This file is indexed.

/usr/include/pcl-1.7/pcl/common/distances.h is in libpcl-dev 1.7.2-14build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*
 * Software License Agreement (BSD License)
 *
 *  Copyright (c) 2010, Willow Garage, Inc.
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 *
 */
#ifndef PCL_DISTANCES_H_
#define PCL_DISTANCES_H_

#include <pcl/common/common.h>

/**
  * \file pcl/common/distances.h
  * Define standard C methods to do distance calculations
  * \ingroup common
  */

/*@{*/
namespace pcl
{
  /** \brief Get the shortest 3D segment between two 3D lines
    * \param line_a the coefficients of the first line (point, direction)
    * \param line_b the coefficients of the second line (point, direction)
    * \param pt1_seg the first point on the line segment
    * \param pt2_seg the second point on the line segment
    * \ingroup common
    */
  PCL_EXPORTS void
  lineToLineSegment (const Eigen::VectorXf &line_a, const Eigen::VectorXf &line_b, 
                     Eigen::Vector4f &pt1_seg, Eigen::Vector4f &pt2_seg);

  /** \brief Get the square distance from a point to a line (represented by a point and a direction)
    * \param pt a point
    * \param line_pt a point on the line (make sure that line_pt[3] = 0 as there are no internal checks!)
    * \param line_dir the line direction
    * \ingroup common
    */
  double inline
  sqrPointToLineDistance (const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir)
  {
    // Calculate the distance from the point to the line
    // D = ||(P2-P1) x (P1-P0)|| / ||P2-P1|| = norm (cross (p2-p1, p1-p0)) / norm(p2-p1)
    return (line_dir.cross3 (line_pt - pt)).squaredNorm () / line_dir.squaredNorm ();
  }

  /** \brief Get the square distance from a point to a line (represented by a point and a direction)
    * \note This one is useful if one has to compute many distances to a fixed line, so the vector length can be pre-computed
    * \param pt a point
    * \param line_pt a point on the line (make sure that line_pt[3] = 0 as there are no internal checks!)
    * \param line_dir the line direction
    * \param sqr_length the squared norm of the line direction
    * \ingroup common
    */
  double inline
  sqrPointToLineDistance (const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir, const double sqr_length)
  {
    // Calculate the distance from the point to the line
    // D = ||(P2-P1) x (P1-P0)|| / ||P2-P1|| = norm (cross (p2-p1, p1-p0)) / norm(p2-p1)
    return (line_dir.cross3 (line_pt - pt)).squaredNorm () / sqr_length;
  }

  /** \brief Obtain the maximum segment in a given set of points, and return the minimum and maximum points.
    * \param[in] cloud the point cloud dataset
    * \param[out] pmin the coordinates of the "minimum" point in \a cloud (one end of the segment)
    * \param[out] pmax the coordinates of the "maximum" point in \a cloud (the other end of the segment)
    * \return the length of segment length
    * \ingroup common
    */
  template <typename PointT> double inline
  getMaxSegment (const pcl::PointCloud<PointT> &cloud, 
                 PointT &pmin, PointT &pmax)
  {
    double max_dist = std::numeric_limits<double>::min ();
    int i_min = -1, i_max = -1;

    for (size_t i = 0; i < cloud.points.size (); ++i)
    {
      for (size_t j = i; j < cloud.points.size (); ++j)
      {
        // Compute the distance 
        double dist = (cloud.points[i].getVector4fMap () - 
                       cloud.points[j].getVector4fMap ()).squaredNorm ();
        if (dist <= max_dist)
          continue;

        max_dist = dist;
        i_min = i;
        i_max = j;
      }
    }

    if (i_min == -1 || i_max == -1)
      return (max_dist = std::numeric_limits<double>::min ());

    pmin = cloud.points[i_min];
    pmax = cloud.points[i_max];
    return (std::sqrt (max_dist));
  }
 
  /** \brief Obtain the maximum segment in a given set of points, and return the minimum and maximum points.
    * \param[in] cloud the point cloud dataset
    * \param[in] indices a set of point indices to use from \a cloud
    * \param[out] pmin the coordinates of the "minimum" point in \a cloud (one end of the segment)
    * \param[out] pmax the coordinates of the "maximum" point in \a cloud (the other end of the segment)
    * \return the length of segment length
    * \ingroup common
    */
  template <typename PointT> double inline
  getMaxSegment (const pcl::PointCloud<PointT> &cloud, const std::vector<int> &indices,
                 PointT &pmin, PointT &pmax)
  {
    double max_dist = std::numeric_limits<double>::min ();
    int i_min = -1, i_max = -1;

    for (size_t i = 0; i < indices.size (); ++i)
    {
      for (size_t j = i; j < indices.size (); ++j)
      {
        // Compute the distance 
        double dist = (cloud.points[indices[i]].getVector4fMap () - 
                       cloud.points[indices[j]].getVector4fMap ()).squaredNorm ();
        if (dist <= max_dist)
          continue;

        max_dist = dist;
        i_min = i;
        i_max = j;
      }
    }

    if (i_min == -1 || i_max == -1)
      return (max_dist = std::numeric_limits<double>::min ());

    pmin = cloud.points[indices[i_min]];
    pmax = cloud.points[indices[i_max]];
    return (std::sqrt (max_dist));
  }

  /** \brief Calculate the squared euclidean distance between the two given points.
    * \param[in] p1 the first point
    * \param[in] p2 the second point
    */
  template<typename PointType1, typename PointType2> inline float
  squaredEuclideanDistance (const PointType1& p1, const PointType2& p2)
  {
    float diff_x = p2.x - p1.x, diff_y = p2.y - p1.y, diff_z = p2.z - p1.z;
    return (diff_x*diff_x + diff_y*diff_y + diff_z*diff_z);
  }

  /** \brief Calculate the squared euclidean distance between the two given points.
    * \param[in] p1 the first point
    * \param[in] p2 the second point
    */
  template<> inline float
  squaredEuclideanDistance (const PointXY& p1, const PointXY& p2)
  {
    float diff_x = p2.x - p1.x, diff_y = p2.y - p1.y;
    return (diff_x*diff_x + diff_y*diff_y);
  }

   /** \brief Calculate the euclidean distance between the two given points.
    * \param[in] p1 the first point
    * \param[in] p2 the second point
    */
  template<typename PointType1, typename PointType2> inline float
  euclideanDistance (const PointType1& p1, const PointType2& p2)
  {
    return (sqrtf (squaredEuclideanDistance (p1, p2)));
  }
}
/*@*/
#endif  //#ifndef PCL_DISTANCES_H_