This file is indexed.

/usr/lib/gcc/x86_64-linux-gnu/4.9/include/cilk/metaprogramming.h is in libgcc-4.9-dev 4.9.3-13ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
/*  metaprogramming.h                  -*- C++ -*-
 *
 *  @copyright
 *  Copyright (C) 2012-2013, Intel Corporation
 *  All rights reserved.
 *  
 *  @copyright
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *  
 *    * Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 *    * Redistributions in binary form must reproduce the above copyright
 *      notice, this list of conditions and the following disclaimer in
 *      the documentation and/or other materials provided with the
 *      distribution.
 *    * Neither the name of Intel Corporation nor the names of its
 *      contributors may be used to endorse or promote products derived
 *      from this software without specific prior written permission.
 *  
 *  @copyright
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 *  HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 *  AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
 *  WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 */

/** @file metaprogramming.h
 *
 *  @brief Defines metaprogramming utility classes used in the Cilk library.
 *
 *  @ingroup common
 */

#ifndef METAPROGRAMMING_H_INCLUDED
#define METAPROGRAMMING_H_INCLUDED

#ifdef __cplusplus

#include <functional>
#include <new>
#include <cstdlib>
#ifdef _WIN32
#include <malloc.h>
#endif
#include <algorithm>

namespace cilk {

namespace internal {

/** Test if a class is empty.
 *
 *  If @a Class is an empty (and therefore necessarily stateless) class, then
 *  the “empty base-class optimization” guarantees that
 *  `sizeof(check_for_empty_class<Class>) == sizeof(char)`. Conversely, if
 *  `sizeof(check_for_empty_class<Class>) > sizeof(char)`, then @a Class is not
 *  empty, and we must discriminate distinct instances of @a Class.
 *
 *  Typical usage:
 *
 *      // General definition of A<B> for non-empty B:
 *      template <typename B, bool BIsEmpty = class_is_empty<B>::value> >
 *      class A { ... };
 *
 *      // Specialized definition of A<B> for empty B:
 *      template <typename B>
 *      class A<B, true> { ... };
 *
 *  @tparam Class   The class to be tested for emptiness.
 *
 *  @result         The `value` member will be `true` if @a Class is empty,
 *                  `false` otherwise.
 *
 *  @ingroup common
 */
template <class Class>
class class_is_empty { 
    class check_for_empty_class : public Class
    {
        char m_data;
    public:
        // Declared but not defined
        check_for_empty_class();
        check_for_empty_class(const check_for_empty_class&);
        check_for_empty_class& operator=(const check_for_empty_class&);
        ~check_for_empty_class();
    };
public:

    /** Constant is true if and only if @a Class is empty.
     */
    static const bool value = (sizeof(check_for_empty_class) == sizeof(char));
};


/** Get the alignment of a type.
 *
 *  For example:
 *
 *      align_of<double>::value == 8
 *
 *  @tparam Tp  The type whose alignment is to be computed.
 *
 *  @result     The `value` member of an instantiation of this class template
 *              will hold the integral alignment requirement of @a Tp.
 *
 *  @pre        @a Tp shall be a complete type.
 *
 *  @ingroup common
 */
template <typename Tp>
struct align_of
{
private:
    struct imp {
        char m_padding;
        Tp   m_val;

        // The following declarations exist to suppress compiler-generated
        // definitions, in case @a Tp does not have a public default
        // constructor, copy constructor, or destructor.
        imp(const imp&); // Declared but not defined
        ~imp();          // Declared but not defined
    };

public:
    /// The integral alignment requirement of @a Tp.
    static const std::size_t    value = (sizeof(imp) - sizeof(Tp));
};


/** A class containing raw bytes with a specified alignment and size.
 *
 *  An object of type `aligned_storage<S, A>` will have alignment `A` and
 *  size at least `S`. Its contents will be uninitialized bytes.
 *
 *  @tparam Size        The required minimum size of the resulting class.
 *  @tparam Alignment   The required alignment of the resulting class.
 *
 *  @pre    @a Alignment shall be a power of 2 no greater then 64.
 *
 *  @note   This is implemented using the `CILK_ALIGNAS` macro, which uses
 *          the non-standard, implementation-specific features
 *          `__declspec(align(N))` on Windows, and 
 *          `__attribute__((__aligned__(N)))` on Unix. The `gcc` implementation
 *          of `__attribute__((__aligned__(N)))` requires a numeric literal `N`
 *          (_not_ an arbitrary compile-time constant expression). Therefore,
 *          this class is implemented using specialization on the required
 *          alignment.
 *
 *  @note   The template class is specialized only for the supported
 *          alignments. An attempt to instantiate it for an unsupported
 *          alignment will result in a compilation error.
 */
template <std::size_t Size, std::size_t Alignment>
struct aligned_storage;

template<std::size_t Size> class aligned_storage<Size,  1> 
    { CILK_ALIGNAS( 1) char m_bytes[Size]; };
template<std::size_t Size> class aligned_storage<Size,  2> 
    { CILK_ALIGNAS( 2) char m_bytes[Size]; };
template<std::size_t Size> class aligned_storage<Size,  4> 
    { CILK_ALIGNAS( 4) char m_bytes[Size]; };
template<std::size_t Size> class aligned_storage<Size,  8> 
    { CILK_ALIGNAS( 8) char m_bytes[Size]; };
template<std::size_t Size> class aligned_storage<Size, 16> 
    { CILK_ALIGNAS(16) char m_bytes[Size]; };
template<std::size_t Size> class aligned_storage<Size, 32> 
    { CILK_ALIGNAS(32) char m_bytes[Size]; };
template<std::size_t Size> class aligned_storage<Size, 64> 
    { CILK_ALIGNAS(64) char m_bytes[Size]; };


/** A buffer of uninitialized bytes with the same size and alignment as a
 *  specified type.
 *
 *  The class `storage_for_object<Type>` will have the same size and alignment
 *  properties as `Type`, but it will contain only raw (uninitialized) bytes.
 *  This allows the definition of a data member which can contain a `Type`
 *  object which is initialized explicitly under program control, rather
 *  than implicitly as part of the initialization of the containing class. 
 *  For example:
 *
 *      class C {
 *          storage_for_object<MemberClass> _member;
 *      public:
 *          C() ... // Does NOT initialize _member
 *          void initialize(args) 
 *              { new (_member.pointer()) MemberClass(args); }
 *          const MemberClass& member() const { return _member.object(); }
 *                MemberClass& member()       { return _member.object(); }
 *
 *  @tparam Type    The type whose size and alignment are to be reflected
 *                  by this class.
 */
template <typename Type>
class storage_for_object : 
    aligned_storage< sizeof(Type), align_of<Type>::value >
{
public:
    /// Return a typed reference to the buffer.
    const Type& object() const { return *reinterpret_cast<Type*>(this); }
          Type& object()       { return *reinterpret_cast<Type*>(this); }
};


/** Get the functor class corresponding to a binary function type.
 *
 *  The `binary_functor` template class class can be instantiated with a binary
 *  functor class or with a real binary function, and will yield an equivalent
 *  binary functor class class in either case.
 *
 *  @tparam F   A binary functor class, a binary function type, or a pointer to
 *              binary function type.
 *
 *  @result     `binary_functor<F>::%type` will be the same as @a F if @a F is
 *              a class. It will be a `std::pointer_to_binary_function` wrapper
 *              if @a F is a binary function or binary function pointer type.
 *              (It will _not_ necessarily be an `Adaptable Binary Function`
 *              class, since @a F might be a non-adaptable binary functor
 *              class.)
 *
 *  @ingroup common
 */
template <typename F>
struct binary_functor {
     /// The binary functor class equivalent to @a F.
     typedef F type;
};

/// @copydoc binary_functor
/// Specialization for binary function.
template <typename R, typename A, typename B>
struct binary_functor<R(A,B)> {
     /// The binary functor class equivalent to @a F.
    typedef std::pointer_to_binary_function<A, B, R> type;
};

/// @copydoc binary_functor
/// Specialization for pointer to binary function.
template <typename R, typename A, typename B>
struct binary_functor<R(*)(A,B)> {
     /// The binary functor class equivalent to @a F.
    typedef std::pointer_to_binary_function<A, B, R> type;
};


/** Indirect binary function class with specified types.
 *
 *  `typed_indirect_binary_function<F>` is an `Adaptable Binary Function` class
 *  based on an existing binary functor class or binary function type @a F. If
 *  @a F is a stateless class, then this class will be empty, and its
 *  `operator()` will invoke @a F’s `operator()`. Otherwise, an object of this
 *  class will hold a pointer to an object of type @a F, and will refer its
 *  `operator()` calls to the pointed-to @a F object.
 *
 *  That is, suppose that we have the declarations:
 *
 *      F *p;
 *      typed_indirect_binary_function<F, int, int, bool> ibf(p);
 *
 *  Then:
 *
 *  -   `ibf(x, y) == (*p)(x, y)`.
 *  -   `ibf(x, y)` will not do a pointer dereference if `F` is an empty class.
 *
 *  @note       Just to repeat: if `F` is an empty class, then
 *              `typed_indirect_binary_function\<F\>' is also an empty class.
 *              This is critical for its use in the @ref min_max::view_base
 *              "min/max reducer view classes", where it allows the view to
 *              call a comparison functor in the monoid without actually
 *              having to allocate a pointer in the view class when the 
 *              comparison class is empty.
 *
 *  @note       If you have an `Adaptable Binary Function` class or a binary
 *              function type, then you can use the 
 *              @ref indirect_binary_function class, which derives the
 *              argument and result types parameter type instead of requiring
 *              you to specify them as template arguments.
 *
 *  @tparam F   A binary functor class, a binary function type, or a pointer to
 *              binary function type.
 *  @param A1   The first argument type.
 *  @param A2   The second argument type.
 *  @param R    The result type.
 *
 *  @see min_max::comparator_base
 *  @see indirect_binary_function
 *
 *  @ingroup common
 */
template <  typename F
         ,  typename A1
         ,  typename A2
         ,  typename R
         ,  typename Functor    = typename binary_functor<F>::type
         ,  bool FunctorIsEmpty = class_is_empty<Functor>::value
         >
class typed_indirect_binary_function : std::binary_function<A1, A2, R>
{
    const F* f;
public:
    /// Constructor captures a pointer to the wrapped function.
    typed_indirect_binary_function(const F* f) : f(f) {}
    
    /// Return the comparator pointer, or `NULL` if the comparator is stateless.
    const F* pointer() const { return f; }

    /// Apply the pointed-to functor to the arguments.
    R operator()(const A1& a1, const A2& a2) const { return (*f)(a1, a2); }
};


/// @copydoc typed_indirect_binary_function
/// Specialization for an empty functor class. (This is only possible if @a F
/// itself is an empty class. If @a F is a function or pointer-to-function 
/// type, then the functor will contain a pointer.)
template <typename F, typename A1, typename A2, typename R, typename Functor>
class typed_indirect_binary_function<F, A1, A2, R, Functor, true> : 
    std::binary_function<A1, A2, R>
{
public:
    /// Return `NULL` for the comparator pointer of a stateless comparator.
    const F* pointer() const { return 0; }

    /// Constructor discards the pointer to a stateless functor class.
    typed_indirect_binary_function(const F* f) {}
    
    /// Create an instance of the stateless functor class and apply it to the arguments.
    R operator()(const A1& a1, const A2& a2) const { return F()(a1, a2); }
};


/** Indirect binary function class with inferred types.
 *
 *  This is identical to @ref typed_indirect_binary_function, except that it
 *  derives the binary function argument and result types from the parameter
 *  type @a F instead of taking them as additional template parameters. If @a F
 *  is a class type, then it must be an `Adaptable Binary Function`.
 *
 *  @see typed_indirect_binary_function
 *
 *  @ingroup common
 */
template <typename F, typename Functor = typename binary_functor<F>::type>
class indirect_binary_function : 
    typed_indirect_binary_function< F
                                  , typename Functor::first_argument_type
                                  , typename Functor::second_argument_type
                                  , typename Functor::result_type
                                  > 
{
    typedef     typed_indirect_binary_function< F
                                  , typename Functor::first_argument_type
                                  , typename Functor::second_argument_type
                                  , typename Functor::result_type
                                  > 
                base;
public:
    indirect_binary_function(const F* f) : base(f) {} ///< Constructor
};


/** Choose a type based on a boolean constant.
 *
 *  This metafunction is identical to C++11’s condition metafunction.
 *  It needs to be here until we can reasonably assume that users will be
 *  compiling with C++11.
 *
 *  @tparam Cond    A boolean constant.
 *  @tparam IfTrue  A type.
 *  @tparam IfFalse A type.
 *  @result         The `type` member will be a typedef of @a IfTrue if @a Cond
 *                  is true, and a typedef of @a IfFalse if @a Cond is false.
 *
 *  @ingroup common
 */
template <bool Cond, typename IfTrue, typename IfFalse>
struct condition
{
    typedef IfTrue type;    ///< The type selected by the condition.
};

/// @copydoc condition
/// Specialization for @a Cond == `false`.
template <typename IfTrue, typename IfFalse>
struct condition<false, IfTrue, IfFalse>
{
    typedef IfFalse type;   ///< The type selected by the condition.
};


/** @def __CILKRTS_STATIC_ASSERT
 *
 *  @brief Compile-time assertion.
 *
 *  Causes a compilation error if a compile-time constant expression is false.
 *
 *  @par    Usage example.
 *          This assertion  is used in reducer_min_max.h to avoid defining 
 *          legacy reducer classes that would not be binary-compatible with the
 *          same classes compiled with earlier versions of the reducer library.
 *
 *              __CILKRTS_STATIC_ASSERT(
 *                  internal::class_is_empty< internal::binary_functor<Compare> >::value, 
 *                  "cilk::reducer_max<Value, Compare> only works with an empty Compare class");
 *
 *  @note   In a C++11 compiler, this is just the language predefined
 *          `static_assert` macro.
 *
 *  @note   In a non-C++11 compiler, the @a Msg string is not directly included
 *          in the compiler error message, but it may appear if the compiler
 *          prints the source line that the error occurred on.
 *
 *  @param  Cond    The expression to test.
 *  @param  Msg     A string explaining the failure.
 *
 *  @ingroup common
 */
#if defined(__INTEL_CXX11_MODE__) || defined(__GXX_EXPERIMENTAL_CXX0X__)
#   define  __CILKRTS_STATIC_ASSERT(Cond, Msg) static_assert(Cond, Msg)
#else
#   define __CILKRTS_STATIC_ASSERT(Cond, Msg)                               \
        typedef int __CILKRTS_STATIC_ASSERT_DUMMY_TYPE                      \
            [::cilk::internal::static_assert_failure<(Cond)>::Success]

/// @cond internal
    template <bool> struct static_assert_failure { };
    template <> struct static_assert_failure<true> { enum { Success = 1 }; };

#   define  __CILKRTS_STATIC_ASSERT_DUMMY_TYPE \
            __CILKRTS_STATIC_ASSERT_DUMMY_TYPE1(__cilkrts_static_assert_, __LINE__)
#   define  __CILKRTS_STATIC_ASSERT_DUMMY_TYPE1(a, b) \
            __CILKRTS_STATIC_ASSERT_DUMMY_TYPE2(a, b)
#   define  __CILKRTS_STATIC_ASSERT_DUMMY_TYPE2(a, b) a ## b
/// @endcond

#endif

/// @cond internal

/** @name Aligned heap management.
 */
//@{

/** Implementation-specific aligned memory allocation function.
 *
 *  @param  size        The minimum number of bytes to allocate.
 *  @param  alignment   The required alignment (must be a power of 2).
 *  @return             The address of a block of memory of at least @a size
 *                      bytes. The address will be a multiple of @a alignment.
 *                      `NULL` if the allocation fails.
 *
 *  @see                deallocate_aligned()
 */
inline void* allocate_aligned(std::size_t size, std::size_t alignment)
{
#ifdef _WIN32
    return _aligned_malloc(size, alignment);
#else
#if defined(__ANDROID__)
    return memalign(std::max(alignment, sizeof(void*)), size);
#else
    void* ptr;
    return (posix_memalign(&ptr, std::max(alignment, sizeof(void*)), size) == 0) ? ptr : 0;
#endif
#endif        
}

/** Implementation-specific aligned memory deallocation function.
 *
 *  @param  ptr A pointer which was returned by a call to alloc_aligned().
 */
inline void deallocate_aligned(void* ptr)
{
#ifdef _WIN32
    _aligned_free(ptr);
#else
    std::free(ptr);
#endif        
}

/** Class to allocate and guard an aligned pointer.
 *
 *  A new_aligned_pointer object allocates aligned heap-allocated memory when
 *  it is created, and automatically deallocates it when it is destroyed 
 *  unless its `ok()` function is called.
 *
 *  @tparam T   The type of the object to allocate on the heap. The allocated
 *              will have the size and alignment of an object of type T.
 */
template <typename T>
class new_aligned_pointer {
    void* m_ptr;
public:
    /// Constructor allocates the pointer.
    new_aligned_pointer() : 
        m_ptr(allocate_aligned(sizeof(T), internal::align_of<T>::value)) {}
    /// Destructor deallocates the pointer.
    ~new_aligned_pointer() { if (m_ptr) deallocate_aligned(m_ptr); }
    /// Get the pointer.
    operator void*() { return m_ptr; }
    /// Return the pointer and release the guard.
    T* ok() { 
        T* ptr = static_cast<T*>(m_ptr);
        m_ptr = 0;
        return ptr;
    }
};

//@}

/// @endcond

} // namespace internal

//@{

/** Allocate an aligned data structure on the heap.
 *
 *  `cilk::aligned_new<T>([args])` is equivalent to `new T([args])`, except
 *  that it guarantees that the returned pointer will be at least as aligned
 *  as the alignment requirements of type `T`.
 *
 *  @ingroup common
 */
template <typename T>
T* aligned_new()
{
    internal::new_aligned_pointer<T> ptr;
    new (ptr) T();
    return ptr.ok();
}

template <typename T, typename T1>
T* aligned_new(const T1& x1)
{
    internal::new_aligned_pointer<T> ptr;
    new (ptr) T(x1);
    return ptr.ok();
}

template <typename T, typename T1, typename T2>
T* aligned_new(const T1& x1, const T2& x2)
{
    internal::new_aligned_pointer<T> ptr;
    new (ptr) T(x1, x2);
    return ptr.ok();
}

template <typename T, typename T1, typename T2, typename T3>
T* aligned_new(const T1& x1, const T2& x2, const T3& x3)
{
    internal::new_aligned_pointer<T> ptr;
    new (ptr) T(x1, x2, x3);
    return ptr.ok();
}

template <typename T, typename T1, typename T2, typename T3, typename T4>
T* aligned_new(const T1& x1, const T2& x2, const T3& x3, const T4& x4)
{
    internal::new_aligned_pointer<T> ptr;
    new (ptr) T(x1, x2, x3, x4);
    return ptr.ok();
}

template <typename T, typename T1, typename T2, typename T3, typename T4, typename T5>
T* aligned_new(const T1& x1, const T2& x2, const T3& x3, const T4& x4, const T5& x5)
{
    internal::new_aligned_pointer<T> ptr;
    new (ptr) T(x1, x2, x3, x4, x5);
    return ptr.ok();
}

//@}


/** Deallocate an aligned data structure on the heap.
 *
 *  `cilk::aligned_delete(ptr)` is equivalent to `delete ptr`, except that it
 *  operates on a pointer that was allocated by aligned_new().
 *
 *  @ingroup common
 */
template <typename T>
void aligned_delete(const T* ptr)
{
    ptr->~T();
    internal::deallocate_aligned((void*)ptr);
}

} // namespace cilk

#endif // __cplusplus

#endif // METAPROGRAMMING_H_INCLUDED