This file is indexed.

/usr/include/blitz/tinyvec2.h is in libblitz0-dev 1:0.10-3.3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
// -*- C++ -*-
/***************************************************************************
 * blitz/tinyvec.h      Declaration of the TinyVector<T, N> class
 *
 * $Id$
 *
 * Copyright (C) 1997-2011 Todd Veldhuizen <tveldhui@acm.org>
 *
 * This file is a part of Blitz.
 *
 * Blitz is free software: you can redistribute it and/or modify 
 * it under the terms of the GNU Lesser General Public License
 * as published by the Free Software Foundation, either version 3
 * of the License, or (at your option) any later version.
 *
 * Blitz is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public 
 * License along with Blitz.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Suggestions:          blitz-devel@lists.sourceforge.net
 * Bugs:                 blitz-support@lists.sourceforge.net    
 *
 * For more information, please see the Blitz++ Home Page:
 *    https://sourceforge.net/projects/blitz/
 *
 ***************************************************************************/

#ifndef BZ_TINYVEC_H
#define BZ_TINYVEC_H

#include <blitz/blitz.h>
#include <blitz/listinit.h>
#include <blitz/et-forward.h>
#include <blitz/etbase.h>
#include <blitz/simdtypes.h>
#include <blitz/array/slice.h>

#ifdef BZ_HAVE_BOOST_SERIALIZATION
#include <boost/serialization/serialization.hpp>
#endif
#ifdef BZ_HAVE_BOOST_MPI
#include <boost/mpi/datatype.hpp>
#endif

#ifdef BZ_HAVE_CSTRING
#include <cstring> // For memcpy
#endif

BZ_NAMESPACE(blitz)

/*****************************************************************************
 * Forward declarations
 */

template<typename P_numtype, int N_length>
class FastTV2Iterator;
template<typename P_numtype, int N_length>
class FastTV2CopyIterator;


/** The TinyVector class is a one-dimensional, fixed length vector
    that implements the blitz expression template
    machinery. TinyVector-only expressions are very fast because they
    usually get reduced to just the unrolled (and vectorized, if
    enabled) assembly instructions. TinyVectors can also be used in
    mixed expressions with other ET classes. */
template<typename P_numtype, int N_length>
class TinyVector : public ETBase<TinyVector<P_numtype, N_length> >
{
public:

    //////////////////////////////////////////////
    // Public Types
    //////////////////////////////////////////////

    typedef P_numtype                                    T_numtype;
    typedef TinyVector<T_numtype,N_length>               T_vector;
    typedef FastTV2Iterator<T_numtype,N_length>         T_iterator;
    typedef T_numtype*                                   iterator;
    typedef const T_numtype*                             const_iterator;
  typedef FastTV2CopyIterator<P_numtype, N_length> T_range_result;

    static const int 
    //numArrayOperands = 1, 
    //numIndexPlaceholders = 0,
        rank_ = 1;

    TinyVector()  { }
    ~TinyVector() { }

  TinyVector(const TinyVector<T_numtype,N_length>& x);

    template <typename T_numtype2>
    TinyVector(const TinyVector<T_numtype2,N_length>& x);

  /** This constructor creates a TinyVector from another ETBase
      object. It needs to be explicit to avoid all kinds of
      ambiguities. */
    template <typename T_expr>
    inline explicit TinyVector(const ETBase<T_expr>& expr) {
      *this = expr; }

  /** This constructor creates a TinyVector specifically from an
      expression. This one we do NOT want to be explicit because that
      breaks simple construction assignments like "TinyVector<double,
      1> v = a+b;", forcing the user to explicitly write it like a
      construction. */
    template <typename T_expr>
    inline TinyVector(const _bz_ArrayExpr<T_expr>& expr) {
      *this = expr; }

    inline TinyVector(const T_numtype initValue);

    inline TinyVector(const T_numtype x[]) {
        memcpy(data_,x,N_length*sizeof(T_numtype));
    }

  
    TinyVector(T_numtype x0, T_numtype x1)
    {
        data_[0] = x0;
        data_[1] = x1;
    }

    TinyVector(T_numtype x0, T_numtype x1, T_numtype x2)
    {
        data_[0] = x0;
        data_[1] = x1;
        data_[2] = x2;
    }

    TinyVector(T_numtype x0, T_numtype x1, T_numtype x2,
        T_numtype x3)
    {
        data_[0] = x0;
        data_[1] = x1;
        data_[2] = x2;
        data_[3] = x3;
    }

    TinyVector(T_numtype x0, T_numtype x1, T_numtype x2,
        T_numtype x3, T_numtype x4)
    {
        data_[0] = x0;
        data_[1] = x1;
        data_[2] = x2;
        data_[3] = x3;
        data_[4] = x4;
    }

    TinyVector(T_numtype x0, T_numtype x1, T_numtype x2,
        T_numtype x3, T_numtype x4, T_numtype x5)
    {
        data_[0] = x0;
        data_[1] = x1;
        data_[2] = x2;
        data_[3] = x3;
        data_[4] = x4;
        data_[5] = x5;
    }

    TinyVector(T_numtype x0, T_numtype x1, T_numtype x2,
        T_numtype x3, T_numtype x4, T_numtype x5, T_numtype x6)
    {
        data_[0] = x0;
        data_[1] = x1;
        data_[2] = x2;
        data_[3] = x3;
        data_[4] = x4;
        data_[5] = x5;
        data_[6] = x6;
    }

    TinyVector(T_numtype x0, T_numtype x1, T_numtype x2,
        T_numtype x3, T_numtype x4, T_numtype x5, T_numtype x6,
        T_numtype x7)
    {
        data_[0] = x0;
        data_[1] = x1;
        data_[2] = x2;
        data_[3] = x3;
        data_[4] = x4;
        data_[5] = x5;
        data_[6] = x6;
        data_[7] = x7;
    }

    TinyVector(T_numtype x0, T_numtype x1, T_numtype x2,
        T_numtype x3, T_numtype x4, T_numtype x5, T_numtype x6,
        T_numtype x7, T_numtype x8)
    {
        data_[0] = x0;
        data_[1] = x1;
        data_[2] = x2;
        data_[3] = x3;
        data_[4] = x4;
        data_[5] = x5;
        data_[6] = x6;
        data_[7] = x7;
        data_[8] = x8;
    }

    TinyVector(T_numtype x0, T_numtype x1, T_numtype x2,
        T_numtype x3, T_numtype x4, T_numtype x5, T_numtype x6,
        T_numtype x7, T_numtype x8, T_numtype x9)
    {
        data_[0] = x0;
        data_[1] = x1;
        data_[2] = x2;
        data_[3] = x3;
        data_[4] = x4;
        data_[5] = x5;
        data_[6] = x6;
        data_[7] = x7;
        data_[8] = x8;
        data_[9] = x9;
    }

    TinyVector(T_numtype x0, T_numtype x1, T_numtype x2,
        T_numtype x3, T_numtype x4, T_numtype x5, T_numtype x6,
        T_numtype x7, T_numtype x8, T_numtype x9, T_numtype x10)
    {
        data_[0] = x0;
        data_[1] = x1;
        data_[2] = x2;
        data_[3] = x3;
        data_[4] = x4;
        data_[5] = x5;
        data_[6] = x6;
        data_[7] = x7;
        data_[8] = x8;
        data_[9] = x9;
        data_[10] = x10;
    }

  static int base() 
  { return 0; }

  static int                               base(int rank) 
  { BZPRECONDITION(rank==0); return 0; }


    T_iterator      beginFast() const       { return T_iterator(*this);      }

    iterator       begin()       { return data_; }
    const_iterator begin() const { return data_; }

  static int                               dimensions()
    { return 1; }

    iterator       end()       { return data_ + N_length; }
    const_iterator end() const { return data_ + N_length; }

    T_numtype * restrict data()
    { return data_; }

    const T_numtype * restrict data() const
    { return data_; }

    T_numtype * restrict dataFirst()
    { return data_; }

    const T_numtype * restrict dataFirst() const
    { return data_; }

    const TinyVector<int, rank_>    shape() const
    { return N_length; }

  static int                               lbound(int rank) 
  { BZPRECONDITION(rank==0); return 0; }
  static int            lbound() 
  { return 0; }

  static int                               length(int rank) 
  { BZPRECONDITION(rank==0); return N_length; }
  static int    length() 
  { return N_length; }

  static int                               extent(int rank)
  { BZPRECONDITION(rank==0); return N_length; }

  static int                               ordering(int storageRankIndex) 
  { return 0; }

  static int    ordering() 
  { return 0; }

  static  int                               rank()
    { return rank_; }

    static sizeType                               numElements() 
  { return length(); }

    static diffType    stride() 
    { return 1; }

  static diffType                               stride(int rank) 
    { BZPRECONDITION(rank==0); return 1; }

  static int                               ubound(int rank) 
  { BZPRECONDITION(rank==0); return length()-1; }

  static int           ubound() 
  { return length()-1; }

     template<typename P_expr, typename P_updater>
     void _bz_assign(P_expr, P_updater);

    T_numtype operator*() const
    { return *data_; }

    //////////////////////////////////////////////
    // Subscripting operators
    //////////////////////////////////////////////

    T_vector& noConst() const
    { return const_cast<T_vector&>(*this); }

  static bool lengthCheck(unsigned i) 
    {
        BZPRECHECK(i < N_length, 
            "TinyVector<" << BZ_DEBUG_TEMPLATE_AS_STRING_LITERAL(T_numtype) 
            << "," << N_length << "> index out of bounds: " << i);
        return true;
    }

    const T_numtype& operator()(unsigned i) const
    {
        BZPRECONDITION(lengthCheck(i));
        return data_[i];
    }

    T_numtype& restrict operator()(unsigned i)
    { 
        BZPRECONDITION(lengthCheck(i));
        return data_[i];
    }

  T_numtype operator()(TinyVector<int,1> i) const
    {
        BZPRECONDITION(lengthCheck(i[0]));
        return data_[i[0]];
    }

    template<int N0>
    _bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_vector>::T_expr, N0> >
    operator()(IndexPlaceholder<N0>) const;

    const T_numtype& operator[](unsigned i) const
    {
        BZPRECONDITION(lengthCheck(i));
        return data_[i];
    }

    T_numtype& restrict operator[](unsigned i)
    {
        BZPRECONDITION(lengthCheck(i));
        return data_[i];
    }

  // must return reference so the iterator can turn it into an
  // iterator for the contained in case we have a multicomponent.
  const T_numtype& fastRead(diffType i) const
    { return data_[i]; }

  /** Since data_ is simd aligned by construction, we just have
      to check the offest. */
  bool isVectorAligned(diffType offset) const 
  { return (offset%simdTypes<T_numtype>::vecWidth)==0; }

  bool canCollapse(int outerLoopRank, int innerLoopRank) const
  {
    BZPRECONDITION(outerLoopRank==0);
    BZPRECONDITION(innerLoopRank==0);
    return true;
  }

    //////////////////////////////////////////////
    // Assignment operators
    //////////////////////////////////////////////

    // Scalar operand
    ListInitializationSwitch<T_vector,T_numtype*> operator=(T_numtype x)
    {
        return ListInitializationSwitch<T_vector,T_numtype*>(*this, x);
    }

  T_vector& initialize(T_numtype);

    template<typename T_expr>
    T_vector& operator=(const ETBase<T_expr>&);

    template<typename T> T_vector& operator+=(const T&);
    template<typename T> T_vector& operator-=(const T&);
    template<typename T> T_vector& operator*=(const T&);
    template<typename T> T_vector& operator/=(const T&);
    template<typename T> T_vector& operator%=(const T&);
    template<typename T> T_vector& operator^=(const T&);
    template<typename T> T_vector& operator&=(const T&);
    template<typename T> T_vector& operator|=(const T&);
    template<typename T> T_vector& operator>>=(const T&);
    template<typename T> T_vector& operator<<=(const T&);

    T_numtype* restrict getInitializationIterator()
    { return dataFirst(); }

  // // vectors can't be sliced
  // template<typename T1, typename T2 = nilArraySection, 
  // 	   class T3 = nilArraySection, typename T4 = nilArraySection, 
  // 	   class T5 = nilArraySection, typename T6 = nilArraySection, 
  // 	   class T7 = nilArraySection, typename T8 = nilArraySection, 
  // 	   class T9 = nilArraySection, typename T10 = nilArraySection, 
  // 	   class T11 = nilArraySection>
  // class SliceInfo {
  // public:    
  //   typedef void T_slice;
  // };

private:
  template<typename T_expr, typename T_update>
  void _tv_evaluate(const T_expr& expr, T_update);

#ifdef BZ_HAVE_BOOST_SERIALIZATION
  friend class boost::serialization::access;
  
  template<class T_arch>
  void serialize(T_arch& ar, const unsigned int version) {
    ar & data_;
  };
#endif


  BZ_ALIGN_VARIABLE(T_numtype, data_[N_length], BZ_SIMD_WIDTH)
};

// Specialization for N = 0: KCC is giving some
// peculiar errors, perhaps this will fix.

template<typename T>
class TinyVector<T,0> {
};

BZ_NAMESPACE_END

#ifdef BZ_HAVE_BOOST_SERIALIZATION
namespace boost {
  namespace mpi {
    template<typename T> struct is_mpi_datatype;
    template <typename T, int N>
    struct is_mpi_datatype<blitz::TinyVector<T, N> > 
      : public is_mpi_datatype<T> { };
  } };
#endif


#endif // BZ_TINYVEC_H