/usr/include/blitz/array/map.h is in libblitz0-dev 1:0.10-3.3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 | // -*- C++ -*-
/***************************************************************************
* blitz/array/map.h Declaration of the ArrayIndexMapping class
*
* $Id$
*
* Copyright (C) 1997-2011 Todd Veldhuizen <tveldhui@acm.org>
*
* This file is a part of Blitz.
*
* Blitz is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Blitz is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Blitz. If not, see <http://www.gnu.org/licenses/>.
*
* Suggestions: blitz-devel@lists.sourceforge.net
* Bugs: blitz-support@lists.sourceforge.net
*
* For more information, please see the Blitz++ Home Page:
* https://sourceforge.net/projects/blitz/
*
****************************************************************************/
/*
* ArrayIndexMapping is used to implement tensor array notation. For
* example:
*
* Array<float, 2> A, B;
* firstIndex i;
* secondIndex j;
* thirdIndex k;
* Array<float, 3> C = A(i,j) * B(j,k);
*
* For expression templates purposes, something like B(j,k) is represented
* by an instance of class ArrayIndexMapping. This class maps an array onto
* the destination array coordinate system, e.g. B(j,k) -> C(i,j,k)
*/
#ifndef BZ_ARRAYMAP_H
#define BZ_ARRAYMAP_H
#include <blitz/blitz.h>
#include <blitz/prettyprint.h>
#include <blitz/et-forward.h>
#include <blitz/tinyvec2.h>
#include <blitz/array/domain.h>
BZ_NAMESPACE(blitz)
/*
* _bz_doArrayIndexMapping is a helper class that does the index
* remapping. It is specialized for ranks 1, 2, 3, ..., 11.
*/
template<int N_rank>
struct _bz_doArrayIndexMapping {
static const int rank=N_rank;
template<typename T_expr, int N_inputRank>
static typename T_expr::T_numtype map(const ETBase<T_expr>& expr,
const TinyVector<int,N_inputRank>&, int, int, int, int, int, int,
int, int, int, int, int)
{
// If you try to use an array index mapping on an array with
// rank greater than 11, then you'll get a precondition failure
// here.
BZPRECHECK(0,"Index mappings for containers of rank>11 not implemented");
return T_expr::T_numtype();
}
};
template<>
struct _bz_doArrayIndexMapping<1> {
static const int rank=1;
template<typename T_expr, int N_inputRank>
static typename T_expr::T_numtype map(const ETBase<T_expr>& expr,
const TinyVector<int,N_inputRank>& index, int i0, int, int, int, int,
int, int, int, int, int, int)
{
// this was the case when it took an array. is it necessary?
BZPRECHECK(T_expr::rank_==rank,
"Rank confusion in _bz_doArrayIndexMapping");
return expr.unwrap()(index[i0]);
}
template<int N_inputRank>
static TinyVector<int,rank> map_dims(const TinyVector<int,N_inputRank>& index,
int i0, int, int, int, int,
int, int, int, int, int, int)
{
// this might be slower but unlike Array, FAI doesn't have 11
// overloaded moveTo methods.
const TinyVector<int,rank> newindex(index[i0]);
return newindex;
}
};
template<>
struct _bz_doArrayIndexMapping<2> {
static const int rank=2;
template<typename T_expr, int N_inputRank>
static typename T_expr::T_numtype map(const ETBase<T_expr>& expr,
const TinyVector<int,N_inputRank>& index, int i0, int i1, int,
int, int, int, int, int, int, int, int)
{
// this was the case when it took an array. is it necessary?
BZPRECHECK(T_expr::rank_==rank,
"Rank confusion in _bz_doArrayIndexMapping");
return expr.unwrap()(index[i0], index[i1]);
}
template<int N_inputRank>
static TinyVector<int,rank> map_dims(const TinyVector<int,N_inputRank>& index,
int i0, int i1, int, int, int,
int, int, int, int, int, int)
{
return TinyVector<int,rank>(index[i0], index[i1]);
}
};
template<>
struct _bz_doArrayIndexMapping<3> {
static const int rank=3;
template<typename T_expr, int N_inputRank>
static typename T_expr::T_numtype map(const ETBase<T_expr>& expr,
const TinyVector<int,N_inputRank>& index, int i0, int i1, int i2,
int, int, int, int, int, int, int, int)
{
// this was the case when it took an array. is it necessary?
BZPRECHECK(T_expr::rank_==rank,
"Rank confusion in _bz_doArrayIndexMapping");
return expr.unwrap()(index[i0], index[i1], index[i2]);
}
template<int N_inputRank>
static TinyVector<int,rank> map_dims(const TinyVector<int,N_inputRank>& index,
int i0, int i1, int i2, int, int,
int, int, int, int, int, int)
{
return TinyVector<int,rank>(index[i0], index[i1], index[i2]);
}
};
template<>
struct _bz_doArrayIndexMapping<4> {
static const int rank=4;
template<typename T_expr, int N_inputRank>
static typename T_expr::T_numtype map(const ETBase<T_expr>& expr,
const TinyVector<int,N_inputRank>& index, int i0, int i1, int i2,
int i3, int, int, int, int, int, int, int)
{
// this was the case when it took an array. is it necessary?
BZPRECHECK(T_expr::rank_==rank,
"Rank confusion in _bz_doArrayIndexMapping");
return expr.unwrap()(index[i0], index[i1], index[i2], index[i3]);
}
template<int N_inputRank>
static TinyVector<int,rank> map_dims(const TinyVector<int,N_inputRank>& index,
int i0, int i1, int i2, int i3, int,
int, int, int, int, int, int)
{
return TinyVector<int,rank>(index[i0], index[i1], index[i2],
index[i3]);
}
};
template<>
struct _bz_doArrayIndexMapping<5> {
static const int rank=5;
template<typename T_expr, int N_inputRank>
static typename T_expr::T_numtype map(const ETBase<T_expr>& expr,
const TinyVector<int,N_inputRank>& index, int i0, int i1, int i2,
int i3, int i4, int, int, int, int, int, int)
{
// this was the case when it took an array. is it necessary?
BZPRECHECK(T_expr::rank_==rank,
"Rank confusion in _bz_doArrayIndexMapping");
return expr.unwrap()(index[i0], index[i1], index[i2], index[i3], index[i4]);
}
template<int N_inputRank>
static TinyVector<int,rank> map_dims(const TinyVector<int,N_inputRank>& index,
int i0, int i1, int i2, int i3, int i4,
int, int, int, int, int, int)
{
return TinyVector<int,rank>(index[i0], index[i1], index[i2],
index[i3], index[i4]);
}
};
template<>
struct _bz_doArrayIndexMapping<6> {
static const int rank=6;
template<typename T_expr, int N_inputRank>
static typename T_expr::T_numtype map(const ETBase<T_expr>& expr,
const TinyVector<int,N_inputRank>& index, int i0, int i1, int i2,
int i3, int i4, int i5, int, int, int, int, int)
{
// this was the case when it took an array. is it necessary?
BZPRECHECK(T_expr::rank_==rank,
"Rank confusion in _bz_doArrayIndexMapping");
return expr.unwrap()(index[i0], index[i1], index[i2], index[i3], index[i4],
index[i5]);
}
template<int N_inputRank>
static TinyVector<int,rank> map_dims(const TinyVector<int,N_inputRank>& index,
int i0, int i1, int i2, int i3, int i4,
int i5, int, int, int, int, int)
{
return TinyVector<int,rank>(index[i0], index[i1], index[i2],
index[i3], index[i4], index[i5]);
}
};
template<>
struct _bz_doArrayIndexMapping<7> {
static const int rank=7;
template<typename T_expr, int N_inputRank>
static typename T_expr::T_numtype map(const ETBase<T_expr>& expr,
const TinyVector<int,N_inputRank>& index, int i0, int i1, int i2,
int i3, int i4, int i5, int i6, int, int, int, int)
{
// this was the case when it took an array. is it necessary?
BZPRECHECK(T_expr::rank_==rank,
"Rank confusion in _bz_doArrayIndexMapping");
return expr.unwrap()(index[i0], index[i1], index[i2], index[i3],
index[i4], index[i5], index[i6]);
}
template<int N_inputRank>
static TinyVector<int,rank> map_dims(const TinyVector<int,N_inputRank>& index,
int i0, int i1, int i2, int i3, int i4,
int i5, int i6, int, int, int, int)
{
return TinyVector<int,rank>(index[i0], index[i1], index[i2],
index[i3], index[i4], index[i5],
index[i6]);
}
};
template<>
struct _bz_doArrayIndexMapping<8> {
static const int rank=8;
template<typename T_expr, int N_inputRank>
static typename T_expr::T_numtype map(const ETBase<T_expr>& expr,
const TinyVector<int,N_inputRank>& index, int i0, int i1, int i2,
int i3, int i4, int i5, int i6, int i7, int, int, int)
{
// this was the case when it took an array. is it necessary?
BZPRECHECK(T_expr::rank_==rank,
"Rank confusion in _bz_doArrayIndexMapping");
return expr.unwrap()(index[i0], index[i1], index[i2], index[i3],
index[i4], index[i5], index[i6], index[i7]);
}
template<int N_inputRank>
static TinyVector<int,rank> map_dims(const TinyVector<int,N_inputRank>& index,
int i0, int i1, int i2, int i3, int i4,
int i5, int i6, int i7, int, int, int)
{
return TinyVector<int,rank>(index[i0], index[i1], index[i2],
index[i3], index[i4], index[i5],
index[i6], index[i7]);
}
};
template<>
struct _bz_doArrayIndexMapping<9> {
static const int rank=9;
template<typename T_expr, int N_inputRank>
static typename T_expr::T_numtype map(const ETBase<T_expr>& expr,
const TinyVector<int,N_inputRank>& index, int i0, int i1, int i2,
int i3, int i4, int i5, int i6, int i7, int i8, int, int)
{
// this was the case when it took an array. is it necessary?
BZPRECHECK(T_expr::rank_==rank,
"Rank confusion in _bz_doArrayIndexMapping");
return expr.unwrap()(index[i0], index[i1], index[i2], index[i3],
index[i4], index[i5], index[i6], index[i7],
index[i8]);
}
template<int N_inputRank>
static TinyVector<int,rank> map_dims(const TinyVector<int,N_inputRank>& index,
int i0, int i1, int i2, int i3, int i4,
int i5, int i6, int i7, int i8, int, int)
{
return TinyVector<int,rank>(index[i0], index[i1], index[i2],
index[i3], index[i4], index[i5],
index[i6], index[i7], index[i8]);
}
};
template<>
struct _bz_doArrayIndexMapping<10> {
static const int rank=10;
template<typename T_expr, int N_inputRank>
static typename T_expr::T_numtype map(const ETBase<T_expr>& expr,
const TinyVector<int,N_inputRank>& index, int i0, int i1, int i2,
int i3, int i4, int i5, int i6, int i7, int i8, int i9, int)
{
// this was the case when it took an array. is it necessary?
BZPRECHECK(T_expr::rank_==rank,
"Rank confusion in _bz_doArrayIndexMapping");
return expr.unwrap()(index[i0], index[i1], index[i2], index[i3],
index[i4], index[i5], index[i6], index[i7],
index[i8], index[i9]);
}
template<int N_inputRank>
static TinyVector<int,rank> map_dims(const TinyVector<int,N_inputRank>& index,
int i0, int i1, int i2, int i3, int i4,
int i5, int i6, int i7, int i8, int i9, int)
{
return TinyVector<int,rank>(index[i0], index[i1], index[i2],
index[i3], index[i4], index[i5],
index[i6], index[i7], index[i8],
index[i9]);
}
};
template<>
struct _bz_doArrayIndexMapping<11> {
static const int rank=11;
template<typename T_expr, int N_inputRank>
static typename T_expr::T_numtype map(const ETBase<T_expr>& expr,
const TinyVector<int,N_inputRank>& index, int i0, int i1, int i2,
int i3, int i4, int i5, int i6, int i7, int i8, int i9, int i10)
{
// this was the case when it took an array. is it necessary?
BZPRECHECK(T_expr::rank_==rank,
"Rank confusion in _bz_doArrayIndexMapping");
return expr.unwrap()(index[i0], index[i1], index[i2], index[i3],
index[i4], index[i5], index[i6], index[i7],
index[i8], index[i9], index[i10]);
}
template<int N_inputRank>
static TinyVector<int,rank> map_dims(const TinyVector<int,N_inputRank>& index,
int i0, int i1, int i2, int i3, int i4,
int i5, int i6, int i7, int i8, int i9, int i10)
{
return TinyVector<int,rank>(index[i0], index[i1], index[i2],
index[i3], index[i4], index[i5],
index[i6], index[i7], index[i8],
index[i9], index[i10]);
}
};
// default arguments are defined in the fwd header
template<typename P_expr, int N_map0, int N_map1, int N_map2,
int N_map3, int N_map4, int N_map5, int N_map6, int N_map7,
int N_map8, int N_map9, int N_map10>
class ArrayIndexMapping {
public:
typedef P_expr T_expr;
typedef typename T_expr::T_numtype T_numtype;
typedef T_numtype T_optype;
typedef typename asET<T_numtype>::T_wrapped T_typeprop;
typedef typename unwrapET<T_typeprop>::T_unwrapped T_result;
typedef T_expr T_ctorArg1;
typedef int T_ctorArg2; // dummy
typedef ArrayIndexMapping<typename T_expr::T_range_result,N_map0,N_map1,N_map2,N_map3,N_map4,N_map5,N_map6,N_map7,N_map8,N_map9,N_map10> T_range_result;
/*
* This enum block finds the maximum of the N_map0, N_map1, ..., N_map10
* parameters and stores it in maxRank10. The rank of the expression is
* then maxRank10 + 1, since the IndexPlaceholders start at 0 rather than
* 1.
*/
static const int
maxRank1 = (N_map0 > N_map1) ? N_map0 : N_map1,
maxRank2 = (N_map2 > maxRank1) ? N_map2 : maxRank1,
maxRank3 = (N_map3 > maxRank2) ? N_map3 : maxRank2,
maxRank4 = (N_map4 > maxRank3) ? N_map4 : maxRank3,
maxRank5 = (N_map5 > maxRank4) ? N_map5 : maxRank4,
maxRank6 = (N_map6 > maxRank5) ? N_map6 : maxRank5,
maxRank7 = (N_map7 > maxRank6) ? N_map7 : maxRank6,
maxRank8 = (N_map8 > maxRank7) ? N_map8 : maxRank7,
maxRank9 = (N_map9 > maxRank8) ? N_map9 : maxRank8,
maxRank10 = (N_map10 > maxRank9) ? N_map10 : maxRank9;
static const int
numArrayOperands = T_expr::numArrayOperands,
numTVOperands = T_expr::numTVOperands,
numTMOperands = T_expr::numTMOperands,
numIndexPlaceholders = 1,
minWidth = simdTypes<T_numtype>::vecWidth,
maxWidth = simdTypes<T_numtype>::vecWidth,
rank_ = maxRank10 + 1,
exprRank = T_expr::rank_;
template<int N> struct tvresult {
typedef FastTV2Iterator<T_numtype, N> Type;
};
/*
ArrayIndexMapping(const Array<T_numtype, rank>& array)
: iter_(array)
{
}
*/
ArrayIndexMapping(const ArrayIndexMapping<T_expr,N_map0,
N_map1,N_map2,N_map3,N_map4,N_map5,N_map6,N_map7,N_map8,N_map9,
N_map10>& z)
: iter_(z.iter_)
{
}
ArrayIndexMapping(BZ_ETPARM(T_expr) a)
: iter_(a)
{ }
// this is ambiguous with the above
// ArrayIndexMapping(_bz_typename T_expr::T_ctorArg1 a)
// : iter_(a)
// { }
// these bypass the FAI and go directly to the array. That should
// prevent any performance impact of using the FAI instead of an
// array directly.
/* Functions for reading. Because they must depend on the result
* type, they utilize a helper class.
*/
// For numtypes, apply operator
template<typename T> struct readHelper {
static T_result first_value(const T_expr& iter) {
// is the correct thing to do here to return the index zero value?
return indexop(iter, TinyVector<int,1>(0)); }
template<int N_rank>
#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
static T_result indexop(const T_expr& iter,
const TinyVector<int, N_rank> i) {
#else
static T_result indexop(const T_expr& iter,
const TinyVector<int, N_rank>& i) {
#endif
return _bz_doArrayIndexMapping<exprRank>::map(iter/*.array()*/, i,
N_map0, N_map1, N_map2, N_map3, N_map4, N_map5, N_map6,
N_map7, N_map8, N_map9, N_map10);
};
};
// For ET types, bypass operator and create expression
template<typename T> struct readHelper<ETBase<T> > {
template<int N_rank>
#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
static T_result indexop(const T_expr& iter,
const TinyVector<int, N_rank> i) {
#else
static T_result indexop(const T_expr& iter,
const TinyVector<int, N_rank>& i) {
#endif
return iter(i); }
static T_result first_value(const T_expr& iter) {
// is the correct thing to do here to return the index zero value?
return indexop(iter, TinyVector<int,1>(0)); }
};
template<int N_rank>
#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
T_result operator()(const TinyVector<int, N_rank> i) const {
#else
T_result operator()(const TinyVector<int, N_rank>& i) const {
#endif
return readHelper<T_typeprop>::indexop(iter_,i); }
T_result first_value() const {
// unclear how to define "first" value for index expressions.
BZPRECHECK(0,"Minmax reductions of index expressions not implemented");
return readHelper<T_typeprop>::first_value(iter_); }
// find which dimension in mapped expression that corresponds to
// dimension dim. This works such that dimension dim in this
// expression corresponds to dimension map_dim(dim) in iter_.
int map_dim(const int dim) const
{
if (N_map0 == dim)
return 0;
else if ((N_map1 == dim) && (exprRank > 1))
return 1;
else if ((N_map2 == dim) && (exprRank > 2))
return 2;
else if ((N_map3 == dim) && (exprRank > 3))
return 3;
else if ((N_map4 == dim) && (exprRank > 4))
return 4;
else if ((N_map5 == dim) && (exprRank > 5))
return 5;
else if ((N_map6 == dim) && (exprRank > 6))
return 6;
else if ((N_map7 == dim) && (exprRank > 7))
return 7;
else if ((N_map8 == dim) && (exprRank > 8))
return 8;
else if ((N_map9 == dim) && (exprRank > 9))
return 9;
else if ((N_map10 == dim) && (exprRank > 10))
return 10;
else
// means dimension is not in this operand
return -1;
}
// remaps the dimensions of an index vector so it can be applied to
// iter_, using the _bz_doArrayIndexMapping helper class.
template<int N>
TinyVector<int, exprRank> map_dims(const TinyVector<int, N>& i) const {
return _bz_doArrayIndexMapping<exprRank>::map_dims
(i, N_map0, N_map1, N_map2, N_map3, N_map4, N_map5,
N_map6, N_map7, N_map8, N_map9, N_map10);
}
int ascending(const int dim) const
{
const int d=map_dim(dim);
const int o = d>=0 ? iter_.ascending(d) : INT_MIN ;
return o;
}
int ordering(const int dim) const
{
// JCC: ignore ordering result from 1d Array
if (exprRank == 1)
return INT_MIN; // tiny(int());
const int d=map_dim(dim);
const int o = d>=0 ? iter_.ordering(d) : INT_MIN ;
return o;
}
int lbound(const int dim) const
{
const int d=map_dim(dim);
const int o = d>=0 ? iter_.lbound(d) : INT_MIN ;
return o;
}
int ubound(const int dim) const
{
const int d=map_dim(dim);
const int o = d>=0 ? iter_.ubound(d) : INT_MAX ;
return o;
}
// defer calculation to lbound/ubound
RectDomain<rank_> domain() const
{
TinyVector<int, rank_> lb, ub;
for(int r=0; r<rank_; ++r) {
lb[r]=lbound(r); ub[r]=ubound(r);
}
return RectDomain<rank_>(lb,ub);
}
// If you have a precondition failure on this routine, it means
// you are trying to use stack iteration mode on an expression
// which contains an index placeholder. You must use index
// iteration mode instead.
// (no -- added to support stencils /PJ)
T_result operator*() const
{
return *iter_;
}
// See operator*() note
void push(int)
{
BZPRECHECK(0,"Can't use stack iteration on an index mapping.");
}
// See operator*() note
void pop(int)
{
BZPRECHECK(0,"Can't use stack iteration on an index mapping.");
}
// See operator*() note
void advance()
{
BZPRECHECK(0,"Can't use stack iteration on an index mapping.");
}
// See operator*() note
void advance(int)
{
BZPRECHECK(0,"Can't use stack iteration on an index mapping.");
}
// See operator*() note
void loadStride(int)
{
BZPRECHECK(0,"Can't use stack iteration on an index mapping.");
}
bool isUnitStride(int) const
{
BZPRECHECK(0,"Can't use stack iteration on an index mapping.");
return false;
}
bool isUnitStride() const
{
BZPRECHECK(0,"Can't use stack iteration on an index mapping.");
return false;
}
void advanceUnitStride()
{
BZPRECHECK(0,"Can't use stack iteration on an index mapping.");
}
bool canCollapse(int,int) const
{ BZPRECHECK(0,"Can't use stack iteration on an index mapping."); return false; }
T_result operator[](int)
{
BZPRECHECK(0,"Can't use stack iteration on an index mapping.");
return T_result();
}
T_result fastRead(int) const
{
BZPRECHECK(0,"Can't use stack iteration on an index mapping.");
return T_result();
}
template<int N>
typename tvresult<N>::Type fastRead_tv(int) const {
BZPRECHECK(0,"Can't use stack iteration on an index mapping.");
return TinyVector<T_numtype, N>();
}
/** Determining whether the resulting expression is aligned is
difficult, so to be safe we say no. It shouldn't be attempted
anyway, though. */
bool isVectorAligned(diffType offset) const {
return false; }
int suggestStride(int) const
{
BZPRECHECK(0,"Can't use stack iteration on an index mapping.");
return 0;
}
bool isStride(int,int) const
{
BZPRECHECK(0,"Can't use stack iteration on an index mapping.");
return true;
}
#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
template<int N_destrank>
void moveTo(const TinyVector<int,N_destrank> i)
{
iter_.moveTo(map_dims(i));
}
#else
template<int N_destrank>
void moveTo(const TinyVector<int,N_destrank>& i)
{
iter_.moveTo(map_dims(i));
}
#endif
T_result shift(int offset, int dim) const {
// need to check if dim is mapped into this expression
const int d=map_dim(dim);
if (d<0)
return *iter_;
else
return iter_.shift(offset, d);
}
T_result shift(int offset1, int dim1,int offset2, int dim2) const {
// need to check if dims are mapped into this expression
int d1=map_dim(dim1);
int d2=map_dim(dim2);
if (d1<0) //disable offset
{d1=0;offset1=0;}
if (d2<0) //disable offset
{d2=0;offset2=0;}
return iter_.shift(offset1, d1, offset2, d2);
}
void _bz_offsetData(sizeType i) {
BZPRECHECK(0,"Can't use stack iteration on an index mapping.");
}
template<int N>
T_range_result operator()(RectDomain<N> d) const
{ // need to reorder dimensions here
TinyVector<int, exprRank> lb(map_dims(d.lbound())), ub(map_dims(d.ubound()));
RectDomain<exprRank> newd(lb,ub);
return T_range_result(iter_(newd));
}
void prettyPrint(BZ_STD_SCOPE(string) &str, prettyPrintFormat&) const
{
// NEEDS_WORK-- do real formatting for reductions
str += "map[NEEDS_WORK]";
}
template<typename T_shape>
bool shapeCheck(const T_shape&) const
{
// NEEDS_WORK-- do a real shape check (tricky)
return true;
}
// sliceinfo for expressions
template<typename T1, typename T2 = nilArraySection,
class T3 = nilArraySection, typename T4 = nilArraySection,
class T5 = nilArraySection, typename T6 = nilArraySection,
class T7 = nilArraySection, typename T8 = nilArraySection,
class T9 = nilArraySection, typename T10 = nilArraySection,
class T11 = nilArraySection>
class SliceInfo {
public:
typedef typename T_expr::template SliceInfo<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>::T_slice T_slice1;
typedef ArrayIndexMapping<T_slice1, N_map0, N_map1, N_map2,
N_map3, N_map4, N_map5, N_map6, N_map7,
N_map8, N_map9, N_map10> T_slice;
};
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6,
typename T7, typename T8, typename T9, typename T10, typename T11>
typename SliceInfo<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11>::T_slice
operator()(T1 r1, T2 r2, T3 r3, T4 r4, T5 r5, T6 r6, T7 r7, T8 r8, T9 r9, T10 r10, T11 r11) const
{
/* Slicing for remapped expressions doesn't work. Because of the
potential different types (Range vs int) in the expression,
it would be very awkward to implement. As far as I can see,
it would require manual coding of the 3^11 calling
possibilities. /PJ */
BZPRECONDITION(0);
}
private:
ArrayIndexMapping() : iter_( Array<T_numtype, exprRank>() ) { }
T_expr iter_;
};
BZ_NAMESPACE_END
#endif // BZ_ARRAYMAP_H
|