This file is indexed.

/usr/include/pcl-1.7/pcl/common/gaussian.h is in libpcl-dev 1.7.2-14build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2010-2011, Willow Garage, Inc.
 *
 *  All rights reserved. 
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 *
 */

#ifndef PCL_GAUSSIAN_KERNEL
#define PCL_GAUSSIAN_KERNEL

#include <sstream>
#include <pcl/common/eigen.h>
#include <pcl/point_cloud.h>
#include <boost/function.hpp>

namespace pcl
{
  /** Class GaussianKernel assembles all the method for computing, 
    * convolving, smoothing, gradients computing an image using
    * a gaussian kernel. The image is stored in point cloud elements 
    * intensity member or rgb or...
    * \author Nizar Sallem
    * \ingroup common
    */
  class PCL_EXPORTS GaussianKernel
  {
    public:

      GaussianKernel () {}

      static const unsigned MAX_KERNEL_WIDTH = 71;
      /** Computes the gaussian kernel and dervative assiociated to sigma.
        * The kernel and derivative width are adjusted according.
        * \param[in] sigma
        * \param[out] kernel the computed gaussian kernel
        * \param[in] kernel_width the desired kernel width upper bond
        * \throws pcl::KernelWidthTooSmallException
        */
      void
      compute (float sigma, 
               Eigen::VectorXf &kernel,
               unsigned kernel_width = MAX_KERNEL_WIDTH) const;

      /** Computes the gaussian kernel and dervative assiociated to sigma.
        * The kernel and derivative width are adjusted according.
        * \param[in] sigma
        * \param[out] kernel the computed gaussian kernel
        * \param[out] derivative the computed kernel derivative
        * \param[in] kernel_width the desired kernel width upper bond
        * \throws pcl::KernelWidthTooSmallException
        */
      void
      compute (float sigma, 
               Eigen::VectorXf &kernel, 
               Eigen::VectorXf &derivative, 
               unsigned kernel_width = MAX_KERNEL_WIDTH) const;

      /** Convolve a float image rows by a given kernel.
        * \param[in] kernel convolution kernel
        * \param[in] input the image to convolve
        * \param[out] output the convolved image
        * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
        * output.cols () < input.cols () then output is resized to input sizes.
        */
      void
      convolveRows (const pcl::PointCloud<float> &input,
                    const Eigen::VectorXf &kernel,
                    pcl::PointCloud<float> &output) const;

      /** Convolve a float image rows by a given kernel.
        * \param[in] input the image to convolve
        * \param[in] field_accessor a field accessor
        * \param[in] kernel convolution kernel
        * \param[out] output the convolved image
        * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
        * output.cols () < input.cols () then output is resized to input sizes.
        */
     template <typename PointT> void
     convolveRows (const pcl::PointCloud<PointT> &input,
                   boost::function <float (const PointT& p)> field_accessor,
                   const Eigen::VectorXf &kernel,
                   pcl::PointCloud<float> &output) const;

      /** Convolve a float image columns by a given kernel.
        * \param[in] input the image to convolve
        * \param[in] kernel convolution kernel
        * \param[out] output the convolved image
        * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
        * output.cols () < input.cols () then output is resized to input sizes.
        */
      void
      convolveCols (const pcl::PointCloud<float> &input,
                    const Eigen::VectorXf &kernel,
                    pcl::PointCloud<float> &output) const;

      /** Convolve a float image columns by a given kernel.
        * \param[in] input the image to convolve
        * \param[in] field_accessor a field accessor
        * \param[in] kernel convolution kernel
        * \param[out] output the convolved image
        * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
        * output.cols () < input.cols () then output is resized to input sizes.
        */
      template <typename PointT> void
      convolveCols (const pcl::PointCloud<PointT> &input,
                    boost::function <float (const PointT& p)> field_accessor,
                    const Eigen::VectorXf &kernel,
                    pcl::PointCloud<float> &output) const;

      /** Convolve a float image in the 2 directions
        * \param[in] horiz_kernel kernel for convolving rows
        * \param[in] vert_kernel kernel for convolving columns
        * \param[in] input image to convolve
        * \param[out] output the convolved image
        * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
        * output.cols () < input.cols () then output is resized to input sizes.
        */
      inline void
      convolve (const pcl::PointCloud<float> &input,
                const Eigen::VectorXf &horiz_kernel,
                const Eigen::VectorXf &vert_kernel,
                pcl::PointCloud<float> &output) const
      {
        std::cout << ">>> convolve cpp" << std::endl;
        pcl::PointCloud<float> tmp (input.width, input.height) ;
        convolveRows (input, horiz_kernel, tmp);        
        convolveCols (tmp, vert_kernel, output);
        std::cout << "<<< convolve cpp" << std::endl;
      }

      /** Convolve a float image in the 2 directions
        * \param[in] input image to convolve
        * \param[in] field_accessor a field accessor
        * \param[in] horiz_kernel kernel for convolving rows
        * \param[in] vert_kernel kernel for convolving columns
        * \param[out] output the convolved image
        * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
        * output.cols () < input.cols () then output is resized to input sizes.
        */
      template <typename PointT> inline void
      convolve (const pcl::PointCloud<PointT> &input,
                boost::function <float (const PointT& p)> field_accessor,
                const Eigen::VectorXf &horiz_kernel,
                const Eigen::VectorXf &vert_kernel,
                pcl::PointCloud<float> &output) const
      {
        std::cout << ">>> convolve hpp" << std::endl;
        pcl::PointCloud<float> tmp (input.width, input.height);
        convolveRows<PointT>(input, field_accessor, horiz_kernel, tmp);
        convolveCols(tmp, vert_kernel, output);
        std::cout << "<<< convolve hpp" << std::endl;
      }
      
      /** Computes float image gradients using a gaussian kernel and gaussian kernel
        * derivative.
        * \param[in] input image to compute gardients for
        * \param[in] gaussian_kernel the gaussian kernel to be used
        * \param[in] gaussian_kernel_derivative the associated derivative
        * \param[out] grad_x gradient along X direction
        * \param[out] grad_y gradient along Y direction
        * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
        * output.cols () < input.cols () then output is resized to input sizes.
        */
      inline void
      computeGradients (const pcl::PointCloud<float> &input,
                        const Eigen::VectorXf &gaussian_kernel,
                        const Eigen::VectorXf &gaussian_kernel_derivative,
                        pcl::PointCloud<float> &grad_x,
                        pcl::PointCloud<float> &grad_y) const
      {
        convolve (input, gaussian_kernel_derivative, gaussian_kernel, grad_x);
        convolve (input, gaussian_kernel, gaussian_kernel_derivative, grad_y);
      }

      /** Computes float image gradients using a gaussian kernel and gaussian kernel
        * derivative.
        * \param[in] input image to compute gardients for
        * \param[in] field_accessor a field accessor
        * \param[in] gaussian_kernel the gaussian kernel to be used
        * \param[in] gaussian_kernel_derivative the associated derivative
        * \param[out] grad_x gradient along X direction
        * \param[out] grad_y gradient along Y direction
        * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
        * output.cols () < input.cols () then output is resized to input sizes.
        */
      template <typename PointT> inline void
      computeGradients (const pcl::PointCloud<PointT> &input,
                        boost::function <float (const PointT& p)> field_accessor,
                        const Eigen::VectorXf &gaussian_kernel,
                        const Eigen::VectorXf &gaussian_kernel_derivative,
                        pcl::PointCloud<float> &grad_x,
                        pcl::PointCloud<float> &grad_y) const
      {
        convolve<PointT> (input, field_accessor, gaussian_kernel_derivative, gaussian_kernel, grad_x);
        convolve<PointT> (input, field_accessor, gaussian_kernel, gaussian_kernel_derivative, grad_y);
      }
      
      /** Smooth image using a gaussian kernel.
        * \param[in] input image
        * \param[in] gaussian_kernel the gaussian kernel to be used
        * \param[out] output the smoothed image
        * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
        * output.cols () < input.cols () then output is resized to input sizes.
        */
      inline void
      smooth (const pcl::PointCloud<float> &input,
              const Eigen::VectorXf &gaussian_kernel,
              pcl::PointCloud<float> &output) const
      {
        convolve (input, gaussian_kernel, gaussian_kernel, output);
      }

      /** Smooth image using a gaussian kernel.
        * \param[in] input image
        * \param[in] field_accessor a field accessor
        * \param[in] gaussian_kernel the gaussian kernel to be used
        * \param[out] output the smoothed image
        * \note if output doesn't fit in input i.e. output.rows () < input.rows () or
        * output.cols () < input.cols () then output is resized to input sizes.
        */
      template <typename PointT> inline void
      smooth (const pcl::PointCloud<PointT> &input,
              boost::function <float (const PointT& p)> field_accessor,
              const Eigen::VectorXf &gaussian_kernel,
              pcl::PointCloud<float> &output) const
      {
        convolve<PointT> (input, field_accessor, gaussian_kernel, gaussian_kernel, output);
      }
  };
}

#include <pcl/common/impl/gaussian.hpp>

#endif // PCL_GAUSSIAN_KERNEL