/usr/include/af/data.h is in libarrayfire-dev 3.2.2+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 | /*******************************************************
* Copyright (c) 2014, ArrayFire
* All rights reserved.
*
* This file is distributed under 3-clause BSD license.
* The complete license agreement can be obtained at:
* http://arrayfire.com/licenses/BSD-3-Clause
********************************************************/
#pragma once
#include <af/defines.h>
#ifdef __cplusplus
#include <af/dim4.hpp>
#include <af/traits.hpp>
namespace af
{
class array;
/**
\param[in] val is the value of each element of the array be genrated
\param[in] dims is the dimensions of the array to be generated
\param[in] ty is the type of the array
\return array of size \p dims
\ingroup data_func_constant
*/
template<typename T>
array constant(T val, const dim4 &dims, const dtype ty=(af_dtype)dtype_traits<T>::ctype);
/**
\param[in] val is the value of each element of the array to be generated
\param[in] d0 is the size of the array to be generated
\param[in] ty is the type of the array
\return array of size \p d0
\ingroup data_func_constant
*/
template<typename T>
array constant(T val, const dim_t d0, const af_dtype ty=(af_dtype)dtype_traits<T>::ctype);
/**
\param[in] val is the value of each element of the array to be generated
\param[in] d0 is the number of rows of the array to be generated
\param[in] d1 is the number of columns of the array to be generated
\param[in] ty is the type of the array
\return array of size \p d0 x d1
\ingroup data_func_constant
*/
template<typename T>
array constant(T val, const dim_t d0, const dim_t d1, const af_dtype ty=(af_dtype)dtype_traits<T>::ctype);
/**
\param[in] val is the value of each element of the array to be generated
\param[in] d0 is the size of the 1st dimension of the array to be generated
\param[in] d1 is the size of the 2nd dimension of the array to be generated
\param[in] d2 is the size of the 3rd dimension of the array to be generated
\param[in] ty is the type of the array
\return array of size \p d0 x d1 x d2
\ingroup data_func_constant
*/
template<typename T>
array constant(T val, const dim_t d0, const dim_t d1, const dim_t d2, const af_dtype ty=(af_dtype)dtype_traits<T>::ctype);
/**
\param[in] val is the value of each element of the array to be generated
\param[in] d0 is the size of the 1st dimension of the array to be generated
\param[in] d1 is the size of the 2nd dimension of the array to be generated
\param[in] d2 is the size of the 3rd dimension of the array to be generated
\param[in] d3 is the size of the 4rd dimension of the array to be generated
\param[in] ty is the type of the array
\return array of size \p d0 x d1 x d2 x d3
\ingroup data_func_constant
*/
template<typename T>
array constant(T val, const dim_t d0, const dim_t d1, const dim_t d2, const dim_t d3, const af_dtype ty=(af_dtype)dtype_traits<T>::ctype);
/**
\param[in] dims is the dimensions of the array to be generated
\param[in] ty is the type of the array
\return array of size \p dims
\ingroup data_func_randu
*/
AFAPI array randu(const dim4 &dims, const dtype ty=f32);
/**
\param[in] d0 is the size of the first dimension
\param[in] ty is the type of the array
\return array of size \p d0
\ingroup data_func_randu
*/
AFAPI array randu(const dim_t d0, const dtype ty=f32);
/**
\param[in] d0 is the size of the first dimension
\param[in] d1 is the size of the second dimension
\param[in] ty is the type of the array
\return array of size \p d0 x \p d1
\ingroup data_func_randu
*/
AFAPI array randu(const dim_t d0,
const dim_t d1, const dtype ty=f32);
/**
\param[in] d0 is the size of the first dimension
\param[in] d1 is the size of the second dimension
\param[in] d2 is the size of the third dimension
\param[in] ty is the type of the array
\return array of size \p d0 x \p d1 x \p d2
\ingroup data_func_randu
*/
AFAPI array randu(const dim_t d0,
const dim_t d1, const dim_t d2, const dtype ty=f32);
/**
\param[in] d0 is the size of the first dimension
\param[in] d1 is the size of the second dimension
\param[in] d2 is the size of the third dimension
\param[in] d3 is the size of the fourth dimension
\param[in] ty is the type of the array
\return array of size \p d0 x \p d1 x \p d2 x \p d3
\ingroup data_func_randu
*/
AFAPI array randu(const dim_t d0,
const dim_t d1, const dim_t d2,
const dim_t d3, const dtype ty=f32);
/**
\param[in] dims is the dimensions of the array to be generated
\param[in] ty is the type of the array
\return array of size \p dims
\ingroup data_func_randn
*/
AFAPI array randn(const dim4 &dims, const dtype ty=f32);
/**
\param[in] d0 is the size of the first dimension
\param[in] ty is the type of the array
\return array of size \p d0
\ingroup data_func_randn
*/
AFAPI array randn(const dim_t d0, const dtype ty=f32);
/**
\param[in] d0 is the size of the first dimension
\param[in] d1 is the size of the second dimension
\param[in] ty is the type of the array
\return array of size \p d0 x \p d1
\ingroup data_func_randn
*/
AFAPI array randn(const dim_t d0,
const dim_t d1, const dtype ty=f32);
/**
\param[in] d0 is the size of the first dimension
\param[in] d1 is the size of the second dimension
\param[in] d2 is the size of the third dimension
\param[in] ty is the type of the array
\return array of size \p d0 x \p d1 x \p d2
\ingroup data_func_randn
*/
AFAPI array randn(const dim_t d0,
const dim_t d1, const dim_t d2, const dtype ty=f32);
/**
\param[in] d0 is the size of the first dimension
\param[in] d1 is the size of the second dimension
\param[in] d2 is the size of the third dimension
\param[in] d3 is the size of the fourth dimension
\param[in] ty is the type of the array
\return array of size \p d0 x \p d1 x \p d2 x \p d3
\ingroup data_func_randn
*/
AFAPI array randn(const dim_t d0,
const dim_t d1, const dim_t d2,
const dim_t d3, const dtype ty=f32);
/**
\param[in] seed is a 64 bit unsigned integer
\ingroup data_func_setseed
*/
AFAPI void setSeed(const uintl seed);
/**
\returns seed which is a 64 bit unsigned integer
\ingroup data_func_getseed
*/
AFAPI uintl getSeed();
/**
\param[in] dims is dim4 for size of all dimensions
\param[in] ty is the type of array to generate
\returns an identity array of specified dimension and type
\ingroup data_func_identity
*/
AFAPI array identity(const dim4 &dims, const dtype ty=f32);
/**
\param[in] d0 is size of first dimension
\param[in] ty is the type of array to generate
\returns an identity array of specified dimension and type
\ingroup data_func_identity
*/
AFAPI array identity(const dim_t d0, const dtype ty=f32);
/**
\param[in] d0 is size of first dimension
\param[in] d1 is size of second dimension
\param[in] ty is the type of array to generate
\returns an identity array of specified dimension and type
\ingroup data_func_identity
*/
AFAPI array identity(const dim_t d0, const dim_t d1, const dtype ty=f32);
/**
\param[in] d0 is size of first dimension
\param[in] d1 is size of second dimension
\param[in] d2 is size of third dimension
\param[in] ty is the type of array to generate
\returns an identity array of specified dimension and type
\ingroup data_func_identity
*/
AFAPI array identity(const dim_t d0, const dim_t d1,
const dim_t d2, const dtype ty=f32);
/**
\param[in] d0 is size of first dimension
\param[in] d1 is size of second dimension
\param[in] d2 is size of third dimension
\param[in] d3 is size of fourth dimension
\param[in] ty is the type of array to generate
\returns an identity array of specified dimension and type
\ingroup data_func_identity
*/
AFAPI array identity(const dim_t d0, const dim_t d1,
const dim_t d2, const dim_t d3, const dtype ty=f32);
/**
\param[in] dims is dim4 for size of all dimensions
\param[in] seq_dim is dimesion along which [0, dim[seq_dim] - 1] is generated
\param[in] ty is the type of array to generate
\returns an array of integral range specified dimension and type
\ingroup data_func_range
*/
AFAPI array range(const dim4 &dims, const int seq_dim = -1, const dtype ty=f32);
/**
\param[in] d0 is size of first dimension
\param[in] d1 is size of second dimension
\param[in] d2 is size of third dimension
\param[in] d3 is size of fourth dimension
\param[in] seq_dim is dimesion along which [0, dim[seq_dim] - 1] is generated
\param[in] ty is the type of array to generate
\returns an array of integral range specified dimension and type
\ingroup data_func_range
*/
AFAPI array range(const dim_t d0, const dim_t d1 = 1, const dim_t d2 = 1,
const dim_t d3 = 1, const int seq_dim = -1, const dtype ty=f32);
/**
\param[in] dims is dim4 for unit dimensions of the sequence to be generated
\param[in] tile_dims is dim4 for the number of repetitions of the unit dimensions
\param[in] ty is the type of array to generate
\returns an array of integral range specified dimension and type
\ingroup data_func_iota
*/
AFAPI array iota(const dim4 &dims, const dim4 &tile_dims = dim4(1), const dtype ty=f32);
/**
\param[in] in is the input array
\param[in] num is the diagonal index
\param[in] extract when true returns an array containing diagonal of tha matrix
and when false returns a matrix with \p in as diagonal
\returns an array with either the diagonal or the matrix based on \p extract
\ingroup data_func_diag
*/
AFAPI array diag(const array &in, const int num = 0, const bool extract = true);
/**
\brief Join 2 arrays along \p dim
\param[in] dim is the dimension along which join occurs
\param[in] first is the first input array
\param[in] second is the second input array
\return the array that joins input arrays along the given dimension
\ingroup manip_func_join
*/
AFAPI array join(const int dim, const array &first, const array &second);
/**
\brief Join 3 arrays along \p dim
\param[in] dim is the dimension along which join occurs
\param[in] first is the first input array
\param[in] second is the second input array
\param[in] third is the third input array
\return the array that joins input arrays along the given dimension
\ingroup manip_func_join
*/
AFAPI array join(const int dim, const array &first, const array &second, const array &third);
/**
\brief Join 4 arrays along \p dim
\param[in] dim is the dimension along which join occurs
\param[in] first is the first input array
\param[in] second is the second input array
\param[in] third is the third input array
\param[in] fourth is the fourth input array
\return the array that joins input arrays along the given dimension
\ingroup manip_func_join
*/
AFAPI array join(const int dim, const array &first, const array &second,
const array &third, const array &fourth);
/**
\param[in] in is the input array
\param[in] x is the number of times \p in is tiled along first dimension
\param[in] y is the number of times \p in is tiled along second dimension
\param[in] z is the number of times \p in is tiled along third dimension
\param[in] w is the number of times \p in is tiled along fourth dimension
\return the tiled output
\ingroup manip_func_tile
*/
AFAPI array tile(const array &in, const unsigned x, const unsigned y=1,
const unsigned z=1, const unsigned w=1);
/**
\param[in] in is the input array
\param[in] dims dim4 of tile dimensions
\return the tiled output
\ingroup manip_func_tile
*/
AFAPI array tile(const array &in, const dim4 &dims);
/**
\param[in] in is the input array
\param[in] x specifies which dimension should be first
\param[in] y specifies which dimension should be second
\param[in] z specifies which dimension should be third
\param[in] w specifies which dimension should be fourth
\return the reordered output
\ingroup manip_func_reorder
*/
AFAPI array reorder(const array& in, const unsigned x,
const unsigned y=1, const unsigned z=2, const unsigned w=3);
/**
\param[in] in is the input array
\param[in] x specifies the shift along first dimension
\param[in] y specifies the shift along second dimension
\param[in] z specifies the shift along third dimension
\param[in] w specifies the shift along fourth dimension
\return the shifted output
\ingroup manip_func_shift
*/
AFAPI array shift(const array& in, const int x, const int y=0, const int z=0, const int w=0);
/**
\param[in] in is the input array
\param[in] ndims is the number of dimensions
\param[in] dims is the array containing the new dimensions
\return the modded output
\ingroup manip_func_moddims
*/
AFAPI array moddims(const array& in, const unsigned ndims, const dim_t * const dims);
/**
\param[in] in is the input array
\param[in] dims is the new dimensions
\return the modded output
\ingroup manip_func_moddims
*/
AFAPI array moddims(const array& in, const dim4& dims);
/**
\param[in] in is the input array
\param[in] d0 specifies the new size of the first dimension
\param[in] d1 specifies the new size of the second dimension
\param[in] d2 specifies the new size of the third dimension
\param[in] d3 specifies the new size of the fourth dimension
\return the modded array
\ingroup manip_func_moddims
*/
AFAPI array moddims(const array& in, const dim_t d0, const dim_t d1=1, const dim_t d2=1, const dim_t d3=1);
/**
\param[in] in is the input array
\return the flat array
\ingroup manip_func_flat
*/
AFAPI array flat(const array &in);
/**
\param[in] in is the input array
\param[in] dim is the dimensions to flip the array
\return the flipped array
\ingroup manip_func_flip
*/
AFAPI array flip(const array &in, const unsigned dim);
/**
\param[in] in is the input matrix
\param[in] is_unit_diag is a boolean parameter specifying if the diagonal elements should be 1
\return the lower triangle array
\ingroup data_func_lower
*/
AFAPI array lower(const array &in, bool is_unit_diag=false);
/**
\param[in] in is the input matrix
\param[in] is_unit_diag is a boolean parameter specifying if the diagonal elements should be 1
\return the upper triangle matrix
\ingroup data_func_upper
*/
AFAPI array upper(const array &in, bool is_unit_diag=false);
#if AF_API_VERSION >= 31
/**
\param[in] cond is the conditional array
\param[in] a is the array containing elements from the true part of the condition
\param[in] b is the array containing elements from the false part of the condition
\return the output containing elements of \p a when \p cond is true else elements from \p b
\ingroup data_func_select
*/
AFAPI array select(const array &cond, const array &a, const array &b);
#endif
#if AF_API_VERSION >= 31
/**
\param[in] cond is the conditional array
\param[in] a is the array containing elements from the true part of the condition
\param[in] b is a scalar assigned to \p out when \p cond is false
\return the output containing elements of \p a when \p cond is true else the value \p b
\ingroup data_func_select
*/
AFAPI array select(const array &cond, const array &a, const double &b);
#endif
#if AF_API_VERSION >= 31
/**
\param[in] cond is the conditional array
\param[in] a is a scalar assigned to \p out when \p cond is true
\param[in] b is the array containing elements from the false part of the condition
\return the output containing the value \p a when \p cond is true else elements from \p b
\ingroup data_func_select
*/
AFAPI array select(const array &cond, const double &a, const array &b);
#endif
#if AF_API_VERSION >= 31
/**
\param[inout] a is the array whose values are replaced with values from \p b when \p cond is false
\param[in] cond is the conditional array
\param[in] b is the array containing elements which replace elements in \p a when \p cond is false
\ingroup data_func_replace
*/
AFAPI void replace(array &a, const array &cond, const array &b);
#endif
#if AF_API_VERSION >= 31
/**
\param[inout] a is the array whose values are replaced with values from \p b when \p cond is false
\param[in] cond is the conditional array
\param[in] b is value that replaces elements in \p a when \p cond is false
\ingroup data_func_replace
*/
AFAPI void replace(array &a, const array &cond, const double &b);
#endif
/**
@}
*/
}
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
\param[out] arr is the generated array of given type
\param[in] val is the value of each element in the generated array
\param[in] ndims is size of dimension array \p dims
\param[in] dims is the array containing sizes of the dimension
\param[in] type is the type of array to generate
\ingroup data_func_constant
*/
AFAPI af_err af_constant(af_array *arr, const double val, const unsigned ndims, const dim_t * const dims, const af_dtype type);
/**
\param[out] arr is the generated array of type \ref c32 or \ref c64
\param[in] real is the real value of each element in the generated array
\param[in] imag is the imaginary value of each element in the generated array
\param[in] ndims is size of dimension array \p dims
\param[in] dims is the array containing sizes of the dimension
\param[in] type is the type of array to generate
\ingroup data_func_constant
*/
AFAPI af_err af_constant_complex(af_array *arr, const double real, const double imag,
const unsigned ndims, const dim_t * const dims, const af_dtype type);
/**
\param[out] arr is the generated array of type \ref s64
\param[in] val is a complex value of each element in the generated array
\param[in] ndims is size of dimension array \p dims
\param[in] dims is the array containing sizes of the dimension
\ingroup data_func_constant
*/
AFAPI af_err af_constant_long (af_array *arr, const intl val, const unsigned ndims, const dim_t * const dims);
/**
\param[out] arr is the generated array of type \ref u64
\param[in] val is a complex value of each element in the generated array
\param[in] ndims is size of dimension array \p dims
\param[in] dims is the array containing sizes of the dimension
\ingroup data_func_constant
*/
AFAPI af_err af_constant_ulong(af_array *arr, const uintl val, const unsigned ndims, const dim_t * const dims);
/**
@}
*/
/**
\param[out] out is the generated array
\param[in] ndims is size of dimension array \p dims
\param[in] dims is the array containing sizes of the dimension
\param[in] seq_dim is dimension along which [0, dim[seq_dim] - 1] is generated
\param[in] type is the type of array to generate
\ingroup data_func_range
*/
AFAPI af_err af_range(af_array *out, const unsigned ndims, const dim_t * const dims,
const int seq_dim, const af_dtype type);
/**
\param[out] out is the generated array
\param[in] ndims is size of dimension array \p dims
\param[in] dims is the array containing sizes of the dimension
\param[in] t_ndims is size of tile array \p tdims
\param[in] tdims is array containing the number of repetitions of the unit dimensions
\param[in] type is the type of array to generate
\ingroup data_func_iota
*/
AFAPI af_err af_iota(af_array *out, const unsigned ndims, const dim_t * const dims,
const unsigned t_ndims, const dim_t * const tdims, const af_dtype type);
/**
\param[out] out is the generated array
\param[in] ndims is size of dimension array \p dims
\param[in] dims is the array containing sizes of the dimension
\param[in] type is the type of array to generate
\ingroup data_func_randu
*/
AFAPI af_err af_randu(af_array *out, const unsigned ndims, const dim_t * const dims, const af_dtype type);
/**
\param[out] out is the generated array
\param[in] ndims is size of dimension array \p dims
\param[in] dims is the array containing sizes of the dimension
\param[in] type is the type of array to generate
\ingroup data_func_randn
*/
AFAPI af_err af_randn(af_array *out, const unsigned ndims, const dim_t * const dims, const af_dtype type);
/**
\param[in] seed is a 64 bit unsigned integer
\ingroup data_func_setseed
*/
AFAPI af_err af_set_seed(const uintl seed);
/**
\param[out] seed which is a 64 bit unsigned integer
\ingroup data_func_getseed
*/
AFAPI af_err af_get_seed(uintl *seed);
/**
\param[out] out is the generated array
\param[in] ndims is size of dimension array \p dims
\param[in] dims is the array containing sizes of the dimension
\param[in] type is the type of array to generate
\ingroup data_func_identity
*/
AFAPI af_err af_identity(af_array *out, const unsigned ndims, const dim_t * const dims, const af_dtype type);
/**
\param[out] out is the array created from the input array \p in
\param[in] in is the input array which is the diagonal
\param[in] num is the diagonal index
\ingroup data_func_diag
*/
AFAPI af_err af_diag_create(af_array *out, const af_array in, const int num);
/**
\param[out] out is the \p num -th diagonal of \p in
\param[in] in is the input matrix
\param[in] num is the diagonal index
\ingroup data_func_diag
*/
AFAPI af_err af_diag_extract(af_array *out, const af_array in, const int num);
/**
\brief Join 2 arrays along \p dim
\param[out] out is the generated array
\param[in] dim is the dimension along which join occurs
\param[in] first is the first input array
\param[in] second is the second input array
\ingroup manip_func_join
*/
AFAPI af_err af_join(af_array *out, const int dim, const af_array first, const af_array second);
/**
\brief Join many arrays along \p dim
Current limit is set to 10 arrays.
\param[out] out is the generated array
\param[in] dim is the dimension along which join occurs
\param[in] n_arrays number of arrays to join
\param[in] inputs is an array of af_arrays containing handles to the arrays to be joined
\ingroup manip_func_join
*/
AFAPI af_err af_join_many(af_array *out, const int dim, const unsigned n_arrays, const af_array *inputs);
/**
\param[out] out is the generated array
\param[in] in is the input matrix
\param[in] x is the number of times \p in is tiled along first dimension
\param[in] y is the number of times \p in is tiled along second dimension
\param[in] z is the number of times \p in is tiled along third dimension
\param[in] w is the number of times \p in is tiled along fourth dimension
\ingroup manip_func_tile
*/
AFAPI af_err af_tile(af_array *out, const af_array in,
const unsigned x, const unsigned y, const unsigned z, const unsigned w);
/**
\param[out] out is the reordered array
\param[in] in is the input matrix
\param[in] x specifies which dimension should be first
\param[in] y specifies which dimension should be second
\param[in] z specifies which dimension should be third
\param[in] w specifies which dimension should be fourth
\ingroup manip_func_reorder
*/
AFAPI af_err af_reorder(af_array *out, const af_array in,
const unsigned x, const unsigned y, const unsigned z, const unsigned w);
/**
\param[in] out is the shifted array
\param[in] in is the input array
\param[in] x specifies the shift along first dimension
\param[in] y specifies the shift along second dimension
\param[in] z specifies the shift along third dimension
\param[in] w specifies the shift along fourth dimension
\ingroup manip_func_shift
*/
AFAPI af_err af_shift(af_array *out, const af_array in, const int x, const int y, const int z, const int w);
/**
\param[out] out is the modded array
\param[in] in is the input array
\param[in] ndims is the number of dimensions
\param[in] dims is the array containing the new dimensions
\ingroup manip_func_moddims
*/
AFAPI af_err af_moddims(af_array *out, const af_array in, const unsigned ndims, const dim_t * const dims);
/**
\param[out] out is the flat array
\param[in] in is the input array
\ingroup manip_func_flat
*/
AFAPI af_err af_flat(af_array *out, const af_array in);
/**
\param[out] out is the flipped array
\param[in] in is the input array
\param[in] dim is the dimensions to flip the array
\ingroup manip_func_flip
*/
AFAPI af_err af_flip(af_array *out, const af_array in, const unsigned dim);
/**
\param[out] out is the lower traingle matrix
\param[in] in is the input matrix
\param[in] is_unit_diag is a boolean parameter specifying if the diagonal elements should be 1
\ingroup data_func_lower
*/
AFAPI af_err af_lower(af_array *out, const af_array in, bool is_unit_diag);
/**
\param[out] out is the upper triangle matrix
\param[in] in is the input matrix
\param[in] is_unit_diag is a boolean parameter specifying if the diagonal elements should be 1
\ingroup data_func_upper
*/
AFAPI af_err af_upper(af_array *out, const af_array in, bool is_unit_diag);
/**
@}
*/
#if AF_API_VERSION >= 31
/**
\param[out] out is the output containing elements of \p a when \p cond is true else elements from \p b
\param[in] cond is the conditional array
\param[in] a is the array containing elements from the true part of the condition
\param[in] b is the array containing elements from the false part of the condition
\ingroup data_func_select
*/
AFAPI af_err af_select(af_array *out, const af_array cond, const af_array a, const af_array b);
#endif
#if AF_API_VERSION >= 31
/**
\param[out] out is the output containing elements of \p a when \p cond is true else elements from \p b
\param[in] cond is the conditional array
\param[in] a is the array containing elements from the true part of the condition
\param[in] b is a scalar assigned to \p out when \p cond is false
\ingroup data_func_select
*/
AFAPI af_err af_select_scalar_r(af_array *out, const af_array cond, const af_array a, const double b);
#endif
#if AF_API_VERSION >= 31
/**
\param[out] out is the output containing elements of \p a when \p cond is true else elements from \p b
\param[in] cond is the conditional array
\param[in] a is a scalar assigned to \p out when \p cond is true
\param[in] b is the array containing elements from the false part of the condition
\ingroup data_func_select
*/
AFAPI af_err af_select_scalar_l(af_array *out, const af_array cond, const double a, const af_array b);
#endif
#if AF_API_VERSION >= 31
/**
\param[inout] a is the array whose values are replaced by \p b when \p cond is false
\param[in] cond is the conditional array
\param[in] b is the array containing elements that replaces elements of a where \p cond is false
\ingroup data_func_replace
*/
AFAPI af_err af_replace(af_array a, const af_array cond, const af_array b);
#endif
#if AF_API_VERSION >= 31
/**
\param[inout] a is the array whose values are replaced by \p b when \p cond is false
\param[in] cond is the conditional array
\param[in] b is the scalar that replaces the false parts of \p a
\ingroup data_func_replace
*/
AFAPI af_err af_replace_scalar(af_array a, const af_array cond, const double b);
#endif
#ifdef __cplusplus
}
#endif
|