/usr/include/blitz/array-impl.h is in libblitz0-dev 1:0.10-3.3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 | // -*- C++ -*-
/***************************************************************************
* blitz/array-impl.h Definition of the Array<P_numtype, N_rank> class
*
* $Id$
*
* Copyright (C) 1997-2011 Todd Veldhuizen <tveldhui@acm.org>
*
* This file is a part of Blitz.
*
* Blitz is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* Blitz is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with Blitz. If not, see <http://www.gnu.org/licenses/>.
*
* Suggestions: blitz-devel@lists.sourceforge.net
* Bugs: blitz-support@lists.sourceforge.net
*
* For more information, please see the Blitz++ Home Page:
* https://sourceforge.net/projects/blitz/
*
***************************************************************************/
/*
* Wish list for array classes.
* - Arrays whose dimensions are unknown at compile time.
* - where()/elsewhere()/elsewhere() as in Dan Quinlan's implementation
* - block reduction operations
* - conversion to/from matrix & vector
* - apply(T func(T))
* - apply(T func(const T&))
* - apply<T func(T)>
*/
#ifndef BZ_ARRAY_H
#define BZ_ARRAY_H
#include <blitz/blitz.h>
#include <blitz/memblock.h>
#include <blitz/range.h>
#include <blitz/tinyvec2.h>
#include <blitz/tvecglobs.h>
#include <blitz/indexexpr.h>
#include <blitz/array/slice.h> // Subarrays and slicing
#include <blitz/array/map.h> // Tensor index notation
#include <blitz/array/multi.h> // Multicomponent arrays
#include <blitz/array/domain.h> // RectDomain class
#include <blitz/array/storage.h> // GeneralArrayStorage
#ifdef BZ_HAVE_BOOST_SERIALIZATION
#include <boost/serialization/serialization.hpp>
#include <boost/serialization/base_object.hpp>
#endif
BZ_NAMESPACE(blitz)
/*
* Forward declarations
*/
template<typename T_numtype, int N_rank>
class ArrayIterator;
template<typename T_numtype, int N_rank>
class ConstArrayIterator;
template<typename T_numtype, int N_rank>
class FastArrayIterator;
template<typename P_expr>
class _bz_ArrayExpr;
template<typename T_array, typename T_index>
class IndirectArray;
template <typename P_numtype,int N_rank>
void swap(Array<P_numtype,N_rank>&,Array<P_numtype,N_rank>&);
template <typename P_numtype, int N_rank>
void find(Array<TinyVector<int,N_rank>,1>&,const Array<P_numtype,N_rank>&);
/** Declaration of class Array, the "Swiss army knife" of Blitz
expression template classes. This is an arbitrary (at compile
time) rank, arbitrary size container.
\todo Array should inherit protected from MemoryBlockReference.
To make this work, need to expose
MemoryBlockReference::numReferences() and make Array<P,N2> a
friend of Array<P,N> for slicing. (Is this still relevant? Array
DOES inherit from MemoryBlockReference.)
*/
template<typename P_numtype, int N_rank>
class Array : public MemoryBlockReference<P_numtype>
#ifdef BZ_NEW_EXPRESSION_TEMPLATES
, public ETBase<Array<P_numtype,N_rank> >
#endif
{
private:
typedef MemoryBlockReference<P_numtype> T_base;
using T_base::data_;
public:
//////////////////////////////////////////////
// Public Types
//////////////////////////////////////////////
/*
* T_numtype is the numeric type stored in the array.
* T_index is a vector type which can be used to access elements
* of many-dimensional arrays.
* T_array is the array type itself -- Array<T_numtype, N_rank>
* T_iterator is a a fast iterator for the array, used for expression
* templates
* iterator is a STL-style iterator
* const_iterator is an STL-style const iterator
* T_default_storage is the default storage class type for the array
*/
typedef P_numtype T_numtype;
typedef TinyVector<int, N_rank> T_index;
typedef Array<T_numtype, N_rank> T_array;
typedef FastArrayIterator<T_numtype, N_rank> T_iterator;
typedef ArrayIterator<T_numtype,N_rank> iterator;
typedef ConstArrayIterator<T_numtype,N_rank> const_iterator;
/**
* Set default storage order. This is configurable
* via #defines as it is can be beneficial to set a
* specific storage for an entire project/file.
*
* First check for the Fortan flag and then the column
* major flag, since Fortran arrays are column major.
*/
#if defined(BZ_FORTRAN_ARRAY)
typedef FortranArray<N_rank> T_default_storage;
#elif defined(BZ_COLUMN_MAJOR_ARRAY)
typedef ColumnMajorArray<N_rank> T_default_storage;
#else
typedef GeneralArrayStorage<N_rank> T_default_storage;
#endif
static const int rank_ = N_rank;
//////////////////////////////////////////////
// Constructors //
//////////////////////////////////////////////
/** Construct an array from an expression. Because this entails a
memory allocation, it is explicit so this fact is obvious to
the user. (There may also be ambiguities in making it
implicit?) */
template<typename T_expr>
explicit Array(_bz_ArrayExpr<T_expr> expr);
/*
* Any missing length arguments will have their value taken from the
* last argument. For example,
* Array<int,3> A(32,64);
* will create a 32x64x64 array. This is handled by setupStorage().
*/
Array(GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
length_ = 0;
stride_ = 0;
zeroOffset_ = 0;
}
explicit Array(int length0,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
length_[0] = length0;
setupStorage(0);
}
Array(int length0, int length1,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(N_rank >= 2);
TAU_TYPE_STRING(p1, "Array<T,N>::Array() [T="
+ CT(T_numtype) + ",N=" + CT(N_rank) + "]");
TAU_PROFILE(p1, "void (int,int)", TAU_BLITZ);
length_[0] = length0;
length_[1] = length1;
setupStorage(1);
}
Array(int length0, int length1, int length2,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(N_rank >= 3);
length_[0] = length0;
length_[1] = length1;
length_[2] = length2;
setupStorage(2);
}
Array(int length0, int length1, int length2, int length3,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(N_rank >= 4);
length_[0] = length0;
length_[1] = length1;
length_[2] = length2;
length_[3] = length3;
setupStorage(3);
}
Array(int length0, int length1, int length2, int length3, int length4,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(N_rank >= 5);
length_[0] = length0;
length_[1] = length1;
length_[2] = length2;
length_[3] = length3;
length_[4] = length4;
setupStorage(4);
}
Array(int length0, int length1, int length2, int length3, int length4,
int length5,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(N_rank >= 6);
length_[0] = length0;
length_[1] = length1;
length_[2] = length2;
length_[3] = length3;
length_[4] = length4;
length_[5] = length5;
setupStorage(5);
}
Array(int length0, int length1, int length2, int length3, int length4,
int length5, int length6,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(N_rank >= 7);
length_[0] = length0;
length_[1] = length1;
length_[2] = length2;
length_[3] = length3;
length_[4] = length4;
length_[5] = length5;
length_[6] = length6;
setupStorage(6);
}
Array(int length0, int length1, int length2, int length3, int length4,
int length5, int length6, int length7,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(N_rank >= 8);
length_[0] = length0;
length_[1] = length1;
length_[2] = length2;
length_[3] = length3;
length_[4] = length4;
length_[5] = length5;
length_[6] = length6;
length_[7] = length7;
setupStorage(7);
}
Array(int length0, int length1, int length2, int length3, int length4,
int length5, int length6, int length7, int length8,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(N_rank >= 9);
length_[0] = length0;
length_[1] = length1;
length_[2] = length2;
length_[3] = length3;
length_[4] = length4;
length_[5] = length5;
length_[6] = length6;
length_[7] = length7;
length_[8] = length8;
setupStorage(8);
}
Array(int length0, int length1, int length2, int length3, int length4,
int length5, int length6, int length7, int length8, int length9,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(N_rank >= 10);
length_[0] = length0;
length_[1] = length1;
length_[2] = length2;
length_[3] = length3;
length_[4] = length4;
length_[5] = length5;
length_[6] = length6;
length_[7] = length7;
length_[8] = length8;
length_[9] = length9;
setupStorage(9);
}
Array(int length0, int length1, int length2, int length3, int length4,
int length5, int length6, int length7, int length8, int length9,
int length10,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(N_rank >= 11);
length_[0] = length0;
length_[1] = length1;
length_[2] = length2;
length_[3] = length3;
length_[4] = length4;
length_[5] = length5;
length_[6] = length6;
length_[7] = length7;
length_[8] = length8;
length_[9] = length9;
length_[10] = length10;
setupStorage(10);
}
/*
* Construct an array from an existing block of memory. Ownership
* is not acquired (this is provided for backwards compatibility).
*/
Array(T_numtype* restrict dataFirst, TinyVector<int, N_rank> shape,
GeneralArrayStorage<N_rank> storage =
T_default_storage(contiguousData))
: MemoryBlockReference<T_numtype>(_bz_returntype<sizeType>::product(shape), dataFirst,
neverDeleteData),
storage_(storage)
{
BZPRECONDITION(dataFirst != 0);
length_ = shape;
computeStrides();
data_ += zeroOffset_;
}
/**
Construct an array from an existing block of memory, with a
given set of strides. Ownership is not acquired (i.e. the
memory block will not be freed by Blitz++). This constructor is
used by extractComponent to make a component view of a
multicomponent array, which is by design noncontiguous. This
creates an incorrect length in the MemoryBlockReference (though
that may be of no consequence since we're not freeing the
memory).
*/
Array(T_numtype* restrict dataFirst, TinyVector<int, N_rank> shape,
TinyVector<diffType, N_rank> stride,
GeneralArrayStorage<N_rank> storage =
T_default_storage(contiguousData))
: MemoryBlockReference<T_numtype>(_bz_returntype<sizeType>::product(shape), dataFirst,
neverDeleteData),
storage_(storage)
{
BZPRECONDITION(dataFirst != 0);
length_ = shape;
stride_ = stride;
calculateZeroOffset();
data_ += zeroOffset_;
}
/**
Construct an array from an existing block of memory. If the
storage represents a padded array, the length of the memory block
will be incorrect, which would lead to a crash if
"deleteDataWhenDone" is used. For this reason, we check that the
resulting array is contiguous.
*/
Array(T_numtype* restrict dataFirst, TinyVector<int, N_rank> shape,
preexistingMemoryPolicy deletionPolicy,
GeneralArrayStorage<N_rank> storage =
T_default_storage(contiguousData))
: MemoryBlockReference<T_numtype>(_bz_returntype<sizeType>::product(shape), dataFirst,
deletionPolicy),
storage_(storage)
{
BZPRECONDITION(dataFirst != 0);
length_ = shape;
computeStrides();
data_ += zeroOffset_;
BZPRECHECK(deletionPolicy!=deleteDataWhenDone || isStorageContiguous(), "Non-contiguous storage used with owned pre-existing memory");
if (deletionPolicy == duplicateData)
reference(copy());
}
/**
Construct an array from an existing block of memory, with a given
set of strides. If the strides represent a noncontiguous array,
the calculated length of the memory block will be wrong, which
will lead to a crash if "deleteDataWhenDone" is specified. For
this reason, we check that the resulting array is contiguous.
*/
Array(T_numtype* restrict dataFirst, TinyVector<int, N_rank> shape,
TinyVector<diffType, N_rank> stride,
preexistingMemoryPolicy deletionPolicy,
GeneralArrayStorage<N_rank> storage =
T_default_storage(contiguousData))
: MemoryBlockReference<T_numtype>(_bz_returntype<sizeType>::product(shape), dataFirst,
deletionPolicy),
storage_(storage)
{
BZPRECONDITION(dataFirst != 0);
length_ = shape;
stride_ = stride;
calculateZeroOffset();
data_ += zeroOffset_;
BZPRECHECK(deletionPolicy!=deleteDataWhenDone || isStorageContiguous(), "Non-contiguous storage used with owned pre-existing memory");
if (deletionPolicy == duplicateData)
reference(copy());
}
/*
* This constructor takes an extent (length) vector and storage format.
*/
Array(const TinyVector<int, N_rank>& extent,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
length_ = extent;
setupStorage(N_rank - 1);
}
/*
* This construct takes a vector of bases (lbounds) and a vector of
* extents.
*/
Array(const TinyVector<int, N_rank>& lbounds,
const TinyVector<int, N_rank>& extent,
const GeneralArrayStorage<N_rank>& storage
= T_default_storage());
/*
* These constructors allow arbitrary bases (starting indices) to be set.
* e.g. Array<int,2> A(Range(10,20), Range(20,30))
* will create an 11x11 array whose indices are 10..20 and 20..30
*/
Array(Range r0,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(r0.isAscendingContiguous());
length_[0] = r0.length();
storage_.setBase(0, r0.first());
setupStorage(0);
}
Array(Range r0, Range r1,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(r0.isAscendingContiguous() &&
r1.isAscendingContiguous());
length_[0] = r0.length();
storage_.setBase(0, r0.first());
length_[1] = r1.length();
storage_.setBase(1, r1.first());
setupStorage(1);
}
Array(Range r0, Range r1, Range r2,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(r0.isAscendingContiguous() &&
r1.isAscendingContiguous() && r2.isAscendingContiguous());
length_[0] = r0.length();
storage_.setBase(0, r0.first());
length_[1] = r1.length();
storage_.setBase(1, r1.first());
length_[2] = r2.length();
storage_.setBase(2, r2.first());
setupStorage(2);
}
Array(Range r0, Range r1, Range r2, Range r3,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(r0.isAscendingContiguous() &&
r1.isAscendingContiguous() && r2.isAscendingContiguous()
&& r3.isAscendingContiguous());
length_[0] = r0.length();
storage_.setBase(0, r0.first());
length_[1] = r1.length();
storage_.setBase(1, r1.first());
length_[2] = r2.length();
storage_.setBase(2, r2.first());
length_[3] = r3.length();
storage_.setBase(3, r3.first());
setupStorage(3);
}
Array(Range r0, Range r1, Range r2, Range r3, Range r4,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(r0.isAscendingContiguous() &&
r1.isAscendingContiguous() && r2.isAscendingContiguous()
&& r3.isAscendingContiguous() && r4.isAscendingContiguous());
length_[0] = r0.length();
storage_.setBase(0, r0.first());
length_[1] = r1.length();
storage_.setBase(1, r1.first());
length_[2] = r2.length();
storage_.setBase(2, r2.first());
length_[3] = r3.length();
storage_.setBase(3, r3.first());
length_[4] = r4.length();
storage_.setBase(4, r4.first());
setupStorage(4);
}
Array(Range r0, Range r1, Range r2, Range r3, Range r4, Range r5,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(r0.isAscendingContiguous() &&
r1.isAscendingContiguous() && r2.isAscendingContiguous()
&& r3.isAscendingContiguous() && r4.isAscendingContiguous()
&& r5.isAscendingContiguous());
length_[0] = r0.length();
storage_.setBase(0, r0.first());
length_[1] = r1.length();
storage_.setBase(1, r1.first());
length_[2] = r2.length();
storage_.setBase(2, r2.first());
length_[3] = r3.length();
storage_.setBase(3, r3.first());
length_[4] = r4.length();
storage_.setBase(4, r4.first());
length_[5] = r5.length();
storage_.setBase(5, r5.first());
setupStorage(5);
}
Array(Range r0, Range r1, Range r2, Range r3, Range r4, Range r5,
Range r6,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(r0.isAscendingContiguous() &&
r1.isAscendingContiguous() && r2.isAscendingContiguous()
&& r3.isAscendingContiguous() && r4.isAscendingContiguous()
&& r5.isAscendingContiguous() && r6.isAscendingContiguous());
length_[0] = r0.length();
storage_.setBase(0, r0.first());
length_[1] = r1.length();
storage_.setBase(1, r1.first());
length_[2] = r2.length();
storage_.setBase(2, r2.first());
length_[3] = r3.length();
storage_.setBase(3, r3.first());
length_[4] = r4.length();
storage_.setBase(4, r4.first());
length_[5] = r5.length();
storage_.setBase(5, r5.first());
length_[6] = r6.length();
storage_.setBase(6, r6.first());
setupStorage(6);
}
Array(Range r0, Range r1, Range r2, Range r3, Range r4, Range r5,
Range r6, Range r7,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(r0.isAscendingContiguous() &&
r1.isAscendingContiguous() && r2.isAscendingContiguous()
&& r3.isAscendingContiguous() && r4.isAscendingContiguous()
&& r5.isAscendingContiguous() && r6.isAscendingContiguous()
&& r7.isAscendingContiguous());
length_[0] = r0.length();
storage_.setBase(0, r0.first());
length_[1] = r1.length();
storage_.setBase(1, r1.first());
length_[2] = r2.length();
storage_.setBase(2, r2.first());
length_[3] = r3.length();
storage_.setBase(3, r3.first());
length_[4] = r4.length();
storage_.setBase(4, r4.first());
length_[5] = r5.length();
storage_.setBase(5, r5.first());
length_[6] = r6.length();
storage_.setBase(6, r6.first());
length_[7] = r7.length();
storage_.setBase(7, r7.first());
setupStorage(7);
}
Array(Range r0, Range r1, Range r2, Range r3, Range r4, Range r5,
Range r6, Range r7, Range r8,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(r0.isAscendingContiguous() &&
r1.isAscendingContiguous() && r2.isAscendingContiguous()
&& r3.isAscendingContiguous() && r4.isAscendingContiguous()
&& r5.isAscendingContiguous() && r6.isAscendingContiguous()
&& r7.isAscendingContiguous() && r8.isAscendingContiguous());
length_[0] = r0.length();
storage_.setBase(0, r0.first());
length_[1] = r1.length();
storage_.setBase(1, r1.first());
length_[2] = r2.length();
storage_.setBase(2, r2.first());
length_[3] = r3.length();
storage_.setBase(3, r3.first());
length_[4] = r4.length();
storage_.setBase(4, r4.first());
length_[5] = r5.length();
storage_.setBase(5, r5.first());
length_[6] = r6.length();
storage_.setBase(6, r6.first());
length_[7] = r7.length();
storage_.setBase(7, r7.first());
length_[8] = r8.length();
storage_.setBase(8, r8.first());
setupStorage(8);
}
Array(Range r0, Range r1, Range r2, Range r3, Range r4, Range r5,
Range r6, Range r7, Range r8, Range r9,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(r0.isAscendingContiguous() &&
r1.isAscendingContiguous() && r2.isAscendingContiguous()
&& r3.isAscendingContiguous() && r4.isAscendingContiguous()
&& r5.isAscendingContiguous() && r6.isAscendingContiguous()
&& r7.isAscendingContiguous() && r8.isAscendingContiguous()
&& r9.isAscendingContiguous());
length_[0] = r0.length();
storage_.setBase(0, r0.first());
length_[1] = r1.length();
storage_.setBase(1, r1.first());
length_[2] = r2.length();
storage_.setBase(2, r2.first());
length_[3] = r3.length();
storage_.setBase(3, r3.first());
length_[4] = r4.length();
storage_.setBase(4, r4.first());
length_[5] = r5.length();
storage_.setBase(5, r5.first());
length_[6] = r6.length();
storage_.setBase(6, r6.first());
length_[7] = r7.length();
storage_.setBase(7, r7.first());
length_[8] = r8.length();
storage_.setBase(8, r8.first());
length_[9] = r9.length();
storage_.setBase(9, r9.first());
setupStorage(9);
}
Array(Range r0, Range r1, Range r2, Range r3, Range r4, Range r5,
Range r6, Range r7, Range r8, Range r9, Range r10,
GeneralArrayStorage<N_rank> storage = T_default_storage())
: storage_(storage)
{
BZPRECONDITION(r0.isAscendingContiguous() &&
r1.isAscendingContiguous() && r2.isAscendingContiguous()
&& r3.isAscendingContiguous() && r4.isAscendingContiguous()
&& r5.isAscendingContiguous() && r6.isAscendingContiguous()
&& r7.isAscendingContiguous() && r8.isAscendingContiguous()
&& r9.isAscendingContiguous() && r10.isAscendingContiguous());
length_[0] = r0.length();
storage_.setBase(0, r0.first());
length_[1] = r1.length();
storage_.setBase(1, r1.first());
length_[2] = r2.length();
storage_.setBase(2, r2.first());
length_[3] = r3.length();
storage_.setBase(3, r3.first());
length_[4] = r4.length();
storage_.setBase(4, r4.first());
length_[5] = r5.length();
storage_.setBase(5, r5.first());
length_[6] = r6.length();
storage_.setBase(6, r6.first());
length_[7] = r7.length();
storage_.setBase(7, r7.first());
length_[8] = r8.length();
storage_.setBase(8, r8.first());
length_[9] = r9.length();
storage_.setBase(9, r9.first());
length_[10] = r10.length();
storage_.setBase(10, r10.first());
setupStorage(10);
}
/*
* Create a reference of another array
*/
Array(const Array<T_numtype, N_rank>& array)
#ifdef BZ_NEW_EXPRESSION_TEMPLATES
: MemoryBlockReference<T_numtype>(),
ETBase< Array<T_numtype, N_rank> >(array)
#else
: MemoryBlockReference<T_numtype>()
#endif
{
// NEEDS_WORK: this const_cast is a tad ugly.
reference(const_cast<T_array&>(array));
}
/*
* These constructors are used for creating interlaced arrays (see
* <blitz/arrayshape.h>
*/
Array(const TinyVector<int,N_rank-1>& shape,
int lastExtent, const GeneralArrayStorage<N_rank>& storage);
//Array(const TinyVector<Range,N_rank-1>& shape,
// int lastExtent, const GeneralArrayStorage<N_rank>& storage);
/*
* These constructors make the array a view of a subportion of another
* array. If there fewer than N_rank Range arguments provided, no
* slicing is performed in the unspecified ranks.
* e.g. Array<int,3> A(20,20,20);
* Array<int,3> B(A, Range(5,15));
* is equivalent to:
* Array<int,3> B(A, Range(5,15), Range::all(), Range::all());
*/
Array(Array<T_numtype, N_rank>& array, Range r0)
{
constructSubarray(array, r0);
}
Array(Array<T_numtype, N_rank>& array, Range r0, Range r1)
{
constructSubarray(array, r0, r1);
}
Array(Array<T_numtype, N_rank>& array, Range r0, Range r1, Range r2)
{
constructSubarray(array, r0, r1, r2);
}
Array(Array<T_numtype, N_rank>& array, Range r0, Range r1, Range r2,
Range r3)
{
constructSubarray(array, r0, r1, r2, r3);
}
Array(Array<T_numtype, N_rank>& array, Range r0, Range r1, Range r2,
Range r3, Range r4)
{
constructSubarray(array, r0, r1, r2, r3, r4);
}
Array(Array<T_numtype, N_rank>& array, Range r0, Range r1, Range r2,
Range r3, Range r4, Range r5)
{
constructSubarray(array, r0, r1, r2, r3, r4, r5);
}
Array(Array<T_numtype, N_rank>& array, Range r0, Range r1, Range r2,
Range r3, Range r4, Range r5, Range r6)
{
constructSubarray(array, r0, r1, r2, r3, r4, r5, r6);
}
Array(Array<T_numtype, N_rank>& array, Range r0, Range r1, Range r2,
Range r3, Range r4, Range r5, Range r6, Range r7)
{
constructSubarray(array, r0, r1, r2, r3, r4, r5, r6, r7);
}
Array(Array<T_numtype, N_rank>& array, Range r0, Range r1, Range r2,
Range r3, Range r4, Range r5, Range r6, Range r7, Range r8)
{
constructSubarray(array, r0, r1, r2, r3, r4, r5, r6, r7, r8);
}
Array(Array<T_numtype, N_rank>& array, Range r0, Range r1, Range r2,
Range r3, Range r4, Range r5, Range r6, Range r7, Range r8, Range r9)
{
constructSubarray(array, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9);
}
Array(Array<T_numtype, N_rank>& array, Range r0, Range r1, Range r2,
Range r3, Range r4, Range r5, Range r6, Range r7, Range r8, Range r9,
Range r10)
{
constructSubarray(array, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10);
}
Array(Array<T_numtype, N_rank>& array,
const RectDomain<N_rank>& subdomain)
{
constructSubarray(array, subdomain);
}
/* Constructor added by Julian Cummings */
Array(Array<T_numtype, N_rank>& array,
const StridedDomain<N_rank>& subdomain)
{
constructSubarray(array, subdomain);
}
/*
* This constructor is invoked by the operator()'s which take
* a combination of integer and Range arguments. It's not intended
* for end-user use.
*/
template<int N_rank2, typename R0, typename R1, typename R2, typename R3, typename R4,
typename R5, typename R6, typename R7, typename R8, typename R9, typename R10>
Array(Array<T_numtype,N_rank2>& array, R0 r0, R1 r1, R2 r2,
R3 r3, R4 r4, R5 r5, R6 r6, R7 r7, R8 r8, R9 r9, R10 r10)
{
constructSlice(array, r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10);
}
//////////////////////////////////////////////
// Member functions
//////////////////////////////////////////////
const TinyVector<int, N_rank>& base() const
{ return storage_.base(); }
int base(int rank) const
{ return storage_.base(rank); }
iterator begin()
{ return iterator(*this); }
const_iterator begin() const
{ return const_iterator(*this); }
T_iterator beginFast() const
{ return T_iterator(*this); }
// Deprecated: now extractComponent(...)
template<typename P_numtype2>
Array<P_numtype2,N_rank> chopComponent(P_numtype2 a, int compNum,
int numComponents) const
{ return extractComponent(a, compNum, numComponents); }
int cols() const
{ return length_[1]; }
int columns() const
{ return length_[1]; }
T_array copy() const;
// data_ always refers to the point (0,0,...,0) which may
// not be in the array if the base is not zero in each rank.
// These data() routines return a pointer to the first
// element in the array (but note that it may not be
// stored first in memory if some ranks are stored descending).
diffType dataOffset() const
{ return dot(storage_.base(), stride_); }
const T_numtype* restrict data() const
{ return data_ + dataOffset(); }
T_numtype* restrict data()
{ return data_ + dataOffset(); }
// These dataZero() routines refer to the point (0,0,...,0)
// which may not be in the array if the bases are nonzero.
const T_numtype* restrict dataZero() const
{ return data_; }
T_numtype* restrict dataZero()
{ return data_; }
// These dataFirst() routines refer to the element in the
// array which falls first in memory.
diffType dataFirstOffset() const
{
diffType pos = 0;
// Used to use tinyvector expressions:
// return data_ + dot(storage_.base()
// + (1 - storage_.ascendingFlag()) * (length_ - 1), stride_);
for (int i=0; i < N_rank; ++i)
pos += (storage_.base(i) + (1-storage_.isRankStoredAscending(i)) *
(length_(i)-1)) * stride_(i);
return pos;
}
const T_numtype* restrict dataFirst() const
{ return data_ + dataFirstOffset(); }
T_numtype* restrict dataFirst()
{ return data_ + dataFirstOffset(); }
int depth() const
{ return length_[2]; }
int dimensions() const
{ return N_rank; }
RectDomain<N_rank> domain() const
{ return RectDomain<N_rank>(lbound(), ubound()); }
void dumpStructureInformation(ostream& os = cout) const;
iterator end()
{ return iterator(*this,0); }
const_iterator end() const
{ return const_iterator(*this,0); }
int extent(int rank) const
{ return length_[rank]; }
const TinyVector<int,N_rank>& extent() const
{ return length_; }
template<typename P_numtype2>
Array<P_numtype2,N_rank> extractComponent(P_numtype2, int compNum,
int numComponents) const;
void free()
{
T_base::changeToNullBlock();
length_ = 0;
}
bool isMajorRank(int rank) const
{ return storage_.ordering(rank) == N_rank-1; }
bool isMinorRank(int rank) const
{ return storage_.ordering(rank) != N_rank-1; }
bool isRankStoredAscending(int rank) const
{ return storage_.isRankStoredAscending(rank); }
bool isStorageContiguous() const;
int lbound(int rank) const
{ return base(rank); }
TinyVector<int,N_rank> lbound() const
{ return base(); }
int length(int rank) const
{ return length_[rank]; }
const TinyVector<int, N_rank>& length() const
{ return length_; }
void makeUnique();
sizeType numElements() const
{ return _bz_returntype<sizeType>::product(length_); }
// NEEDS_WORK -- Expose the numReferences() method
// MemoryBlockReference<T_numtype>::numReferences;
// The storage_.ordering_ array is a list of dimensions from
// the most minor (stride 1) to major dimension. Generally,
// ordering(0) will return the dimension which has the smallest
// stride, and ordering(N_rank-1) will return the dimension with
// the largest stride.
int ordering(int storageRankIndex) const
{ return storage_.ordering(storageRankIndex); }
const TinyVector<int, N_rank>& ordering() const
{ return storage_.ordering(); }
void transposeSelf(int r0, int r1, int r2=0,
int r3=0, int r4=0, int r5=0, int r6=0, int r7=0, int r8=0, int
r9=0, int r10=0);
T_array transpose(int r0, int r1, int r2=0,
int r3=0, int r4=0, int r5=0, int r6=0, int r7=0, int r8=0, int
r9=0, int r10=0) const;
static int rank()
{ return rank_; }
void reference(const T_array&);
void weakReference(const T_array&);
// Added by Derrick Bass
T_array reindex(const TinyVector<int,N_rank>&);
void reindexSelf(
const TinyVector<int,N_rank>&);
void resize(int extent);
void resize(int extent1, int extent2);
void resize(int extent1, int extent2,
int extent3);
void resize(int extent1, int extent2,
int extent3, int extent4);
void resize(int extent1, int extent2,
int extent3, int extent4, int extent5);
void resize(int extent1, int extent2,
int extent3, int extent4, int extent5,
int extent6);
void resize(int extent1, int extent2,
int extent3, int extent4, int extent5,
int extent6, int extent7);
void resize(int extent1, int extent2,
int extent3, int extent4, int extent5,
int extent6, int extent7, int extent8);
void resize(int extent1, int extent2,
int extent3, int extent4, int extent5,
int extent6, int extent7, int extent8,
int extent9);
void resize(int extent1, int extent2,
int extent3, int extent4, int extent5,
int extent6, int extent7, int extent8,
int extent9, int extent10);
void resize(int extent1, int extent2,
int extent3, int extent4, int extent5,
int extent6, int extent7, int extent8,
int extent9, int extent10,
int extent11);
void resize(Range r1);
void resize(Range r1, Range r2);
void resize(Range r1, Range r2, Range r3);
void resize(Range r1, Range r2, Range r3,
Range r4);
void resize(Range r1, Range r2, Range r3,
Range r4, Range r5);
void resize(Range r1, Range r2, Range r3,
Range r4, Range r5, Range r6);
void resize(Range r1, Range r2, Range r3,
Range r4, Range r5, Range r6,
Range r7);
void resize(Range r1, Range r2, Range r3,
Range r4, Range r5, Range r6,
Range r7, Range r8);
void resize(Range r1, Range r2, Range r3,
Range r4, Range r5, Range r6,
Range r7, Range r8, Range r9);
void resize(Range r1, Range r2, Range r3,
Range r4, Range r5, Range r6,
Range r7, Range r8, Range r9,
Range r10);
void resize(Range r1, Range r2, Range r3,
Range r4, Range r5, Range r6,
Range r7, Range r8, Range r9,
Range r10, Range r11);
void resize(const TinyVector<int,N_rank>&);
void resizeAndPreserve(const TinyVector<int,
N_rank>&);
void resizeAndPreserve(int extent);
void resizeAndPreserve(int extent1,
int extent2);
void resizeAndPreserve(int extent1,
int extent2, int extent3);
void resizeAndPreserve(int extent1,
int extent2, int extent3, int extent4);
void resizeAndPreserve(int extent1,
int extent2, int extent3, int extent4,
int extent5);
void resizeAndPreserve(int extent1,
int extent2, int extent3, int extent4,
int extent5, int extent6);
void resizeAndPreserve(int extent1,
int extent2, int extent3, int extent4,
int extent5, int extent6, int extent7);
void resizeAndPreserve(int extent1,
int extent2, int extent3, int extent4,
int extent5, int extent6, int extent7,
int extent8);
void resizeAndPreserve(int extent1,
int extent2, int extent3, int extent4,
int extent5, int extent6, int extent7,
int extent8, int extent9);
void resizeAndPreserve(int extent1,
int extent2, int extent3, int extent4,
int extent5, int extent6, int extent7,
int extent8, int extent9,
int extent10);
void resizeAndPreserve(int extent1,
int extent2, int extent3, int extent4,
int extent5, int extent6, int extent7,
int extent8, int extent9, int extent10,
int extent11);
// NEEDS_WORK -- resizeAndPreserve(Range,...)
// NEEDS_WORK -- resizeAndPreserve(const Domain<N_rank>&);
T_array reverse(int rank);
void reverseSelf(int rank);
int rows() const
{ return length_[0]; }
void setStorage(GeneralArrayStorage<N_rank>);
void slice(int rank, Range r);
const TinyVector<int, N_rank>& shape() const
{ return length_; }
sizeType size() const
{ return numElements(); }
/** Returns the length of the array storage. This can be larger than
the number of elements due to padding to meet alignment
requirements. If you want to extract the array data to, for
example, write it to disk, this is the size of the block
needed. \todo Is this safe if there is no block? */
sizeType storageSize() const
{ return T_base::blockLength(); }
const TinyVector<diffType, N_rank>& stride() const
{ return stride_; }
diffType stride(int rank) const
{ return stride_[rank]; }
bool threadLocal(bool disableLock = true) const
{ return T_base::lockReferenceCount(!disableLock); }
int ubound(int rank) const
{ return base(rank) + length_(rank) - 1; }
TinyVector<int, N_rank> ubound() const
{
TinyVector<int, N_rank> ub;
for (int i=0; i < N_rank; ++i)
ub(i) = base(i) + extent(i) - 1;
// WAS: ub = base() + extent() - 1;
return ub;
}
int zeroOffset() const
{ return zeroOffset_; }
/** Returns true if the array is aligned on a simd vector width. */
bool isVectorAligned(diffType offset) const
{ return simdTypes<T_numtype>::isVectorAligned(dataFirst()+offset); };
//////////////////////////////////////////////
// Debugging routines
//////////////////////////////////////////////
bool isInRangeForDim(int i, int d) const {
return i >= base(d) && (i - base(d)) < length_[d];
}
bool isInRange(int i0) const {
return i0 >= base(0) && (i0 - base(0)) < length_[0];
}
bool isInRange(int i0, int i1) const {
return i0 >= base(0) && (i0 - base(0)) < length_[0]
&& i1 >= base(1) && (i1 - base(1)) < length_[1];
}
bool isInRange(int i0, int i1, int i2) const {
return i0 >= base(0) && (i0 - base(0)) < length_[0]
&& i1 >= base(1) && (i1 - base(1)) < length_[1]
&& i2 >= base(2) && (i2 - base(2)) < length_[2];
}
bool isInRange(int i0, int i1, int i2, int i3) const {
return i0 >= base(0) && (i0 - base(0)) < length_[0]
&& i1 >= base(1) && (i1 - base(1)) < length_[1]
&& i2 >= base(2) && (i2 - base(2)) < length_[2]
&& i3 >= base(3) && (i3 - base(3)) < length_[3];
}
bool isInRange(int i0, int i1, int i2, int i3, int i4) const {
return i0 >= base(0) && (i0 - base(0)) < length_[0]
&& i1 >= base(1) && (i1 - base(1)) < length_[1]
&& i2 >= base(2) && (i2 - base(2)) < length_[2]
&& i3 >= base(3) && (i3 - base(3)) < length_[3]
&& i4 >= base(4) && (i4 - base(4)) < length_[4];
}
bool isInRange(int i0, int i1, int i2, int i3, int i4, int i5) const {
return i0 >= base(0) && (i0 - base(0)) < length_[0]
&& i1 >= base(1) && (i1 - base(1)) < length_[1]
&& i2 >= base(2) && (i2 - base(2)) < length_[2]
&& i3 >= base(3) && (i3 - base(3)) < length_[3]
&& i4 >= base(4) && (i4 - base(4)) < length_[4]
&& i5 >= base(5) && (i5 - base(5)) < length_[5];
}
bool isInRange(int i0, int i1, int i2, int i3, int i4, int i5, int i6) const {
return i0 >= base(0) && (i0 - base(0)) < length_[0]
&& i1 >= base(1) && (i1 - base(1)) < length_[1]
&& i2 >= base(2) && (i2 - base(2)) < length_[2]
&& i3 >= base(3) && (i3 - base(3)) < length_[3]
&& i4 >= base(4) && (i4 - base(4)) < length_[4]
&& i5 >= base(5) && (i5 - base(5)) < length_[5]
&& i6 >= base(6) && (i6 - base(6)) < length_[6];
}
bool isInRange(int i0, int i1, int i2, int i3, int i4,
int i5, int i6, int i7) const {
return i0 >= base(0) && (i0 - base(0)) < length_[0]
&& i1 >= base(1) && (i1 - base(1)) < length_[1]
&& i2 >= base(2) && (i2 - base(2)) < length_[2]
&& i3 >= base(3) && (i3 - base(3)) < length_[3]
&& i4 >= base(4) && (i4 - base(4)) < length_[4]
&& i5 >= base(5) && (i5 - base(5)) < length_[5]
&& i6 >= base(6) && (i6 - base(6)) < length_[6]
&& i7 >= base(7) && (i7 - base(7)) < length_[7];
}
bool isInRange(int i0, int i1, int i2, int i3, int i4,
int i5, int i6, int i7, int i8) const {
return i0 >= base(0) && (i0 - base(0)) < length_[0]
&& i1 >= base(1) && (i1 - base(1)) < length_[1]
&& i2 >= base(2) && (i2 - base(2)) < length_[2]
&& i3 >= base(3) && (i3 - base(3)) < length_[3]
&& i4 >= base(4) && (i4 - base(4)) < length_[4]
&& i5 >= base(5) && (i5 - base(5)) < length_[5]
&& i6 >= base(6) && (i6 - base(6)) < length_[6]
&& i7 >= base(7) && (i7 - base(7)) < length_[7]
&& i8 >= base(8) && (i8 - base(8)) < length_[8];
}
bool isInRange(int i0, int i1, int i2, int i3, int i4,
int i5, int i6, int i7, int i8, int i9) const {
return i0 >= base(0) && (i0 - base(0)) < length_[0]
&& i1 >= base(1) && (i1 - base(1)) < length_[1]
&& i2 >= base(2) && (i2 - base(2)) < length_[2]
&& i3 >= base(3) && (i3 - base(3)) < length_[3]
&& i4 >= base(4) && (i4 - base(4)) < length_[4]
&& i5 >= base(5) && (i5 - base(5)) < length_[5]
&& i6 >= base(6) && (i6 - base(6)) < length_[6]
&& i7 >= base(7) && (i7 - base(7)) < length_[7]
&& i8 >= base(8) && (i8 - base(8)) < length_[8]
&& i9 >= base(9) && (i9 - base(9)) < length_[9];
}
bool isInRange(int i0, int i1, int i2, int i3, int i4,
int i5, int i6, int i7, int i8, int i9, int i10) const {
return i0 >= base(0) && (i0 - base(0)) < length_[0]
&& i1 >= base(1) && (i1 - base(1)) < length_[1]
&& i2 >= base(2) && (i2 - base(2)) < length_[2]
&& i3 >= base(3) && (i3 - base(3)) < length_[3]
&& i4 >= base(4) && (i4 - base(4)) < length_[4]
&& i5 >= base(5) && (i5 - base(5)) < length_[5]
&& i6 >= base(6) && (i6 - base(6)) < length_[6]
&& i7 >= base(7) && (i7 - base(7)) < length_[7]
&& i8 >= base(8) && (i8 - base(8)) < length_[8]
&& i9 >= base(9) && (i9 - base(9)) < length_[9]
&& i10 >= base(10) && (i10 - base(10)) < length_[10];
}
bool isInRange(const T_index& index) const {
for (int i=0; i < N_rank; ++i)
if (index[i] < base(i) || (index[i] - base(i)) >= length_[i])
return false;
return true;
}
bool assertInRange(const T_index& BZ_DEBUG_PARAM(index)) const {
BZPRECHECK(isInRange(index), "Array index out of range: " << index
<< endl << "Lower bounds: " << storage_.base() << endl
<< "Length: " << length_ << endl);
return true;
}
bool assertInRange(int BZ_DEBUG_PARAM(i0)) const {
BZPRECHECK(isInRange(i0), "Array index out of range: " << i0
<< endl << "Lower bounds: " << storage_.base() << endl
<< "Length: " << length_ << endl);
return true;
}
bool assertInRange(int BZ_DEBUG_PARAM(i0), int BZ_DEBUG_PARAM(i1)) const {
BZPRECHECK(isInRange(i0,i1), "Array index out of range: ("
<< i0 << ", " << i1 << ")"
<< endl << "Lower bounds: " << storage_.base() << endl
<< "Length: " << length_ << endl);
return true;
}
bool assertInRange(int BZ_DEBUG_PARAM(i0), int BZ_DEBUG_PARAM(i1),
int BZ_DEBUG_PARAM(i2)) const
{
BZPRECHECK(isInRange(i0,i1,i2), "Array index out of range: ("
<< i0 << ", " << i1 << ", " << i2 << ")"
<< endl << "Lower bounds: " << storage_.base() << endl
<< "Length: " << length_ << endl);
return true;
}
bool assertInRange(int BZ_DEBUG_PARAM(i0), int BZ_DEBUG_PARAM(i1),
int BZ_DEBUG_PARAM(i2), int BZ_DEBUG_PARAM(i3)) const
{
BZPRECHECK(isInRange(i0,i1,i2,i3), "Array index out of range: ("
<< i0 << ", " << i1 << ", " << i2 << ", " << i3 << ")"
<< endl << "Lower bounds: " << storage_.base() << endl
<< "Length: " << length_ << endl);
return true;
}
bool assertInRange(int BZ_DEBUG_PARAM(i0), int BZ_DEBUG_PARAM(i1),
int BZ_DEBUG_PARAM(i2), int BZ_DEBUG_PARAM(i3),
int BZ_DEBUG_PARAM(i4)) const
{
BZPRECHECK(isInRange(i0,i1,i2,i3,i4), "Array index out of range: ("
<< i0 << ", " << i1 << ", " << i2 << ", " << i3
<< ", " << i4 << ")"
<< endl << "Lower bounds: " << storage_.base() << endl
<< "Length: " << length_ << endl);
return true;
}
bool assertInRange(int BZ_DEBUG_PARAM(i0), int BZ_DEBUG_PARAM(i1),
int BZ_DEBUG_PARAM(i2), int BZ_DEBUG_PARAM(i3), int BZ_DEBUG_PARAM(i4),
int BZ_DEBUG_PARAM(i5)) const
{
BZPRECHECK(isInRange(i0,i1,i2,i3,i4,i5), "Array index out of range: ("
<< i0 << ", " << i1 << ", " << i2 << ", " << i3
<< ", " << i4 << ", " << i5 << ")"
<< endl << "Lower bounds: " << storage_.base() << endl
<< "Length: " << length_ << endl);
return true;
}
bool assertInRange(int BZ_DEBUG_PARAM(i0), int BZ_DEBUG_PARAM(i1),
int BZ_DEBUG_PARAM(i2), int BZ_DEBUG_PARAM(i3), int BZ_DEBUG_PARAM(i4),
int BZ_DEBUG_PARAM(i5), int BZ_DEBUG_PARAM(i6)) const
{
BZPRECHECK(isInRange(i0,i1,i2,i3,i4,i5,i6),
"Array index out of range: ("
<< i0 << ", " << i1 << ", " << i2 << ", " << i3
<< ", " << i4 << ", " << i5 << ", " << i6 << ")"
<< endl << "Lower bounds: " << storage_.base() << endl
<< "Length: " << length_ << endl);
return true;
}
bool assertInRange(int BZ_DEBUG_PARAM(i0), int BZ_DEBUG_PARAM(i1),
int BZ_DEBUG_PARAM(i2), int BZ_DEBUG_PARAM(i3), int BZ_DEBUG_PARAM(i4),
int BZ_DEBUG_PARAM(i5), int BZ_DEBUG_PARAM(i6),
int BZ_DEBUG_PARAM(i7)) const
{
BZPRECHECK(isInRange(i0,i1,i2,i3,i4,i5,i6,i7),
"Array index out of range: ("
<< i0 << ", " << i1 << ", " << i2 << ", " << i3
<< ", " << i4 << ", " << i5 << ", " << i6 << ", " << i7 << ")"
<< endl << "Lower bounds: " << storage_.base() << endl
<< "Length: " << length_ << endl);
return true;
}
bool assertInRange(int BZ_DEBUG_PARAM(i0), int BZ_DEBUG_PARAM(i1),
int BZ_DEBUG_PARAM(i2), int BZ_DEBUG_PARAM(i3), int BZ_DEBUG_PARAM(i4),
int BZ_DEBUG_PARAM(i5), int BZ_DEBUG_PARAM(i6), int BZ_DEBUG_PARAM(i7),
int BZ_DEBUG_PARAM(i8)) const
{
BZPRECHECK(isInRange(i0,i1,i2,i3,i4,i5,i6,i7,i8),
"Array index out of range: ("
<< i0 << ", " << i1 << ", " << i2 << ", " << i3
<< ", " << i4 << ", " << i5 << ", " << i6 << ", " << i7
<< ", " << i8 << ")"
<< endl << "Lower bounds: " << storage_.base() << endl
<< "Length: " << length_ << endl);
return true;
}
bool assertInRange(int BZ_DEBUG_PARAM(i0), int BZ_DEBUG_PARAM(i1),
int BZ_DEBUG_PARAM(i2), int BZ_DEBUG_PARAM(i3), int BZ_DEBUG_PARAM(i4),
int BZ_DEBUG_PARAM(i5), int BZ_DEBUG_PARAM(i6), int BZ_DEBUG_PARAM(i7),
int BZ_DEBUG_PARAM(i8), int BZ_DEBUG_PARAM(i9)) const
{
BZPRECHECK(isInRange(i0,i1,i2,i3,i4,i5,i6,i7,i8,i9),
"Array index out of range: ("
<< i0 << ", " << i1 << ", " << i2 << ", " << i3
<< ", " << i4 << ", " << i5 << ", " << i6 << ", " << i7
<< ", " << i8 << ", " << i9 << ")"
<< endl << "Lower bounds: " << storage_.base() << endl
<< "Length: " << length_ << endl);
return true;
}
bool assertInRange(int BZ_DEBUG_PARAM(i0), int BZ_DEBUG_PARAM(i1),
int BZ_DEBUG_PARAM(i2), int BZ_DEBUG_PARAM(i3), int BZ_DEBUG_PARAM(i4),
int BZ_DEBUG_PARAM(i5), int BZ_DEBUG_PARAM(i6), int BZ_DEBUG_PARAM(i7),
int BZ_DEBUG_PARAM(i8), int BZ_DEBUG_PARAM(i9),
int BZ_DEBUG_PARAM(i10)) const
{
BZPRECHECK(isInRange(i0,i1,i2,i3,i4,i5,i6,i7,i8,i9,i10),
"Array index out of range: ("
<< i0 << ", " << i1 << ", " << i2 << ", " << i3
<< ", " << i4 << ", " << i5 << ", " << i6 << ", " << i7
<< ", " << i8 << ", " << i9 << ", " << i10 << ")"
<< endl << "Lower bounds: " << storage_.base() << endl
<< "Length: " << length_ << endl);
return true;
}
//////////////////////////////////////////////
// Subscripting operators
//////////////////////////////////////////////
template<int N_rank2>
const T_numtype& restrict operator()(const TinyVector<int,N_rank2>& index) const
{
assertInRange(index);
return data_[dot(index, stride_)];
}
template<int N_rank2>
T_numtype& restrict operator()(const TinyVector<int,N_rank2>& index)
{
assertInRange(index);
return data_[dot(index, stride_)];
}
const T_numtype& restrict operator()(TinyVector<int,1> index) const
{
assertInRange(index[0]);
return data_[index[0] * stride_[0]];
}
T_numtype& operator()(TinyVector<int,1> index)
{
assertInRange(index[0]);
return data_[index[0] * stride_[0]];
}
const T_numtype& restrict operator()(TinyVector<int,2> index) const
{
assertInRange(index[0], index[1]);
return data_[index[0] * stride_[0]
+ index[1] * stride_[1]];
}
T_numtype& operator()(TinyVector<int,2> index)
{
assertInRange(index[0], index[1]);
return data_[index[0] * stride_[0]
+ index[1] * stride_[1]];
}
const T_numtype& restrict operator()(TinyVector<int,3> index) const
{
assertInRange(index[0], index[1], index[2]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2]];
}
T_numtype& operator()(TinyVector<int,3> index)
{
assertInRange(index[0], index[1], index[2]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2]];
}
const T_numtype& restrict operator()(const TinyVector<int,4>& index) const
{
assertInRange(index[0], index[1], index[2], index[3]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]];
}
T_numtype& operator()(const TinyVector<int,4>& index)
{
assertInRange(index[0], index[1], index[2], index[3]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]];
}
const T_numtype& restrict operator()(const TinyVector<int,5>& index) const
{
assertInRange(index[0], index[1], index[2], index[3],
index[4]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]
+ index[4] * stride_[4]];
}
T_numtype& operator()(const TinyVector<int,5>& index)
{
assertInRange(index[0], index[1], index[2], index[3],
index[4]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]
+ index[4] * stride_[4]];
}
const T_numtype& restrict operator()(const TinyVector<int,6>& index) const
{
assertInRange(index[0], index[1], index[2], index[3],
index[4], index[5]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]
+ index[4] * stride_[4] + index[5] * stride_[5]];
}
T_numtype& operator()(const TinyVector<int,6>& index)
{
assertInRange(index[0], index[1], index[2], index[3],
index[4], index[5]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]
+ index[4] * stride_[4] + index[5] * stride_[5]];
}
const T_numtype& restrict operator()(const TinyVector<int,7>& index) const
{
assertInRange(index[0], index[1], index[2], index[3],
index[4], index[5], index[6]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]
+ index[4] * stride_[4] + index[5] * stride_[5]
+ index[6] * stride_[6]];
}
T_numtype& operator()(const TinyVector<int,7>& index)
{
assertInRange(index[0], index[1], index[2], index[3],
index[4], index[5], index[6]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]
+ index[4] * stride_[4] + index[5] * stride_[5]
+ index[6] * stride_[6]];
}
const T_numtype& restrict operator()(const TinyVector<int,8>& index) const
{
assertInRange(index[0], index[1], index[2], index[3],
index[4], index[5], index[6], index[7]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]
+ index[4] * stride_[4] + index[5] * stride_[5]
+ index[6] * stride_[6] + index[7] * stride_[7]];
}
T_numtype& operator()(const TinyVector<int,8>& index)
{
assertInRange(index[0], index[1], index[2], index[3],
index[4], index[5], index[6], index[7]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]
+ index[4] * stride_[4] + index[5] * stride_[5]
+ index[6] * stride_[6] + index[7] * stride_[7]];
}
const T_numtype& restrict operator()(const TinyVector<int,9>& index) const
{
assertInRange(index[0], index[1], index[2], index[3],
index[4], index[5], index[6], index[7], index[8]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]
+ index[4] * stride_[4] + index[5] * stride_[5]
+ index[6] * stride_[6] + index[7] * stride_[7]
+ index[8] * stride_[8]];
}
T_numtype& operator()(const TinyVector<int,9>& index)
{
assertInRange(index[0], index[1], index[2], index[3],
index[4], index[5], index[6], index[7], index[8]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]
+ index[4] * stride_[4] + index[5] * stride_[5]
+ index[6] * stride_[6] + index[7] * stride_[7]
+ index[8] * stride_[8]];
}
const T_numtype& restrict operator()(const TinyVector<int,10>& index) const
{
assertInRange(index[0], index[1], index[2], index[3],
index[4], index[5], index[6], index[7], index[8], index[9]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]
+ index[4] * stride_[4] + index[5] * stride_[5]
+ index[6] * stride_[6] + index[7] * stride_[7]
+ index[8] * stride_[8] + index[9] * stride_[9]];
}
T_numtype& operator()(const TinyVector<int,10>& index)
{
assertInRange(index[0], index[1], index[2], index[3],
index[4], index[5], index[6], index[7], index[8], index[9]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]
+ index[4] * stride_[4] + index[5] * stride_[5]
+ index[6] * stride_[6] + index[7] * stride_[7]
+ index[8] * stride_[8] + index[9] * stride_[9]];
}
const T_numtype& restrict operator()(const TinyVector<int,11>& index) const
{
assertInRange(index[0], index[1], index[2], index[3],
index[4], index[5], index[6], index[7], index[8], index[9],
index[10]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]
+ index[4] * stride_[4] + index[5] * stride_[5]
+ index[6] * stride_[6] + index[7] * stride_[7]
+ index[8] * stride_[8] + index[9] * stride_[9]
+ index[10] * stride_[10]];
}
T_numtype& operator()(const TinyVector<int,11>& index)
{
assertInRange(index[0], index[1], index[2], index[3],
index[4], index[5], index[6], index[7], index[8], index[9],
index[10]);
return data_[(index[0]) * stride_[0]
+ index[1] * stride_[1]
+ index[2] * stride_[2] + index[3] * stride_[3]
+ index[4] * stride_[4] + index[5] * stride_[5]
+ index[6] * stride_[6] + index[7] * stride_[7]
+ index[8] * stride_[8] + index[9] * stride_[9]
+ index[10] * stride_[10]];
}
const T_numtype& restrict operator()(int i0) const
{
assertInRange(i0);
return data_[(i0) * stride_[0]];
}
T_numtype& restrict operator()(int i0)
{
assertInRange(i0);
return data_[(i0) * stride_[0]];
}
const T_numtype& restrict operator()(int i0, int i1) const
{
assertInRange(i0, i1);
return data_[(i0) * stride_[0] + i1 * stride_[1]];
}
T_numtype& restrict operator()(int i0, int i1)
{
assertInRange(i0, i1);
return data_[(i0) * stride_[0] + i1 * stride_[1]];
}
const T_numtype& restrict operator()(int i0, int i1, int i2) const
{
assertInRange(i0, i1, i2);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2]];
}
T_numtype& restrict operator()(int i0, int i1, int i2)
{
assertInRange(i0, i1, i2);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2]];
}
const T_numtype& restrict operator()(int i0, int i1, int i2, int i3) const
{
assertInRange(i0, i1, i2, i3);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3]];
}
T_numtype& restrict operator()(int i0, int i1, int i2, int i3)
{
assertInRange(i0, i1, i2, i3);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3]];
}
const T_numtype& restrict operator()(int i0, int i1, int i2, int i3,
int i4) const
{
assertInRange(i0, i1, i2, i3, i4);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3] + i4 * stride_[4]];
}
T_numtype& restrict operator()(int i0, int i1, int i2, int i3,
int i4)
{
assertInRange(i0, i1, i2, i3, i4);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3] + i4 * stride_[4]];
}
const T_numtype& restrict operator()(int i0, int i1, int i2, int i3,
int i4, int i5) const
{
assertInRange(i0, i1, i2, i3, i4, i5);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3] + i4 * stride_[4]
+ i5 * stride_[5]];
}
T_numtype& restrict operator()(int i0, int i1, int i2, int i3,
int i4, int i5)
{
assertInRange(i0, i1, i2, i3, i4, i5);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3] + i4 * stride_[4]
+ i5 * stride_[5]];
}
const T_numtype& restrict operator()(int i0, int i1, int i2, int i3,
int i4, int i5, int i6) const
{
assertInRange(i0, i1, i2, i3, i4, i5, i6);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3] + i4 * stride_[4]
+ i5 * stride_[5] + i6 * stride_[6]];
}
T_numtype& restrict operator()(int i0, int i1, int i2, int i3,
int i4, int i5, int i6)
{
assertInRange(i0, i1, i2, i3, i4, i5, i6);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3] + i4 * stride_[4]
+ i5 * stride_[5] + i6 * stride_[6]];
}
const T_numtype& restrict operator()(int i0, int i1, int i2, int i3,
int i4, int i5, int i6, int i7) const
{
assertInRange(i0, i1, i2, i3, i4, i5, i6, i7);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3] + i4 * stride_[4]
+ i5 * stride_[5] + i6 * stride_[6] + i7 * stride_[7]];
}
T_numtype& restrict operator()(int i0, int i1, int i2, int i3,
int i4, int i5, int i6, int i7)
{
assertInRange(i0, i1, i2, i3, i4, i5, i6, i7);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3] + i4 * stride_[4]
+ i5 * stride_[5] + i6 * stride_[6] + i7 * stride_[7]];
}
const T_numtype& restrict operator()(int i0, int i1, int i2, int i3,
int i4, int i5, int i6, int i7, int i8) const
{
assertInRange(i0, i1, i2, i3, i4, i5, i6, i7, i8);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3] + i4 * stride_[4]
+ i5 * stride_[5] + i6 * stride_[6] + i7 * stride_[7]
+ i8 * stride_[8]];
}
T_numtype& restrict operator()(int i0, int i1, int i2, int i3,
int i4, int i5, int i6, int i7, int i8)
{
assertInRange(i0, i1, i2, i3, i4, i5, i6, i7, i8);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3] + i4 * stride_[4]
+ i5 * stride_[5] + i6 * stride_[6] + i7 * stride_[7]
+ i8 * stride_[8]];
}
const T_numtype& restrict operator()(int i0, int i1, int i2, int i3,
int i4, int i5, int i6, int i7, int i8, int i9) const
{
assertInRange(i0, i1, i2, i3, i4, i5, i6, i7, i8, i9);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3] + i4 * stride_[4]
+ i5 * stride_[5] + i6 * stride_[6] + i7 * stride_[7]
+ i8 * stride_[8] + i9 * stride_[9]];
}
T_numtype& restrict operator()(int i0, int i1, int i2, int i3,
int i4, int i5, int i6, int i7, int i8, int i9)
{
assertInRange(i0, i1, i2, i3, i4, i5, i6, i7, i8, i9);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3] + i4 * stride_[4]
+ i5 * stride_[5] + i6 * stride_[6] + i7 * stride_[7]
+ i8 * stride_[8] + i9 * stride_[9]];
}
const T_numtype& restrict operator()(int i0, int i1, int i2, int i3,
int i4, int i5, int i6, int i7, int i8, int i9, int i10) const
{
assertInRange(i0, i1, i2, i3, i4, i5, i6, i7, i8,
i9, i10);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3] + i4 * stride_[4]
+ i5 * stride_[5] + i6 * stride_[6] + i7 * stride_[7]
+ i8 * stride_[8] + i9 * stride_[9] + i10 * stride_[10]];
}
T_numtype& restrict operator()(int i0, int i1, int i2, int i3,
int i4, int i5, int i6, int i7, int i8, int i9, int i10)
{
assertInRange(i0, i1, i2, i3, i4, i5, i6, i7, i8,
i9, i10);
return data_[(i0) * stride_[0] + i1 * stride_[1]
+ i2 * stride_[2] + i3 * stride_[3] + i4 * stride_[4]
+ i5 * stride_[5] + i6 * stride_[6] + i7 * stride_[7]
+ i8 * stride_[8] + i9 * stride_[9] + i10 * stride_[10]];
}
/*
* Slicing to produce subarrays. If the number of Range arguments is
* fewer than N_rank, then missing arguments are treated like Range::all().
*/
T_array& noConst() const
{ return const_cast<T_array&>(*this); }
T_array operator()(const RectDomain<N_rank>& subdomain) const
{
return T_array(noConst(), subdomain);
}
/* Operator added by Julian Cummings */
T_array operator()(const StridedDomain<N_rank>& subdomain) const
{
return T_array(noConst(), subdomain);
}
T_array operator()(Range r0) const
{
return T_array(noConst(), r0);
}
T_array operator()(Range r0, Range r1) const
{
return T_array(noConst(), r0, r1);
}
T_array operator()(Range r0, Range r1, Range r2) const
{
return T_array(noConst(), r0, r1, r2);
}
T_array operator()(Range r0, Range r1, Range r2, Range r3) const
{
return T_array(noConst(), r0, r1, r2, r3);
}
T_array operator()(Range r0, Range r1, Range r2, Range r3, Range r4) const
{
return T_array(noConst(), r0, r1, r2, r3, r4);
}
T_array operator()(Range r0, Range r1, Range r2, Range r3, Range r4,
Range r5) const
{
return T_array(noConst(), r0, r1, r2, r3, r4, r5);
}
T_array operator()(Range r0, Range r1, Range r2, Range r3, Range r4,
Range r5, Range r6) const
{
return T_array(noConst(), r0, r1, r2, r3, r4, r5, r6);
}
T_array operator()(Range r0, Range r1, Range r2, Range r3, Range r4,
Range r5, Range r6, Range r7) const
{
return T_array(noConst(), r0, r1, r2, r3, r4, r5, r6, r7);
}
T_array operator()(Range r0, Range r1, Range r2, Range r3, Range r4,
Range r5, Range r6, Range r7, Range r8) const
{
return T_array(noConst(), r0, r1, r2, r3, r4, r5, r6, r7, r8);
}
T_array operator()(Range r0, Range r1, Range r2, Range r3, Range r4,
Range r5, Range r6, Range r7, Range r8, Range r9) const
{
return T_array(noConst(), r0, r1, r2, r3, r4, r5, r6, r7, r8, r9);
}
T_array operator()(Range r0, Range r1, Range r2, Range r3, Range r4,
Range r5, Range r6, Range r7, Range r8, Range r9, Range r10) const
{
return T_array(noConst(), r0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10);
}
// Allow any mixture of Range, int and Vector<int> objects as
// operands for operator(): A(Range(3,7), 5, Range(2,4))
/*
* These versions of operator() allow any combination of int
* and Range operands to be used. Each int operand reduces
* the rank of the resulting array by one.
*
* e.g. Array<int,4> A(20,20,20,20);
* Array<int,2> B = A(Range(5,15), 3, 5, Range(8,9));
*
* SliceInfo is a helper class defined in <blitz/arrayslice.h>.
* It counts the number of Range vs. int arguments and does some
* other helpful things.
*
* Once partial specialization becomes widely implemented, these
* operators may be expanded to accept Vector<int> arguments
* and produce ArrayPick<T,N> objects.
*
* This operator() is not provided with a single argument because
* the appropriate cases exist above.
*/
#ifdef BZ_HAVE_PARTIAL_ORDERING
template<typename T1, typename T2>
typename SliceInfo<T_numtype,T1,T2>::T_slice
operator()(T1 r1, T2 r2) const
{
typedef typename SliceInfo<T_numtype,T1,T2>::T_slice slice;
return slice(noConst(), r1, r2, nilArraySection(), nilArraySection(), nilArraySection(),
nilArraySection(), nilArraySection(), nilArraySection(),
nilArraySection(), nilArraySection(), nilArraySection());
}
template<typename T1, typename T2, typename T3>
typename SliceInfo<T_numtype,T1,T2,T3>::T_slice
operator()(T1 r1, T2 r2, T3 r3) const
{
typedef typename SliceInfo<T_numtype,T1,T2,T3>::T_slice slice;
return slice(noConst(), r1, r2, r3, nilArraySection(), nilArraySection(), nilArraySection(),
nilArraySection(), nilArraySection(), nilArraySection(),
nilArraySection(), nilArraySection());
}
template<typename T1, typename T2, typename T3, typename T4>
typename SliceInfo<T_numtype,T1,T2,T3,T4>::T_slice
operator()(T1 r1, T2 r2, T3 r3, T4 r4) const
{
typedef typename SliceInfo<T_numtype,T1,T2,T3,T4>::T_slice slice;
return slice(noConst(), r1, r2, r3, r4, nilArraySection(), nilArraySection(),
nilArraySection(), nilArraySection(), nilArraySection(),
nilArraySection(), nilArraySection());
}
template<typename T1, typename T2, typename T3, typename T4, typename T5>
typename SliceInfo<T_numtype,T1,T2,T3,T4,T5>::T_slice
operator()(T1 r1, T2 r2, T3 r3, T4 r4, T5 r5) const
{
typedef typename SliceInfo<T_numtype,T1,T2,T3,T4,T5>::T_slice slice;
return slice(noConst(), r1, r2, r3, r4, r5, nilArraySection(),
nilArraySection(), nilArraySection(), nilArraySection(),
nilArraySection(), nilArraySection());
}
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
typename SliceInfo<T_numtype,T1,T2,T3,T4,T5,T6>::T_slice
operator()(T1 r1, T2 r2, T3 r3, T4 r4, T5 r5, T6 r6) const
{
typedef typename SliceInfo<T_numtype,T1,T2,T3,T4,T5,T6>::T_slice slice;
return slice(noConst(), r1, r2, r3, r4, r5, r6, nilArraySection(), nilArraySection(), nilArraySection(),
nilArraySection(), nilArraySection());
}
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6,
typename T7>
typename SliceInfo<T_numtype,T1,T2,T3,T4,T5,T6,T7>::T_slice
operator()(T1 r1, T2 r2, T3 r3, T4 r4, T5 r5, T6 r6, T7 r7) const
{
typedef typename SliceInfo<T_numtype,T1,T2,T3,T4,T5,T6,T7>::T_slice slice;
return slice(noConst(), r1, r2, r3, r4, r5, r6, r7, nilArraySection(), nilArraySection(),
nilArraySection(), nilArraySection());
}
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6,
typename T7, typename T8>
typename SliceInfo<T_numtype,T1,T2,T3,T4,T5,T6,T7,T8>::T_slice
operator()(T1 r1, T2 r2, T3 r3, T4 r4, T5 r5, T6 r6, T7 r7, T8 r8) const
{
typedef typename SliceInfo<T_numtype,T1,T2,T3,T4,T5,T6,T7,T8>::T_slice slice;
return slice(noConst(), r1, r2, r3, r4, r5, r6, r7, r8,
nilArraySection(), nilArraySection(), nilArraySection());
}
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6,
typename T7, typename T8, typename T9>
typename SliceInfo<T_numtype,T1,T2,T3,T4,T5,T6,T7,T8,T9>::T_slice
operator()(T1 r1, T2 r2, T3 r3, T4 r4, T5 r5, T6 r6, T7 r7, T8 r8, T9 r9) const
{
typedef typename SliceInfo<T_numtype,T1,T2,T3,T4,T5,T6,T7,T8,T9>::T_slice slice;
return slice(noConst(), r1, r2, r3, r4, r5, r6, r7, r8, r9, nilArraySection(), nilArraySection());
}
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6,
typename T7, typename T8, typename T9, typename T10>
typename SliceInfo<T_numtype,T1,T2,T3,T4,T5,T6,T7,T8,T9,T10>::T_slice
operator()(T1 r1, T2 r2, T3 r3, T4 r4, T5 r5, T6 r6, T7 r7, T8 r8, T9 r9, T10 r10) const
{
typedef typename SliceInfo<T_numtype,T1,T2,T3,T4,T5,T6,T7,T8,T9,T10>::T_slice slice;
return slice(noConst(), r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, nilArraySection());
}
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6,
typename T7, typename T8, typename T9, typename T10, typename T11>
typename SliceInfo<T_numtype,T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11>::T_slice
operator()(T1 r1, T2 r2, T3 r3, T4 r4, T5 r5, T6 r6, T7 r7, T8 r8, T9 r9, T10 r10, T11 r11) const
{
typedef typename SliceInfo<T_numtype,T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11>::T_slice slice;
return slice(noConst(), r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11);
}
#endif // BZ_HAVE_PARTIAL_ORDERING
/*
* These versions of operator() are provided to support tensor-style
* array notation, e.g.
*
* Array<float, 2> A, B;
* firstIndex i;
* secondIndex j;
* thirdIndex k;
* Array<float, 3> C = A(i,j) * B(j,k);
*/
template<int N0>
_bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0> >
operator()(IndexPlaceholder<N0>) const
{
return _bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0> >
(noConst());
}
template<int N0, int N1>
_bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0, N1> >
operator()(IndexPlaceholder<N0>, IndexPlaceholder<N1>) const
{
return _bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0,
N1> >(noConst());
}
template<int N0, int N1, int N2>
_bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0, N1, N2> >
operator()(IndexPlaceholder<N0>, IndexPlaceholder<N1>,
IndexPlaceholder<N2>) const
{
return _bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0,
N1, N2> >(noConst());
}
template<int N0, int N1, int N2, int N3>
_bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0, N1, N2, N3> >
operator()(IndexPlaceholder<N0>, IndexPlaceholder<N1>,
IndexPlaceholder<N2>, IndexPlaceholder<N3>) const
{
return _bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0,
N1, N2, N3> >(noConst());
}
template<int N0, int N1, int N2, int N3, int N4>
_bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0, N1, N2, N3, N4> >
operator()(IndexPlaceholder<N0>, IndexPlaceholder<N1>,
IndexPlaceholder<N2>, IndexPlaceholder<N3>,
IndexPlaceholder<N4>) const
{
return _bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0,
N1, N2, N3, N4> >(noConst());
}
template<int N0, int N1, int N2, int N3, int N4, int N5>
_bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0, N1, N2, N3,
N4, N5> >
operator()(IndexPlaceholder<N0>, IndexPlaceholder<N1>,
IndexPlaceholder<N2>, IndexPlaceholder<N3>, IndexPlaceholder<N4>,
IndexPlaceholder<N5>) const
{
return _bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0,
N1, N2, N3, N4, N5> >(noConst());
}
template<int N0, int N1, int N2, int N3, int N4, int N5, int N6>
_bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0, N1, N2, N3,
N4, N5, N6> >
operator()(IndexPlaceholder<N0>, IndexPlaceholder<N1>,
IndexPlaceholder<N2>, IndexPlaceholder<N3>, IndexPlaceholder<N4>,
IndexPlaceholder<N5>, IndexPlaceholder<N6>) const
{
return _bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0,
N1, N2, N3, N4, N5, N6> >(noConst());
}
template<int N0, int N1, int N2, int N3, int N4, int N5, int N6,
int N7>
_bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0, N1, N2, N3,
N4, N5, N6, N7> >
operator()(IndexPlaceholder<N0>, IndexPlaceholder<N1>,
IndexPlaceholder<N2>, IndexPlaceholder<N3>, IndexPlaceholder<N4>,
IndexPlaceholder<N5>, IndexPlaceholder<N6>,
IndexPlaceholder<N7>) const
{
return _bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0,
N1, N2, N3, N4, N5, N6, N7> >(noConst());
}
template<int N0, int N1, int N2, int N3, int N4, int N5, int N6,
int N7, int N8>
_bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0, N1, N2, N3,
N4, N5, N6, N7, N8> >
operator()(IndexPlaceholder<N0>, IndexPlaceholder<N1>,
IndexPlaceholder<N2>, IndexPlaceholder<N3>, IndexPlaceholder<N4>,
IndexPlaceholder<N5>, IndexPlaceholder<N6>, IndexPlaceholder<N7>,
IndexPlaceholder<N8>) const
{
return _bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0,
N1, N2, N3, N4, N5, N6, N7, N8> >(noConst());
}
template<int N0, int N1, int N2, int N3, int N4, int N5, int N6,
int N7, int N8, int N9>
_bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0, N1, N2, N3,
N4, N5, N6, N7, N8, N9> >
operator()(IndexPlaceholder<N0>, IndexPlaceholder<N1>,
IndexPlaceholder<N2>, IndexPlaceholder<N3>, IndexPlaceholder<N4>,
IndexPlaceholder<N5>, IndexPlaceholder<N6>, IndexPlaceholder<N7>,
IndexPlaceholder<N8>, IndexPlaceholder<N9>) const
{
return _bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0,
N1, N2, N3, N4, N5, N6, N7, N8, N9> >(noConst());
}
template<int N0, int N1, int N2, int N3, int N4, int N5, int N6,
int N7, int N8, int N9, int N10>
_bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0, N1, N2, N3,
N4, N5, N6, N7, N8, N9, N10> >
operator()(IndexPlaceholder<N0>, IndexPlaceholder<N1>,
IndexPlaceholder<N2>, IndexPlaceholder<N3>, IndexPlaceholder<N4>,
IndexPlaceholder<N5>, IndexPlaceholder<N6>, IndexPlaceholder<N7>,
IndexPlaceholder<N8>, IndexPlaceholder<N9>,
IndexPlaceholder<N10>) const
{
return _bz_ArrayExpr<ArrayIndexMapping<typename asExpr<T_array >::T_expr, N0,
N1, N2, N3, N4, N5, N6, N7, N8, N9, N10> >(noConst());
}
//////////////////////////////////////////////
// Support for multicomponent arrays
//////////////////////////////////////////////
/*
* See <blitz/array/multi.h> for an explanation of the traits class
* multicomponent_traits.
*/
Array<typename multicomponent_traits<T_numtype>::T_element,N_rank>
operator[](const unsigned component) {
typedef typename multicomponent_traits<T_numtype>::T_element T_compType;
return extractComponent(T_compType(),component,
multicomponent_traits<T_numtype>::numComponents);
}
const Array<typename multicomponent_traits<T_numtype>::T_element,N_rank>
operator[](const unsigned component) const {
typedef typename multicomponent_traits<T_numtype>::T_element T_compType;
return extractComponent(T_compType(),component,
multicomponent_traits<T_numtype>::numComponents);
}
Array<typename multicomponent_traits<T_numtype>::T_element,N_rank>
operator[](const int component) {
return operator[](static_cast<unsigned>(component));
}
const Array<typename multicomponent_traits<T_numtype>::T_element,N_rank>
operator[](const int component) const {
return operator[](static_cast<unsigned>(component));
}
//////////////////////////////////////////////
// Indirection
//////////////////////////////////////////////
template<typename T_indexContainer>
IndirectArray<T_array, T_indexContainer>
operator[](const T_indexContainer& index)
{
return IndirectArray<T_array, T_indexContainer>(*this,
const_cast<T_indexContainer&>(index));
}
//////////////////////////////////////////////
// Assignment Operators
//////////////////////////////////////////////
/** \name Assignment operators. \todo Index placeholder
operand. \todo Random operand. @{ */
/**
Scalar operand assignment. \todo Need a precondition check on
isStorageContiguous when operator, is used. \todo We should do
bounds checking, right now we will buffer overrun if the number
of initializers in the list is larger than numElements. */
ListInitializationSwitch<T_array> operator=(T_numtype x)
{
return ListInitializationSwitch<T_array>(*this, x);
}
T_array& initialize(T_numtype);
// Was:
// T_array& operator=(T_numtype);
#ifdef BZ_NEW_EXPRESSION_TEMPLATES
// we need this because we can't use default assignment op so it
// must be overridden
T_array& operator=(const Array<T_numtype,N_rank>&);
// we can't define a generic template for the assignment operator
// because it will cause the list initialization assignment above to
// not work when implict conversions to T_numtype are necessary.
//template<typename T> T_array& operator=(const T&);
template<typename T_expr> T_array& operator=(const ETBase<T_expr>&);
T_array& operator+=(const T_array&);
T_array& operator-=(const T_array&);
T_array& operator*=(const T_array&);
T_array& operator/=(const T_array&);
T_array& operator%=(const T_array&);
T_array& operator^=(const T_array&);
T_array& operator&=(const T_array&);
T_array& operator|=(const T_array&);
T_array& operator>>=(const T_array&);
T_array& operator<<=(const T_array&);
T_array& operator+=(const T_numtype&);
T_array& operator-=(const T_numtype&);
T_array& operator*=(const T_numtype&);
T_array& operator/=(const T_numtype&);
T_array& operator%=(const T_numtype&);
T_array& operator^=(const T_numtype&);
T_array& operator&=(const T_numtype&);
T_array& operator|=(const T_numtype&);
T_array& operator>>=(const T_numtype&);
T_array& operator<<=(const T_numtype&);
template<typename T_expr> T_array& operator+=(const ETBase<T_expr>&);
template<typename T_expr> T_array& operator-=(const ETBase<T_expr>&);
template<typename T_expr> T_array& operator*=(const ETBase<T_expr>&);
template<typename T_expr> T_array& operator/=(const ETBase<T_expr>&);
template<typename T_expr> T_array& operator%=(const ETBase<T_expr>&);
template<typename T_expr> T_array& operator^=(const ETBase<T_expr>&);
template<typename T_expr> T_array& operator&=(const ETBase<T_expr>&);
template<typename T_expr> T_array& operator|=(const ETBase<T_expr>&);
template<typename T_expr> T_array& operator>>=(const ETBase<T_expr>&);
template<typename T_expr> T_array& operator<<=(const ETBase<T_expr>&);
#else
T_array& operator+=(T_numtype);
T_array& operator-=(T_numtype);
T_array& operator*=(T_numtype);
T_array& operator/=(T_numtype);
T_array& operator%=(T_numtype);
T_array& operator^=(T_numtype);
T_array& operator&=(T_numtype);
T_array& operator|=(T_numtype);
T_array& operator>>=(T_numtype);
T_array& operator<<=(T_numtype);
// Array operands
T_array& operator=(const Array<T_numtype,N_rank>&);
template<typename P_numtype2>
T_array& operator=(const Array<P_numtype2,N_rank>&);
template<typename P_numtype2>
T_array& operator+=(const Array<P_numtype2,N_rank>&);
template<typename P_numtype2>
T_array& operator-=(const Array<P_numtype2,N_rank>&);
template<typename P_numtype2>
T_array& operator*=(const Array<P_numtype2,N_rank>&);
template<typename P_numtype2>
T_array& operator/=(const Array<P_numtype2,N_rank>&);
template<typename P_numtype2>
T_array& operator%=(const Array<P_numtype2,N_rank>&);
template<typename P_numtype2>
T_array& operator^=(const Array<P_numtype2,N_rank>&);
template<typename P_numtype2>
T_array& operator&=(const Array<P_numtype2,N_rank>&);
template<typename P_numtype2>
T_array& operator|=(const Array<P_numtype2,N_rank>&);
template<typename P_numtype2>
T_array& operator>>=(const Array<P_numtype2,N_rank>&);
template<typename P_numtype2>
T_array& operator<<=(const Array<P_numtype2,N_rank>&);
// Array expression operands
template<typename T_expr>
inline T_array& operator=(BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr);
template<typename T_expr>
inline T_array& operator+=(BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr);
template<typename T_expr>
inline T_array& operator-=(BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr);
template<typename T_expr>
inline T_array& operator*=(BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr);
template<typename T_expr>
inline T_array& operator/=(BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr);
template<typename T_expr>
inline T_array& operator%=(BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr);
template<typename T_expr>
inline T_array& operator^=(BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr);
template<typename T_expr>
inline T_array& operator&=(BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr);
template<typename T_expr>
inline T_array& operator|=(BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr);
template<typename T_expr>
inline T_array& operator>>=(BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr);
template<typename T_expr>
inline T_array& operator<<=(BZ_ETPARM(_bz_ArrayExpr<T_expr>) expr);
/// @}
#endif
public:
T_numtype* restrict getInitializationIterator() { return dataFirst(); }
//iterator getInitializationIterator() { return begin(); }
bool canCollapse(int outerRank, int innerRank) const {
#ifdef BZ_DEBUG_TRAVERSE
BZ_DEBUG_MESSAGE("stride(" << innerRank << ")=" << stride(innerRank)
<< ", extent()=" << extent(innerRank) << ", stride(outerRank)="
<< stride(outerRank));
#endif
return (stride(innerRank) * extent(innerRank) == stride(outerRank));
}
protected:
//////////////////////////////////////////////
// Implementation routines
//////////////////////////////////////////////
_bz_inline2 void computeStrides();
_bz_inline2 void setupStorage(int rank);
void constructSubarray(Array<T_numtype, N_rank>& array,
const RectDomain<N_rank>&);
void constructSubarray(Array<T_numtype, N_rank>& array,
const StridedDomain<N_rank>&);
void constructSubarray(Array<T_numtype, N_rank>& array, Range r0);
void constructSubarray(Array<T_numtype, N_rank>& array, Range r0, Range r1);
void constructSubarray(Array<T_numtype, N_rank>& array, Range r0,
Range r1, Range r2);
void constructSubarray(Array<T_numtype, N_rank>& array, Range r0,
Range r1, Range r2, Range r3);
void constructSubarray(Array<T_numtype, N_rank>& array, Range r0,
Range r1, Range r2, Range r3, Range r4);
void constructSubarray(Array<T_numtype, N_rank>& array, Range r0,
Range r1, Range r2, Range r3, Range r4, Range r5);
void constructSubarray(Array<T_numtype, N_rank>& array, Range r0,
Range r1, Range r2, Range r3, Range r4, Range r5, Range r6);
void constructSubarray(Array<T_numtype, N_rank>& array, Range r0,
Range r1, Range r2, Range r3, Range r4, Range r5, Range r6,
Range r7);
void constructSubarray(Array<T_numtype, N_rank>& array, Range r0,
Range r1, Range r2, Range r3, Range r4, Range r5, Range r6,
Range r7, Range r8);
void constructSubarray(Array<T_numtype, N_rank>& array, Range r0,
Range r1, Range r2, Range r3, Range r4, Range r5, Range r6,
Range r7, Range r8, Range r9);
void constructSubarray(Array<T_numtype, N_rank>& array, Range r0,
Range r1, Range r2, Range r3, Range r4, Range r5, Range r6,
Range r7, Range r8, Range r9, Range r10);
void calculateZeroOffset();
template<int N_rank2, typename R0, typename R1, typename R2, typename R3, typename R4,
typename R5, typename R6, typename R7, typename R8, typename R9, typename R10>
void constructSlice(Array<T_numtype, N_rank2>& array, R0 r0, R1 r1, R2 r2,
R3 r3, R4 r4, R5 r5, R6 r6, R7 r7, R8 r8, R9 r9, R10 r10);
template<int N_rank2>
void slice(int& setRank, Range r, Array<T_numtype,N_rank2>& array,
TinyVector<int,N_rank2>& rankMap, int sourceRank);
template<int N_rank2>
void slice(int& setRank, int i, Array<T_numtype,N_rank2>& array,
TinyVector<int,N_rank2>& rankMap, int sourceRank);
template<int N_rank2>
void slice(int&, nilArraySection, Array<T_numtype,N_rank2>&,
TinyVector<int,N_rank2>&, int)
{ }
void doTranspose(int destRank, int sourceRank, T_array& array);
private:
// serialization support
#ifdef BZ_HAVE_BOOST_SERIALIZATION
friend class boost::serialization::access;
template<class T_arch>
void serialize(T_arch& ar, const unsigned int version) {
ar & boost::serialization::base_object<MemoryBlockReference<P_numtype> >(*this);
ar & length_;
ar & storage_;
ar & stride_;
ar & zeroOffset_;
};
#endif
protected:
//////////////////////////////////////////////
// Data members
//////////////////////////////////////////////
// NB: adding new data members may require changes to ctors, reference()
/*
* For a description of the storage_ members, see the comments for class
* GeneralArrayStorage<N_rank> above.
*
* length_[] contains the extent of each rank. E.g. a 10x20x30 array
* would have length_ = { 10, 20, 30}.
* stride_[] contains the stride to move to the next element along each
* rank.
* zeroOffset_ is the distance from the first element in the array
* to the point (0,0,...,0). If base_ is zero and all ranks are
* stored ascending, then zeroOffset_ is zero. This value
* is needed because to speed up indexing, the data_ member
* (inherited from MemoryBlockReference) always refers to
* (0,0,...,0).
*/
GeneralArrayStorage<N_rank> storage_;
TinyVector<int, N_rank> length_;
TinyVector<diffType, N_rank> stride_;
diffType zeroOffset_;
};
/*
* Global Functions
*/
template<typename T_numtype>
ostream& operator<<(ostream&, const Array<T_numtype,1>&);
template<typename T_numtype, int N_rank>
ostream& operator<<(ostream&, const Array<T_numtype,N_rank>&);
template<typename T_numtype, int N_rank>
istream& operator>>(istream& is, Array<T_numtype,N_rank>& x);
template <typename P_numtype,int N_rank>
void swap(Array<P_numtype,N_rank>& a,Array<P_numtype,N_rank>& b) {
Array<P_numtype,N_rank> c(a);
a.reference(b);
b.reference(c);
}
template <typename P_expr>
void find(Array<TinyVector<int,P_expr::rank>,1>& indices,
const _bz_ArrayExpr<P_expr>& expr) {
find(indices,
static_cast< Array<typename P_expr::T_numtype,P_expr::rank> >(expr));
}
template <typename P_numtype, int N_rank>
void find(Array<TinyVector<int,N_rank>,1>& indices,
const Array<P_numtype,N_rank>& exprVals) {
indices.resize(exprVals.size());
typename Array<P_numtype,N_rank>::const_iterator it, end = exprVals.end();
int j=0;
for (it = exprVals.begin(); it != end; ++it)
if (*it)
indices(j++) = it.position();
if (j)
indices.resizeAndPreserve(j);
else
indices.free();
return;
}
BZ_NAMESPACE_END
/*
* Removed the "kitchen-sink inclusion" here because it made
* dependencies very difficult to figure out.
*/
#include <blitz/array.cc>
#include <blitz/tinyvec2.cc>
#endif // BZ_ARRAY_H
|