOut;

      typedef boost::function<int (size_t, double, std::vector<int> &, std::vector<float> &)> SearchMethod;
      typedef boost::function<int (const PointCloudIn &cloud, size_t index, double, std::vector<int> &, std::vector<float> &)> SearchMethodSurface;

    public:
      /** \brief Empty constructor. */
      Feature () :
        feature_name_ (), search_method_surface_ (),
        surface_(), tree_(),
        search_parameter_(0), search_radius_(0), k_(0),
        fake_surface_(false)
      {}
            
      /** \brief Empty destructor */
      virtual ~Feature () {}

      /** \brief Provide a pointer to a dataset to add additional information
        * to estimate the features for every point in the input dataset.  This
        * is optional, if this is not set, it will only use the data in the
        * input cloud to estimate the features.  This is useful when you only
        * need to compute the features for a downsampled cloud.
        * \param[in] cloud a pointer to a PointCloud message
        */
      inline void
      setSearchSurface (const PointCloudInConstPtr &cloud)
      {
        surface_ = cloud;
        fake_surface_ = false;
        //use_surface_  = true;
      }

      /** \brief Get a pointer to the surface point cloud dataset. */
      inline PointCloudInConstPtr
      getSearchSurface () const
      {
        return (surface_);
      }

      /** \brief Provide a pointer to the search object.
        * \param[in] tree a pointer to the spatial search object.
        */
      inline void
      setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }

      /** \brief Get a pointer to the search method used. */
      inline KdTreePtr
      getSearchMethod () const
      {
        return (tree_);
      }

      /** \brief Get the internal search parameter. */
      inline double
      getSearchParameter () const
      {
        return (search_parameter_);
      }

      /** \brief Set the number of k nearest neighbors to use for the feature estimation.
        * \param[in] k the number of k-nearest neighbors
        */
      inline void
      setKSearch (int k) { k_ = k; }

      /** \brief get the number of k nearest neighbors used for the feature estimation. */
      inline int
      getKSearch () const
      {
        return (k_);
      }

      /** \brief Set the sphere radius that is to be used for determining the nearest neighbors used for the feature
        * estimation.
        * \param[in] radius the sphere radius used as the maximum distance to consider a point a neighbor
        */
      inline void
      setRadiusSearch (double radius)
      {
        search_radius_ = radius;
      }

      /** \brief Get the sphere radius used for determining the neighbors. */
      inline double
      getRadiusSearch () const
      {
        return (search_radius_);
      }

      /** \brief Base method for feature estimation for all points given in
        * <setInputCloud (), setIndices ()> using the surface in setSearchSurface ()
        * and the spatial locator in setSearchMethod ()
        * \param[out] output the resultant point cloud model dataset containing the estimated features
        */
      void
      compute (PointCloudOut &output);

    protected:
      /** \brief The feature name. */
      std::string feature_name_;

      /** \brief The search method template for points. */
      SearchMethodSurface search_method_surface_;

      /** \brief An input point cloud describing the surface that is to be used
        * for nearest neighbors estimation.
        */
      PointCloudInConstPtr surface_;

      /** \brief A pointer to the spatial search object. */
      KdTreePtr tree_;

      /** \brief The actual search parameter (from either \a search_radius_ or \a k_). */
      double search_parameter_;

      /** \brief The nearest neighbors search radius for each point. */
      double search_radius_;

      /** \brief The number of K nearest neighbors to use for each point. */
      int k_;

      /** \brief Get a string representation of the name of this class. */
      inline const std::string&
      getClassName () const { return (feature_name_); }

      /** \brief This method should get called before starting the actual computation. */
      virtual bool
      initCompute ();

      /** \brief This method should get called after ending the actual computation. */
      virtual bool
      deinitCompute ();

      /** \brief If no surface is given, we use the input PointCloud as the surface. */
      bool fake_surface_;

      /** \brief Search for k-nearest neighbors using the spatial locator from
        * \a setSearchmethod, and the given surface from \a setSearchSurface.
        * \param[in] index the index of the query point
        * \param[in] parameter the search parameter (either k or radius)
        * \param[out] indices the resultant vector of indices representing the k-nearest neighbors
        * \param[out] distances the resultant vector of distances representing the distances from the query point to the
        * k-nearest neighbors
        *
        * \return the number of neighbors found. If no neighbors are found or an error occurred, return 0.
        */
      inline int
      searchForNeighbors (size_t index, double parameter,
                          std::vector<int> &indices, std::vector<float> &distances) const
      {
        return (search_method_surface_ (*input_, index, parameter, indices, distances));
      }

      /** \brief Search for k-nearest neighbors using the spatial locator from
        * \a setSearchmethod, and the given surface from \a setSearchSurface.
        * \param[in] cloud the query point cloud
        * \param[in] index the index of the query point in \a cloud
        * \param[in] parameter the search parameter (either k or radius)
        * \param[out] indices the resultant vector of indices representing the k-nearest neighbors
        * \param[out] distances the resultant vector of distances representing the distances from the query point to the
        * k-nearest neighbors
        *
        * \return the number of neighbors found. If no neighbors are found or an error occurred, return 0.
        */
      inline int
      searchForNeighbors (const PointCloudIn &cloud, size_t index, double parameter,
                          std::vector<int> &indices, std::vector<float> &distances) const
      {
        return (search_method_surface_ (cloud, index, parameter, indices, distances));
      }

    private:
      /** \brief Abstract feature estimation method.
        * \param[out] output the resultant features
        */
      virtual void
      computeFeature (PointCloudOut &output) = 0;

    public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW
  };


  ////////////////////////////////////////////////////////////////////////////////////////////
  ////////////////////////////////////////////////////////////////////////////////////////////
  ////////////////////////////////////////////////////////////////////////////////////////////
  template <typename PointInT, typename PointNT, typename PointOutT>
  class FeatureFromNormals : public Feature<PointInT, PointOutT>
  {
    typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
    typedef typename PointCloudIn::Ptr PointCloudInPtr;
    typedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;
    typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;

    public:
      typedef typename pcl::PointCloud<PointNT> PointCloudN;
      typedef typename PointCloudN::Ptr PointCloudNPtr;
      typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;

      typedef boost::shared_ptr< FeatureFromNormals<PointInT, PointNT, PointOutT> > Ptr;
      typedef boost::shared_ptr< const FeatureFromNormals<PointInT, PointNT, PointOutT> > ConstPtr;

      // Members derived from the base class
      using Feature<PointInT, PointOutT>::input_;
      using Feature<PointInT, PointOutT>::surface_;
      using Feature<PointInT, PointOutT>::getClassName;

      /** \brief Empty constructor. */
      FeatureFromNormals () : normals_ () {}
      
      /** \brief Empty destructor */
      virtual ~FeatureFromNormals () {}

      /** \brief Provide a pointer to the input dataset that contains the point normals of
        * the XYZ dataset.
        * In case of search surface is set to be different from the input cloud,
        * normals should correspond to the search surface, not the input cloud!
        * \param[in] normals the const boost shared pointer to a PointCloud of normals.
        * By convention, L2 norm of each normal should be 1.
        */
      inline void
      setInputNormals (const PointCloudNConstPtr &normals) { normals_ = normals; }

      /** \brief Get a pointer to the normals of the input XYZ point cloud dataset. */
      inline PointCloudNConstPtr
      getInputNormals () const { return (normals_); }

    protected:
      /** \brief A pointer to the input dataset that contains the point normals of the XYZ
        * dataset.
        */
      PointCloudNConstPtr normals_;

      /** \brief This method should get called before starting the actual computation. */
      virtual bool
      initCompute ();

    public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW
  };

  ////////////////////////////////////////////////////////////////////////////////////////////
  ////////////////////////////////////////////////////////////////////////////////////////////
  ////////////////////////////////////////////////////////////////////////////////////////////
  template <typename PointInT, typename PointLT, typename PointOutT>
  class FeatureFromLabels : public Feature<PointInT, PointOutT>
  {
    typedef typename Feature<PointInT, PointOutT>::PointCloudIn PointCloudIn;
    typedef typename PointCloudIn::Ptr PointCloudInPtr;
    typedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;

    typedef typename pcl::PointCloud<PointLT> PointCloudL;
    typedef typename PointCloudL::Ptr PointCloudNPtr;
    typedef typename PointCloudL::ConstPtr PointCloudLConstPtr;

    typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;

    public:
      typedef boost::shared_ptr< FeatureFromLabels<PointInT, PointLT, PointOutT> > Ptr;
      typedef boost::shared_ptr< const FeatureFromLabels<PointInT, PointLT, PointOutT> > ConstPtr;

      // Members derived from the base class
      using Feature<PointInT, PointOutT>::input_;
      using Feature<PointInT, PointOutT>::surface_;
      using Feature<PointInT, PointOutT>::getClassName;
      using Feature<PointInT, PointOutT>::k_;

      /** \brief Empty constructor. */
      FeatureFromLabels () : labels_ ()
      {
        k_ = 1; // Search tree is not always used here.
      }
      
      /** \brief Empty destructor */
      virtual ~FeatureFromLabels () {}

      /** \brief Provide a pointer to the input dataset that contains the point labels of
        * the XYZ dataset.
        * In case of search surface is set to be different from the input cloud,
        * labels should correspond to the search surface, not the input cloud!
        * \param[in] labels the const boost shared pointer to a PointCloud of labels.
        */
      inline void
      setInputLabels (const PointCloudLConstPtr &labels)
      {
        labels_ = labels;
      }

      /** \brief Get a pointer to the labels of the input XYZ point cloud dataset. */
      inline PointCloudLConstPtr
      getInputLabels () const
      {
        return (labels_);
      }

    protected:
      /** \brief A pointer to the input dataset that contains the point labels of the XYZ
        * dataset.
        */
      PointCloudLConstPtr labels_;

      /** \brief This method should get called before starting the actual computation. */
      virtual bool
      initCompute ();

    public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW
  };

  ////////////////////////////////////////////////////////////////////////////////////////////
  ////////////////////////////////////////////////////////////////////////////////////////////
  ////////////////////////////////////////////////////////////////////////////////////////////
  /** \brief FeatureWithLocalReferenceFrames provides a public interface for descriptor
    * extractor classes which need a local reference frame at each input keypoint.
    *
    * \attention
    * This interface is for backward compatibility with existing code and in the future it could be
    * merged with pcl::Feature. Subclasses should call the protected method initLocalReferenceFrames ()
    * to correctly initialize the frames_ member.
    *
    * \author Nicola Fioraio
    * \ingroup features
    */
  template <typename PointInT, typename PointRFT>
  class FeatureWithLocalReferenceFrames
  {
    public:
      typedef pcl::PointCloud<PointRFT> PointCloudLRF;
      typedef typename PointCloudLRF::Ptr PointCloudLRFPtr;
      typedef typename PointCloudLRF::ConstPtr PointCloudLRFConstPtr;

      /** \brief Empty constructor. */
      FeatureWithLocalReferenceFrames () : frames_ (), frames_never_defined_ (true) {}

       /** \brief Empty destructor. */
      virtual ~FeatureWithLocalReferenceFrames () {}

      /** \brief Provide a pointer to the input dataset that contains the local
        * reference frames of the XYZ dataset.
        * In case of search surface is set to be different from the input cloud,
        * local reference frames should correspond to the input cloud, not the search surface!
        * \param[in] frames the const boost shared pointer to a PointCloud of reference frames.
        */
      inline void
      setInputReferenceFrames (const PointCloudLRFConstPtr &frames)
      {
        frames_ = frames;
        frames_never_defined_ = false;
      }

      /** \brief Get a pointer to the local reference frames. */
      inline PointCloudLRFConstPtr
      getInputReferenceFrames () const
      {
        return (frames_);
      }

    protected:
      /** \brief A boost shared pointer to the local reference frames. */
      PointCloudLRFConstPtr frames_;
      /** \brief The user has never set the frames. */
      bool frames_never_defined_;

      /** \brief Check if frames_ has been correctly initialized and compute it if needed.
        * \param input the subclass' input cloud dataset.
        * \param lrf_estimation a pointer to a local reference frame estimation class to be used as default.
        * \return true if frames_ has been correctly initialized.
        */
      typedef typename Feature<PointInT, PointRFT>::Ptr LRFEstimationPtr;
      virtual bool
      initLocalReferenceFrames (const size_t& indices_size,
                                const LRFEstimationPtr& lrf_estimation = LRFEstimationPtr());
  };
}

#include <pcl/features/impl/feature.hpp>

#endif  //#ifndef PCL_FEATURE_H_