/usr/include/blitz/array/functorExpr.h is in libblitz0-dev 1:0.10-3.3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 | // -*- C++ -*-
/***************************************************************************
* blitz/array/functorExpr.h User-defined functors for arrays
*
* $Id$
*
* Copyright (C) 1997-2011 Todd Veldhuizen <tveldhui@acm.org>
*
* This file is a part of Blitz.
*
* Blitz is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Blitz is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Blitz. If not, see <http://www.gnu.org/licenses/>.
*
* Suggestions: blitz-devel@lists.sourceforge.net
* Bugs: blitz-support@lists.sourceforge.net
*
* For more information, please see the Blitz++ Home Page:
* https://sourceforge.net/projects/blitz/
*
****************************************************************************/
/* This header file is designed to allow the use of Blitz++ with
functors (classes defining an operator()) and more general member
functions. It works best if you have access to the class source code;
there is limited support for classes that cannot be modified. The best
approach in that case is usually to write an adapter class.
This works with class methods that take one, two or three arguments.
If you have a functor, add the following to your (public) class declaration:
BZ_DECLARE_FUNCTOR(classname) // for one argument functors
BZ_DECLARE_FUNCTOR2(classname) // for two argument functors
BZ_DECLARE_FUNCTOR3(classname) // for three argument functors
or
BZ_DECLARE_FUNCTOR_RET(classname, returnType)
BZ_DECLARE_FUNCTOR2_RET(classname, returnType)
BZ_DECLARE_FUNCTOR3_RET(classname, returnType)
for classes whose operator() has a return type that is not what you would
deduce from the usual C++ promotion rules (e.g., takes two doubles and
returns a bool).
You can then use your class in Blitz++ expressions and no temporaries will
be generated. For example, assuming that your class is named T, and that
A, B and C are Arrays, you can write
T classInstance( ... );
A = C + classInstance(B * tensor::i);
A = C + classInstance(tensor::i, tensor::j)
It also works for member functions:
BZ_DECLARE_MEMBER_FUNCTION(classname, funcname)
BZ_DECLARE_MEMBER_FUNCTION2(classname, funcname)
BZ_DECLARE_MEMBER_FUNCTION3(classname, funcname)
or
BZ_DECLARE_MEMBER_FUNCTION_RET(classname, funcname, returnType)
BZ_DECLARE_MEMBER_FUNCTION2_RET(classname, funcname, returnType)
BZ_DECLARE_MEMBER_FUNCTION3_RET(classname, funcname, returnType)
allows you to write stuff like
A = C + classInstance.funcname(B * tensor::i);
A = C + classInstance.funcname(tensor::i, tensor::j)
All the member functions to be applied must be declared const.
There is also some support for classes where the source code is not
available or not to be tampered with. For example,
A = C + applyFunctor(classInstance, B * tensor::i);
A = C + applyFunctor(classInstance, tensor::i, tensor::j);
This approach does not work for arbitrary s. The
class must be a proper functor with an operator().
*/
#ifndef BZ_ARRAY_FUNCTOREXPR_H
#define BZ_ARRAY_FUNCTOREXPR_H
#ifndef BZ_ARRAY_H
#error <blitz/array/functorExpr.h> must be included via <blitz/array.h>
#endif
#include <blitz/prettyprint.h>
#include <blitz/shapecheck.h>
#include <blitz/tinyvec2.h>
BZ_NAMESPACE(blitz)
template<typename P_functor, typename P_expr, typename P_result>
class _bz_FunctorExpr {
public:
typedef P_functor T_functor;
typedef P_expr T_expr;
typedef _bz_typename T_expr::T_numtype T_numtype1;
typedef P_result T_numtype;
// select return type
typedef typename unwrapET<typename T_expr::T_result>::T_unwrapped test;
typedef typename selectET<typename T_expr::T_typeprop,
T_numtype,
_bz_FunctorExpr<T_functor,
test,
P_result> >::T_selected T_typeprop;
typedef typename unwrapET<T_typeprop>::T_unwrapped T_result;
typedef T_numtype T_optype;
typedef T_expr T_ctorArg1;
typedef int T_ctorArg2; // dummy
typedef int T_ctorArg3; // dummy
typedef _bz_FunctorExpr<P_functor, _bz_typename P_expr::T_range_result,
P_result> T_range_result;
static const int
numArrayOperands = T_expr::numArrayOperands,
numTVOperands = T_expr::numTVOperands,
numTMOperands = T_expr::numTMOperands,
numIndexPlaceholders = T_expr::numIndexPlaceholders,
minWidth = T_expr::minWidth,
maxWidth = T_expr::maxWidth,
rank_ = T_expr::rank_;
template<int N> struct tvresult {
typedef _bz_FunctorExpr<
T_functor,
typename T_expr::template tvresult<N>::Type,
T_numtype> Type;
};
_bz_FunctorExpr(const _bz_FunctorExpr<P_functor,P_expr,P_result>& a)
: f_(a.f_), iter_(a.iter_)
{ }
_bz_FunctorExpr(BZ_ETPARM(T_functor) f, BZ_ETPARM(T_expr) a)
: f_(f), iter_(a)
{ }
// this is identical to the above constructor
//_bz_FunctorExpr(BZ_ETPARM(T_functor) f, _bz_typename T_expr::T_ctorArg1 a)
//: f_(f), iter_(a) { }
#if BZ_TEMPLATE_CTOR_DOESNT_CAUSE_HAVOC
template<typename T1>
explicit _bz_FunctorExpr(BZ_ETPARM(T_functor) f, BZ_ETPARM(T1) a)
: f_(f), iter_(a)
{ }
#endif
/* Functions for reading data. Because they must depend on the
* result type, they utilize a helper class.
*/
// For numtypes, apply operator
template<typename T> struct readHelper {
static T_result fastRead(const T_functor& f, const T_expr& iter,
diffType i) {
return f(iter.fastRead(i)); };
static T_result indexop(const T_functor& f, const T_expr& iter, int i) {
return f(iter[i]); };
static T_result deref(const T_functor& f, const T_expr& iter) {
return f(*iter); }
static T_result first_value(const T_functor& f, const T_expr& iter) {
return f(iter.first_value()); }
static T_result shift(const T_functor& f, const T_expr& iter,
int offset, int dim) {
return f(iter.shift(offset, dim)); }
static T_result shift(const T_functor& f, const T_expr& iter,
int offset1, int dim1,int offset2, int dim2) {
return f(iter.shift(offset1, dim1, offset2, dim2)); }
template<int N_rank>
#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
static T_result indexop(const T_functor& f, const T_expr& iter,
const TinyVector<int, N_rank> i) {
#else
static T_result indexop(const T_functor& f, const T_expr& iter,
const TinyVector<int, N_rank>& i) {
#endif
return f(iter(i)); }
};
// For ET types, bypass operator and create expression
template<typename T> struct readHelper<ETBase<T> > {
static T_result fastRead(const T_functor& f, const T_expr& iter,
diffType i) {
return T_result(f,iter.fastRead(i)); };
static T_result indexop(const T_functor& f, const T_expr& iter, int i) {
return T_result(f,iter[i]); };
static T_result deref(const T_functor& f, const T_expr& iter) {
return T_result(f,*iter); }
static T_result first_value(const T_functor& f, const T_expr& iter) {
return iter.first_value(); }
static T_result shift(const T_functor& f, const T_expr& iter,
int offset, int dim) {
return T_result(f,iter.shift(offset, dim)); }
static T_result shift(const T_functor& f, const T_expr& iter,
int offset1, int dim1,int offset2, int dim2) {
return T_result(f,iter.shift(offset1, dim1, offset2, dim2)); }
template<int N_rank>
#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
static T_result indexop(const T_functor& f, const T_expr& iter,
const TinyVector<int, N_rank> i) {
#else
static T_result indexop(const T_functor& f, const T_expr& iter,
const TinyVector<int, N_rank>& i) {
#endif
return T_result(f,iter(i)); }
};
T_result fastRead(diffType i) const {
return readHelper<T_typeprop>::fastRead(f_, iter_, i); }
template<int N>
typename tvresult<N>::Type fastRead_tv(diffType i) const
{ return typename tvresult<N>::Type(f_,iter_.template fastRead_tv<N>(i)); }
T_result operator[](int i) const {
return readHelper<T_typeprop>::indexop(f_, iter_, i); }
template<int N_rank>
#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
T_result operator()(const TinyVector<int, N_rank> i) const {
#else
T_result operator()(const TinyVector<int, N_rank>& i) const {
#endif
return readHelper<T_typeprop>::indexop(f_, iter_,i); }
T_result operator*() const {
return readHelper<T_typeprop>::deref(f_, iter_); }
T_result first_value() const {
return readHelper<T_typeprop>::first_value(f_, iter_); }
T_result shift(int offset, int dim) const {
return readHelper<T_typeprop>::shift(f_,iter_,offset, dim); }
T_result shift(int offset1, int dim1,int offset2, int dim2) const {
return readHelper<T_typeprop>::shift(f_,iter_,offset1, dim1,
offset2, dim2); }
// ****** end reading
bool isVectorAligned(diffType offset) const
{ return iter_.isVectorAligned(offset); }
T_range_result operator()(RectDomain<rank_> d) const
{
return T_range_result(f_, iter_(d));
}
int ascending(const int rank) const { return iter_.ascending(rank); }
int ordering(const int rank) const { return iter_.ordering(rank); }
int lbound(const int rank) const { return iter_.lbound(rank); }
int ubound(const int rank) const { return iter_.ubound(rank); }
RectDomain<rank_> domain() const { return iter_.domain(); }
void push(const int position) { iter_.push(position); }
void pop(const int position) { iter_.pop(position); }
void advance() { iter_.advance(); }
void advance(const int n) { iter_.advance(n); }
void loadStride(const int rank) { iter_.loadStride(rank); }
bool isUnitStride(const int rank) const { return iter_.isUnitStride(rank); }
bool isUnitStride() const { return iter_.isUnitStride(); }
void advanceUnitStride() { iter_.advanceUnitStride(); }
bool canCollapse(const int outerLoopRank, const int innerLoopRank) const
{
return iter_.canCollapse(outerLoopRank, innerLoopRank);
}
// this is needed for the stencil expression fastRead to work
void _bz_offsetData(sizeType i)
{ iter_._bz_offsetData(i); }
// and these are needed for stencil expression shift to work
void _bz_offsetData(sizeType offset, int dim)
{ iter_._bz_offsetData(offset, dim);}
void _bz_offsetData(sizeType offset1, int dim1, sizeType offset2, int dim2)
{ iter_._bz_offsetData(offset1, dim1, offset2, dim2);}
diffType suggestStride(const int rank) const
{ return iter_.suggestStride(rank); }
bool isStride(const int rank,const diffType stride) const
{ return iter_.isStride(rank,stride); }
void prettyPrint(BZ_STD_SCOPE(string) &str,
prettyPrintFormat& format) const
{
str += BZ_DEBUG_TEMPLATE_AS_STRING_LITERAL(T_functor);
str += "(";
iter_.prettyPrint(str, format);
str += ")";
}
template<typename T_shape>
bool shapeCheck(const T_shape& shape) const
{ return iter_.shapeCheck(shape); }
template<int N_rank>
void moveTo(const TinyVector<int,N_rank>& i)
{
iter_.moveTo(i);
}
// sliceinfo for expressions
template<typename T1, typename T2 = nilArraySection,
class T3 = nilArraySection, typename T4 = nilArraySection,
class T5 = nilArraySection, typename T6 = nilArraySection,
class T7 = nilArraySection, typename T8 = nilArraySection,
class T9 = nilArraySection, typename T10 = nilArraySection,
class T11 = nilArraySection>
class SliceInfo {
public:
typedef typename T_expr::template SliceInfo<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>::T_slice T_slice1;
typedef _bz_FunctorExpr<T_functor, T_slice1, T_numtype> T_slice;
};
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6,
typename T7, typename T8, typename T9, typename T10, typename T11>
typename SliceInfo<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11>::T_slice
operator()(T1 r1, T2 r2, T3 r3, T4 r4, T5 r5, T6 r6, T7 r7, T8 r8, T9 r9, T10 r10, T11 r11) const
{
return typename SliceInfo<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11>::T_slice
(f_,iter_(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11));
}
protected:
_bz_FunctorExpr() { }
T_functor f_;
T_expr iter_;
};
template<typename P_functor, typename P_expr1, typename P_expr2, typename P_result>
class _bz_FunctorExpr2
{
public:
typedef P_functor T_functor;
typedef P_expr1 T_expr1;
typedef P_expr2 T_expr2;
typedef _bz_typename T_expr1::T_numtype T_numtype1;
typedef _bz_typename T_expr2::T_numtype T_numtype2;
typedef P_result T_numtype;
// select return type
typedef typename unwrapET<typename T_expr1::T_result>::T_unwrapped T_unwrapped1;
typedef typename unwrapET<typename T_expr2::T_result>::T_unwrapped T_unwrapped2;
typedef typename selectET2<typename T_expr1::T_typeprop,
typename T_expr2::T_typeprop,
T_numtype,
_bz_FunctorExpr2<T_functor,
typename asExpr<T_unwrapped1>::T_expr,
typename asExpr<T_unwrapped2>::T_expr,
T_numtype> >::T_selected T_typeprop;
typedef typename unwrapET<T_typeprop>::T_unwrapped T_result;
typedef T_numtype T_optype;
typedef T_expr1 T_ctorArg1;
typedef T_expr1 T_ctorArg2;
typedef int T_ctorArg3; // dummy
typedef _bz_FunctorExpr2<P_functor,
_bz_typename P_expr1::T_range_result,
_bz_typename P_expr2::T_range_result,
P_result> T_range_result;
static const int
numArrayOperands = T_expr1::numArrayOperands
+ T_expr2::numArrayOperands,
numTVOperands = T_expr1::numTVOperands + T_expr2::numTVOperands,
numTMOperands = T_expr1::numTMOperands + T_expr2::numTMOperands,
numIndexPlaceholders = T_expr1::numIndexPlaceholders
+ T_expr2::numIndexPlaceholders,
minWidth = BZ_MIN(T_expr1::minWidth, T_expr2::minWidth),
maxWidth = BZ_MAX(T_expr1::maxWidth, T_expr2::maxWidth),
rank_ = BZ_MAX(T_expr1::rank_, T_expr2::rank_);
template<int N> struct tvresult {
typedef _bz_FunctorExpr2<
T_functor,
typename T_expr1::template tvresult<N>::Type,
typename T_expr2::template tvresult<N>::Type,
T_numtype> Type;
};
_bz_FunctorExpr2(const _bz_FunctorExpr2<P_functor, P_expr1, P_expr2,
P_result>& a)
: f_(a.f_), iter1_(a.iter1_), iter2_(a.iter2_)
{ }
_bz_FunctorExpr2(BZ_ETPARM(T_functor) f, BZ_ETPARM(T_expr1) a,
BZ_ETPARM(T_expr2) b)
: f_(f), iter1_(a), iter2_(b)
{ }
template<typename T1, typename T2>
_bz_FunctorExpr2(BZ_ETPARM(T_functor) f, BZ_ETPARM(T1) a, BZ_ETPARM(T2) b)
: f_(f), iter1_(a), iter2_(b)
{ }
/* Functions for reading. Because they must depend on the result
* type, they utilize a helper class.
*/
// For numtypes, apply operator
template<typename T> struct readHelper {
static T_result fastRead(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, diffType i) {
return f(iter1.fastRead(i), iter2.fastRead(i)); }
static T_result indexop(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, int i) {
return f(iter1[i], iter2[i]); };
static T_result deref(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2) {
return f(*iter1, *iter2); }
static T_result first_value(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2) {
return f(iter1.first_value(), iter2.first_value()); }
static T_result shift(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2,
int offset, int dim) {
return f(iter1.shift(offset, dim),iter2.shift(offset, dim)); }
static T_result shift(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2,
int offset1, int dim1,int offset2, int dim2) {
return f(iter1.shift(offset1, dim1, offset2, dim2),
iter2.shift(offset1, dim1, offset2, dim2)); }
template<int N_rank>
#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
static T_result indexop(const T_functor& f, const T_expr& iter,
const T_expr2& iter2,
const TinyVector<int, N_rank> i) {
#else
static T_result indexop(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2,
const TinyVector<int, N_rank>& i) {
#endif
return f(iter1(i), iter2(i)); };
};
// For ET types, bypass operator and create expression
template<typename T> struct readHelper<ETBase<T> > {
static T_result fastRead(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, diffType i) {
return T_result(f,iter1.fastRead(i), iter2.fastRead(i)); }
static T_result indexop(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, int i) {
return T_result(f,iter1[i], iter2[i]); };
static T_result deref(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2) {
return T_result(f,*iter1, *iter2); }
static T_result first_value(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2) {
return T_result(f,iter1.first_value(), iter2.first_value()); }
static T_result shift(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2,
int offset, int dim) {
return T_result(f,iter1.shift(offset, dim),iter2.shift(offset, dim)); }
static T_result shift(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2,
int offset1, int dim1,int offset2, int dim2) {
return T_result(f,iter1.shift(offset1, dim1, offset2, dim2),
iter2.shift(offset1, dim1, offset2, dim2)); }
template<int N_rank>
#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
static T_result indexop(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2,
const TinyVector<int, N_rank> i) {
#else
static T_result indexop(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2,
const TinyVector<int, N_rank>& i) {
#endif
return T_result(f,iter1(i), iter2(i)); }
};
T_result fastRead(diffType i) const {
return readHelper<T_typeprop>::fastRead(f_, iter1_, iter2_, i); }
template<int N>
typename tvresult<N>::Type fastRead_tv(diffType i) const
{ return typename tvresult<N>::Type(f_,
iter1_.template fastRead_tv<N>(i),
iter2_.template fastRead_tv<N>(i)); }
T_result operator[](int i) const {
return readHelper<T_typeprop>::indexop(f_, iter1_, iter2_, i); }
template<int N_rank>
#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
T_result operator()(const TinyVector<int, N_rank> i) const {
#else
T_result operator()(const TinyVector<int, N_rank>& i) const {
#endif
return readHelper<T_typeprop>::indexop(f_, iter1_, iter2_, i); }
T_result operator*() const {
return readHelper<T_typeprop>::deref(f_, iter1_, iter2_); }
T_result first_value() const {
return readHelper<T_typeprop>::first_value(f_, iter1_, iter2_); }
T_result shift(int offset, int dim) const {
return readHelper<T_typeprop>::shift(f_,iter1_,iter2_,offset, dim); }
T_result shift(int offset1, int dim1,int offset2, int dim2) const
{
return readHelper<T_typeprop>::shift(f_,iter1_,iter2_,
offset1, dim1, offset2, dim2); }
// ****** end reading
T_range_result operator()(RectDomain<rank_> d) const
{
return T_range_result(f_, iter1_(d), iter2_(d));
}
bool isVectorAligned(diffType offset) const
{ return iter1_.isVectorAligned(offset) &&
iter2_.isVectorAligned(offset); }
int ascending(const int rank) const {
return bounds::compute_ascending(rank, iter1_.ascending(rank),
iter2_.ascending(rank));
}
int ordering(const int rank) const {
return bounds::compute_ordering(rank, iter1_.ordering(rank),
iter2_.ordering(rank));
}
int lbound(const int rank) const {
return bounds::compute_lbound(rank, iter1_.lbound(rank),
iter2_.lbound(rank));
}
int ubound(const int rank) const {
return bounds::compute_ubound(rank, iter1_.ubound(rank),
iter2_.ubound(rank));
}
// defer calculation to lbound/ubound
RectDomain<rank_> domain() const
{
TinyVector<int, rank_> lb, ub;
for(int r=0; r<rank_; ++r) {
lb[r]=lbound(r); ub[r]=ubound(r);
}
return RectDomain<rank_>(lb,ub);
}
void push(const int position) {
iter1_.push(position);
iter2_.push(position);
}
void pop(const int position) {
iter1_.pop(position);
iter2_.pop(position);
}
void advance() {
iter1_.advance();
iter2_.advance();
}
void advance(const int n) {
iter1_.advance(n);
iter2_.advance(n);
}
void loadStride(const int rank) {
iter1_.loadStride(rank);
iter2_.loadStride(rank);
}
bool isUnitStride(const int rank) const
{ return iter1_.isUnitStride(rank) && iter2_.isUnitStride(rank); }
bool isUnitStride() const
{ return iter1_.isUnitStride() && iter2_.isUnitStride(); }
void advanceUnitStride() {
iter1_.advanceUnitStride();
iter2_.advanceUnitStride();
}
bool canCollapse(const int outerLoopRank,const int innerLoopRank) const
{
return iter1_.canCollapse(outerLoopRank, innerLoopRank)
&& iter2_.canCollapse(outerLoopRank, innerLoopRank);
}
// this is needed for the stencil expression fastRead to work
void _bz_offsetData(sizeType i)
{ iter1_._bz_offsetData(i); iter2_._bz_offsetData(i); }
// and these are needed for stencil expression shift to work
void _bz_offsetData(sizeType offset, int dim)
{
iter1_._bz_offsetData(offset, dim);
iter2_._bz_offsetData(offset, dim);
}
void _bz_offsetData(sizeType offset1, int dim1, sizeType offset2, int dim2)
{
iter1_._bz_offsetData(offset1, dim1, offset2, dim2);
iter2_._bz_offsetData(offset1, dim1, offset2, dim2);
}
diffType suggestStride(const int rank) const
{
diffType stride1 = iter1_.suggestStride(rank);
diffType stride2 = iter2_.suggestStride(rank);
return ( stride1>stride2 ? stride1 : stride2 );
}
bool isStride(const int rank,const diffType stride) const
{
return iter1_.isStride(rank,stride) && iter2_.isStride(rank,stride);
}
void prettyPrint(BZ_STD_SCOPE(string) &str,
prettyPrintFormat& format) const
{
str += BZ_DEBUG_TEMPLATE_AS_STRING_LITERAL(T_functor);
str += "(";
iter1_.prettyPrint(str, format);
str += ",";
iter2_.prettyPrint(str, format);
str += ")";
}
template<int N_rank>
void moveTo(const TinyVector<int,N_rank>& i)
{
iter1_.moveTo(i);
iter2_.moveTo(i);
}
template<typename T_shape>
bool shapeCheck(const T_shape& shape) const
{ return iter1_.shapeCheck(shape) && iter2_.shapeCheck(shape); }
// sliceinfo for expressions
template<typename T1, typename T2 = nilArraySection,
class T3 = nilArraySection, typename T4 = nilArraySection,
class T5 = nilArraySection, typename T6 = nilArraySection,
class T7 = nilArraySection, typename T8 = nilArraySection,
class T9 = nilArraySection, typename T10 = nilArraySection,
class T11 = nilArraySection>
class SliceInfo {
public:
typedef typename T_expr1::template SliceInfo<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>::T_slice T_slice1;
typedef typename T_expr2::template SliceInfo<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>::T_slice T_slice2;
typedef _bz_FunctorExpr2<T_functor, T_slice1, T_slice2, T_numtype> T_slice;
};
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6,
typename T7, typename T8, typename T9, typename T10, typename T11>
typename SliceInfo<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11>::T_slice
operator()(T1 r1, T2 r2, T3 r3, T4 r4, T5 r5, T6 r6, T7 r7, T8 r8, T9 r9, T10 r10, T11 r11) const
{
return typename SliceInfo<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11>::T_slice
(f_,iter1_(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11),
iter2_(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11));
}
protected:
_bz_FunctorExpr2() { }
T_functor f_;
T_expr1 iter1_;
T_expr2 iter2_;
};
template<typename P_functor, typename P_expr1, typename P_expr2, typename P_expr3,
class P_result>
class _bz_FunctorExpr3
{
public:
typedef P_functor T_functor;
typedef P_expr1 T_expr1;
typedef P_expr2 T_expr2;
typedef P_expr3 T_expr3;
typedef _bz_typename T_expr1::T_numtype T_numtype1;
typedef _bz_typename T_expr2::T_numtype T_numtype2;
typedef _bz_typename T_expr3::T_numtype T_numtype3;
typedef P_result T_numtype;
// select return type
typedef typename unwrapET<typename T_expr1::T_result>::T_unwrapped T_unwrapped1;
typedef typename unwrapET<typename T_expr2::T_result>::T_unwrapped T_unwrapped2;
typedef typename unwrapET<typename T_expr3::T_result>::T_unwrapped T_unwrapped3;
typedef typename selectET2<typename T_expr1::T_typeprop,
typename T_expr2::T_typeprop,
T_numtype,
char>::T_selected T_intermediary;
typedef typename selectET2<T_intermediary,
typename T_expr3::T_typeprop,
T_numtype,
_bz_FunctorExpr3<P_functor,
typename asExpr<T_unwrapped1>::T_expr,
typename asExpr<T_unwrapped2>::T_expr,
typename asExpr<T_unwrapped3>::T_expr,
T_numtype> >::T_selected T_typeprop;
typedef typename unwrapET<T_typeprop>::T_unwrapped T_result;
typedef T_numtype T_optype;
typedef T_expr1 T_ctorArg1;
typedef T_expr2 T_ctorArg2;
typedef T_expr3 T_ctorArg3;
typedef _bz_FunctorExpr3<P_functor,
_bz_typename P_expr1::T_range_result,
_bz_typename P_expr2::T_range_result,
_bz_typename P_expr3::T_range_result,
P_result> T_range_result;
static const int
numArrayOperands = T_expr1::numArrayOperands
+ T_expr2::numArrayOperands
+ T_expr3::numArrayOperands,
numTVOperands = T_expr1::numTVOperands +
T_expr2::numTVOperands +
T_expr3::numTVOperands,
numTMOperands = T_expr1::numTMOperands +
T_expr2::numTMOperands +
T_expr3::numTMOperands,
numIndexPlaceholders = T_expr1::numIndexPlaceholders
+ T_expr2::numIndexPlaceholders
+ T_expr3::numIndexPlaceholders,
minWidth = BZ_MIN(BZ_MIN(T_expr1::minWidth, T_expr2::minWidth),
T_expr3::minWidth),
maxWidth = BZ_MAX(BZ_MAX(T_expr1::maxWidth, T_expr2::maxWidth),
T_expr3::maxWidth),
rank_ = BZ_MAX(BZ_MAX(T_expr1::rank_, T_expr2::rank_),
T_expr3::rank_);
template<int N> struct tvresult {
typedef _bz_FunctorExpr3<
T_functor,
typename T_expr1::template tvresult<N>::Type,
typename T_expr2::template tvresult<N>::Type,
typename T_expr3::template tvresult<N>::Type,
T_numtype> Type;
};
_bz_FunctorExpr3(const _bz_FunctorExpr3<P_functor, P_expr1, P_expr2,
P_expr3, P_result>& a)
: f_(a.f_), iter1_(a.iter1_), iter2_(a.iter2_), iter3_(a.iter3_)
{ }
_bz_FunctorExpr3(BZ_ETPARM(T_functor) f, BZ_ETPARM(T_expr1) a,
BZ_ETPARM(T_expr2) b, BZ_ETPARM(T_expr3) c)
: f_(f), iter1_(a), iter2_(b), iter3_(c)
{ }
template<typename T1, typename T2, typename T3>
_bz_FunctorExpr3(BZ_ETPARM(T_functor) f, BZ_ETPARM(T1) a, BZ_ETPARM(T2) b,
BZ_ETPARM(T3) c)
: f_(f), iter1_(a), iter2_(b), iter3_(c)
{ }
/* Functions for reading. Because they must depend on the result
* type, they utilize a helper class.
*/
// For numtypes, apply operator
template<typename T> struct readHelper {
static T_result fastRead(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3,
diffType i) {
return f(iter1.fastRead(i), iter2.fastRead(i),
iter3.fastRead(i)); }
static T_result indexop(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3,
int i) {
return f(iter1[i], iter2[i], iter3[i]); }
static T_result deref(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3) {
return f(*iter1, *iter2, *iter3); };
static T_result first_value(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3) {
return f(iter1.first_value(), iter2.first_value(),
iter3.first_value()); }
static T_result shift(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3,
int offset, int dim) {
return f(iter1.shift(offset, dim),iter2.shift(offset, dim),
iter3.shift(offset, dim)); }
static T_result shift(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3,
int offset1, int dim1,int offset2, int dim2) {
return f(iter1.shift(offset1, dim1, offset2, dim2),
iter2.shift(offset1, dim1, offset2, dim2),
iter2.shift(offset1, dim1, offset2, dim2)); }
template<int N_rank>
#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
static T_result indexop(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3,
const TinyVector<int, N_rank> i) {
#else
static T_result indexop(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3,
const TinyVector<int, N_rank>& i) {
#endif
return f(iter1(i), iter2(i), iter3(i) ); };
};
// For ET types, bypass operator and create expression
template<typename T> struct readHelper<ETBase<T> > {
static T_result fastRead(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3,
diffType i) {
return T_result(f, iter1.fastRead(i), iter2.fastRead(i),
iter3.fastRead(i)); }
static T_result indexop(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3,
int i) {
return T_result(f, iter1[i], iter2[i], iter3[i]); };
static T_result deref(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3) {
return T_result(f, *iter1, *iter2, *iter3); };
static T_result first_value(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3) {
return T_result(f, iter1.first_value(), iter2.first_value(),
iter3.first_value()); }
static T_result shift(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3,
int offset, int dim) {
return T_result(f,iter1.shift(offset, dim),iter2.shift(offset, dim),
iter3.shift(offset, dim)); }
static T_result shift(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3,
int offset1, int dim1,int offset2, int dim2) {
return T_result(f, iter1.shift(offset1, dim1, offset2, dim2),
iter2.shift(offset1, dim1, offset2, dim2),
iter2.shift(offset1, dim1, offset2, dim2)); }
template<int N_rank>
#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
static T_result indexop(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3,
const TinyVector<int, N_rank> i) {
#else
static T_result indexop(const T_functor& f, const T_expr1& iter1,
const T_expr2& iter2, const T_expr3& iter3,
const TinyVector<int, N_rank>& i) {
#endif
return T_result(f, iter1(i), iter2(i), iter3(i) ); }
};
T_result fastRead(diffType i) const {
return readHelper<T_typeprop>::fastRead(f_, iter1_, iter2_, iter3_, i); }
template<int N>
typename tvresult<N>::Type fastRead_tv(diffType i) const
{ return typename tvresult<N>::Type(f_,
iter1_.template fastRead_tv<N>(i),
iter2_.template fastRead_tv<N>(i),
iter3_.template fastRead_tv<N>(i)); }
T_result operator[](int i) const {
return readHelper<T_typeprop>::indexop(f_, iter1_, iter2_, iter3_, i); }
template<int N_rank>
#ifdef BZ_ARRAY_EXPR_PASS_INDEX_BY_VALUE
T_result operator()(const TinyVector<int, N_rank> i) const {
#else
T_result operator()(const TinyVector<int, N_rank>& i) const {
#endif
return readHelper<T_typeprop>::indexop(f_, iter1_, iter2_, iter3_, i); }
T_result operator*() const {
return readHelper<T_typeprop>::deref(f_, iter1_, iter2_, iter3_); }
T_result first_value() const {
return readHelper<T_typeprop>::first_value(f_, iter1_, iter2_, iter3_); }
T_result shift(int offset, int dim) const {
return readHelper<T_typeprop>::shift(f_,iter1_,iter2_,
iter3_, offset, dim); }
T_result shift(int offset1, int dim1,int offset2, int dim2) const {
return readHelper<T_typeprop>::shift(f_,iter1_,iter2_,iter3_,
offset1, dim1, offset2, dim2); }
// ****** end reading
bool isVectorAligned(diffType offset) const
{ return iter1_.isVectorAligned(offset) &&
iter2_.isVectorAligned(offset) &&
iter3_.isVectorAligned(offset); }
T_range_result operator()(RectDomain<rank_> d) const
{
return T_range_result(f_, iter1_(d), iter2_(d), iter3_(d));
}
int ascending(const int rank) const {
return bounds::compute_ascending(rank, iter1_.ascending(rank),
bounds::compute_ascending(rank, iter2_.ascending(rank),
iter3_.ascending(rank)));
}
int ordering(const int rank) const {
return bounds::compute_ordering(rank, iter1_.ordering(rank),
bounds::compute_ordering(rank, iter2_.ordering(rank),
iter3_.ordering(rank)));
}
int lbound(const int rank) const {
return bounds::compute_lbound(rank, iter1_.lbound(rank),
bounds::compute_lbound(rank, iter2_.lbound(rank),
iter3_.lbound(rank)));
}
int ubound(const int rank) const {
return bounds::compute_ubound(rank, iter1_.ubound(rank),
bounds::compute_ubound(rank, iter2_.ubound(rank),
iter3_.ubound(rank)));
}
// defer calculation to lbound/ubound
RectDomain<rank_> domain() const
{
TinyVector<int, rank_> lb, ub;
for(int r=0; r<rank_; ++r) {
lb[r]=lbound(r); ub[r]=ubound(r);
}
return RectDomain<rank_>(lb,ub);
}
void push(const int position) {
iter1_.push(position);
iter2_.push(position);
iter3_.push(position);
}
void pop(const int position) {
iter1_.pop(position);
iter2_.pop(position);
iter3_.pop(position);
}
void advance() {
iter1_.advance();
iter2_.advance();
iter3_.advance();
}
void advance(const int n) {
iter1_.advance(n);
iter2_.advance(n);
iter3_.advance(n);
}
void loadStride(const int rank) {
iter1_.loadStride(rank);
iter2_.loadStride(rank);
iter3_.loadStride(rank);
}
bool isUnitStride(const int rank) const {
return iter1_.isUnitStride(rank) && iter2_.isUnitStride(rank)
&& iter3_.isUnitStride(rank);
}
bool isUnitStride() const {
return iter1_.isUnitStride() && iter2_.isUnitStride()
&& iter3_.isUnitStride();
}
void advanceUnitStride() {
iter1_.advanceUnitStride();
iter2_.advanceUnitStride();
iter3_.advanceUnitStride();
}
bool canCollapse(const int outerLoopRank,const int innerLoopRank) const {
return iter1_.canCollapse(outerLoopRank, innerLoopRank)
&& iter2_.canCollapse(outerLoopRank, innerLoopRank)
&& iter3_.canCollapse(outerLoopRank, innerLoopRank);
}
// this is needed for the stencil expression fastRead to work
void _bz_offsetData(sizeType i)
{ iter1_._bz_offsetData(i); iter2_._bz_offsetData(i);
iter3_._bz_offsetData(i); }
// and these are needed for stencil expression shift to work
void _bz_offsetData(sizeType offset, int dim)
{
iter1_._bz_offsetData(offset, dim);
iter2_._bz_offsetData(offset, dim);
iter3_._bz_offsetData(offset, dim);
}
void _bz_offsetData(sizeType offset1, int dim1, sizeType offset2, int dim2)
{
iter1_._bz_offsetData(offset1, dim1, offset2, dim2);
iter2_._bz_offsetData(offset1, dim1, offset2, dim2);
iter3_._bz_offsetData(offset1, dim1, offset2, dim2);
}
diffType suggestStride(const int rank) const {
diffType stride1 = iter1_.suggestStride(rank);
diffType stride2 = iter2_.suggestStride(rank);
diffType stride3 = iter3_.suggestStride(rank);
return ( stride1 > (stride2 = (stride2>stride3 ? stride2 : stride3)) ?
stride1 : stride2 );
}
bool isStride(const int rank,const diffType stride) const {
return iter1_.isStride(rank,stride) && iter2_.isStride(rank,stride)
&& iter3_.isStride(rank,stride);
}
void prettyPrint(BZ_STD_SCOPE(string) &str,
prettyPrintFormat& format) const
{
str += BZ_DEBUG_TEMPLATE_AS_STRING_LITERAL(T_functor);
str += "(";
iter1_.prettyPrint(str, format);
str += ",";
iter2_.prettyPrint(str, format);
str += ",";
iter3_.prettyPrint(str, format);
str += ")";
}
template<int N_rank>
void moveTo(const TinyVector<int,N_rank>& i)
{
iter1_.moveTo(i);
iter2_.moveTo(i);
iter3_.moveTo(i);
}
template<typename T_shape>
bool shapeCheck(const T_shape& shape) const
{
return iter1_.shapeCheck(shape) && iter2_.shapeCheck(shape)
&& iter3_.shapeCheck(shape);
}
// sliceinfo for expressions
template<typename T1, typename T2 = nilArraySection,
class T3 = nilArraySection, typename T4 = nilArraySection,
class T5 = nilArraySection, typename T6 = nilArraySection,
class T7 = nilArraySection, typename T8 = nilArraySection,
class T9 = nilArraySection, typename T10 = nilArraySection,
class T11 = nilArraySection>
class SliceInfo {
public:
typedef typename T_expr1::template SliceInfo<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>::T_slice T_slice1;
typedef typename T_expr2::template SliceInfo<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>::T_slice T_slice2;
typedef typename T_expr3::template SliceInfo<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11>::T_slice T_slice3;
typedef _bz_FunctorExpr3<T_functor, T_slice1, T_slice2, T_slice3, T_numtype> T_slice;
};
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6,
typename T7, typename T8, typename T9, typename T10, typename T11>
typename SliceInfo<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11>::T_slice
operator()(T1 r1, T2 r2, T3 r3, T4 r4, T5 r5, T6 r6, T7 r7, T8 r8, T9 r9, T10 r10, T11 r11) const
{
return typename SliceInfo<T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11>::T_slice
(f_,iter1_(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11),
iter2_(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11),
iter3_(r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11));
}
protected:
_bz_FunctorExpr3() { }
T_functor f_;
T_expr1 iter1_;
T_expr2 iter2_;
T_expr3 iter3_;
};
template<typename P_functor, typename P_expr>
_bz_inline_et
_bz_ArrayExpr<_bz_FunctorExpr<P_functor, _bz_typename asExpr<P_expr>::T_expr,
_bz_typename asExpr<P_expr>::T_expr::T_numtype> >
applyFunctor(const P_functor& f, const ETBase<P_expr>& a)
{
typedef _bz_FunctorExpr<P_functor,
_bz_typename asExpr<P_expr>::T_expr,
_bz_typename asExpr<P_expr>::T_expr::T_numtype> f1;
return _bz_ArrayExpr<f1>(f, a.unwrap());
}
template<typename P_functor, typename P_expr1, typename P_expr2>
_bz_inline_et
_bz_ArrayExpr<_bz_FunctorExpr2<P_functor,
_bz_typename asExpr<P_expr1>::T_expr,
_bz_typename asExpr<P_expr2>::T_expr,
BZ_PROMOTE(_bz_typename asExpr<P_expr1>::T_expr::T_numtype,
_bz_typename asExpr<P_expr2>::T_expr::T_numtype)> >
applyFunctor(const P_functor& f,
const ETBase<P_expr1>& a, const ETBase<P_expr2>& b)
{
typedef _bz_FunctorExpr2<P_functor,
_bz_typename asExpr<P_expr1>::T_expr,
_bz_typename asExpr<P_expr2>::T_expr,
BZ_PROMOTE(_bz_typename asExpr<P_expr1>::T_expr::T_numtype,
_bz_typename asExpr<P_expr2>::T_expr::T_numtype)> f2;
return _bz_ArrayExpr<f2>(f, a.unwrap(), b.unwrap());
}
template<typename P_functor, typename P_expr1, typename P_expr2, typename P_expr3>
_bz_inline_et
_bz_ArrayExpr<_bz_FunctorExpr3<P_functor,
_bz_typename asExpr<P_expr1>::T_expr,
_bz_typename asExpr<P_expr2>::T_expr,
_bz_typename asExpr<P_expr3>::T_expr,
BZ_PROMOTE(_bz_typename asExpr<P_expr1>::T_expr::T_numtype,
BZ_PROMOTE(_bz_typename asExpr<P_expr2>::T_expr::T_numtype,
_bz_typename asExpr<P_expr3>::T_expr::T_numtype))> >
applyFunctor(const P_functor& f, const ETBase<P_expr1>& a,
const ETBase<P_expr2>& b, const ETBase<P_expr3>& c)
{
typedef _bz_FunctorExpr3<P_functor,
_bz_typename asExpr<P_expr1>::T_expr,
_bz_typename asExpr<P_expr2>::T_expr,
_bz_typename asExpr<P_expr3>::T_expr,
BZ_PROMOTE(_bz_typename asExpr<P_expr1>::T_expr::T_numtype,
BZ_PROMOTE(_bz_typename asExpr<P_expr2>::T_expr::T_numtype,
_bz_typename asExpr<P_expr3>::T_expr::T_numtype))> f3;
return _bz_ArrayExpr<f3>(f, a.unwrap(), b.unwrap(), c.unwrap());
}
BZ_NAMESPACE_END // End of stuff in namespace
#define _BZ_MAKE_FUNCTOR(classname, funcname) \
class _bz_Functor ## classname ## funcname \
{ \
public: \
_bz_Functor ## classname ## funcname (const classname& c) \
: c_(c) \
{ } \
template<typename T_numtype1> \
inline T_numtype1 operator()(T_numtype1 x) const \
{ return c_.funcname(x); } \
private: \
const classname& c_; \
};
#define _BZ_MAKE_FUNCTOR2(classname, funcname) \
class _bz_Functor ## classname ## funcname \
{ \
public: \
_bz_Functor ## classname ## funcname (const classname& c) \
: c_(c) \
{ } \
template<typename T_numtype1, typename T_numtype2> \
inline BZ_PROMOTE(T_numtype1, T_numtype2) \
operator()(T_numtype1 x, T_numtype2 y) const \
{ return c_.funcname(x,y); } \
private: \
const classname& c_; \
};
#define _BZ_MAKE_FUNCTOR3(classname, funcname) \
class _bz_Functor ## classname ## funcname \
{ \
public: \
_bz_Functor ## classname ## funcname (const classname& c) \
: c_(c) \
{ } \
template<typename T_numtype1, typename T_numtype2, typename T_numtype3> \
inline BZ_PROMOTE(BZ_PROMOTE(T_numtype1, T_numtype2), T_numtype3) \
operator()(T_numtype1 x, T_numtype2 y, T_numtype3 z) const \
{ return c_.funcname(x,y,z); } \
private: \
const classname& c_; \
};
#define _BZ_MAKE_FUNCTOR_RET(classname, funcname, ret) \
class _bz_Functor ## classname ## funcname \
{ \
public: \
_bz_Functor ## classname ## funcname (const classname& c) \
: c_(c) \
{ } \
template<typename T_numtype1> \
inline ret operator()(T_numtype1 x) const \
{ return c_.funcname(x); } \
private: \
const classname& c_; \
};
#define _BZ_MAKE_FUNCTOR2_RET(classname, funcname, ret) \
class _bz_Functor ## classname ## funcname \
{ \
public: \
_bz_Functor ## classname ## funcname (const classname& c) \
: c_(c) \
{ } \
template<typename T_numtype1, typename T_numtype2> \
inline ret operator()(T_numtype1 x, T_numtype2 y) const \
{ return c_.funcname(x,y); } \
private: \
const classname& c_; \
};
#define _BZ_MAKE_FUNCTOR3_RET(classname, funcname, ret) \
class _bz_Functor ## classname ## funcname \
{ \
public: \
_bz_Functor ## classname ## funcname (const classname& c) \
: c_(c) \
{ } \
template<typename T_numtype1, typename T_numtype2, typename T_numtype3> \
inline ret operator()(T_numtype1 x, T_numtype2 y, T_numtype3 z) const \
{ return c_.funcname(x,y,z); } \
private: \
const classname& c_; \
};
#define BZ_DECLARE_FUNCTOR(classname) \
template<typename P_expr> \
BZ_BLITZ_SCOPE(_bz_ArrayExpr)<BZ_BLITZ_SCOPE(_bz_FunctorExpr)< \
classname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr>::T_expr::T_optype> > \
operator()(const BZ_BLITZ_SCOPE(ETBase)<P_expr>& a) const \
{ \
return BZ_BLITZ_SCOPE(_bz_ArrayExpr)< \
BZ_BLITZ_SCOPE(_bz_FunctorExpr)<classname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr>::T_expr::T_optype> > \
(*this, a.unwrap()); \
}
#define BZ_DECLARE_FUNCTOR2(classname) \
template<typename P_expr1, typename P_expr2> \
BZ_BLITZ_SCOPE(_bz_ArrayExpr)<BZ_BLITZ_SCOPE(_bz_FunctorExpr2)< \
classname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
BZ_PROMOTE(_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr::T_optype, \
_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr::T_optype)> > \
operator()(const BZ_BLITZ_SCOPE(ETBase)<P_expr1>& a, \
const BZ_BLITZ_SCOPE(ETBase)<P_expr2>& b) const \
{ \
return BZ_BLITZ_SCOPE(_bz_ArrayExpr)< \
BZ_BLITZ_SCOPE(_bz_FunctorExpr2)<classname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
BZ_PROMOTE(_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr::T_optype, \
_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr::T_optype)> > \
(*this, a.unwrap(), b.unwrap()); \
}
#define BZ_DECLARE_FUNCTOR3(classname) \
template<typename P_expr1, typename P_expr2, typename P_expr3> \
BZ_BLITZ_SCOPE(_bz_ArrayExpr)<BZ_BLITZ_SCOPE(_bz_FunctorExpr3)< \
classname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr3>::T_expr, \
BZ_PROMOTE(_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr::T_optype, \
BZ_PROMOTE(_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr::T_optype, \
_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr3>::T_expr::T_optype))> > \
operator()(const BZ_BLITZ_SCOPE(ETBase)<P_expr1>& a, \
const BZ_BLITZ_SCOPE(ETBase)<P_expr2>& b, \
const BZ_BLITZ_SCOPE(ETBase)<P_expr3>& c) const \
{ \
return BZ_BLITZ_SCOPE(_bz_ArrayExpr)< \
BZ_BLITZ_SCOPE(_bz_FunctorExpr3)<classname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr3>::T_expr, \
BZ_PROMOTE(_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr::T_optype, \
BZ_PROMOTE(_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr::T_optype, \
_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr3>::T_expr::T_optype))> >\
(*this, a.unwrap(), b.unwrap(), c.unwrap()); \
}
#define BZ_DECLARE_FUNCTOR_RET(classname, ret) \
template<typename P_expr> \
BZ_BLITZ_SCOPE(_bz_ArrayExpr)<BZ_BLITZ_SCOPE(_bz_FunctorExpr)< \
classname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr>::T_expr, \
ret> > \
operator()(const BZ_BLITZ_SCOPE(ETBase)<P_expr>& a) const \
{ \
return BZ_BLITZ_SCOPE(_bz_ArrayExpr)< \
BZ_BLITZ_SCOPE(_bz_FunctorExpr)<classname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr>::T_expr, \
ret> > \
(*this, a.unwrap()); \
}
#define BZ_DECLARE_FUNCTOR2_RET(classname, ret) \
template<typename P_expr1, typename P_expr2> \
BZ_BLITZ_SCOPE(_bz_ArrayExpr)<BZ_BLITZ_SCOPE(_bz_FunctorExpr2)< \
classname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
ret> > \
operator()(const BZ_BLITZ_SCOPE(ETBase)<P_expr1>& a, \
const BZ_BLITZ_SCOPE(ETBase)<P_expr2>& b) const \
{ \
return BZ_BLITZ_SCOPE(_bz_ArrayExpr)< \
BZ_BLITZ_SCOPE(_bz_FunctorExpr2)<classname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
ret> > \
(*this, a.unwrap(), b.unwrap()); \
}
#define BZ_DECLARE_FUNCTOR3_RET(classname, ret) \
template<typename P_expr1, typename P_expr2, typename P_expr3> \
BZ_BLITZ_SCOPE(_bz_ArrayExpr)<BZ_BLITZ_SCOPE(_bz_FunctorExpr3)< \
classname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr3>::T_expr, \
ret> > \
operator()(const BZ_BLITZ_SCOPE(ETBase)<P_expr1>& a, \
const BZ_BLITZ_SCOPE(ETBase)<P_expr2>& b, \
const BZ_BLITZ_SCOPE(ETBase)<P_expr3>& c) const \
{ \
return BZ_BLITZ_SCOPE(_bz_ArrayExpr)< \
BZ_BLITZ_SCOPE(_bz_FunctorExpr3)<classname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr3>::T_expr, \
ret> > \
(*this, a.unwrap(), b.unwrap(), c.unwrap()); \
}
#define BZ_DECLARE_MEMBER_FUNCTION(classname, funcname) \
_BZ_MAKE_FUNCTOR(classname, funcname) \
template<typename P_expr> \
BZ_BLITZ_SCOPE(_bz_ArrayExpr)<BZ_BLITZ_SCOPE(_bz_FunctorExpr)< \
_bz_Functor ## classname ## funcname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr>::T_expr::T_optype> > \
funcname(const BZ_BLITZ_SCOPE(ETBase)<P_expr>& a) const \
{ \
return BZ_BLITZ_SCOPE(_bz_ArrayExpr)< \
BZ_BLITZ_SCOPE(_bz_FunctorExpr)< \
_bz_Functor ## classname ## funcname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr>::T_expr::T_optype> > \
(_bz_Functor ## classname ## funcname(*this), a.unwrap()); \
}
#define BZ_DECLARE_MEMBER_FUNCTION2(classname, funcname) \
_BZ_MAKE_FUNCTOR2(classname, funcname) \
template<typename P_expr1, typename P_expr2> \
BZ_BLITZ_SCOPE(_bz_ArrayExpr)<BZ_BLITZ_SCOPE(_bz_FunctorExpr2)< \
_bz_Functor ## classname ## funcname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
BZ_PROMOTE(_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr::T_optype, \
_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr::T_optype)> > \
funcname(const BZ_BLITZ_SCOPE(ETBase)<P_expr1>& a, \
const BZ_BLITZ_SCOPE(ETBase)<P_expr2>& b) const \
{ \
return BZ_BLITZ_SCOPE(_bz_ArrayExpr)< \
BZ_BLITZ_SCOPE(_bz_FunctorExpr2)< \
_bz_Functor ## classname ## funcname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
BZ_PROMOTE(_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr::T_optype, \
_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr::T_optype)> > \
(_bz_Functor ## classname ## funcname(*this), a.unwrap(), b.unwrap()); \
}
#define BZ_DECLARE_MEMBER_FUNCTION3(classname, funcname) \
_BZ_MAKE_FUNCTOR3(classname, funcname) \
template<typename P_expr1, typename P_expr2, typename P_expr3> \
BZ_BLITZ_SCOPE(_bz_ArrayExpr)<BZ_BLITZ_SCOPE(_bz_FunctorExpr3)< \
_bz_Functor ## classname ## funcname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr3>::T_expr, \
BZ_PROMOTE(_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr::T_optype, \
BZ_PROMOTE(_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr::T_optype, \
_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr3>::T_expr::T_optype))> > \
funcname(const BZ_BLITZ_SCOPE(ETBase)<P_expr1>& a, \
const BZ_BLITZ_SCOPE(ETBase)<P_expr2>& b, \
const BZ_BLITZ_SCOPE(ETBase)<P_expr3>& c) const \
{ \
return BZ_BLITZ_SCOPE(_bz_ArrayExpr)< \
BZ_BLITZ_SCOPE(_bz_FunctorExpr3)< \
_bz_Functor ## classname ## funcname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr3>::T_expr, \
BZ_PROMOTE(_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr::T_optype, \
BZ_PROMOTE(_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr::T_optype, \
_bz_typename \
BZ_BLITZ_SCOPE(asExpr)<P_expr3>::T_expr::T_optype))> >\
(_bz_Functor ## classname ## funcname(*this), \
a.unwrap(), b.unwrap(), c.unwrap()); \
}
#define BZ_DECLARE_MEMBER_FUNCTION_RET(classname, funcname, ret) \
_BZ_MAKE_FUNCTOR_RET(classname, funcname, ret) \
template<typename P_expr> \
BZ_BLITZ_SCOPE(_bz_ArrayExpr)<BZ_BLITZ_SCOPE(_bz_FunctorExpr)< \
_bz_Functor ## classname ## funcname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr>::T_expr, \
ret> > \
funcname(const BZ_BLITZ_SCOPE(ETBase)<P_expr>& a) const \
{ \
return BZ_BLITZ_SCOPE(_bz_ArrayExpr)< \
BZ_BLITZ_SCOPE(_bz_FunctorExpr)< \
_bz_Functor ## classname ## funcname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr>::T_expr, ret> > \
(_bz_Functor ## classname ## funcname(*this), a.unwrap()); \
}
#define BZ_DECLARE_MEMBER_FUNCTION2_RET(classname, funcname, ret) \
_BZ_MAKE_FUNCTOR2_RET(classname, funcname, ret) \
template<typename P_expr1, typename P_expr2> \
BZ_BLITZ_SCOPE(_bz_ArrayExpr)<BZ_BLITZ_SCOPE(_bz_FunctorExpr2)< \
_bz_Functor ## classname ## funcname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
ret> > \
funcname(const BZ_BLITZ_SCOPE(ETBase)<P_expr1>& a, \
const BZ_BLITZ_SCOPE(ETBase)<P_expr2>& b) const \
{ \
return BZ_BLITZ_SCOPE(_bz_ArrayExpr)< \
BZ_BLITZ_SCOPE(_bz_FunctorExpr2)< \
_bz_Functor ## classname ## funcname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
ret> > \
(_bz_Functor ## classname ## funcname(*this), a.unwrap(), b.unwrap()); \
}
#define BZ_DECLARE_MEMBER_FUNCTION3_RET(classname, funcname, ret) \
_BZ_MAKE_FUNCTOR3_RET(classname, funcname, ret) \
template<typename P_expr1, typename P_expr2, typename P_expr3> \
BZ_BLITZ_SCOPE(_bz_ArrayExpr)<BZ_BLITZ_SCOPE(_bz_FunctorExpr3)< \
_bz_Functor ## classname ## funcname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr3>::T_expr, \
ret> > \
funcname(const BZ_BLITZ_SCOPE(ETBase)<P_expr1>& a, \
const BZ_BLITZ_SCOPE(ETBase)<P_expr2>& b, \
const BZ_BLITZ_SCOPE(ETBase)<P_expr3>& c) const \
{ \
return BZ_BLITZ_SCOPE(_bz_ArrayExpr)< \
BZ_BLITZ_SCOPE(_bz_FunctorExpr3)< \
_bz_Functor ## classname ## funcname, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr1>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr2>::T_expr, \
_bz_typename BZ_BLITZ_SCOPE(asExpr)<P_expr3>::T_expr, \
ret> > \
(_bz_Functor ## classname ## funcname(*this), \
a.unwrap(), b.unwrap(), c.unwrap()); \
}
#endif // BZ_ARRAY_FUNCTOREXPR_H
|