This file is indexed.

/usr/include/random/beta.h is in libblitz0-dev 1:0.10-3.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// -*- C++ -*-
// $Id$

/*
 * Generate Beta random deviate
 *
 *   Returns a single random deviate from the beta distribution with
 *   parameters A and B.  The density of the beta is
 *             x^(a-1) * (1-x)^(b-1) / B(a,b) for 0 < x < 1
 *
 * The mean is a/(a+b).
 * The variance is ab/((a+b)^2(a+b+1))
 * The rth moment is (a+r-1)^(r)/(a+b+r-1)^(r)
 *   where a^(r) means a * (a-1) * (a-2) * ... * (a-r+1)
 *
 * Method
 *    R. C. H. Cheng
 *    Generating Beta Variates with Nonintegral Shape Parameters
 *    Communications of the ACM, 21:317-322  (1978)
 *    (Algorithms BB and BC)
 *    http://www.acm.org/pubs/citations/journals/toms/1991-17-1/p98-l_ecuyer/
 *
 * This class has been adapted from RANDLIB.C 1.3, by 
 * Barry W. Brown, James Lovato, Kathy Russell, and John Venier.
 * 
 * Adapter's note (TV): This code has gone from Pascal to Fortran to C.  
 * As a result it is a bit of a mess.  Note also that the algorithms were
 * originally designed for 32-bit float, and so some of the constants
 * below have inadequate precision.  This will not cause problems for
 * casual use, but if you are generating millions of beta variates and
 * rely on some convergence property, you may have want to worry
 * about this.
 *
 * NEEDS_WORK: dig out the original paper and determine these constants
 * to precision adequate for 128-bit float.
 * NEEDS_WORK: turn this into structured code.
 */

#ifndef BZ_RANDOM_BETA
#define BZ_RANDOM_BETA

#ifndef BZ_RANDOM_UNIFORM
 #include <random/uniform.h>
#endif

#ifndef BZ_NUMINQUIRE_H
 #include <blitz/numinquire.h>
#endif

BZ_NAMESPACE(ranlib)

template<typename T = double, typename IRNG = defaultIRNG, 
    typename stateTag = defaultState>
class Beta : public UniformOpen<T,IRNG,stateTag>
{
public:
    typedef T T_numtype;

    Beta(T a, T b)
    {
      setParameters(a, b);
    }

  Beta(T a, T b, unsigned int i) : UniformOpen<T, IRNG, stateTag>(i)
    {
      setParameters(a, b);
    }

    T random();

    void setParameters(T a, T b)
    {
      aa = a;
      bb = b;
      infnty = 0.3 * blitz::huge(T());
      minlog = 0.085 * blitz::tiny(T());
      expmax = log(infnty);
    }

protected:
    T ranf() 
    { 
        return UniformOpen<T,IRNG,stateTag>::random(); 
    }

    T aa, bb;
    T infnty, minlog, expmax;
};

template<typename T, typename IRNG, typename stateTag>
T Beta<T,IRNG,stateTag>::random()
{
/* JJV changed expmax (log(1.0E38)==87.49823), and added minlog */

    // TV: The original code had infnty = 1.0E38, minlog = 1.0E-37.
    // I have changed these to 0.3 * huge and 8.5 * tiny.  For IEEE
    // float this works out to 1.020847E38 and 0.9991702E-37.
    // I changed expmax from 87.49823 to log(infnty), which works out
    // to 87.518866 for float.

    static T olda = minlog;
    static T oldb = minlog;
    static T genbet,a,alpha,b,beta,delta,gamma,k1,k2,r,s,t,u1,u2,v,w,y,z;
    static long qsame;

    // This code determines if the aa and bb parameters are unchanged.
    // If so, some code can be skipped.

    qsame = (olda == aa) && (oldb == bb);

    if (!qsame)
    {
      BZPRECHECK((aa > minlog) && (bb > minlog),
          "Beta RNG: parameters must be >= " << minlog << endl
          << "Parameters are aa=" << aa << " and bb=" << bb << endl);
      olda = aa;
      oldb = bb;
    }

    if (!(min(aa,bb) > 1.0)) 
      goto S100;
/*
     Alborithm BB
     Initialize
*/
    if(qsame) goto S30;
    a = min(aa,bb);
    b = max(aa,bb);
    alpha = a+b;
    beta = sqrt((alpha-2.0)/(2.0*a*b-alpha));
    gamma = a+1.0/beta;
S30:
S40:
    u1 = ranf();
/*
     Step 1
*/
    u2 = ranf();
    v = beta*log(u1/(1.0-u1));
/* JJV altered this */
    if(v > expmax) goto S55;
/*
 * JJV added checker to see if a*exp(v) will overflow
 * JJV S50 _was_ w = a*exp(v); also note here a > 1.0
 */
    w = exp(v);
    if(w > infnty/a) goto S55;
    w *= a;
    goto S60;
S55:
    w = infnty;
S60:
    z = pow(u1,2.0)*u2;
    r = gamma*v-1.3862944;
    s = a+r-w;
/*
     Step 2
*/
    if(s+2.609438 >= 5.0*z) goto S70;
/*
     Step 3
*/
    t = log(z);
    if(s > t) goto S70;
/*
 *   Step 4
 *
 *    JJV added checker to see if log(alpha/(b+w)) will
 *    JJV overflow.  If so, we count the log as -INF, and
 *    JJV consequently evaluate conditional as true, i.e.
 *    JJV the algorithm rejects the trial and starts over
 *    JJV May not need this here since alpha > 2.0
 */
    if(alpha/(b+w) < minlog) goto S40;
    if(r+alpha*log(alpha/(b+w)) < t) goto S40;
S70:
/*
     Step 5
*/
    if(!(aa == a)) goto S80;
    genbet = w/(b+w);
    goto S90;
S80:
    genbet = b/(b+w);
S90:
    goto S230;
S100:
/*
     Algorithm BC
     Initialize
*/
    if(qsame) goto S110;
    a = max(aa,bb);
    b = min(aa,bb);
    alpha = a+b;
    beta = 1.0/b;
    delta = 1.0+a-b;
    k1 = delta*(1.38889E-2+4.16667E-2*b)/(a*beta-0.777778);
    k2 = 0.25+(0.5+0.25/delta)*b;
S110:
S120:
    u1 = ranf();
/*
     Step 1
*/
    u2 = ranf();
    if(u1 >= 0.5) goto S130;
/*
     Step 2
*/
    y = u1*u2;
    z = u1*y;
    if(0.25*u2+z-y >= k1) goto S120;
    goto S170;
S130:
/*
     Step 3
*/
    z = pow(u1,2.0)*u2;
    if(!(z <= 0.25)) goto S160;
    v = beta*log(u1/(1.0-u1));
/*
 *    JJV instead of checking v > expmax at top, I will check
 *    JJV if a < 1, then check the appropriate values
 */
    if(a > 1.0) goto S135;
/*   JJV a < 1 so it can help out if exp(v) would overflow */
    if(v > expmax) goto S132;
    w = a*exp(v);
    goto S200;
S132:
    w = v + log(a);
    if(w > expmax) goto S140;
    w = exp(w);
    goto S200;
S135:
/*   JJV in this case a > 1 */
    if(v > expmax) goto S140;
    w = exp(v);
    if(w > infnty/a) goto S140;
    w *= a;
    goto S200;
S140:
    w = infnty;
    goto S200;
/*
 * JJV old code
 *    if(!(v > expmax)) goto S140;
 *    w = infnty;
 *    goto S150;
 *S140:
 *    w = a*exp(v);
 *S150:
 *    goto S200;
 */
S160:
    if(z >= k2) goto S120;
S170:
/*
     Step 4
     Step 5
*/
    v = beta*log(u1/(1.0-u1));
/*   JJV same kind of checking as above */
    if(a > 1.0) goto S175;
/* JJV a < 1 so it can help out if exp(v) would overflow */
    if(v > expmax) goto S172;
    w = a*exp(v);
    goto S190;
S172:
    w = v + log(a);
    if(w > expmax) goto S180;
    w = exp(w);
    goto S190;
S175:
/* JJV in this case a > 1.0 */
    if(v > expmax) goto S180;
    w = exp(v);
    if(w > infnty/a) goto S180;
    w *= a;
    goto S190;
S180:
    w = infnty;
/*
 *   JJV old code
 *    if(!(v > expmax)) goto S180;
 *    w = infnty;
 *    goto S190;
 *S180:
 *    w = a*exp(v);
 */
S190:
/*
 * JJV here we also check to see if log overlows; if so, we treat it
 * JJV as -INF, which means condition is true, i.e. restart
 */
    if(alpha/(b+w) < minlog) goto S120;
    if(alpha*(log(alpha/(b+w))+v)-1.3862944 < log(z)) goto S120;
S200:
/*
     Step 6
*/
    if(!(a == aa)) goto S210;
    genbet = w/(b+w);
    goto S220;
S210:
    genbet = b/(b+w);
S230:
S220:
    return genbet;
}

BZ_NAMESPACE_END

#endif // BZ_RANDOM_BETA