/usr/include/af/image.h is in libarrayfire-dev 3.2.2+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 | /*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#pragma once
#include <af/defines.h>
#include <af/features.h>
#ifdef __cplusplus
namespace af
{
class array;
/**
C++ Interface for calculating the gradients
\param[out] dx the gradient along first dimension
\param[out] dy the gradient along second dimension
\param[in] in is the input array
\ingroup calc_func_grad
*/
AFAPI void grad(array& dx, array& dy, const array& in);
/**
C++ Interface for loading an image
\param[in] filename is name of file to be loaded
\param[in] is_color boolean denoting if the image should be loaded as 1 channel or 3 channel
\return image loaded as \ref af::array()
\ingroup imageio_func_load
*/
AFAPI array loadImage(const char* filename, const bool is_color=false);
/**
C++ Interface for saving an image
\param[in] filename is name of file to be loaded
\param[in] in is the arrayfire array to be saved as an image
\ingroup imageio_func_save
*/
AFAPI void saveImage(const char* filename, const array& in);
#if AF_API_VERSION >= 31
/**
C++ Interface for loading an image from memory
\param[in] ptr is the location of the image data in memory. This is the pointer
created by saveImage.
\return image loaded as \ref af::array()
\note The pointer used is a void* cast of the FreeImage type FIMEMORY which is
created using the FreeImage_OpenMemory API. If the user is opening a FreeImage
stream external to ArrayFire, that pointer can be passed to this function as well.
\ingroup imagemem_func_load
*/
AFAPI array loadImageMem(const void *ptr);
#endif
#if AF_API_VERSION >= 31
/**
C++ Interface for saving an image to memory
\param[in] in is the arrayfire array to be saved as an image
\param[in] format is the type of image to create in memory. The enum borrows from
the FREE_IMAGE_FORMAT enum of FreeImage. Other values not included in imageFormat
but included in FREE_IMAGE_FORMAT can also be passed to this function.
\return a void* pointer which is a type cast of the FreeImage type FIMEMORY* pointer.
\note Ensure that \ref deleteImageMem is called on this pointer. Otherwise there will
be memory leaks
\ingroup imagemem_func_save
*/
AFAPI void* saveImageMem(const array& in, const imageFormat format = AF_FIF_PNG);
#endif
#if AF_API_VERSION >= 31
/**
C++ Interface for deleting memory created by \ref saveImageMem or
\ref af_save_image_memory
\param[in] ptr is the pointer to the FreeImage stream created by saveImageMem.
\ingroup imagemem_func_delete
*/
AFAPI void deleteImageMem(void *ptr);
#endif
#if AF_API_VERSION >= 32
/**
C++ Interface for loading an image as its original type
This load image function allows you to load images as u8, u16 or f32
depending on the type of input image as shown by the table below.
Bits per Color (Gray/RGB/RGBA Bits Per Pixel) | Array Type | Range
-----------------------------------------------|-------------|---------------
8 ( 8/24/32 BPP) | u8 | 0 - 255
16 (16/48/64 BPP) | u16 | 0 - 65535
32 (32/96/128 BPP) | f32 | 0 - 1
\param[in] filename is name of file to be loaded
\return image loaded as \ref af::array()
\ingroup imageio_func_load
*/
AFAPI array loadImageNative(const char* filename);
#endif
#if AF_API_VERSION >= 32
/**
C++ Interface for saving an image without modifications
This function only accepts u8, u16, f32 arrays. These arrays are saved to
images without any modifications.
You must also note that note all image type support 16 or 32 bit images.
The best options for 16 bit images are PNG, PPM and TIFF.
The best option for 32 bit images is TIFF.
These allow lossless storage.
The images stored have the following properties:
Array Type | Bits per Color (Gray/RGB/RGBA Bits Per Pixel) | Range
-------------|-----------------------------------------------|---------------
u8 | 8 ( 8/24/32 BPP) | 0 - 255
u16 | 16 (16/48/64 BPP) | 0 - 65535
f32 | 32 (32/96/128 BPP) | 0 - 1
\param[in] filename is name of file to be saved
\param[in] in is the array to be saved. Should be u8 for saving 8-bit image,
u16 for 16-bit image, and f32 for 32-bit image.
\ingroup imageio_func_save
*/
AFAPI void saveImageNative(const char* filename, const array& in);
#endif
/**
C++ Interface for resizing an image to specified dimensions
\param[in] in is input image
\param[in] odim0 is the size for the first output dimension
\param[in] odim1 is the size for the second output dimension
\param[in] method is the interpolation type (Nearest by default)
\return the resized image of specified by \p odim0 and \p odim1
\ingroup transform_func_resize
*/
AFAPI array resize(const array& in, const dim_t odim0, const dim_t odim1, const interpType method=AF_INTERP_NEAREST);
/**
C++ Interface for resizing an image to specified scales
\param[in] scale0 is scale used for first input dimension
\param[in] scale1 is scale used for second input dimension
\param[in] in is input image
\param[in] method is the interpolation type (Nearest by default)
\return the image scaled by the specified by \p scale0 and \p scale1
\ingroup transform_func_resize
*/
AFAPI array resize(const float scale0, const float scale1, const array& in, const interpType method=AF_INTERP_NEAREST);
/**
C++ Interface for resizing an image to specified scale
\param[in] scale is scale used for both input dimensions
\param[in] in is input image
\param[in] method is the interpolation type (Nearest by default)
\return the image scaled by the specified by \p scale
\ingroup transform_func_resize
*/
AFAPI array resize(const float scale, const array& in, const interpType method=AF_INTERP_NEAREST);
/**
C++ Interface for rotating an image
\param[in] in is input image
\param[in] theta is the degree (in radians) by which the input is rotated
\param[in] crop if true the output is cropped original dimensions. If false the output dimensions scale based on \p theta
\param[in] method is the interpolation type (Nearest by default)
\return the image rotated by \p theta
\ingroup transform_func_rotate
*/
AFAPI array rotate(const array& in, const float theta, const bool crop=true, const interpType method=AF_INTERP_NEAREST);
/**
C++ Interface for transforming an image
\param[in] in is input image
\param[in] transform is transformation matrix
\param[in] odim0 is the first output dimension
\param[in] odim1 is the second output dimension
\param[in] method is the interpolation type (Nearest by default)
\param[in] inverse if true applies inverse transform, if false applies forward transoform
\return the transformed image
\ingroup transform_func_transform
*/
AFAPI array transform(const array& in, const array& transform, const dim_t odim0 = 0, const dim_t odim1 = 0, const interpType method=AF_INTERP_NEAREST, const bool inverse=true);
/**
C++ Interface for translating an image
\param[in] in is input image
\param[in] trans0 is amount by which the first dimension is translated
\param[in] trans1 is amount by which the second dimension is translated
\param[in] odim0 is the first output dimension
\param[in] odim1 is the second output dimension
\param[in] method is the interpolation type (Nearest by default)
\return the translated image
\ingroup transform_func_translate
*/
AFAPI array translate(const array& in, const float trans0, const float trans1, const dim_t odim0 = 0, const dim_t odim1 = 0, const interpType method=AF_INTERP_NEAREST);
/**
C++ Interface for scaling an image
\param[in] in is input image
\param[in] scale0 is amount by which the first dimension is scaled
\param[in] scale1 is amount by which the second dimension is scaled
\param[in] odim0 is the first output dimension
\param[in] odim1 is the second output dimension
\param[in] method is the interpolation type (Nearest by default)
\return the scaled image
\ingroup transform_func_scale
*/
AFAPI array scale(const array& in, const float scale0, const float scale1, const dim_t odim0 = 0, const dim_t odim1 = 0, const interpType method=AF_INTERP_NEAREST);
/**
C++ Interface for skewing an image
\param[in] in is input image
\param[in] skew0 is amount by which the first dimension is skewed
\param[in] skew1 is amount by which the second dimension is skewed
\param[in] odim0 is the first output dimension
\param[in] odim1 is the second output dimension
\param[in] inverse if true applies inverse transform, if false applies forward transoform
\param[in] method is the interpolation type (Nearest by default)
\return the skewed image
\ingroup transform_func_skew
*/
AFAPI array skew(const array& in, const float skew0, const float skew1, const dim_t odim0 = 0, const dim_t odim1 = 0, const bool inverse=true, const interpType method=AF_INTERP_NEAREST);
/**
C++ Interface for bilateral filter
\param[in] in array is the input image
\param[in] spatial_sigma is the spatial variance parameter that decides the filter window
\param[in] chromatic_sigma is the chromatic variance parameter
\param[in] is_color indicates if the input \p in is color image or grayscale
\return the processed image
\ingroup image_func_bilateral
*/
AFAPI array bilateral(const array &in, const float spatial_sigma, const float chromatic_sigma, const bool is_color=false);
/**
C++ Interface for histogram
\snippet test/histogram.cpp ex_image_hist_minmax
\param[in] in is the input array
\param[in] nbins Number of bins to populate between min and max
\param[in] minval minimum bin value (accumulates -inf to min)
\param[in] maxval minimum bin value (accumulates max to +inf)
\return histogram array of type u32
\ingroup image_func_histogram
*/
AFAPI array histogram(const array &in, const unsigned nbins, const double minval, const double maxval);
/**
C++ Interface for histogram
\snippet test/histogram.cpp ex_image_hist_nominmax
\param[in] in is the input array
\param[in] nbins Number of bins to populate between min and max
\return histogram array of type u32
\ingroup image_func_histogram
*/
AFAPI array histogram(const array &in, const unsigned nbins);
/**
C++ Interface for mean shift
\param[in] in array is the input image
\param[in] spatial_sigma is the spatial variance parameter that decides the filter window
\param[in] chromatic_sigma is the chromatic variance parameter
\param[in] iter is the number of iterations filter operation is performed
\param[in] is_color indicates if the input \p in is color image or grayscale
\return the processed image
\ingroup image_func_mean_shift
*/
AFAPI array meanShift(const array& in, const float spatial_sigma, const float chromatic_sigma, const unsigned iter, const bool is_color=false);
/**
C++ Interface for median filter
\snippet test/medfilt.cpp ex_image_medfilt
\param[in] in array is the input image
\param[in] wind_length is the kernel height
\param[in] wind_width is the kernel width
\param[in] edge_pad value will decide what happens to border when running
filter in their neighborhood. It takes one of the values [\ref AF_PAD_ZERO | \ref AF_PAD_SYM]
\return the processed image
\ingroup image_func_medfilt
*/
AFAPI array medfilt(const array& in, const dim_t wind_length = 3, const dim_t wind_width = 3, const borderType edge_pad = AF_PAD_ZERO);
/**
C++ Interface for minimum filter
\param[in] in array is the input image
\param[in] wind_length is the kernel height
\param[in] wind_width is the kernel width
\param[in] edge_pad value will decide what happens to border when running
filter in their neighborhood. It takes one of the values [\ref AF_PAD_ZERO | \ref AF_PAD_SYM]
\return the processed image
\ingroup image_func_minfilt
*/
AFAPI array minfilt(const array& in, const dim_t wind_length = 3, const dim_t wind_width = 3, const borderType edge_pad = AF_PAD_ZERO);
/**
C++ Interface for maximum filter
\param[in] in array is the input image
\param[in] wind_length is the kernel height
\param[in] wind_width is the kernel width
\param[in] edge_pad value will decide what happens to border when running
filter in their neighborhood. It takes one of the values [\ref AF_PAD_ZERO | \ref AF_PAD_SYM]
\return the processed image
\ingroup image_func_maxfilt
*/
AFAPI array maxfilt(const array& in, const dim_t wind_length = 3, const dim_t wind_width = 3, const borderType edge_pad = AF_PAD_ZERO);
/**
C++ Interface for image dilation (max filter)
\param[in] in array is the input image
\param[in] mask is the neighborhood window
\return the dilated image
\note if \p mask is all ones, this function behaves like max filter
\ingroup image_func_dilate
*/
AFAPI array dilate(const array& in, const array& mask);
/**
C++ Interface for 3D image dilation
\param[in] in array is the input volume
\param[in] mask is the neighborhood delta volume
\return the dilated volume
\ingroup image_func_dilate3d
*/
AFAPI array dilate3(const array& in, const array& mask);
/**
C++ Interface for image erosion (min filter)
\param[in] in array is the input image
\param[in] mask is the neighborhood window
\return the eroded image
\note This function can be used as min filter by using a mask of all ones
\ingroup image_func_erode
*/
AFAPI array erode(const array& in, const array& mask);
/**
C++ Interface for 3d for image erosion
\param[in] in array is the input volume
\param[in] mask is the neighborhood delta volume
\return the eroded volume
\ingroup image_func_erode3d
*/
AFAPI array erode3(const array& in, const array& mask);
/**
C++ Interface for getting regions in an image
Below given are sample input and output for each type of connectivity value for \p type
<table border="0">
<tr>
<td> Example for \p type == \ref AF_CONNECTIVITY_8 </td>
<td> Example for \p type == \ref AF_CONNECTIVITY_4 </td>
</tr>
<tr>
<td>
\snippet test/regions.cpp ex_image_regions
</td>
<td>
\snippet test/regions.cpp ex_image_regions_4conn
</td>
</tr>
</table>
\param[in] in array should be binary image of type \ref b8
\param[in] connectivity can take one of the following [\ref AF_CONNECTIVITY_4 | \ref AF_CONNECTIVITY_8]
\param[in] type is type of output array
\return returns array with labels indicating different regions. Throws exceptions if any issue occur.
\ingroup image_func_regions
*/
AFAPI array regions(const array& in, const af::connectivity connectivity=AF_CONNECTIVITY_4, const dtype type=f32);
/**
C++ Interface for extracting sobel gradients
\param[out] dx is derivative along horizontal direction
\param[out] dy is derivative along vertical direction
\param[in] img is an array with image data
\param[in] ker_size sobel kernel size or window size
\note If \p img is 3d array, a batch operation will be performed.
\ingroup image_func_sobel
*/
AFAPI void sobel(array &dx, array &dy, const array &img, const unsigned ker_size=3);
/**
C++ Interface for sobel filtering
\param[in] img is an array with image data
\param[in] ker_size sobel kernel size or window size
\param[in] isFast = true uses \f$G=G_x+G_y\f$, otherwise \f$G=\sqrt (G_x^2+G_y^2)\f$
\return an array with sobel gradient values
\note If \p img is 3d array, a batch operation will be performed.
\ingroup image_func_sobel
*/
AFAPI array sobel(const array &img, const unsigned ker_size=3, const bool isFast=false);
/**
C++ Interface for RGB to gray conversion
\param[in] in is an array in the RGB colorspace
\param[in] rPercent is percentage of red channel value contributing to grayscale intensity
\param[in] gPercent is percentage of green channel value contributing to grayscale intensity
\param[in] bPercent is percentage of blue channel value contributing to grayscale intensity
\return array in Grayscale colorspace
\note \p in must be three dimensional for RGB to Grayscale conversion.
\ingroup image_func_rgb2gray
*/
AFAPI array rgb2gray(const array& in, const float rPercent=0.2126f, const float gPercent=0.7152f, const float bPercent=0.0722f);
/**
C++ Interface for gray to RGB conversion
\param[in] in is an array in the Grayscale colorspace
\param[in] rFactor is percentage of intensity value contributing to red channel
\param[in] gFactor is percentage of intensity value contributing to green channel
\param[in] bFactor is percentage of intensity value contributing to blue channel
\return array in RGB colorspace
\note \p in must be two dimensional for Grayscale to RGB conversion.
\ingroup image_func_gray2rgb
*/
AFAPI array gray2rgb(const array& in, const float rFactor=1.0, const float gFactor=1.0, const float bFactor=1.0);
/**
C++ Interface for histogram equalization
\snippet test/histogram.cpp ex_image_histequal
\param[in] in is the input array, non-normalized input (!! assumes values [0-255] !!)
\param[in] hist target histogram to approximate in output (based on number of bins)
\return data with histogram approximately equal to histogram
\note \p in must be two dimensional.
\ingroup image_func_histequal
*/
AFAPI array histEqual(const array& in, const array& hist);
/**
C++ Interface for generating gausian kernels
\param[in] rows number of rows of the kernel
\param[in] cols number of columns of the kernel
\param[in] sig_r (default 0) (calculated internally as 0.25 * rows + 0.75)
\param[in] sig_c (default 0) (calculated internally as 0.25 * cols + 0.75)
\return an array with values generated using gaussian function
\ingroup image_func_gauss
*/
AFAPI array gaussianKernel(const int rows, const int cols, const double sig_r = 0, const double sig_c = 0);
/**
C++ Interface for converting HSV to RGB
\param[in] in is an array in the HSV colorspace
\return array in RGB colorspace
\note \p in must be three dimensional
\ingroup image_func_hsv2rgb
*/
AFAPI array hsv2rgb(const array& in);
/**
C++ Interface for converting RGB to HSV
\param[in] in is an array in the RGB colorspace
\return array in HSV colorspace
\note \p in must be three dimensional
\ingroup image_func_rgb2hsv
*/
AFAPI array rgb2hsv(const array& in);
/**
C++ Interface wrapper for colorspace conversion
\param[in] image is the input array
\param[in] to is the target array colorspace
\param[in] from is the input array colorspace
\return array in target colorspace
\note \p image must be 3 dimensional for \ref AF_HSV to \ref AF_RGB, \ref AF_RGB to
\ref AF_HSV, & \ref AF_RGB to \ref AF_GRAY transformations. For \ref AF_GRAY to \ref AF_RGB
transformation, 2D array is expected.
\ingroup image_func_colorspace
*/
AFAPI array colorSpace(const array& image, const CSpace to, const CSpace from);
#if AF_API_VERSION >= 31
/**
C++ Interface wrapper for unwrap
\param[in] in is the input image (or set of images)
\param[in] wx is the block window size along 0th-dimension between [1, input.dims[0] + px]
\param[in] wy is the block window size along 1st-dimension between [1, input.dims[1] + py]
\param[in] sx is the stride along 0th-dimension
\param[in] sy is the stride along 1st-dimension
\param[in] px is the padding along 0th-dimension between [0, wx). Padding is applied both before and after.
\param[in] py is the padding along 1st-dimension between [0, wy). Padding is applied both before and after.
\param[in] is_column specifies the layout for the unwrapped patch. If is_column is false, the unrapped patch is laid out as a row.
\returns an array with the image blocks as rows or columns
\ingroup image_func_unwrap
*/
AFAPI array unwrap(const array& in, const dim_t wx, const dim_t wy,
const dim_t sx, const dim_t sy, const dim_t px=0, const dim_t py=0,
const bool is_column = true);
#endif
#if AF_API_VERSION >= 31
/**
C++ Interface wrapper for wrap
\param[in] in is the input image (or set of images)
\param[in] ox is the 0th-dimension of output
\param[in] oy is the ist-dimension of output
\param[in] wx is the block window size along 0th-dimension between
\param[in] wy is the block window size along 1st-dimension between
\param[in] sx is the stride along 0th-dimension
\param[in] sy is the stride along 1st-dimension
\param[in] px is the padding used along 0th-dimension between [0, wx).
\param[in] py is the padding used along 1st-dimension between [0, wy).
\param[in] is_column specifies the layout for the unwrapped patch. If is_column is false, the rows are treated as patches
\returns an array of images after converting rows or columns into image windows
\ingroup image_func_wrap
*/
AFAPI array wrap(const array& in,
const dim_t ox, const dim_t oy,
const dim_t wx, const dim_t wy,
const dim_t sx, const dim_t sy,
const dim_t px = 0, const dim_t py = 0,
const bool is_column = true);
#endif
#if AF_API_VERSION >= 31
/**
C++ Interface wrapper for summed area tables
\param[in] in is the input array
\returns the summed area table of input image
\ingroup image_func_sat
*/
AFAPI array sat(const array& in);
#endif
#if AF_API_VERSION >= 31
/**
C++ Interface for converting YCbCr to RGB
\param[in] in is an array in the YCbCr colorspace
\param[in] standard specifies the ITU-R BT "xyz" standard which determines the Kb, Kr values
used in colorspace conversion equation
\return array in RGB colorspace
\note \p in must be three dimensional and values should lie in the range [0,1]
\ingroup image_func_ycbcr2rgb
*/
AFAPI array ycbcr2rgb(const array& in, const YCCStd standard=AF_YCC_601);
#endif
#if AF_API_VERSION >= 31
/**
C++ Interface for converting RGB to YCbCr
\param[in] in is an array in the RGB colorspace
\param[in] standard specifies the ITU-R BT "xyz" standard which determines the Kb, Kr values
used in colorspace conversion equation
\return array in YCbCr colorspace
\note \p in must be three dimensional and values should lie in the range [0,1]
\ingroup image_func_rgb2ycbcr
*/
AFAPI array rgb2ycbcr(const array& in, const YCCStd standard=AF_YCC_601);
#endif
}
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
C Interface for calculating the gradients
\param[out] dx the gradient along first dimension
\param[out] dy the gradient along second dimension
\param[in] in is the input array
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\ingroup calc_func_grad
*/
AFAPI af_err af_gradient(af_array *dx, af_array *dy, const af_array in);
/**
C Interface for loading an image
\param[out] out will contain the image
\param[in] filename is name of file to be loaded
\param[in] isColor boolean denoting if the image should be loaded as 1 channel or 3 channel
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\ingroup imageio_func_load
*/
AFAPI af_err af_load_image(af_array *out, const char* filename, const bool isColor);
/**
C Interface for saving an image
\param[in] filename is name of file to be loaded
\param[in] in is the arrayfire array to be saved as an image
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\ingroup imageio_func_save
*/
AFAPI af_err af_save_image(const char* filename, const af_array in);
#if AF_API_VERSION >= 31
/**
C Interface for loading an image from memory
\param[out] out is an array that will contain the image
\param[in] ptr is the FIMEMORY pointer created by either saveImageMem function, the
af_save_image_memory function, or the FreeImage_OpenMemory API.
\return \ref AF_SUCCESS if successful
\ingroup imagemem_func_load
*/
AFAPI af_err af_load_image_memory(af_array *out, const void* ptr);
#endif
#if AF_API_VERSION >= 31
/**
C Interface for saving an image to memory using FreeImage
\param[out] ptr is the FIMEMORY pointer created by FreeImage.
\param[in] in is the arrayfire array to be saved as an image
\param[in] format is the type of image to create in memory. The enum borrows from
the FREE_IMAGE_FORMAT enum of FreeImage. Other values not included in af_image_format
but included in FREE_IMAGE_FORMAT can also be passed to this function.
\return \ref AF_SUCCESS if successful.
\ingroup imagemem_func_save
*/
AFAPI af_err af_save_image_memory(void** ptr, const af_array in, const af_image_format format);
#endif
#if AF_API_VERSION >= 31
/**
C Interface for deleting an image from memory
\param[in] ptr is the FIMEMORY pointer created by either saveImageMem function, the
af_save_image_memory function, or the FreeImage_OpenMemory API.
\return \ref AF_SUCCESS if successful
\ingroup imagemem_func_delete
*/
AFAPI af_err af_delete_image_memory(void* ptr);
#endif
#if AF_API_VERSION >= 32
/**
C Interface for loading an image as is original type
This load image function allows you to load images as u8, u16 or f32
depending on the type of input image as shown by the table below.
Bits per Color (Gray/RGB/RGBA Bits Per Pixel) | Array Type | Range
-----------------------------------------------|-------------|---------------
8 ( 8/24/32 BPP) | u8 | 0 - 255
16 (16/48/64 BPP) | u16 | 0 - 65535
32 (32/96/128 BPP) | f32 | 0 - 1
\param[out] out contains them image
\param[in] filename is name of file to be loaded
\return \ref AF_SUCCESS if successful
\ingroup imageio_func_load
*/
AFAPI af_err af_load_image_native(af_array *out, const char* filename);
#endif
#if AF_API_VERSION >= 32
/**
C Interface for saving an image without modifications
This function only accepts u8, u16, f32 arrays. These arrays are saved to
images without any modifications.
You must also note that note all image type support 16 or 32 bit images.
The best options for 16 bit images are PNG, PPM and TIFF.
The best option for 32 bit images is TIFF.
These allow lossless storage.
The images stored have the following properties:
Array Type | Bits per Color (Gray/RGB/RGBA Bits Per Pixel) | Range
-------------|-----------------------------------------------|---------------
u8 | 8 ( 8/24/32 BPP) | 0 - 255
u16 | 16 (16/48/64 BPP) | 0 - 65535
f32 | 32 (32/96/128 BPP) | 0 - 1
\param[in] filename is name of file to be saved
\param[in] in is the array to be saved. Should be u8 for saving 8-bit image,
u16 for 16-bit image, and f32 for 32-bit image.
\return \ref AF_SUCCESS if successful
\ingroup imageio_func_save
*/
AFAPI af_err af_save_image_native(const char* filename, const af_array in);
#endif
/**
C Interface for resizing an image to specified dimensions
\param[out] out will contain the resized image of specified by \p odim0 and \p odim1
\param[in] in is input image
\param[in] odim0 is the size for the first output dimension
\param[in] odim1 is the size for the second output dimension
\param[in] method is the interpolation type (Nearest by default)
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\ingroup transform_func_resize
*/
AFAPI af_err af_resize(af_array *out, const af_array in, const dim_t odim0, const dim_t odim1, const af_interp_type method);
/**
C Interface for transforming an image
\param[out] out will contain the transformed image
\param[in] in is input image
\param[in] transform is transformation matrix
\param[in] odim0 is the first output dimension
\param[in] odim1 is the second output dimension
\param[in] method is the interpolation type (Nearest by default)
\param[in] inverse if true applies inverse transform, if false applies forward transoform
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\ingroup transform_func_transform
*/
AFAPI af_err af_transform(af_array *out, const af_array in, const af_array transform,
const dim_t odim0, const dim_t odim1,
const af_interp_type method, const bool inverse);
/**
C Interface for rotating an image
\param[out] out will contain the image \p in rotated by \p theta
\param[in] in is input image
\param[in] theta is the degree (in radians) by which the input is rotated
\param[in] crop if true the output is cropped original dimensions. If false the output dimensions scale based on \p theta
\param[in] method is the interpolation type (Nearest by default)
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\ingroup transform_func_rotate
*/
AFAPI af_err af_rotate(af_array *out, const af_array in, const float theta,
const bool crop, const af_interp_type method);
/**
C Interface for translate an image
\param[out] out will contain the translated image
\param[in] in is input image
\param[in] trans0 is amount by which the first dimension is translated
\param[in] trans1 is amount by which the second dimension is translated
\param[in] odim0 is the first output dimension
\param[in] odim1 is the second output dimension
\param[in] method is the interpolation type (Nearest by default)
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\ingroup transform_func_translate
*/
AFAPI af_err af_translate(af_array *out, const af_array in, const float trans0, const float trans1,
const dim_t odim0, const dim_t odim1, const af_interp_type method);
/**
C Interface for scaling an image
\param[out] out will contain the scaled image
\param[in] in is input image
\param[in] scale0 is amount by which the first dimension is scaled
\param[in] scale1 is amount by which the second dimension is scaled
\param[in] odim0 is the first output dimension
\param[in] odim1 is the second output dimension
\param[in] method is the interpolation type (Nearest by default)
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\ingroup transform_func_scale
*/
AFAPI af_err af_scale(af_array *out, const af_array in, const float scale0, const float scale1,
const dim_t odim0, const dim_t odim1, const af_interp_type method);
/**
C Interface for skewing an image
\param[out] out will contain the skewed image
\param[in] in is input image
\param[in] skew0 is amount by which the first dimension is skewed
\param[in] skew1 is amount by which the second dimension is skewed
\param[in] odim0 is the first output dimension
\param[in] odim1 is the second output dimension
\param[in] inverse if true applies inverse transform, if false applies forward transoform
\param[in] method is the interpolation type (Nearest by default)
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\ingroup transform_func_skew
*/
AFAPI af_err af_skew(af_array *out, const af_array in, const float skew0, const float skew1,
const dim_t odim0, const dim_t odim1, const af_interp_type method,
const bool inverse);
/**
C Interface for histogram
\param[out] out (type u32) is the histogram for input array in
\param[in] in is the input array
\param[in] nbins Number of bins to populate between min and max
\param[in] minval minimum bin value (accumulates -inf to min)
\param[in] maxval minimum bin value (accumulates max to +inf)
\return \ref AF_SUCCESS if the histogram is successfully created,
otherwise an appropriate error code is returned.
\ingroup image_func_histogram
*/
AFAPI af_err af_histogram(af_array *out, const af_array in, const unsigned nbins, const double minval, const double maxval);
/**
C Interface for image dilation (max filter)
\param[out] out array is the dilated image
\param[in] in array is the input image
\param[in] mask is the neighborhood window
\return \ref AF_SUCCESS if the dilated successfully,
otherwise an appropriate error code is returned.
\note if \p mask is all ones, this function behaves like max filter
\ingroup image_func_dilate
*/
AFAPI af_err af_dilate(af_array *out, const af_array in, const af_array mask);
/**
C Interface for 3d image dilation
\param[out] out array is the dilated volume
\param[in] in array is the input volume
\param[in] mask is the neighborhood delta volume
\return \ref AF_SUCCESS if the dilated successfully,
otherwise an appropriate error code is returned.
\ingroup image_func_dilate3d
*/
AFAPI af_err af_dilate3(af_array *out, const af_array in, const af_array mask);
/**
C Interface for image erosion (min filter)
\param[out] out array is the eroded image
\param[in] in array is the input image
\param[in] mask is the neighborhood window
\return \ref AF_SUCCESS if the eroded successfully,
otherwise an appropriate error code is returned.
\note if \p mask is all ones, this function behaves like min filter
\ingroup image_func_erode
*/
AFAPI af_err af_erode(af_array *out, const af_array in, const af_array mask);
/**
C Interface for 3D image erosion
\param[out] out array is the eroded volume
\param[in] in array is the input volume
\param[in] mask is the neighborhood delta volume
\return \ref AF_SUCCESS if the eroded successfully,
otherwise an appropriate error code is returned.
\ingroup image_func_erode3d
*/
AFAPI af_err af_erode3(af_array *out, const af_array in, const af_array mask);
/**
C Interface for bilateral filter
\param[out] out array is the processed image
\param[in] in array is the input image
\param[in] spatial_sigma is the spatial variance parameter that decides the filter window
\param[in] chromatic_sigma is the chromatic variance parameter
\param[in] isColor indicates if the input \p in is color image or grayscale
\return \ref AF_SUCCESS if the filter is applied successfully,
otherwise an appropriate error code is returned.
\ingroup image_func_bilateral
*/
AFAPI af_err af_bilateral(af_array *out, const af_array in, const float spatial_sigma, const float chromatic_sigma, const bool isColor);
/**
C Interface for mean shift
\param[out] out array is the processed image
\param[in] in array is the input image
\param[in] spatial_sigma is the spatial variance parameter that decides the filter window
\param[in] chromatic_sigma is the chromatic variance parameter
\param[in] iter is the number of iterations filter operation is performed
\param[in] is_color indicates if the input \p in is color image or grayscale
\return \ref AF_SUCCESS if the filter is applied successfully,
otherwise an appropriate error code is returned.
\ingroup image_func_mean_shift
*/
AFAPI af_err af_mean_shift(af_array *out, const af_array in, const float spatial_sigma, const float chromatic_sigma, const unsigned iter, const bool is_color);
/**
C Interface for median filter
\param[out] out array is the processed image
\param[in] in array is the input image
\param[in] wind_length is the kernel height
\param[in] wind_width is the kernel width
\param[in] edge_pad value will decide what happens to border when running
filter in their neighborhood. It takes one of the values [\ref AF_PAD_ZERO | \ref AF_PAD_SYM]
\return \ref AF_SUCCESS if the median filter is applied successfully,
otherwise an appropriate error code is returned.
\ingroup image_func_medfilt
*/
AFAPI af_err af_medfilt(af_array *out, const af_array in, const dim_t wind_length, const dim_t wind_width, const af_border_type edge_pad);
/**
C Interface for minimum filter
\param[out] out array is the processed image
\param[in] in array is the input image
\param[in] wind_length is the kernel height
\param[in] wind_width is the kernel width
\param[in] edge_pad value will decide what happens to border when running
filter in their neighborhood. It takes one of the values [\ref AF_PAD_ZERO | \ref AF_PAD_SYM]
\return \ref AF_SUCCESS if the minimum filter is applied successfully,
otherwise an appropriate error code is returned.
\ingroup image_func_minfilt
*/
AFAPI af_err af_minfilt(af_array *out, const af_array in, const dim_t wind_length, const dim_t wind_width, const af_border_type edge_pad);
/**
C Interface for maximum filter
\param[out] out array is the processed image
\param[in] in array is the input image
\param[in] wind_length is the kernel height
\param[in] wind_width is the kernel width
\param[in] edge_pad value will decide what happens to border when running
filter in their neighborhood. It takes one of the values [\ref AF_PAD_ZERO | \ref AF_PAD_SYM]
\return \ref AF_SUCCESS if the maximum filter is applied successfully,
otherwise an appropriate error code is returned.
\ingroup image_func_maxfilt
*/
AFAPI af_err af_maxfilt(af_array *out, const af_array in, const dim_t wind_length, const dim_t wind_width, const af_border_type edge_pad);
/**
C Interface for regions in an image
\param[out] out array will have labels indicating different regions
\param[in] in array should be binary image of type \ref b8
\param[in] connectivity can take one of the following [\ref AF_CONNECTIVITY_4 | \ref AF_CONNECTIVITY_8]
\param[in] ty is type of output array
\return \ref AF_SUCCESS if the regions are identified successfully,
otherwise an appropriate error code is returned.
\ingroup image_func_regions
*/
AFAPI af_err af_regions(af_array *out, const af_array in, const af_connectivity connectivity, const af_dtype ty);
/**
C Interface for getting sobel gradients
\param[out] dx is derivative along horizontal direction
\param[out] dy is derivative along vertical direction
\param[in] img is an array with image data
\param[in] ker_size sobel kernel size or window size
\return \ref AF_SUCCESS if sobel derivatives are computed successfully,
otherwise an appropriate error code is returned.
\note If \p img is 3d array, a batch operation will be performed.
\ingroup image_func_sobel
*/
AFAPI af_err af_sobel_operator(af_array *dx, af_array *dy, const af_array img, const unsigned ker_size);
/**
C Interface for converting RGB to gray
\param[out] out is an array in target color space
\param[in] in is an array in the RGB color space
\param[in] rPercent is percentage of red channel value contributing to grayscale intensity
\param[in] gPercent is percentage of green channel value contributing to grayscale intensity
\param[in] bPercent is percentage of blue channel value contributing to grayscale intensity
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\note \p in must be three dimensional for RGB to Grayscale conversion.
\ingroup image_func_rgb2gray
*/
AFAPI af_err af_rgb2gray(af_array* out, const af_array in, const float rPercent, const float gPercent, const float bPercent);
/**
C Interface for converting gray to RGB
\param[out] out is an array in target color space
\param[in] in is an array in the Grayscale color space
\param[in] rFactor is percentage of intensity value contributing to red channel
\param[in] gFactor is percentage of intensity value contributing to green channel
\param[in] bFactor is percentage of intensity value contributing to blue channel
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\note \p in must be two dimensional for Grayscale to RGB conversion.
\ingroup image_func_gray2rgb
*/
AFAPI af_err af_gray2rgb(af_array* out, const af_array in, const float rFactor, const float gFactor, const float bFactor);
/**
C Interface for histogram equalization
\param[out] out is an array with data that has histogram approximately equal to histogram
\param[in] in is the input array, non-normalized input (!! assumes values [0-255] !!)
\param[in] hist target histogram to approximate in output (based on number of bins)
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\note \p in must be two dimensional.
\ingroup image_func_histequal
*/
AFAPI af_err af_hist_equal(af_array *out, const af_array in, const af_array hist);
/**
C Interface generating gaussian kernels
\param[out] out is an array with values generated using gaussian function
\param[in] rows number of rows of the gaussian kernel
\param[in] cols number of columns of the gaussian kernel
\param[in] sigma_r (default 0) (calculated internally as 0.25 * rows + 0.75)
\param[in] sigma_c (default 0) (calculated internally as 0.25 * cols + 0.75)
\return \ref AF_SUCCESS if gaussian distribution values are generated successfully,
otherwise an appropriate error code is returned.
\ingroup image_func_gauss
*/
AFAPI af_err af_gaussian_kernel(af_array *out,
const int rows, const int cols,
const double sigma_r, const double sigma_c);
/**
C Interface for converting HSV to RGB
\param[out] out is an array in the RGB color space
\param[in] in is an array in the HSV color space
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\note \p in must be three dimensional
\ingroup image_func_hsv2rgb
*/
AFAPI af_err af_hsv2rgb(af_array* out, const af_array in);
/**
C Interface for converting RGB to HSV
\param[out] out is an array in the HSV color space
\param[in] in is an array in the RGB color space
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\note \p in must be three dimensional
\ingroup image_func_rgb2hsv
*/
AFAPI af_err af_rgb2hsv(af_array* out, const af_array in);
/**
C Interface wrapper for color space conversion
\param[out] out is an array in target color space
\param[in] image is the input array
\param[in] to is the target array color space \param[in]
from is the input array color space
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code
is returned.
\note \p image must be 3 dimensional for \ref AF_HSV to \ref AF_RGB, \ref
AF_RGB to \ref AF_HSV, & \ref AF_RGB to \ref AF_GRAY transformations.
For \ref AF_GRAY to \ref AF_RGB transformation, 2D array is expected.
\ingroup image_func_colorspace
*/
AFAPI af_err af_color_space(af_array *out, const af_array image, const af_cspace_t to, const af_cspace_t from);
#if AF_API_VERSION >= 31
/**
C Interface wrapper for unwrap
\param[out] out is an array with image blocks as rows or columns.
\param[in] in is the input image (or set of images)
\param[in] wx is the block window size along 0th-dimension between [1, input.dims[0] + px]
\param[in] wy is the block window size along 1st-dimension between [1, input.dims[1] + py]
\param[in] sx is the stride along 0th-dimension
\param[in] sy is the stride along 1st-dimension
\param[in] px is the padding along 0th-dimension between [0, wx). Padding is applied both before and after.
\param[in] py is the padding along 1st-dimension between [0, wy). Padding is applied both before and after.
\param[in] is_column specifies the layout for the unwrapped patch. If is_column is false, the unrapped patch is laid out as a row.
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\ingroup image_func_unwrap
*/
AFAPI af_err af_unwrap(af_array *out, const af_array in, const dim_t wx, const dim_t wy,
const dim_t sx, const dim_t sy, const dim_t px, const dim_t py,
const bool is_column);
#endif
#if AF_API_VERSION >= 31
/**
C Interface wrapper for wrap
\param[out] out is an array after converting
\param[in] in is the input array
\param[in] ox is the 0th-dimension of \p out
\param[in] oy is the ist-dimension of \p out
\param[in] wx is the block window size along 0th-dimension between
\param[in] wy is the block window size along 1st-dimension between
\param[in] sx is the stride along 0th-dimension
\param[in] sy is the stride along 1st-dimension
\param[in] px is the padding used along 0th-dimension between [0, wx).
\param[in] py is the padding used along 1st-dimension between [0, wy).
\param[in] is_column specifies the layout for the unwrapped patch. If is_column is false, the rows are treated as the patches
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\note The padding used in \ref af_unwrap is calculated from the provided parameters
\ingroup image_func_wrap
*/
AFAPI af_err af_wrap(af_array *out,
const af_array in,
const dim_t ox, const dim_t oy,
const dim_t wx, const dim_t wy,
const dim_t sx, const dim_t sy,
const dim_t px, const dim_t py,
const bool is_column);
#endif
#if AF_API_VERSION >= 31
/**
C Interface wrapper for summed area tables
\param[out] out is the summed area table on input image(s)
\param[in] in is the input array
\return \ref AF_SUCCESS if the sat computation is successful,
otherwise an appropriate error code is returned.
\ingroup image_func_sat
*/
AFAPI af_err af_sat(af_array *out, const af_array in);
#endif
#if AF_API_VERSION >= 31
/**
C Interface for converting YCbCr to RGB
\param[out] out is an array in the RGB color space
\param[in] in is an array in the YCbCr color space
\param[in] standard specifies the ITU-R BT "xyz" standard which determines the Kb, Kr values
used in colorspace conversion equation
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\note \p in must be three dimensional and values should lie in the range [0,1]
\ingroup image_func_ycbcr2rgb
*/
AFAPI af_err af_ycbcr2rgb(af_array* out, const af_array in, const af_ycc_std standard);
#endif
#if AF_API_VERSION >= 31
/**
C Interface for converting RGB to YCbCr
\param[out] out is an array in the YCbCr color space
\param[in] in is an array in the RGB color space
\param[in] standard specifies the ITU-R BT "xyz" standard which determines the Kb, Kr values
used in colorspace conversion equation
\return \ref AF_SUCCESS if the color transformation is successful,
otherwise an appropriate error code is returned.
\note \p in must be three dimensional and values should lie in the range [0,1]
\ingroup image_func_rgb2ycbcr
*/
AFAPI af_err af_rgb2ycbcr(af_array* out, const af_array in, const af_ycc_std standard);
#endif
#ifdef __cplusplus
}
#endif
|