/usr/lib/llvm-3.7/include/polly/ScopInfo.h is in libclang-common-3.7-dev 1:3.7.1-2ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 | //===------ polly/ScopInfo.h - Create Scops from LLVM IR --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the Scop
// detection derived from their LLVM-IR code.
//
// This representation is shared among several tools in the polyhedral
// community, which are e.g. CLooG, Pluto, Loopo, Graphite.
//
//===----------------------------------------------------------------------===//
#ifndef POLLY_SCOP_INFO_H
#define POLLY_SCOP_INFO_H
#include "polly/ScopDetection.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Analysis/RegionPass.h"
#include "isl/ctx.h"
#include <forward_list>
#include <deque>
using namespace llvm;
namespace llvm {
class Loop;
class LoopInfo;
class PHINode;
class ScalarEvolution;
class SCEV;
class SCEVAddRecExpr;
class Type;
}
struct isl_ctx;
struct isl_map;
struct isl_basic_map;
struct isl_id;
struct isl_set;
struct isl_union_set;
struct isl_union_map;
struct isl_space;
struct isl_ast_build;
struct isl_constraint;
struct isl_pw_multi_aff;
struct isl_schedule;
namespace polly {
class IRAccess;
class Scop;
class ScopStmt;
class ScopInfo;
class TempScop;
class SCEVAffFunc;
class Comparison;
/// @brief A class to store information about arrays in the SCoP.
///
/// Objects are accessible via the ScoP, MemoryAccess or the id associated with
/// the MemoryAccess access function.
///
class ScopArrayInfo {
public:
/// @brief Construct a ScopArrayInfo object.
///
/// @param BasePtr The array base pointer.
/// @param ElementType The type of the elements stored in the array.
/// @param IslCtx The isl context used to create the base pointer id.
/// @param DimensionSizes A vector containing the size of each dimension.
ScopArrayInfo(Value *BasePtr, Type *ElementType, isl_ctx *IslCtx,
const SmallVector<const SCEV *, 4> &DimensionSizes);
/// @brief Destructor to free the isl id of the base pointer.
~ScopArrayInfo();
/// @brief Return the base pointer.
Value *getBasePtr() const { return BasePtr; }
/// @brief Return the number of dimensions.
unsigned getNumberOfDimensions() const { return DimensionSizes.size(); }
/// @brief Return the size of dimension @p dim.
const SCEV *getDimensionSize(unsigned dim) const {
assert(dim < getNumberOfDimensions() && "Invalid dimension");
return DimensionSizes[dim];
}
/// @brief Get the type of the elements stored in this array.
Type *getElementType() const { return ElementType; }
/// @brief Get element size in bytes.
int getElemSizeInBytes() const;
/// @brief Get the name of this memory reference.
std::string getName() const;
/// @brief Return the isl id for the base pointer.
__isl_give isl_id *getBasePtrId() const;
/// @brief Dump a readable representation to stderr.
void dump() const;
/// @brief Print a readable representation to @p OS.
void print(raw_ostream &OS) const;
/// @brief Access the ScopArrayInfo associated with an access function.
static const ScopArrayInfo *
getFromAccessFunction(__isl_keep isl_pw_multi_aff *PMA);
/// @brief Access the ScopArrayInfo associated with an isl Id.
static const ScopArrayInfo *getFromId(__isl_take isl_id *Id);
private:
/// @brief The base pointer.
Value *BasePtr;
/// @brief The type of the elements stored in this array.
Type *ElementType;
/// @brief The isl id for the base pointer.
isl_id *Id;
/// @brief The sizes of each dimension.
SmallVector<const SCEV *, 4> DimensionSizes;
};
/// @brief Represent memory accesses in statements.
class MemoryAccess {
public:
/// @brief The access type of a memory access
///
/// There are three kind of access types:
///
/// * A read access
///
/// A certain set of memory locations are read and may be used for internal
/// calculations.
///
/// * A must-write access
///
/// A certain set of memory locations is definitely written. The old value is
/// replaced by a newly calculated value. The old value is not read or used at
/// all.
///
/// * A may-write access
///
/// A certain set of memory locations may be written. The memory location may
/// contain a new value if there is actually a write or the old value may
/// remain, if no write happens.
enum AccessType { READ, MUST_WRITE, MAY_WRITE };
/// @brief Reduction access type
///
/// Commutative and associative binary operations suitable for reductions
enum ReductionType {
RT_NONE, ///< Indicate no reduction at all
RT_ADD, ///< Addition
RT_MUL, ///< Multiplication
RT_BOR, ///< Bitwise Or
RT_BXOR, ///< Bitwise XOr
RT_BAND, ///< Bitwise And
};
private:
MemoryAccess(const MemoryAccess &) = delete;
const MemoryAccess &operator=(const MemoryAccess &) = delete;
isl_map *AccessRelation;
enum AccessType AccType;
/// @brief The base address (e.g., A for A[i+j]).
Value *BaseAddr;
std::string BaseName;
__isl_give isl_basic_map *createBasicAccessMap(ScopStmt *Statement);
ScopStmt *Statement;
/// @brief Reduction type for reduction like accesses, RT_NONE otherwise
///
/// An access is reduction like if it is part of a load-store chain in which
/// both access the same memory location (use the same LLVM-IR value
/// as pointer reference). Furthermore, between the load and the store there
/// is exactly one binary operator which is known to be associative and
/// commutative.
///
/// TODO:
///
/// We can later lift the constraint that the same LLVM-IR value defines the
/// memory location to handle scops such as the following:
///
/// for i
/// for j
/// sum[i+j] = sum[i] + 3;
///
/// Here not all iterations access the same memory location, but iterations
/// for which j = 0 holds do. After lifing the equality check in ScopInfo,
/// subsequent transformations do not only need check if a statement is
/// reduction like, but they also need to verify that that the reduction
/// property is only exploited for statement instances that load from and
/// store to the same data location. Doing so at dependence analysis time
/// could allow us to handle the above example.
ReductionType RedType = RT_NONE;
/// @brief The access instruction of this memory access.
Instruction *Inst;
/// Updated access relation read from JSCOP file.
isl_map *newAccessRelation;
/// @brief A unique identifier for this memory access.
///
/// The identifier is unique between all memory accesses belonging to the same
/// scop statement.
isl_id *Id;
void assumeNoOutOfBound(const IRAccess &Access);
/// @brief Compute bounds on an over approximated access relation.
///
/// @param ElementSize The size of one element accessed.
void computeBoundsOnAccessRelation(unsigned ElementSize);
/// @brief Get the original access function as read from IR.
__isl_give isl_map *getOriginalAccessRelation() const;
/// @brief Return the space in which the access relation lives in.
__isl_give isl_space *getOriginalAccessRelationSpace() const;
/// @brief Get the new access function imported or set by a pass
__isl_give isl_map *getNewAccessRelation() const;
/// @brief Fold the memory access to consider parameteric offsets
///
/// To recover memory accesses with array size parameters in the subscript
/// expression we post-process the delinearization results.
///
/// We would normally recover from an access A[exp0(i) * N + exp1(i)] into an
/// array A[][N] the 2D access A[exp0(i)][exp1(i)]. However, another valid
/// delinearization is A[exp0(i) - 1][exp1(i) + N] which - depending on the
/// range of exp1(i) - may be preferrable. Specifically, for cases where we
/// know exp1(i) is negative, we want to choose the latter expression.
///
/// As we commonly do not have any information about the range of exp1(i),
/// we do not choose one of the two options, but instead create a piecewise
/// access function that adds the (-1, N) offsets as soon as exp1(i) becomes
/// negative. For a 2D array such an access function is created by applying
/// the piecewise map:
///
/// [i,j] -> [i, j] : j >= 0
/// [i,j] -> [i-1, j+N] : j < 0
///
/// We can generalize this mapping to arbitrary dimensions by applying this
/// piecewise mapping pairwise from the rightmost to the leftmost access
/// dimension. It would also be possible to cover a wider range by introducing
/// more cases and adding multiple of Ns to these cases. However, this has
/// not yet been necessary.
/// The introduction of different cases necessarily complicates the memory
/// access function, but cases that can be statically proven to not happen
/// will be eliminated later on.
__isl_give isl_map *foldAccess(const IRAccess &Access,
__isl_take isl_map *AccessRelation,
ScopStmt *Statement);
public:
/// @brief Create a memory access from an access in LLVM-IR.
///
/// @param Access The memory access.
/// @param AccInst The access instruction.
/// @param Statement The statement that contains the access.
/// @param SAI The ScopArrayInfo object for this base pointer.
/// @param Identifier An identifier that is unique for all memory accesses
/// belonging to the same scop statement.
MemoryAccess(const IRAccess &Access, Instruction *AccInst,
ScopStmt *Statement, const ScopArrayInfo *SAI, int Identifier);
~MemoryAccess();
/// @brief Get the type of a memory access.
enum AccessType getType() { return AccType; }
/// @brief Is this a reduction like access?
bool isReductionLike() const { return RedType != RT_NONE; }
/// @brief Is this a read memory access?
bool isRead() const { return AccType == MemoryAccess::READ; }
/// @brief Is this a must-write memory access?
bool isMustWrite() const { return AccType == MemoryAccess::MUST_WRITE; }
/// @brief Is this a may-write memory access?
bool isMayWrite() const { return AccType == MemoryAccess::MAY_WRITE; }
/// @brief Is this a write memory access?
bool isWrite() const { return isMustWrite() || isMayWrite(); }
/// @brief Check if a new access relation was imported or set by a pass.
bool hasNewAccessRelation() const { return newAccessRelation; }
/// @brief Return the newest access relation of this access.
///
/// There are two possibilities:
/// 1) The original access relation read from the LLVM-IR.
/// 2) A new access relation imported from a json file or set by another
/// pass (e.g., for privatization).
///
/// As 2) is by construction "newer" than 1) we return the new access
/// relation if present.
///
isl_map *getAccessRelation() const {
return hasNewAccessRelation() ? getNewAccessRelation()
: getOriginalAccessRelation();
}
/// @brief Return the access relation after the schedule was applied.
__isl_give isl_pw_multi_aff *
applyScheduleToAccessRelation(__isl_take isl_union_map *Schedule) const;
/// @brief Get an isl string representing the access function read from IR.
std::string getOriginalAccessRelationStr() const;
/// @brief Get the base address of this access (e.g. A for A[i+j]).
Value *getBaseAddr() const { return BaseAddr; }
/// @brief Get the base array isl_id for this access.
__isl_give isl_id *getArrayId() const;
/// @brief Get the ScopArrayInfo object for the base address.
const ScopArrayInfo *getScopArrayInfo() const;
/// @brief Return a string representation of the accesse's reduction type.
const std::string getReductionOperatorStr() const;
/// @brief Return a string representation of the reduction type @p RT.
static const std::string getReductionOperatorStr(ReductionType RT);
const std::string &getBaseName() const { return BaseName; }
/// @brief Return the access instruction of this memory access.
Instruction *getAccessInstruction() const { return Inst; }
/// Get the stride of this memory access in the specified Schedule. Schedule
/// is a map from the statement to a schedule where the innermost dimension is
/// the dimension of the innermost loop containing the statement.
__isl_give isl_set *getStride(__isl_take const isl_map *Schedule) const;
/// Is the stride of the access equal to a certain width? Schedule is a map
/// from the statement to a schedule where the innermost dimension is the
/// dimension of the innermost loop containing the statement.
bool isStrideX(__isl_take const isl_map *Schedule, int StrideWidth) const;
/// Is consecutive memory accessed for a given statement instance set?
/// Schedule is a map from the statement to a schedule where the innermost
/// dimension is the dimension of the innermost loop containing the
/// statement.
bool isStrideOne(__isl_take const isl_map *Schedule) const;
/// Is always the same memory accessed for a given statement instance set?
/// Schedule is a map from the statement to a schedule where the innermost
/// dimension is the dimension of the innermost loop containing the
/// statement.
bool isStrideZero(__isl_take const isl_map *Schedule) const;
/// @brief Check if this is a scalar memory access.
bool isScalar() const;
/// @brief Get the statement that contains this memory access.
ScopStmt *getStatement() const { return Statement; }
/// @brief Get the reduction type of this access
ReductionType getReductionType() const { return RedType; }
/// @brief Set the updated access relation read from JSCOP file.
void setNewAccessRelation(__isl_take isl_map *newAccessRelation);
/// @brief Mark this a reduction like access
void markAsReductionLike(ReductionType RT) { RedType = RT; }
/// @brief Align the parameters in the access relation to the scop context
void realignParams();
/// @brief Get identifier for the memory access.
///
/// This identifier is unique for all accesses that belong to the same scop
/// statement.
__isl_give isl_id *getId() const;
/// @brief Print the MemoryAccess.
///
/// @param OS The output stream the MemoryAccess is printed to.
void print(raw_ostream &OS) const;
/// @brief Print the MemoryAccess to stderr.
void dump() const;
};
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
MemoryAccess::ReductionType RT);
///===----------------------------------------------------------------------===//
/// @brief Statement of the Scop
///
/// A Scop statement represents an instruction in the Scop.
///
/// It is further described by its iteration domain, its schedule and its data
/// accesses.
/// At the moment every statement represents a single basic block of LLVM-IR.
class ScopStmt {
public:
/// @brief List to hold all (scalar) memory accesses mapped to an instruction.
using MemoryAccessList = std::forward_list<MemoryAccess>;
ScopStmt(const ScopStmt &) = delete;
const ScopStmt &operator=(const ScopStmt &) = delete;
/// Create the ScopStmt from a BasicBlock.
ScopStmt(Scop &parent, TempScop &tempScop, const Region &CurRegion,
BasicBlock &bb, SmallVectorImpl<Loop *> &NestLoops);
/// Create an overapproximating ScopStmt for the region @p R.
ScopStmt(Scop &parent, TempScop &tempScop, const Region &CurRegion, Region &R,
SmallVectorImpl<Loop *> &NestLoops);
private:
/// Polyhedral description
//@{
/// The Scop containing this ScopStmt
Scop &Parent;
/// The iteration domain describes the set of iterations for which this
/// statement is executed.
///
/// Example:
/// for (i = 0; i < 100 + b; ++i)
/// for (j = 0; j < i; ++j)
/// S(i,j);
///
/// 'S' is executed for different values of i and j. A vector of all
/// induction variables around S (i, j) is called iteration vector.
/// The domain describes the set of possible iteration vectors.
///
/// In this case it is:
///
/// Domain: 0 <= i <= 100 + b
/// 0 <= j <= i
///
/// A pair of statement and iteration vector (S, (5,3)) is called statement
/// instance.
isl_set *Domain;
/// The memory accesses of this statement.
///
/// The only side effects of a statement are its memory accesses.
typedef SmallVector<MemoryAccess *, 8> MemoryAccessVec;
MemoryAccessVec MemAccs;
/// @brief Mapping from instructions to (scalar) memory accesses.
DenseMap<const Instruction *, MemoryAccessList *> InstructionToAccess;
//@}
/// @brief A SCoP statement represents either a basic block (affine/precise
/// case) or a whole region (non-affine case). Only one of the
/// following two members will therefore be set and indicate which
/// kind of statement this is.
///
///{
/// @brief The BasicBlock represented by this statement (in the affine case).
BasicBlock *BB;
/// @brief The region represented by this statement (in the non-affine case).
Region *R;
///}
/// @brief The isl AST build for the new generated AST.
isl_ast_build *Build;
std::vector<Loop *> NestLoops;
std::string BaseName;
/// Build the statement.
//@{
__isl_give isl_set *buildConditionSet(const Comparison &Cmp);
__isl_give isl_set *addConditionsToDomain(__isl_take isl_set *Domain,
TempScop &tempScop,
const Region &CurRegion);
__isl_give isl_set *addLoopBoundsToDomain(__isl_take isl_set *Domain,
TempScop &tempScop);
__isl_give isl_set *buildDomain(TempScop &tempScop, const Region &CurRegion);
/// @brief Create the accesses for instructions in @p Block.
///
/// @param tempScop The template SCoP.
/// @param Block The basic block for which accesses should be
/// created.
/// @param isApproximated Flag to indicate blocks that might not be executed,
/// hence for which write accesses need to be modeled as
/// may-write accesses.
void buildAccesses(TempScop &tempScop, BasicBlock *Block,
bool isApproximated = false);
/// @brief Detect and mark reductions in the ScopStmt
void checkForReductions();
/// @brief Collect loads which might form a reduction chain with @p StoreMA
void
collectCandiateReductionLoads(MemoryAccess *StoreMA,
llvm::SmallVectorImpl<MemoryAccess *> &Loads);
//@}
/// @brief Derive assumptions about parameter values from GetElementPtrInst
///
/// In case a GEP instruction references into a fixed size array e.g., an
/// access A[i][j] into an array A[100x100], LLVM-IR does not guarantee that
/// the subscripts always compute values that are within array bounds. In this
/// function we derive the set of parameter values for which all accesses are
/// within bounds and add the assumption that the scop is only every executed
/// with this set of parameter values.
///
/// Example:
///
/// void foo(float A[][20], long n, long m {
/// for (long i = 0; i < n; i++)
/// for (long j = 0; j < m; j++)
/// A[i][j] = ...
///
/// This loop yields out-of-bound accesses if m is at least 20 and at the same
/// time at least one iteration of the outer loop is executed. Hence, we
/// assume:
///
/// n <= 0 or m <= 20.
///
/// TODO: The location where the GEP instruction is executed is not
/// necessarily the location where the memory is actually accessed. As a
/// result scanning for GEP[s] is imprecise. Even though this is not a
/// correctness problem, this imprecision may result in missed optimizations
/// or non-optimal run-time checks.
void deriveAssumptionsFromGEP(GetElementPtrInst *Inst);
/// @brief Scan @p Block and derive assumptions about parameter values.
void deriveAssumptions(BasicBlock *Block);
public:
~ScopStmt();
/// @brief Get an isl_ctx pointer.
isl_ctx *getIslCtx() const;
/// @brief Get the iteration domain of this ScopStmt.
///
/// @return The iteration domain of this ScopStmt.
__isl_give isl_set *getDomain() const;
/// @brief Get the space of the iteration domain
///
/// @return The space of the iteration domain
__isl_give isl_space *getDomainSpace() const;
/// @brief Get the id of the iteration domain space
///
/// @return The id of the iteration domain space
__isl_give isl_id *getDomainId() const;
/// @brief Get an isl string representing this domain.
std::string getDomainStr() const;
/// @brief Get the schedule function of this ScopStmt.
///
/// @return The schedule function of this ScopStmt.
__isl_give isl_map *getSchedule() const;
/// @brief Get an isl string representing this schedule.
std::string getScheduleStr() const;
/// @brief Get the BasicBlock represented by this ScopStmt (if any).
///
/// @return The BasicBlock represented by this ScopStmt, or null if the
/// statement represents a region.
BasicBlock *getBasicBlock() const { return BB; }
/// @brief Return true if this statement represents a single basic block.
bool isBlockStmt() const { return BB != nullptr; }
/// @brief Get the region represented by this ScopStmt (if any).
///
/// @return The region represented by this ScopStmt, or null if the statement
/// represents a basic block.
Region *getRegion() const { return R; }
/// @brief Return true if this statement represents a whole region.
bool isRegionStmt() const { return R != nullptr; }
/// @brief Return the (scalar) memory accesses for @p Inst.
const MemoryAccessList &getAccessesFor(const Instruction *Inst) const {
MemoryAccessList *MAL = lookupAccessesFor(Inst);
assert(MAL && "Cannot get memory accesses because they do not exist!");
return *MAL;
}
/// @brief Return the (scalar) memory accesses for @p Inst if any.
MemoryAccessList *lookupAccessesFor(const Instruction *Inst) const {
auto It = InstructionToAccess.find(Inst);
return It == InstructionToAccess.end() ? nullptr : It->getSecond();
}
/// @brief Return the __first__ (scalar) memory access for @p Inst.
const MemoryAccess &getAccessFor(const Instruction *Inst) const {
MemoryAccess *MA = lookupAccessFor(Inst);
assert(MA && "Cannot get memory access because it does not exist!");
return *MA;
}
/// @brief Return the __first__ (scalar) memory access for @p Inst if any.
MemoryAccess *lookupAccessFor(const Instruction *Inst) const {
auto It = InstructionToAccess.find(Inst);
return It == InstructionToAccess.end() ? nullptr
: &It->getSecond()->front();
}
void setBasicBlock(BasicBlock *Block) {
// TODO: Handle the case where the statement is a region statement, thus
// the entry block was split and needs to be changed in the region R.
assert(BB && "Cannot set a block for a region statement");
BB = Block;
}
typedef MemoryAccessVec::iterator iterator;
typedef MemoryAccessVec::const_iterator const_iterator;
iterator begin() { return MemAccs.begin(); }
iterator end() { return MemAccs.end(); }
const_iterator begin() const { return MemAccs.begin(); }
const_iterator end() const { return MemAccs.end(); }
unsigned getNumParams() const;
unsigned getNumIterators() const;
Scop *getParent() { return &Parent; }
const Scop *getParent() const { return &Parent; }
const char *getBaseName() const;
/// @brief Set the isl AST build.
void setAstBuild(__isl_keep isl_ast_build *B) { Build = B; }
/// @brief Get the isl AST build.
__isl_keep isl_ast_build *getAstBuild() const { return Build; }
/// @brief Restrict the domain of the statement.
///
/// @param NewDomain The new statement domain.
void restrictDomain(__isl_take isl_set *NewDomain);
/// @brief Get the loop for a dimension.
///
/// @param Dimension The dimension of the induction variable
/// @return The loop at a certain dimension.
const Loop *getLoopForDimension(unsigned Dimension) const;
/// @brief Align the parameters in the statement to the scop context
void realignParams();
/// @brief Print the ScopStmt.
///
/// @param OS The output stream the ScopStmt is printed to.
void print(raw_ostream &OS) const;
/// @brief Print the ScopStmt to stderr.
void dump() const;
};
/// @brief Print ScopStmt S to raw_ostream O.
static inline raw_ostream &operator<<(raw_ostream &O, const ScopStmt &S) {
S.print(O);
return O;
}
///===----------------------------------------------------------------------===//
/// @brief Static Control Part
///
/// A Scop is the polyhedral representation of a control flow region detected
/// by the Scop detection. It is generated by translating the LLVM-IR and
/// abstracting its effects.
///
/// A Scop consists of a set of:
///
/// * A set of statements executed in the Scop.
///
/// * A set of global parameters
/// Those parameters are scalar integer values, which are constant during
/// execution.
///
/// * A context
/// This context contains information about the values the parameters
/// can take and relations between different parameters.
class Scop {
public:
/// @brief Type to represent a pair of minimal/maximal access to an array.
using MinMaxAccessTy = std::pair<isl_pw_multi_aff *, isl_pw_multi_aff *>;
/// @brief Vector of minimal/maximal accesses to different arrays.
using MinMaxVectorTy = SmallVector<MinMaxAccessTy, 4>;
/// @brief Vector of minimal/maximal access vectors one for each alias group.
using MinMaxVectorVectorTy = SmallVector<MinMaxVectorTy *, 4>;
private:
Scop(const Scop &) = delete;
const Scop &operator=(const Scop &) = delete;
ScalarEvolution *SE;
/// The underlying Region.
Region &R;
/// Flag to indicate that the scheduler actually optimized the SCoP.
bool IsOptimized;
/// Max loop depth.
unsigned MaxLoopDepth;
typedef std::deque<ScopStmt> StmtSet;
/// The statements in this Scop.
StmtSet Stmts;
/// Parameters of this Scop
typedef SmallVector<const SCEV *, 8> ParamVecType;
ParamVecType Parameters;
/// The isl_ids that are used to represent the parameters
typedef std::map<const SCEV *, int> ParamIdType;
ParamIdType ParameterIds;
/// Isl context.
isl_ctx *IslCtx;
/// @brief A map from basic blocks to SCoP statements.
DenseMap<BasicBlock *, ScopStmt *> StmtMap;
/// Constraints on parameters.
isl_set *Context;
typedef MapVector<const Value *, std::unique_ptr<ScopArrayInfo>>
ArrayInfoMapTy;
/// @brief A map to remember ScopArrayInfo objects for all base pointers.
ArrayInfoMapTy ScopArrayInfoMap;
/// @brief The assumptions under which this scop was built.
///
/// When constructing a scop sometimes the exact representation of a statement
/// or condition would be very complex, but there is a common case which is a
/// lot simpler, but which is only valid under certain assumptions. The
/// assumed context records the assumptions taken during the construction of
/// this scop and that need to be code generated as a run-time test.
isl_set *AssumedContext;
/// @brief The schedule of the SCoP
///
/// The schedule of the SCoP describes the execution order of the statements
/// in the scop by assigning each statement instance a possibly
/// multi-dimensional execution time. The schedule is stored as a tree of
/// schedule nodes.
///
/// The most common nodes in a schedule tree are so-called band nodes. Band
/// nodes map statement instances into a multi dimensional schedule space.
/// This space can be seen as a multi-dimensional clock.
///
/// Example:
///
/// <S,(5,4)> may be mapped to (5,4) by this schedule:
///
/// s0 = i (Year of execution)
/// s1 = j (Day of execution)
///
/// or to (9, 20) by this schedule:
///
/// s0 = i + j (Year of execution)
/// s1 = 20 (Day of execution)
///
/// The order statement instances are executed is defined by the
/// schedule vectors they are mapped to. A statement instance
/// <A, (i, j, ..)> is executed before a statement instance <B, (i', ..)>, if
/// the schedule vector of A is lexicographic smaller than the schedule
/// vector of B.
///
/// Besides band nodes, schedule trees contain additional nodes that specify
/// a textual ordering between two subtrees or filter nodes that filter the
/// set of statement instances that will be scheduled in a subtree. There
/// are also several other nodes. A full description of the different nodes
/// in a schedule tree is given in the isl manual.
isl_schedule *Schedule;
/// @brief The set of minimal/maximal accesses for each alias group.
///
/// When building runtime alias checks we look at all memory instructions and
/// build so called alias groups. Each group contains a set of accesses to
/// different base arrays which might alias with each other. However, between
/// alias groups there is no aliasing possible.
///
/// In a program with int and float pointers annotated with tbaa information
/// we would probably generate two alias groups, one for the int pointers and
/// one for the float pointers.
///
/// During code generation we will create a runtime alias check for each alias
/// group to ensure the SCoP is executed in an alias free environment.
MinMaxVectorVectorTy MinMaxAliasGroups;
/// Create the static control part with a region, max loop depth of this
/// region and parameters used in this region.
Scop(TempScop &TempScop, LoopInfo &LI, ScalarEvolution &SE, ScopDetection &SD,
isl_ctx *ctx);
/// @brief Check if a basic block is trivial.
///
/// A trivial basic block does not contain any useful calculation. Therefore,
/// it does not need to be represented as a polyhedral statement.
///
/// @param BB The basic block to check
/// @param tempScop TempScop returning further information regarding the Scop.
///
/// @return True if the basic block is trivial, otherwise false.
static bool isTrivialBB(BasicBlock *BB, TempScop &tempScop);
/// @brief Build the Context of the Scop.
void buildContext();
/// @brief Add the bounds of the parameters to the context.
void addParameterBounds();
/// @brief Simplify the assumed context.
void simplifyAssumedContext();
/// @brief Create a new SCoP statement for either @p BB or @p R.
///
/// Either @p BB or @p R should be non-null. A new statement for the non-null
/// argument will be created and added to the statement vector and map.
///
/// @param BB The basic block we build the statement for (or null)
/// @param R The region we build the statement for (or null).
/// @param tempScop The temp SCoP we use as model.
/// @param CurRegion The SCoP region.
/// @param NestLoops A vector of all surrounding loops.
ScopStmt *addScopStmt(BasicBlock *BB, Region *R, TempScop &tempScop,
const Region &CurRegion,
SmallVectorImpl<Loop *> &NestLoops);
/// @brief Build Scop and ScopStmts from a given TempScop.
///
/// @param TempScop The temporary scop that is translated into an actual
/// scop.
/// @param CurRegion The subregion of the current scop that we are currently
/// translating.
/// @param NestLoop The set of loops that surround the current subregion.
/// @param LI The LoopInfo object.
/// @param SD The ScopDetection object.
__isl_give isl_schedule *buildScop(TempScop &TempScop,
const Region &CurRegion,
SmallVectorImpl<Loop *> &NestLoops,
LoopInfo &LI, ScopDetection &SD);
/// @name Helper function for printing the Scop.
///
///{
void printContext(raw_ostream &OS) const;
void printArrayInfo(raw_ostream &OS) const;
void printStatements(raw_ostream &OS) const;
void printAliasAssumptions(raw_ostream &OS) const;
///}
friend class ScopInfo;
public:
~Scop();
ScalarEvolution *getSE() const;
/// @brief Get the count of parameters used in this Scop.
///
/// @return The count of parameters used in this Scop.
inline ParamVecType::size_type getNumParams() const {
return Parameters.size();
}
/// @brief Get a set containing the parameters used in this Scop
///
/// @return The set containing the parameters used in this Scop.
inline const ParamVecType &getParams() const { return Parameters; }
/// @brief Take a list of parameters and add the new ones to the scop.
void addParams(std::vector<const SCEV *> NewParameters);
int getNumArrays() { return ScopArrayInfoMap.size(); }
typedef iterator_range<ArrayInfoMapTy::iterator> array_range;
typedef iterator_range<ArrayInfoMapTy::const_iterator> const_array_range;
inline array_range arrays() {
return array_range(ScopArrayInfoMap.begin(), ScopArrayInfoMap.end());
}
inline const_array_range arrays() const {
return const_array_range(ScopArrayInfoMap.begin(), ScopArrayInfoMap.end());
}
/// @brief Return the isl_id that represents a certain parameter.
///
/// @param Parameter A SCEV that was recognized as a Parameter.
///
/// @return The corresponding isl_id or NULL otherwise.
isl_id *getIdForParam(const SCEV *Parameter) const;
/// @name Parameter Iterators
///
/// These iterators iterate over all parameters of this Scop.
//@{
typedef ParamVecType::iterator param_iterator;
typedef ParamVecType::const_iterator const_param_iterator;
param_iterator param_begin() { return Parameters.begin(); }
param_iterator param_end() { return Parameters.end(); }
const_param_iterator param_begin() const { return Parameters.begin(); }
const_param_iterator param_end() const { return Parameters.end(); }
//@}
/// @brief Get the maximum region of this static control part.
///
/// @return The maximum region of this static control part.
inline const Region &getRegion() const { return R; }
inline Region &getRegion() { return R; }
/// @brief Get the maximum depth of the loop.
///
/// @return The maximum depth of the loop.
inline unsigned getMaxLoopDepth() const { return MaxLoopDepth; }
/// @brief Mark the SCoP as optimized by the scheduler.
void markAsOptimized() { IsOptimized = true; }
/// @brief Check if the SCoP has been optimized by the scheduler.
bool isOptimized() const { return IsOptimized; }
/// @brief Get the name of this Scop.
std::string getNameStr() const;
/// @brief Get the constraint on parameter of this Scop.
///
/// @return The constraint on parameter of this Scop.
__isl_give isl_set *getContext() const;
__isl_give isl_space *getParamSpace() const;
/// @brief Get the assumed context for this Scop.
///
/// @return The assumed context of this Scop.
__isl_give isl_set *getAssumedContext() const;
/// @brief Add assumptions to assumed context.
///
/// The assumptions added will be assumed to hold during the execution of the
/// scop. However, as they are generally not statically provable, at code
/// generation time run-time checks will be generated that ensure the
/// assumptions hold.
///
/// WARNING: We currently exploit in simplifyAssumedContext the knowledge
/// that assumptions do not change the set of statement instances
/// executed.
///
/// @param Set A set describing relations between parameters that are assumed
/// to hold.
void addAssumption(__isl_take isl_set *Set);
/// @brief Build all alias groups for this SCoP.
///
/// @returns True if __no__ error occurred, false otherwise.
bool buildAliasGroups(AliasAnalysis &AA);
/// @brief Return all alias groups for this SCoP.
const MinMaxVectorVectorTy &getAliasGroups() const {
return MinMaxAliasGroups;
}
/// @brief Get an isl string representing the context.
std::string getContextStr() const;
/// @brief Get an isl string representing the assumed context.
std::string getAssumedContextStr() const;
/// @brief Return the stmt for the given @p BB or nullptr if none.
ScopStmt *getStmtForBasicBlock(BasicBlock *BB) const;
/// @brief Return the number of statements in the SCoP.
size_t getSize() const { return Stmts.size(); }
/// @name Statements Iterators
///
/// These iterators iterate over all statements of this Scop.
//@{
typedef StmtSet::iterator iterator;
typedef StmtSet::const_iterator const_iterator;
iterator begin() { return Stmts.begin(); }
iterator end() { return Stmts.end(); }
const_iterator begin() const { return Stmts.begin(); }
const_iterator end() const { return Stmts.end(); }
typedef StmtSet::reverse_iterator reverse_iterator;
typedef StmtSet::const_reverse_iterator const_reverse_iterator;
reverse_iterator rbegin() { return Stmts.rbegin(); }
reverse_iterator rend() { return Stmts.rend(); }
const_reverse_iterator rbegin() const { return Stmts.rbegin(); }
const_reverse_iterator rend() const { return Stmts.rend(); }
//@}
/// @brief Return the (possibly new) ScopArrayInfo object for @p Access.
///
/// @param ElementType The type of the elements stored in this array.
const ScopArrayInfo *
getOrCreateScopArrayInfo(Value *BasePtr, Type *ElementType,
const SmallVector<const SCEV *, 4> &Sizes);
/// @brief Return the cached ScopArrayInfo object for @p BasePtr.
const ScopArrayInfo *getScopArrayInfo(Value *BasePtr);
void setContext(isl_set *NewContext);
/// @brief Align the parameters in the statement to the scop context
void realignParams();
/// @brief Print the static control part.
///
/// @param OS The output stream the static control part is printed to.
void print(raw_ostream &OS) const;
/// @brief Print the ScopStmt to stderr.
void dump() const;
/// @brief Get the isl context of this static control part.
///
/// @return The isl context of this static control part.
isl_ctx *getIslCtx() const;
/// @brief Get a union set containing the iteration domains of all statements.
__isl_give isl_union_set *getDomains() const;
/// @brief Get a union map of all may-writes performed in the SCoP.
__isl_give isl_union_map *getMayWrites();
/// @brief Get a union map of all must-writes performed in the SCoP.
__isl_give isl_union_map *getMustWrites();
/// @brief Get a union map of all writes performed in the SCoP.
__isl_give isl_union_map *getWrites();
/// @brief Get a union map of all reads performed in the SCoP.
__isl_give isl_union_map *getReads();
/// @brief Get the schedule of all the statements in the SCoP.
__isl_give isl_union_map *getSchedule() const;
/// @brief Get a schedule tree describing the schedule of all statements.
__isl_give isl_schedule *getScheduleTree() const;
/// @brief Update the current schedule
///
/// @brief NewSchedule The new schedule (given as a flat union-map).
void setSchedule(__isl_take isl_union_map *NewSchedule);
/// @brief Update the current schedule
///
/// @brief NewSchedule The new schedule (given as schedule tree).
void setScheduleTree(__isl_take isl_schedule *NewSchedule);
/// @brief Intersects the domains of all statements in the SCoP.
///
/// @return true if a change was made
bool restrictDomains(__isl_take isl_union_set *Domain);
};
/// @brief Print Scop scop to raw_ostream O.
static inline raw_ostream &operator<<(raw_ostream &O, const Scop &scop) {
scop.print(O);
return O;
}
///===---------------------------------------------------------------------===//
/// @brief Build the Polly IR (Scop and ScopStmt) on a Region.
///
class ScopInfo : public RegionPass {
//===-------------------------------------------------------------------===//
ScopInfo(const ScopInfo &) = delete;
const ScopInfo &operator=(const ScopInfo &) = delete;
// The Scop
Scop *scop;
isl_ctx *ctx;
void clear() {
if (scop) {
delete scop;
scop = 0;
}
}
public:
static char ID;
explicit ScopInfo();
~ScopInfo();
/// @brief Try to build the Polly IR of static control part on the current
/// SESE-Region.
///
/// @return If the current region is a valid for a static control part,
/// return the Polly IR representing this static control part,
/// return null otherwise.
Scop *getScop() { return scop; }
const Scop *getScop() const { return scop; }
/// @name RegionPass interface
//@{
virtual bool runOnRegion(Region *R, RGPassManager &RGM);
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory() { clear(); }
virtual void print(raw_ostream &OS, const Module *) const {
if (scop)
scop->print(OS);
else
OS << "Invalid Scop!\n";
}
//@}
};
} // end namespace polly
namespace llvm {
class PassRegistry;
void initializeScopInfoPass(llvm::PassRegistry &);
}
#endif
|