/usr/share/VTKData/Data/Infovis/eg2.isi is in vtkdata 5.8.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
31392
31393
31394
31395
31396
31397
31398
31399
31400
31401
31402
31403
31404
31405
31406
31407
31408
31409
31410
31411
31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
31427
31428
31429
31430
31431
31432
31433
31434
31435
31436
31437
31438
31439
31440
31441
31442
31443
31444
31445
31446
31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479
31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
31501
31502
31503
31504
31505
31506
31507
31508
31509
31510
31511
31512
31513
31514
31515
31516
31517
31518
31519
31520
31521
31522
31523
31524
31525
31526
31527
31528
31529
31530
31531
31532
31533
31534
31535
31536
31537
31538
31539
31540
31541
31542
31543
31544
31545
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573
31574
31575
31576
31577
31578
31579
31580
31581
31582
31583
31584
31585
31586
31587
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
31603
31604
31605
31606
31607
31608
31609
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
31625
31626
31627
31628
31629
31630
31631
31632
31633
31634
31635
31636
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
31661
31662
31663
31664
31665
31666
31667
31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
31703
31704
31705
31706
31707
31708
31709
31710
31711
31712
31713
31714
31715
31716
31717
31718
31719
31720
31721
31722
31723
31724
31725
31726
31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
31737
31738
31739
31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904
31905
31906
31907
31908
31909
31910
31911
31912
31913
31914
31915
31916
31917
31918
31919
31920
31921
31922
31923
31924
31925
31926
31927
31928
31929
31930
31931
31932
31933
31934
31935
31936
31937
31938
31939
31940
31941
31942
31943
31944
31945
31946
31947
31948
31949
31950
31951
31952
31953
31954
31955
31956
31957
31958
31959
31960
31961
31962
31963
31964
31965
31966
31967
31968
31969
31970
31971
31972
31973
31974
31975
31976
31977
31978
31979
31980
31981
31982
31983
31984
31985
31986
31987
31988
31989
31990
31991
31992
31993
31994
31995
31996
31997
31998
31999
32000
32001
32002
32003
32004
32005
32006
32007
32008
32009
32010
32011
32012
32013
32014
32015
32016
32017
32018
32019
32020
32021
32022
32023
32024
32025
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042
32043
32044
32045
32046
32047
32048
32049
32050
32051
32052
32053
32054
32055
32056
32057
32058
32059
32060
32061
32062
32063
32064
32065
32066
32067
32068
32069
32070
32071
32072
32073
32074
32075
32076
32077
32078
32079
32080
32081
32082
32083
32084
32085
32086
32087
32088
32089
32090
32091
32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115
32116
32117
32118
32119
32120
32121
32122
32123
32124
32125
32126
32127
32128
32129
32130
32131
32132
32133
32134
32135
32136
32137
32138
32139
32140
32141
32142
32143
32144
32145
32146
32147
32148
32149
32150
32151
32152
32153
32154
32155
32156
32157
32158
32159
32160
32161
32162
32163
32164
32165
32166
32167
32168
32169
32170
32171
32172
32173
32174
32175
32176
32177
32178
32179
32180
32181
32182
32183
32184
32185
32186
32187
32188
32189
32190
32191
32192
32193
32194
32195
32196
32197
32198
32199
32200
32201
32202
32203
32204
32205
32206
32207
32208
32209
32210
32211
32212
32213
32214
32215
32216
32217
32218
32219
32220
32221
32222
32223
32224
32225
32226
32227
32228
32229
32230
32231
32232
32233
32234
32235
32236
32237
32238
32239
32240
32241
32242
32243
32244
32245
32246
32247
32248
32249
32250
32251
32252
32253
32254
32255
32256
32257
32258
32259
32260
32261
32262
32263
32264
32265
32266
32267
32268
32269
32270
32271
32272
32273
32274
32275
32276
32277
32278
32279
32280
32281
32282
32283
32284
32285
32286
32287
32288
32289
32290
32291
32292
32293
32294
32295
32296
32297
32298
32299
32300
32301
32302
32303
32304
32305
32306
32307
32308
32309
32310
32311
32312
32313
32314
32315
32316
32317
32318
32319
32320
32321
32322
32323
32324
32325
32326
32327
32328
32329
32330
32331
32332
32333
32334
32335
32336
32337
32338
32339
32340
32341
32342
32343
32344
32345
32346
32347
32348
32349
32350
32351
32352
32353
32354
32355
32356
32357
32358
32359
32360
32361
32362
32363
32364
32365
32366
32367
32368
32369
32370
32371
32372
32373
32374
32375
32376
32377
32378
32379
32380
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
32396
32397
32398
32399
32400
32401
32402
32403
32404
32405
32406
32407
32408
32409
32410
32411
32412
32413
32414
32415
32416
32417
32418
32419
32420
32421
32422
32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438
32439
32440
32441
32442
32443
32444
32445
32446
32447
32448
32449
32450
32451
32452
32453
32454
32455
32456
32457
32458
32459
32460
32461
32462
32463
32464
32465
32466
32467
32468
32469
32470
32471
32472
32473
32474
32475
32476
32477
32478
32479
32480
32481
32482
32483
32484
32485
32486
32487
32488
32489
32490
32491
32492
32493
32494
32495
32496
32497
32498
32499
32500
32501
32502
32503
32504
32505
32506
32507
32508
32509
32510
32511
32512
32513
32514
32515
32516
32517
32518
32519
32520
32521
32522
32523
32524
32525
32526
32527
32528
32529
32530
32531
32532
32533
32534
32535
32536
32537
32538
32539
32540
32541
32542
32543
32544
32545
32546
32547
32548
32549
32550
32551
32552
32553
32554
32555
32556
32557
32558
32559
32560
32561
32562
32563
32564
32565
32566
32567
32568
32569
32570
32571
32572
32573
32574
32575
32576
32577
32578
32579
32580
32581
32582
32583
32584
32585
32586
32587
32588
32589
32590
32591
32592
32593
32594
32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615
32616
32617
32618
32619
32620
32621
32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633
32634
32635
32636
32637
32638
32639
32640
32641
32642
32643
32644
32645
32646
32647
32648
32649
32650
32651
32652
32653
32654
32655
32656
32657
32658
32659
32660
32661
32662
32663
32664
32665
32666
32667
32668
32669
32670
32671
32672
32673
32674
32675
32676
32677
32678
32679
32680
32681
32682
32683
32684
32685
32686
32687
32688
32689
32690
32691
32692
32693
32694
32695
32696
32697
32698
32699
32700
32701
32702
32703
32704
32705
32706
32707
32708
32709
32710
32711
32712
32713
32714
32715
32716
32717
32718
32719
32720
32721
32722
32723
32724
32725
32726
32727
32728
32729
32730
32731
32732
32733
32734
32735
32736
32737
32738
32739
32740
32741
32742
32743
32744
32745
32746
32747
32748
32749
32750
32751
32752
32753
32754
32755
32756
32757
32758
32759
32760
32761
32762
32763
32764
32765
32766
32767
32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792
32793
32794
32795
32796
32797
32798
32799
32800
32801
32802
32803
32804
32805
32806
32807
32808
32809
32810
32811
32812
32813
32814
32815
32816
32817
32818
32819
32820
32821
32822
32823
32824
32825
32826
32827
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
32839
32840
32841
32842
32843
32844
32845
32846
32847
32848
32849
32850
32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877
32878
32879
32880
32881
32882
32883
32884
32885
32886
32887
32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
32902
32903
32904
32905
32906
32907
32908
32909
32910
32911
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
32930
32931
32932
32933
32934
32935
32936
32937
32938
32939
32940
32941
32942
32943
32944
32945
32946
32947
32948
32949
32950
32951
32952
32953
32954
32955
32956
32957
32958
32959
32960
32961
32962
32963
32964
32965
32966
32967
32968
32969
32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985
32986
32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003
33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
33046
33047
33048
33049
33050
33051
33052
33053
33054
33055
33056
33057
33058
33059
33060
33061
33062
33063
33064
33065
33066
33067
33068
33069
33070
33071
33072
33073
33074
33075
33076
33077
33078
33079
33080
33081
33082
33083
33084
33085
33086
33087
33088
33089
33090
33091
33092
33093
33094
33095
33096
33097
33098
33099
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
33120
33121
33122
33123
33124
33125
33126
33127
33128
33129
33130
33131
33132
33133
33134
33135
33136
33137
33138
33139
33140
33141
33142
33143
33144
33145
33146
33147
33148
33149
33150
33151
33152
33153
33154
33155
33156
33157
33158
33159
33160
33161
33162
33163
33164
33165
33166
33167
33168
33169
33170
33171
33172
33173
33174
33175
33176
33177
33178
33179
33180
33181
33182
33183
33184
33185
33186
33187
33188
33189
33190
33191
33192
33193
33194
33195
33196
33197
33198
33199
33200
33201
33202
33203
33204
33205
33206
33207
33208
33209
33210
33211
33212
33213
33214
33215
33216
33217
33218
33219
33220
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
33263
33264
33265
33266
33267
33268
33269
33270
33271
33272
33273
33274
33275
33276
33277
33278
33279
33280
33281
33282
33283
33284
33285
33286
33287
33288
33289
33290
33291
33292
33293
33294
33295
33296
33297
33298
33299
33300
33301
33302
33303
33304
33305
33306
33307
33308
33309
33310
33311
33312
33313
33314
33315
33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
33340
33341
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
33357
33358
33359
33360
33361
33362
33363
33364
33365
33366
33367
33368
33369
33370
33371
33372
33373
33374
33375
33376
33377
33378
33379
33380
33381
33382
33383
33384
33385
33386
33387
33388
33389
33390
33391
33392
33393
33394
33395
33396
33397
33398
33399
33400
33401
33402
33403
33404
33405
33406
33407
33408
33409
33410
33411
33412
33413
33414
33415
33416
33417
33418
33419
33420
33421
33422
33423
33424
33425
33426
33427
33428
33429
33430
33431
33432
33433
33434
33435
33436
33437
33438
33439
33440
33441
33442
33443
33444
33445
33446
33447
33448
33449
33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
33465
33466
33467
33468
33469
33470
33471
33472
33473
33474
33475
33476
33477
33478
33479
33480
33481
33482
33483
33484
33485
33486
33487
33488
33489
33490
33491
33492
33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
33600
33601
33602
33603
33604
33605
33606
33607
33608
33609
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
33623
33624
33625
33626
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
33646
33647
33648
33649
33650
33651
33652
33653
33654
33655
33656
33657
33658
33659
33660
33661
33662
33663
33664
33665
33666
33667
33668
33669
33670
33671
33672
33673
33674
33675
33676
33677
33678
33679
33680
33681
33682
33683
33684
33685
33686
33687
33688
33689
33690
33691
33692
33693
33694
33695
33696
33697
33698
33699
33700
33701
33702
33703
33704
33705
33706
33707
33708
33709
33710
33711
33712
33713
33714
33715
33716
33717
33718
33719
33720
33721
33722
33723
33724
33725
33726
33727
33728
33729
33730
33731
33732
33733
33734
33735
33736
33737
33738
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
33755
33756
33757
33758
33759
33760
33761
33762
33763
33764
33765
33766
33767
33768
33769
33770
33771
33772
33773
33774
33775
33776
33777
33778
33779
33780
33781
33782
33783
33784
33785
33786
33787
33788
33789
33790
33791
33792
33793
33794
33795
33796
33797
33798
33799
33800
33801
33802
33803
33804
33805
33806
33807
33808
33809
33810
33811
33812
33813
33814
33815
33816
33817
33818
33819
33820
33821
33822
33823
33824
33825
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
33838
33839
33840
33841
33842
33843
33844
33845
33846
33847
33848
33849
33850
33851
33852
33853
33854
33855
33856
33857
33858
33859
33860
33861
33862
33863
33864
33865
33866
33867
33868
33869
33870
33871
33872
33873
33874
33875
33876
33877
33878
33879
33880
33881
33882
33883
33884
33885
33886
33887
33888
33889
33890
33891
33892
33893
33894
33895
33896
33897
33898
33899
33900
33901
33902
33903
33904
33905
33906
33907
33908
33909
33910
33911
33912
33913
33914
33915
33916
33917
33918
33919
33920
33921
33922
33923
33924
33925
33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
33936
33937
33938
33939
33940
33941
33942
33943
33944
33945
33946
33947
33948
33949
33950
33951
33952
33953
33954
33955
33956
33957
33958
33959
33960
33961
33962
33963
33964
33965
33966
33967
33968
33969
33970
33971
33972
33973
33974
33975
33976
33977
33978
33979
33980
33981
33982
33983
33984
33985
33986
33987
33988
33989
33990
33991
33992
33993
33994
33995
33996
33997
33998
33999
34000
34001
34002
34003
34004
34005
34006
34007
34008
34009
34010
34011
34012
34013
34014
34015
34016
34017
34018
34019
34020
34021
34022
34023
34024
34025
34026
34027
34028
34029
34030
34031
34032
34033
34034
34035
34036
34037
34038
34039
34040
34041
34042
34043
34044
34045
34046
34047
34048
34049
34050
34051
34052
34053
34054
34055
34056
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
34068
34069
34070
34071
34072
34073
34074
34075
34076
34077
34078
34079
34080
34081
34082
34083
34084
34085
34086
34087
34088
34089
34090
34091
34092
34093
34094
34095
34096
34097
34098
34099
34100
34101
34102
34103
34104
34105
34106
34107
34108
34109
34110
34111
34112
34113
34114
34115
34116
34117
34118
34119
34120
34121
34122
34123
34124
34125
34126
34127
34128
34129
34130
34131
34132
34133
34134
34135
34136
34137
34138
34139
34140
34141
34142
34143
34144
34145
34146
34147
34148
34149
34150
34151
34152
34153
34154
34155
34156
34157
34158
34159
34160
34161
34162
34163
34164
34165
34166
34167
34168
34169
34170
34171
34172
34173
34174
34175
34176
34177
34178
34179
34180
34181
34182
34183
34184
34185
34186
34187
34188
34189
34190
34191
34192
34193
34194
34195
34196
34197
34198
34199
34200
34201
34202
34203
34204
34205
34206
34207
34208
34209
34210
34211
34212
34213
34214
34215
34216
34217
34218
34219
34220
34221
34222
34223
34224
34225
34226
34227
34228
34229
34230
34231
34232
34233
34234
34235
34236
34237
34238
34239
34240
34241
34242
34243
34244
34245
34246
34247
34248
34249
34250
34251
34252
34253
34254
34255
34256
34257
34258
34259
34260
34261
34262
34263
34264
34265
34266
34267
34268
34269
34270
34271
34272
34273
34274
34275
34276
34277
34278
34279
34280
34281
34282
34283
34284
34285
34286
34287
34288
34289
34290
34291
34292
34293
34294
34295
34296
34297
34298
34299
34300
34301
34302
34303
34304
34305
34306
34307
34308
34309
34310
34311
34312
34313
34314
34315
34316
34317
34318
34319
34320
34321
34322
34323
34324
34325
34326
34327
34328
34329
34330
34331
34332
34333
34334
34335
34336
34337
34338
34339
34340
34341
34342
34343
34344
34345
34346
34347
34348
34349
34350
34351
34352
34353
34354
34355
34356
34357
34358
34359
34360
34361
34362
34363
34364
34365
34366
34367
34368
34369
34370
34371
34372
34373
34374
34375
34376
34377
34378
34379
34380
34381
34382
34383
34384
34385
34386
34387
34388
34389
34390
34391
34392
34393
34394
34395
34396
34397
34398
34399
34400
34401
34402
34403
34404
34405
34406
34407
34408
34409
34410
34411
34412
34413
34414
34415
34416
34417
34418
34419
34420
34421
34422
34423
34424
34425
34426
34427
34428
34429
34430
34431
34432
34433
34434
34435
34436
34437
34438
34439
34440
34441
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
34452
34453
34454
34455
34456
34457
34458
34459
34460
34461
34462
34463
34464
34465
34466
34467
34468
34469
34470
34471
34472
34473
34474
34475
34476
34477
34478
34479
34480
34481
34482
34483
34484
34485
34486
34487
34488
34489
34490
34491
34492
34493
34494
34495
34496
34497
34498
34499
34500
34501
34502
34503
34504
34505
34506
34507
34508
34509
34510
34511
34512
34513
34514
34515
34516
34517
34518
34519
34520
34521
34522
34523
34524
34525
34526
34527
34528
34529
34530
34531
34532
34533
34534
34535
34536
34537
34538
34539
34540
34541
34542
34543
34544
34545
34546
34547
34548
34549
34550
34551
34552
34553
34554
34555
34556
34557
34558
34559
34560
34561
34562
34563
34564
34565
34566
34567
34568
34569
34570
34571
34572
34573
34574
34575
34576
34577
34578
34579
34580
34581
34582
34583
34584
34585
34586
34587
34588
34589
34590
34591
34592
34593
34594
34595
34596
34597
34598
34599
34600
34601
34602
34603
34604
34605
34606
34607
34608
34609
34610
34611
34612
34613
34614
34615
34616
34617
34618
34619
34620
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636
34637
34638
34639
34640
34641
34642
34643
34644
34645
34646
34647
34648
34649
34650
34651
34652
34653
34654
34655
34656
34657
34658
34659
34660
34661
34662
34663
34664
34665
34666
34667
34668
34669
34670
34671
34672
34673
34674
34675
34676
34677
34678
34679
34680
34681
34682
34683
34684
34685
34686
34687
34688
34689
34690
34691
34692
34693
34694
34695
34696
34697
34698
34699
34700
34701
34702
34703
34704
34705
34706
34707
34708
34709
34710
34711
34712
34713
34714
34715
34716
34717
34718
34719
34720
34721
34722
34723
34724
34725
34726
34727
34728
34729
34730
34731
34732
34733
34734
34735
34736
34737
34738
34739
34740
34741
34742
34743
34744
34745
34746
34747
34748
34749
34750
34751
34752
34753
34754
34755
34756
34757
34758
34759
34760
34761
34762
34763
34764
34765
34766
34767
34768
34769
34770
34771
34772
34773
34774
34775
34776
34777
34778
34779
34780
34781
34782
34783
34784
34785
34786
34787
34788
34789
34790
34791
34792
34793
34794
34795
34796
34797
34798
34799
34800
34801
34802
34803
34804
34805
34806
34807
34808
34809
34810
34811
34812
34813
34814
34815
34816
34817
34818
34819
34820
34821
34822
34823
34824
34825
34826
34827
34828
34829
34830
34831
34832
34833
34834
34835
34836
34837
34838
34839
34840
34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
34866
34867
34868
34869
34870
34871
34872
34873
34874
34875
34876
34877
34878
34879
34880
34881
34882
34883
34884
34885
34886
34887
34888
34889
34890
34891
34892
34893
34894
34895
34896
34897
34898
34899
34900
34901
34902
34903
34904
34905
34906
34907
34908
34909
34910
34911
34912
34913
34914
34915
34916
34917
34918
34919
34920
34921
34922
34923
34924
34925
34926
34927
34928
34929
34930
34931
34932
34933
34934
34935
34936
34937
34938
34939
34940
34941
34942
34943
34944
34945
34946
34947
34948
34949
34950
34951
34952
34953
34954
34955
34956
34957
34958
34959
34960
34961
34962
34963
34964
34965
34966
34967
34968
34969
34970
34971
34972
34973
34974
34975
34976
34977
34978
34979
34980
34981
34982
34983
34984
34985
34986
34987
34988
34989
34990
34991
34992
34993
34994
34995
34996
34997
34998
34999
35000
35001
35002
35003
35004
35005
35006
35007
35008
35009
35010
35011
35012
35013
35014
35015
35016
35017
35018
35019
35020
35021
35022
35023
35024
35025
35026
35027
35028
35029
35030
35031
35032
35033
35034
35035
35036
35037
35038
35039
35040
35041
35042
35043
35044
35045
35046
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
35057
35058
35059
35060
35061
35062
35063
35064
35065
35066
35067
35068
35069
35070
35071
35072
35073
35074
35075
35076
35077
35078
35079
35080
35081
35082
35083
35084
35085
35086
35087
35088
35089
35090
35091
35092
35093
35094
35095
35096
35097
35098
35099
35100
35101
35102
35103
35104
35105
35106
35107
35108
35109
35110
35111
35112
35113
35114
35115
35116
35117
35118
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
35133
35134
35135
35136
35137
35138
35139
35140
35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
35168
35169
35170
35171
35172
35173
35174
35175
35176
35177
35178
35179
35180
35181
35182
35183
35184
35185
35186
35187
35188
35189
35190
35191
35192
35193
35194
35195
35196
35197
35198
35199
35200
35201
35202
35203
35204
35205
35206
35207
35208
35209
35210
35211
35212
35213
35214
35215
35216
35217
35218
35219
35220
35221
35222
35223
35224
35225
35226
35227
35228
35229
35230
35231
35232
35233
35234
35235
35236
35237
35238
35239
35240
35241
35242
35243
35244
35245
35246
35247
35248
35249
35250
35251
35252
35253
35254
35255
35256
35257
35258
35259
35260
35261
35262
35263
35264
35265
35266
35267
35268
35269
35270
35271
35272
35273
35274
35275
35276
35277
35278
35279
35280
35281
35282
35283
35284
35285
35286
35287
35288
35289
35290
35291
35292
35293
35294
35295
35296
35297
35298
35299
35300
35301
35302
35303
35304
35305
35306
35307
35308
35309
35310
35311
35312
35313
35314
35315
35316
35317
35318
35319
35320
35321
35322
35323
35324
35325
35326
35327
35328
35329
35330
35331
35332
35333
35334
35335
35336
35337
35338
35339
35340
35341
35342
35343
35344
35345
35346
35347
35348
35349
35350
35351
35352
35353
35354
35355
35356
35357
35358
35359
35360
35361
35362
35363
35364
35365
35366
35367
35368
35369
35370
35371
35372
35373
35374
35375
35376
35377
35378
35379
35380
35381
35382
35383
35384
35385
35386
35387
35388
35389
35390
35391
35392
35393
35394
35395
35396
35397
35398
35399
35400
35401
35402
35403
35404
35405
35406
35407
35408
35409
35410
35411
35412
35413
35414
35415
35416
35417
35418
35419
35420
35421
35422
35423
35424
35425
35426
35427
35428
35429
35430
35431
35432
35433
35434
35435
35436
35437
35438
35439
35440
35441
35442
35443
35444
35445
35446
35447
35448
35449
35450
35451
35452
35453
35454
35455
35456
35457
35458
35459
35460
35461
35462
35463
35464
35465
35466
35467
35468
35469
35470
35471
35472
35473
35474
35475
35476
35477
35478
35479
35480
35481
35482
35483
35484
35485
35486
35487
35488
35489
35490
35491
35492
35493
35494
35495
35496
35497
35498
35499
35500
35501
35502
35503
35504
35505
35506
35507
35508
35509
35510
35511
35512
35513
35514
35515
35516
35517
35518
35519
35520
35521
35522
35523
35524
35525
35526
35527
35528
35529
35530
35531
35532
35533
35534
35535
35536
35537
35538
35539
35540
35541
35542
35543
35544
35545
35546
35547
35548
35549
35550
35551
35552
35553
35554
35555
35556
35557
35558
35559
35560
35561
35562
35563
35564
35565
35566
35567
35568
35569
35570
35571
35572
35573
35574
35575
35576
35577
35578
35579
35580
35581
35582
35583
35584
35585
35586
35587
35588
35589
35590
35591
35592
35593
35594
35595
35596
35597
35598
35599
35600
35601
35602
35603
35604
35605
35606
35607
35608
35609
35610
35611
35612
35613
35614
35615
35616
35617
35618
35619
35620
35621
35622
35623
35624
35625
35626
35627
35628
35629
35630
35631
35632
35633
35634
35635
35636
35637
35638
35639
35640
35641
35642
35643
35644
35645
35646
35647
35648
35649
35650
35651
35652
35653
35654
35655
35656
35657
35658
35659
35660
35661
35662
35663
35664
35665
35666
35667
35668
35669
35670
35671
35672
35673
35674
35675
35676
35677
35678
35679
35680
35681
35682
35683
35684
35685
35686
35687
35688
35689
35690
35691
35692
35693
35694
35695
35696
35697
35698
35699
35700
35701
35702
35703
35704
35705
35706
35707
35708
35709
35710
35711
35712
35713
35714
35715
35716
35717
35718
35719
35720
35721
35722
35723
35724
35725
35726
35727
35728
35729
35730
35731
35732
35733
35734
35735
35736
35737
35738
35739
35740
35741
35742
35743
35744
35745
35746
35747
35748
35749
35750
35751
35752
35753
35754
35755
35756
35757
35758
35759
35760
35761
35762
35763
35764
35765
35766
35767
35768
35769
35770
35771
35772
35773
35774
35775
35776
35777
35778
35779
35780
35781
35782
35783
35784
35785
35786
35787
35788
35789
35790
35791
35792
35793
35794
35795
35796
35797
35798
35799
35800
35801
35802
35803
35804
35805
35806
35807
35808
35809
35810
35811
35812
35813
35814
35815
35816
35817
35818
35819
35820
35821
35822
35823
35824
35825
35826
35827
35828
35829
35830
35831
35832
35833
35834
35835
35836
35837
35838
35839
35840
35841
35842
35843
35844
35845
35846
35847
35848
35849
35850
35851
35852
35853
35854
35855
35856
35857
35858
35859
35860
35861
35862
35863
35864
35865
35866
35867
35868
35869
35870
35871
35872
35873
35874
35875
35876
35877
35878
35879
35880
35881
35882
35883
35884
35885
35886
35887
35888
35889
35890
35891
35892
35893
35894
35895
35896
35897
35898
35899
35900
35901
35902
35903
35904
35905
35906
35907
35908
35909
35910
35911
35912
35913
35914
35915
35916
35917
35918
35919
35920
35921
35922
35923
35924
35925
35926
35927
35928
35929
35930
35931
35932
35933
35934
35935
35936
35937
35938
35939
35940
35941
35942
35943
35944
35945
35946
35947
35948
35949
35950
35951
35952
35953
35954
35955
35956
35957
35958
35959
35960
35961
35962
35963
35964
35965
35966
35967
35968
35969
35970
35971
35972
35973
35974
35975
35976
35977
35978
35979
35980
35981
35982
35983
35984
35985
35986
35987
35988
35989
35990
35991
35992
35993
35994
35995
35996
35997
35998
35999
36000
36001
36002
36003
36004
36005
36006
36007
36008
36009
36010
36011
36012
36013
36014
36015
36016
36017
36018
36019
36020
36021
36022
36023
36024
36025
36026
36027
36028
36029
36030
36031
36032
36033
36034
36035
36036
36037
36038
36039
36040
36041
36042
36043
36044
36045
36046
36047
36048
36049
36050
36051
36052
36053
36054
36055
36056
36057
36058
36059
36060
36061
36062
36063
36064
36065
36066
36067
36068
36069
36070
36071
36072
36073
36074
36075
36076
36077
36078
36079
36080
36081
36082
36083
36084
36085
36086
36087
36088
36089
36090
36091
36092
36093
36094
36095
36096
36097
36098
36099
36100
36101
36102
36103
36104
36105
36106
36107
36108
36109
36110
36111
36112
36113
36114
36115
36116
36117
36118
36119
36120
36121
36122
36123
36124
36125
36126
36127
36128
36129
36130
36131
36132
36133
36134
36135
36136
36137
36138
36139
36140
36141
36142
36143
36144
36145
36146
36147
36148
36149
36150
36151
36152
36153
36154
36155
36156
36157
36158
36159
36160
36161
36162
36163
36164
36165
36166
36167
36168
36169
36170
36171
36172
36173
36174
36175
36176
36177
36178
36179
36180
36181
36182
36183
36184
36185
36186
36187
36188
36189
36190
36191
36192
36193
36194
36195
36196
36197
36198
36199
36200
36201
36202
36203
36204
36205
36206
36207
36208
36209
36210
36211
36212
36213
36214
36215
36216
36217
36218
36219
36220
36221
36222
36223
36224
36225
36226
36227
36228
36229
36230
36231
36232
36233
36234
36235
36236
36237
36238
36239
36240
36241
36242
36243
36244
36245
36246
36247
36248
36249
36250
36251
36252
36253
36254
36255
36256
36257
36258
36259
36260
36261
36262
36263
36264
36265
36266
36267
36268
36269
36270
36271
36272
36273
36274
36275
36276
36277
36278
36279
36280
36281
36282
36283
36284
36285
36286
36287
36288
36289
36290
36291
36292
36293
36294
36295
36296
36297
36298
36299
36300
36301
36302
36303
36304
36305
36306
36307
36308
36309
36310
36311
36312
36313
36314
36315
36316
36317
36318
36319
36320
36321
36322
36323
36324
36325
36326
36327
36328
36329
36330
36331
36332
36333
36334
36335
36336
36337
36338
36339
36340
36341
36342
36343
36344
36345
36346
36347
36348
36349
36350
36351
36352
36353
36354
36355
36356
36357
36358
36359
36360
36361
36362
36363
36364
36365
36366
36367
36368
36369
36370
36371
36372
36373
36374
36375
36376
36377
36378
36379
36380
36381
36382
36383
36384
36385
36386
36387
36388
36389
36390
36391
36392
36393
36394
36395
36396
36397
36398
36399
36400
36401
36402
36403
36404
36405
36406
36407
36408
36409
36410
36411
36412
36413
36414
36415
36416
36417
36418
36419
36420
36421
36422
36423
36424
36425
36426
36427
36428
36429
36430
36431
36432
36433
36434
36435
36436
36437
36438
36439
36440
36441
36442
36443
36444
36445
36446
36447
36448
36449
36450
36451
36452
36453
36454
36455
36456
36457
36458
36459
36460
36461
36462
36463
36464
36465
36466
36467
36468
36469
36470
36471
36472
36473
36474
36475
36476
36477
36478
36479
36480
36481
36482
36483
36484
36485
36486
36487
36488
36489
36490
36491
36492
36493
36494
36495
36496
36497
36498
36499
36500
36501
36502
36503
36504
36505
36506
36507
36508
36509
36510
36511
36512
36513
36514
36515
36516
36517
36518
36519
36520
36521
36522
36523
36524
36525
36526
36527
36528
36529
36530
36531
36532
36533
36534
36535
36536
36537
36538
36539
36540
36541
36542
36543
36544
36545
36546
36547
36548
36549
36550
36551
36552
36553
36554
36555
36556
36557
36558
36559
36560
36561
36562
36563
36564
36565
36566
36567
36568
36569
36570
36571
36572
36573
36574
36575
36576
36577
36578
36579
36580
36581
36582
36583
36584
36585
36586
36587
36588
36589
36590
36591
36592
36593
36594
36595
36596
36597
36598
36599
36600
36601
36602
36603
36604
36605
36606
36607
36608
36609
36610
36611
36612
36613
36614
36615
36616
36617
36618
36619
36620
36621
36622
36623
36624
36625
36626
36627
36628
36629
36630
36631
36632
36633
36634
36635
36636
36637
36638
36639
36640
36641
36642
36643
36644
36645
36646
36647
36648
36649
36650
36651
36652
36653
36654
36655
36656
36657
36658
36659
36660
36661
36662
36663
36664
36665
36666
36667
36668
36669
36670
36671
36672
36673
36674
36675
36676
36677
36678
36679
36680
36681
36682
36683
36684
36685
36686
36687
36688
36689
36690
36691
36692
36693
36694
36695
36696
36697
36698
36699
36700
36701
36702
36703
36704
36705
36706
36707
36708
36709
36710
36711
36712
36713
36714
36715
36716
36717
36718
36719
36720
36721
36722
36723
36724
36725
36726
36727
36728
36729
36730
36731
36732
36733
36734
36735
36736
36737
36738
36739
36740
36741
36742
36743
36744
36745
36746
36747
36748
36749
36750
36751
36752
36753
36754
36755
36756
36757
36758
36759
36760
36761
36762
36763
36764
36765
36766
36767
36768
36769
36770
36771
36772
36773
36774
36775
36776
36777
36778
36779
36780
36781
36782
36783
36784
36785
36786
36787
36788
36789
36790
36791
36792
36793
36794
36795
36796
36797
36798
36799
36800
36801
36802
36803
36804
36805
36806
36807
36808
36809
36810
36811
36812
36813
36814
36815
36816
36817
36818
36819
36820
36821
36822
36823
36824
36825
36826
36827
36828
36829
36830
36831
36832
36833
36834
36835
36836
36837
36838
36839
36840
36841
36842
36843
36844
36845
36846
36847
36848
36849
36850
36851
36852
36853
36854
36855
36856
36857
36858
36859
36860
36861
36862
36863
36864
36865
36866
36867
36868
36869
36870
36871
36872
36873
36874
36875
36876
36877
36878
36879
36880
36881
36882
36883
36884
36885
36886
36887
36888
36889
36890
36891
36892
36893
36894
36895
36896
36897
36898
36899
36900
36901
36902
36903
36904
36905
36906
36907
36908
36909
36910
36911
36912
36913
36914
36915
36916
36917
36918
36919
36920
36921
36922
36923
36924
36925
36926
36927
36928
36929
36930
36931
36932
36933
36934
36935
36936
36937
36938
36939
36940
36941
36942
36943
36944
36945
36946
36947
36948
36949
36950
36951
36952
36953
36954
36955
36956
36957
36958
36959
36960
36961
36962
36963
36964
36965
36966
36967
36968
36969
36970
36971
36972
36973
36974
36975
36976
36977
36978
36979
36980
36981
36982
36983
36984
36985
36986
36987
36988
36989
36990
36991
36992
36993
36994
36995
36996
36997
36998
36999
37000
37001
37002
37003
37004
37005
37006
37007
37008
37009
37010
37011
37012
37013
37014
37015
37016
37017
37018
37019
37020
37021
37022
37023
37024
37025
37026
37027
37028
37029
37030
37031
37032
37033
37034
37035
37036
37037
37038
37039
37040
37041
37042
37043
37044
37045
37046
37047
37048
37049
37050
37051
37052
37053
37054
37055
37056
37057
37058
37059
37060
37061
37062
37063
37064
37065
37066
37067
37068
37069
37070
37071
37072
37073
37074
37075
37076
37077
37078
37079
37080
37081
37082
37083
37084
37085
37086
37087
37088
37089
37090
37091
37092
37093
37094
37095
37096
37097
37098
37099
37100
37101
37102
37103
37104
37105
37106
37107
37108
37109
37110
37111
37112
37113
37114
37115
37116
37117
37118
37119
37120
37121
37122
37123
37124
37125
37126
37127
37128
37129
37130
37131
37132
37133
37134
37135
37136
37137
37138
37139
37140
37141
37142
37143
37144
37145
37146
37147
37148
37149
37150
37151
37152
37153
37154
37155
37156
37157
37158
37159
37160
37161
37162
37163
37164
37165
37166
37167
37168
37169
37170
37171
37172
37173
37174
37175
37176
37177
37178
37179
37180
37181
37182
37183
37184
37185
37186
37187
37188
37189
37190
37191
37192
37193
37194
37195
37196
37197
37198
37199
37200
37201
37202
37203
37204
37205
37206
37207
37208
37209
37210
37211
37212
37213
37214
37215
37216
37217
37218
37219
37220
37221
37222
37223
37224
37225
37226
37227
37228
37229
37230
37231
37232
37233
37234
37235
37236
37237
37238
37239
37240
37241
37242
37243
37244
37245
37246
37247
37248
37249
37250
37251
37252
37253
37254
37255
37256
37257
37258
37259
37260
37261
37262
37263
37264
37265
37266
37267
37268
37269
37270
37271
37272
37273
37274
37275
37276
37277
37278
37279
37280
37281
37282
37283
37284
37285
37286
37287
37288
37289
37290
37291
37292
37293
37294
37295
37296
37297
37298
37299
37300
37301
37302
37303
37304
37305
37306
37307
37308
37309
37310
37311
37312
37313
37314
37315
37316
37317
37318
37319
37320
37321
37322
37323
37324
37325
37326
37327
37328
37329
37330
37331
37332
37333
37334
37335
37336
37337
37338
37339
37340
37341
37342
37343
37344
37345
37346
37347
37348
37349
37350
37351
37352
37353
37354
37355
37356
37357
37358
37359
37360
37361
37362
37363
37364
37365
37366
37367
37368
37369
37370
37371
37372
37373
37374
37375
37376
37377
37378
37379
37380
37381
37382
37383
37384
37385
37386
37387
37388
37389
37390
37391
37392
37393
37394
37395
37396
37397
37398
37399
37400
37401
37402
37403
37404
37405
37406
37407
37408
37409
37410
37411
37412
37413
37414
37415
37416
37417
37418
37419
37420
37421
37422
37423
37424
37425
37426
37427
37428
37429
37430
37431
37432
37433
37434
37435
37436
37437
37438
37439
37440
37441
37442
37443
37444
37445
37446
37447
37448
37449
37450
37451
37452
37453
37454
37455
37456
37457
37458
37459
37460
37461
37462
37463
37464
37465
37466
37467
37468
37469
37470
37471
37472
37473
37474
37475
37476
37477
37478
37479
37480
37481
37482
37483
37484
37485
37486
37487
37488
37489
37490
37491
37492
37493
37494
37495
37496
37497
37498
37499
37500
37501
37502
37503
37504
37505
37506
37507
37508
37509
37510
37511
37512
37513
37514
37515
37516
37517
37518
37519
37520
37521
37522
37523
37524
37525
37526
37527
37528
37529
37530
37531
37532
37533
37534
37535
37536
37537
37538
37539
37540
37541
37542
37543
37544
37545
37546
37547
37548
37549
37550
37551
37552
37553
37554
37555
37556
37557
37558
37559
37560
37561
37562
37563
37564
37565
37566
37567
37568
37569
37570
37571
37572
37573
37574
37575
37576
37577
37578
37579
37580
37581
37582
37583
37584
37585
37586
37587
37588
37589
37590
37591
37592
37593
37594
37595
37596
37597
37598
37599
37600
37601
37602
37603
37604
37605
37606
37607
37608
37609
37610
37611
37612
37613
37614
37615
37616
37617
37618
37619
37620
37621
37622
37623
37624
37625
37626
37627
37628
37629
37630
37631
37632
37633
37634
37635
37636
37637
37638
37639
37640
37641
37642
37643
37644
37645
37646
37647
37648
37649
37650
37651
37652
37653
37654
37655
37656
37657
37658
37659
37660
37661
37662
37663
37664
37665
37666
37667
37668
37669
37670
37671
37672
37673
37674
37675
37676
37677
37678
37679
37680
37681
37682
37683
37684
37685
37686
37687
37688
37689
37690
37691
37692
37693
37694
37695
37696
37697
37698
37699
37700
37701
37702
37703
37704
37705
37706
37707
37708
37709
37710
37711
37712
37713
37714
37715
37716
37717
37718
37719
37720
37721
37722
37723
37724
37725
37726
37727
37728
37729
37730
37731
37732
37733
37734
37735
37736
37737
37738
37739
37740
37741
37742
37743
37744
37745
37746
37747
37748
37749
37750
37751
37752
37753
37754
37755
37756
37757
37758
37759
37760
37761
37762
37763
37764
37765
37766
37767
37768
37769
37770
37771
37772
37773
37774
37775
37776
37777
37778
37779
37780
37781
37782
37783
37784
37785
37786
37787
37788
37789
37790
37791
37792
37793
37794
37795
37796
37797
37798
37799
37800
37801
37802
37803
37804
37805
37806
37807
37808
37809
37810
37811
37812
37813
37814
37815
37816
37817
37818
37819
37820
37821
37822
37823
37824
37825
37826
37827
37828
37829
37830
37831
37832
37833
37834
37835
37836
37837
37838
37839
37840
37841
37842
37843
37844
37845
37846
37847
37848
37849
37850
37851
37852
37853
37854
37855
37856
37857
37858
37859
37860
37861
37862
37863
37864
37865
37866
37867
37868
37869
37870
37871
37872
37873
37874
37875
37876
37877
37878
37879
37880
37881
37882
37883
37884
37885
37886
37887
37888
37889
37890
37891
37892
37893
37894
37895
37896
37897
37898
37899
37900
37901
37902
37903
37904
37905
37906
37907
37908
37909
37910
37911
37912
37913
37914
37915
37916
37917
37918
37919
37920
37921
37922
37923
37924
37925
37926
37927
37928
37929
37930
37931
37932
37933
37934
37935
37936
37937
37938
37939
37940
37941
37942
37943
37944
37945
37946
37947
37948
37949
37950
37951
37952
37953
37954
37955
37956
37957
37958
37959
37960
37961
37962
37963
37964
37965
37966
37967
37968
37969
37970
37971
37972
37973
37974
37975
37976
37977
37978
37979
37980
37981
37982
37983
37984
37985
37986
37987
37988
37989
37990
37991
37992
37993
37994
37995
37996
37997
37998
37999
38000
38001
38002
38003
38004
38005
38006
38007
38008
38009
38010
38011
38012
38013
38014
38015
38016
38017
38018
38019
38020
38021
38022
38023
38024
38025
38026
38027
38028
38029
38030
38031
38032
38033
38034
38035
38036
38037
38038
38039
38040
38041
38042
38043
38044
38045
38046
38047
38048
38049
38050
38051
38052
38053
38054
38055
38056
38057
38058
38059
38060
38061
38062
38063
38064
38065
38066
38067
38068
38069
38070
38071
38072
38073
38074
38075
38076
38077
38078
38079
38080
38081
38082
38083
38084
38085
38086
38087
38088
38089
38090
38091
38092
38093
38094
38095
38096
38097
38098
38099
38100
38101
38102
38103
38104
38105
38106
38107
38108
38109
38110
38111
38112
38113
38114
38115
38116
38117
38118
38119
38120
38121
38122
38123
38124
38125
38126
38127
38128
38129
38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
38147
38148
38149
38150
38151
38152
38153
38154
38155
38156
38157
38158
38159
38160
38161
38162
38163
38164
38165
38166
38167
38168
38169
38170
38171
38172
38173
38174
38175
38176
38177
38178
38179
38180
38181
38182
38183
38184
38185
38186
38187
38188
38189
38190
38191
38192
38193
38194
38195
38196
38197
38198
38199
38200
38201
38202
38203
38204
38205
38206
38207
38208
38209
38210
38211
38212
38213
38214
38215
38216
38217
38218
38219
38220
38221
38222
38223
38224
38225
38226
38227
38228
38229
38230
38231
38232
38233
38234
38235
38236
38237
38238
38239
38240
38241
38242
38243
38244
38245
38246
38247
38248
38249
38250
38251
38252
38253
38254
38255
38256
38257
38258
38259
38260
38261
38262
38263
38264
38265
38266
38267
38268
38269
38270
38271
38272
38273
38274
38275
38276
38277
38278
38279
38280
38281
38282
38283
38284
38285
38286
38287
38288
38289
38290
38291
38292
38293
38294
38295
38296
38297
38298
38299
38300
38301
38302
38303
38304
38305
38306
38307
38308
38309
38310
38311
38312
38313
38314
38315
38316
38317
38318
38319
38320
38321
38322
38323
38324
38325
38326
38327
38328
38329
38330
38331
38332
38333
38334
38335
38336
38337
38338
38339
38340
38341
38342
38343
38344
38345
38346
38347
38348
38349
38350
38351
38352
38353
38354
38355
38356
38357
38358
38359
38360
38361
38362
38363
38364
38365
38366
38367
38368
38369
38370
38371
38372
38373
38374
38375
38376
38377
38378
38379
38380
38381
38382
38383
38384
38385
38386
38387
38388
38389
38390
38391
38392
38393
38394
38395
38396
38397
38398
38399
38400
38401
38402
38403
38404
38405
38406
38407
38408
38409
38410
38411
38412
38413
38414
38415
38416
38417
38418
38419
38420
38421
38422
38423
38424
38425
38426
38427
38428
38429
38430
38431
38432
38433
38434
38435
38436
38437
38438
38439
38440
38441
38442
38443
38444
38445
38446
38447
38448
38449
38450
38451
38452
38453
38454
38455
38456
38457
38458
38459
38460
38461
38462
38463
38464
38465
38466
38467
38468
38469
38470
38471
38472
38473
38474
38475
38476
38477
38478
38479
38480
38481
38482
38483
38484
38485
38486
38487
38488
38489
38490
38491
38492
38493
38494
38495
38496
38497
38498
38499
38500
38501
38502
38503
38504
38505
38506
38507
38508
38509
38510
38511
38512
38513
38514
38515
38516
38517
38518
38519
38520
38521
38522
38523
38524
38525
38526
38527
38528
38529
38530
38531
38532
38533
38534
38535
38536
38537
38538
38539
38540
38541
38542
38543
38544
38545
38546
38547
38548
38549
38550
38551
38552
38553
38554
38555
38556
38557
38558
38559
38560
38561
38562
38563
38564
38565
38566
38567
38568
38569
38570
38571
38572
38573
38574
38575
38576
38577
38578
38579
38580
38581
38582
38583
38584
38585
38586
38587
38588
38589
38590
38591
38592
38593
38594
38595
38596
38597
38598
38599
38600
38601
38602
38603
38604
38605
38606
38607
38608
38609
38610
38611
38612
38613
38614
38615
38616
38617
38618
38619
38620
38621
38622
38623
38624
38625
38626
38627
38628
38629
38630
38631
38632
38633
38634
38635
38636
38637
38638
38639
38640
38641
38642
38643
38644
38645
38646
38647
38648
38649
38650
38651
38652
38653
38654
38655
38656
38657
38658
38659
38660
38661
38662
38663
38664
38665
38666
38667
38668
38669
38670
38671
38672
38673
38674
38675
38676
38677
38678
38679
38680
38681
38682
38683
38684
38685
38686
38687
38688
38689
38690
38691
38692
38693
38694
38695
38696
38697
38698
38699
38700
38701
38702
38703
38704
38705
38706
38707
38708
38709
38710
38711
38712
38713
38714
38715
38716
38717
38718
38719
38720
38721
38722
38723
38724
38725
38726
38727
38728
38729
38730
38731
38732
38733
38734
38735
38736
38737
38738
38739
38740
38741
38742
38743
38744
38745
38746
38747
38748
38749
38750
38751
38752
38753
38754
38755
38756
38757
38758
38759
38760
38761
38762
38763
38764
38765
38766
38767
38768
38769
38770
38771
38772
38773
38774
38775
38776
38777
38778
38779
38780
38781
38782
38783
38784
38785
38786
38787
38788
38789
38790
38791
38792
38793
38794
38795
38796
38797
38798
38799
38800
38801
38802
38803
38804
38805
38806
38807
38808
38809
38810
38811
38812
38813
38814
38815
38816
38817
38818
38819
38820
38821
38822
38823
38824
38825
38826
38827
38828
38829
38830
38831
38832
38833
38834
38835
38836
38837
38838
38839
38840
38841
38842
38843
38844
38845
38846
38847
38848
38849
38850
38851
38852
38853
38854
38855
38856
38857
38858
38859
38860
38861
38862
38863
38864
38865
38866
38867
38868
38869
38870
38871
38872
38873
38874
38875
38876
38877
38878
38879
38880
38881
38882
38883
38884
38885
38886
38887
38888
38889
38890
38891
38892
38893
38894
38895
38896
38897
38898
38899
38900
38901
38902
38903
38904
38905
38906
38907
38908
38909
38910
38911
38912
38913
38914
38915
38916
38917
38918
38919
38920
38921
38922
38923
38924
38925
38926
38927
38928
38929
38930
38931
38932
38933
38934
38935
38936
38937
38938
38939
38940
38941
38942
38943
38944
38945
38946
38947
38948
38949
38950
38951
38952
38953
38954
38955
38956
38957
38958
38959
38960
38961
38962
38963
38964
38965
38966
38967
38968
38969
38970
38971
38972
38973
38974
38975
38976
38977
38978
38979
38980
38981
38982
38983
38984
38985
38986
38987
38988
38989
38990
38991
38992
38993
38994
38995
38996
38997
38998
38999
39000
39001
39002
39003
39004
39005
39006
39007
39008
39009
39010
39011
39012
39013
39014
39015
39016
39017
39018
39019
39020
39021
39022
39023
39024
39025
39026
39027
39028
39029
39030
39031
39032
39033
39034
39035
39036
39037
39038
39039
39040
39041
39042
39043
39044
39045
39046
39047
39048
39049
39050
39051
39052
39053
39054
39055
39056
39057
39058
39059
39060
39061
39062
39063
39064
39065
39066
39067
39068
39069
39070
39071
39072
39073
39074
39075
39076
39077
39078
39079
39080
39081
39082
39083
39084
39085
39086
39087
39088
39089
39090
39091
39092
39093
39094
39095
39096
39097
39098
39099
39100
39101
39102
39103
39104
39105
39106
39107
39108
39109
39110
39111
39112
39113
39114
39115
39116
39117
39118
39119
39120
39121
39122
39123
39124
39125
39126
39127
39128
39129
39130
39131
39132
39133
39134
39135
39136
39137
39138
39139
39140
39141
39142
39143
39144
39145
39146
39147
39148
39149
39150
39151
39152
39153
39154
39155
39156
39157
39158
39159
39160
39161
39162
39163
39164
39165
39166
39167
39168
39169
39170
39171
39172
39173
39174
39175
39176
39177
39178
39179
39180
39181
39182
39183
39184
39185
39186
39187
39188
39189
39190
39191
39192
39193
39194
39195
39196
39197
39198
39199
39200
39201
39202
39203
39204
39205
39206
39207
39208
39209
39210
39211
39212
39213
39214
39215
39216
39217
39218
39219
39220
39221
39222
39223
39224
39225
39226
39227
39228
39229
39230
39231
39232
39233
39234
39235
39236
39237
39238
39239
39240
39241
39242
39243
39244
39245
39246
39247
39248
39249
39250
39251
39252
39253
39254
39255
39256
39257
39258
39259
39260
39261
39262
39263
39264
39265
39266
39267
39268
39269
39270
39271
39272
39273
39274
39275
39276
39277
39278
39279
39280
39281
39282
39283
39284
39285
39286
39287
39288
39289
39290
39291
39292
39293
39294
39295
39296
39297
39298
39299
39300
39301
39302
39303
39304
39305
39306
39307
39308
39309
39310
39311
39312
39313
39314
39315
39316
39317
39318
39319
39320
39321
39322
39323
39324
39325
39326
39327
39328
39329
39330
39331
39332
39333
39334
39335
39336
39337
39338
39339
39340
39341
39342
39343
39344
39345
39346
39347
39348
39349
39350
39351
39352
39353
39354
39355
39356
39357
39358
39359
39360
39361
39362
39363
39364
39365
39366
39367
39368
39369
39370
39371
39372
39373
39374
39375
39376
39377
39378
39379
39380
39381
39382
39383
39384
39385
39386
39387
39388
39389
39390
39391
39392
39393
39394
39395
39396
39397
39398
39399
39400
39401
39402
39403
39404
39405
39406
39407
39408
39409
39410
39411
39412
39413
39414
39415
39416
39417
39418
39419
39420
39421
39422
39423
39424
39425
39426
39427
39428
39429
39430
39431
39432
39433
39434
39435
39436
39437
39438
39439
39440
39441
39442
39443
39444
39445
39446
39447
39448
39449
39450
39451
39452
39453
39454
39455
39456
39457
39458
39459
39460
39461
39462
39463
39464
39465
39466
39467
39468
39469
39470
39471
39472
39473
39474
39475
39476
39477
39478
39479
39480
39481
39482
39483
39484
39485
39486
39487
39488
39489
39490
39491
39492
39493
39494
39495
39496
39497
39498
39499
39500
39501
39502
39503
39504
39505
39506
39507
39508
39509
39510
39511
39512
39513
39514
39515
39516
39517
39518
39519
39520
39521
39522
39523
39524
39525
39526
39527
39528
39529
39530
39531
39532
39533
39534
39535
39536
39537
39538
39539
39540
39541
39542
39543
39544
39545
39546
39547
39548
39549
39550
39551
39552
39553
39554
39555
39556
39557
39558
39559
39560
39561
39562
39563
39564
39565
39566
39567
39568
39569
39570
39571
39572
39573
39574
39575
39576
39577
39578
39579
39580
39581
39582
39583
39584
39585
39586
39587
39588
39589
39590
39591
39592
39593
39594
39595
39596
39597
39598
39599
39600
39601
39602
39603
39604
39605
39606
39607
39608
39609
39610
39611
39612
39613
39614
39615
39616
39617
39618
39619
39620
39621
39622
39623
39624
39625
39626
39627
39628
39629
39630
39631
39632
39633
39634
39635
39636
39637
39638
39639
39640
39641
39642
39643
39644
39645
39646
39647
39648
39649
39650
39651
39652
39653
39654
39655
39656
39657
39658
39659
39660
39661
39662
39663
39664
39665
39666
39667
39668
39669
39670
39671
39672
39673
39674
39675
39676
39677
39678
39679
39680
39681
39682
39683
39684
39685
39686
39687
39688
39689
39690
39691
39692
39693
39694
39695
39696
39697
39698
39699
39700
39701
39702
39703
39704
39705
39706
39707
39708
39709
39710
39711
39712
39713
39714
39715
39716
39717
39718
39719
39720
39721
39722
39723
39724
39725
39726
39727
39728
39729
39730
39731
39732
39733
39734
39735
39736
39737
39738
39739
39740
39741
39742
39743
39744
39745
39746
39747
39748
39749
39750
39751
39752
39753
39754
39755
39756
39757
39758
39759
39760
39761
39762
39763
39764
39765
39766
39767
39768
39769
39770
39771
39772
39773
39774
39775
39776
39777
39778
39779
39780
39781
39782
39783
39784
39785
39786
39787
39788
39789
39790
39791
39792
39793
39794
39795
39796
39797
39798
39799
39800
39801
39802
39803
39804
39805
39806
39807
39808
39809
39810
39811
39812
39813
39814
39815
39816
39817
39818
39819
39820
39821
39822
39823
39824
39825
39826
39827
39828
39829
39830
39831
39832
39833
39834
39835
39836
39837
39838
39839
39840
39841
39842
39843
39844
39845
39846
39847
39848
39849
39850
39851
39852
39853
39854
39855
39856
39857
39858
39859
39860
39861
39862
39863
39864
39865
39866
39867
39868
39869
39870
39871
39872
39873
39874
39875
39876
39877
39878
39879
39880
39881
39882
39883
39884
39885
39886
39887
39888
39889
39890
39891
39892
39893
39894
39895
39896
39897
39898
39899
39900
39901
39902
39903
39904
39905
39906
39907
39908
39909
39910
39911
39912
39913
39914
39915
39916
39917
39918
39919
39920
39921
39922
39923
39924
39925
39926
39927
39928
39929
39930
39931
39932
39933
39934
39935
39936
39937
39938
39939
39940
39941
39942
39943
39944
39945
39946
39947
39948
39949
39950
39951
39952
39953
39954
39955
39956
39957
39958
39959
39960
39961
39962
39963
39964
39965
39966
39967
39968
39969
39970
39971
39972
39973
39974
39975
39976
39977
39978
39979
39980
39981
39982
39983
39984
39985
39986
39987
39988
39989
39990
39991
39992
39993
39994
39995
39996
39997
39998
39999
40000
40001
40002
40003
40004
40005
40006
40007
40008
40009
40010
40011
40012
40013
40014
40015
40016
40017
40018
40019
40020
40021
40022
40023
40024
40025
40026
40027
40028
40029
40030
40031
40032
40033
40034
40035
40036
40037
40038
40039
40040
40041
40042
40043
40044
40045
40046
40047
40048
40049
40050
40051
40052
40053
40054
40055
40056
40057
40058
40059
40060
40061
40062
40063
40064
40065
40066
40067
40068
40069
40070
40071
40072
40073
40074
40075
40076
40077
40078
40079
40080
40081
40082
40083
40084
40085
40086
40087
40088
40089
40090
40091
40092
40093
40094
40095
40096
40097
40098
40099
40100
40101
40102
40103
40104
40105
40106
40107
40108
40109
40110
40111
40112
40113
40114
40115
40116
40117
40118
40119
40120
40121
40122
40123
40124
40125
40126
40127
40128
40129
40130
40131
40132
40133
40134
40135
40136
40137
40138
40139
40140
40141
40142
40143
40144
40145
40146
40147
40148
40149
40150
40151
40152
40153
40154
40155
40156
40157
40158
40159
40160
40161
40162
40163
40164
40165
40166
40167
40168
40169
40170
40171
40172
40173
40174
40175
40176
40177
40178
40179
40180
40181
40182
40183
40184
40185
40186
40187
40188
40189
40190
40191
40192
40193
40194
40195
40196
40197
40198
40199
40200
40201
40202
40203
40204
40205
40206
40207
40208
40209
40210
40211
40212
40213
40214
40215
40216
40217
40218
40219
40220
40221
40222
40223
40224
40225
40226
40227
40228
40229
40230
40231
40232
40233
40234
40235
40236
40237
40238
40239
40240
40241
40242
40243
40244
40245
40246
40247
40248
40249
40250
40251
40252
40253
40254
40255
40256
40257
40258
40259
40260
40261
40262
40263
40264
40265
40266
40267
40268
40269
40270
40271
40272
40273
40274
40275
40276
40277
40278
40279
40280
40281
40282
40283
40284
40285
40286
40287
40288
40289
40290
40291
40292
40293
40294
40295
40296
40297
40298
40299
40300
40301
40302
40303
40304
40305
40306
40307
40308
40309
40310
40311
40312
40313
40314
40315
40316
40317
40318
40319
40320
40321
40322
40323
40324
40325
40326
40327
40328
40329
40330
40331
40332
40333
40334
40335
40336
40337
40338
40339
40340
40341
40342
40343
40344
40345
40346
40347
40348
40349
40350
40351
40352
40353
40354
40355
40356
40357
40358
40359
40360
40361
40362
40363
40364
40365
40366
40367
40368
40369
40370
40371
40372
40373
40374
40375
40376
40377
40378
40379
40380
40381
40382
40383
40384
40385
40386
40387
40388
40389
40390
40391
40392
40393
40394
40395
40396
40397
40398
40399
40400
40401
40402
40403
40404
40405
40406
40407
40408
40409
40410
40411
40412
40413
40414
40415
40416
40417
40418
40419
40420
40421
40422
40423
40424
40425
40426
40427
40428
40429
40430
40431
40432
40433
40434
40435
40436
40437
40438
40439
40440
40441
40442
40443
40444
40445
40446
40447
40448
40449
40450
40451
40452
40453
40454
40455
40456
40457
40458
40459
40460
40461
40462
40463
40464
40465
40466
40467
40468
40469
40470
40471
40472
40473
40474
40475
40476
40477
40478
40479
40480
40481
40482
40483
40484
40485
40486
40487
40488
40489
40490
40491
40492
40493
40494
40495
40496
40497
40498
40499
40500
40501
40502
40503
40504
40505
40506
40507
40508
40509
40510
40511
40512
40513
40514
40515
40516
40517
40518
40519
40520
40521
40522
40523
40524
40525
40526
40527
40528
40529
40530
40531
40532
40533
40534
40535
40536
40537
40538
40539
40540
40541
40542
40543
40544
40545
40546
40547
40548
40549
40550
40551
40552
40553
40554
40555
40556
40557
40558
40559
40560
40561
40562
40563
40564
40565
40566
40567
40568
40569
40570
40571
40572
40573
40574
40575
40576
40577
40578
40579
40580
40581
40582
40583
40584
40585
40586
40587
40588
40589
40590
40591
40592
40593
40594
40595
40596
40597
40598
40599
40600
40601
40602
40603
40604
40605
40606
40607
40608
40609
40610
40611
40612
40613
40614
40615
40616
40617
40618
40619
40620
40621
40622
40623
40624
40625
40626
40627
40628
40629
40630
40631
40632
40633
40634
40635
40636
40637
40638
40639
40640
40641
40642
40643
40644
40645
40646
40647
40648
40649
40650
40651
40652
40653
40654
40655
40656
40657
40658
40659
40660
40661
40662
40663
40664
40665
40666
40667
40668
40669
40670
40671
40672
40673
40674
40675
40676
40677
40678
40679
40680
40681
40682
40683
40684
40685
40686
40687
40688
40689
40690
40691
40692
40693
40694
40695
40696
40697
40698
40699
40700
40701
40702
40703
40704
40705
40706
40707
40708
40709
40710
40711
40712
40713
40714
40715
40716
40717
40718
40719
40720
40721
40722
40723
40724
40725
40726
40727
40728
40729
40730
40731
40732
40733
40734
40735
40736
40737
40738
40739
40740
40741
40742
40743
40744
40745
40746
40747
40748
40749
40750
40751
40752
40753
40754
40755
40756
40757
40758
40759
40760
40761
40762
40763
40764
40765
40766
40767
40768
40769
40770
40771
40772
40773
40774
40775
40776
40777
40778
40779
40780
40781
40782
40783
40784
40785
40786
40787
40788
40789
40790
40791
40792
40793
40794
40795
40796
40797
40798
40799
40800
40801
40802
40803
40804
40805
40806
40807
40808
40809
40810
40811
40812
40813
40814
40815
40816
40817
40818
40819
40820
40821
40822
40823
40824
40825
40826
40827
40828
40829
40830
40831
40832
40833
40834
40835
40836
40837
40838
40839
40840
40841
40842
40843
40844
40845
40846
40847
40848
40849
40850
40851
40852
40853
40854
40855
40856
40857
40858
40859
40860
40861
40862
40863
40864
40865
40866
40867
40868
40869
40870
40871
40872
40873
40874
40875
40876
40877
40878
40879
40880
40881
40882
40883
40884
40885
40886
40887
40888
40889
40890
40891
40892
40893
40894
40895
40896
40897
40898
40899
40900
40901
40902
40903
40904
40905
40906
40907
40908
40909
40910
40911
40912
40913
40914
40915
40916
40917
40918
40919
40920
40921
40922
40923
40924
40925
40926
40927
40928
40929
40930
40931
40932
40933
40934
40935
40936
40937
40938
40939
40940
40941
40942
40943
40944
40945
40946
40947
40948
40949
40950
40951
40952
40953
40954
40955
40956
40957
40958
40959
40960
40961
40962
40963
40964
40965
40966
40967
40968
40969
40970
40971
40972
40973
40974
40975
40976
40977
40978
40979
40980
40981
40982
40983
40984
40985
40986
40987
40988
40989
40990
40991
40992
40993
40994
40995
40996
40997
40998
40999
41000
41001
41002
41003
41004
41005
41006
41007
41008
41009
41010
41011
41012
41013
41014
41015
41016
41017
41018
41019
41020
41021
41022
41023
41024
41025
41026
41027
41028
41029
41030
41031
41032
41033
41034
41035
41036
41037
41038
41039
41040
41041
41042
41043
41044
41045
41046
41047
41048
41049
41050
41051
41052
41053
41054
41055
41056
41057
41058
41059
41060
41061
41062
41063
41064
41065
41066
41067
41068
41069
41070
41071
41072
41073
41074
41075
41076
41077
41078
41079
41080
41081
41082
41083
41084
41085
41086
41087
41088
41089
41090
41091
41092
41093
41094
41095
41096
41097
41098
41099
41100
41101
41102
41103
41104
41105
41106
41107
41108
41109
41110
41111
41112
41113
41114
41115
41116
41117
41118
41119
41120
41121
41122
41123
41124
41125
41126
41127
41128
41129
41130
41131
41132
41133
41134
41135
41136
41137
41138
41139
41140
41141
41142
41143
41144
41145
41146
41147
41148
41149
41150
41151
41152
41153
41154
41155
41156
41157
41158
41159
41160
41161
41162
41163
41164
41165
41166
41167
41168
41169
41170
41171
41172
41173
41174
41175
41176
41177
41178
41179
41180
41181
41182
41183
41184
41185
41186
41187
41188
41189
41190
41191
41192
41193
41194
41195
41196
41197
41198
41199
41200
41201
41202
41203
41204
41205
41206
41207
41208
41209
41210
41211
41212
41213
41214
41215
41216
41217
41218
41219
41220
41221
41222
41223
41224
41225
41226
41227
41228
41229
41230
41231
41232
41233
41234
41235
41236
41237
41238
41239
41240
41241
41242
41243
41244
41245
41246
41247
41248
41249
41250
41251
41252
41253
41254
41255
41256
41257
41258
41259
41260
41261
41262
41263
41264
41265
41266
41267
41268
41269
41270
41271
41272
41273
41274
41275
41276
41277
41278
41279
41280
41281
41282
41283
41284
41285
41286
41287
41288
41289
41290
41291
41292
41293
41294
41295
41296
41297
41298
41299
41300
41301
41302
41303
41304
41305
41306
41307
41308
41309
41310
41311
41312
41313
41314
41315
41316
41317
41318
41319
41320
41321
41322
41323
41324
41325
41326
41327
41328
41329
41330
41331
41332
41333
41334
41335
41336
41337
41338
41339
41340
41341
41342
41343
41344
41345
41346
41347
41348
41349
41350
41351
41352
41353
41354
41355
41356
41357
41358
41359
41360
41361
41362
41363
41364
41365
41366
41367
41368
41369
41370
41371
41372
41373
41374
41375
41376
41377
41378
41379
41380
41381
41382
41383
41384
41385
41386
41387
41388
41389
41390
41391
41392
41393
41394
41395
41396
41397
41398
41399
41400
41401
41402
41403
41404
41405
41406
41407
41408
41409
41410
41411
41412
41413
41414
41415
41416
41417
41418
41419
41420
41421
41422
41423
41424
41425
41426
41427
41428
41429
41430
41431
41432
41433
41434
41435
41436
41437
41438
41439
41440
41441
41442
41443
41444
41445
41446
41447
41448
41449
41450
41451
41452
41453
41454
41455
41456
41457
41458
41459
41460
41461
41462
41463
41464
41465
41466
41467
41468
41469
41470
41471
41472
41473
41474
41475
41476
41477
41478
41479
41480
41481
41482
41483
41484
41485
41486
41487
41488
41489
41490
41491
41492
41493
41494
41495
41496
41497
41498
41499
41500
41501
41502
41503
41504
41505
41506
41507
41508
41509
41510
41511
41512
41513
41514
41515
41516
41517
41518
41519
41520
41521
41522
41523
41524
41525
41526
41527
41528
41529
41530
41531
41532
41533
41534
41535
41536
41537
41538
41539
41540
41541
41542
41543
41544
41545
41546
41547
41548
41549
41550
41551
41552
41553
41554
41555
41556
41557
41558
41559
41560
41561
41562
41563
41564
41565
41566
41567
41568
41569
41570
41571
41572
41573
41574
41575
41576
41577
41578
41579
41580
41581
41582
41583
41584
41585
41586
41587
41588
41589
41590
41591
41592
41593
41594
41595
41596
41597
41598
41599
41600
41601
41602
41603
41604
41605
41606
41607
41608
41609
41610
41611
41612
41613
41614
41615
41616
41617
41618
41619
41620
41621
41622
41623
41624
41625
41626
41627
41628
41629
41630
41631
41632
41633
41634
41635
41636
41637
41638
41639
41640
41641
41642
41643
41644
41645
41646
41647
41648
41649
41650
41651
41652
41653
41654
41655
41656
41657
41658
41659
41660
41661
41662
41663
41664
41665
41666
41667
41668
41669
41670
41671
41672
41673
41674
41675
41676
41677
41678
41679
41680
41681
41682
41683
41684
41685
41686
41687
41688
41689
41690
41691
41692
41693
41694
41695
41696
41697
41698
41699
41700
41701
41702
41703
41704
41705
41706
41707
41708
41709
41710
41711
41712
41713
41714
41715
41716
41717
41718
41719
41720
41721
41722
41723
41724
41725
41726
41727
41728
41729
41730
41731
41732
41733
41734
41735
41736
41737
41738
41739
41740
41741
41742
41743
41744
41745
41746
41747
41748
41749
41750
41751
41752
41753
41754
41755
41756
41757
41758
41759
41760
41761
41762
41763
41764
41765
41766
41767
41768
41769
41770
41771
41772
41773
41774
41775
41776
41777
41778
41779
41780
41781
41782
41783
41784
41785
41786
41787
41788
41789
41790
41791
41792
41793
41794
41795
41796
41797
41798
41799
41800
41801
41802
41803
41804
41805
41806
41807
41808
41809
41810
41811
41812
41813
41814
41815
41816
41817
41818
41819
41820
41821
41822
41823
41824
41825
41826
41827
41828
41829
41830
41831
41832
41833
41834
41835
41836
41837
41838
41839
41840
41841
41842
41843
41844
41845
41846
41847
41848
41849
41850
41851
41852
41853
41854
41855
41856
41857
41858
41859
41860
41861
41862
41863
41864
41865
41866
41867
41868
41869
41870
41871
41872
41873
41874
41875
41876
41877
41878
41879
41880
41881
41882
41883
41884
41885
41886
41887
41888
41889
41890
41891
41892
41893
41894
41895
41896
41897
41898
41899
41900
41901
41902
41903
41904
41905
41906
41907
41908
41909
41910
41911
41912
41913
41914
41915
41916
41917
41918
41919
41920
41921
41922
41923
41924
41925
41926
41927
41928
41929
41930
41931
41932
41933
41934
41935
41936
41937
41938
41939
41940
41941
41942
41943
41944
41945
41946
41947
41948
41949
41950
41951
41952
41953
41954
41955
41956
41957
41958
41959
41960
41961
41962
41963
41964
41965
41966
41967
41968
41969
41970
41971
41972
41973
41974
41975
41976
41977
41978
41979
41980
41981
41982
41983
41984
41985
41986
41987
41988
41989
41990
41991
41992
41993
41994
41995
41996
41997
41998
41999
42000
42001
42002
42003
42004
42005
42006
42007
42008
42009
42010
42011
42012
42013
42014
42015
42016
42017
42018
42019
42020
42021
42022
42023
42024
42025
42026
42027
42028
42029
42030
42031
42032
42033
42034
42035
42036
42037
42038
42039
42040
42041
42042
42043
42044
42045
42046
42047
42048
42049
42050
42051
42052
42053
42054
42055
42056
42057
42058
42059
42060
42061
42062
42063
42064
42065
42066
42067
42068
42069
42070
42071
42072
42073
42074
42075
42076
42077
42078
42079
42080
42081
42082
42083
42084
42085
42086
42087
42088
42089
42090
42091
42092
42093
42094
42095
42096
42097
42098
42099
42100
42101
42102
42103
42104
42105
42106
42107
42108
42109
42110
42111
42112
42113
42114
42115
42116
42117
42118
42119
42120
42121
42122
42123
42124
42125
42126
42127
42128
42129
42130
42131
42132
42133
42134
42135
42136
42137
42138
42139
42140
42141
42142
42143
42144
42145
42146
42147
42148
42149
42150
42151
42152
42153
42154
42155
42156
42157
42158
42159
42160
42161
42162
42163
42164
42165
42166
42167
42168
42169
42170
42171
42172
42173
42174
42175
42176
42177
42178
42179
42180
42181
42182
42183
42184
42185
42186
42187
42188
42189
42190
42191
42192
42193
42194
42195
42196
42197
42198
42199
42200
42201
42202
42203
42204
42205
42206
42207
42208
42209
42210
42211
42212
42213
42214
42215
42216
42217
42218
42219
42220
42221
42222
42223
42224
42225
42226
42227
42228
42229
42230
42231
42232
42233
42234
42235
42236
42237
42238
42239
42240
42241
42242
42243
42244
42245
42246
42247
42248
42249
42250
42251
42252
42253
42254
42255
42256
42257
42258
42259
42260
42261
42262
42263
42264
42265
42266
42267
42268
42269
42270
42271
42272
42273
42274
42275
42276
42277
42278
42279
42280
42281
42282
42283
42284
42285
42286
42287
42288
42289
42290
42291
42292
42293
42294
42295
42296
42297
42298
42299
42300
42301
42302
42303
42304
42305
42306
42307
42308
42309
42310
42311
42312
42313
42314
42315
42316
42317
42318
42319
42320
42321
42322
42323
42324
42325
42326
42327
42328
42329
42330
42331
42332
42333
42334
42335
42336
42337
42338
42339
42340
42341
42342
42343
42344
42345
42346
42347
42348
42349
42350
42351
42352
42353
42354
42355
42356
42357
42358
42359
42360
42361
42362
42363
42364
42365
42366
42367
42368
42369
42370
42371
42372
42373
42374
42375
42376
42377
42378
42379
42380
42381
42382
42383
42384
42385
42386
42387
42388
42389
42390
42391
42392
42393
42394
42395
42396
42397
42398
42399
42400
42401
42402
42403
42404
42405
42406
42407
42408
42409
42410
42411
42412
42413
42414
42415
42416
42417
42418
42419
42420
42421
42422
42423
42424
42425
42426
42427
42428
42429
42430
42431
42432
42433
42434
42435
42436
42437
42438
42439
42440
42441
42442
42443
42444
42445
42446
42447
42448
42449
42450
42451
42452
42453
42454
42455
42456
42457
42458
42459
42460
42461
42462
42463
42464
42465
42466
42467
42468
42469
42470
42471
42472
42473
42474
42475
42476
42477
42478
42479
42480
42481
42482
42483
42484
42485
42486
42487
42488
42489
42490
42491
42492
42493
42494
42495
42496
42497
42498
42499
42500
42501
42502
42503
42504
42505
42506
42507
42508
42509
42510
42511
42512
42513
42514
42515
42516
42517
42518
42519
42520
42521
42522
42523
42524
42525
42526
42527
42528
42529
42530
42531
42532
42533
42534
42535
42536
42537
42538
42539
42540
42541
42542
42543
42544
42545
42546
42547
42548
42549
42550
42551
42552
42553
42554
42555
42556
42557
42558
42559
42560
42561
42562
42563
42564
42565
42566
42567
42568
42569
42570
42571
42572
42573
42574
42575
42576
42577
42578
42579
42580
42581
42582
42583
42584
42585
42586
42587
42588
42589
42590
42591
42592
42593
42594
42595
42596
42597
42598
42599
42600
42601
42602
42603
42604
42605
42606
42607
42608
42609
42610
42611
42612
42613
42614
42615
42616
42617
42618
42619
42620
42621
42622
42623
42624
42625
42626
42627
42628
42629
42630
42631
42632
42633
42634
42635
42636
42637
42638
42639
42640
42641
42642
42643
42644
42645
42646
42647
42648
42649
42650
42651
42652
42653
42654
42655
42656
42657
42658
42659
42660
42661
42662
42663
42664
42665
42666
42667
42668
42669
42670
42671
42672
42673
42674
42675
42676
42677
42678
42679
42680
42681
42682
42683
42684
42685
42686
42687
42688
42689
42690
42691
42692
42693
42694
42695
42696
42697
42698
42699
42700
42701
42702
42703
42704
42705
42706
42707
42708
42709
42710
42711
42712
42713
42714
42715
42716
42717
42718
42719
42720
42721
42722
42723
42724
42725
42726
42727
42728
42729
42730
42731
42732
42733
42734
42735
42736
42737
42738
42739
42740
42741
42742
42743
42744
42745
42746
42747
42748
42749
42750
42751
42752
42753
42754
42755
42756
42757
42758
42759
42760
42761
42762
42763
42764
42765
42766
42767
42768
42769
42770
42771
42772
42773
42774
42775
42776
42777
42778
42779
42780
42781
42782
42783
42784
42785
42786
42787
42788
42789
42790
42791
42792
42793
42794
42795
42796
42797
42798
42799
42800
42801
42802
42803
42804
42805
42806
42807
42808
42809
42810
42811
42812
42813
42814
42815
42816
42817
42818
42819
42820
42821
42822
42823
42824
42825
42826
42827
42828
42829
42830
42831
42832
42833
42834
42835
42836
42837
42838
42839
42840
42841
42842
42843
42844
42845
42846
42847
42848
42849
42850
42851
42852
42853
42854
42855
42856
42857
42858
42859
42860
42861
42862
42863
42864
42865
42866
42867
42868
42869
42870
42871
42872
42873
42874
42875
42876
42877
42878
42879
42880
42881
42882
42883
42884
42885
42886
42887
42888
42889
42890
42891
42892
42893
42894
42895
42896
42897
42898
42899
42900
42901
42902
42903
42904
42905
42906
42907
42908
42909
42910
42911
42912
42913
42914
42915
42916
42917
42918
42919
42920
42921
42922
42923
42924
42925
42926
42927
42928
42929
42930
42931
42932
42933
42934
42935
42936
42937
42938
42939
42940
42941
42942
42943
42944
42945
42946
42947
42948
42949
42950
42951
42952
42953
42954
42955
42956
42957
42958
42959
42960
42961
42962
42963
42964
42965
42966
42967
42968
42969
42970
42971
42972
42973
42974
42975
42976
42977
42978
42979
42980
42981
42982
42983
42984
42985
42986
42987
42988
42989
42990
42991
42992
42993
42994
42995
42996
42997
42998
42999
43000
43001
43002
43003
43004
43005
43006
43007
43008
43009
43010
43011
43012
43013
43014
43015
43016
43017
43018
43019
43020
43021
43022
43023
43024
43025
43026
43027
43028
43029
43030
43031
43032
43033
43034
43035
43036
43037
43038
43039
43040
43041
43042
43043
43044
43045
43046
43047
43048
43049
43050
43051
43052
43053
43054
43055
43056
43057
43058
43059
43060
43061
43062
43063
43064
43065
43066
43067
43068
43069
43070
43071
43072
43073
43074
43075
43076
43077
43078
43079
43080
43081
43082
43083
43084
43085
43086
43087
43088
43089
43090
43091
43092
43093
43094
43095
43096
43097
43098
43099
43100
43101
43102
43103
43104
43105
43106
43107
43108
43109
43110
43111
43112
43113
43114
43115
43116
43117
43118
43119
43120
43121
43122
43123
43124
43125
43126
43127
43128
43129
43130
43131
43132
43133
43134
43135
43136
43137
43138
43139
43140
43141
43142
43143
43144
43145
43146
43147
43148
43149
43150
43151
43152
43153
43154
43155
43156
43157
43158
43159
43160
43161
43162
43163
43164
43165
43166
43167
43168
43169
43170
43171
43172
43173
43174
43175
43176
43177
43178
43179
43180
43181
43182
43183
43184
43185
43186
43187
43188
43189
43190
43191
43192
43193
43194
43195
43196
43197
43198
43199
43200
43201
43202
43203
43204
43205
43206
43207
43208
43209
43210
43211
43212
43213
43214
43215
43216
43217
43218
43219
43220
43221
43222
43223
43224
43225
43226
43227
43228
43229
43230
43231
43232
43233
43234
43235
43236
43237
43238
43239
43240
43241
43242
43243
43244
43245
43246
43247
43248
43249
43250
43251
43252
43253
43254
43255
43256
43257
43258
43259
43260
43261
43262
43263
43264
43265
43266
43267
43268
43269
43270
43271
43272
43273
43274
43275
43276
43277
43278
43279
43280
43281
43282
43283
43284
43285
43286
43287
43288
43289
43290
43291
43292
43293
43294
43295
43296
43297
43298
43299
43300
43301
43302
43303
43304
43305
43306
43307
43308
43309
43310
43311
43312
43313
43314
43315
43316
43317
43318
43319
43320
43321
43322
43323
43324
43325
43326
43327
43328
43329
43330
43331
43332
43333
43334
43335
43336
43337
43338
43339
43340
43341
43342
43343
43344
43345
43346
43347
43348
43349
43350
43351
43352
43353
43354
43355
43356
43357
43358
43359
43360
43361
43362
43363
43364
43365
43366
43367
43368
43369
43370
43371
43372
43373
43374
43375
43376
43377
43378
43379
43380
43381
43382
43383
43384
43385
43386
43387
43388
43389
43390
43391
43392
43393
43394
43395
43396
43397
43398
43399
43400
43401
43402
43403
43404
43405
43406
43407
43408
43409
43410
43411
43412
43413
43414
43415
43416
43417
43418
43419
43420
43421
43422
43423
43424
43425
43426
43427
43428
43429
43430
43431
43432
43433
43434
43435
43436
43437
43438
43439
43440
43441
43442
43443
43444
43445
43446
43447
43448
43449
43450
43451
43452
43453
43454
43455
43456
43457
43458
43459
43460
43461
43462
43463
43464
43465
43466
43467
43468
43469
43470
43471
43472
43473
43474
43475
43476
43477
43478
43479
43480
43481
43482
43483
43484
43485
43486
43487
43488
43489
43490
43491
43492
43493
43494
43495
43496
43497
43498
43499
43500
43501
43502
43503
43504
43505
43506
43507
43508
43509
43510
43511
43512
43513
43514
43515
43516
43517
43518
43519
43520
43521
43522
43523
43524
43525
43526
43527
43528
43529
43530
43531
43532
43533
43534
43535
43536
43537
43538
43539
43540
43541
43542
43543
43544
43545
43546
43547
43548
43549
43550
43551
43552
43553
43554
43555
43556
43557
43558
43559
43560
43561
43562
43563
43564
43565
43566
43567
43568
43569
43570
43571
43572
43573
43574
43575
43576
43577
43578
43579
43580
43581
43582
43583
43584
43585
43586
43587
43588
43589
43590
43591
43592
43593
43594
43595
43596
43597
43598
43599
43600
43601
43602
43603
43604
43605
43606
43607
43608
43609
43610
43611
43612
43613
43614
43615
43616
43617
43618
43619
43620
43621
43622
43623
43624
43625
43626
43627
43628
43629
43630
43631
43632
43633
43634
43635
43636
43637
43638
43639
43640
43641
43642
43643
43644
43645
43646
43647
43648
43649
43650
43651
43652
43653
43654
43655
43656
43657
43658
43659
43660
43661
43662
43663
43664
43665
43666
43667
43668
43669
43670
43671
43672
43673
43674
43675
43676
43677
43678
43679
43680
43681
43682
43683
43684
43685
43686
43687
43688
43689
43690
43691
43692
43693
43694
43695
43696
43697
43698
43699
43700
43701
43702
43703
43704
43705
43706
43707
43708
43709
43710
43711
43712
43713
43714
43715
43716
43717
43718
43719
43720
43721
43722
43723
43724
43725
43726
43727
43728
43729
43730
43731
43732
43733
43734
43735
43736
43737
43738
43739
43740
43741
43742
43743
43744
43745
43746
43747
43748
43749
43750
43751
43752
43753
43754
43755
43756
43757
43758
43759
43760
43761
43762
43763
43764
43765
43766
43767
43768
43769
43770
43771
43772
43773
43774
43775
43776
43777
43778
43779
43780
43781
43782
43783
43784
43785
43786
43787
43788
43789
43790
43791
43792
43793
43794
43795
43796
43797
43798
43799
43800
43801
43802
43803
43804
43805
43806
43807
43808
43809
43810
43811
43812
43813
43814
43815
43816
43817
43818
43819
43820
43821
43822
43823
43824
43825
43826
43827
43828
43829
43830
43831
43832
43833
43834
43835
43836
43837
43838
43839
43840
43841
43842
43843
43844
43845
43846
43847
43848
43849
43850
43851
43852
43853
43854
43855
43856
43857
43858
43859
43860
43861
43862
43863
43864
43865
43866
43867
43868
43869
43870
43871
43872
43873
43874
43875
43876
43877
43878
43879
43880
43881
43882
43883
43884
43885
43886
43887
43888
43889
43890
43891
43892
43893
43894
43895
43896
43897
43898
43899
43900
43901
43902
43903
43904
43905
43906
43907
43908
43909
43910
43911
43912
43913
43914
43915
43916
43917
43918
43919
43920
43921
43922
43923
43924
43925
43926
43927
43928
43929
43930
43931
43932
43933
43934
43935
43936
43937
43938
43939
43940
43941
43942
43943
43944
43945
43946
43947
43948
43949
43950
43951
43952
43953
43954
43955
43956
43957
43958
43959
43960
43961
43962
43963
43964
43965
43966
43967
43968
43969
43970
43971
43972
43973
43974
43975
43976
43977
43978
43979
43980
43981
43982
43983
43984
43985
43986
43987
43988
43989
43990
43991
43992
43993
43994
43995
43996
43997
43998
43999
44000
44001
44002
44003
44004
44005
44006
44007
44008
44009
44010
44011
44012
44013
44014
44015
44016
44017
44018
44019
44020
44021
44022
44023
44024
44025
44026
44027
44028
44029
44030
44031
44032
44033
44034
44035
44036
44037
44038
44039
44040
44041
44042
44043
44044
44045
44046
44047
44048
44049
44050
44051
44052
44053
44054
44055
44056
44057
44058
44059
44060
44061
44062
44063
44064
44065
44066
44067
44068
44069
44070
44071
44072
44073
44074
44075
44076
44077
44078
44079
44080
44081
44082
44083
44084
44085
44086
44087
44088
44089
44090
44091
44092
44093
44094
44095
44096
44097
44098
44099
44100
44101
44102
44103
44104
44105
44106
44107
44108
44109
44110
44111
44112
44113
44114
44115
44116
44117
44118
44119
44120
44121
44122
44123
44124
44125
44126
44127
44128
44129
44130
44131
44132
44133
44134
44135
44136
44137
44138
44139
44140
44141
44142
44143
44144
44145
44146
44147
44148
44149
44150
44151
44152
44153
44154
44155
44156
44157
44158
44159
44160
44161
44162
44163
44164
44165
44166
44167
44168
44169
44170
44171
44172
44173
44174
44175
44176
44177
44178
44179
44180
44181
44182
44183
44184
44185
44186
44187
44188
44189
44190
44191
44192
44193
44194
44195
44196
44197
44198
44199
44200
44201
44202
44203
44204
44205
44206
44207
44208
44209
44210
44211
44212
44213
44214
44215
44216
44217
44218
44219
44220
44221
44222
44223
44224
44225
44226
44227
44228
44229
44230
44231
44232
44233
44234
44235
44236
44237
44238
44239
44240
44241
44242
44243
44244
44245
44246
44247
44248
44249
44250
44251
44252
44253
44254
44255
44256
44257
44258
44259
44260
44261
44262
44263
44264
44265
44266
44267
44268
44269
44270
44271
44272
44273
44274
44275
44276
44277
44278
44279
44280
44281
44282
44283
44284
44285
44286
44287
44288
44289
44290
44291
44292
44293
44294
44295
44296
44297
44298
44299
44300
44301
44302
44303
44304
44305
44306
44307
44308
44309
44310
44311
44312
44313
44314
44315
44316
44317
44318
44319
44320
44321
44322
44323
44324
44325
44326
44327
44328
44329
44330
44331
44332
44333
44334
44335
44336
44337
44338
44339
44340
44341
44342
44343
44344
44345
44346
44347
44348
44349
44350
44351
44352
44353
44354
44355
44356
44357
44358
44359
44360
44361
44362
44363
44364
44365
44366
44367
44368
44369
44370
44371
44372
44373
44374
44375
44376
44377
44378
44379
44380
44381
44382
44383
44384
44385
44386
44387
44388
44389
44390
44391
44392
44393
44394
44395
44396
44397
44398
44399
44400
44401
44402
44403
44404
44405
44406
44407
44408
44409
44410
44411
44412
44413
44414
44415
44416
44417
44418
44419
44420
44421
44422
44423
44424
44425
44426
44427
44428
44429
44430
44431
44432
44433
44434
44435
44436
44437
44438
44439
44440
44441
44442
44443
44444
44445
44446
44447
44448
44449
44450
44451
44452
44453
44454
44455
44456
44457
44458
44459
44460
44461
44462
44463
44464
44465
44466
44467
44468
44469
44470
44471
44472
44473
44474
44475
44476
44477
44478
44479
44480
44481
44482
44483
44484
44485
44486
44487
44488
44489
44490
44491
44492
44493
44494
44495
44496
44497
44498
44499
44500
44501
44502
44503
44504
44505
44506
44507
44508
44509
44510
44511
44512
44513
44514
44515
44516
44517
44518
44519
44520
44521
44522
44523
44524
44525
44526
44527
44528
44529
44530
44531
44532
44533
44534
44535
44536
44537
44538
44539
44540
44541
44542
44543
44544
44545
44546
44547
44548
44549
44550
44551
44552
44553
44554
44555
44556
44557
44558
44559
44560
44561
44562
44563
44564
44565
44566
44567
44568
44569
44570
44571
44572
44573
44574
44575
44576
44577
44578
44579
44580
44581
44582
44583
44584
44585
44586
44587
44588
44589
44590
44591
44592
44593
44594
44595
44596
44597
44598
44599
44600
44601
44602
44603
44604
44605
44606
44607
44608
44609
44610
44611
44612
44613
44614
44615
44616
44617
44618
44619
44620
44621
44622
44623
44624
44625
44626
44627
44628
44629
44630
44631
44632
44633
44634
44635
44636
44637
44638
44639
44640
44641
44642
44643
44644
44645
44646
44647
44648
44649
44650
44651
44652
44653
44654
44655
44656
44657
44658
44659
44660
44661
44662
44663
44664
44665
44666
44667
44668
44669
44670
44671
44672
44673
44674
44675
44676
44677
44678
44679
44680
44681
44682
44683
44684
44685
44686
44687
44688
44689
44690
44691
44692
44693
44694
44695
44696
44697
44698
44699
44700
44701
44702
44703
44704
44705
44706
44707
44708
44709
44710
44711
44712
44713
44714
44715
44716
44717
44718
44719
44720
44721
44722
44723
44724
44725
44726
44727
44728
44729
44730
44731
44732
44733
44734
44735
44736
44737
44738
44739
44740
44741
44742
44743
44744
44745
44746
44747
44748
44749
44750
44751
44752
44753
44754
44755
44756
44757
44758
44759
44760
44761
44762
44763
44764
44765
44766
44767
44768
44769
44770
44771
44772
44773
44774
44775
44776
44777
44778
44779
44780
44781
44782
44783
44784
44785
44786
44787
44788
44789
44790
44791
44792
44793
44794
44795
44796
44797
44798
44799
44800
44801
44802
44803
44804
44805
44806
44807
44808
44809
44810
44811
44812
44813
44814
44815
44816
44817
44818
44819
44820
44821
44822
44823
44824
44825
44826
44827
44828
44829
44830
44831
44832
44833
44834
44835
44836
44837
44838
44839
44840
44841
44842
44843
44844
44845
44846
44847
44848
44849
44850
44851
44852
44853
44854
44855
44856
44857
44858
44859
44860
44861
44862
44863
44864
44865
44866
44867
44868
44869
44870
44871
44872
44873
44874
44875
44876
44877
44878
44879
44880
44881
44882
44883
44884
44885
44886
44887
44888
44889
44890
44891
44892
44893
44894
44895
44896
44897
44898
44899
44900
44901
44902
44903
44904
44905
44906
44907
44908
44909
44910
44911
44912
44913
44914
44915
44916
44917
44918
44919
44920
44921
44922
44923
44924
44925
44926
44927
44928
44929
44930
44931
44932
44933
44934
44935
44936
44937
44938
44939
44940
44941
44942
44943
44944
44945
44946
44947
44948
44949
44950
44951
44952
44953
44954
44955
44956
44957
44958
44959
44960
44961
44962
44963
44964
44965
44966
44967
44968
44969
44970
44971
44972
44973
44974
44975
44976
44977
44978
44979
44980
44981
44982
44983
44984
44985
44986
44987
44988
44989
44990
44991
44992
44993
44994
44995
44996
44997
44998
44999
45000
45001
45002
45003
45004
45005
45006
45007
45008
45009
45010
45011
45012
45013
45014
45015
45016
45017
45018
45019
45020
45021
45022
45023
45024
45025
45026
45027
45028
45029
45030
45031
45032
45033
45034
45035
45036
45037
45038
45039
45040
45041
45042
45043
45044
45045
45046
45047
45048
45049
45050
45051
45052
45053
45054
45055
45056
45057
45058
45059
45060
45061
45062
45063
45064
45065
45066
45067
45068
45069
45070
45071
45072
45073
45074
45075
45076
45077
45078
45079
45080
45081
45082
45083
45084
45085
45086
45087
45088
45089
45090
45091
45092
45093
45094
45095
45096
45097
45098
45099
45100
45101
45102
45103
45104
45105
45106
45107
45108
45109
45110
45111
45112
45113
45114
45115
45116
45117
45118
45119
45120
45121
45122
45123
45124
45125
45126
45127
45128
45129
45130
45131
45132
45133
45134
45135
45136
45137
45138
45139
45140
45141
45142
45143
45144
45145
45146
45147
45148
45149
45150
45151
45152
45153
45154
45155
45156
45157
45158
45159
45160
45161
45162
45163
45164
45165
45166
45167
45168
45169
45170
45171
45172
45173
45174
45175
45176
45177
45178
45179
45180
45181
45182
45183
45184
45185
45186
45187
45188
45189
45190
45191
45192
45193
45194
45195
45196
45197
45198
45199
45200
45201
45202
45203
45204
45205
45206
45207
45208
45209
45210
45211
45212
45213
45214
45215
45216
45217
45218
45219
45220
45221
45222
45223
45224
45225
45226
45227
45228
45229
45230
45231
45232
45233
45234
45235
45236
45237
45238
45239
45240
45241
45242
45243
45244
45245
45246
45247
45248
45249
45250
45251
45252
45253
45254
45255
45256
45257
45258
45259
45260
45261
45262
45263
45264
45265
45266
45267
45268
45269
45270
45271
45272
45273
45274
45275
45276
45277
45278
45279
45280
45281
45282
45283
45284
45285
45286
45287
45288
45289
45290
45291
45292
45293
45294
45295
45296
45297
45298
45299
45300
45301
45302
45303
45304
45305
45306
45307
45308
45309
45310
45311
45312
45313
45314
45315
45316
45317
45318
45319
45320
45321
45322
45323
45324
45325
45326
45327
45328
45329
45330
45331
45332
45333
45334
45335
45336
45337
45338
45339
45340
45341
45342
45343
45344
45345
45346
45347
45348
45349
45350
45351
45352
45353
45354
45355
45356
45357
45358
45359
45360
45361
45362
45363
45364
45365
45366
45367
45368
45369
45370
45371
45372
45373
45374
45375
45376
45377
45378
45379
45380
45381
45382
45383
45384
45385
45386
45387
45388
45389
45390
45391
45392
45393
45394
45395
45396
45397
45398
45399
45400
45401
45402
45403
45404
45405
45406
45407
45408
45409
45410
45411
45412
45413
45414
45415
45416
45417
45418
45419
45420
45421
45422
45423
45424
45425
45426
45427
45428
45429
45430
45431
45432
45433
45434
45435
45436
45437
45438
45439
45440
45441
45442
45443
45444
45445
45446
45447
45448
45449
45450
45451
45452
45453
45454
45455
45456
45457
45458
45459
45460
45461
45462
45463
45464
45465
45466
45467
45468
45469
45470
45471
45472
45473
45474
45475
45476
45477
45478
45479
45480
45481
45482
45483
45484
45485
45486
45487
45488
45489
45490
45491
45492
45493
45494
45495
45496
45497
45498
45499
45500
45501
45502
45503
45504
45505
45506
45507
45508
45509
45510
45511
45512
45513
45514
45515
45516
45517
45518
45519
45520
45521
45522
45523
45524
45525
45526
45527
45528
45529
45530
45531
45532
45533
45534
45535
45536
45537
45538
45539
45540
45541
45542
45543
45544
45545
45546
45547
45548
45549
45550
45551
45552
45553
45554
45555
45556
45557
45558
45559
45560
45561
45562
45563
45564
45565
45566
45567
45568
45569
45570
45571
45572
45573
45574
45575
45576
45577
45578
45579
45580
45581
45582
45583
45584
45585
45586
45587
45588
45589
45590
45591
45592
45593
45594
45595
45596
45597
45598
45599
45600
45601
45602
45603
45604
45605
45606
45607
45608
45609
45610
45611
45612
45613
45614
45615
45616
45617
45618
45619
45620
45621
45622
45623
45624
45625
45626
45627
45628
45629
45630
45631
45632
45633
45634
45635
45636
45637
45638
45639
45640
45641
45642
45643
45644
45645
45646
45647
45648
45649
45650
45651
45652
45653
45654
45655
45656
45657
45658
45659
45660
45661
45662
45663
45664
45665
45666
45667
45668
45669
45670
45671
45672
45673
45674
45675
45676
45677
45678
45679
45680
45681
45682
45683
45684
45685
45686
45687
45688
45689
45690
45691
45692
45693
45694
45695
45696
45697
45698
45699
45700
45701
45702
45703
45704
45705
45706
45707
45708
45709
45710
45711
45712
45713
45714
45715
45716
45717
45718
45719
45720
45721
45722
45723
45724
45725
45726
45727
45728
45729
45730
45731
45732
45733
45734
45735
45736
45737
45738
45739
45740
45741
45742
45743
45744
45745
45746
45747
45748
45749
45750
45751
45752
45753
45754
45755
45756
45757
45758
45759
45760
45761
45762
45763
45764
45765
45766
45767
45768
45769
45770
45771
45772
45773
45774
45775
45776
45777
45778
45779
45780
45781
45782
45783
45784
45785
45786
45787
45788
45789
45790
45791
45792
45793
45794
45795
45796
45797
45798
45799
45800
45801
45802
45803
45804
45805
45806
45807
45808
45809
45810
45811
45812
45813
45814
45815
45816
45817
45818
45819
45820
45821
45822
45823
45824
45825
45826
45827
45828
45829
45830
45831
45832
45833
45834
45835
45836
45837
45838
45839
45840
45841
45842
45843
45844
45845
45846
45847
45848
45849
45850
45851
45852
45853
45854
45855
45856
45857
45858
45859
45860
45861
45862
45863
45864
45865
45866
45867
45868
45869
45870
45871
45872
45873
45874
45875
45876
45877
45878
45879
45880
45881
45882
45883
45884
45885
45886
45887
45888
45889
45890
45891
45892
45893
45894
45895
45896
45897
45898
45899
45900
45901
45902
45903
45904
45905
45906
45907
45908
45909
45910
45911
45912
45913
45914
45915
45916
45917
45918
45919
45920
45921
45922
45923
45924
45925
45926
45927
45928
45929
45930
45931
45932
45933
45934
45935
45936
45937
45938
45939
45940
45941
45942
45943
45944
45945
45946
45947
45948
45949
45950
45951
45952
45953
45954
45955
45956
45957
45958
45959
45960
45961
45962
45963
45964
45965
45966
45967
45968
45969
45970
45971
45972
45973
45974
45975
45976
45977
45978
45979
45980
45981
45982
45983
45984
45985
45986
45987
45988
45989
45990
45991
45992
45993
45994
45995
45996
45997
45998
45999
46000
46001
46002
46003
46004
46005
46006
46007
46008
46009
46010
46011
46012
46013
46014
46015
46016
46017
46018
46019
46020
46021
46022
46023
46024
46025
46026
46027
46028
46029
46030
46031
46032
46033
46034
46035
46036
46037
46038
46039
46040
46041
46042
46043
46044
46045
46046
46047
46048
46049
46050
46051
46052
46053
46054
46055
46056
46057
46058
46059
46060
46061
46062
46063
46064
46065
46066
46067
46068
46069
46070
46071
46072
46073
46074
46075
46076
46077
46078
46079
46080
46081
46082
46083
46084
46085
46086
46087
46088
46089
46090
46091
46092
46093
46094
46095
46096
46097
46098
46099
46100
46101
46102
46103
46104
46105
46106
46107
46108
46109
46110
46111
46112
46113
46114
46115
46116
46117
46118
46119
46120
46121
46122
46123
46124
46125
46126
46127
46128
46129
46130
46131
46132
46133
46134
46135
46136
46137
46138
46139
46140
46141
46142
46143
46144
46145
46146
46147
46148
46149
46150
46151
46152
46153
46154
46155
46156
46157
46158
46159
46160
46161
46162
46163
46164
46165
46166
46167
46168
46169
46170
46171
46172
46173
46174
46175
46176
46177
46178
46179
46180
46181
46182
46183
46184
46185
46186
46187
46188
46189
46190
46191
46192
46193
46194
46195
46196
46197
46198
46199
46200
46201
46202
46203
46204
46205
46206
46207
46208
46209
46210
46211
46212
46213
46214
46215
46216
46217
46218
46219
46220
46221
46222
46223
46224
46225
46226
46227
46228
46229
46230
46231
46232
46233
46234
46235
46236
46237
46238
46239
46240
46241
46242
46243
46244
46245
46246
46247
46248
46249
46250
46251
46252
46253
46254
46255
46256
46257
46258
46259
46260
46261
46262
46263
46264
46265
46266
46267
46268
46269
46270
46271
46272
46273
46274
46275
46276
46277
46278
46279
46280
46281
46282
46283
46284
46285
46286
46287
46288
46289
46290
46291
46292
46293
46294
46295
46296
46297
46298
46299
46300
46301
46302
46303
46304
46305
46306
46307
46308
46309
46310
46311
46312
46313
46314
46315
46316
46317
46318
46319
46320
46321
46322
46323
46324
46325
46326
46327
46328
46329
46330
46331 | FN ISI Export Format
VR 1.0
PT J
AU Arantes, GM
Chaimovich, H
TI Thiolysis and alcoholysis of phosphate tri- and monoesters with alkyl
and aryl leaving groups. An ab initio study in the gas phase
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID QUANTUM-MECHANICAL CALCULATIONS; MOLECULAR-ORBITAL METHODS;
GAUSSIAN-BASIS SETS; TRIMETHYL PHOSPHATE; PHOTOELECTRON-SPECTROSCOPY;
AQUEOUS-SOLUTION; INFRARED-SPECTROSCOPY; PROTEIN PHOSPHATASES;
CHEMICAL-REACTIONS; ESTER HYDROLYSIS
AB Phosphate esters are important compounds in living systems. Their
biological reactions with alcohol and thiol nucleophiles are catalyzed
by a large superfamily,if phosphatase enzymes. However, very little is
known about the intrinsic reactivity of these nucleophiles with
phosphorus centers. We have performed ab initio calculations on the
thiolysis and alcoholysis at phosphorus of trimethyl phosphate,
dimethyl phenyl phosphate, methyl phosphate, and phenyl phosphate.
Results in the gas phase are a reference for the study of the intrinsic
reactivity of these compounds. Thiolysis of triesters was much slower
and less favorable than the corresponding alcoholysis. Triesters
reacted through an associative mechanism. Monoesters can react by both
associative and dissociative mechanisms. The basicity of the attacking
and leaving groups and the possibility of proton transfers can modulate
the reaction mechanisms. Intermediates formed along associative
reactions did not follow empirically proposed rules for ligand
positioning. Our calculations also allow re-interpretation of some
experimental results, and new experiments are proposed to trace
reactions that are normally not observed, both in the gas phase and in
solution.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Arantes, GM, Univ Sao Paulo, Inst Quim, Av Lineu Prestes 748,
BR-05508900 Sao Paulo, Brazil.
EM gma@dinamicas.art.br
CR AHLRICHS R, 1989, CHEM PHYS LETT, V162, P165
AQVIST J, 1999, CHEM BIOL, V6, P71
ARANTES GM, 2004, THESIS U SAO PAULO
ASUBIOJO OI, 1977, J AM CHEM SOC, V99, P7707
AYALA PY, 1998, J CHEM PHYS, V108, P2314
BALLARD RE, 1987, CHEM PHYS LETT, V137, P125
BARFORD D, 1998, ANNU REV BIOPH BIOM, V27, P133
BIANCIOTTO M, 2002, J AM CHEM SOC, V124, P7573
BOLDYREV AI, 1996, ACCOUNTS CHEM RES, V29, P497
BUNTON CA, 1967, J AM CHEM SOC, V89, P1221
BUNTON CA, 1970, ACCOUNTS CHEM RES, V3, P257
CHANG NY, 1997, J PHYS CHEM A, V101, P8706
CHANG NY, 1998, J AM CHEM SOC, V120, P2156
CLELAND WW, 1995, FASEB J, V9, P1585
COLEMAN JE, 1992, ANNU REV BIOPH BIOM, V21, P441
COX JR, 1964, CHEM REV, V64, P317
CURTISS LA, 1996, J CHEM PHYS, V104, P5148
DANTZMAN CL, 1996, J AM CHEM SOC, V118, P11715
DEJAEGERE A, 1994, J CHEM SOC FARADAY T, V90, P1763
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DUBOURG A, 1982, J CHEM RES S, V7, P180
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FLORIAN J, 1998, J AM CHEM SOC, V120, P11524
FLORIAN J, 1998, J PHYS CHEM B, V102, P719
FRIEDMAN JM, 1988, J AM CHEM SOC, V110, P1268
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
GEORGE L, 1994, APPL SPECTROSC, V48, P7
GOLDSTEIN BJ, 1998, TYROSINE PHOSPOPROTE
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
GRYZYSKA P, 2002, J ORG CHEM, V67, P1214
GUNION RF, 1992, INT J MASS SPECTROM, V117, P601
GUTHRIE RD, 1989, ACCOUNTS CHEM RES, V22, P343
HARMONY MD, 1979, J PHYS CHEM REF DATA, V8, P619
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HELGAKER T, 2000, MOL ELECT STRUCTURE
HIRSCHFELDER JO, 1967, ADV CHEM PHYS, V12, P3
HODGES RV, 1980, J AM CHEM SOC, V102, P935
HOFF RH, 1998, J ORG CHEM, V63, P6680
HU CH, 1999, J PHYS CHEM A, V103, P5379
JACKSON MD, 2001, CHEM REV, V101, P2313
KHAN SA, 1970, J CHEM SOC B, P1172
KIRBY A, 1968, J AM CHEM SOC, V89, P415
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
LENDVAY G, 1998, CHEM PHYS LETT, V297, P365
LESS RM, 1968, J CHEM PHYS, V48, P5299
LIAS SG, 1988, J PHYS CHEM REF D S1, V17, P1
LUM RC, 1992, J AM CHEM SOC, V114, P8619
MCCOMB RB, 1979, ALKALINE PHOSPHATES
MCQUARRIE DA, 1976, STAT MECH
MENEGON G, 2002, J PHYS CHEM A, V106, P9078
MERCERO JM, 2000, J COMPUT CHEM, V21, P43
MILLER B, 1962, J AM CHEM SOC, V84, P403
MOLLER C, 1934, PHYS REV, V46, P618
NELSON RD, 1967, NATL STD REF DATA SE, V10, P1
OCHTERSKI JW, 1999, WHITE PAPER VIBRATIO
OSBORN DL, 1998, CHEM PHYS LETT, V292, P651
PARR RG, 1996, DENSITY FUNCTIONAL T
PULAY P, 1988, J CHEM PHYS, V88, P4926
ROBIN MB, 1972, J ELECTRON SPECTROSC, V1, P13
SANTORO E, 1973, ORG MASS SPECTROM, V7, P589
SCHAFER A, 1992, J CHEM PHYS, V97, P2571
SCHLEGEL HB, 1987, ADV CHEM PHYS, V67, P249
SCHWARTZ RL, 2000, J ELECTRON SPECTROSC, V108, P163
SZABO A, 1989, MODERN QUANTUM CHEM
TAYLOR PR, 1992, LECT NOTES QUANTUM C, V1
THATCHER GRJ, 1989, ADV PHYS ORG CHEM, V25, P99
VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
VIDYA V, 1996, CHEM PHYS LETT, V258, P113
WESTHEIMER FH, 1968, ACCOUNTS CHEM RES, V1, P70
WESTHEIMER FH, 1987, SCIENCE, V235, P1173
WILSON EB, 1980, MOL VIBRATIONS THEOR
NR 72
TC 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUN 30
PY 2005
VL 109
IS 25
BP 5625
EP 5635
PG 11
SC Chemistry, Physical
GA 940CZ
UT ISI:000230122600013
ER
PT J
AU Rego, LGC
Abuabara, SG
Batista, VS
TI Model study of coherent quantum dynamics of hole states in
functionalized semiconductor nanostructures
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID HETEROGENEOUS ELECTRON-TRANSFER; CHARGE-TRANSFER; FEMTOSECOND
SPECTROSCOPY; MOLECULAR-DYNAMICS; SOLAR-CELLS; TIO2; SYSTEMS;
DECOHERENCE; ENVIRONMENT; NANOPARTICLES
AB Functionalization of semiconductor nanocrystals can be achieved by
anchoring organic ligands to the surface dangling bonds. The resulting
surface complexes often introduce electronic states in the
semiconductor band gap. These interband states sensitize the host
material for photoabsorption at frequencies characteristic of the
molecular adsorbates, leading to the well-known process of
photoexcitation and subsequent femtosecond interfacial electron
transfer. This paper investigates the relaxation dynamics of hole
states, energetically localized deep in the semiconductor band gap,
after the ultrafast electron-hole pair separation due to interfacial
electron transfer. Mixed quantum-classical methods, based on mean-field
nuclear dynamics approximated by ab initio density functional theory
molecular dynamics simulations, reveal superexchange hole tunneling
between adjacent adsorbate molecules in a model study of functionalized
TiO2-anatase nanostructures. It is shown that electronic coherences can
persist for hundreds of picoseconds under cryogenic and vacuum
conditions, despite the partial intrinsic decoherence induced by
thermal ionic motion, providing results of broad theoretical and
experimental interest. (c) 2005 American Institute of Physics.
C1 Univ Fed Santa Catarina, Dept Phys, BR-88040900 Florianopolis, SC, Brazil.
Yale Univ, Dept Chem, New Haven, CT 06520 USA.
RP Rego, LGC, Univ Fed Santa Catarina, Dept Phys, BR-88040900
Florianopolis, SC, Brazil.
CR ASBURY JB, 2001, J PHYS CHEM B, V105, P4545
AXT VM, 2004, REP PROG PHYS, V67, P433
BATISTA VS, 2002, PHYS REV LETT, V89
BAUER C, 2002, J PHYS CHEM B, V106, P12693
BENT SF, 2002, SURF SCI, V500, P879
BITTNER ER, 1995, J CHEM PHYS, V103, P8130
CERDA J, 2000, PHYS REV B, V61, P7965
FLORES SC, 2004, J PHYS CHEM B, V108, P6745
GERHARDS M, 1996, J CHEM PHYS, V104, P972
GLYNN S, 1972, INTRO APPL QUANTUM C
GONZALEZ RJ, 1997, PHYS REV B, V55, P7014
HAGFELDT A, 1995, CHEM REV, V95, P49
HAGFELDT A, 2000, ACCOUNTS CHEM RES, V33, P269
HOFFMANN R, 1988, REV MOD PHYS, V60, P601
HOHENESTER U, 2000, APPL PHYS LETT, V77, P1864
JACOBSON K, 1976, IMAGING SYSTEMS
JOOS E, 1985, Z PHYS B CON MAT, V59, P223
JOOS E, 1996, DECOHERENCE APPEARAN
KAMAT P, 1997, SEMICONDUCTOR NANOCL
KORMAN DBC, 1998, J PHYS CHEM-US, V92, P5196
KRESSE G, 1996, PHYS REV B, V54, P11169
LAASONEN K, 1993, PHYS REV B, V47, P10142
LIU Y, 1999, J PHYS CHEM B, V103, P2480
MILLER R, 1995, SURFACE ELECT TRANSF
MONCH W, 1993, SEMICONDUCTOR SURFAC
NOZIK AJ, 1996, J PHYS CHEM-US, V100, P13061
PECHUKAS P, 1969, PHYS REV, V181, P166
PERDEW J, 1991, ELECT STRUCTURE SOLI
PESIKA NS, 2002, J PHYS CHEM B, V106, P6985
PREZHDO OV, 1998, PHYS REV LETT, V81, P5294
RAMAKRISHNA G, 2004, J PHYS CHEM B, V108, P1701
RAMAKRISHNA S, 2003, J PHYS CHEM B, V107, P607
REGO LGC, UNPUB J AM CHEM SOC
REGO LGC, UNPUB QUANTUM INFORM
REGO LGC, 2003, J AM CHEM SOC, V125, P7989
RICE CR, 2000, NEW J CHEM, V24, P651
SCHNADT J, 2002, NATURE, V418, P620
SCHNADT J, 2003, J CHEM PHYS, V119, P12462
SCHOONMAN J, 2000, SOLID STATE IONICS, V135, P5
SHIOKAWA K, 2002, J CHEM PHYS, V117, P7852
SMITH BB, 1996, J CHEM PHYS, V205, P47
SMITH BB, 1999, J PHYS CHEM B, V103, P9915
STIER W, 2002, J PHYS CHEM B, V106, P8047
STIER W, 2003, J MOL STRUC-THEOCHEM, V630, P33
THOSS M, 2004, CHEM PHYS, V304, P169
VITTADINI A, 2000, J PHYS CHEM B, V104, P1300
VYDIANATHAN K, 2001, J MATER RES, V16, P1838
WANG ZL, 2004, J PHYS-CONDENS MAT, V16, R829
WHEELER DE, 1999, J PHYS CHEM A, V103, P4101
ZANARDI P, 1997, MOD PHYS LETT B, V11, P1085
ZUREK WH, 1981, PHYS REV D, V24, P1516
ZUREK WH, 1982, PHYS REV D, V26, P1862
ZUREK WH, 1993, PHYS REV LETT, V70, P1187
NR 53
TC 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD APR 15
PY 2005
VL 122
IS 15
AR 154709
DI ARTN 154709
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 927HQ
UT ISI:000229185400044
ER
PT J
AU Zhang, PH
Capaz, RB
Cohen, ML
Louie, SG
TI Theory of sodium ordering in NaxCoO2
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRON-GAS; SYSTEMS; COO2
AB The ordering of Na ions in NaxCoO2 is investigated systematically by
combining detailed density functional theory (DFT) studies with model
calculations. Various ground state ordering patterns are identified,
and they are in excellent agreement with available experimental
results. Our results suggest that the primary driving force for the Na
ordering is the screened Coulomb interaction among Na ions. Possible
effects of the Na ordering on the electronic structure of the CoO2
layer are discussed. We propose that the nonexistence of a charge
ordered insulating state at x=2/3 is due to the lack of a commensurate
Na ordering pattern, whereas an extremely stable Na ordering at x=0.5
enhances the charge ordering tendency, resulting in an insulating state
as observed experimentally.
C1 Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Sci Mat, Berkeley, CA 94720 USA.
Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil.
RP Zhang, PH, Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA.
CR BALSYS RJ, 1996, SOLID STATE IONICS, V93, P279
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DEFONTAINE D, 1994, SOLID STATE PHYS, V47, P33
DELMAS C, 1981, SOL STATE IONICS, V3, P165
FOO ML, 2004, PHYS REV LETT, V92
HOHENBERG P, 1964, PHYS REV, V136, B864
HUANG Q, 2004, PHYS REV B, V70
HUANG Q, 2004, PHYS REV B, V70
KOHN W, 1965, PHYS REV, V140, A1133
LEE KW, 2004, PHYS REV B, V70
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
MOTRUNICH OI, 2004, PHYS REV B, V69
MUKHAMEDSHIN IR, 2004, PHYS REV LETT, V93
ONO Y, 2002, J SOLID STATE CHEM, V166, P177
ORDEJON P, 1996, PHYS REV B, V53
PERDEW JP, 1981, PHYS REV B, V23, P5048
SHI YG, CONDMAT0306070
SOLER JM, 2002, J PHYS-CONDENS MAT, V14, P2745
SUGIYAMA J, 2004, PHYS REV B, V69
TAKADA K, 2003, NATURE, V422, P53
TROULLIER N, 1991, PHYS REV B, V43, P1993
VANDEWALLE A, 2002, J PHASE EQUILIB, V23, P248
ZANDBERGEN HW, 2004, PHYS REV B, V70
ZHANG PH, 2004, PHYS REV B, V70
NR 24
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD APR
PY 2005
VL 71
IS 15
AR 153102
DI ARTN 153102
PG 4
SC Physics, Condensed Matter
GA 921KJ
UT ISI:000228762900002
ER
PT J
AU Freire, RO
Rocha, GB
Simas, AM
TI Sparkle model for the calculation of lanthanide complexes: AM1
parameters for Eu(III), Gd(III), and Tb(III)
SO INORGANIC CHEMISTRY
LA English
DT Article
ID CAMBRIDGE STRUCTURAL DATABASE; IMAGING CONTRAST AGENTS; SIMPLE OVERLAP
MODEL; RARE-EARTH ELEMENTS; AB-INITIO; GADOLINIUM COMPLEXES;
INTERMEDIATE NEGLECT; ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURES; LU
AB Our previously defined Sparkle model (Inorg. Chem. 2004, 43, 2346) has
been reparameterized for Eu(III) as well as newly parameterized for
Gd(III) and Tb(III). The parameterizations have been carried out in a
much more extensive manner, aimed at producing a new, more accurate
model called Sparkle/AM1, mainly for the vast majority of all Eu(III),
Gd(I I), and Tb(III) complexes, which possess oxygen or nitrogen as
coordinating atoms. All such complexes, which comprise 80% of all
geometries present in the Cambridge Structural Database for each of the
three ions, were classified into seven groups. These were regarded as a
"basis" of chemical ambiance around a lanthanide, which could span the
various types of ligand environments the lanthanide ion could be
subjected to in any arbitrary complex where the lanthanide ion is
coordinated to nitrogen or oxygen atoms. From these seven groups, 15
complexes were selected, which were defined as the parameterization set
and then were used with a numerical multidimensional nonlinear
optimization to find the best parameter set for reproducing chemical
properties. The new parametorizations yielded an unsigned mean error
for all interatomic distances between the Eu(III) ion and the ligand
atoms of the first sphere of coordination (for the 96 complexes
considered in the present paper) of 0.09 angstrom, an improvement over
the value of 0.28 angstrom for the previous model and the value of 0.68
angstrom for the first model (Chem. Phys. Lett. 1994, 227, 349).
Similar accuracies have been achieved for Gd(III) (0.07 angstrom, 70
complexes) and Tb(III) (0.07 A, 42 complexes). Qualitative improvements
have been obtained as well; nitrates now coordinate correctly as
bidentate ligands. The results, therefore, indicate that Eu(Ill),
Gd(III), and Tb(III) Sparkle/AM1 calculations possess geometry
prediction accuracies for lanthanide complexes with oxygen or nitrogen
atoms in the coordination polyhedron that are competitive with present
day ab initio/effective core potential calculations, while being
hundreds of times faster.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
RP Simas, AM, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540
Recife, PE, Brazil.
EM simas@ufpe.br
CR ADAMO C, 1997, CHEM PHYS LETT, V268, P61
ADDING LC, 2001, CARDIOVASC DRUG REV, V19, P41
AIME S, 1998, CHEM SOC REV, V27, P19
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P380
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P407
ANIKIN NA, 2004, J CHEM PHYS, V121, P1266
ATAR E, 2004, ISRAEL MED ASSOC J, V6, P412
BINNEMANS K, 2002, CHEM REV, V102, P2303
BRUNO IJ, 2002, ACTA CRYSTALLOGR B 3, V58, P389
BUNZLI JCG, 2002, CHEM REV, V102, P1897
CAO XY, 2002, J MOL STRUC-THEOCHEM, V581, P139
CAO XY, 2003, MOL PHYS, V101, P2427
CARAVAN P, 1999, CHEM REV, V99, P2293
CORY MG, 1994, J CHEM PHYS, V100, P1353
COSENTINO U, 1997, J MOL STRUC-THEOCHEM, V392, P75
COSENTINO U, 1998, J PHYS CHEM A, V102, P4606
COSENTINO U, 2002, J AM CHEM SOC, V24, P4901
COSENTINO U, 2004, THEOR CHEM ACC, V111, P204
CULBERSON JC, 1987, THEOR CHIM ACTA, V71, P21
CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
CUNDARI TR, 1995, J CHEM PHYS, V103, P7058
DEANDRADE AVM, 1994, CHEM PHYS LETT, V227, P349
DESA GF, 1998, OPT MATER, V11, P23
DESA GF, 2000, COORDIN CHEM REV, V196, P165
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DOLG M, 1989, J CHEM PHYS, V90, P1730
DOLG M, 1989, THEOR CHIM ACTA, V75, P173
DOLG M, 1990, CHEM PHYS LETT, V174, P208
DOLG M, 1992, J CHEM PHYS, V97, P1162
DOLG M, 1995, CHEM PHYS, V195, P71
DOLG M, 2000, NIC SERIES, V1, P479
DORENBOS P, 2003, J SOLID STATE CHEM, V171, P133
EISENSTEIN O, 2002, J ORGANOMET CHEM, V647, P190
FAUSTINO WM, 2000, J MOL STRUC-THEOCHEM, V527, P245
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GAMEIRO CG, 1999, MATER SCI FORUM, V315, P249
GAO JL, 1996, REV COMP CH, V7, P119
HIROSAKI N, 2003, J ALLOY COMPD, V351, P31
KAUPP M, 1992, J AM CHEM SOC, V114, P8202
KIDO J, 2002, CHEM REV, V102, P2357
KURITA N, 2003, CHEM PHYS LETT, V372, P583
LANZA G, 1996, CHEM PHYS LETT, V255, P341
LEHN JM, 1990, ANGEW CHEM INT EDIT, V29, P304
LIDE DR, 2002, HDB CHEM PHYS
LIU WJ, 1997, J CHEM PHYS, V107, P3584
LIU WJ, 1998, INORG CHEM, V37, P1067
MALTA OL, 1982, CHEM PHYS LETT, V87, P27
MALTA OL, 1982, CHEM PHYS LETT, V88, P353
MONDRY A, 2004, J ALLOY COMPD, V374, P27
NAKAJIMA S, 2003, J PHYS CHEM B, V107, P2867
OBRIEN TA, 2000, J ELECTROCHEM SOC, V147, P792
OHNO K, 2001, CHEM PHYS LETT, V341, P387
OHNO K, 2001, J AM CHEM SOC, V123, P8161
PARKER D, 1998, J CHEM SOC PERK OCT, P2129
PERRIN L, 2003, ORGANOMETALLICS, V22, P5447
PERRIN L, 2004, NEW J CHEM, V10, P1255
REID MF, 1989, J LESS-COMMON MET, V148, P219
ROCHA GB, 2004, INORG CHEM, V43, P2346
RONDA CR, 1995, J ALLOY COMPD, V225, P534
ROSS RB, 1994, J CHEM PHYS, V100, P8145
SELVIN PR, 2002, ANNU REV BIOPH BIOM, V31, P275
STEWART JJP, 1996, INT J QUANTUM CHEM, V58, P133
THOMPSON LC, 1979, HDB PHYS CHEM RARE E
THUNUS L, 1999, COORDIN CHEM REV, V184, P125
TITMUSS SJ, 2000, CHEM PHYS LETT, V320, P169
TSUCHIYA T, 1999, J MOL STRUC-THEOCHEM, V461, P203
TSUCHIYA T, 2002, CHEM PHYS LETT, V361, P334
TSUKUBE H, 2002, CHEM REV, V102, P2389
VILLA A, 2000, J PHYS CHEM A, V104, P3421
NR 70
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD MAY 2
PY 2005
VL 44
IS 9
BP 3299
EP 3310
PG 12
SC Chemistry, Inorganic & Nuclear
GA 922CL
UT ISI:000228813400046
ER
PT J
AU Cabral, BJC
Canuto, S
TI The enthalpy of the O-H bond hornolytic dissociation: Basis-set
extrapolated density functional theory and coupled cluster calculations
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CORRELATION-ENERGY; GAS-PHASE; WAVE-FUNCTIONS; ENERGETICS; MOLECULES;
EXCHANGE; PHENOL; CONVERGENCE; RESPECT
AB The O-H bond homolytic dissociation of water, hydrogen peroxide,
methanol, phenol, and cathecol is investigated by density functional
theory (DFT) and ab initio coupled cluster calculations. DFT results
are based on several recently proposed functionals, including B98, PBE,
VSXC, and HCTH. The dependence of DFT results on the basis-set size is
discussed using correlation-consistent polarized (cc-pVXZ) basis-sets
(X = 2-5). A scheme proposed by Truhlar is used to extrapolate CCSD
energies. Basis-set extrapolated CCSD results for the O-H bond
homolytic dissociation enthalpies of phenol and cathecol are in
excellent agreement with experimental information. (c) 2005 Elsevier
B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Lisbon, Dept Quim & Bioquim, P-1649003 Lisbon, Portugal.
Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
EM canuto@if.usp.br
CR ANGEL LA, 2004, J PHYS CHEM A, V108, P8346
BAKALBASSIS EG, 2003, J PHYS CHEM A, V107, P8594
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BLANKSBY SJ, 2003, ACCOUNTS CHEM RES, V36, P255
BYRD EFC, 2001, J PHYS CHEM A, V105, P9736
CIZEK J, 1969, ADV CHEM PHYS, V14, P35
CORREIA CF, 2004, PHYS CHEM CHEM PHYS, V6, P2109
DETURI VF, 1998, INT J MASS SPECTROM, V175, P123
DILABIO GA, 1999, J PHYS CHEM A, V103, P1653
DOSANTOS RMB, 1998, J PHYS CHEM REF DATA, V27, P707
ESTACIO SG, 2004, J PHYS CHEM A, V108, P10834
FELLER D, 2000, J CHEM PHYS, V113, P485
FRISCH MJ, 2003, GAUSSIAN03 GUASSIAN
GUEDES RC, 2000, J PHYS CHEM A, V104, P6062
GUEDES RC, 2003, J PHYS CHEM B, V107, P4304
HALKIER A, 1998, CHEM PHYS LETT, V286, P243
HAMPRECHT FA, 1998, J CHEM PHYS, V109, P6264
ITOH S, 2000, COORDIN CHEM REV, V198, P3
KAGAN VE, 1998, ANN NY ACAD SCI, V854, P425
KAHN K, 2004, THEOR CHEM ACC, V111, P18
KENDALL RA, 1992, J CHEM PHYS, V96, P6796
LEE C, 1988, PHYS REV B, V37, P785
MARTIN JML, 1997, J CHEM PHYS, V106, P8620
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1997, PHYS REV LETT, V78, P1396
PETERSON KA, 1997, THEOR CHEM ACC, V97, P251
RUSCIC, 2002, J PHYS CHEM A, V106, P2727
SCHMIDER HL, 1998, J CHEM PHYS, V108, P9624
TRUHLAR DG, 1998, CHEM PHYS LETT, V294, P45
VANVOORHIS T, 1998, J CHEM PHYS, V109, P400
VARANDAS AJC, 2000, J CHEM PHYS, V113, P8880
WANG NX, 2004, J CHEM PHYS, V121, P7632
WEAVER EC, 1968, ANNU REV PLANT PHYS, V19, P283
WOON DE, 1993, J CHEM PHYS, V98, P1358
YAO XQ, 2003, J PHYS CHEM A, V107, P9991
NR 35
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 2
PY 2005
VL 406
IS 4-6
BP 300
EP 305
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 920FY
UT ISI:000228676000004
ER
PT J
AU Ferretti, A
Calzolari, A
Di Felice, R
Manghi, F
Caldas, MJ
Nardelli, MB
Molinari, E
TI First-principles theory of correlated transport through nanojunctions
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID STATES; HOLE
AB We report the inclusion of electron-electron correlation in the
calculation of transport properties within an ab initio scheme. A key
step is the reformulation of Landauer's approach in terms of an
effective transmittance for the interacting electron system. We apply
this framework to analyze the effect of shortrange interactions on Pt
atomic wires and discuss the coherent and incoherent correction to the
mean-field approach.
C1 INFM, Natl Ctr NanoStruct & BioSyst Surfaces, I-41100 Modena, Italy.
Univ Modena, Dipartimento Fis, I-41100 Modena, Italy.
Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA.
Oak Ridge Natl Lab, CCS, CSM, Oak Ridge, TN 37831 USA.
RP Ferretti, A, INFM, Natl Ctr NanoStruct & BioSyst Surfaces, I-41100
Modena, Italy.
CR AGRAIT N, 2003, PHYS REP, V377, P81
BRANDBYGE M, 2002, PHYS REV B, V65
CALANDRA C, 1994, PHYS REV B, V50, P2061
CALZOLARI A, 2004, PHYS REV B, V69
CALZOLARI A, 2004, WANT CODE
DATTA S, 1995, ELECT TRANSPORT MESO
DELANEY P, 2004, PHYS REV LETT, V93
DIVENTRA M, 2000, PHYS REV B, V61, P16207
EVERS F, 2004, PHYS REV B, V69
FERRETTI A, UNPUB
HAUG H, 1996, QUANTUM KINETICS TRA
JARILLOHERRERO P, 2004, NATURE, V429, P389
KOSOV DS, 2003, J CHEM PHYS, V119, P1
LIANG WJ, 2002, NATURE, V417, P725
MAHAN GD, 1981, MANY PARTICLE PHYS
MAITRA NT, 2003, PHYS REV B, V68
MANGHI F, 1997, PHYS REV B, V56, P7149
MARZARI N, 1997, PHYS REV B, V56, P12847
MEIR Y, 1992, PHYS REV LETT, V68, P2512
NARDELLI MB, 2001, PHYS REV B, V64
NG TK, 1996, PHYS REV LETT, V76, P487
ODOM TW, 2000, SCIENCE, V290, P1549
PARK J, 2002, NATURE, V417, P722
SERGUEEV N, 2002, PHYS REV B, V65
SPRINGER M, 1998, PHYS REV B, V57, P4364
TAYLOR J, 2001, PHYS REV B, V63
XUE YQ, 2002, CHEM PHYS, V281, P151
NR 27
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAR 25
PY 2005
VL 94
IS 11
AR 116802
DI ARTN 116802
PG 4
SC Physics, Multidisciplinary
GA 910IA
UT ISI:000227923200049
ER
PT S
AU Fileti, EE
Coutinho, K
Canuto, S
TI Is there a favorite isomer for hydrogen-bonded methanol in water?
SO ADVANCES IN QUANTUM CHEMISTRY, VOL 47
SE ADVANCES IN QUANTUM CHEMISTRY
LA English
DT Review
ID CARLO-QUANTUM-MECHANICS; SEQUENTIAL MONTE-CARLO; AB-INITIO CALCULATION;
THERMODYNAMIC PROPERTIES; AQUEOUS-SOLUTIONS; LIQUID WATER; MIXTURES;
SIMULATIONS; TRANSITION; ENERGIES
AB Sequential Monte Carlo/quantum-mechanical calculations of the
interaction energy of hydrogen-bonded methanol in liquid water give the
same result for methanol acting either as the proton donor or the
proton acceptor. For the complex-optintized cases, methanol acting as
the proton acceptor, CH3HO center dot center dot center dot H2O, is
more stable than the proton donor, CH3OH center dot center dot center
dot OH2, by similar to 0.5 kcal/mol. In the case of methanol in liquid
water, at room temperature, statistically converged results, using
counterpoise corrected MP2/aug-cc-pVDZ calculations, lead to the same
binding energy in both cases.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Mogi Das Cruzes, CIIB, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Fileti, EE, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
BAKKAS N, 1993, J CHEM PHYS, V99, P3335
BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BELL TW, 2002, J AM CHEM SOC, V124, P14092
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BOLIS G, 1983, J AM CHEM SOC, V105, P355
BOYS SF, 1970, MOL PHYS, V19, P553
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
COUTINHO K, 2000, DICE VERSION 2 8 GEN
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
COUTINHO K, 2003, J MOL STRUC-THEOCHEM, V632, P235
DELBENE JE, 1971, J CHEM PHYS, V55, P4633
DIXIT S, 2002, NATURE, V416, P829
FILETI EE, 2003, J PHYS B-AT MOL OPT, V36, P399
FILETI EE, 2003, PHYS REV E, V67, P61504
FINNEY JL, 2000, J PHYS-CONDENS MAT, V12, A123
FRANKS F, 1966, Q REV CHEM SOC, V20, P1
FRANKS F, 1985, WATER SCI REV, V1, P171
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GONZALEZ L, 1998, J CHEM PHYS, V109, P139
GUO JH, 2003, PHYS REV LETT, V91
HUISKEN F, 1991, CHEM PHYS LETT, V180, P332
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225
KIM S, 1988, J PHYS CHEM-US, V92, P7216
LAAKSONEN A, 1997, J PHYS CHEM A, V101, P5910
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MEZEI M, 1981, J CHEM PHYS, V74, P622
PALINKAS G, 1991, CHEM PHYS, V158, P65
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
SATO H, 1999, J CHEM PHYS, V111, P8545
SOPER AK, 1993, PHYS REV LETT, V71, P4346
STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
STOCKMAN PA, 1997, J CHEM PHYS, V107, P3782
TANAKA H, 1992, J CHEM PHYS, V97, P2626
TSE YC, 1980, CHEM PHYS LETT, V75, P350
NR 38
TC 3
PU ELSEVIER ACADEMIC PRESS INC
PI SAN DIEGO
PA 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0065-3276
J9 ADVAN QUANTUM CHEM
PY 2004
VL 47
BP 51
EP 63
PG 13
GA BBV45
UT ISI:000228024400004
ER
PT J
AU MacLeod, JM
Miwa, RH
Srivastava, GP
McLean, AB
TI The electronic origin of contrast reversal in bias-dependent STM images
of nanolines
SO SURFACE SCIENCE
LA English
DT Article
DE silicon; bismuth; density functional calculations; scanning tunneling
microscopy; growth; low index single crystal surfaces; self-assembly;
surface electronic phenomena
ID SCANNING-TUNNELING-MICROSCOPY; SURFACE-STRUCTURE; SI(100) SURFACE;
AB-INITIO; BISMUTH; SI(001); LINES; NANOWIRE
AB Self-organized Bi lines that are only 1.5 nm wide can be grown without
kinks or breaks on Si(001) surfaces to lengths of up to 500 nm.
Constant-current topographical images of the lines, obtained with the
scanning tunneling microscope, have a striking bias dependence.
Although the lines appear darker than the Si terraces at biases below
approximate to\1.2\ V, the contrast reverses at biases above
approximate to\1.5\ V. Between these two ranges the lines and terraces
are of comparable brightness. It has been suggested that this bias
dependence may be due to the presence of a semiconductor-like energy
gap within the line. Using ab initio calculations it is demonstrated
that the energy gap is too small to explain the experimentally observed
bias dependence. Consequently, at this time, there is no compelling
explanation for this phenomenon. An alternative explanation is proposed
that arises naturally from calculations of the tunneling current, using
the Tersoff-Hamann approximation, and an examination of the electronic
structure of the line. (C) 2004 Elsevier B.V. All rights reserved.
C1 Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada.
Univ Fed Uberlandia, Fac Fis, BR-38400902 Uberlandia, MG, Brazil.
Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP McLean, AB, Queens Univ, Dept Phys, Kingston, ON K7L 3N6, Canada.
EM mclean@physics.queensu.ca
CR APPELBAUM JA, 1976, PHYS REV B, V14, P588
BOWLER DR, 2000, PHYS REV B, V62, P7237
GAY SCA, 1998, J PHYS-CONDENS MAT, V10, P7751
GONZE X, 1991, PHYS REV B, V44, P8503
MACLEOD JM, 2003, REV SCI INSTRUM, V74, P2429
MACLEOD JM, 2004, MATER SCI TECH-LOND, V20, P951
MACLEOD JM, 2004, PHYS REV B, V70
MAGAUD L, 2002, PHYS REV B, V65
MIKI K, 1999, I PHYS C SER, V164, P167
MIKI K, 1999, PHYS REV B, V59, P14868
MIWA RH, 2002, PHYS REV B, V66
MIWA RH, 2002, SURF SCI, V507, P368
NAITOH M, 1997, SURF SCI, V377, P899
NAITOH M, 1999, APPL SURF SCI, V142, P38
NAITOH M, 2000, JPN J APPL PHYS 1, V39, P2793
NAITOH M, 2001, SURF SCI 2, V482, P1440
NORTHRUP JE, 1993, PHYS REV B, V47, P10032
OWEN JHG, 2002, PHYS REV LETT, V88
OWEN JHG, 2002, SURF SCI, V499, L124
OWEN JHG, 2003, SURF SCI, V527, L177
PERDEW JP, 1981, PHYS REV B, V23, P5048
SAITO A, 2003, JPN J APPL PHYS 1, V42, P2408
SHIMOMURA M, 2000, SURF SCI, V447, L169
TERSOFF J, 1985, PHYS REV B, V31, P805
NR 24
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD FEB 10
PY 2005
VL 576
IS 1-3
BP 116
EP 122
PG 7
SC Chemistry, Physical
GA 895OL
UT ISI:000226872600016
ER
PT J
AU Ramalho, TC
Buhl, M
TI Probing NMR parameters, structure and dynamics of 5-nitroimidazole
derivatives. Density functional study of prototypical radiosensitizers
SO MAGNETIC RESONANCE IN CHEMISTRY
LA English
DT Article
DE NMR; N-15 NMR; radiosensitizers; molecular dynamics simulations;
solvent effects; spin-spin coupling constants
ID POLARIZABLE CONTINUUM MODEL; VERTICAL ELECTRON-AFFINITY;
CHEMICAL-SHIFTS; AB-INITIO; CORRELATION-ENERGY; SHIELDING TENSORS;
DRUG-RESISTANCE; SPECTROSCOPY; SYSTEMS; DESIGN
AB The N-15 chemical shifts of metronidazole (1), secnidazole (2),
nimorazole (3) and tinidazole (4), radiosensitizers based on the
5-nitroimidazole motif, are reported. A detailed computational study of
1 is presented, calling special attention to the performance of various
theoretical methods in reproducing the C-13 and N-15 data observed in
solution. The most sophisticated approach involves density
functional-based Car-Parrinello molecular dynamics simulations (CPMD)
of 1 in aqueous solution (BP86 level) and averaging chemical shifts
over snapshots from the trajectory. In the NMR calculations for these
snapshots (performed at the B3LYP level), a small number of discrete
water molecules are retained, and the remaining bulk solution effects
are included via a polarizable continuum model (PCM). A similarly good
accord with experiment is obtained from much less involved, static
geometry optimization and NMR computation of pristine 1 employing a PCM
approach. Solvent effects on delta(N-15), which are of the order of up
to 20 ppm, are not due to changes in geometric parameters upon
solvation, but arise from the direct response of the electronic
wavefunction to the presence of the solvent, which can be represented
by discrete molecules and/or the dielectric bulk. Copyright (C) 2004
John Wiley Sons, Ltd.
C1 Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany.
Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, RJ, Brazil.
RP Buhl, M, Max Planck Inst Kohlenforsch, Kaiser Wilhelm Pl 1, D-45470
Mulheim, Germany.
EM buel@mpi-muelheim.mpg.de
CR ALLEN MP, 1987, COMPUTER SIMULATION
AMES JR, 1987, LIFE SCI, V41, P1895
ANDERSON CJ, 1999, CHEM REV, V99, P2219
BARFIELD M, 1969, CHEM REV, V69, P757
BARFIELD M, 2003, MAGN RESON CHEM, V41, P344
BARONE V, 1996, RECENT ADV DENSITY 1, P287
BARONE V, 1998, J COMPUT CHEM, V19, P404
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BROWN JM, 1991, J NATL CANCER I, V83, P178
BROWN JM, 1999, CANCER RES, V59, P1391
BUHL M, 1991, ANGEW CHEM INT EDIT, V30, P1160
BUHL M, 1999, J COMPUT CHEM, V20, P91
BUHL M, 2001, CHEM-EUR J, V7, P4487
BUHL M, 2002, ANGEW CHEM INT EDIT, V4, P2312
BUHL M, 2002, PHYS CHEM CHEM PHYS, V4, P5508
BUHL M, 2002, THEOR CHEM ACC, V107, P336
BUHL M, 2004, J AM CHEM SOC, V126, P3310
CALVATEJADA N, 2002, J INORG BIOCHEM, V91, P339
CANCES TM, 1997, J CHEM PHYS, V107, P3032
CAR R, 1985, PHYS REV LETT, V55, P4487
CHAPMAN JD, 1996, BRIT J CANCER S27, V74, S204
CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
CHEN BC, 1983, HELV CHIM ACTA, V66, P1537
COSSI M, 1998, CHEM PHYS LETT, V286, P253
COSSI M, 2002, J CHEM PHYS, V117, P43
COSSI M, 2003, J CHEM PHYS, V118, P8863
COSSI M, 2003, J CHEM PHYS, V19, P8863
COSSI M, 2004, THEOR CHEM ACC, V111, P162
CREMER D, 1993, ISRAEL J CHEM, V33, P369
DACUNHA EFF, 2004, J THEOR COMPUT CHEM, V3, P1
DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
DITCHFIELD R, 1974, MOL PHYS, V27, P789
ERNST RR, 1987, PRINCIPLES NUCL MAGN
FRISCH MJ, 2003, GAUSSIAN 03
GRANT DM, 1996, ENCY NUCL MAGNETIC R, V1
HATHERILL JR, 1998, EAT BEAT CANC RES SC
HELGAKER T, 1999, CHEM REV, V99, P293
HELGAKER T, 2004, CALCULATION NMR EPR, P101
HORI H, 1997, BIOORGAN MED CHEM, V5, P591
HORIS H, 1994, ADV ENV SCI TECHNOLO, V28, P62
HUTTER J, 1995, CPMD VERSION 3 1A
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
KASAI S, 2001, BIOORGAN MED CHEM, V9, P453
KAUPP M, 2004, CALCULATIONS NMR ESR
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KUTZELNIGG W, 1990, NMR BASIC PRINCIPLES, V23, P165
LEE C, 1988, PHYS REV B, V37, P785
MALKIN VG, 1996, CHEM-EUR J, V2, P452
MARTIN GE, 1988, 2 DIMENSIONAL NMR ME
MCCOY CL, 1996, BRIT J CANCER S27, V74, S226
MCKILLOP A, 1983, TETRAHEDRON, V22, P3797
MENNUCCI B, 2001, J PHYS CHEM A, V105, P7287
MUNRONRANA ML, 2003, J AM CHEM SOC, V125, P3649
OROZCO M, 2000, CHEM REV, V100, P4187
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1986, PHYS REV B, V34, P7406
PIVNENKO NS, 2002, MAGN RESON CHEM, V40, P566
RAMALHO TC, 2003, MAGN RESON CHEM, V41, P981
RAMALHO TC, 2004, BIOPHYS CHEM, V110, P267
RAMALHO TC, 2004, J PHYS-CONDENS MAT, V16, P6159
SCHWEGLER E, 2000, PHYS REV LETT, V84, P2429
SEBASTIANI D, 2001, J PHYS CHEM A, V105, P1951
SILVESTRI R, 2000, BIOORG MED CHEM LETT, V10, P253
STILLINGER FH, 1974, J CHEM PHYS, V74, P3336
TEICHER BA, 1994, CANCER METAST REV, V13, P139
TOMIDA A, 1999, ANTI-CANCER DRUG DES, V14, P169
TORRENT M, 2001, J PHYS CHEM A, V105, P4546
TROULLIER N, 1991, PHYS REV B, V43, P1993
VIODE C, 1999, BIOCHEM PHARMACOL, V57, P549
ZILM KW, 1993, NATO ASI SER C-MATH, V386, P315
NR 71
TC 3
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0749-1581
J9 MAGN RESON CHEM
JI Magn. Reson. Chem.
PD FEB
PY 2005
VL 43
IS 2
BP 139
EP 146
PG 8
SC Chemistry, Multidisciplinary; Chemistry, Physical; Spectroscopy
GA 892KR
UT ISI:000226650000005
ER
PT J
AU Ludwig, V
Coutinho, K
Canuto, S
TI Sequential classical-quantum description of the absorption spectrum of
the hydrated electron
SO PHYSICAL REVIEW B
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATION; MONTE-CARLO; SOLVATED ELECTRON; EXCESS
ELECTRON; INTEGRAL-EQUATION; WATER CLUSTERS; LIQUID WATER; AB-INITIO;
TEMPERATURE; MECHANICS
AB A localized state of the electron in water is assumed to study the
absorption spectrum of the hydrated electron. A classical Monte Carlo
statistical mechanics simulation is used to generate the structure of
water in the field of the hydrated electron. These structures are used
in quantum mechanical calculations of the absorption spectrum using
time-dependent density-functional theory. The statistically converged
spectral distribution is in good agreement with experiment. The value
obtained here for the maximum of the absorption profile is 1.70 eV with
a half-width of 0.90 eV, in comparison with the corresponding
experimental values of 1.725 and 0.84 eV.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Mogi das Cruzes, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
EM canuto@if.usp.br
CR ABRAMCZYK H, 1991, J PHYS CHEM-US, V95, P5749
AYOTTE P, 1997, J CHEM PHYS, V106, P811
BARKER JA, 1979, J CHEM PHYS, V70, P2914
BARNETT RN, 1990, J CHEM PHYS, V93, P6226
BARTCZAK WM, 2000, COMPUT CHEM, V24, P469
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BOERO M, 2003, PHYS REV LETT, V90
CANUTO S, 1997, ADV QUANTUM CHEM, V28, P90
CHANDLER D, 1981, J CHEM PHYS, V74, P4078
CHUEV GN, 2001, PHYS REV E 1, V63
CHUEV GN, 2003, J MOL LIQ, V105, P161
COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
COUTINHO K, 2002, COMPUTER CODE DICE V
FEYNMAN RP, 1965, QUANTUM MECH PATH IN
FILETI EE, 2003, PHYS REV E 1, V67
FRISCH MJ, 1998, COMPUTER CODE GAUSSI
HART AJ, 1963, J AM CHEM SOC, V84, P4090
HART AJ, 1970, HYDRATED ELECT
JOU FY, 1979, J PHYS CHEM-US, V83, P2383
KEVAN L, 1981, J PHYS CHEM-US, V85, P1628
KIM J, 1998, CHEM PHYS LETT, V297, P90
KIM KS, 1996, PHYS REV LETT, V76, P956
LEE C, 1988, PHYS REV B, V37, P785
LEE HM, 2003, J CHEM PHYS, V118, P9981
LUDWIG V, 2003, INT J QUANTUM CHEM, V95, P572
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MIURA S, 1994, J PHYS CHEM-US, V98, P9649
MOSTAFAVI M, 2004, CHEM PHYS LETT, V384, P52
MOTAKABBIR KA, 1992, J CHEM PHYS, V97, P2055
MURPHREY TH, 1993, J CHEM PHYS, V99, P515
NATORI M, 1966, J PHYS SOC JPN, V21, P1573
ROMERO C, 1989, J CHEM PHYS, V90, P1877
SCHLICK S, 1976, J CHEM PHYS, V64, P3153
SCHNITKER J, 1987, J CHEM PHYS, V86, P3471
SCHNITKER J, 1988, PHYS REV LETT, V60, P456
SHKROB IA, 2002, J PHYS CHEM A, V106, P9120
SOBOLEWSKI AL, 2003, PHYS CHEM CHEM PHYS, V5, P1130
SPRIK M, 1986, J STAT PHYS, V43, P967
STAIB A, 1995, J CHEM PHYS, V103, P2642
WALLQVIST A, 1987, J CHEM PHYS, V86, P6404
YANG CY, 2001, J CHEM PHYS, V114, P3598
ZHAN CG, 2003, J PHYS CHEM B, V107, P4403
NR 44
TC 3
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD DEC
PY 2004
VL 70
IS 21
AR 214110
DI ARTN 214110
PG 4
SC Physics, Condensed Matter
GA 884UF
UT ISI:000226111400043
ER
PT J
AU Rossato, J
Baierle, RJ
Fazzio, A
Mota, R
TI Vacancy formation process in carbon nanotubes: First-principles approach
SO NANO LETTERS
LA English
DT Article
ID ELECTRONIC-PROPERTIES; AB-INITIO; SYSTEMS; DEFORMATION; DEFECTS
AB The electronic and structural properties of a single-walled carbon
nanotube (SWNT) under mechanical deformation are studied using
first-principles calculations based on the density functional theory. A
force is applied over one particular C-atom with enough strength to
break the chemical bonds between the atom and its nearest neighbors,
leading to a final configuration represented by one tube with a vacancy
and an isolated C-atom inside the tube. Our investigation demonstrates
that there is a tendency that the first bond to break is the one most
parallel possible to the tube axis and, after, the remaining two other
bonds are broken. The analysis of the electronic charge densities, just
before and after the bonds breaking, helps to elucidate how the vacancy
is formed on an atom-by-atom basis. In particular, for tubes with a
diameter around 11 Angstrom, it is shown that the chemical bonds start
to break only when the externally applied force is of the order of 14
nN and it is independent of the chirality. The formation energies for
the vacancies created using this process are almost independent of the
chirality, otherwise the bonds broken and the reconstruction are
dependent.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Baierle, RJ, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
RS, Brazil.
EM rbaierle@smail.ufsm.br
CR AJAYAN PM, 1998, PHYS REV LETT, V81, P1437
BAIERLE RJ, 2001, PHYS REV B, V64
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHARLIER JC, 1996, PHYS REV B, V53, P11108
DAI HJ, 2002, SURF SCI, V500, P218
FAGAN SB, 2003, NANO LETT, V3, P289
FAGAN SB, 2003, PHYS REV B, V67
HANSSON A, 2000, PHYS REV B, V62, P7639
KRASHENINNIKOV AV, 2001, PHYS REV B, V63
KRASHENINNIKOVA AV, 2002, J VAC SCI TECHNOL B, V20, P728
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
ORDEJON P, 1996, PHYS REV B, V53
PERDEW JP, 1981, PHYS REV B, V23, P5048
SANKEY OF, 1989, PHYS REV B, V40, P3979
SAYMAN O, 2002, J REINF PLAST COMP, V21, P1205
STONEHAM AM, 1998, APPL PHYS LETT, V72, P3142
TOULLIER N, 1993, PHYS REV B, V43, P1991
ZHU YF, 1999, APPL SURF SCI, V137, P83
NR 18
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JAN
PY 2005
VL 5
IS 1
BP 197
EP 200
PG 4
SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
GA 887TE
UT ISI:000226327600038
ER
PT J
AU Freire, RO
Rocha, GB
Albuquerque, RQ
Simas, AM
TI Efficacy of the semiempirical sparkle model as compared to ECP
ab-initio calculations for the prediction of ligand field parameters of
europium(III) complexes
SO JOURNAL OF LUMINESCENCE
LA English
DT Article
DE sparkle model; semiempirical methods; ab-initio methods; europium (III)
complexes
ID CAMBRIDGE STRUCTURAL DATABASE; SIMPLE OVERLAP MODEL; LANTHANIDE
COMPLEXES; SPECTROSCOPIC PROPERTIES; SUPRAMOLECULAR DEVICES; INTENSITY
PARAMETERS; CRYSTAL-STRUCTURES; LUMINESCENCE; CHEMISTRY; MECHANISM
AB The second version of the sparkle model for the calculation of
lanthanide complexes (SMLC II) as well as ab-initio calculations
(HF/STO-3G and HF/3-21G) have been used to calculate the geometries of
a series of europium (III) complexes with different coordination
numbers (CN = 7, 8 and 9), ligating atoms (O and N) and ligands (mono,
bi and polydentate). The so-called ligand field parameters, B-q(k)'s,
have been calculated from both SMLC II and ab-initio optimized
structures and compared to the ones calculated from crystallographic
data. The results show that the SMLC II model represents a significant
improvement over the previous version (SMLC) and has given good results
when compared to ab-initio methods, which demand a much higher
computational effort. Indeed, ab-initio methods take around a hundred
times more computing time than SMLC. As such, our results indicate that
our sparkle model can be a very useful and a fast tool when applied to
the prediction of both ground state geometries and ligand field
parameters of europium (III) complexes. (C) 2004 Elsevier B.V. All
rights reserved.
C1 UFPE, Dept Quim Fundamental, CCEN, BR-50590470 Recife, PE, Brazil.
RP Simas, AM, UFPE, Dept Quim Fundamental, CCEN, BR-50590470 Recife, PE,
Brazil.
EM simas@ufpe.br
CR ALBUQUERQUE RQ, 2000, CHEM PHYS LETT, V331, P519
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P380
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P407
ALPHA B, 1987, ANGEW CHEM INT EDIT, V26, P266
ANIKIN NA, 2003, PHYSCHEM0304005 CPS
AUZEL F, 1983, J PHYS-PARIS, V44, P201
BAZIN H, 2003, J FLUORESC, V12, P245
BRUNO IJ, 2002, ACTA CRYSTALLOGR B 3, V58, P389
CONSENTINO U, 2002, J AM CHEM SOC, V124, P4901
COSENTINO U, 1997, J MOL STRUC-THEOCHEM, V392, P75
DACOSTA NB, 2001, J MOL STRUC-THEOCHEM, V545, P131
DEANDRADE AVM, 1994, CHEM PHYS LETT, V349, P227
DEMESQUITA ME, 2002, INORG CHEM COMMUN, V5, P292
DEMESQUITA ME, 2003, J SOLID STATE CHEM, V171, P183
DEMESQUITA ME, 2004, J ALLOY COMPD, V366, P124
DEMESQUITA ME, 2004, J ALLOY COMPD, V374, P320
DESA GF, 2000, COORDIN CHEM REV, V196, P165
DOLG M, 1989, THEOR CHIM ACTA, V75, P173
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HEMMILA I, 1991, APPL FLUORESCENCE IM
HEMMILA I, 1995, J ALLOY COMPD, V225, P480
KURITA N, 2003, CHEM PHYS LETT, V372, P583
LEHN JM, 1990, ANGEW CHEM INT EDIT, V29, P1304
MALTA OL, 1982, CHEM PHYS LETT, V87, P27
MALTA OL, 1997, J LUMIN, V75, P255
MUKKALA VM, 1992, HELV CHIM ACTA, V75, P1578
NAKAJIMA S, 2003, J PHYS CHEM B, V107, P2867
OHNO K, 2001, CHEM PHYS LETT, V341, P387
OHNO K, 2001, J AM CHEM SOC, V123, P8161
PICHIERRI F, 2000, CHEM PHYS LETT, V322, P536
PIETRASZKIEWICZ M, 1993, PURE APPL CHEM, V65, P563
PORCHER P, 1999, PCCP PHYS CHEM CH PH, V1, P397
RABBE C, 2000, THEOR CHEM ACC, V104, P280
REN L, 2001, BIOCHEMISTRY-US, V40, P13906
ROCHA GB, 1999, MATER SCI FORUM, V315, P400
ROCHA GB, 2002, THESIS U FEDERAL PER
ROCHA GB, 2004, INORG CHEM, V43, P2346
SABBATINI N, 1993, COORDIN CHEM REV, V123, P201
STEWART JJP, 1993, MOPAC 93 00 MAN
STEWART JJP, 1996, INT J QUANTUM CHEM, V58, P133
TAYLOR DL, 1986, APPL FLUORESCENCE BI
YANG W, 2003, J PHYS CHEM B, V107, P5986
NR 42
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2313
J9 J LUMINESC
JI J. Lumines.
PD JAN
PY 2005
VL 111
IS 1-2
BP 81
EP 87
PG 7
SC Optics
GA 885JQ
UT ISI:000226153300010
ER
PT J
AU Martins, JBL
Longo, E
Salmon, ODR
Espinoza, VAA
Taft, CA
TI The interaction of H-2, CO, CO2, H2O and NH3 on ZnO surfaces: an Oniom
Study
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID LARGE CLUSTER-MODELS; ZINC-OXIDE SURFACES; PHOTOELECTRON-SPECTROSCOPY;
AB-INITIO; COORDINATION CHEMISTRY; ELECTRONIC-STRUCTURES;
CARBON-DIOXIDE; ADSORPTION; HYDROGEN; ZNO(10(1)OVER-BAR0)
AB We have used the Oniom method with three layers in order to study the
interaction of CO, H-2, H2O, NH3 and CO2 molecules with the ZnO (10
$(1) over bar $0) surfaces using a (ZnO)348 Cluster model. The layers
are divided into the high layer at the CCSD level, the medium layer at
the RHF level and the low level layer using the UFF force field method.
The orbital and binding energies of the adsorbed molecules, Mulliken
and ChelpG charges as well as geometrical parameters were analyzed and
compared with the available experimental and theoretical data. (C) 2004
Elsevier B.V. All rights reserved.
C1 DMF, Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Taft, CA, DMF, Ctr Brasileiro Pesquisas Fis, R Xavier Sigaud 150,
BR-22290180 Rio De Janeiro, Brazil.
EM catff@terra.com.br
CR AU CT, 1988, SURF SCI, V199, P507
BECKER T, 2001, SURF SCI, V486, L502
BOLIS V, 1989, J CHEM SOC FARAD T 1, V85, P855
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CASARIN M, 1994, SURF SCI, V303, P125
CASARIN M, 1999, APPL SURF SCI, V142, P192
CASARIN M, 1999, CHEM PHYS LETT, V300, P403
DAPRICH S, 1999, J MOL STRUCT THEOCHE, V462, P1
FRISCH MJ, 2003, GAUSSIAN 03
FUBINI B, 1982, J CHEM SOC F1, V78, P153
GAY RR, 1980, J AM CHEM SOC, V102, P6752
HERZBERG G, 1966, ELECT SPECTRA POLYAT
HOTAN W, 1979, SURF SCI, V83, P162
LIN JY, 1991, J AM CHEM SOC, V113, P8312
LIN JY, 1992, INORG CHEM, V31, P686
MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
MARTINS JBL, 1997, J MOL STRUC-THEOCHEM, V397, P147
MARTINS JBL, 1997, J MOL STRUC-THEOCHEM, V398, P457
MARTINS JBL, 2000, J MOL STRUC-THEOCHEM, V528, P161
MORIMOTO T, 1976, J PHYS CHEM-US, V80, P1876
NAGAO M, 1995, THERMOCHIM ACTA, V253, P221
NAKAZAWA M, 1995, APPL SURF SCI, V84, P309
OZAWA K, 2002, SURF REV LETT, V9, P717
PORTMANN S, 2000, CHIMIA, V54, P766
SCHAFTENAAR G, 2000, J COMPUT AID MOL DES, V14, P123
SOLOMON EI, 1993, CHEM REV, V93, P2623
TAFT CA, 2000, RECENT RES DEV QUANT, V1, P105
WANDER A, 2001, J PHYS CHEM B, V105, P6191
NR 28
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD DEC 21
PY 2004
VL 400
IS 4-6
BP 481
EP 486
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 881YU
UT ISI:000225906300037
ER
PT J
AU Fileti, EE
Chaudhuri, P
Canuto, S
TI Relative strength of hydrogen bond interaction in alcohol-water
complexes
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; AB-INITIO; INTERACTION ENERGIES; METHANOL
COMPLEXES; ELECTRON CORRELATION; QUANTUM-CHEMISTRY; GAS-PHASE;
CLUSTERS; TRIMERS; SPECTROSCOPY
AB Hydrogen binding energies are calculated for the different isomers of
1:1 complexes of methanol, ethanol and water using ab initio methods
from MP2 to CCSD(T). Zero-point energy vibration and counterpoise
corrections are considered and electron correlation effects are
analyzed. In methanol-water and ethanol-water the most stable
heterodimer is the one where the water plays the role of proton donor.
In methanol-ethanol the two isomers have essentially the same energy
and no favorite heterodimer could be discerned. The interplay between
the relative binding energy is briefly discussed in conjunction with
the incomplete mixing of alcohol-water systems. (C) 2004 Elsevier B.V.
All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Indian Assoc Cultivat Sci, Dept Theoret Phys, Calcutta 700032, W Bengal, India.
RP Canuto, S, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
EM canuto@if.usp.br
CR BAKKAS N, 1993, J CHEM PHYS, V99, P3335
BAKKAS N, 1995, CHEM PHYS LETT, V232, P90
BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BOYS SF, 1970, MOL PHYS, V19, P553
CLOUGH SA, 1973, J CHEM PHYS, V59
CURTISS LA, 1988, CHEM REV, V88, P827
DELBENE JE, 1971, J CHEM PHYS, V55, P4633
DELBENE JE, 1997, MOL INTERACTIONS VAN, P157
DIXIT S, 2002, NATURE, V416, P829
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
EHBRECHT M, 1997, J PHYS CHEM A, V101, P7768
FILETI EE, 2004, ADV QUANTUM CHEM, V47, P51
FRANKS F, 1966, Q REV CHEM SOC, V20, P1
FRANKS F, 1985, WATER SCI REV, V1, P171
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GONZALEZ L, 1998, J CHEM PHYS, V109, P139
GONZALEZ L, 1999, J CHEM PHYS, V111, P3855
GUO JH, 2003, PHYS REV LETT, V91
KIM S, 1988, J PHYS CHEM-US, V92, P7216
KIRSCHNER KN, 2001, J PHYS CHEM A, V105, P4150
LIDE DR, 1992, HDB CHEM PHYS
MANDADO M, 2003, CHEM PHYS LETT, V381, P22
MASELLA M, 1998, J CHEM PHYS, V108, P7141
MASELLA M, 1998, MOL PHYS, V95, P97
MO O, 1997, J CHEM PHYS, V107, P3592
PROVENCAL RA, 2000, J PHYS CHEM A, V104, P1423
RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
SHAW RA, 1990, J AM CHEM SOC, V112, P5401
SMITH BJ, 1990, J CHEM PHYS, V92, P1240
STOCKMAN PA, 1997, J CHEM PHYS, V107, P3782
SUM AK, 2000, J PHYS CHEM A, V104, P1121
TSUZUKI S, 1999, J CHEM PHYS, V110, P11906
TSUZUKI S, 2001, J CHEM PHYS, V114, P3949
VANERP TS, 2001, CHEM PHYS LETT, V333, P290
NR 35
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD DEC 21
PY 2004
VL 400
IS 4-6
BP 494
EP 499
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 881YU
UT ISI:000225906300039
ER
PT J
AU da Silva, AJR
Fazzio, A
dos Santos, RR
Oliveira, LE
TI First principles study of the ferromagnetism in Ga1-xMnxAs
semiconductors
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID III-V SEMICONDUCTORS; ELECTRONIC-STRUCTURE; TRANSPORT-PROPERTIES; HOLE
CONCENTRATION; GALLIUM-ARSENIDE; (GA,MN)AS; PSEUDOPOTENTIALS;
ACCEPTORS; ORIGIN
AB We have performed ab initio calculations within the density-functional
theory for Ga1-xMnxAs diluted semiconductors. Total energy results
unambiguously show that a quasi-localized hole, with predominant p-like
character, surrounds the fully polarized Mn up arrow d(5)-electrons.
The calculations indicate that the holes form a relatively
dispersionless impurity band, thus rendering effective-mass
descriptions of hole states open to challenge. We obtain estimates both
for the s = 1/2 hole and S = 5/2 Mn exchange coupling, and for the
distance dependence of the effective Mn-Mn exchange interaction. The
results demonstrate that the effective Mn-Mn coupling is always
ferromagnetic, and thus non-RKKY, and is intermediated by the
antiferromagnetic coupling of each Mn spin to the holes.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, RJ, Brazil.
UNICAMP, Inst Fis, BR-13083970 Campinas, SP, Brazil.
RP da Silva, AJR, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, SP, Brazil.
CR ABOLFATH M, 2001, PHYS REV B, V63
ASKLUND H, 2002, PHYS REV B, V66
BOUZERAR G, 2003, PHYS REV B, V68
CHAPMAN RA, 1967, PHYS REV LETT, V18, P443
DASILVA AJR, 2003, PHYSICA B, V340, P874
DIETL T, 1997, PHYS REV B, V55, P3347
DIETL T, 2001, PHYS REV B, V63
DOSSANTOS RR, 2002, J PHYS-CONDENS MAT, V14, P3751
DOSSANTOS RR, 2003, J APPL PHYS, V93, P1845
EDMONDS KW, 2002, APPL PHYS LETT, V81, P3010
HAYASHI T, 2001, APPL PHYS LETT, V78, P1691
KRESSE G, 1993, PHYS REV B, V47, P558
KRESSE G, 1996, PHYS REV B, V54, P11169
KRESSE G, 1999, PHYS REV B, V59, P1758
LINNARSSON M, 1997, PHYS REV B, V55, P6938
MATSUKURA F, 1998, PHYS REV B, V57, R2037
MORIYA R, 2003, J APPL PHYS, V93, P4603
OHNO H, 1992, PHYS REV LETT, V68, P2664
OHNO H, 1996, APPL PHYS LETT, V69, P363
OHNO H, 1999, J MAGN MAGN MATER, V200, P110
OHNO H, 2001, SOLID STATE COMMUN, V117, P179
OKABAYASHI J, 2001, PHYS REV B, V64
POTASHNIK SJ, 2001, APPL PHYS LETT, V79, P1495
POTASHNIK SJ, 2002, PHYS REV B, V66
SANDRATSKII LM, 2002, PHYS REV B, V66
SANVITO S, 2001, PHYS REV B, V63
SANYAL B, 2003, PHYS REV B, V68
SCHNEIDER J, 1987, PHYS REV LETT, V59, P240
SEONG MJ, 2002, PHYS REV B, V66
SINGLEY EJ, 2002, PHYS REV LETT, V89
VANDERBILT D, 1990, PHYS REV B, V41, P7892
VANESCH A, 1997, PHYS REV B, V56, P13103
YU KM, 2002, APPL PHYS LETT, V81, P844
YU KM, 2002, PHYS REV B, V65
ZHAO YJ, 2003, PHYS REV LETT, V90
ZHAO YJ, 2004, APPL PHYS LETT, V84, P3753
NR 36
TC 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD NOV 24
PY 2004
VL 16
IS 46
BP 8243
EP 8250
PG 8
SC Physics, Condensed Matter
GA 879HC
UT ISI:000225706000014
ER
PT J
AU Coutinho, K
Cabral, BJC
Canuto, S
TI Can larger dipoles solvate less? solute-solvent hydrogen bond and the
differential solvation of phenol and phenoxy
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CARLO-QUANTUM-MECHANICS; SEQUENTIAL MONTE-CARLO; O-H BOND; AB-INITIO;
WATER; DENSITY; ACETONITRILE; ENERGETICS; HYDRATION; LIQUIDS
AB Quantum mechanical calculations of the dipole moments and binding
energies of phenol and phenoxy radical in liquid acetonitrile and water
are made using hydrogen-bonded configurations extracted from Monte
Carlo simulations. We contend that the preferential solvation of phenol
(the lower dipole moment solute) over phenoxy derives from the
hydrogen-bond shell. The reconciliation with the usual understanding,
that larger dipole solvates better, is obtained if we consider not the
dipole moment of the isolated solute but, instead, the average dipole
moment in solution of the solute-solvent hydrogen-bonded solvation
shell. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Mogi Cruzes, CIIB, BR-08701970 Mogi Das Cruzes, SP, Brazil.
Univ Lisbon, Fac Ciencias, Dept Quim & Bioquim, P-1749016 Lisbon, Portugal.
Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal.
RP Canuto, S, Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
EM canuto@if.usp.br
CR ALLEN MP, 1987, COMPUTER SIMULATION
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BESLER BH, 1990, J COMPUT CHEM, V11, P431
BOHM HJ, 1983, MOL PHYS, V49, P347
BOYS SF, 1970, MOL PHYS, V19, P553
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 2000, DICE GEN MONTE CARLO
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
COUTINHO K, 2003, J MOL STRUC-THEOCHEM, V632, P235
CRAMER CJ, 1999, CHEM REV, V99, P2161
FILETI EE, 2003, PHYS REV E, V67, P61504
FRISCH MJ, 1998, GAUSSIAN 98
GUEDES RC, 2000, J PHYS CHEM A, V104, P6062
GUEDES RC, 2003, J PHYS CHEM A, V107, P9197
GUEDES RC, 2003, J PHYS CHEM B, V107, P4304
ITOH S, 2000, COORDIN CHEM REV, V198, P3
JORGENSEN WL, 1993, J COMPUT CHEM, V14, P195
KRYACHKO ES, 2002, J PHYS CHEM A, V106, P731
LEE C, 1988, PHYS REV B, V37, P785
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MEZEI M, 1981, J CHEM PHYS, V74, P622
REICHARDT C, 1979, SOLVENT EFFECTS ORGA
RIVAIL JL, 1976, CHEM PHYS, V18, P233
SANTOS RMB, 1998, J PHYS CHEM REF DATA, V27, P707
SANTOS RMB, 1999, J CHEM THERMODYN, V31, P1483
SANTOS RMB, 2001, J AM CHEM SOC, V123, P12670
STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
TAPIA O, 1975, MOL PHYS, V29, P1653
WEAVER EC, 1968, ANNU REV PLANT PHYS, V19, P283
NR 30
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD DEC 1
PY 2004
VL 399
IS 4-6
BP 534
EP 538
PG 5
SC Physics, Atomic, Molecular & Chemical
GA 874ZS
UT ISI:000225389800045
ER
PT J
AU Alvarez-Puebla, RA
Dos Santos, DS
Aroca, RF
TI Surface-enhanced Raman scattering for ultrasensitive chemical analysis
of 1 and 2-naphthalenethiols
SO ANALYST
LA English
DT Article
ID SINGLE-MOLECULE DETECTION; SILVER ISLANDS; SERS; SPECTROSCOPY;
COLLOIDS; SPECTRA; MONOLAYERS
AB The results of the search for the optimal experimental conditions for
ultrasentitive chemical analysis of 1-naphthalenethiol (1-NAT) and
2-naphthalenethiol (2-NAT) using surface-enhanced Raman scattering
(SERS) are discussed. The report begins with a review of the
vibrational spectra, including infrared and Raman spectra of the target
molecules, and the interpretation of the observed frequencies aided by
local density functional theory (DFT) calculations at the
B3LYP/6-311G(d,p) level of theory. Several metal nanostructures were
tested for SERS activity, including island films and colloids of
silver, gold and copper. Correspondingly, the most effective laser line
for excitation in the visible and near infrared region was sought. The
achieved detection limit for 1-naphthalenethiol, and for
2-naphthalenethiol, on silver nanostructures is in the zeptomole regime.
C1 Univ Windsor, Sch Phys Sci, Mat & Surface Sci Grp, Windsor, ON N9B 3P4, Canada.
Univ Sao Paulo, Inst Fis Sao Carlos, Dept Fis & Ciencia Mat, BR-13562 Sao Carlos, SP, Brazil.
RP Aroca, RF, Univ Windsor, Sch Phys Sci, Mat & Surface Sci Grp, Windsor,
ON N9B 3P4, Canada.
EM raroca1@cogeco.ca
CR ABUEITTAH RH, 1972, APPL SPECTROSC, V26, P270
AROCA RF, 2000, J PHYS CHEM A, V104, P9500
CARRASCOFLORES EA, 2004, APPL SPECTROSC, V58, P555
CONSTANTINO CJL, 2001, ADV FUNCT MATER, V11, P65
CONSTANTINO CJL, 2001, ANAL CHEM, V73, P3674
CORNELL BA, 1997, NATURE, V387, P580
ERTL GR, 1997, HDB HETEROGENEOUS CA
FORESMAN JB, 1996, EXPLORING CHEM ELECT
FRANCHY R, 1998, REP PROG PHYS, V61, P691
FRISCH MJ, 2003, GAUSSIAN 03 REVISION
GOULET PJG, 2003, ANAL CHEM, V75, P1918
JOO TH, 1987, J RAMAN SPECTROSC, V18, P57
KAPOOR S, 2002, CHEM PHYS LETT, V354, P443
KIM C, 2002, LANGMUIR, V18, P3159
KNEIPP K, 1995, APPL SPECTROSC, V49, P780
KNEIPP K, 1999, CHEM REV, V99, P2957
MOSKOVITS M, 1984, J PHYS CHEM-US, V88, P5526
MOSKOVITS M, 2002, TOP APPL PHYS, V82, P215
OTTO A, 2002, J RAMAN SPECTROSC, V33, P593
REN B, 2003, J AM CHEM SOC, V125, P9598
SANCHEZCORTES S, 1994, J COLLOID INTERF SCI, V167, P428
SHORYGIN PP, 1997, J RAMAN SPECTROSC, V28, P383
SKADTCHENKO BO, 2001, SPECTROCHIM ACTA A, V57, P1009
TARLOV MJ, 1993, J AM CHEM SOC, V115, P5305
TOLAIEB B, 2003, CAN J ANAL SCI SPECT, V48, P139
TOLAIEB B, 2004, ANALYST, V129, P337
UCHIRO H, 1999, TETRAHEDRON LETT, V40, P3179
NR 27
TC 6
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 0003-2654
J9 ANALYST
JI Analyst
PY 2004
VL 129
IS 12
BP 1251
EP 1256
PG 6
SC Chemistry, Analytical
GA 874FE
UT ISI:000225335500017
ER
PT J
AU Legoas, SB
Rodrigues, V
Ugarte, D
Galvao, DS
TI Contaminants in suspended gold chains: An ab initio molecular dynamics
study
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID NANOWIRES; CONDUCTANCE; ATOMS; MICROSCOPY; CLUSTERS; BULK
AB Recently, we have proposed that the origin of anomalously long
interatomic distances in suspended gold chains could be the result of
carbon contamination during sample manipulation [S. B. Legoas et al.,
Phys. Rev. Lett. 88, 076105 (2002)]. More recently, however, other
works have proposed that hydrogen instead of carbon should be the most
probable contaminant. We report ab initio molecular dynamics results
for different temperatures considering different possible contaminants.
Our results show that at nonzero temperatures (more realistic to
simulate the experimental conditions) hydrogen may be ruled out and
carbon atoms remain the best candidate for contamination.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
Univ Fed Amazonas, Dept Fis, BR-69077000 Manaus, Amazonas, Brazil.
Lab Nacl Luz Sincrotron, BR-13084971 Campinas, SP, Brazil.
RP Galvao, DS, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
BR-13083970 Campinas, SP, Brazil.
EM galvao@ifi.unicamp.br
CR *EPAPS, EPRLTAO93071447 EPAP
AGRAIT N, 2003, PHYS REP, V377, P81
DELLEY B, 1990, J CHEM PHYS, V92, P508
DELLEY B, 2000, J CHEM PHYS, V113, P7756
HABERLEN OD, 1997, J CHEM PHYS, V106, P5189
HAKKINEN H, 1999, J PHYS CHEM B, V103, P8814
KOIZUMI H, 2001, ULTRAMICROSCOPY, V88, P17
KONDO Y, 1999, B AM PHYS SOC, V44, P312
KONDO Y, 2000, SCIENCE, V289, P606
LEGOAS SB, 2002, PHYS REV LETT, V88
NOVAES FD, 2003, PHYS REV LETT, V90
OHNISHI H, 1998, NATURE, V395, P780
OKAMOTO M, 1999, PHYS REV B, V60, P7808
PACCHIONI G, 1994, CHEM PHYS, V184, P125
PASCUAL JI, 1993, PHYS REV LETT, V71, P1852
REIMER L, 1997, SPRINGER SERIES OPTI
RODRIGUES V, 2000, PHYS REV LETT, V85, P4124
RODRIGUES V, 2001, PHYS REV B, V63
RODRIGUES V, 2003, PHYS REV LETT, V91
SANCHEZPORTAL D, 1999, PHYS REV LETT, V83, P3884
SKORODUMOVA NV, 2003, PHYS REV B, V67
SORENSEN MR, 1998, PHYS REV B, V57, P3283
TAKAI Y, 2001, PHYS REV LETT, V87
TOSATTI E, 2001, SCIENCE, V291, P288
WANG Y, 1991, PHYS REV B, V43, P8911
YANSON AI, 1998, NATURE, V395, P783
NR 26
TC 5
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 19
PY 2004
VL 93
IS 21
AR 216103
DI ARTN 216103
PG 4
SC Physics, Multidisciplinary
GA 872PU
UT ISI:000225220500052
ER
PT J
AU Cucinotta, CS
Ruini, A
Caldas, MJ
Molinari, E
TI Ab initio study of chemisorption reactions for carboxylic acids on
hydrogenated silicon surfaces
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Letter
ID FORMATION MECHANISMS; ALKYL MONOLAYERS; SPECTROSCOPY; CHEMISTRY;
MOLECULES
AB We study chemisorbed configurations of C3H6O2 on the extended H:Si(100)
surface, through first-principles density-functional calculations in a
supercell approach. We demonstrate that oxygen-bonded organic
monolayers on this silicon substrate is thermodynamically very stable,
and comparing several Si-O-C and Si-C linked configurations, we find
that the doubly-O-bonded configuration is favored and should lead to
ordered SAMs. We find, moreover, that the Si-O-C bridge in this case
does not block charge transfer from surface to molecule.
C1 Univ Modena, INFM, Natl Ctr NanoStruct & BioSystems Surfaces S3, I-41100 Modena, Italy.
Univ Modena, Dept Fis, I-41100 Modena, Italy.
Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
RP Cucinotta, CS, Univ Modena, INFM, Natl Ctr NanoStruct & BioSystems
Surfaces S3, Via Campi 213-A, I-41100 Modena, Italy.
EM c.cucinotta@unimo.it
CR BOUKHERROUB R, 2000, LANGMUIR, V16, P7429
BURIAK JM, 2002, CHEM REV, V102, P1271
CEROFOLINI GF, 2003, SEMICOND SCI TECH, V18, P423
GREEN WH, 1995, APPL PHYS LETT, V67, P1468
HWANG MJ, 1994, J AM CHEM SOC, V116, P2515
KOHN W, 1965, PHYS REV, V140, A1133
LEE EJ, 1996, J AM CHEM SOC, V118, P5375
LEHNER A, 2003, J APPL PHYS, V94, P2289
LINFORD MR, 1995, J AM CHEM SOC, V117, P3145
LOPINSKI GP, 2000, NATURE, V406, P48
MAJOR RC, 2001, LANGMUIR, V17, P5576
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
NORTHRUP JE, 1991, PHYS REV B, V44, P1419
PEI Y, 2003, LANGMUIR, V19, P7652
PERDEW JP, 1992, PHYS REV B, V46, P6671
SIEVAL AB, 1998, LANGMUIR, V14, P1759
ULMAN A, 1996, CHEM REV, V96, P1533
VANDERBILT D, 1990, PHYS REV B, V41, P7892
WINKLER A, 1994, J AM CHEM SOC, V116, P9233
ZHU XY, 2000, LANGMUIR, V16, P6766
NR 20
TC 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 11
PY 2004
VL 108
IS 45
BP 17278
EP 17280
PG 3
SC Chemistry, Physical
GA 869OM
UT ISI:000224993900003
ER
PT J
AU Nascimento, CS
Dos Santos, HF
De Almeida, WB
TI Theoretical study of the formation of the alpha-cyclodextrin hexahydrate
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID BETA-CYCLODEXTRIN; INCLUSION COMPLEXES; MOLECULAR-STRUCTURE; AB-INITIO;
WATER; ENERGY; TOPOGRAPHY; CRYSTAL; EQUILIBRIUM; HYDRATION
AB The alpha-ciclodextrin (alpha-CD) consist of six glucopyranose units.
The crystalline form I of alpha-CD is obtained in the solid state as
the hexahydrate structure (alpha-CD . 6H(2)O) containing two water
molecules inside and four outside the cavity. In this Letter, we report
a quantum chemical study of the formation of the alpha-cyclodextrin
hexahydrate using the semiempirical PM3 method and Density Functional
Theory (BLYP/6-31G(d,p) calculation). Distinct chemical processes are
considered for the calculation of the thermodynamic properties. We
found a good agreement with experimental data for entropy, enthalpy and
Gibbs free energy, which add support to the theoretical approach we
used. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Fed Minas Gerais, Dept Quim, ICEx, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
UFJF, Dept Quim, ICE, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
RP De Almeida, WB, Univ Fed Minas Gerais, Dept Quim, ICEx, LQCMM, Campus
Univ, BR-31270901 Belo Horizonte, MG, Brazil.
EM wagnar@netuno.qui.ufmg.br
CR BECKE AD, 1988, PHYS REV A, V38, P3098
BENSON SW, 1992, J AM CHEM SOC, V114, P4269
BILAL M, 1995, THERMOCHIM ACTA, V249, P63
BIRTTO MAF, 2004, IN PRESS QIM NOVA
CHACKO KK, 1981, J AM CHEM SOC, V103, P1708
CONNORS KA, 1997, CHEM REV, V97, P1325
CURTISS LA, 1979, J CHEM PHYS, V71, P2703
DASILVA AM, 1997, J CHEM SOC CHEM COMM, V465
DASILVA AMGM, 1996, J INCLUS PHENOM MOL, V25, P21
DASILVA AMM, 1996, CHEM COMMUN, P1871
DOSSANTOS HF, 2000, CHEM PHYS LETT, V319, P569
DOSSANTOS HF, 2002, CHEM PHYS, V280, P31
FERRARI AM, 1993, CHEM PHYS LETT, V212, P644
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GERMAIN P, 1998, J INCLUS PHENOM MOL, V31, P205
GREGORY JK, 1996, J PHYS CHEM-US, V100, P18014
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
KEUTSCH FN, 2003, CHEM REV, V103, P2533
KLOPPER W, 2000, PHYS CHEM CHEM PHYS, V2, P2227
LEE C, 1988, PHYS REV B, V37, P785
LINNERT W, 1992, CHEM PHYS, V161, P327
LIU K, 1996, SCIENCE, V271, P929
LUDWIG R, 2001, ANGEW CHEM INT EDIT, V40, P1808
MANOR PC, 1974, J AM CHEM SOC, V96, P3630
MCQUARRIE DA, 1973, STAT THERMODYNAMICS
NAIDOO KJ, 2004, J PHYS CHEM B, V108, P4236
PULITI R, 1998, CARBOHYD RES, V310, P1
SAENGER W, 1980, ANGEW CHEM INT EDIT, V19, P344
STEINER T, 1992, BIOCHEM BIOPH RES CO, V188, P1060
STEINER T, 1994, J AM CHEM SOC, V116, P5122
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
STILLINGER FH, 1980, SCIENCE, V209, P451
SZEJTLI J, 1998, CHEM REV, V98, P1743
WORMER PES, 2000, CHEM REV, V100, P4109
ZUBAVICUS Y, 2004, SCIENCE, V304, P974
NR 35
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD OCT 21
PY 2004
VL 397
IS 4-6
BP 422
EP 428
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 863DN
UT ISI:000224541000027
ER
PT J
AU Pliego, JR
TI Basic hydrolysis of formamide in aqueous solution: a reliable
theoretical calculation of the activation free energy using the
cluster-continuum model
SO CHEMICAL PHYSICS
LA English
DT Article
ID SOLVATION FREE-ENERGY; QUANTUM-MECHANICAL CALCULATIONS;
DIMETHYL-SULFOXIDE SOLUTIONS; DENSITY-FUNCTIONAL THEORY; BETA-LACTAM
ANTIBIOTICS; MONTE-CARLO SIMULATIONS; AB-INITIO; MOLECULAR-DYNAMICS;
HYDROXIDE ION; GAS-PHASE
AB The first step of the reaction of the hydroxide ion with formamide in
aqueous solution was studied by high level ab initio calculations and
including the solvent effect through the cluster-continuum model. This
hybrid discrete/continuum solvation model considers the ion explicitly
solvated by some solvent molecules and the bulk solvent is described by
a dielectric continuum (PCM). Two and three explicit water molecules
solvating the hydroxide ion were included to describe the transition
states. Our theoretical activation free energy barrier at 25 degreesC
is 23.4 kcal mol(-1), only 2.2 kcal mol(-1) higher than the
experimental value of 21.2 kcal mol(-1). We have also investigated a
general basic catalysis mechanism, where the hydroxide ion acts as a
base and one water molecule in its solvation shell is the nucleophile.
Our results indicate that this mechanism does not take place and the
real process is the direct nucleophilic attack of the hydroxide ion to
the carbonyl carbon. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Fed Santa Catarina, Dept Quim, BR-88040900 Florianopolis, SC, Brazil.
RP Pliego, JR, Univ Fed Santa Catarina, Dept Quim, BR-88040900
Florianopolis, SC, Brazil.
EM josef@qmc.ufsc.br
CR ALEMAN C, 1998, CHEM PHYS, V232, P151
ALEMAN C, 1999, CHEM PHYS LETT, V302, P461
ASTHAGIRI D, 2003, CHEM PHYS LETT, V371, P613
BAKOWIES D, 1999, J AM CHEM SOC, V121, P5712
BANDYOPADHYAY P, 2000, J CHEM PHYS, V113, P1104
BANDYOPADHYAY P, 2002, J CHEM PHYS, V116, P5023
BARONE V, 1997, J CHEM PHYS, V107, P3210
BARONE V, 1998, J PHYS CHEM-US, V102, P1195
BENDER ML, 1958, J AM CHEM SOC, V80, P1044
BRINCK T, 2002, J PHYS CHEM A, V106, P8827
BROWN RS, 1992, ACCOUNTS CHEM RES, V25, P481
CANCES E, 1997, J CHEM PHYS, V107, P3032
CANCES E, 2001, J CHEM PHYS, V114, P4744
CAR R, 1985, PHYS REV LETT, V55, P2471
CARLSON HA, 1993, J COMPUT CHEM, V14, P1240
CHENG A, 2000, J MOL GRAPH MODEL, V18, P273
CHIPMAN DM, 2002, J PHYS CHEM A, V106, P7413
CLAVERIE P, 1978, J PHYS CHEM-US, V82, P405
COSSI M, 1996, CHEM PHYS LETT, V255, P327
COSSI M, 2002, J CHEM PHYS, V117, P43
CRAMER CJ, 1999, CHEM REV, V99, P2161
CURUTCHET C, 2001, J COMPUT CHEM, V22, P1180
CURUTCHET C, 2003, J COMPUT CHEM, V24, P284
DAY PN, 1996, J CHEM PHYS, V105, P1968
FLORIS F, 1995, CHEM PHYS, V195, P207
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FREITAS LCG, 1992, J CHEM SOC FARADAY T, V88, P189
FRISCH MJ, 1994, GAUSSIAN 94
GAO J, 1992, J PHYS CHEM-US, V96, P537
GAO JL, 1996, ACCOUNTS CHEM RES, V29, P298
GAO JL, 1996, J AM CHEM SOC, V118, P4912
GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
GONCALVES PFB, 1999, CHEM PHYS LETT, V304, P438
GUTHRIE JP, 1974, J AM CHEM SOC, V96, P3608
HERMANS J, 1997, J AM CHEM SOC, V119, P2707
HINE J, 1981, J ORG CHEM, V46, P3186
HORI K, 1997, TETRAHEDRON, V53, P4317
HUMMER G, 1998, J PHYS CHEM A, V102, P7885
JOHNSON SL, 1967, ADV PHYS ORG CHEM, V5, P237
JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
JORGENSEN WL, 1989, ACCOUNTS CHEM RES, V22, P184
KOLLMAN P, 1993, CHEM REV, V93, P2395
KOLLMAN PA, 2001, ACCOUNTS CHEM RES, V34, P72
LEVY RM, 1998, ANNU REV PHYS CHEM, V49, P531
LI JB, 1998, CHEM PHYS LETT, V288, P293
LI JB, 1999, THEOR CHEM ACC, V103, P9
LIM C, 1991, J PHYS CHEM-US, V95, P5610
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
MADURA JD, 1986, J AM CHEM SOC, V108, P2517
MARLIER JF, 1999, J AM CHEM SOC, V121, P4356
MARLIER JF, 2001, ACCOUNTS CHEM RES, V34, P283
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIERTUS S, 1982, CHEM PHYS, V65, P239
MORAWETZ H, 1963, J AM CHEM SOC, V85, P463
OBRIEN JF, 1995, J PHYS CHEM-US, V99, P12759
OROZCO M, 1994, CHEM PHYS, V182, P237
PENG Z, 1993, J AM CHEM SOC, V115, P9640
PITARCH J, 1997, J PHYS CHEM B, V101, P3581
PITARCH J, 1998, J AM CHEM SOC, V120, P2146
PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
PLIEGO JR, 2000, J PHYS CHEM B, V104, P5155
PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
PLIEGO JR, 2002, CHEM PHYS LETT, V355, P543
PLIEGO JR, 2002, CHEM-EUR J, V8, P1945
PLIEGO JR, 2002, J PHYS CHEM A, V106, P7434
PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
POSTMA JPM, 1982, FARADAY S CHEM SOC, V17, P55
RICHARDSON WH, 1997, INT J QUANTUM CHEM, V61, P207
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SIEGBAHN PEM, 1996, J AM CHEM SOC, V118, P4442
SINGH UC, 1987, J AM CHEM SOC, V109, P1607
SITKOFF D, 1996, J PHYS CHEM-US, V100, P2744
SLEBOCKATILK H, 2002, CAN J CHEM, V80, P1343
SLEBOCKATILK H, 2003, J AM CHEM SOC, V125, P1851
STANTON RV, 1993, J PHYS CHEM-US, V97, P11868
STEFANOVICH EV, 1995, CHEM PHYS LETT, V244, P65
STRAATSMA TP, 1986, J CHEM PHYS, V85, P6720
STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
STRAIJBL M, 2002, J PHYS CHEM B, V106, P1333
STRAJBL M, 2000, J AM CHEM SOC, V122, P5354
TAWA GJ, 1998, J CHEM PHYS, V109, P4852
TOMASI J, 1994, CHEM REV, V94, P2027
TOMASI J, 2002, PHYS CHEM CHEM PHYS, V4, P5697
TOPOL IA, 1999, J CHEM PHYS, V111, P10998
TSE JS, 2003, ANNU REV PHYS CHEM, V53, P249
TUNON I, 1995, CHEM PHYS LETT, V241, P450
TUNON I, 1995, J PHYS CHEM-US, V99, P3798
VAIDEHI N, 1992, J CHEM PHYS, V97, P4264
WEINER SJ, 1985, J AM CHEM SOC, V107, P2219
WESOLOWSKI T, 1994, J PHYS CHEM-US, V98, P5183
WIBERG KB, 2000, J PHYS CHEM A, V104, P7625
WONG MW, 1991, J AM CHEM SOC, V113, P4776
ZHENG YJ, 1998, THEOCHEM-J MOL STRUC, V429, P41
NR 94
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD NOV 15
PY 2004
VL 306
IS 1-3
BP 273
EP 280
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 865AG
UT ISI:000224674000026
ER
PT J
AU Koiller, B
Capaz, RB
Hu, XD
Das Sarma, S
TI Shallow-donor wave functions and donor-pair exchange in silicon: Ab
initio theory and floating-phase Heitler-London approach
SO PHYSICAL REVIEW B
LA English
DT Article
ID TOTAL-ENERGY CALCULATIONS; ELECTRONIC-STRUCTURE; QUANTUM COMPUTER;
GROUND-STATE; SEMICONDUCTORS; SI; PSEUDOPOTENTIALS; GERMANIUM; SYSTEMS
AB Electronic and nuclear spins of shallow donors in silicon are
attractive candidates for qubits in quantum computer proposals. Shallow
donor exchange gates are frequently invoked to perform two-qubit
operations in such proposals. We study shallow donor electron
properties in Si within the Kohn-Luttinger envelope function approach,
incorporating the full Bloch states of the six band edges of the Si
conduction band, obtained from ab initio calculations within the
density-functional and pseudopotential frameworks. Intervalley
interference between the conduction-band-edge states of Si leads to
oscillatory behavior in the charge distribution of one-electron bound
states and in the exchange coupling in two-electron states. The
behavior in the donor electron charge distribution is strongly
influenced by interference from the plane wave and periodic parts of
the Bloch functions. For two donors, oscillations in the exchange
coupling calculated within the Heitler-London (HL) approach are due to
the plane-wave parts of the Bloch functions alone, which are pinned to
the impurity sites. The robustness of this result is assessed by
relaxing the phase pinning to the donor sites. We introduce a more
general theoretical scheme, the floating-phase HL, from which the
previously reported donor exchange oscillatory behavior is
qualitatively and quantitatively confirmed. The floating-phase
formalism provides a "handle" on how to theoretically anticipate the
occurrence of oscillatory behavior in electronic properties associated
with electron bound states in more general confining potentials, such
as in quantum dots.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945 Rio De Janeiro, Brazil.
SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA.
Univ Maryland, Condensed Matter Theory Ctr, Dept Phys, College Pk, MD 20742 USA.
RP Koiller, B, Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528,
BR-21945 Rio De Janeiro, Brazil.
CR ALTARELLI M, 1979, PHYS REV LETT, V43, P1346
ANDRES K, 1981, PHYS REV B, V24, P244
BALDERESCHI A, 1970, PHYS REV B, V1, P4673
BOYKIN TB, 2004, APPL PHYS LETT, V84, P115
BUEHLER TM, 2002, NANOTECHNOLOGY, V13, P686
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
FAULKNER RA, 1969, PHYS REV, V184, P713
FEHER G, 1959, PHYS REV, V114, P1219
FRIESEN M, 2003, PHYS REV B, V67
FUCHS M, 1999, COMPUT PHYS COMMUN, V119, P67
GOEDECKER S, 1997, SIAM J SCI COMPUT, V18, P1605
GONZE X, 1996, PHYS REV B, V54, P4383
GONZE X, 2002, COMP MATER SCI, V25, P478
HERRING C, 1964, PHYS REV A-GEN PHYS, V134, A362
HOHENBERG P, 1964, PHYS REV, V136, B84
HU XD, 2000, PHYS REV A, V61
HU XD, 2001, PHYS REV A, V64
HURLEY AC, 1954, P ROY SOC LOND A MAT, V226, P179
IVEY JL, 1975, PHYS REV B, V11, P822
KANE BE, 1998, NATURE, V393, P133
KOHN W, 1957, SOLID STATE PHYS, V5, P257
KOHN W, 1965, PHYS REV, V140, A1133
KOILLER B, 2002, PHYS REV B, V66
KOILLER B, 2002, PHYS REV LETT, V88
KOILLER B, 2003, PHYS REV LETT, V90
LEVY J, 2001, PHYS REV A, V64
MADELUNG O, 1996, SEMICONDUCTORS BASIC
MARTINS AS, 2004, PHYS REV B, V69
MEIER F, 2003, PHYS REV LETT, V90
MIZEL A, 2004, PHYS REV LETT, V92
OBRIEN JL, 2001, PHYS REV B, V64
OVERHOF H, 2004, PHYS REV LETT, V92
PANTELIDES ST, 1978, REV MOD PHYS, V50, P797
PAYNE MC, 1992, REV MOD PHYS, V64, P1045
PERDEW JP, 1981, PHYS REV B, V23, P5048
RICHARDSON SL, 1987, PHYS REV B, V35, P1388
SCHENKEL T, 2003, J APPL PHYS, V94, P7017
SCHOFIELD SR, 2003, PHYS REV LETT, V91
SLATER JC, 1963, QUANTUM THEORY MOL S, V1
TROULLIER N, 1991, PHYS REV B, V43, P1993
VOYLES P, 2002, NATURE, V416, P827
WEILER H, 1984, PHYS REV B, V30, P2266
WELLARD CJ, 2003, PHYS REV B, V68
NR 43
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD SEP
PY 2004
VL 70
IS 11
AR 115207
DI ARTN 115207
PG 8
SC Physics, Condensed Matter
GA 858RN
UT ISI:000224209500040
ER
PT J
AU Tormena, CF
Rittner, R
Contreras, RH
Peralta, JE
TI Anomeric effect on geminal and vicinal J(HH) NMR coupling constants
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; CONFORMATIONAL-ANALYSIS; NEGATIVE
HYPERCONJUGATION; MOLECULAR-STRUCTURE; KARPLUS EQUATION; DOUBLE
RESONANCE; RELATIVE SIGNS; BOND LENGTHS; SOLVATION; CYCLOHEXANE
AB Trends for geminal ((2)J(HH)) and vicinal ((3)J(HH)) nuclear magnetic
resonance indirect spin-spin coupling constants, SSCCs, for
2-methylthiirane (5) and 2-methyloxirane (6) are studied both from
experimental and theoretical points of view to determine the influence
of hyperconjugative interactions on these couplings. These two
analogous compounds were chosen because it was expected that they
exhibit quite different anomeric effects. Hyperconjugative interactions
are investigated using the "natural bond orbital" method. Coupling
constants are calculated within the density functional theory including
all four scalar contributions, that is, the Fermi contact, the
spin-dipolar, and the paramagnetic and diamagnetic spin-orbital
contributions. Solvent dielectric effects are taken into account using
Tomasi's polarizable continuum model. Results for geminal couplings are
consistent with linear correlations connecting (2)J(HH) with the
coupling pathway occupation numbers taken from the literature. The
present analysis suggests that both (2)J(HH) and (2)J(HH) coupling
constants are sensitive probes to gauge the anomeric effect, as well as
other hyperconjugative interactions.
C1 Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Quim, BR-14040901 Ribeirao Preto, SP, Brazil.
Univ Estadual Campinas, Inst Quim, Phys Organ Chem Lab, BR-13084971 Campinas, SP, Brazil.
Univ Buenos Aires, Dept Phys, RA-1428 Buenos Aires, DF, Argentina.
RP Tormena, CF, Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao
Pret, Dept Quim, Av Bandeirantes 3900, BR-14040901 Ribeirao Preto, SP,
Brazil.
EM tormena@ffclrp.usp.br
CR ALABUGIN IV, 2000, J ORG CHEM, V65, P3910
ALABUGIN IV, 2003, J AM CHEM SOC, V125, P14015
ALTONA C, 1996, ENCY NUCL MAGNETIC R, V8, P4909
ANDO I, 1984, J MOL LIQ, V27, P179
BARFIELD M, 1963, J AM CHEM SOC, V85, P1899
BARONE V, 2001, J COMPUT CHEM, V22, P1615
BARONE V, 2002, J PHYS CHEM A, V106, P5607
BECKE AD, 1988, PHYS REV A, V38, P3098
BENT HA, 1961, CHEM REV, V61, P275
CHUCK RJ, 1969, MOL PHYS, V16, P121
CLORAN F, 1999, J PHYS CHEM A, V103, P3783
CLORAN F, 2000, J AM CHEM SOC, V122, P6435
CONTRERAS RH, 2000, ANN R NMR S, V41, P55
CONTRERAS RH, 2000, PROG NUCL MAG RES SP, V37, P321
CONTRERAS RH, 2003, ANNU REP NMR SPECTRO, V51, P167
CUEVAS G, 1999, J PHYS CHEM A, V103, P932
CUEVAS G, 2002, J AM CHEM SOC, V124, P13088
ELIEL EL, 1968, J ORG CHEM, V33, P3754
ELIEL EL, 1994, STEREOCHEMSITRY ORGA
ELLEMAN DD, 1962, J MOL SPECTROSC, V9, P477
ESTEBAN AL, 2001, J PHYS CHEM A, V105, P5298
FREITAS MP, 2001, J PHYS ORG CHEM, V14, P317
FREITAS MP, 2003, J PHYS ORG CHEM, V16, P27
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GIL VMS, 1989, MAGN RESON CHEM, V27, P409
GLENDENING ED, 1998, NBO VERSION 3 1
GRAYSON M, 2000, MOL PHYS, V98, P1981
HANSEN MJ, 2002, MOL PHYS, V100, P2807
HANSEN PE, 1989, CHEM DOUBLE BONDED F, CH3
HELGAKER T, 1999, CHEM REV, V99, P293
HELGAKER T, 1999, DALTON VERSION 1 1
HELGAKER T, 2000, J CHEM PHYS, V113, P9402
HETENYI AN, 2003, J ORG CHEM, V68, P5705
HU SJ, 1997, J AM CHEM SOC, V119, P6360
IMAI K, 1990, MAGN RESON CHEM, V28, P668
JUARISTI E, 1995, CONFORMATIONAL BEHAV
KARPLUS M, 1959, J CHEM PHYS, V30, P11
KENDALL RA, 1992, J CHEM PHYS, V96, P6796
KING JF, 2000, J AM CHEM SOC, V122, P10308
KIRBY JA, 2000, STEREOELECTRONIC EFF
LEE C, 1988, PHYS REV B, V37, P785
LEMIEUX RU, 1969, CAN J CHEM, V47, P4427
MAHAIM C, 1985, HELV CHIM ACTA, V68, P2182
MALKINA OL, 2001, J PHYS CHEM A, V105, P9188
MANATT SL, 1965, J AM CHEM SOC, V87, P2220
MERTIUS S, 1981, CHEM PHYS, V55, P117
MERTIUS S, 1982, CHEM PHYS, V65, P239
MINCH MJ, 1994, CONCEPT MAGNETIC RES, V6, P41
MORRIS DG, 2001, STEREOCHEMISTRY
PERALTA JE, 2003, J CHEM PHYS LETT, V375, P452
PEREZ JE, 1990, J MOL STRUCT THEOCHE, V210, P193
PERLIN AS, 1969, TETRAHEDRON LETT, P2921
PERRIN CL, 2002, ACCOUNTS CHEM RES, V35, P28
POPLE JA, 1965, J CHEM PHYS, V42, P1339
POPLE JA, 1970, APPROXIMATE MOL ORBI
PROVASI PF, 2001, J CHEM PHYS, V115, P1981
PROVASI PF, 2003, INT J MOL SCI, V4, P231
RAMSEY NF, 1953, PHYS REV, V91, P303
REED AE, 1988, CHEM REV, V88, P899
REED AE, 1990, J AM CHEM SOC, V112, P1434
SPROVIERO EM, 2002, J PHYS CHEM A, V106, P7834
STENUTZ R, 2002, J ORG CHEM, V67, P949
STERNHELL S, 1969, QUART REV, V23, P236
SYCHROVSKY V, 2000, J CHEM PHYS, V113, P3530
TAHA AN, 2000, J PHYS CHEM A, V104, P2985
THOMAS WA, 1997, PROG NUCL MAG RE 3-4, V30, P183
VAARA J, 1997, J PHYS CHEM A, V101, P5069
WILIAMS DH, 1965, CHEM IND-LONDON, P506
WOLFE S, 1990, CAN J CHEM, V68, P1051
WONG TC, 1944, J CHEM SOC CHEM COMM, P1518
YOSHINAGA F, 2002, J CHEM SOC PERK T 2, P1494
NR 71
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 23
PY 2004
VL 108
IS 38
BP 7762
EP 7768
PG 7
SC Chemistry, Physical
GA 854RX
UT ISI:000223922100018
ER
PT J
AU Ramalho, TC
da Cunha, EFF
de Alencastro, RB
TI Solvent effects on C-13 and N-15 shielding tensors of nitroimidazoles
in the condensed phase: a sequential molecular dynamics/quantum
mechanics study
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID VERTICAL ELECTRON-AFFINITY; NMR CHEMICAL-SHIFTS; AB-INITIO;
COMPUTER-SIMULATION; NUCLEAR SHIELDINGS; MAGNETIC-RESONANCE;
HYDROGEN-BOND; LIQUID WATER; SPECTROSCOPY; RELAXATION
AB N-15-and C-13 NMR chemical shifts for three nitroimidazoles have been
calculated and compared with experimental data. The solvent effects on
NMR spectra were simulated with the polarizable continuum model (PCM)
and an alternative sequential molecular dynamics/quantum mechanics
methodology (S-MD/QM). The sampling of the structures for the quantum
mechanical calculations is made by using the interval of statistical
correlation obtained from the autocorrelation function of the energy.
Magnetic shielding tensors were evaluated at the GIAO-B3LYP level using
II' basis set. It has been shown that it is essential to incorporate
the dynamics and solvent effects in NMR calculations in the condensed
phase.
C1 Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany.
Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Phys Organ Chem Grp, BR-21949900 Rio De Janeiro, Brazil.
RP Ramalho, TC, Max Planck Inst Kohlenforsch, Kaiser Wilhelm Pl 1, D-45470
Mulheim, Germany.
EM teo@ime.eb.br
CR *INRIA ENPC, 1989, SCIL V 2 7
ALLEN MP, 1987, COMPUTER SIMULATION
ANDERSON CJ, 1999, CHEM REV, V99, P2219
BARONE V, 1998, J COMPUT CHEM, V19, P404
BONDI A, 1964, J PHYS CHEM-US, V68, P441
CHAFIELD C, 1984, ANAL TIMES SERIES IN
CHAPMAN JD, 1996, BRIT J CANCER, V74, P204
CHEN BC, 1983, HELV CHIM ACTA, V66, P1537
CHESNUT DB, 1994, J MOL STRUCT THEOCHE, V314, P19
COSSI M, 1998, CHEM PHYS LETT, V253, P286
COSSI M, 2003, J CHEM PHYS, V118, P8863
COSSI M, 2004, THEOR CHEM ACC, V111, P162
CRAMER CJ, 1995, REV COMPUTATIONAL CH, V6
CUI Q, 2000, J PHYS CHEM B, V104, P3721
DACUNHA EFF, 2004, J THEOR COMPUT CHEM, V3, P1
DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
FIELD MJ, 1990, J COMPUT CHEM, V11, P700
FINCHAM D, 1986, J CHEM PHYS, V84, P4535
FRIEDBERG R, 1970, J CHEM PHYS, V52, P6049
FRISCH MJ, 2001, GAUSSIAN98 A 11 SOFT
HARRIS CD, 1996, QUANTITATIVE CHEM AN
HORI H, 1997, BIOORGAN MED CHEM, V5, P591
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
KUTZELNIGG W, 1999, IGLO METHOD AB INITI, V23
LAAKSONEN A, 1998, J CHEM PHYS, V108, P455
LAUFFER RB, 1987, CHEM REV, V87, P901
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MALKIN VG, 1996, CHEM-EUR J, V2, P452
MARTINS TLC, 2003, MAGN RESON CHEM, V41, P983
MCCOY CL, 1996, BRIT J CANCER S27, V74, S226
MCKILLOP A, 1983, TETRAHEDRON, V39, P3797
MENNUCCI B, 2001, J PHYS CHEM A, V105, P7287
MENNUCCI B, 2002, J AM CHEM SOC, V124, P1506
MIERTUS S, 1981, CHEM PHYS, V55, P117
ODELIUS M, 1993, J MAGN RESON SER A, V105, P289
PECUL M, 1999, CHEM PHYS, V248, P27
PECUL M, 2001, CHEM PHYS LETT, V333, P139
PFROMMER BG, 2000, J AM CHEM SOC, V122, P123
PIVNENKO NS, 2002, MAGN RESON CHEM, V40, P566
RAMALHO TC, 2002, J MOL STRUC-THEOCHEM, V580, P217
RAMALHO TC, 2003, INT J QUANTUM CHEM, V95, P267
RAMALHO TC, 2004, BIOPHYS CHEM, V110, P267
RAMALHO TC, 2004, J MOL STRUC-THEOCHEM, V676, P149
REICHARDT C, 1979, SOLVENTS SOLVENT EFF
RUUD K, 2003, INT J MOL SCI, V4, P119
SEBASTIANI D, 2001, J PHYS CHEM A, V105, P1951
SEGALL MD, 2002, J PHYS-CONDENS MAT, V14, P2957
STILLINGER FH, 1974, J CHEM PHYS, V74, P3336
SWOPE WC, 1982, J CHEM PHYS, V76, P637
TINOCO LW, 1999, J BRAZIL CHEM SOC, V10, P281
TOMASI J, 1994, CHEM REV, V94, P2027
VERLET L, 1967, PHYS REV, V159, P98
WANG P, 1991, J AM CHEM SOC, V113, P55
WARSHEL A, 1991, COMPUTER MODELING CH
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 57
TC 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD SEP 1
PY 2004
VL 16
IS 34
BP 6159
EP 6170
PG 12
SC Physics, Condensed Matter
GA 854LI
UT ISI:000223904000017
ER
PT J
AU Marques, M
Teles, LK
Scolfaro, LMR
Ferreira, LG
Leite, JR
TI Microscopic description of the phase separation process in
AlxGayIn1-x-yN quaternary alloys
SO PHYSICAL REVIEW B
LA English
DT Article
ID LIGHT-EMITTING-DIODES; SEMICONDUCTORS; INXALYGA1-X-YN; LUMINESCENCE;
EMISSION; GAP
AB Ab initio total energy electronic structure calculations are combined
with Monte Carlo simulations to study the thermodynamic properties of
AlxGayIn1-x-yN quaternary alloys. We provide a microscopic description
of the phase separation process by analyzing the thermodynamic behavior
of the different atoms with respect to the temperature and cation
contents. We obtained, at growth temperatures, the range of
compositions for the stable and unstable phases. The presence of Al in
InGaN is proven to "catalyze" the phase separation process for the
formation of the In-rich phase. Based on our results, we propose that
the ultraviolet emission currently seen in samples containing AlInGaN
quaternaries arises from the matrix of a random alloy, in which
composition fluctuations toward InGaN- and AlGaN-like alloys formation
may be present, and that a coexisting emission in the green-blue region
results from the In-rich segregated clusters.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Marques, M, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ADIVARAHAN V, 2001, APPL PHYS LETT, V79, P4240
CHEN CH, 2004, APPL PHYS LETT, V84, P1480
COWLEY JM, 1950, J APPL PHYS, V21, P24
FENG SW, 2003, APPL PHYS LETT, V82, P1377
FERREIRA LG, 1991, INT J SUPERCOMPUT AP, V5, P34
HIRAYAMA H, 2002, APPL PHYS LETT, V80, P207
KNEISSL M, 2003, APPL PHYS LETT, V82, P2386
KRESSE G, 1996, COMP MATER SCI, V6, P15
KUNG P, 2000, OPTO-ELECTRON REV, V8, P201
LEMOS V, 2000, PHYS REV LETT, V84, P3666
MARQUES M, UNPUB
MARQUES M, 2003, APPL PHYS LETT, V83, P890
MATSUOKA T, 1998, MRS INTERNET J N S R, V3
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
NAGAHAMA S, 2001, JPN J APPL PHYS PT 2, V40, L778
TAKAYAMA T, 2001, J APPL PHYS, V90, P2358
TAMULAITIS G, 2000, APPL PHYS LETT, V77, P2136
TELES LK, 2000, PHYS REV B, V62, P2475
TELES LK, 2002, J APPL PHYS, V92, P7109
YAMAGUCHI S, 1998, J CRYST GROWTH, V195, P309
YASAN A, 2002, APPL PHYS LETT, V81, P2151
NR 21
TC 3
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD AUG
PY 2004
VL 70
IS 7
AR 073202
DI ARTN 073202
PG 4
SC Physics, Condensed Matter
GA 851WG
UT ISI:000223716600007
ER
PT J
AU Pereira, RP
Rocco, AM
Bielschowsky, CE
TI Poly(ethylene oxide): Electronic structure, energetics, and vibrational
spectrum
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID AB-INITIO CALCULATIONS; POLY(METHYL METHACRYLATE) BLENDS; POLYMER
ELECTROLYTES; COMPLEXES; PEO; BEHAVIOR; LICLO4; ETHER
AB The electronic structure, energetics, and vibrational spectrum of
poly(ethylene oxide) (PEO) are determined from density functional
theoretical calculations on model systems (CH2CH2O)(n)X-2,
((EO)(n)X-2), where X is a termination group, such as methyl or
hydroxyl, and n varies from 2 to 8. Geometry optimization was performed
on these linear model systems chosen to represent the noncrystalline
conformer of PEO, and the convergence of selected properties (total
energy, vibrational spectra) was studied. To simulate the crystalline
conformer, geometry optimization and vibrational spectrum calculations
were carried out on a helical (EO)(6)(CH3)(2) model system.
Differential scanning calorimetry data were employed to determine the
crystalline fraction, used as weight for the simulation of total
vibrational spectra, based on the spectra of the two conformers. The
high resolution simulated spectra exhibited the contribution of
individual vibrational modes to the experimentally observed broad peaks
(or envelopes), while the simulated spectra with low resolution
exhibited good agreement with experimental data, indicating a strong
influence of the line width on the simulated spectra, caused by the
distribution of chain conformations in the experimental PEO sample. The
electronic structure of the linear (EO)(6)(CH3)(2) model system
exhibited localization of the frontier orbitals on the oxygen atoms,
where the border effect is highly pronounced, the orbitals localized on
the oxygen atoms closer to the termination being highly energetic. The
simulation of PEO by the finite size cluster approach utilizing
oligo(ethylene oxide) model systems with six units was shown to be a
good approximation to the calculation of electronic structure and
vibrational spectra.
C1 Univ Fed Rio de Janeiro, Inst Quim, Grp Espectroscopia Teor, BR-21945970 Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Inst Quim, Grp Mat Condutores, BR-21945970 Rio De Janeiro, Brazil.
RP Pereira, RP, Univ Fed Rio de Janeiro, Inst Quim, Grp Espectroscopia
Teor, CT,Bloco A,Cidade Univ, BR-21945970 Rio De Janeiro, Brazil.
EM rpacheco@iq.ufrj.br
CR ABDURAHMAN A, 1999, J CHEM PHYS, V110, P8819
ABDURAHMAN A, 2000, CHEM PHYS, V257, P301
BABOUL AG, 1999, J AM CHEM SOC, V121, P7220
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BORODIN O, 2003, J PHYS CHEM B, V107, P6801
BOYS SF, 1966, QUANTUM THEORY ATOMS, P253
BRUCE PG, 1997, SOLID STATE ELECTROC
CIMMINO S, 1990, MAKROMOL CHEM, V191, P2447
DEPAOLI MA, 1997, J ELECTROANAL CHEM, V435, P217
EDMISTON C, 1963, REV MOD PHYS, V35, P457
JOHANSSON P, 1999, POLYMER, V40, P4399
JOHANSSON P, 2001, POLYMER, V42, P4367
JOHANSSON P, 2001, POLYMER, V42, P6573
KRISHNAN M, 2003, PHYS REV B, V68
KRIZ J, 1999, J PHYS CHEM A, V103, P8502
LI X, 1984, J POLYM SCI POL PHYS, V22, P1331
MACGLASHAN GS, 1999, NATURE, V398, P792
MARTINLITAS I, 2002, CHEM MATER, V14, P2166
MULLERPLATHE F, 1994, MACROMOLECULES, V27, P6040
MURATA K, 2000, ELECTROCHIM ACTA, V45, P1501
ROCCO AM, 2002, POLYMER, V43, P3601
ROCCO AM, 2003, EUR POLYM J, V39, P1925
ROCCO AM, 2003, POLYMER, V44, P361
SALOMON M, 1994, J PHYS CHEM-US, V98, P8234
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
TADOKORO H, 1984, POLYMER, V25, P147
TAKAHASHI Y, 1973, MACROMOLECULES, V6, P672
NR 28
TC 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD AUG 26
PY 2004
VL 108
IS 34
BP 12677
EP 12684
PG 8
SC Chemistry, Physical
GA 847XG
UT ISI:000223430800011
ER
PT J
AU Brewer, WD
Scherz, A
Sorg, C
Wende, H
Baberschke, K
Bencok, P
Frota-Pessoa, S
TI Direct observation of orbital magnetism in cubic solids
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID RAY CIRCULAR-DICHROISM; 3D IMPURITIES; DILUTE AUCO; FE; MAGNETIZATION;
FIELDS; COBALT; ATOMS
AB We present x-ray magnetic circular dichroism determinations of the
orbital/spin magnetic moment ratios of dilute 3d-series impurities in
Au (and Cu) host matrices. This is the first direct measurement of
considerable orbital moments in cubic symmetry for a localized impurity
in a bulk metal host. It is shown that the unquenching of orbital
magnetism depends on a delicate balance of hybridization effects
between the local impurity with the host and the filling of the 3d
states of the impurity. The results are accompanied by ab initio
calculations that support our experimental findings.
C1 Free Univ Berlin, Inst Expt Phys, D-14195 Berlin, Germany.
European Synchrotron Radiat Facil, F-38043 Grenoble, France.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Brewer, WD, Free Univ Berlin, Inst Expt Phys, Arnimallee 14, D-14195
Berlin, Germany.
EM brewer@physik.fu-berlin.de
CR BOYSEN J, 1973, SOLID STATE COMMUN, V12, P1095
CABRIA I, 2002, PHYS REV B, V65
CARRA P, 1993, PHYS REV LETT, V70, P694
CHEN CT, 1995, PHYS REV LETT, V75, P152
EBERT H, 1990, J APPL PHYS, V67, P4576
ERIKSSON O, 1990, PHYS REV B, V42, P2707
FRIEDEL J, 1958, NUOVO CIM SUPPL, V7, P287
FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
FROTAPESSOA S, 2001, J MAGN MAGN MATER 1, V226, P1021
FROTAPESSOA S, 2004, PHYS REV B, V69
GAMBARDELLA P, 2002, PHYS REV LETT, V88
GAMBARDELLA P, 2003, SCIENCE, V300, P1130
LEGOAS SB, 2000, PHYS REV B, V61, P10417
NARATH A, 1973, PHYS REV B, V7, P2195
RADO GT, 1973, MAGNETISM MAGNETIC P, V5
RIEGEL D, 1988, NATO ADV STUDY I E, V144, P327
SCHERZ A, 2002, PHYS REV B, V66
STEINER P, 1975, PHYS REV B, V12, P842
THOLE BT, 1988, PHYS REV B, V38, P3158
THOLE BT, 1992, PHYS REV LETT, V68, P1943
VANDERLAAN G, 1991, PHYS REV B B, V43, P13401
NR 21
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD AUG 13
PY 2004
VL 93
IS 7
AR 077205
DI ARTN 077205
PG 4
SC Physics, Multidisciplinary
GA 845VL
UT ISI:000223273300057
ER
PT J
AU Rino, JP
Ebbsjo, I
Branicio, PS
Kalia, RK
Nakano, A
Shimojo, F
Vashishta, P
TI Short- and intermediate-range structural correlations in amorphous
silicon carbide: A molecular dynamics study
SO PHYSICAL REVIEW B
LA English
DT Article
ID DENSITY-FUNCTIONAL-THEORY; X-RAY-ABSORPTION; CARBON ALLOYS; CHEMICAL
ORDER; NEUTRON-SCATTERING; PHOSPHATE-GLASSES; ATOMIC-STRUCTURE;
FINE-STRUCTURE; A-SI1-XCX-H; ICE
AB Short- and intermediate-range structural correlations in amorphous
silicon carbide (a-SiC) are studied in terms of partial pair
distributions, bond angle distribution functions, and shortest-path
ring statistics. A well relaxed sample is prepared following a slow
annealing schedule of the simulation at the experimental density of the
amorphous phase. The short-range correlation functions indicate a
locally ordered amorphous structure with heteronuclear bonds, Si-C,
with no phase separation, and no graphitic or diamond structures
present. The bond distances and coordination numbers are similar to
those in the crystalline phase. The rings statistics indicate an
intermediate-range topology formed by the rearrangement of tetrahedra
with the occurrence of corner and edge sharing units connecting two-
(similar to5% of total), three-, four-, and five-fold rings. The
presence of large size rings indicates the existence of nano-voids in
the structure, which explains the low density compared with the crystal
phase while keeping the same coordination number and bond distance.
These simulation results agree well with experimental results.
C1 Univ So Calif, Dept Mat Sci & Engn, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Phys & Astron, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Comp Sci, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Biomed Engn, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
Univ Fed Sao Carlos, Dept Phys, BR-13560 Sao Carlos, SP, Brazil.
Univ Uppsala, Studsvik Neutron Res Lab, Nykoping, Sweden.
Kumamoto Univ, Dept Phys, Kumamoto, Japan.
RP Rino, JP, Univ So Calif, Dept Mat Sci & Engn, Collab Adv Comp &
Simulat, Los Angeles, CA 90089 USA.
CR ARMAND P, 1995, EUROPHYS LETT, V29, P549
CAR R, 1985, PHYS REV LETT, V55, P2471
CATTI M, 2001, PHYS REV LETT, V87
CATTI M, 2002, PHYS REV B, V65
CHASE MW, 1985, J PHYS CHEM REF DATA, V14, P1
COHEN ML, 1993, SCIENCE, V261, P307
EBBSJO I, 2000, J APPL PHYS, V87, P7708
EMIN D, 1987, NOV REFR SEM S HELD
FINOCCHI F, 1992, PHYS REV LETT, V68, P3044
FISHER GR, 1990, PHILOS MAG B, V61, P217
HEERA V, 1995, J APPL PHYS, V77, P2999
HEERA V, 1997, APPL PHYS LETT, V70, P3531
HIOKI T, 1986, J MATER SCI, V21, P1321
HOHENBERG P, 1964, PHYS REV, V136, B864
ISHIMARU M, 2002, PHYS REV LETT, V89
IVASHCHENKO VI, 2002, PHYS REV B, V66
IYETOMI H, 2000, J NON-CRYST SOLIDS, V262, P135
KALOYEROS AE, 1988, PHYS REV B, V38, P13099
KATAYAMA Y, 1981, PHILOS MAG B, V43, P283
KELIRES PC, 1991, EUROPHYS LETT, V14, P43
KELIRES PC, 1992, PHYS REV B, V46, P10048
KELIRES PC, 1993, SOLID STATE COMMUN, V87, P851
KELIRES PC, 1998, J NON-CRYST SOLIDS, V231, P200
KLUG DD, 1999, PHYS REV LETT, V83, P2584
KOLESNIKOV AI, 1999, PHYS REV B, V59, P3569
KOLESNIKOV AI, 1999, PHYSICA B, V263, P650
KRESSE G, 1994, PHYS REV B, V49, P14251
LEVINSHTEAEIN ME, 2001, PROPERTIES ADV SEMIC
LOONG CK, 1997, PHYSICA B, V241, P890
MARSHALL RC, 1974, SIL CARB 1973 P U S
MENEGHINI C, 1991, J NON-CRYST SOLIDS, V137, P75
MENEGHINI C, 1994, PHYS REV B, V50, P11535
MURA D, 1998, PHYS REV B, V58, P10357
OCONNOR JR, 1960, SILICON CARBIDE HIGH
PASCARELLI S, 1992, PHYS REV B, V45, P1650
PECHENIK A, 1999, COMPUTER AIDED DESIG
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PRICE DL, 1991, J PHYS-CONDENS MAT, V3, P9835
PRICE DL, 1994, J NON-CRYST SOLIDS, V177, P293
RINO JP, 1993, PHYS REV B, V47, P3053
ROVIRA PI, 1997, PHYS REV B, V55, P4426
SAMPATH S, 2003, PHYS REV LETT, V90
SEEKAMP J, 1998, J NON-CRYST SOLIDS A, V230, P474
SEKINE T, 1997, PHYS REV B, V55, P8034
SHIMOJO F, 2000, PHYS REV LETT, V84, P3338
SHIMOJO F, 2001, COMPUT PHYS COMMUN, V140, P303
SPROUL A, 1986, PHILOS MAG B, V54, P113
SUZUYA K, 1998, J NON-CRYST SOLIDS, V234, P650
TERSOFF J, 1989, PHYS REV B, V39, P5566
TERSOFF J, 1994, PHYS REV B, V49, P16349
THORPE MF, 1997, AMORPHOUS INSULATORS
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
VANDERBILT D, 1990, PHYS REV B, V41, P7892
WILLIAMS JM, 1983, NUCL INSTRUM METHODS, V209, P317
YOSHIDA M, 1993, PHYS REV B, V48, P10587
NR 55
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL
PY 2004
VL 70
IS 4
AR 045207
DI ARTN 045207
PG 11
SC Physics, Condensed Matter
GA 843CO
UT ISI:000223053300026
ER
PT J
AU Bugs, MR
Forato, LA
Bortoleto-Bugs, RK
Fischer, H
Mascarenhas, YP
Ward, RJ
Colnago, LA
TI Spectroscopic characterization and structural modeling of prolamin from
maize and pearl millet
SO EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS
LA English
DT Article
DE pennisetin molecular model; zein molecular model; circular dichroism;
dynamic light scattering; small-angle X-ray scattering
ID PROTEIN SECONDARY STRUCTURE; NUCLEAR-MAGNETIC-RESONANCE; ALPHA-ZEIN
PROTEINS; X-RAY-SCATTERING; 3-DIMENSIONAL STRUCTURE;
CIRCULAR-DICHROISM; SEQUENCE-ANALYSIS; SPECTRA; EVOLUTION; GENES
AB Biophysical methods and structural modeling techniques have been used
to characterize the prolamins from maize (Zea mays) and pearl millet
(Pennisetum americanum). The alcohol-soluble prolamin from maize,
called zein, was extracted using a simple protocol and purified by gel
filtration in a 70% ethanol solution. Two protein fractions were
petrified from seed extracts of pearl millet with molecular weights of
25.5 and 7 kDa, as estimated by SDS-PAGE. The high molecular weight
protein corresponds to pennisetin, which has a high alpha-helical
content both in solution and the solid state, as demonstrated by
circular dichroism and Fourier transform infrared spectra. Fluorescence
spectroscopy of both fractions indicated changes in the tryptophan
microenvironments with increasing water content of the buffer.
Low-resolution envelopes of both fractions were retrieved by ab initio
procedures from small-angle X-ray scattering data, which yielded
maximum molecular dimensions of about 14 nm and 1 nm for pennisetin and
the low molecular weight protein, respectively, and similar values were
observed by dynamic light scattering experiments. Furthermore, H-1
nuclear magnetic resonance spectra of zein and pennisetin do not show
any signal below 0.9 ppm, which is compatible with more extended
solution structures. The molecular models for zein and pennisetin in
solution suggest that both proteins have an elongated molecular
structure which is approximately a prolate ellipsoid composed of
ribbons of folded alpha-helical segments with a length of about 14 run,
resulting in a structure that permits efficient packing within the seed
endosperm.
C1 Embrapa Instrumentacao Agropecuaria, BR-13560970 Sao Carlos, SP, Brazil.
Univ Sao Paulo, Inst Fis Sao Carlos, Grp Cristalog, BR-13566590 Sao Carlos, SP, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Quim, BR-14049901 Ribeirao Preto, SP, Brazil.
RP Colnago, LA, Embrapa Instrumentacao Agropecuaria, Rua 15 Novembro 1452,
BR-13560970 Sao Carlos, SP, Brazil.
EM colnago@cnpdia.embrapa.br
CR ARGOS P, 1982, J BIOL CHEM, V257, P9984
BIETZ JA, 1982, BIOCHEM GENET, V20, P1039
BUGS MR, 2001, PHOTOCHEM PHOTOBIOL, V74, P512
BYLER DM, 1986, BIOPOLYMERS, V25, P469
ELLIOTT MA, 1939, J AM CHEM SOC, V61, P718
FASMAN GD, 1996, CIRCULAR DICHROISM C
FORATO LA, 2000, BBA-PROTEIN STRUCT M, V1543, P106
FOSTER JF, 1945, J AM CHEM SOC, V67, P617
GARRATT R, 1993, PROTEINS, V15, P88
GLATTER O, 1982, SMALL ANGLE XRAY SCA
GUINIER A, 1955, SMALL ANGLE SCATTERI
HADDEN JM, 1995, BBA-PROTEIN STRUCT M, V1248, P115
HARIS PI, 1996, INFRARED SPECTROSCOP, P239
HEIDECKER G, 1991, GENOMICS, V10, P719
KELLERMANN G, 1997, J APPL CRYSTALLOGR 5, V30, P880
KRESTCHMER CB, 1957, J PHYS CHEM-US, V61, P1627
LAEMMLI UK, 1970, NATURE, V227, P680
LASKOWSKI RA, 1993, J APPL CRYSTALLOGR, V26, P283
MATSUSHIMA N, 1997, BBA-PROTEIN STRUCT M, V1339, P14
NELSON JW, 1986, PROTEINS, V1, P211
PEDERSEN K, 1982, CELL, V29, P1015
PELTON JT, 2000, ANAL BIOCHEM, V277, P167
POROD G, 1982, SMALL ANGLE XRAY SCA, P17
SAINANI MN, 1992, PLANT SCI, V83, P15
SVERGUN DI, 1992, J APPL CRYSTALLOGR, V25, P495
SVERGUN DI, 2001, BIOPHYS J, V80, P2946
TATHAM AS, 1993, J BIOL CHEM, V268, P26253
UNNEBERG P, 2001, PROTEINS, V42, P460
WILLIAMS JW, 1938, COLD SPRING HARB SYM, V6, P208
WOO YM, 2001, PLANT CELL, V13, P2297
NR 30
TC 3
PU SPRINGER
PI NEW YORK
PA 233 SPRING STREET, NEW YORK, NY 10013 USA
SN 0175-7571
J9 EUR BIOPHYS J BIOPHYS LETT
JI Eur. Biophys. J. Biophys. Lett.
PD JUL
PY 2004
VL 33
IS 4
BP 335
EP 343
PG 9
SC Biophysics
GA 841OU
UT ISI:000222941000007
ER
PT J
AU Fagan, SB
Souza, AG
Lima, JOG
Mendes, J
Ferreira, OP
Mazali, IO
Alves, OL
Dresselhaus, MS
TI 1,2-dichlorobenzene interacting with carbon nanotubes
SO NANO LETTERS
LA English
DT Article
ID AB-INITIO; RAMAN-SPECTROSCOPY; LARGE SYSTEMS; WATER
AB The interaction of 1,2-dichlorobenzene (DCB) with carbon nanotubes is
analyzed by experimental and theoretical methods. Using
first-principles calculations we studied the structural and electronic
behavior of DCB interacting with a semiconductor (8,10) single-wall
carbon nanotube (SWNT). We have found that the DCB weakly interacts
with a perfect SWNT surface, but this interaction is slightly stronger
when the SWNT surface has structural vacancies. Resonant Raman
experiments performed on DCB-adsorbed SWNTs confirm the weak DCB-SWNT
interaction, as suggested by the ab initio simulations.
C1 Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil.
Univ Estadual Campinas, Inst Quim, LQES, BR-13081970 Campinas, SP, Brazil.
MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA.
MIT, Dept Phys, Cambridge, MA 02139 USA.
RP Fagan, SB, Univ Fed Ceara, Dept Fis, Caixa Postal 6030,Campus Pici,
BR-60455900 Fortaleza, Ceara, Brazil.
EM solange@fisica.ufc.br
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
CORIO P, 2004, CHEM PHYS LETT, V383, P475
DAI HJ, 2002, SURF SCI, V500, P218
DASILVA LB, 2004, NANO LETT, V4, P65
DRESSELHAUS MS, 2000, ADV PHYS, V49, P705
DRESSELHAUS MS, 2001, CARBON NANOTUBES
DRESSELHAUS MS, 2002, CARBON, V40, P2043
FAGAN SB, 2003, PHYS REV B, V67
HILL GA, 1991, ENVIRON PROG, V10, P147
IIJIMA S, 1991, NATURE, V354, P36
ORDEJON P, 1996, PHYS REV B, V53
PENG S, 2000, NANOTECHNOLOGY, V11, P57
PENG XJ, 2003, CHEM PHYS LETT, V376, P154
PERDEW JP, 1981, PHYS REV B, V23, P5048
ROBERGE F, 2001, WATER SCI TECHNOL, V44, P287
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANKEY OF, 1989, PHYS REV B, V40, P3979
SOUZA AG, 2003, NANOTECHNOLOGY, V14, P1130
SUMANASEKERA GU, 1999, J PHYS CHEM B, V103, P4292
TROULLIER N, 1991, PHYS REV B, V43, P1993
NR 20
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JUL
PY 2004
VL 4
IS 7
BP 1285
EP 1288
PG 4
SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
GA 839CX
UT ISI:000222762000022
ER
PT J
AU Kleinpeter, E
Seidl, PR
TI The gamma- and the delta-effects in C-13 NMR spectroscopy in terms of
nuclear chemical shielding (NCS) analysis
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE C-13 NMR spectroscopy; gamma- and delta-effects; steric hindrance;
partitions to natural chemical shieldings
ID AB-INITIO IGLO; MAGNETIC-RESONANCE; SUBSTITUENT DEPENDENCIES; SHIFTS;
SPECTRA; TENSORS; ANGLE
AB Carbon-13 NMR is widely used in the determination of the
stereochemistry of organic compounds. Changes in chemical shifts caused
by interactions of groups that are close in space normally result in
shielding of the carbon and deshielding of the hydrogen nuclei that are
involved. This is not always the case, however, and further work on the
origin of these effects would be desirable. Early applications of
theoretical methods to the study of NMR shielding parameters were not
particularly successful, but in recent years, the calculation of NMR
shielding parameters by theoretical methods has developed into a useful
and popular tool for structural studies by NMR. A promising approach to
the problem of distinguishing and evaluating stereochemical influences
on carbon and hydrogen chemical shifts is provided by natural chemical
shielding (NCS) analysis. This method allows a partitioning of
theoretical NMR shieldings into magnetic contributions from bonds and
lone pairs of the molecule using the natural bond orbital (NBO) method.
In order to investigate the origins of steric effects, we employed the
NCS analysis to axial/equatorial-Me-cyclohexane, norbornane and
exo/endo-Me-norbornane, in addition to n-pentane in the anti, gauche
and g(P) g(M) conformations. Our results indicate that distortions in
molecular structure due to steric effects can result in bond stretching
or compression or in angular distortions. Changes in bond lengths
result in the predictable shielding or deshielding of the nuclei that
are involved. Where the molecular framework may be distorted to
alleviate strain, chemical shifts appear to reflect changes in angles.
Copyright (C) 2004 John Wiley Sons, Ltd.
C1 Univ Potsdam, Inst Chem, D-14415 Potsdam, Germany.
Univ Fed Fluminense, Programa Posgrad Quim Organ, BR-24020150 Niteroi, RJ, Brazil.
RP Kleinpeter, E, Univ Potsdam, Inst Chem, POB 60 15 53, D-14415 Potsdam,
Germany.
EM kp@chem.uni-potsdam.de
CR BARFIELD M, 1990, J AM CHEM SOC, V112, P4747
BARFIELD M, 1993, J AM CHEM SOC, V115, P6916
BARFIELD M, 1993, NUCLEAR MAGNETIC SHI, P523
BARFIELD M, 1995, J AM CHEM SOC, V117, P2862
BARFIELD M, 1998, MAGN RESON CHEM, V36, P593
BLENDENIG ED, 2001, NBO 5 0
BOHMANN JA, 1997, J CHEM PHYS, V107, P1173
BORN R, 1994, MACROMOLECULES, V27, P1500
BORN R, 1995, MACROMOLECULES, V28, P7785
CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
DEDIOS AC, 1994, ANN REP NUCL MAGN RE, V29, P1
DEDIOS AC, 1994, J AM CHEM SOC, V116, P5307
DITCHFIELD R, 1974, MOL PHYS, V27, P789
FISHER J, 1992, MAGN RESON CHEM, V30, P338
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GRANT DM, 1964, J AM CHEM SOC, V86, P2984
GUNTHER H, 1995, NMR SPECTROSCOPY BAS
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HELGAKER T, 1999, CHEM REV, V99, P293
JIAO D, 1992, J AM CHEM SOC, V114, P3639
JIAO D, 1993, J AM CHEM SOC, V115, P10883
KLOD S, 2002, J CHEM SOC PERK T 2, P1506
KUROSU H, 1993, MAGN RESON CHEM, V31, P399
MANN G, 1978, MAGN RESON CHEM, V11, P561
PAUL EG, 1963, J AM CHEM SOC, V85, P2701
SEIDL PR, 1990, J MOL STRUCT THEOCHE, V204, P183
SEIDL PR, 1993, MAGN RESON CHEM, V31, P241
SEIDL PR, 1998, MAGN RESON CHEM, V36, P261
WADA M, 1995, MAGN RESON CHEM, V33, P453
WIBERG KB, 1987, J AM CHEM SOC, V109, P1001
WINSTEIN S, 1965, J AM CHEM SOC, V87, P5247
NR 31
TC 3
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD AUG
PY 2004
VL 17
IS 8
BP 680
EP 685
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 840TV
UT ISI:000222883700005
ER
PT J
AU Ramalho, TC
de Alencastro, RB
La-Scalea, MA
Figueroa-Villar, JD
TI Theoretical evaluation of adiabatic and vertical electron affinity of
some radiosensitizers in solution using FEP, ab initio and DFT methods
SO BIOPHYSICAL CHEMISTRY
LA English
DT Article
DE radiosensitizers; electron affinity; HF and DFT calculations
ID HYPOXIC CELL RADIOSENSITIZERS; DIFFERENCE THERMODYNAMIC INTEGRATION;
MOLECULAR-DYNAMICS SIMULATION; MST-SCRF CALCULATIONS; FREE-ENERGY;
BIOLOGICAL-ACTIVITY; PHOTOELECTRON-SPECTROSCOPY; VOLTAMMETRIC BEHAVIOR;
IONIZATION-POTENTIALS; DRUG-RESISTANCE
AB The biological activity of radiosensitizers is associated to their
electron affinity (EA), which can be divided in two main processes:
vertical and adiabatic. In this work, we calculated the EAs of
nitrofurans and nitroimidazoles (Fig. 2) using Hartree-Fock (HF) and
density functional theory (DFT) methods and evaluated solvent effects
(water and carbon tetrachloride) on EAs. For water, we combined the
polarized continuum model (PCM) and free energy perturbation (FEP)
(finite difference thermodynamic integration, FDTI) methods. For carbon
tetrachloride, we used the FDTI method. The values of adiabatic EA
obtained are in agreement with experimental data (deviations of 0.013
eV). The vertical EAs were calculated according to Cederbaum's outer
valence Green function (OVGF) method. This methodology, which relies on
theoretical aspects of free energy calculations on charged molecules in
solution, was used to select potential selective radiosensitizers from
recently reported compounds and could be helpful in the rational design
of new and more selective bioreductive anticancer drugs. (C) 2004
Elsevier B.V. All rights reserved.
C1 Inst Mil Engn, Dept Quim, BR-22290270 Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Grp Fisicoquim Organ, BR-21949900 Rio De Janeiro, Brazil.
Univ Sao Paulo, Fac Ciencias Farmaceut, Dept Farm, BR-05508900 Sao Paulo, Brazil.
RP Figueroa-Villar, JD, Inst Mil Engn, Dept Quim, Praca Gen Tiburcio 80,
BR-22290270 Rio De Janeiro, Brazil.
EM figueroa@ime.eb.br
CR PC SPARTAN PRO 1 0 1
*BIOS MSI, 1995, BIOS MSI INS 2 VERS
ADAMS GE, 1976, RADIAT RES, V67, P550
ADAMS GE, 1979, INT J RADIAT BIOL, V35, P133
ADAMS GE, 1979, INT J RADIAT BIOL, V35, P151
AHMED AA, 1997, SPECTROCHIM ACTA A, V53, P335
AMES JR, 1987, LIFE SCI, V41, P1895
AQVIST J, 1990, J PHYS CHEM-US, V94, P8021
BACHS M, 1994, J COMPUT CHEM, V15, P446
BECKE AD, 1988, PHYS REV A, V38, P3098
BENAKLI K, 2002, HETEROCYCLES, V57, P1689
BRACUTI AJ, 1998, J CHEM CRYSTALLOGR, V28, P367
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BRETT AMO, 1997, ELECTROANAL, V9, P1132
BRETT AMO, 1999, METHOD ENZYMOL, V300, P314
BROWN JM, 1999, CANCER RES, V59, P1391
BU YX, 1998, THEOCHEM-J MOL STRUC, V422, P219
CAMMI R, 1997, THEORETICAL ASPECTS
CANCES E, 1997, J CHEM PHYS, V107, P3032
CHAPMAN JD, 1996, BRIT J CANCER, V74, P204
CHAUVIERE G, 2003, J MED CHEM, V46, P427
CHEN GX, 1998, CHEM PHYS LETT, V290, P211
CHEN M, 1998, J CHROMATOGR A, V825, P37
COLOMINAS C, 1999, CHEM PHYS, V240, P253
COLOMINAS C, 1999, J COMPUT CHEM, V20, P665
DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
FISCHER CF, 1987, PHYS REV LETT, V59, P2263
FRISCH MJ, 2001, GAUSSIAN
GOLDMAN P, 1986, BIOCHEM PHARMACOL, V35, P43
GUIMARAES CRW, 2002, J PHYS CHEM B, V106, P466
HALLIWELL B, 1985, FREE RADICALS BILOGY
HOHENBERG P, 1964, PHYS REV B, V136, P864
HORI H, 1997, BIOORGAN MED CHEM, V5, P591
HORIS H, 1994, ADV ENV SCI TECHNOLO
JARGER R, 2001, J MOL GRAPH MODEL, V13, P89
JOHNSON BG, 1993, J CHEM PHYS, V98, P5612
KASAI S, 2001, BIOORGAN MED CHEM, V9, P453
KING G, 1989, J CHEM PHYS, V91, P3647
KNOX RJ, 1981, BRIT J CANCER, V44, P741
KOHN W, 1965, PHYS REV, V140, A1133
KOLLMAN P, 1993, CHEM REV, V93, P2395
LASCALEA MA, 1999, J BRAZIL CHEM SOC, V10, P127
LASCALEA MA, 1999, QUIM NOVA, V22, P417
LISTER SG, 1992, INT J QUANTUM CHEM, V41, P293
LISTER SG, 1997, INT QUANTUM CHEM, V59, P135
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
MEZEI M, 1987, J CHEM PHYS, V86, P7084
MIERTUS S, 1981, CHEM PHYS, V55, P117
MOTTANETO DJ, 1992, INT J QUANTUM CHEM Q, V44, P743
OROZCO M, 1994, CHEM PHYS, V182, P237
ORTIZ JV, 1988, J CHEM PHYS, V89, P6348
PIRES JR, 2001, J MED CHEM, V44, P3673
PRAMANN A, 2001, CHEM PHYS LETT, V343, P99
PRESS WH, 1986, NUMERICAL RECIPES AR
REYNOLDS CA, 1988, J CHEM SOC CHEM COMM, P1434
REYNOLDS CA, 1990, J AM CHEM SOC, V112, P7545
RIENSTRAKIRACOFE JC, 2002, CHEM REV, V102, P231
SINGH UC, 1984, J COMPUT CHEM, V5, P129
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
TEICHER BA, 1994, CANCER METAST REV, V13, P139
TOMASI J, 1994, CHEM REV, V94, P2027
TOMASI J, 1999, J MOL STRUC-THEOCHEM, V464, P211
TOMIDA A, 1999, ANTI-CANCER DRUG DES, V14, P169
VIODE C, 1999, BIOCHEM PHARMACOL, V57, P549
VONNIESSEN W, 1984, COMPUT PHYS REP, V1, P57
WARDMAN P, 1976, BIOCHEM BIOPH RES CO, V69, P942
WARDMAN P, 1976, J CHEM SOC FARAD T 1, V72, P1377
WARDMAN P, 1980, RAD SENSITIZERS THEI, P83
WARSHEL A, 1985, CHEM PHYS LETT, V121, P124
WYMORE T, 1999, BIOPHYS J 2, V76, A57
NR 71
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-4622
J9 BIOPHYS CHEM
JI Biophys. Chem.
PD AUG 1
PY 2004
VL 110
IS 3
BP 267
EP 279
PG 13
SC Chemistry, Physical; Biochemistry & Molecular Biology; Biophysics
GA 836XM
UT ISI:000222589500008
ER
PT J
AU Orhan, E
Pontes, FM
Santos, MA
Leite, ER
Beltran, A
Andres, J
Boschi, TM
Pizani, PS
Varela, JA
Taft, CA
Longo, E
TI Combined experimental and theoretical study to understand the
photoluminescence of Sr1-xTiO3-x
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID THIN-FILMS; ABO(3) PEROVSKITES; STRONTIUM-TITANATE; ROOM-TEMPERATURE;
VISIBLE PHOTOLUMINESCENCE; AMORPHOUS SRTIO3; ABSORPTION EDGE; CHEMICAL
ROUTE; LEAD TITANATE; ENERGY-BANDS
AB A joint experimental and theoretical study has been carried out to
rationalize the results of visible photoluminescence measurements at
room temperature on Sr1-xTiO3-x (ST) perovskite thin films. From the
experimental side, ST thin films, x = 0 to 0.9, have been synthesized
following soft chemical processing, and the corresponding
photoluminescence properties have been measured. First principles
quantum mechanical techniques, based on density functional theory at
the B3LYP level, have been employed to study the electronic structure
of a crystalline, stoichiometric (x = 0) ST-s model and a
nonstoichiometric (SrO-deficient, x not equal 0) and structurally
disordered ST-d model. The relevance of the present theoretical and
experimental results of the photoluminescence behavior of ST is
discussed. The optical spectra and the calculations indicate that the
symmetry-breaking process on going from ST-s to ST-d creates electronic
levels in the valence band. Moreover, an analysis of the Mulliken
charge distribution reveals a charge gradient in the structure. These
combined effects seem to be responsible for the photoluminescence
behavior of deficient Sr1-xTiO3-x.
C1 Univ Estadual Paulista, Inst Quim, BR-14801907 Araraquara, SP, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
RP Orhan, E, Univ Estadual Paulista, Inst Quim, BR-14801907 Araraquara,
SP, Brazil.
EM emmanuelle.orhan@liec.ufscar.br
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
BLASSE G, 1994, LUMINESCENT MAT
BLAZEY KW, 1971, PHYS REV LETT, V27, P146
BOUMA B, 1995, J PHYS CHEM SOLIDS, V56, P261
CANHAM LT, 1990, APPL PHYS LETT, V57, P1046
CAPIZZI M, 1970, PHYS REV LETT, V25, P1298
CARDONA M, 1965, PHYS REV A, V140, P651
COHEN MI, 1968, PHYS REV, V168, P929
EGLITIS RI, 2002, EUR PHYS J B, V27, P483
HEIFETS E, 2002, SURF SCI, V513, P211
JONES RO, 1989, REV MOD PHYS, V61, P689
KAHN AH, 1964, PHYS REV A, V135, P1321
KOKALJ A, 1999, J MOL GRAPH MODEL, V17, P176
LANCIOTTI F, 2002, APPL PHYS A-MATER, V74, P787
LEE C, 1988, PHYS REV B, V37, P785
LEITE ER, 2000, ADV MATER OPT ELECTR, V10, P235
LEITE ER, 2001, APPL PHYS LETT, V78, P2148
LEITE ER, 2002, APPL PHYS A-MATER, V74, P529
LEITE ER, 2003, J MATER SCI, V38, P1775
LEONELLI R, 1986, PHYS REV B, V33, P8649
LONGO E, 2004, IN PRESS PHYS REV B
MATTHEISS LF, 1972, PHYS REV B, V6, P4718
MO SD, 1999, PHYS REV B, V60, P2416
MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
NOLAND JA, 1954, PHYS REV, V94, P724
OBRIEN MCM, 1993, AM J PHYS, V61, P688
PINHEIRO CD, 2003, APPL PHYS A-MATER, V77, P81
PIZANI PS, 2000, APPL PHYS LETT, V77, P824
PIZANI PS, 2002, APPL PHYS LETT, V81, P253
PONTES FM, 2000, ADV MATER OPT ELECTR, V10, P81
PONTES FM, 2000, MATER LETT, V43, P249
PONTES FM, 2003, J LUMIN, V104, P175
PONTES FM, 2003, J MATER RES, V18, P659
PONTES FM, 2003, MATER CHEM PHYS, V77, P598
PONTES FM, 2003, MATER CHEM PHYS, V78, P227
RANGEL JH, 2002, J LUMIN, V99, P7
SAUNDERS V, 1998, CRYSTAL98 USERS MANU
SOLEDADE LEB, 2002, APPL PHYS A-MATER, V75, P629
URBACH F, 1953, PHYS REV, V92, P1324
WOOD DL, 1972, PHYS REV B-SOLID ST, V5, P3144
NR 40
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD JUL 1
PY 2004
VL 108
IS 26
BP 9221
EP 9227
PG 7
SC Chemistry, Physical
GA 832PJ
UT ISI:000222279100067
ER
PT J
AU Ferretti, A
Ruini, A
Bussi, G
Molinari, E
Caldas, MJ
TI Ab initio study of transport parameters in polymer crystals
SO PHYSICAL REVIEW B
LA English
DT Article
ID CONJUGATED POLYMERS; CHARGE-TRANSPORT; INTERCHAIN INTERACTIONS;
POLYTHIOPHENE CRYSTALS; CONDUCTING POLYMERS; CHAINS;
POLY(3-ALKYLTHIOPHENES); POLY(3-OCTYLTHIOPHENE); 1ST-PRINCIPLES;
COHERENT
AB Transfer integrals (TI's) are essential parameters in the calculation
of electron transport both in coherent and incoherent regimes. We show
that TI's for polymer crystals can be obtained from first principles,
starting from plane-wave density-functional calculations of the
electronic structure in the local-density approximation, and propose
methods at different levels of approximation. We demonstrate that
special choices of single-chain states can be used very effectively as
building blocks for the crystal electronic structure, thus allowing a
deeper insight into the transport properties of molecular crystals. We
apply this approach to polymer systems of great interest to molecular
electronics, such as poly-para-phenylene-vinylene and polythiophene in
different crystal packing morphologies, and show that it offers a very
powerful tool to understand and design the impact of intermolecular
interactions on conduction of organic crystals.
C1 Univ Modena & Reggio Emilia, INFM Natl Ctr Nanostruct & Biosyst Surface S3, I-41100 Modena, Italy.
Univ Modena & Reggio Emilia, Dipartimento Fis, I-41100 Modena, Italy.
Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
RP Ferretti, A, Univ Modena & Reggio Emilia, INFM Natl Ctr Nanostruct &
Biosyst Surface S3, Via Campi 213-A, I-41100 Modena, Italy.
EM ferretti.andrea@unimo.it
CR AHLSKOG M, 1996, PHYS REV B, V53, P15529
AMBROSCHDRAXL C, 1995, PHYS REV B, V51, P9668
BREDAS JL, 2002, P NATL ACAD SCI USA, V99, P5804
BREDAS JL, 2002, SYNTHETIC MET, V125, P107
BURROUGHES JH, 1990, NATURE, V347, P539
BUSSI G, 2002, APPL PHYS LETT, V80, P4118
BUTTIKER M, 1985, PHYS REV B, V31, P6207
BUTTIKER M, 1986, PHYS REV LETT, V57, P1761
CHEN D, 1990, PHYS REV B, V41, P6759
CHEN D, 1992, POLYMER, V33, P3116
CHEN TA, 1995, J AM CHEM SOC, V117, P233
CORNIL J, 2001, SYNTHETIC MET, V119, P1
DAVILA LYA, 2002, J COMPUT CHEM, V23, P1135
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
EMIN D, 1986, PHYS REV B, V33, P3973
FERRETTI A, 2003, PHYS REV LETT, V90
FRIEND RH, 1999, NATURE, V397, P121
GALVAO DS, 1989, PHYS REV LETT, V63, P786
HEY R, 1997, PHYS REV B, V55, P4231
HOLSTEIN T, 1959, ANN PHYS-NEW YORK, V8, P325
JOHANSSON A, 2001, PHYS REV LETT, V86, P3602
JOHANSSON A, 2002, PHYS REV B, V66
LANDAUER R, 1970, PHILOS MAG, V21, P863
MARCUS RA, 1985, BIOCHIM BIOPHYS ACTA, V811, P265
MARUMOTO K, 2003, CHEM PHYS LETT, V382, P541
MCCULLOUGH RD, 1993, J AM CHEM SOC, V115, P4910
MIZES HA, 1993, PHYS REV LETT, V70, P1505
NEWTON MD, 2000, INT J QUANTUM CHEM, V77, P255
NGUYEN TQ, 2000, APPL PHYS LETT, V76, P2454
PROSA TJ, 1995, PHYS REV B, V51, P159
PUSCHNIG P, 2001, SYNTHETIC MET, V119, P245
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROHLFING M, 1999, PHYS REV LETT, V82, P1959
RUINI A, 2002, PHYS REV LETT, V88
RUINI A, 2003, SYNTHETIC MET, V139, P755
SANTOS MA, UNPUB
SCHULZ PA, 1991, PHYS REV B, V44, P6073
SIEGRIST T, 1998, ADV MATER, V10, P379
SIRRINGHAUS H, 1998, SCIENCE, V280, P1741
SIRRINGHAUS H, 1999, NATURE, V401, P685
SLATER JC, 1954, PHYS REV, V94, P1498
WANG GM, 2003, J APPL PHYS 1, V93, P6137
YANG CY, 1998, POLYMER, V39, P2299
NR 43
TC 3
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAY
PY 2004
VL 69
IS 20
AR 205205
DI ARTN 205205
PG 10
SC Physics, Condensed Matter
GA 830BD
UT ISI:000222095700036
ER
PT J
AU Da Cunha, EFF
De Alencastro, RB
Ramalho, TC
TI Theoretical study of adiabatic and vertical electron affinity of
radiosensitizers in solution Part 2: Analogues of tirapazamine
SO JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE radiosensitizers; electron affinity; HF and DFT calculations
ID HYPOXIC CELL RADIOSENSITIZERS; MOLECULAR-DYNAMICS SIMULATION;
FREE-ENERGY; THERMODYNAMIC INTEGRATION; VOLTAMMETRIC BEHAVIOR;
AQUEOUS-SOLUTION; ANTICANCER DRUG; SOLID TUMORS; AB-INITIO; POTENTIALS
AB Tirapazamine is a radiosensitizer, whose biological activity is
associated to its electron affinity (EA). The electron affinity can be
divided in two main processes: Vertical and Adiabatic. In this work, we
calculated the EAs of nitroimidazoles (Fig. 2) using HF and DFT methods
and evaluated solvent effects (water and carbon tetrachloride) on EAs.
For water, we combined the Polarized Continuum Model (PCM) and free
energy perturbation (Finite Difference Thermodynamic Integration, FDTI)
methods. For carbon tetrachloride, we used the FDTI method. The values
of adiabatic EA obtained axe in agreement with experimental data
(deviations of 13.25 meV). The vertical EA were calculated according to
Cederbaum's Outer Valence Green Function (OVGF) method. This study,
which relays on theoretical aspects of free energy calculations on
charged molecules in solution, could be helpful in the rational design
of new and more selective bioreductive anticancer drugs.
C1 Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, Brazil.
Fed Univ Rio De Janeiro, Inst Quim, Dept Quim Organ, Grp Fis Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Da Cunha, EFF, Inst Militar Engn, Dept Quim, Praca Gen Tiburcio 80,
BR-22290270 Rio De Janeiro, Brazil.
CR ADAMS GE, 1976, RADIAT RES, V67, P550
ADAMS GE, 1979, INT J RADIAT BIOL, V35, P133
ADAMS GE, 1979, INT J RADIAT BIOL, V35, P151
AHYMED AA, 1997, SPECTROCHIM ACTA A, V53, P335
AQVIST J, 1990, J PHYS CHEM-US, V94, P8021
BACHS M, 1994, J COMPUT CHEM, V15, P446
BECKE AD, 1988, PHYS REV A, V38, P3098
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BRETT AMO, 1997, ELECTROANAL, V9, P1132
BROWN JM, 1993, BRIT J CANCER, V67, P1163
BROWN JM, 1999, CANCER RES, V59, P1391
CAMMI R, 1997, THEORETICAL ASPECTS
CANCES E, 1997, J CHEM PHYS, V107, P3032
CHEN GX, 1998, CHEM PHYS LETT, V290, P211
CHEN M, 1998, J CHROMATOGR A, V825, P37
COLIMAS C, 1999, CHEM PHYS, V240, P253
DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
DENNY WA, 2000, EXPERT OPIN INV DRUG, V9, P2889
FISCHER CF, 1987, PHYS REV LETT, V59, P2263
FRISCH MJ, 2001, GAUSSIAN INC PITTSB
FUCHS T, 2001, J CHEM CRYSTALLOGR, V31, P387
GUIMARAES CRW, 2002, J PHYS CHEM B, V106, P466
HAY MP, 2003, BR J MED CHEM, V46, P169
HOHENBERG P, 1964, PHYS REV, V136, B864
HORIS H, 1994, ADV ENV SCI TECHNOLO
JARGER R, 2001, J MOL GRAPH MODEL, V13, P89
JOHNSON BG, 1993, J CHEM PHYS, V98, P5612
KASAI S, 2001, BIOORGAN MED CHEM, V9, P453
KAZANSKY V, 2003, PHYS CHEM CHEM PHYS, V5, P31
KELSON AB, 1998, ANTI-CANCER DRUG DES, V13, P575
KING G, 1989, J CHEM PHYS, V91, P3647
KOHN W, 1965, PHYS REV, V140, A1133
KOLLMAN P, 1993, CHEM REV, V93, P2395
LASCALEA MA, 1999, J BRAZIL CHEM SOC, V10, P127
LASCALEA MA, 1999, QUIM NOVA, V22, P417
LEE WW, 1991, 9104028, WO
LISTER SG, 1992, INT J QUANTUM CHEM, V41, P293
LISTER SG, 1997, INT QUANTUM CHEM, V59, P135
LLOYD RV, 1991, MOL PHARMACOL, V40, P440
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
MEZEI M, 1987, J CHEM PHYS, V86, P7084
MIERTUS S, 1981, CHEM PHYS, V55, P117
MOTTANETO DJ, 1992, INT J QUANTUM CHEM Q, V44, P743
ORTIZ JV, 1988, J CHEM PHYS, V89, P6348
ORZCO M, 1994, CHEM PHYS, V182, P237
POSAKONY JJ, 1999, CAN J CHEM, V77, P182
PRAMANN A, 2001, CHEM PHYS LETT, V343, P99
PRESS WH, 1986, NUMERICAL RECIPES AR
RAMALHO TC, 2003, INT J QUANTUM CHEM, V95, P267
REYNOLDS CA, 1988, J CHEM SOC CHEM COMM, P1434
REYNOLDS CA, 1990, J AM CHEM SOC, V112, P7545
SINGH UC, 1984, J COMPUT CHEM, V5, P129
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
TEICHER BA, 1994, CANCER METAST REV, V13, P139
TOMASI J, 1994, CHEM REV, V94, P2027
TOMASI J, 1999, J MOL STRUC-THEOCHEM, V464, P211
TOMIDA A, 1999, ANTI-CANCER DRUG DES, V14, P169
VIODE C, 1999, BIOCHEM PHARMACOL, V57, P549
VONNIESSEN W, 1984, COMPUT PHYS REP, V1, P57
WARDMAN P, 1989, J PHYS CHEM REF DATA, V18, P1637
WARSHEL A, 1985, CHEM PHYS LETT, V121, P124
WYMORE T, 1999, BIOPHYS J 2, V76, A57
YUXIANQ B, 1998, J MOL STRUCT THEOCHE, V422, P219
NR 64
TC 4
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 912805, SINGAPORE
SN 0219-6336
J9 J THEOR COMPUT CHEM
JI J. Theor. Comput. Chem.
PD MAR
PY 2004
VL 3
IS 1
BP 1
EP 13
PG 13
SC Chemistry, Multidisciplinary
GA 820UD
UT ISI:000221414000001
ER
PT J
AU Ramalho, TC
da Cunha, EFF
de Alencastro, RB
TI A density functional study on the complexation of ethambutol with
divalent cations
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE ethambutol-metal complexes; mycobacterium tuberculosis; DFT
ID POLARIZABLE CONTINUUM MODEL; AB-INITIO; MYCOBACTERIUM-TUBERCULOSIS;
ENERGY; METAL; ARABINOGALACTAN; APPROXIMATION; SMEGMATIS; IRON
AB The influence of non-bonded interactions on the formation of ethambutol
(EMB) complexes with divalent cations was studied by DFT
(B3LYP/6-311++G**). An analysis of the natural bond order provided a
possible explanation for the difference in stability on (S, S), (R, R)
and (meso) EMB complexes as well as an evaluation of the structural and
electronic effects, applying non-bonded interactions. Due to
n(O7)/sigma*(C3-H) interactions, Gibbs energies can be rationalized in
terms of the stabilization of the complexes. Our results are in
agreement with experimental studies which show that the (S,
S)-configuration of EMB complexes is essential for activity against
Mycobacterium tuberculosis. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Lab Fisicoquim Organ, BR-21949900 Rio De Janeiro, Brazil.
Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, Brazil.
RP de Alencastro, RB, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ,
Lab Fisicoquim Organ, Ilha Fundao,CT,Bloco A,Sala 609, BR-21949900 Rio
De Janeiro, Brazil.
EM bicca@iq.ufrj.br
CR ARMITAGE IM, 1976, J AM CHEM SOC, V98, P5710
BARONE V, 1998, J COMPUT CHEM, V19, P404
BARREIRO EJ, 2000, J MOL STRUC-THEOCHEM, V532, P11
BECKE AD, 1988, PHYS REV A, V38, P3098
BHATTACHARYA RG, 1990, INDIAN J CHEM A, V29, P986
BLANCHARD JS, 1996, ANNU REV BIOCHEM, V65, P215
BURDA JV, 1996, J PHYS CHEM-US, V100, P7250
CAMMI R, 1997, THEORETICAL ASPECTS
CANCES E, 1997, J CHEM PHYS, V107, P3032
CAROLINE P, 1996, J PHYS CHEM-US, V100, P17797
CHO SG, 2000, J MOL STRUC-THEOCHEM, V532, P279
COMBA P, 2003, COORDIN CHEM REV, V238, P9
COSSI M, 1998, CHEM PHYS LETT, V286, P253
DAMOTTANETO DJ, 1992, INT J QUANTUM CHEM Q, V19, P225
DESSEN A, 1995, SCIENCE, V267, P1638
ELTAHER S, 2001, INT J QUANTUM CHEM, V82, P242
ESCUYER VE, 2001, J BIOL CHEM, V276, P48854
FRISCH MJ, 2001, GAUSSIAN
GIANNINI G, 1991, INORG CHEM, V30, P2853
GOBIN J, 1996, J EXP MED, V183, P1527
GURUROW TN, 1981, J AM CHEM SOC, V103, P477
HAUSLER H, 2001, BIOORG MED CHEM LETT, V11, P1679
HOOPS SC, 1991, J AM CHEM SOC, V113, P8262
JACKSON TA, 2002, J AM CHEM SOC, V124, P10833
KOLLMAN P, 1993, CHEM REV, V93, P2395
KOZAK SF, 1998, DIAGN MICR INFEC DIS, V30, P83
LOW BW, 1959, J AM CHEM SOC, V81, P4412
MADDRY JA, 1995, CHEMOTHERAPY, V106
MARCUS RA, 1988, CHEM REV, V88, P1492
PERDEW JP, 1986, PHYS REV B, V33, P8822
RAMALHO TC, 2001, J MOL STRUCT THEOCHE, V580, P217
RAMALHO TC, 2003, INT J QUANTUM CHEM, V95, P267
RAMALHO TC, 2003, P 12 S BRAS QUIM TEO
RAMASUBBU N, 1987, PHOSPHORUS SULFUR, V31, P221
SALZNER U, 1993, J AM CHEM SOC, V115, P10231
SPONER J, 1997, CHEM PHYS LETT, V267, P263
TAKAYAMA K, 1989, ANTIMICROB AGENTS CH, V33, P1493
TOMASI J, 1999, J MOL STRUC-THEOCHEM, V464, P211
WANG P, 1991, J AM CHEM SOC, V113, P55
NR 39
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAY 14
PY 2004
VL 676
IS 1-3
BP 149
EP 153
PG 5
SC Chemistry, Physical
GA 819YB
UT ISI:000221351100023
ER
PT J
AU Jalbout, AF
Basso, EA
Pontes, RM
Das, D
TI Hyperconjugative interactions in vinylic systems: the problem of the
barrier to methyl rotation in acetone
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE hyperconjugation; acetone; rotational barrier; natural bond orbital
ID SET MODEL CHEMISTRY; INTERNAL-ROTATION; ALIPHATIC-ALDEHYDES; TORSIONAL
SPECTRA; AB-INITIO; ENERGIES; MOLECULES; KETONES; ROTORS; ETHANE
AB The origin of the barrier to methyl rotation in acetone has been
studied through natural bond orbital theory. The analysis is divided in
two parts, one involving the stability of bonds and lone pairs and
other involving hyperconjugative donor-acceptor interactions. In the
first part, we observed that the carbon-carbon bond of the rotor is
destabilized upon rotation, and it represents the largest contribution
to the barrier among bond energy and lone pair components, in
accordance to studies of similar molecules. In addition, lone pairs
were found to play an important role. The analysis of hyperconjugation
effects showed that interactions involving the out-of-plane sigma CH
orbitals and sigma and pi CO orbitals contribute to increase the
rotational barrier, while analogous interactions involving the in-plane
CH bond are either null or antibarrier forming. By excluding the
mentioned donor-acceptor interactions during geometry optimization, it
was possible to estimate their influence on bond and lone pair
stabilities. From this analysis, it was observed that the
destabilization of bonds and lone pairs upon rotation is determined by
some of the considered hyperconjugative interactions, which led us to
conclude that the latter are the primary source of the rotational
barrier. Finally, a simple set of canonical structures is proposed to
describe this effect. The model showed to be useful in the qualitative
understanding of the rotational barrier in similar systems and even of
conformational preferences. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Estadual Maringa, Dept Quim, BR-87020900 Maringa, Parana, Brazil.
Univ New Orleans, Dept Chem, New Orleans, LA 70148 USA.
Dillard Univ, Dept Phys, New Orleans, LA 70112 USA.
RP Basso, EA, Univ Estadual Maringa, Dept Quim, Av Colombo 5790,
BR-87020900 Maringa, Parana, Brazil.
EM eabasso@uem.br
CR ALLEN LC, 1971, J AM CHEM SOC, V93, P6373
ALLINGER NL, 1991, J AM CHEM SOC, V113, P4505
BELL S, 2000, J PHYS CHEM A, V104, P514
BERRY RJ, 1995, J PHYS CHEM-US, V99, P10511
CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
COOTE ML, 2002, J PHYS CHEM A, V106, P12124
COSSEBARBI A, 1978, J MOL STRUCT, V49, P181
CURTISS LA, 1991, J CHEM PHYS, V94, P7221
DALE J, 1966, TETRAHEDRON, V22, P3373
DURIG JR, 1976, J MOL SPECTROSC, V62, P159
FLETCHER R, 1963, COMPUT J, V6, P163
FOSTER JP, 1980, J AM CHEM SOC, V102, P7211
FRISCH MJ, 2001, GAUSSIAN 98 REVISION
GLENDENING ED, 1995, NBO 3 0 PROGRAM MANU
GOODMAN L, 1996, J PHYS CHEM-US, V100, P2770
GOODMAN L, 1999, ACCOUNTS CHEM RES, V32, P983
GRONER P, 1987, J CHEM PHYS, V86, P565
GUIRGIS GA, 1998, SPECTROCHIM ACTA A, V54, P123
GUO D, 1996, J PHYS CHEM-US, V100, P12540
HEHRE WJ, 1976, J AM CHEM SOC, V98, P664
HINDERAKER MP, 2003, PROTEIN SCI, V12, P1188
JORGENSEN WL, 1971, J AM CHEM SOC, V93, P568
KARABATSOS GJ, 1965, J AM CHEM SOC, V87, P2864
LOWE JP, 1970, J AM CHEM SOC, V92, P3799
LU KT, 1995, J CHEM PHYS, V102, P6787
MONTGOMERY JA, 1994, J CHEM PHYS, V101, P5900
NYDEN MR, 1981, J CHEM PHYS, V75, P1843
OZKABAK AG, 1990, J AM CHEM SOC, V112, P7854
OZKABAK AG, 1991, CHEM PHYS LETT, V176, P19
PETERSSON GA, 1991, J CHEM PHYS, V94, P6081
POPHRISTIC V, 2001, NATURE, V411, P565
REED AE, 1985, J CHEM PHYS, V83, P1736
REED AE, 1988, CHEM REV, V88, P899
REED AE, 1991, ISRAEL J CHEM, V31, P277
SMEYERS YG, 1984, J MOL STRUCT THEOCHE, V16, P3
SMEYERS YG, 1993, J CHEM PHYS, V98, P2754
SWALEN JD, 1959, J CHEM PHYS, V31, P1562
WEINHOLD F, 1999, J CHEM EDUC, V76, P1141
WEINHOLD F, 2001, CHEM ED RES PRACT EU, V2, P91
WEINHOLD F, 2001, NATURE, V411, P539
WIBERG KB, 1995, J AM CHEM SOC, V117, P2201
NR 41
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAY 31
PY 2004
VL 677
IS 1-3
BP 167
EP 171
PG 5
SC Chemistry, Physical
GA 820WR
UT ISI:000221420900024
ER
PT J
AU Longo, E
Orhan, E
Pontes, FM
Pinheiro, CD
Leite, ER
Varela, JA
Pizani, PS
Boschi, TM
Lanciotti, F
Beltran, A
Andres, J
TI Density functional theory calculation of the electronic structure of
Ba0.5Sr0.5TiO3: Photoluminescent properties and structural disorder
SO PHYSICAL REVIEW B
LA English
DT Article
ID THIN-FILM; ABO(3) PEROVSKITES; OPTICAL-PROPERTIES; LUMINESCENCE;
BATIO3; SRTIO3; MICROSTRUCTURE; ABSORPTION; TITANATE
AB First-principles quantum-mechanical techniques, based on density
functional theory (B3LYP level) were employed to study the electronic
structure of ordered and deformed asymmetric models for Ba0.5Sr0.5TiO3.
Electronic properties are analyzed and the relevance of the present
theoretical and experimental results on the photoluminescence behavior
is discussed. The presence of localized electronic levels in the band
gap, due to the symmetry break, would be responsible for the visible
photoluminescence of the amorphous state at room temperature. Thin
films were synthesized following a soft chemical processing. Their
structure was confirmed by x-ray data and the corresponding
photoluminescence properties measured.
C1 Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Estadual Paulista, Inst Quim, BR-14801907 Araraquara, SP, Brazil.
Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
RP Longo, E, Univ Fed Sao Carlos, Dept Quim, Caixa Postal 676, BR-13565905
Sao Carlos, SP, Brazil.
EM liec@dq.ufscar.br
CR BANIECKI JD, 1999, J EUR CERAM SOC, V19, P1457
BARBOSA GA, 1978, J OPT SOC AM, V68, P610
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BERGLUND CN, 1967, PHYS REV, V164, P790
BOUMA B, 1995, J PHYS CHEM SOLIDS, V56, P261
CARDONA M, 1965, PHYS REV A, V140, P651
CHO WS, 1998, J ALLOY COMPD, V268, P78
DIEN E, 1999, J EUR CERAM SOC, V19, P1349
EDEN S, 1999, RADIAT EFF DEFECT S, V149, P107
EGLITIS RI, 2002, EUR PHYS J B, V27, P483
EGLITIS RI, 2002, J PHYS-CONDENS MAT, V14, P3735
GHOSEZ P, 1998, PHYS REV B, V58, P6224
HEIFETS E, 2001, PHYS REV B, V64
KOKALJ A, 1999, J MOL GRAPH MODEL, V17, P176
LEE C, 1988, PHYS REV B, V37, P785
LEITE ER, 2000, ADV MATER OPT ELECTR, V10, P235
LEITE ER, 2002, APPL PHYS A-MATER, V74, P529
LEONELLI R, 1985, SOLID STATE COMMUN, V54, P505
MENG JF, 1995, PHYS LETT A, V205, P72
MO SD, 1999, PHYS REV B, V60, P2416
MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
PINTO H, 2002, PHYS REV B, V65
PIZANI PS, 2000, APPL PHYS LETT, V77, P824
PIZANI PS, 2002, APPL PHYS LETT, V81, P253
PONTES FM, 2000, ADV MATER OPT ELECTR, V10, P81
PONTES FM, 2000, J MATER RES, V15, P1176
PONTES FM, 2002, J APPL PHYS, V91, P5972
PONTES FM, 2002, MATER CHEM PHYS, V77, P598
SAHA S, 2000, PHYS REV B, V62, P8828
SAUNDERS VR, 1998, CRYSTAL98 USERS MANU
SHUVAEVA V, 2000, PHYS REV B, V62, P2969
WEMPLE SH, 1970, PHYS REV B, V2, P2679
YUZYUK YI, 2002, PHYS REV B, V66
ZHU W, 2000, SENSOR ACTUAT B-CHEM, V65, P366
NR 34
TC 12
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2004
VL 69
IS 12
AR 125115
DI ARTN 125115
PG 7
SC Physics, Condensed Matter
GA 818QG
UT ISI:000221259000041
ER
PT J
AU da Silva, EZ
Novaes, FD
da Silva, AJR
Fazzio, A
TI Theoretical study of the formation, evolution, and breaking of gold
nanowires
SO PHYSICAL REVIEW B
LA English
DT Article
ID QUANTIZED CONDUCTANCE; LARGE SYSTEMS; ELECTRON-GAS; ENERGY;
PSEUDOPOTENTIALS; OSCILLATIONS; METALS; WIRES; ATOMS
AB Real time imaging experiments with metal nanowires (NWs), in particular
gold under stress, that show their formation, evolution, and breaking,
were obtained with high resolution electron microscopy. In order to
understand these results, we use density functional theory (DFT) based
methods to simulate the evolution of Au NWs. First we use a
tight-binding molecular dynamics (TBMD) method to understand the
mechanisms of formation of very thin gold NWs. We present realistic
simulations for the breaking of these NWs, whose main features are very
similar to the experimental results. We show how defects lead to the
formation of one-atom constrictions in the Au NW, which evolves into a
one-atom-thick necklace chain. Similarly to the experimental results,
we obtain that these necklaces can get as long as five-atoms from apex
to apex. Before breaking, we obtain relatively large Au-Au bond
distances, of the order of 3.0-3.1 Angstrom. A further pull of the wire
causes a sudden increase of one of the bond distances, indicating the
breaking of the NW. To get some more insight into the electronic
structure aspects of this problem, we considered several of our
tight-binding structures before breaking and studied them in detail
using an ab initio method based on the DFT. By pulling the wire
quasi-statically in this case, we also observed the breaking of the
wire at similar distances as in the TBMD. This result was independent
of the exchange-correlation potential used-either the local density
approximation (LDA) or the generalized gradient approximation (GGA).
The pulling force before rupture was obtained as 2.4 nN for the LDA,
and 1.9 nN for the GGA. Finally, we also present a detailed analysis of
the electronic structure properties for the Au neck atoms, such as the
density of states and charge densities, for some configurations before
the rupture.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP da Silva, EZ, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
BR-13083970 Campinas, SP, Brazil.
EM zacarias@ifi.unicamp.br
ajrsilva@if.usp.br
fazzio@if.usp.br
CR AGRAIT N, 1993, PHYS REV B, V47
ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
BAHN SR, 2002, PHYS REV B, V66
BRANDBYGE M, 1995, PHYS REV B, V52, P8499
DASILVA EZ, IN PRESS COMPUT MAT
DASILVA EZ, 2001, PHYS REV LETT, V87
GIMZEWSKI JK, 1987, PHYSICA C, V38, P1284
GULSEREN O, 1998, PHYS REV LETT, V80, P3775
HAKKINEN H, 1999, J PHYS CHEM B, V103, P8814
HAMMER B, 1999, PHYS REV B, V59, P7413
HEURICH J, 2002, PHYS REV LETT, V88
HOHENBERG P, 1964, PHYS REV, V136, B864
IIJIMA S, 1991, NATURE, V354, P56
KIRCHHOFF F, 2001, PHYS REV B, V63
KOHN W, 1965, PHYS REV, V140, A1133
KONDO Y, 1997, PHYS REV LETT, V79, P3455
KONDO Y, 2000, SCIENCE, V289, P606
KRESSE G, 1993, PHYS REV B, V47, R558
KRESSE G, 1996, PHYS REV B, V54, P11169
KRUGER D, 2002, PHYS REV LETT, V89
LANDMAN U, 1990, SCIENCE, V248, P454
LEGOAS SB, 2002, PHYS REV LETT, V88
MEHL MJ, 1996, PHYS REV B, V54, P4519
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
MORELAND J, 1992, PHYSICA C, V191, P485
MULLER CJ, 1992, PHYS REV LETT, V69, P140
NOVAES FD, 2003, PHYS REV LETT, V90
OHNISHI H, 1998, NATURE, V395, P780
ORDEJON P, 1996, PHYS REV B, V53
OSHIMA Y, 2002, PHYS REV B, V65
PARK H, 2000, NATURE, V407, P57
PERDEW JP, 1992, PHYS REV B, V45, P13244
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
REICHERT J, 2002, PHYS REV LETT, V88
RIBEIRO FJ, 2003, PHYS REV B, V68
RODRIGUES V, 2000, PHYS REV LETT, V85, P4124
RODRIGUES V, 2001, PHYS REV B, V63
RUBIOBOLLINGER G, 2001, PHYS REV LETT, V87
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANCHEZPORTAL D, 1999, PHYS REV LETT, V83, P3884
SERENA PA, 1997, NANOWIRES, V340
SKORODUMOVA NV, 2003, PHYS REV B, V67
TAKAI Y, 2001, PHYS REV LETT, V87
TORRES JA, 1999, SURF SCI LETT, V83, P441
TOSATTI E, 2001, SCIENCE, V291, P288
TROULLIER N, 1991, PHYS REV B, V43, P1993
VANDERBILT D, 1990, PHYS REV B, V41, P7892
WEBB RA, 1985, PHYS REV LETT, V54, P2696
WIESENDANGER R, 1994, SCANNING PROBE MICRO
YANSON AI, 1998, NATURE, V395, P783
NR 50
TC 14
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR
PY 2004
VL 69
IS 11
AR 115411
DI ARTN 115411
PG 11
SC Physics, Condensed Matter
GA 812BC
UT ISI:000220814000125
ER
PT J
AU Shimizu, K
Chaimovich, H
Farah, JPS
Dias, LG
Bostick, DL
TI Calculation of the dipole moment for polypeptides using the generalized
born-electronegativity equalization method: Results in vacuum and
continuum-dielectric solvent
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID INITIO QUANTUM-CHEMISTRY; POLARIZABLE FORCE-FIELD; ATOMIC CHARGES;
FLUCTUATING CHARGE; MODEL; SOLVATION; PARAMETERIZATION; DISTRIBUTIONS;
POTENTIALS; MOLECULES
AB The electronegativity equalization methodology, EEM, is frequently used
to calculate the charge distribution and reactivity index (e.g., local
softness and hardness, condensed Fukui function) of molecules. However,
recent work (Chelli, R. et al., J. Chem. Phys. 1999, 111, 8569) has
shown a serious shortcoming of EEM in the prediction of the
polarizability for large molecules. In this paper, our goal is to show
that we can obtain a reliable dipole moment for polypeptides in vacuum
and continuum-dielectric solvent using the constrained charge
approximation and the generalized Born-electronegativity equalization
method. Different EEM parameterizations were tested and compared to the
expected values of the dipole moment vector operator as calculated at
the ab initio B3LYP/6-311G(d,p) level. One EEM parameterization
(Bakowies, D., Thiel, W., J. Comput. Chem. 1996, 17, 87) when used with
the constrained charge approximation and the generalized
Born-electronegativity equalization method was comparable to the CM1
charge model (Storer et al., J. Comput.-Aided Mol. Des. 1995, 9, 87) in
the prediction of the dipole moment vector in vacuum and
continuum-dielectric solvent, but was calculated with a much greater
computational efficiency.
C1 Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA.
Univ Sao Paulo, Inst Chem, Dept Chem, Sao Paulo, SP, Brazil.
Univ Sao Paulo, Inst Chem, Dept Biochem, Sao Paulo, SP, Brazil.
Univ N Carolina, Dept Phys, Chapel Hill, NC 27599 USA.
Univ N Carolina, Program Mol & Cell Biophys, Chapel Hill, NC 27599 USA.
RP Dias, LG, Univ N Carolina, Dept Chem, Venable Hall CB 3290, Chapel
Hill, NC 27599 USA.
EM lgdias@email.unc.edu
CR BAKOWIES D, 1996, J COMPUT CHEM, V17, P87
BANKS JL, 1999, J CHEM PHYS, V110, P741
BASHFORD D, 2000, ANNU REV PHYS CHEM, V51, P129
BONDI A, 1964, J PHYS CHEM-US, V68, P441
BOTTCHER CJF, 1952, THEORY ELECT POLARIZ
CHELLI R, 1999, J CHEM PHYS, V111, P8569
CHELLI R, 2002, J CHEM PHYS, V117, P9175
CHO KH, 2001, J PHYS CHEM B, V105, P3624
CONG Y, 2000, CHEM PHYS LETT, V316, P324
CRAMER CJ, 1999, CHEM REV, V99, P2161
DEPPMEIER BJ, 1999, MACSPARTAN PRO VL 02
DIAS LG, 2002, CHEM PHYS, V282, P237
FRISCH MJ, 2003, GAUSSIAN 03 REVISION
GASTEIGER J, 1980, TETRAHEDRON, V36, P3219
GHOSH A, 1998, J PHYS CHEM B, V102, P10983
HAWKINS GD, 1999, AMSOL VERSION 6 6
JORGENSEN ML, 1996, J AN CHEM SOC, V113, P11225
KAMINSKI GA, 2002, J COMPUT CHEM, V23, P1515
LIPINSKI J, 1996, CHEM PHYS LETT, V262, P449
MENEGON G, 2002, PHYS CHEM CHEM PHYS, V4, P5933
MORTIER WJ, 1986, J AM CHEM SOC, V108, P4315
NILAR SH, 1996, THEOCHEM-J MOL STRUC, V363, P97
PASCUALAHUIR JL, 1994, J COMPUT CHEM, V15, P1127
PEARSON RG, 1986, J AM CHEM SOC, V108, P6109
RIBEIRO MCC, 2000, J CHEM PHYS, V113, P4722
RICK SW, 1996, J AM CHEM SOC, V118, P672
SHARP K, 1992, J PHYS CHEM-US, V96, P3822
STERN HA, 1999, J PHYS CHEM B, V103, P4730
STORER JW, 1995, J COMPUT AID MOL DES, V9, P87
TOMASI J, 1994, CHEM REV, V94, P2027
YANG ZZ, 1997, J PHYS CHEM A, V101, P6315
YORK DM, 1996, J CHEM PHYS, V104, P159
NR 32
TC 3
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD APR 1
PY 2004
VL 108
IS 13
BP 4171
EP 4177
PG 7
SC Chemistry, Physical
GA 807TT
UT ISI:000220524500033
ER
PT J
AU Pliego, JR
Riveros, JM
TI Free energy profile of the reaction between the hydroxide ion and ethyl
acetate in aqueous and dimethyl sulfoxide solutions: A theoretical
analysis of the changes induced by the solvent on the different
reaction pathways
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; CARBOXYLIC-ACID ESTERS; GAS-PHASE
REACTION; BASE-CATALYZED-HYDROLYSIS; CARBONYL OXYGEN EXCHANGE;
SOLVATION FREE-ENERGY; ALKALINE-HYDROLYSIS; AB-INITIO; METHYL FORMATE;
REACTION-MECHANISMS
AB An extensive analysis of the free energy profile for the reaction of
the hydroxide ion with ethyl acetate in both aqueous and dimethyl
sulfoxide (DMSO) solutions has been carried out using ab initio
calculations and including the solvent effect by the polarizable
continuum model. Different reaction pathways were investigated, such as
the usual B(AC)2 mechanism, the carbanion mechanism, the elimination
mechanism, and the S(N)2 mechanism. Our calculation agrees with the
view that in aqueous and DMSO solution basic hydrolysis occurs by the
B(AC)2 mechanism. In water, the predicted activation free energy value
is 17.6 kcal mol(-1), which is in very good agreement with the
experimental value of 18.8 kcal mol(-1). Using a new parametrization of
the polarizable continuum model adequate to describe anions and neutral
species in DMSO, the present study predicts a rate enhancement by a
factor of 435 in the reaction when going from water (protic solvent) to
DMSO (dipolar aprotic solvent). In this solvent, the activation free
energy is predicted to drop to 14.0 kcal mol(-1). Furthermore, our
results point out that the elimination mechanism is only 6.0 kcal
mol(-1) (DeltaG(Sol)(double dagger) = 20.0 kcal mol(-1)) less favorable
than the B(AC)2 mechanism in DMSO solution, and 8.4 kcal mol(-1) less
favorable in water. The S(N)2 and the carbanion mechanisms have
barriers above 30 kcal mol(-1) in water and DMSO and are thus highly
unfavorable. These results suggest the elimination mechanism can become
the dominant pathway in the basic hydrolysis of sterically crowded
esters at the carbonyl center.
C1 Univ Fed Santa Catarina, Dept Quim, CFM, BR-88040900 Florianopolis, SC, Brazil.
Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Pliego, JR, Univ Fed Santa Catarina, Dept Quim, CFM, BR-88040900
Florianopolis, SC, Brazil.
EM josef@qmc.ufsc.br
jmmigra@iq.usp.br
CR ALMERINDO GI, 2004, J PHYS CHEM A, V108, P166
BAKOWIES D, 1999, J AM CHEM SOC, V121, P5712
BARONE V, 1997, J CHEM PHYS, V107, P3210
BASAIF S, 1989, J AM CHEM SOC, V111, P2647
BENDER ML, 1956, J AM CHEM SOC, V78, P317
BENDER ML, 1958, J AM CHEM SOC, V80, P1044
BERNARDI F, 1993, J ORG CHEM, V58, P750
BORDWELL FG, 1988, ACCOUNTS CHEM RES, V21, P456
BRUICE TC, 1968, J AM CHEM SOC, V90, P7136
CANCES E, 1997, J CHEM PHYS, V107, P3032
CHANDRASEKHAR J, 2002, J PHYS CHEM B, V106, P8078
COSSI M, 1996, CHEM PHYS LETT, V255, P327
CUCCOVIA IM, 2000, J CHEM SOC PERK T 2, P1896
DEJAEGERE A, 1994, J CHEM SOC FARADAY T, V90, P1763
FRISCH MJ, 1994, GAUSSIAN 94
FUCHS R, 1974, J PHYS CHEM-US, V78, P1509
GUTHRIE JP, 1974, J AM CHEM SOC, V96, P3608
HABERFIELD P, 1972, J AM CHEM SOC, V94, P71
HAEFFNER F, 1999, J MOL STRUC-THEOCHEM, V459, P85
HILL TL, 1960, INTRO STAT THERMODYN
JENCKS WP, 1972, CHEM REV, V72, P705
JOHNSON SL, 1967, ADV PHYS ORG CHEM, V5, P237
JORGENSEN WL, 1987, ACS SYM SER, V353, P200
KAHN K, 2003, J PHYS CHEM B, V107, P6876
LINSTROM PJ, 2003, NIST CHEM WEBBOOK
LONGO RL, 2001, J BRAZIL CHEM SOC, V12, P52
LOPEZ X, 2003, J PHYS CHEM A, V107, P2304
MASSOVA I, 1999, J PHYS CHEM B, V103, P8628
MCMURRY J, 1976, ORG REACTIONS, V24, P187
MILLER WH, 1980, J CHEM PHYS, V72, P99
MUKHTAR TA, 2001, BIOCHEMISTRY-US, V40, P8877
OBRIEN JF, 1995, J PHYS CHEM-US, V99, P12759
PARKER AJ, 1969, CHEM REV, V69, P1
PENG Z, 1993, J AM CHEM SOC, V115, P9640
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
PLIEGO JR, 2001, CHEM-EUR J, V7, P169
PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
PLIEGO JR, 2002, CHEM PHYS LETT, V355, P543
PLIEGO JR, 2002, CHEM-EUR J, V8, P1945
PLIEGO JR, 2002, J PHYS CHEM A, V106, P371
PLIEGO JR, 2002, J PHYS CHEM A, V106, P7434
PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
PRANATA J, 1994, J PHYS CHEM-US, V98, P1180
REPIC O, 2001, ORG PROCESS RES DEV, V5, P519
ROBERTS DD, 1965, J ORG CHEM, V30, P3516
ROUX A, 1980, J SOLUTION CHEM, V9, P59
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SHAIN SA, 1968, J AM CHEM SOC, V90, P5848
SLEBOCKATILK H, 2002, CAN J CHEM, V80, P1343
SLEBOCKATILK H, 2003, J AM CHEM SOC, V125, P1851
SMITH MB, 2001, MARCHS ADV ORGANIC C
TANTILLO DJ, 1999, J ORG CHEM, V64, P3066
TOMASI J, 1994, CHEM REV, V94, P2027
TOMASI J, 1999, INT J QUANTUM CHEM, V75, P783
TOMASI J, 2002, PHYS CHEM CHEM PHYS, V4, P5697
WU ZJ, 2003, J AM CHEM SOC, V125, P3642
ZHAN CG, 2000, J AM CHEM SOC, V122, P1522
ZHAN CG, 2000, J AM CHEM SOC, V122, P2621
ZHAN CG, 2000, J PHYS CHEM A, V104, P7672
NR 60
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD APR 1
PY 2004
VL 108
IS 13
BP 2520
EP 2526
PG 7
SC Chemistry, Physical
GA 807TR
UT ISI:000220524300024
ER
PT J
AU Machado, AM
Masili, M
TI Variationally stable calculations for molecular systems:
Polarizabilities and two-photon ionization cross section for the
hydrogen molecule
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MATRIX-FLOQUET THEORY; INTENSE LASER FIELDS; MULTIPHOTON IONIZATION;
H-2 MOLECULE; DYNAMIC POLARIZABILITIES; DIPOLE POLARIZABILITIES;
OPTICAL-PROPERTIES; WAVE-FUNCTIONS; H-ATOM; HYPERPOLARIZABILITIES
AB The variationally stable method of Gao and Starace [B. Gao and A. F.
Starace, Phys. Rev. Lett. 61, 404 (1988); Phys. Rev. A 39, 4550 (1989)]
has been applied for the first time to the study of multiphoton
processes in molecular systems. The generalization in theory is
presented, as well as the calculation of properties such as the static
and dynamic polarizabilities of the hydrogen molecule and the
generalized two-photon ionization cross section. The Schwinger
variational iterative method [R. R. Lucchese and V. McKoy, Phys. Rev. A
21, 112 (1980)] has been applied in the achievement of the
photoelectron wave function, while a Hartree-Fock representation has
been used for the target. This research has been motivated by the
scarceness of ab initio calculations of molecular multiphoton
ionization cross sections in the literature. (C) 2004 American
Institute of Physics.
C1 Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
Ctr Univ Cent Paulista, BR-13563470 Sao Carlos, SP, Brazil.
RP Machado, AM, Univ Sao Paulo, Inst Fis Sao Carlos, Caixa Postal 369,
BR-13560970 Sao Carlos, SP, Brazil.
CR APALATEGUI A, 2002, J PHYS B-AT MOL OPT, V35, P1909
BERNS RM, 1981, MOL PHYS, V44, P1215
BISHOP DM, 1980, J CHEM PHYS, V72, P5125
BISHOP DM, 1987, PHYS REV A, V36, P2171
BISHOP DM, 1990, REV MOD PHYS, V62, P343
BONIN KD, 1994, INT J MOD PHYS B, V8, P3313
BURKE PG, 1991, J PHYS B ATOM MOL PH, V24, P761
BURKE PG, 2000, J PHYS B-AT MOL OPT, V33, P143
CAFFAREL M, 1993, PHYS REV A, V47, P3704
COLGAN J, 2001, J PHYS B-AT MOL OPT, V34, P2089
DALGARNO A, 1955, P ROY SOC LOND A MAT, V233, P70
FORD AL, 1973, PHYS REV A, V7, P418
GAO B, 1988, PHYS REV LETT, V61, P404
GAO B, 1989, PHYS REV A, V39, P4550
GAO B, 1990, J OPT SOC AM B, V7, P622
GIUSTISUZOR A, 1995, J PHYS B-AT MOL OPT, V28, P309
JASZUNSKI M, 1984, MOL PHYS, V52, P1209
JIANG TF, 1988, PHYS REV A, V38, P2347
KOBUS J, 2001, J PHYS B-AT MOL OPT, V34, P5127
KOLOS W, 1960, REV MOD PHYS, V32, P219
KOLOS W, 1967, J CHEM PHYS, V46, P1426
KULANDER KC, 1996, PHYS REV A, V53, P2562
LAMBROPOULOS P, 1998, PHYS REP, V305, P203
LANGHOFF PW, 1970, J CHEM PHYS, V52, P1435
LIU CR, 1992, PHYS REV A, V46, P5985
LUCCHESE RR, 1980, PHYS REV A, V21, P112
MACHADO LE, 1999, J CHEM PHYS, V110, P7228
MADSEN LB, 1998, J PHYS B-AT MOL OPT, V31, P87
MASILI M, 2000, PHYS REV A, V62
MASILI M, 2003, PHYS REV A, V68
MONZANI AL, 1999, PHYS REV A, V60, R21
PAN C, 1990, PHYS REV A, V41, P6271
PAPADOPOULOS MG, 1995, J CHEM PHYS, V102, P371
PLUMMER M, 1995, J PHYS B-AT MOL OPT, V28, P4073
PURVIS J, 1993, PHYS REV LETT, V71, P3943
REINSCH EA, 1985, J CHEM PHYS, V83, P5784
RYCHLEWSKI J, 1980, CHEM PHYS LETT, V73, P135
SAENZ A, 1999, J PHYS B-AT MOL OPT, V32, P5629
SAUER SPA, 1991, INT J QUANTUM CHEM, V39, P667
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SOBRINHO AA, 2001, J MOL STRUC-THEOCHEM, V539, P65
STARACE AF, 1987, PHYS REV A, V36, P1705
STASZEWSKA G, 2002, J MOL SPECTROSC, V212, P208
VANGISBERGEN SJA, 1998, PHYS REV A, V57, P2556
NR 44
TC 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD APR 22
PY 2004
VL 120
IS 16
BP 7505
EP 7511
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 810AA
UT ISI:000220676000032
ER
PT J
AU Costa, LAS
Rocha, WR
De Almeida, WB
Dos Santos, HF
TI The solvent effect on the aquation processes of the
cis-dichloro(ethylenediammine)platinum(II) using continuum solvation
models
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; ORGANIC-MOLECULES;
AB-INITIO; APPROXIMATION; DNA
AB The present Letter describes a systematic analysis of the solvent
effect on the hydrolysis process of an important cisplatin analogue
(cis-DEP). Self-consistent reaction field continuum models were used to
include the solvent effect at the HF, DFT and MP2 levels of theory. A
disagreement between the gas phase calculated (k(2) = 1.92 x 10(-11)
M-1 s(-1)) and experimental (k(2) = 4.4 x 10(-5) M-1 s(-1)) rate
constant for the second aquation reaction of cis-DEP was recently
reported by us. The value calculated in aqueous solution at the PCM-MP2
level was 2.87 x 10(-5) M-1 s(-1) in perfect accordance with
experiment. Calculations using spherical cavity SCRF model require
inclusion of high order multipole terms (up to octupole). (C) 2004
Elsevier B.V. All rights reserved.
C1 Univ Fed Juiz Fora, ICE, Dept Quim, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Minas Gerais, Dept Quim, ICEx, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
EPCAR, DEPENS, Dept Ensino Aeronaut, Comando Aeronaut, BR-36200000 Barbacena, MG, Brazil.
Univ Fed Pernambuco, CCEN, Dept Quim Fundamental, BR-50670901 Recife, PE, Brazil.
RP Dos Santos, HF, Univ Fed Juiz Fora, ICE, Dept Quim, NEQC, Campus Univ
Martelos, BR-36036330 Juiz De Fora, MG, Brazil.
EM helius@quimica.ufjf.br
CR BARONE V, 1997, J CHEM PHYS, V107, P3210
BONDI A, 1964, J PHYS CHEM-US, V68, P441
COLEY RF, 1973, INORG CHIM ACTA, V7, P573
CONNORS KA, 1990, CHEM KINETICS, P200
COSSI M, 1996, CHEM PHYS LETT, V255, P327
COSTA LAS, 2003, J CHEM PHYS, V118, P10584
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
FREY U, 1993, INORG CHEM, V32, P1333
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HAMBLEY TW, 2001, J CHEM SOC DALT 1007, P2711
HAY PJ, 1985, J CHEM PHYS, V82, P299
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
KIRKWOOD JG, 1938, J CHEM PHYS, V6, P506
MILLER SE, 1991, INORG CHIM ACTA, V190, P135
MUNK VP, 2003, INORG CHEM, V42, P3582
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
ORVILLETHOMAS WJ, 1972, INTERNAL ROTATION MO, P498
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1992, PHYS REV B, V46, P6671
RAYMOND E, 2002, MOL CANCER THER, V1, P227
WONG E, 1999, CHEM REV, V99, P2451
NR 21
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAR 21
PY 2004
VL 387
IS 1-3
BP 182
EP 187
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 804AV
UT ISI:000220272500032
ER
PT J
AU de Lazaro, S
Longo, E
Sambrano, JR
Beltran, A
TI Structural and electronic properties of PbTiO3 slabs: a DFT periodic
study
SO SURFACE SCIENCE
LA English
DT Article
DE lead; titanium oxide; density functional calculations; surface
electronic phenomena (work function; surface potential, surface states,
etc.); semiconducting surfaces
ID THIN-FILMS; VISIBLE PHOTOLUMINESCENCE; FERROELECTRIC MEMORIES;
PEROVSKITE TITANATES; SURFACE RELAXATION; ABO(3) PEROVSKITES;
FUNCTIONAL THEORY; DENSITY; BATIO3; BULK
AB Structural and electronic properties of the bulk and relaxed surfaces
(TiO2 and PbO terminated) of cubic PbTiO3 are investigated by means of
periodic quantum-mechanical calculations based on density functional
theory. It is observed that the difference in surface energies is small
and relaxations effects are most prominent for Ti and Ph surface atoms.
The electronic structure shows a splitting of the lowest conduction
bands for the TiO2 terminated surface and of the highest valence bands
for the PbO terminated slab. The calculated indirect band gap is: 3.18,
2.99 and 3.03 eV for bulk, TiO2 and PbO terminations, respectively. The
electron density maps show that the Ti-O bond has a partial covalent
character, whereas the Pb-O bonds present a very low covalency. (C)
2004 Elsevier B.V. All rights reserved.
C1 Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Estadual Paulista, Lab Simulacao Mol, BR-17033360 Bauru, SP, Brazil.
RP Sambrano, JR, Univ Jaume I, Dept Ciencies Expt, POB 6029, Castello
12080, Spain.
EM sambrano@fc.unesp.br
beltran@exp.uji.es
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
BELTRAN A, 2001, CHEM PHYS LETT, V338, P224
BELTRAN A, 2001, SURF SCI, V490, P116
BIRCH F, 1978, J GEOPHYS RES, V83, P1257
CHEN ZX, 2001, CHEM PHYS, V270, P253
CHEN ZX, 2001, J PHYS CHEM B, V105, P5766
CHEN ZX, 2002, J PHYS CHEM B, V106, P9986
CHENG C, 2000, PHYS REV B, V62, P10409
COHEN RE, 2000, J PHYS CHEM SOLIDS, V61, P139
COX PA, 1998, ELECT STRUCTURE CHEM
DOVESI R, 1998, CRYSTAL98 USERS MANU
DURAND P, 1975, THEOR CHIM ACTA, V38, P283
GARCIA A, 1996, PHYS REV B, V54, P3817
GLAZER AM, 1978, ACTA CRYSTALLOGR B, V34, P1065
GONIAKOWSKI J, 1996, PHYS REV B, V53, P957
HEIFETS E, 1999, SURF REV LETT, V6, P1215
HEIFETS E, 2000, SURF SCI, V462, P19
HEIFETS E, 2001, PHYS REV B, V64
HEIFETS E, 2002, SURF SCI, V513, P211
HU CH, 1998, ENCY COMPUTATIONAL C
KOKALJ A, 1999, J MOL GRAPH MODEL, V17, P176
KRMAR M, 2003, PHYS REV B, V68
LANCIOTTI F, 2002, APPL PHYS A-MATER, V74, P787
LEE C, 1988, PHYS REV B, V37, P785
LEE SY, 2001, J CRYST GROWTH, V226, P247
LEITE ER, 2001, APPL PHYS LETT, V78, P2148
MEYER B, 1999, FARADAY DISCUSS, V114, P395
MURALT P, 2000, J MICROMECH MICROENG, V10, P136
MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
NELDER JA, 1965, COMPUT J, V7, P308
PISANI C, 1988, HARTREEFOCK AB INITI
PIZANI PS, 2000, APPL PHYS LETT, V77, P824
PIZANI PS, 2002, APPL PHYS LETT, V81, P253
SANI A, 2002, J PHYS-CONDENS MAT, V14, P10601
SCHWARTZ RN, 1995, APPL PHYS LETT, V67, P1352
SCOTT JF, 1989, SCIENCE, V246, P1400
SCOTT JF, 1989, SCIENCE, V246, P1549
SCOTT JF, 1995, PHYS WORLD, V8, P46
SENSATO FR, 2002, SURF SCI, V511, P408
TSENG YK, 1998, APPL PHYS LETT, V72, P3285
TYBELL T, 1998, APPL PHYS LETT, V72, P1454
ZHAO Q, 2002, SURF COAT TECH, V160, P173
NR 42
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD MAR 10
PY 2004
VL 552
IS 1-3
BP 149
EP 159
PG 11
SC Chemistry, Physical
GA 801VI
UT ISI:000220123000019
ER
PT J
AU Scopel, WL
da Silva, AJR
Orellana, W
Fazzio, A
TI Comparative study of defect energetics in HfO2 and SiO2
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; THERMAL-STABILITY; THIN-FILMS;
MOLECULAR-DYNAMICS; METALS; SUBSTRATE; SI(100); HAFNIUM; OXIDES; ZRO2
AB We perform ab initio calculations, based on density functional theory,
for substitutional and vacancy defects in the monoclinic hafnium oxide
(m-HfO2) and alpha-quartz (SiO2). The neutral oxygen vacancies and
substitutional Si and Hf defects in HfO2 and SiO2, respectively, are
investigated. Our calculations show that, for a large range of Hf
chemical potential, Si substitutional defects are most likely to form
in HfO2, leading to the formation of a silicate layer at the HfO2/Si
interface. We also find that it is energetically more favorable to form
oxygen vacancies in SiO2 than in HfO2, which implies that
oxygen-deficient HfO2 grown on top of SiO2 will consume oxygen from the
SiO2. (C) 2004 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Scopel, WL, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
EM fazzio@if.usp.br
CR BASTOS KP, 2002, APPL PHYS LETT, V81, P1669
BINGGELI N, 1991, PHYS REV B, V44, P4771
BUSH BW, 2002, MAT RES B, V27, P206
CALLEGARI A, 2001, J APPL PHYS, V90, P6466
CHO M, 2002, APPL PHYS LETT, V81, P3630
CHO MH, 2002, APPL PHYS LETT, V81, P472
FOSTER AS, 2002, PHYS REV B, V65
FOSTER AS, 2002, PHYS REV LETT, V89
GUTOWSKI M, 2002, APPL PHYS LETT, V80, P1897
JEON TS, 2001, APPL PHYS LETT, V78, P368
KANG J, 2003, PHYS REV B, V68
KATO H, 2002, J APPL PHYS, V92, P1106
KRESSE G, 1993, PHYS REV B, V47, P558
KRESSE G, 1993, PHYS REV B, V48, P13115
KRESSE G, 1996, COMP MATER SCI, V6, P15
LEE JH, 2002, PHYS REV B, V66
MISA V, 2002, MRS BULL, V27, P212
MULLER DA, 1999, NATURE, V399, P758
ORELLANA W, 2001, PHYS REV LETT, V87
ORELLANA W, 2003, PHYS REV LETT, V90
PARK BK, 2002, APPL PHYS LETT, V80, P2368
PARK J, 2002, J ELECTROCHEM SOC, V149, G89
PERDEW JP, 1992, PHYS REV B, V46, P6671
VANDERBILT D, 1990, PHYS REV B, V41, P7892
WANG SJ, 2003, APPL PHYS LETT, V82, P2047
NR 25
TC 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD MAR 1
PY 2004
VL 84
IS 9
BP 1492
EP 1494
PG 3
SC Physics, Applied
GA 778WJ
UT ISI:000189264100020
ER
PT J
AU Silva, CHTP
Almeida, P
Taft, CA
TI Density functional and docking studies of retinoids for cancer treatment
SO JOURNAL OF MOLECULAR MODELING
LA English
DT Article
DE density functional; docking; cancer treatment
ID NUCLEAR RECEPTOR; AB-INITIO; ACID; GAMMA; SELECTIVITY; ANALOGS;
BINDING; ALPHA
AB The retinoic acid receptor (RAR) and retinoid X receptor (RXR) are
members of the nuclear receptor superfamily. The ligand-binding domain
contains the ligand-dependent activation function. The isotypes
RARalpha,beta and gamma are distinct pharmacological targets for
retinoids involved in the treatment of various cancers and skin
diseases. There is thus considerable interest in synthetic retinoids
with isotype selectivity and reduced side effects. In this work we have
focused on the retinoid acid receptor and three of its panagonists. We
have carried out density functional geometry optimizations at the
B3LYP/6-31G* level, computed two types of atomic charges and also
electrostatic potentials. A docking program was used to investigate the
interactions between the receptor and the three ligands. A
theoretically more potent inhibitor, which was obtained by modifying
one of the retinoic acids investigated, is proposed.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
Univ Sao Paulo, Inst Fis Sao Carlos, Sao Carlos, SP, Brazil.
Inst Ciencias Saude, Dept Ciencias Biointeracao, Lab Biotecnol & Ecol Microrganismos, Salvador, BA, Brazil.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150,
BR-22290180 Rio De Janeiro, Brazil.
EM taft@cbpf.br
CR *ACC, 2000, INS 2 US GUID VERS 2
ADAMS J, 1993, NEUROTOXICOL TERATOL, V15, P193
ALLENBY G, 1994, J BIOL CHEM, V269, P16689
ARISSAWA M, 2003, INT J QUANTUM CHEM, V93, P422
BLANEY FE, 1999, INT J QUANTUM CHEM, V73, P97
EWING TJA, 2001, J COMPUT AID MOL DES, V15, P411
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 2002, GAUSSIAN 98 REVISION
GUDAS LJ, 1994, J BIOL CHEM, V269, P15399
HIXSON EJ, 1978, TOXICOL APPL PHARM, V44, P29
KLAHOLZ BP, 2000, J MOL BIOL, V302, P155
KLAHOLZ BP, 2000, P NATL ACAD SCI USA, V97, P6322
LEVIN AA, 1992, NATURE, V355, P359
MANGELSDORF DJ, 1990, NATURE, V345, P224
MARTINS JBL, 1998, INT J QUANTUM CHEM, V69, P117
MARTINS JBL, 2002, INT J QUANTUM CHEM, V90, P575
MOON RC, 1994, RETINOIDS BIOL CHEM, P573
MUCCIO DD, 1996, J MED CHEM, V39, P3625
NAZDAN AM, 1995, REPORTS MED CHEM, V30, P119
PAVAO AC, 2001, J PHYS CHEM A, V105, P5
PETKOVICH M, 1987, NATURE, V330, P444
PONDER MS, 2001, J MOL STRUC-THEOCHEM, V549, P39
ROSEN J, 1995, J MED CHEM, V38, P4855
ZHANG XK, 1992, NATURE, V358, P587
NR 24
TC 5
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 0948-5023
J9 J MOL MODEL
JI J. Mol. Model.
PD FEB
PY 2004
VL 10
IS 1
BP 38
EP 43
PG 6
SC Chemistry, Multidisciplinary; Computer Science, Interdisciplinary
Applications; Biochemistry & Molecular Biology; Biophysics
GA 774RK
UT ISI:000188998200007
ER
PT J
AU Gracia, L
Andres, J
Safont, VS
Beltran, A
TI DFT study of the reaction between VO2+ and C2H6
SO ORGANOMETALLICS
LA English
DT Review
ID POTENTIAL-ENERGY SURFACES; OXIDE CLUSTER CATIONS; GAS-PHASE CHEMISTRY;
ELECTRONIC-STRUCTURE ASPECTS; C-H BOND; SPIN-FORBIDDEN PROCESSES;
VANADIUM-OXIDE; AB-INITIO; TRANSITION-STATES; CROSSING POINTS
AB The molecular mechanisms of the reaction VO2+ ((1)A(1)/(3)A'') + C2H6
((1)A(g)) to yield V(OH)(2)(+) ((1)Sigma(+)/(3)Sigma(-)) + C2H4
((1)A(g)) and/or VO+ ((1)Delta/(3)Sigma) + H2O ((1)A(1)) + C2H4 (Ag-1)
have been investigated with density functional theory (DFT) at the
B3LYP/6-311G(2d,p) level. Calculations including geometry optimization,
vibrational analysis, and Gibbs free energy for the stationary points
on the reactive potential energy surfaces at both the singlet (s) and
first excited triplet (t) electronic states have been carried out. The
most thermodynamically and kinetically favorable pathway is the
formation of t-V(OH)(2)(+) + C2H4 along a four-step molecular mechanism
(insertion, two consecutive hydrogen transfers, and elimination). A
crossing point between s and t electronic states has been
characterized. A comparison with previous works on VO2+ + C2H4 (Gracia
et al. J. Phys. Chem. A 2003, 107, 3107-3120) and VO2+ + C3H8 (Engeser
et al. Organometallics 2003, 22, 3933-3943) reactions allows us a
rationalization of the different reactivity patterns. The catalytic
role of water molecules in the tautomerization process between hydrated
oxide cation, VO(H2O)(+,) and dihydroxide cation, V(OH)(2)(+), is
achieved by a water-assisted mechanism.
C1 Univ Jaume I, Dept Ciencias Expt, Castello 12080, Spain.
Univ Estadual Paulista, Lab Simulacao Mol, BR-17033360 Bauru, SP, Brazil.
RP Andres, J, Univ Jaume I, Dept Ciencias Expt, Box 224, Castello 12080,
Spain.
EM andres@exp.uji.es
CR ANGLADA JM, 1996, J AM CHEM SOC, V118, P4636
ANGLADA JM, 1997, J COMPUT CHEM, V18, P992
ARGYLE MD, 2002, J PHYS CHEM B, V106, P5421
ARMENTROUT PB, 1991, SCIENCE, V251, P175
ASCHI M, 1998, CHEM COMMUN 0307, P531
ASCHI M, 1999, J CHEM SOC PERK JUN, P1059
ASCHI M, 2000, INT J MASS SPECTROM, V201, P151
ASCHI M, 2001, CHEM PHYS, V265, P251
ASMIS KR, 2002, PHYS CHEM CHEM PHYS, V4, P1101
BARRIENTOS C, 1999, CHEM PHYS LETT, V306, P168
BEARPARK MJ, 1994, CHEM PHYS LETT, V223, P269
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BELL RC, 1998, J PHYS CHEM A, V102, P1733
BELL RC, 1998, J PHYS CHEM A, V102, P8293
BELL RC, 1999, J CLUST SCI, V10, P509
BELL RC, 1999, J PHYS CHEM A, V103, P1585
BELL RC, 1999, J PHYS CHEM A, V103, P2992
BELL RC, 2001, J CHEM PHYS, V114, P798
BOHME DK, 1992, INT J MASS SPECTROM, V115, P95
BOTTOMLEY F, 1988, ADV ORGANOMET CHEM, V28, P339
CALATAYUD M, 2001, CHEM PHYS LETT, V333, P493
CALATAYUD M, 2001, J PHYS CHEM A, V105, P9760
CALATAYUD M, 2001, THEOR CHEM ACC, V105, P299
CARTER EA, 1988, J PHYS CHEM-US, V92, P5679
CASSADY CJ, 1992, ORGANOMETALLICS, V11, P2367
CHANG AHH, 1993, J CHEM PHYS, V99, P6824
CORNEHL HH, 1997, CHEM-EUR J, V3, P1083
CUI Q, 1997, CHEM PHYS LETT, V272, P319
DANOVICH D, 1997, J AM CHEM SOC, V119, P1773
DAVIDSON ER, 2000, CHEM REV, V100, P351
DUNN KM, 1996, J PHYS CHEM-US, V100, P123
ELLER K, 1991, CHEM REV, V91, P1121
ENGESER M, 2003, ORGANOMETALLICS, V22, P3933
ESCRIBANO VS, 1990, J PHYS CHEM-US, V94, P8945
FARAZDEL A, 1991, J COMPUT CHEM, V12, P276
FIEDLER A, 1994, J AM CHEM SOC, V116, P10734
FIEDLER A, 1996, J AM CHEM SOC, V118, P9941
FIELICKE A, 2002, PHYS CHEM CHEM PHYS, V4, P2621
FOLTIN M, 1999, J CHEM PHYS, V111, P9577
FRISCH MJ, 1998, GAUSSIAN98 REVISION
FUKUI K, 1970, J PHYS CHEM-US, V74, P4161
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
GRACIA L, 2003, J PHYS CHEM A, V107, P3107
GREEN JC, 2002, J CHEM SOC DALTON, P1861
HARVEY JN, 1998, THEOR CHEM ACC, V99, P95
HARVEY JN, 1999, INT J MASS SPECTROM, V182, P85
HARVEY JN, 1999, PHYS CHEM CHEM PHYS, V1, P5555
HARVEY JN, 2000, J AM CHEM SOC, V122, P12401
HARVEY NH, 2000, COMPUTATIONAL ORGANO, P291
HEINEMANN C, 1996, INORG CHEM, V35, P2463
HENRICH VE, 1994, SURFACE SCI METAL OX, V45
HESS JS, 2002, J AM CHEM SOC, V124, P2454
IJJAALI F, 2001, PHYS CHEM CHEM PHYS, V3, P179
IRIKURA KK, 1989, J AM CHEM SOC, V111, P75
JENSEN F, 1992, J AM CHEM SOC, V114, P1596
KALEDIN AL, 1999, J CHEM PHYS, V111, P5004
KOGA N, 1985, CHEM PHYS LETT, V119, P371
KOOI SE, 1999, J PHYS CHEM A, V103, P5671
KOYANAGI GK, 2001, J PHYS CHEM A, V105, P4259
KRETZSCHMAR I, 1997, INT J MASS SPECTROM, V167, P103
KRETZSCHMAR I, 1997, J PHYS CHEM A, V101, P6252
LEE C, 1988, PHYS REV B, V37, P785
LEGROGNEC E, 2001, CHEM-EUR J, V7, P4572
LINKE D, 2002, J CATAL, V205, P16
MANAA MR, 1991, J CHEM PHYS, V95, P1808
MCIVER JW, 1974, ACCOUNTS CHEM RES, V7, P72
MUSAEV DG, 1996, J PHYS CHEM-US, V100, P11600
NGUYEN KA, 1993, J CHEM PHYS, V98, P3845
OGLIARO F, 2000, J AM CHEM SOC, V122, P8977
OIESTAD EL, 2000, J PHYS CHEM A, V104, P8382
OYAMA ST, 1990, J PHYS CHEM-US, V94, P5022
OYAMA ST, 1993, CATALYTIC SELECTIVE
PLATTNER DA, 1999, ANGEW CHEM INT EDIT, V38, P82
POLI R, 2003, CHEM SOC REV, V32, P1
POPE RM, 1992, ORGANOMETALLICS, V11, P2001
POPE RM, 1993, ORG MASS SPECTROM, V28, P1616
POPLE JA, 1987, J CHEM PHYS, V87, P5968
RAO CNR, 1995, TRANSITION METAL OXI
REED AE, 1985, J CHEM PHYS, V83, P735
REED AE, 1988, CHEM REV, V88, P899
RICCA A, 1997, J PHYS CHEM A, V101, P8949
RUTH K, 1998, J CATAL, V175, P16
SADYGOV RG, 1997, J CHEM PHYS, V107, P4994
SCHALLEY CA, 1998, J PHYS CHEM A, V102, P1021
SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
SCHRODER D, 1994, INORG CHEM, V33, P5094
SCHRODER D, 1998, CHEM-EUR J, V4, P2550
SCHRODER D, 2000, ACCOUNTS CHEM RES, V33, P139
SCHRODER D, 2000, METAL OXO METAL PERO, P91
SHAIK S, 1995, HELV CHIM ACTA, V78, P1393
SHILOV AE, 1997, CHEM REV, V97, P2879
SHILOV AE, 1999, ACCOUNTS CHEM RES, V32, P763
SHIOTA Y, 2000, J AM CHEM SOC, V122, P12317
SMITH KM, 2000, NEW J CHEM, V24, P77
SMITH KM, 2001, CHEM-EUR J, V7, P1679
STEVENS JE, 1998, J CHEM PHYS, V108, P1452
TORRENT M, 2000, CHEM REV, V100, P439
VANKOPPEN PAM, 1990, J AM CHEM SOC, V112, P5663
VANKOPPEN PAM, 1991, J AM CHEM SOC, V113, P2359
VANKOPPEN PAM, 1994, J AM CHEM SOC, V116, P3780
VYBOISHCHIKOV SF, 2000, J PHYS CHEM A, V104, P10913
VYBOISHCHIKOV SF, 2001, J PHYS CHEM A, V105, P8588
WARREN DK, 1996, HETEROGENEOUS HYDROC
WESENDRUP R, 1995, ANGEW CHEM INT EDIT, V34, P2033
WILSEY S, 1999, J PHYS CHEM A, V103, P1669
YARKONY DR, 1993, J PHYS CHEM-US, V97, P4407
YARKONY DR, 1996, J PHYS CHEM-US, V100, P18612
YOSHIZAWA K, 1999, J AM CHEM SOC, V121, P147
YOSHIZAWA K, 1999, J CHEM PHYS, V111, P535
ZEMSKI KA, 2001, J PHYS CHEM A, V105, P10237
ZEMSKI KA, 2002, J PHYS CHEM B, V106, P6136
ZIEGLER T, 2002, J CHEM SOC DALT 0307, P642
NR 113
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0276-7333
J9 ORGANOMETALLICS
JI Organometallics
PD FEB 16
PY 2004
VL 23
IS 4
BP 730
EP 739
PG 10
SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
GA 772ZF
UT ISI:000188872700015
ER
PT J
AU Larico, R
Justo, JF
Machado, WVM
Assali, LVC
TI An ab initio investigation on nickel impurities in diamond
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE diamond; synthetic diamond; transition metals; nickel impurities
ID SYNTHETIC DIAMOND; POINT-DEFECTS; NI; CENTERS; TRANSITION; EPR
AB We carried out a theoretical investigation on the electronic and
structural properties of substitutional and interstitial nickel
impurities in diamond. The atomic structures, symmetries, acceptor and
donor transition energies, and formation energies of isolated Ni in
diamond were computed using a total energy all electron ab initio
methodology. Compared to available experimental data on the
electrically and optically active centers in synthetic diamond, our
results provide a new interpretation for the microscopic structure of
those active centers. (C) 2003 Elsevier B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Sao Paulo, Escola Politecn, BR-05424970 Sao Paulo, Brazil.
RP Assali, LVC, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
EM lassali@if.usp.br
CR BARBOSA KO, 2001, PHYSICA B, V308, P726
BEELER F, 1990, PHYS REV B, V41, P1603
BLAHA P, 1999, WIEN97 FULL POTENTIA
GERSTMANN U, 1999, PHYSICA B, V274, P632
HOFMANN DM, 1994, PHYS REV B, V50, P17618
HOFMANN DM, 1995, MATER SCI FORUM, V196, P79
ISOYA J, 1990, PHYS REV B, V41, P3905
ISOYA J, 1990, PHYS REV B, V42, P9843
JINLONG Y, 1994, PHYS REV B, V49, P15525
KOHN W, 1965, PHYS REV, V140, A1133
LOWTHER JE, 1995, PHYS REV B, V51, P91
LUDWIG GW, 1962, SOLID STATE PHYS, V13, P223
MASON PW, 1999, PHYS REV B, V60, P5417
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
NAZARE MH, 1991, PHYS REV B, V43, P14196
NAZARE MH, 2001, PHYSICA B, V308, P616
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
NR 17
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD DEC 31
PY 2003
VL 340
BP 84
EP 88
PG 5
SC Physics, Condensed Matter
GA 765TR
UT ISI:000188300200012
ER
PT J
AU Assali, LVC
Machado, WVM
Justo, JF
TI Transition metal impurities in 3C-SiC and 2H-SiC
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE silicon carbide; transition metals; LAPW methods
ID ELECTRONIC-PROPERTIES; SIC POLYTYPES; SILICON-CARBIDE; BAND-GAP; LEVEL;
TI; CENTERS; STATES; PAIRS; CR
AB The electronic and structural properties of 3d transition metal (TM)
impurities in 3C-SiC and 2H-SiC have been investigated by ab initio
calculations. The stability, spin states, formation and transition
energies of isolated Ti, V, and Cr impurities in several charge states
were computed. Our results were compared to available experimental
data. (C) 2003 Elsevier B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Sao Paulo, Escola Politecn, BR-05424970 Sao Paulo, Brazil.
RP Assali, LVC, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
EM lassali@if.usp.br
CR ACHTZIGER N, 1998, PHYS REV B, V57, P12181
ASSALI LVC, 1998, PHYS REV B, V58, P3870
BARANOV PG, 1999, PHYS SOLID STATE+, V41, P783
BARBOSA KO, 2001, PHYSICA B, V308, P726
BARBOSA KO, 2003, THESIS U SAO PAULO
BAUR J, 1997, PHYS STATUS SOLIDI A, V162, P153
BLAHA P, 1999, WIEN97 FULL POTENTIA
DALIBOR T, 1997, PHYS STATUS SOLIDI A, V162, P199
EVWARAYE AO, 1995, APPL PHYS LETT, V67, P3319
HOHENBERG P, 1964, PHYS REV B, V136, P864
JUSTO JF, 1999, INT J MOD PHYS B, V13, P2387
LEBEDEV AA, 1999, SEMICONDUCTORS+, V33, P107
MITCHEL WC, 1999, J APPL PHYS, V86, P5040
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
PASOLD G, 2000, MATER SCI FORUM, V353, P471
PATRICK L, 1974, PHYS REV B, V10, P5091
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
QTEISH A, 1993, PHYSICA B, V185, P366
RESHANOV SA, 2001, DIAM RELAT MATER, V10, P2035
SULEIMANOV YM, 2001, PHYSICA B, V308, P714
NR 20
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD DEC 31
PY 2003
VL 340
BP 116
EP 120
PG 5
SC Physics, Condensed Matter
GA 765TR
UT ISI:000188300200018
ER
PT J
AU Trasferetti, BC
Davanzo, CU
de Moraes, MAB
TI Infrared and Raman studies on films of organosiloxane networks produced
by PECVD
SO MACROMOLECULES
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; THIN-FILMS; VIBRATIONAL-SPECTRA; PLASMA
POLYMERIZATION; SILICA FILM; AB-INITIO; OXYGEN; SPECTROSCOPY;
ABSORPTION; NITROGEN
AB The effect of the incorporation of oxygen and nitrogen on the structure
of films obtained by PECVD of hexamethyldisiloxane (HMDSO)-He-N-2 and
HMDSO-He-O-2 mixtures is investigated using infrared and Raman
spectroscopies. From transmittance spectra of films deposited onto
single-crystal KBr disks, the transverse optical (TO) and longitudinal
optical (LO) functions in the mid-infrared region were calculated. To
correlate structural aspects with the observed LO-TO splittings, an
identification analysis of functional group based on the infrared and
Raman literature was made. It was concluded that the structure of the
films deposited from HMDSO-He-O-2 discharges was strongly dependent on
the proportion of oxygen in the gas feed. In the absence of oxygen,
i.e., for a discharge of a HMDSO-He mixture, the resulting film
consisted of a network of interconnected siloxane and carbosilane
units. Addition of O-2 precluded the formation of methylene bridges and
induced the formation of a material enriched with Si-O-Si groups. Films
formed from the HMDSO-He-N-2 plasmas, on the other hand, consisted
mainly of interconnected siloxane and carbosilane units in addition to
a small quantity of silazane units. On the basis of these results, we
propose an interpretation for the variation of the LO-TO splitting
amplitude for the asymmetrical stretching mode (AS1) of Si-O in Si-O-Si
groups as a function of the oxygen or nitrogen incorporation into the
films.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Davanzo, CU, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
BR-13083970 Campinas, SP, Brazil.
EM celso@iqm.unicamp.br
CR ALEXANDER MR, 1997, J PHYS CHEM B, V101, P3614
ANDERSON DR, 1974, ANAL SILICONES
BELLAMY LJ, 1975, INFRA RED SPECTRA CO
BERREMAN DW, 1963, PHYS REV, V130, P2193
CALZAFERRI G, 1994, J CHEM SOC DA, P3123
DACRUZ NC, 1998, J POLYM SCI POL PHYS, V36, P1873
DECIUS JC, 1968, J CHEM PHYS, V49, P1387
FLEISCHER H, 1999, J PHYS CHEM A, V103, P727
FURUSAWA T, 2001, ELECTROCHEM SOLID ST, V4, G31
GREEN ML, 1994, APPL PHYS LETT, V65, P848
GUITON TA, 1993, COLLOID SURFACE A, V74, P33
HAWRANEK JP, 1976, SPECTROCHIM ACTA A, V32, P99
HEAVENS O, 1964, PHYS THIN FILMS, V2, P120
HINDS BJ, 1998, J NONCRYST SOLIDS, V227, P507
INAGAKI N, 1983, J POLYM SCI POL CHEM, V21, P1847
JONES LH, 1991, J PHYS CHEM-US, V95, P2701
KAMITSOS EI, 1993, PHYS REV B, V48, P12499
KIRK CT, 1988, PHYS REV B, V38, P1255
KITTEL C, 1996, INTRO SOLID STATE PH
LEWIS HGP, 2000, CHEM MATER, V12, P3488
LEWIS HGP, 2001, J ELECTROCHEM SOC, V148, F212
MAGNI D, 2001, J PHYS D APPL PHYS, V34, P87
MARCHAND A, 1962, J CHIM PHYS PCB, V59, P1142
MARCOLLI C, 1999, APPL ORGANOMET CHEM, V13, P213
MATSUYAMA H, 1994, J APPL POLYM SCI, V51, P689
MCKEAN DC, COMMUNICATION
MCKEAN DC, 1970, SPECTROCHIM ACTA A, V26, P1815
MCKEAN DCC, 1999, SPECTROCHIM ACTA A, V55, P1485
ONO H, 1999, APPL PHYS LETT, V74, P203
PAI PG, 1986, J VAC SCI TECHNOL A, V4, P689
PASQUARELLO A, 1997, PHYS REV LETT, V79, P1766
PRYCE LHG, 2000, CHEM MATER, V12, P3488
RAU C, 1994, THIN SOLID FILMS, V249, P28
RIGNANESE GM, 1997, PHYS REV LETT, V79, P5174
SARNTHEIN J, 1997, SCIENCE, V275, P1925
SCARLETE M, 1994, CHEM MATER, V6, P977
SMITH AL, 1984, APPL SPECTROSC, V38, P822
SUGAHARA S, 1999, JPN J APPL PHYS 1, V38, P1428
SUGAHARA S, 2001, J ELECTROCHEM SOC, V148, F120
TEN YS, 1989, J PHYS CHEM-US, V93, P7208
THEIL JA, 1994, J VAC SCI TECHNOL 1, V12, P1365
THEIRICH D, 2003, J VACUUM, V71, P348
TRANSFERETTI B, 2003, J PHYS CHEM B, V107, P10699
TRASFERETTI BC, 2000, APPL SPECTROSC, V54, P502
TSU DV, 1989, PHYS REV B, V40, P1795
USAMI K, 2000, P 7 INT S QUANT EFF
WOLFE DM, 1999, J VAC SCI TECHNOL 2, V17, P2170
WROBEL AM, 1980, J MACROMOL SCI CHEM, V14, P321
WROBEL AM, 1983, J MACROMOL SCI CHEM, V20, P583
YAMAMOTO K, 1994, VIB SPECTROSC, V8, P1
NR 50
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0024-9297
J9 MACROMOLECULES
JI Macromolecules
PD JAN 27
PY 2004
VL 37
IS 2
BP 459
EP 466
PG 8
SC Polymer Science
GA 766NU
UT ISI:000188383100034
ER
PT J
AU Larico, R
Assali, LVC
Machado, WVM
Justo, JF
TI Isolated nickel impurities in diamond: A microscopic model for the
electrically active centers
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SYNTHETIC DIAMOND; NI; EPR; ABSORPTION; PRESSURE; SITE
AB We present a theoretical investigation on the structural and electronic
properties of isolated nickel impurities in diamond. The atomic
structures, symmetries, formation and transition energies, and
hyperfine parameters of isolated interstitial and substitutional Ni
were computed using ab initio total energy methods. Based on our
results, we ultimately propose a consistent microscopic model which
explains several experimentally identified nickel-related active
centers in diamond. (C) 2004 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Sao Paulo, Escola Politecn, BR-05424970 Sao Paulo, Brazil.
RP Assali, LVC, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
EM lassali@if.usp.br
CR ANGUS JC, 1988, SCIENCE, V241, P913
BARBOSA KO, 2001, PHYSICA B, V308, P726
BLAHA P, 1999, WIEN97 FULL POTENTIA
COLLINS AT, 1989, J PHYS-CONDENS MAT, V1, P439
DAVIES G, 1989, EUROPHYS LETT, V9, P47
GOSS J, 1995, MATER SCI FORUM, V196, P67
HOFMANN DM, 1994, PHYS REV B, V50, P17618
HOFMANN DM, 1995, MATER SCI FORUM, V196, P79
HOHENBERG P, 1964, PHYS REV, V136, B864
ISOYA J, 1990, PHYS REV B, V41, P3905
ISOYA J, 1990, PHYS REV B, V42, P9843
JINLONG Y, 1994, PHYS REV B, V49, P15525
KOHN W, 1965, PHYS REV, V140, A1133
LOWTHER JE, 1995, PHYS REV B, V51, P91
LUDWIG GW, 1962, SOLID STATE PHYS, V13, P223
MASON PW, 1999, PHYS REV B, V60, P5417
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
NADOLINNY VA, 1999, J PHYS-CONDENS MAT, V11, P7357
NAZARE MH, 1991, PHYS REV B, V43, P14196
NAZARE MH, 2001, PHYSICA B, V308, P616
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
SINGH DJ, 1994, PLANEWAVES PSEUDOPOT
TWITCHEN DJ, 2000, PHYS REV B, V61, P9
NR 23
TC 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 2
PY 2004
VL 84
IS 5
BP 720
EP 722
PG 3
SC Physics, Applied
GA 767WX
UT ISI:000188497800026
ER
PT J
AU da Silva, LB
Fagan, SB
Mota, R
TI Ab initio study of deformed carbon nanotube sensors for carbon monoxide
molecules
SO NANO LETTERS
LA English
DT Article
ID LARGE SYSTEMS; ENERGETICS
AB Deformed single-wall carbon nanotubes (SWCNT) are investigated through
ab initio simulations as sensors to detect the presence of chemical
gases. Although the viability of using undeformed SWCNT devices has
been demonstrated for many molecules, there are important exceptions of
toxic gases, such as carbon monoxide, which are not detectable by these
sensors. To overcome this problem, recent interesting propositions have
been presented based on doping of impurity atoms into SWCNT. In this
paper, an alternative method is proposed using radial deformation,
which induces fundamental changes on the electronic properties of
SWCNT, allowing functionalization of the tube surface to detect the
presence of CO molecules.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
Univ Fed Ceara, Dept Fis, BR-60455900 Fortaleza, Ceara, Brazil.
RP Mota, R, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
Brazil.
EM mota@ccne.ufsm.br
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
BAIERLE RJ, 2001, PHYS REV B, V64
FAGAN SB, 2003, DIAM RELAT MATER, V12, P861
FAGAN SB, 2003, MATER CHARACT, V50, P183
FAGAN SB, 2003, NANO LETT, V3, P289
FAGAN SB, 2003, PHYS REV B, V67
KONG J, 2001, ADV MATER, V13, P1384
ORDEJON P, 1996, PHYS REV B, V53
PENG S, 2003, NANO LETT, V3, P513
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANKEY OF, 1989, PHYS REV B, V40, P3979
TROULLIER N, 1991, PHYS REV B, V43, P1993
NR 13
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD JAN
PY 2004
VL 4
IS 1
BP 65
EP 67
PG 3
SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
GA 764YA
UT ISI:000188233200013
ER
PT J
AU Almerindo, GI
Tondo, DW
Pliego, JR
TI Ionization of organic acids in dimethyl sulfoxide solution: A
theoretical ab initio calculation of the pK(a) using a new
parametrization of the polarizable continuum model
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID COMPLETE BASIS-SET; DENSITY-FUNCTIONAL THEORY; QUANTUM-MECHANICAL
CALCULATIONS; SOLVATION FREE-ENERGY; CARBOXYLIC-ACIDS;
AQUEOUS-SOLUTION; GAS-PHASE; THERMODYNAMIC CYCLES; ALIPHATIC-ALCOHOLS;
HALOACETIC ACIDS
AB The pK(a) values of over 41 organic acids in dimethyl sulfoxide (DMSO)
solution were calculated using ab initio electronic structure methods
at MP2 and MP4 levels of electron correlation and including basis set
of 6-31+G(d) and 6-311+G(2df,2p) quality. The solvation was included
through the polarizable continuum model (PCM), using the recent
parametrization of Pliego and Riveros. The root-mean-square (RMS) error
over this set of molecules having different functional groups is only
2.2 units. A linear fit on this data set decreases this error by only
0.2 units, indicating that this empirical correction is not necessary.
The major error in the calculated pK(a) value was -5.3 units for the
CH3SO3H solute. Halogenated carboxylic acids have also presented a high
deviation (similar to4 units). An explanation for these high deviations
is the possibility of strong hydrogen-bond formation involving the
neutral acid molecule and DMSO. The pK(a) values were also calculated
using a combination of theoretical solvation data with experimental
gas-phase data. In this case, the RMS error increased to 2.3 units for
a set of 36 acids. Our results show that the performance of the PCM
model with a fixed atomic radius in DMSO solution is very superior to
its performance in aqueous solution, which is a behavior that can be
attributed to the presence of strong and specific solute-solvent
interactions of ionic solutes with water molecules. In addition, no
extensive parametrization of the PCM model is needed to describe the
solvation of anions in DMSO solution.
C1 Univ Fed Santa Catarina, Dept Quim, BR-88040900 Florianopolis, SC, Brazil.
RP Pliego, JR, Univ Fed Santa Catarina, Dept Quim, BR-88040900
Florianopolis, SC, Brazil.
EM josef@qmc.ufsc.br
CR ASHTHAGIRI D, 2003, CHEM PHYS LETT, V371, P613
BORDWELL FG, 1988, ACCOUNTS CHEM RES, V21, P456
CHIPMAN DM, 2002, J PHYS CHEM A, V106, P7413
COSSI M, 1996, CHEM PHYS LETT, V255, P327
CURUTCHET C, 2001, J COMPUT CHEM, V22, P1180
DASILVA CO, 1999, INT J QUANTUM CHEM, V74, P417
DASILVA CO, 1999, J PHYS CHEM A, V103, P11194
GAO JL, 1996, J AM CHEM SOC, V118, P4912
GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
GRANOVSKY A, 2003, PC GAMESS
JANG YH, 2001, J PHYS CHEM A, V105, P274
JORGENSEN WL, 1987, J AM CHEM SOC, V109, P6857
JORGENSEN WL, 1989, J AM CHEM SOC, V111, P4190
KALLIES B, 1997, J PHYS CHEM B, V101, P2959
KAWATA M, 1995, CHEM PHYS LETT, V240, P199
KLICIC JJ, 2002, J PHYS CHEM A, V106, P1327
LI J, 1996, INORG CHEM, V35, P4694
LI JB, 1998, CHEM PHYS LETT, V288, P293
LI JB, 1999, THEOR CHEM ACC, V103, P9
LIM C, 1991, J PHYS CHEM-US, V95, P5610
LINSTROM PJ, 2003, 69 NIST
LIPTAK MD, 2001, INT J QUANTUM CHEM, V85, P727
LIPTAK MD, 2001, J AM CHEM SOC, V123, P7314
LIPTAK MD, 2002, J AM CHEM SOC, V124, P6421
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
MARTIN RL, 1998, J PHYS CHEM A, V102, P3565
NAMAZIAN M, 2003, THEOCHEM, V620, P257
PERAKYLA M, 1999, PHYS CHEM CHEM PHYS, V1, P5643
PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
PLIEGO JR, 2002, CHEM PHYS LETT, V355, P543
PLIEGO JR, 2002, J PHYS CHEM A, V106, P7434
PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
PLIEGO JR, 2003, CHEM PHYS LETT, V367, P145
REICHARDT C, 1988, SOLVENTS SOLVENT EFF
RICHARDSON WH, 1997, INT J QUANTUM CHEM, V61, P207
SARACINO GAA, 2003, CHEM PHYS LETT, V373, P411
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHUURMANN G, 1998, J PHYS CHEM A, V102, P6706
SCHUURMANN G, 1999, CHEM PHYS LETT, V302, P471
SHAPLEY WA, 1998, J PHYS CHEM B, V102, P1938
SILVA CO, 2000, J PHYS CHEM A, V104, P2402
TOMASI J, 1999, INT J QUANTUM CHEM, V75, P783
TOMASI J, 2002, PHYS CHEM CHEM PHYS, V4, P5697
TOPOL IA, 1997, J PHYS CHEM A, V101, P10075
TOPOL IA, 2000, J PHYS CHEM A, V104, P866
TOPOL IA, 2000, J PHYS CHEM A, V104, P9619
TOTH AM, 2001, J CHEM PHYS, V114, P4595
TUNON I, 1992, J PHYS CHEM-US, V96, P9043
TUNON I, 1993, J AM CHEM SOC, V115, P2226
WIBERG KB, 1996, J COMPUT CHEM, V17, P185
WIBERG KB, 2000, J PHYS CHEM A, V104, P7625
NR 52
TC 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JAN 8
PY 2004
VL 108
IS 1
BP 166
EP 171
PG 6
SC Chemistry, Physical
GA 760MU
UT ISI:000187838500024
ER
PT J
AU Jorge, FE
Autschbach, J
Ziegler, T
TI On the origin of the optical activity in the d-d transition region of
tris-bidentate Co(III) and Rh(III) complexes
SO INORGANIC CHEMISTRY
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; CIRCULAR-DICHROISM SPECTRA; CO-ORDINATION
COMPOUNDS; METAL-COMPLEXES; CRYSTAL-STRUCTURE; COBALT(III) COMPLEXES;
RESPONSE THEORY; ROTATORY POWER; ABSOLUTE-CONFIGURATIONS; CHIROPTICAL
PROPERTIES
AB Time-dependent density functional theory (TD-DFT) has been employed to
calculate the rotatory strengths in the d-d transition region for
various tris-bidentate Co(III) and Rh(III) complexes. Optimized
structural parameters are also reported. Our results confirm a
previously proposed relationship between the azimuthal distortion of a
complex containing saturated tris(diamine) and its optical activity.
Formally d-d transitions are forbidden and should not exhibit optical
activity. However, it is shown here that the intensity of these bands
originates from a coupling of even ligand combination (participating in
the e(g) type LUMO) and an odd ligand combination (participating in the
t(2g) HOMO). For complexes containing planar unsaturated ligands, the
signs of the d-d bands observed from the single-crystal circular and
linear dichroisms are in accordance with the TD-DFT predictions. It is
shown that by using hypothetical Co(NH3)(6)(3+) complexes it is
possible to estimate the contribution from the azimuthal distortion to
the total rotatory strengths of the saturated tris(diamine) complexes.
A discussion is also provided of previous theoretical studies and the
way in which these investigations rationalized the optical activity.
C1 Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada.
Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES, Brazil.
SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA.
RP Ziegler, T, Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada.
EM ziegler@ucalgary.ca
CR AUTSCHBACH J, 2002, J CHEM PHYS, V116, P6930
AUTSCHBACH J, 2002, J CHEM PHYS, V116, P891
AUTSCHBACH J, 2002, J CHEM PHYS, V117, P581
AUTSCHBACH J, 2003, INORG CHEM, V42, P2867
BALLHAUSEN CJ, 1979, MOL ELECT STRUCTURES, P195
BAUERNSCHMITT R, 1996, CHEM PHYS LETT, V256, P454
BECKE AD, 1988, PHYS REV A, V38, P3098
BUTLER KR, 1971, J CHEM SOC A, P565
CASIDA ME, 1995, RECENT ADV DENSITY F, V1
CONDON EU, 1937, J CHEM PHYS, V5, P753
DIEDRICH C, 2003, J PHYS CHEM A, V107, P2524
DOBSON JF, 1998, ELECT DENSITY FUNCTI
EVANS RS, 1974, INORG CHEM, V13, P2185
FURCHE F, 2000, J AM CHEM SOC, V122, P1717
GORELSKY SI, 2001, J ORGANOMET CHEM, V635, P187
GROSS EKU, 1990, ADV QUANTUM CHEM, V21, P255
GROSS EKU, 1996, TOP CURR CHEM, V181, P81
GUERRA CF, 1995, METHODS TECHNIQUES C
IWATA M, 1969, ACTA CRYSTALLOGR B, V25, P2562
JAMORSKI C, 1996, J CHEM PHYS, V104, P5134
JUDKINS RR, 1974, INORG CHEM, V13, P945
KARIPIDES AG, 1964, J CHEM PHYS, V40, P674
KRUGER GJ, 1974, ACTA CRYSTALLOGR B, V30, P822
KURODA R, 1974, ACTA CRYSTALLOGR B, V30, P2126
KURODA R, 1976, B CHEM SOC JPN, V49, P433
LIEHR AD, 1964, J PHYS CHEM-US, V68, P665
MASON SF, 1965, CHEM COMMUN, P48
MASON SF, 1971, J CHEM SOC A, P667
MASON SF, 1973, FUNDAMENTAL ASPECTS
MASON SF, 1976, MOL PHYS, V31, P755
MCCAFFERY AJ, 1965, J CHEM SOC, P2883
MOFFITT W, 1956, J CHEM PHYS, V25, P1189
MOUCHARAFIEH NC, 1978, INORG CHEM, V17, P1220
NAGAO R, 1973, ACTA CRYSTALLOGR B, V29, P2438
NAKATSU K, 1962, B CHEM SOC JPN, V35, P832
PATCHKOVSKII S, 2002, J CHEM PHYS, V116, P7806
PERDEW JP, 1986, PHYS REV B, V33, P8822
PIPER TS, 1962, MOL PHYS, V5, P475
POPLE JA, 1979, INT J QUANTUM CHEM S, V13, P225
RICCIARDI G, 2000, J PHYS CHEM A, V104, P635
RICCIARDI G, 2001, J PHYS CHEM A, V105, P5242
RICHARDSON FS, 1971, J CHEM PHYS, V54, P2453
RICHARDSON FS, 1972, INORG CHEM, V11, P2366
ROSA A, 1999, J AM CHEM SOC, V121, P10356
ROSA A, 2001, J PHYS CHEM A, V105, P3311
SAITO Y, 1974, COORDIN CHEM REV, V13, P305
SHINADA M, 1964, J PHYS SOC JPN, V19, P1607
SOLOMON EI, 1999, INORGANIC ELECT STR, V2
SOLOMON EI, 1999, INORGANIC ELECT STRU, V1
STIEFEL EI, 1972, INORG CHEM, V11, P434
STRICKLAND RW, 1973, INORG CHEM, V12, P1025
TEVELDE G, 2001, J COMPUT CHEM, V22, P931
VANGISBERGEN SJA, 1995, J CHEM PHYS, V103, P9347
VANGISBERGEN SJA, 1999, COMPUT PHYS COMMUN, V118, P119
VANGISBERGEN SJA, 1999, J PHYS CHEM A, V103, P6835
VANGISBERGEN SJA, 2000, J COMPUT CHEM, V21, P1511
VONDREELE RB, 1971, AM CHE SOC, V93, P4936
VOSKO SH, 1980, CAN J PHYS, V58, P1200
ZIEGLER T, 2002, J CHEM SOC DALT 0307, P642
NR 59
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD DEC 29
PY 2003
VL 42
IS 26
BP 8902
EP 8910
PG 9
SC Chemistry, Inorganic & Nuclear
GA 759LX
UT ISI:000187740100044
ER
PT J
AU Carauta, ANM
de Souza, V
Hollauer, E
Tellez, CA
TI Vibrational study of dialkylphosphonates: di-n-propyl- and
di-i-propylphosphonates by semiempirical and ab initio methods
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE dialkylphosphonates; vibrational spectra; semiempirical AM1; ab initio
RHF/6-31G
ID ORGANOPHOSPHORUS COMPOUNDS; CONFORMATIONAL STABILITY; INFRARED-SPECTRA;
FORCE-FIELD; PHOSPHONATE; COMPLEXES; FREQUENCIES; RAMAN; ASSIGNMENTS;
DIESTER
AB Fourier transform infrared and Fourier transform Raman spectra of
n-C3H7 and i-C3H7 dialkylphosphonates have been obtained. Semiempirical
AM1 and the ab initio orbital molecular RHF/6-31G* theories have been
used to study the molecular geometry, and the harmonic vibrational
spectra with the purpose to assist the experimental assignments of
these compounds. An extensive discussion on the assignment of the C-C,
C-O, P-O and P=O stretching is carried out based on experimental data
of compounds which have the propyl and isopropyl groups, as well as
comparing the vibrational spectra of propane. Most of the RHF/6-31G*
and AM1 results, once applied the appropriate scaling factor, showed an
excellent agreement with the experimental wavenumbers. A few calculated
frequencies related to CC and CO stretching do not agree well with the
experimental trends. (C) 2003 Elsevier B.V. All rights reserved.
C1 Univ Fed Fluminense, Inst Quim, Dept Quim Geral & Inorgan, BR-24210150 Rio De Janeiro, Brazil.
INMETRO, Rio De Janeiro, Brazil.
Univ Fed Fluminense, Dept Quim Fis, Inst Quim, BR-24210150 Rio De Janeiro, Brazil.
RP Tellez, CA, Univ Fed Fluminense, Inst Quim, Dept Quim Geral & Inorgan,
Morro do Valonguinho S-N,Niteroi Ctr, BR-24210150 Rio De Janeiro,
Brazil.
CR BEELAMY LJ, 1952, J CHEM SOC, P475
BONE R, 1991, BIOCHEMISTRY-US, V30, P2263
BROYDEN CG, 1970, J I MATH APPL, V6, P222
CAO G, 1991, CHEM MATER, V3, P149
CHHIBA M, 1996, J MOL STRUCT, V384, P55
COOLIDGE MB, 1991, J COMPUT CHEM, V12, P948
DAASCH LW, 1951, ANAL CHEM, V23, P853
DESOUZA MC, 1995, THESIS IME BRAZIL
DEWAR MJS, 1978, J AM CHEM SOC, V100, P3607
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DURIG JR, 1992, J MOL STRUCT THEOCHE, V261, P133
DURIG JR, 1992, J RAMAN SPECTROSC, V23, P107
DURIG JR, 1994, J RAMAN SPECTROSC, V25, P132
DURIG JR, 1994, J RAMAN SPECTROSC, V25, P327
DURIG JR, 1995, J MOL STRUCT, V19, P350
DURIG JR, 1996, J MOL STRUCT, V375, P53
FELCMAN J, 2001, SYN REACT INORG MET, V31, P507
FLETCHER R, 1970, COMPUT J, V13, P317
FLORIAN J, 1998, J AM CHEM SOC, V120, P7959
GOLDFARB D, 1970, MATH COMPUT, V24, P23
GONZALEZ L, 1998, J CHEM PHYS, V109, P2685
HARKINS PC, 1996, J INORG BIOCHEM, V61, P25
HERLINGER AW, 1998, POLYHEDRON, V17, P1471
HIRSCHMANN R, 1997, J AM CHEM SOC, V119, P8177
KIM CU, 1991, J ORG CHEM, V56, P2642
KIM H, 1991, BIOCHEMISTRY-US, V30, P8171
KOCH R, 1995, J ORG CHEM, V60, P5861
MCCOMBIE H, 1945, J CHEM SOC, P380
MISRA AK, 1965, J APPL CHEM-USSR, V28, P187
RIES UJ, 1992, CHEM PHYS LIPIDS, V61, P225
SAINZDIAZ CI, 1995, J ORG CHEM, V60, P74
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SHANNO DF, 1970, MATH COMPUT, V24, P647
SNYDER RG, 1963, SPECTROCHIM ACTA, V19, P85
SNYDER RG, 1965, SPECTROCHIM ACTA, V21, P169
STAWINSKI J, 1991, NUCLEOS NUCLEOT, V10, P511
STEWART JJP, 1993, MOPAC 93 MANUAL REVI
SVERDLOV LM, 1974, VIBRATIONAL SPECTRA
TELLEZ CA, 2000, SPECTROCHIM ACTA A, V56, P1563
TELLEZ CA, 2000, SPECTROCHIM ACTA A, V56, P653
THOMAS LC, 1974, INTERPRETATION INFRA
NR 42
TC 3
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JAN
PY 2004
VL 60
IS 1-2
BP 41
EP 51
PG 11
SC Spectroscopy
GA 759RK
UT ISI:000187750500006
ER
PT J
AU De Abreu, HA
De Almeida, WB
Duarte, HA
TI pK(a) calculation of poliprotic acid: histamine
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; COMPLETE BASIS-SET; CORRELATION-ENERGY;
AB-INITIO; N-HYDROXYACETAMIDE; SOLVATION METHODS; GAS-PHASE; DENSITY;
IONS; APPROXIMATION
AB Various theoretical studies have been reported addressing the
performance of solvation models available to estimate pK(a) values.
However, no attention has been paid so far to the role played by the
electronic, thermal and solvation energy individual contributions to
the Gibbs free energy of the deprotonation process. In this work, we
decompose the total Gibbs free energy into three distinct terms and
then evaluate the dependence of each contribution on the level of
theory employed for its determination using different levels of theory.
The three possible pK(a)s of histamine have been estimated and compared
with available experimental data. We found that the electronic energy
term is sensitive to the level of theory and basis set, and, therefore,
could be also a source of error in the theoretical calculation of
pK(a)s. (C) 2003 Elsevier B.V. All rights reserved.
C1 UFMG, ICEx, Dept Quim, LQC MM, BR-31270901 Belo Horizonte, MG, Brazil.
RP Duarte, HA, UFMG, ICEx, Dept Quim, LQC MM, Av Antonio Carlos 6627,
BR-31270901 Belo Horizonte, MG, Brazil.
CR 1992, HDB CHEM PHYS
ADAM KR, 2002, J PHYS CHEM A, V106, P11963
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BRODSKAYA E, 2002, J PHYS CHEM B, V106, P6479
CHEN JG, 1998, J ORG CHEM, V63, P4611
CHIPMAN DM, 2002, J PHYS CHEM A, V106, P7413
COOKSON RF, 1974, CHEM REV, V74, P5
COSSI M, 1996, CHEM PHYS LETT, V255, P327
DOSSANTOS HF, 2002, CHEM PHYS, V280, P31
DOSSANTOS HF, 2002, THEOR CHEM ACC, V107, P229
DUARTE HA, 1998, J INORG BIOCHEM, V72, P71
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HOLMES F, 1962, J CHEM SOC, P2818
HOLMES F, 1969, J CHEM SOC, P113
KARMACHARYA R, 2001, J PHYS CHEM A, V105, P2563
KINSER RD, 2002, J PHYS CHEM A, V106, P9925
KLAMT A, 2003, J PHYS CHEM A, V107, P9380
LEE C, 1988, PHYS REV B, V37, P785
LIM C, 1991, J PHYS CHEM-US, V95, P5610
LIPTAK MD, 2001, J AM CHEM SOC, V123, P7314
MEJIAS JA, 2000, J CHEM PHYS, V113, P7306
MIEHLICH B, 1989, CHEM PHYS LETT, V157, P200
PERAKYLA M, 1996, J ORG CHEM, V61, P7420
PERDEW JP, 1986, PHYS REV B, V33, P8822
PLIEGO JR, 2000, CHEM PHYS LETT, V332, P597
PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
PLIEGO JR, 2003, CHEM PHYS LETT, V367, P145
SANTOS JMD, 2003, J INORG BIOCHEM, V95, P14
SARACINO GAA, 2003, CHEM PHYS LETT, V373, P411
SILVA CO, 1999, J PHYS CHEM A, V103, P11194
SZABO A, 1989, MODERN QUANTUM CHEM
TOTH AM, 2001, J CHEM PHYS, V114, P4595
NR 33
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JAN 1
PY 2004
VL 383
IS 1-2
BP 47
EP 52
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 759TL
UT ISI:000187752900010
ER
PT J
AU Schimpl, J
Petrilli, HM
Blochl, PE
TI Nitrogen binding to the FeMo-cofactor of nitrogenase
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID AUGMENTED-WAVE METHOD; AZOTOBACTER-VINELANDII NITROGENASE;
DENSITY-FUNCTIONAL THEORY; IRON-MOLYBDENUM COFACTOR; ATOMIC-LEVEL
MECHANISM; MOFE-PROTEIN; KLEBSIELLA-PNEUMONIAE; MOLECULAR-DYNAMICS;
CENTRAL LIGAND; CRYSTALLOGRAPHIC STRUCTURE
AB Density functional calculations are presented to unravel the first
steps of nitrogen fixation of nitrogenase. The individual steps leading
from the resting state to nitrogen binding at the FeMo-cofactor with a
central nitrogen ligand are characterized. The calculations indicate
that the Fe-Mo cage opens as dinitrogen binds to the cluster. In the
resting state, the central cage is overall neutral. Electrons and
protons are transferred in an alternating manner. Upon dinitrogen
binding, one protonated sulfur bridge is broken. An axial and a bridged
binding mode of dinitrogen have been identified. Adsorption at the Mo
site has been investigated but appears to be less favorable than
binding at Fe sites.
C1 Tech Univ Clausthal, Inst Theoret Phys, D-38678 Clausthal Zellerfeld, Germany.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
RP Blochl, PE, Tech Univ Clausthal, Inst Theoret Phys, D-38678 Clausthal
Zellerfeld, Germany.
CR BENTON PMC, 2003, BIOCHEMISTRY-US, V42, P9102
BLOCHL P, 1986, J CHEM PHYS, V103, P7422
BLOCHL PE, 1994, PHYS REV B, V50, P17953
BLOCHL PE, 1996, ORGANOMETALLICS, V15, P4125
BLOCHL PE, 2003, B MATER SCI, V26, P33
BURGESS BK, 1996, CHEM REV, V96, P2983
CAR R, 1985, PHYS REV LETT, V55, P2471
CHRISTIANSEN J, 1995, J AM CHEM SOC, V117, P10017
DANCE I, 1997, CHEM COMMUN 0121, P165
DANCE I, 1998, CHEM COMMUN 0307, P523
DANCE I, 2003, CHEM COMMUN, V3, P324
DURRANT MC, 2001, BIOCHEM J 3, V355, P569
DURRANT MC, 2002, BIOCHEMISTRY-US, V41, P13934
DURRANT MC, 2002, BIOCHEMISTRY-US, V41, P13946
EADY R, 1997, J PHYS C SOLID STATE, V2, P611
EADY RR, 1996, CHEM REV, V96, P3013
EINSLE O, 2002, SCIENCE, V297, P1696
FISHER K, 2001, BIOCHEMISTRY-US, V40, P3333
GEORGIADIS MM, 1992, SCIENCE, V257, P1653
GRONBERG KLC, 1998, J AM CHEM SOC, V120, P10613
HARVEY I, 1998, INORG CHIM ACTA, V275, P150
HINNEMANN B, 2003, J AM CHEM SOC, V125, P1466
HOBBS D, 2000, PHYS REV B, V62, P11556
HOHENBERG P, 1964, PHYS REV B, V136, P864
KIM J, 1992, SCIENCE, V257, P1667
KIM JS, 1992, NATURE, V360, P553
KOHN W, 1965, PHYS REV, V140, A1133
KUBLER J, 1988, J PHYS F MET PHYS, V18, P469
LEE HI, 2003, J AM CHEM SOC, V125, P5604
LEIGH GJ, 2003, SCIENCE, V301, P55
LOVELL T, 2001, J AM CHEM SOC, V123, P12392
LOVELL T, 2002, J AM CHEM SOC, V124, P4546
LOVELL T, 2002, J BIOL INORG CHEM, V7, P735
LOVELL T, 2003, J AM CHEM SOC, V125, P8377
LOWE DJ, 1984, BIOCHEM J, V224, P895
MAYER SM, 1999, J MOL BIOL, V292, P871
MAYER SM, 2002, J CHEM SOC DA, V5, P802
MUNCK E, 1975, BIOCHIM BIOPHYS ACTA, V400, P32
ODA T, 1998, PHYS REV LETT, V80, P3622
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PETERS JW, 1997, BIOCHEMISTRY-US, V36, P1181
PICKETT CJ, 1996, J BIOL INORG CHEM, V1, P601
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024
ROD TH, 1999, PHYS REV LETT, V82, P4054
ROD TH, 2000, J AM CHEM SOC, V122, P12751
ROD TH, 2000, J CHEM PHYS, V112, P5343
SANDRATSKII LM, 1986, J PHYS F MET PHYS, V16, P43
SCHAFTENAAR G, 2000, J COMPUT AID MOL DES, V14, P123
SELLMANN D, 1996, J BIOL INORG CHEM, V1, P597
SELLMANN D, 1999, COORDIN CHEM REV, V190, P607
SELLMANN D, 2000, COORDIN CHEM REV, V200, P545
SIMPSON FB, 1984, SCIENCE, V224, P1095
SZILAGYI R, 2000, THEOCHEM, V506, P131
SZILAGYI RK, 2001, INORG CHEM, V40, P766
THORNELEY R, 1996, J BIOL INORG CHEM, V1, P575
THORNELEY RNF, 1984, BIOCHEM J, V224, P887
THORNELEY RNF, 1984, BIOCHEM J, V224, P903
TRUE AE, 1988, J AM CHEM SOC, V110, P1935
VENTERS RA, 1986, J AM CHEM SOC, V108, P3487
YANDULOV DV, 2003, SCIENCE, V301, P76
YOO SJ, 2000, J AM CHEM SOC, V122, P4926
NR 61
TC 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD DEC 24
PY 2003
VL 125
IS 51
BP 15772
EP 15778
PG 7
SC Chemistry, Multidisciplinary
GA 755XF
UT ISI:000187436200042
ER
PT J
AU Pereira, MS
Nascimento, MAC
TI Theoretical study on reactions catalyzed by gallium-substituted zeolites
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Article
DE zeolite; gallium; catalysis by zeolites
ID DEHYDROGENATION REACTION; AROMATIZATION; ZSM-5; GA; GALLOSILICATES;
ISOBUTANE; ACIDITY; PROPANE; ALKANES; STATE
AB The dehydrogenation and cracking reactions of light alkanes in
gallium-containing zeolites were studied using density functional
theory. Gallium isomorphically substituted, generating Bronsted acid
sites, was used in the computations. The following reactions were
examined: dehydrogenation of methane, ethane, propane, isobutane and
cracking of ethane, propane and isobutene, all catalyzed by the
framework gallium species. The cracking reaction seems to be favored
relative to the dehydrogenation when framework gallium species are
used. This behavior is also observed in aluminum-containing zeolites
(H-ZSM5). The geometries and energetics of the transition states found
for the gallium zeolites were compared with theoretical data for the
same transition states in aluminum zeolites. There seems to be no
significant difference between framework gallium and framework aluminum
species. Therefore the framework gallium should not be the species
responsible for the catalytic enhancement observed in
gallium-containing zeolites.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis,
Cidade Univ,CT,Bloco A,Sala 412, BR-21949900 Rio De Janeiro, Brazil.
CR *GAUSS INC, 1995, GAUSS 98
*SCHROD INC, 1998, JAG 3 5
BAYENSE CR, 1991, APPL CATAL, V72, P81
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BRABEC L, 1998, APPL CATAL A-GEN, V167, P309
BROCLAWIK E, 1995, J CHEM PHYS, V103, P2102
CHAO KJ, 1997, ZEOLITES, V18, P18
CHOUDHARY VR, 1996, J CATAL, V158, P34
CUSUMORO JA, 1992, PERSPECTIVES CATALYS
DOOLEY KM, 1992, APPL CATAL A-GEN, V84, P17
FRASH MV, 1995, J PHYS CHEM A, V103, P2102
FURTADO E, 2001, THEORETICAL ASPECTS, P39
FURTADO EA, 2001, PHYS STATUS SOLIDI A, V187, P275
GIANNETTO G, 1993, J CATAL, V145, P86
GUISNET M, 1992, APPL CATAL A-GEN, V89, P1
HIMEI H, 1995, J PHYS CHEM-US, V99, P12461
IGLESIA E, 1992, J CATAL, V134, P549
INUI T, 1987, IND ENG CHEM RES, V26, P647
LANH HD, 1993, APPL CATAL A-GEN, V103, P205
LEE C, 1988, PHYS REV B, V37, P786
LIU XS, 1992, J PHYS CHEM-US, V96, P3403
MEITZNER GD, 1993, J CATAL, V140, P209
MILAS I, 2001, CHEM PHYS LETT, V338, P67
MILAS I, 2003, CHEM PHYS LETT, V373, P379
MOWRY JR, 1985, ARAB J SCI ENG, V10, P36
MOWRY JR, 1985, OIL GAS J, V83, P128
PRICE GL, 1995, ZEOLITES, V15, P725
PRICE GL, 1998, J CATAL, V173, P12
STAVE MS, 1995, J PHYS CHEM-US, V99, P15046
SULIKOWSKI B, 1996, J PHYS CHEM-US, V100, P10323
TAKEGUCHI T, 1998, J CATAL, V175, P1
VAUGHAN DEW, 1988, CHEM ENG PROGR FEB, P25
VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13713
NR 33
TC 3
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD DEC
PY 2003
VL 110
IS 6
BP 441
EP 445
PG 5
SC Chemistry, Physical
GA 749YU
UT ISI:000186958300014
ER
PT J
AU Martins, TLC
Ramalho, TC
Figueroa-Villar, JD
Flores, AFC
Pereira, CMP
TI Theoretical and experimental C-13 and N-15 NMR investigation of
guanylhydrazones in solution
SO MAGNETIC RESONANCE IN CHEMISTRY
LA English
DT Article
DE NMR; N-15 NMR; C-13 NMR; chemical shifts; molecular dynamics; GIAO;
DFT; guanylhydrazones
ID SEQUENTIAL MONTE-CARLO; CHEMICAL-SHIFTS; AB-INITIO; SOLVENT;
DERIVATIVES; SIMULATION; CONTINUUM; AGENTS; RELAXATION; MOLECULES
AB Experimental and theoretical N-15 and C-13 NMR data for the three
nitrobenzaldehyde guanylhydrazones are reported. The theoretical data
were obtained using sequential molecular dynamics/quantum mechanics
methodology for the calculation of flexible molecules in a condensed
phase, followed by the use of the GIAO/DFT method with the 6-311G**
basis set. The experimental N-15 chemical shifts for the
guanylhydrazones are compared with the calculated shifts. Copyright (C)
2003 John Wiley Sons, Ltd.
C1 Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, RJ, Brazil.
Univ Fed Santa Maria, Dept Quim, BR-97105900 Santa Maria, RS, Brazil.
RP Figueroa-Villar, JD, Inst Militar Engn, Dept Quim, BR-22290270 Rio De
Janeiro, RJ, Brazil.
CR ALLEN MP, 1987, COMP SIMULATION LIQU
ANDREANI A, 2000, BIOORGAN MED CHEM, V8, P2359
BARONE V, 1998, J COMPUT CHEM, V19, P404
BAX A, 1983, J AM CHEM SOC, V105, P7188
BAX A, 1983, J MAGN RESON, V55, P301
BIEGER W, 1985, CHEM PHYS LETT, V115, P275
CARPY A, 1984, ACTA CRYSTALLOGR C, V40, P1265
CHAFIELD C, 1984, ANAL TIMES SERIES IN
CHESNUT DB, 1994, ANN REPORTS NMR SPEC, V29, P71
CHESTNUT DB, 1989, ANNU REP NMR SPECTRO, V21, P51
COLIMAS C, 1999, J COMPUT CHEM, V20, P665
COSSI M, 1998, CHEM PHYS LETT, V253, P286
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
DAUBEROSGUTHORP.P, 1988, PROTEINS, V4, P31
FOYE WO, 1990, J PHARM SCI, V79, P527
FRIEDBERG R, 1970, J CHEM PHYS, V52, P6049
FRISCH MJ, 2001, GAUSSIAN 98W REVISIO
FUKUI H, 1987, MAGNET RESON REV, V11, P205
GADAD AK, 2000, EUR J MED CHEM, V35, P853
GAUSS J, 1995, J CHEM PHYS, V102, P251
HARRIS CD, 1996, QUANTITATIVE CHEM AN
HOLZER W, 1992, MONATSH CHEM, V123, P1163
KRATSCHMER R, 1976, J STAT PHYS, V15, P267
LUHMER M, 1998, PROG NUCL MAG RES 1, V33, P57
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MALKIN VG, 1993, CHEM PHYS LETT, V80, P204
MALKIN VG, 1994, J AM CHEM SOC, V116, P5898
MANOLO MG, 1986, EUR J MED CHEM, V21, P467
MENNUCCI B, 2001, J PHYS CHEM A, V105, P7287
MESSEDER JC, 1995, BIOORG MED CHEM LETT, V5, P3079
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIERTUS S, 1982, CHEM PHYS, V65, P239
PIVNENKO NS, 2002, MAGN RESON CHEM, V40, P566
SCHRECKENBACH G, 1995, J PHYS CHEM-US, V99, P606
SCHRECKENBACH G, 1996, DENSITY FUNCTIONAL T
SUNDBERG RJ, 1990, J MED CHEM, V33, P298
TAI AW, 1984, J MED CHEM, V27, P236
TINOCO LW, 1999, J BRAZIL CHEM SOC, V10, P281
TINOCO LW, 1999, SPECTROSC LETT, V32, P941
TOMASI J, 1994, CHEM REV, V94, P2027
VERLET L, 1967, PHYS REV, V159, P98
WERBEL LM, 1985, EUR J MED CHEM, V20, P363
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
ZILM KW, 1993, NATO ASI SERIES C, V386
NR 46
TC 3
PU JOHN WILEY & SONS LTD
PI CHICHESTER
PA THE ATRIUM, SOUTHERN GATE, CHICHESTER PO19 8SQ, W SUSSEX, ENGLAND
SN 0749-1581
J9 MAGN RESON CHEM
JI Magn. Reson. Chem.
PD DEC
PY 2003
VL 41
IS 12
BP 983
EP 988
PG 6
SC Chemistry, Multidisciplinary; Chemistry, Physical; Spectroscopy
GA 747CW
UT ISI:000186788500002
ER
PT J
AU Barbosa, PHR
Raposo, EP
Coutinho, MD
TI Microscopic description of an ising spin glass near the percolation
threshold
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID RANDOM-FIELD; RANDOM-EXCHANGE; ORDERED PHASE; MONTE-CARLO;
NONEQUILIBRIUM DYNAMICS; DILUTED ANTIFERROMAGNET; NEUTRON-SCATTERING;
SYSTEM FEXZN1-XF2; CRITICAL-BEHAVIOR; FE0.25ZN0.75F2
AB Monte Carlo results using a microscopic model to describe FexZn1-xF2
indicate that its spin-glass phase at x=0.25 and zero magnetic field is
characterized by the presence of antiferromagnetic fractal domains,
separated by random vacancies and strongly correlated in time. The
effective local random-field distribution corroborates this glassy
behavior, which emerges irrespective of ab initio competing
interactions and is a consequence of the fractal domain structure near
the percolation threshold, x(p)=0.24. The aging properties of the
system are in agreement with predictions of short-range stochastic
spin-glass models and with the droplets model for spin glass close to
percolation.
C1 Univ Fed Pernambuco, Dept Fis, Lab Fis Teor & Computac, BR-50670901 Recife, PE, Brazil.
Univ Fed Piaui, Dept Fis, BR-64048550 Teresina, PI, Brazil.
RP Barbosa, PHR, Univ Fed Pernambuco, Dept Fis, Lab Fis Teor & Computac,
BR-50670901 Recife, PE, Brazil.
CR BALLESTEROS HG, 1998, PHYS REV B, V58, P2740
BARBER WC, 2000, PHYS REV B, V61, P8960
BARBOSA PHR, 2000, J APPL PHYS 3, V87, P6531
BARBOSA PHR, 2001, J MAGN MAGN MATER 2, V226, P1293
BARBOSA PHR, 2001, MATER SCI FORUM, V373, P705
BARBOSA PHR, 2001, PHYSICA A, V295, P140
BARRAT A, 2001, PHYS REV LETT, V87
BARRETT PH, 1986, PHYS REV B, V34, P3513
BELANGER DP, 1986, PHYS REV B, V34, P452
BELANGER DP, 1991, PHYS REV B, V44, P2161
BELANGER DP, 1993, PHYS REV B, V47, P5051
BELANGER DP, 2000, BRAZ J PHYS, V30, P682
BERNARDI LW, 2001, PHYS REV LETT, V86, P720
BIRGENEAU RJ, 1983, PHYS REV B, V27, P6747
BRAY AJ, 1988, COMMENTS CONDENS MAT, V14, P21
CARTER AC, 2002, PHYS REV LETT, V88
CASTILLO HE, 2002, PHYS REV LETT, V88
ESSER J, 1997, PHYS REV B, V55, P5866
FISHER DS, 1986, PHYS REV LETT, V56, P1601
FISHER DS, 1988, PHYS REV B, V38, P373
FISHER DS, 1988, PHYS REV B, V38, P386
GUNNARSSON K, 1988, PHYS REV LETT, V61, P754
HED G, 2001, PHYS REV LETT, V86, P3148
HENLEY CL, 1985, PHYS REV LETT, V54, P2030
HUTCHINGS MT, 1970, J PHYS C, V3, P307
JONASON K, 1997, PHYS REV B, V56, P5404
JONSSON PE, 2002, PHYS REV LETT, V88
JONSSON PE, 2002, PHYS REV LETT, V89
KISKER J, 1996, PHYS REV B, V53, P6418
KRZAKALA F, 2001, PHYS REV LETT, V87
LUNDGREN L, 1986, PHYS REV B, V34, P8164
MEZARD M, 1987, SPIN GLASS THEORY
MONTENEGRO FC, COMMUNICATION
MONTENEGRO FC, 1988, J APPL PHYS 3, V63, P3755
MONTENEGRO FC, 1989, EUROPHYS LETT, V8, P382
MONTENEGRO FC, 1990, J APPL PHYS 2B, V67, P5243
MONTENEGRO FC, 1991, PHYS REV B, V44, P2155
OGIELSKI AT, 1985, PHYS REV B, V32, P7384
RAMMAL R, 1985, J PHYSIQUE LETT, V46, L667
RAMMAL R, 1985, PHYS REV LETT, V55, P649
RAPOSO EP, 1995, EUROPHYS LETT, V29, P507
RAPOSO EP, 1996, J MAGN MAGN MATER, V154, L155
RAPOSO EP, 1997, J APPL PHYS 2B, V81, P5279
RAPOSO EP, 1998, J APPL PHYS 2, V83, P6311
RAPOSO EP, 1998, PHYS REV B, V57, P3495
REZENDE SM, 1988, J PHYS-PARIS, V49, P1267
RIEGER H, 1993, J PHYS A, V26, L615
ROSALESRIVERA A, 2000, EUROPHYS LETT, V50, P264
ROSOV N, 1988, PHYS REV B, V37, P3265
SLANIC Z, 1999, PHYS REV LETT, V82, P426
TEMESVARI T, 2002, PHYS REV LETT, V89
YE F, 2002, PHYS REV LETT, V89
YOUNG AP, 1997, SPIN GLASSES RANDOM
NR 53
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 7
PY 2003
VL 91
IS 19
AR 197207
DI ARTN 197207
PG 4
SC Physics, Multidisciplinary
GA 740VR
UT ISI:000186422700045
ER
PT J
AU Sensato, FR
Custodio, R
Longo, E
Beltran, A
Andres, J
TI Electronic and structural properties of SnxTi1-xO2 solid solutions: a
periodic DFT study
SO CATALYSIS TODAY
LA English
DT Article
DE oxidation-reduction potential; electron-hole recombination; Fermi
level; SnO2-TiO2; periodic DFT calculation; photocatalysis
ID DENSITY-FUNCTIONAL THEORY; GAS-SENSING PROPERTIES; THIN-FILMS;
1ST-PRINCIPLES CALCULATIONS; THEORETICAL-ANALYSIS; SNO2(110) SURFACES;
TIO2-SNO2 SYSTEM; TIO2; ADSORPTION; SENSORS
AB The structural and electronic properties of selected compositions of
SnxTi1-xO2 solid solutions (x = 0, 1/24, 1/16, 1/12, 1/8, 1/6, 1/4,
1/2, 3/4, 5/6, 7/8, 11/12, 15/16, 23/24 and 1) were investigated by
means of periodic density functional theory (DFT) calculations at B3LYP
level. The calculations show that the corresponding lattice parameters
vary non-linearly with composition, supporting positive deviations from
Vegard's law in the SnxTi1-xO2 system. Our results also account for the
fact that chemical decomposition in SnxTi1-xO2 system is dominated by
composition fluctuations along [0 0 1] direction. A nearly continuous
evolution of the direct band gap and the Fermi level with the growing
value of x is predicted. Ti 3d states dominate the lower portion of the
conduction band of SnxTi1-xO2 solid solutions. Sn substitution for Ti
in TiO2 increases the oxidation-reduction potential of the oxide as
well as it renders the lowest energy transition to be indirect. These
two effects can be the key factors controlling the rate for the
photogenerated electron-hole recombination. These theoretical results
are capable to explain the enhancement of photoactivity in SnxTi1-xO2
solid solutions. (C) 2003 Elsevier B.V All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Jaume 1, Dept Ciencies Expt, Castello, Spain.
RP Sensato, FR, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13083970
Campinas, SP, Brazil.
CR ABEE MW, 2002, SURF SCI, V520, P65
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BEGINCOLIN S, 1996, J SOLID STATE CHEM, V127, P98
BELTRAN A, 2001, SURF SCI, V490, P116
BUENO PR, 2002, J AM CERAM SOC, V85, P282
BUENO PR, 2003, J EUR CERAM SOC, V23, P887
CALATAYUD M, 1999, SURF SCI, V430, P213
CATLOW CRA, 1990, NATURE, V347, P243
CATLOW CRA, 1993, J SOLID STATE CHEM, V106, P13
COHEN ML, 1997, INT J QUANTUM CHEM, V61, P603
COHEN RM, 1988, J AM CERAM SOC, V71, C401
COX PA, 1998, ELECT STRUCTURE CHEM
DURAND P, 1975, THEOR CHIM ACTA, V38, P283
DUSASTRE V, 1999, J MATER CHEM, V9, P445
EDELMAN F, 2000, MAT SCI ENG B-SOLID, V69, P386
FAHMI A, 1993, PHYS REV B, V47, P11717
GROSS A, 2003, THEORETICAL SURFACE
GUPTA PK, 1970, PHILOS MAG, V21, P611
HIRATA T, 1996, PHYS REV B, V53, P8442
HU CH, 1998, ENCY COMPUTATIONAL C
KOKALJ A, 1999, J MOL GRAPH MODEL, V17, P176
KONG LB, 2002, J ALLOY COMPD, V336, P315
LARACASTELLS MP, 2002, CHEM PHYS LETT, V354, P483
LEE C, 1988, PHYS REV B, V37, P785
LIN J, 1999, J CATAL, V183, P368
LINDAN PJD, 1997, FARADAY DISCUSS, V106, P135
MELLEFRANCO M, 2000, SURF SCI, V461, P54
MENETREY M, 2003, SURF SCI, V524, P49
MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
MUSCAT J, 2002, PHYS REV B, V65
NELDER JA, 1965, COMPUT J, V7, P308
OVIEDO J, 2000, SURF SCI, V463, P93
PARK M, 1975, J AM CERAM SOC, V58, P43
PISANI C, 1999, J MOL STRUC-THEOCHEM, V463, P125
RADECKA M, 1998, SENSOR ACTUAT B-CHEM, V47, P194
RADECKA M, 2001, THIN SOLID FILMS, V391, P247
RAMAMOORTHY M, 1994, PHYS REV B, V49, P16721
RANTALA TT, 1999, SURF SCI, V420, P103
SAUER J, 1989, CHEM REV, V89, P199
SAUNDERS VR, 1998, CRYST 98 US MAN U TO
SCHULTZ AH, 1968, PHILOS MAG, V18, P929
SENSATO FR, 2002, SURF SCI, V511, P408
SERMON PA, 1997, SOLID STATE IONICS 2, V101, P673
SILVI B, 1991, J PHYS CHEM SOLIDS, V52, P1005
TAI WP, 2002, SENSOR ACTUAT B-CHEM, V85, P154
YAMAGUCHI Y, 2002, J PHYS CHEM A, V106, P411
YANG J, 2002, J SOLID STATE CHEM, V165, P193
ZAKRZEWSKA K, 1997, THIN SOLID FILMS, V310, P161
ZAKRZEWSKA K, 2001, THIN SOLID FILMS, V391, P229
NR 49
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0920-5861
J9 CATAL TODAY
JI Catal. Today
PD OCT 15
PY 2003
VL 85
IS 2-4
BP 145
EP 152
PG 8
SC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical
GA 738FG
UT ISI:000186275600007
ER
PT J
AU Machado, M
Piquini, P
Mota, R
TI Electronic properties of selected BN nanocones
SO MATERIALS CHARACTERIZATION
LA English
DT Article
DE apex; BN; nanocones; atoms
ID BORON-NITRIDE NANOTUBES; CARBON NANOTUBES; DENSITY; FRUSTRATION;
STATES; GROWTH; CONES
AB The electronic properties of selected BN nanocones are investigated. In
particular, we have proposed one configuration for BN nanocones
associated with the 240degrees disclination as the most stable one
presenting as characteristic four pentagons at the apex and termination
in two atoms. This structure is simulated by clusters containing 58 B
plus N atoms and additional 12 H atoms to saturate the dangling bonds
at the edge. The geometric structure is obtained through molecular
mechanics optimization calculations. The density-functional theory is
employed to perform total energy calculations. The most stable
termination is obtained when the two terminating atoms are one B and
one N. For those cases where the two apex atoms are of the same kind,
the apex with B atoms is determined to present lower binding energy
than with N atoms. For the topologies studied, the local densities of
states are investigated near the apex of the nanocones and sharp
resonant states are found to dominate the electronic structure in the
region close to the Fermi energy. These BN nanocones with pentagonal
sites at their apex are proposed as good candidates for nanoprobes in
scanning microscopy and also for electron field emitters. (C) 2003
Elsevier Inc. All rights reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Machado, M, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
RS, Brazil.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENGU E, 2001, PHYS REV LETT, V86, P2385
BLASE X, 1998, PHYS REV LETT, V80, P1666
BOURGEOIS L, 2000, PHYS REV B, V61, P7686
CARROLL DL, 1997, PHYS REV LETT, V78, P2811
CHOI WB, 1999, APPL PHYS LETT, V75, P3129
CHOPRA NG, 1995, SCIENCE, V269, P966
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FOWLER PW, 1999, CHEM PHYS LETT, V299, P359
FOWLER PW, 1999, ELECT PROPERTIES NOV
FRISCH MJ, 1998, GAUSSIAN 98
GE M, 1994, CHEM PHYS LETT, V220, P192
GE MH, 1994, APPL PHYS LETT, V64, P710
KIM P, 1999, PHYS REV LETT, V82, P1225
LEE C, 1988, PHYS REV B, V37, P785
LIJIMA S, 1992, NATURE, V356, P776
MARTIN JML, 1996, CHEM PHYS LETT, V248, P95
MENON M, 1999, CHEM PHYS LETT, V307, P407
ROGERS KM, 2000, CHEM PHYS LETT, V332, P43
RUBIO A, 1994, PHYS REV B, V49, P5081
SEIFERT G, 1997, CHEM PHYS LETT, V268, P352
NR 21
TC 5
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1044-5803
J9 MATER CHARACT
JI Mater. Charact.
PD MAR
PY 2003
VL 50
IS 2-3
BP 179
EP 182
PG 4
SC Materials Science, Characterization & Testing
GA 737UJ
UT ISI:000186249900015
ER
PT J
AU Fagan, SB
Mota, R
Baierle, RJ
da Silva, AJR
Fazzio, A
TI Energetics and structural properties of adsorbed atoms and molecules on
silicon-doped carbon nanotubes
SO MATERIALS CHARACTERIZATION
LA English
DT Article
DE energetics; structural properties; silicon-doped carbon nanotubes
ID LARGE SYSTEMS; CLUSTERS; GAS
AB The energetics and structural properties of atoms and molecules on a
substitutional Si atom in single wall carbon nanotubes (SWCN) are
investigated using first principle calculations based on
density-functional theory. A detailed analysis is performed for the
geometry and the electronic structures of a Si-doped semiconducting
(10,0) carbon nanotube interacting with F, Cl, H, CH3, and SiH3. A
common feature for the systems with these atoms or molecules is the
presence of one half-filled level close to the top of the valence band.
The specific position of this level in the gap depends on the
chemisorbed species and the binding energy between this species and the
Si atom. (C) 2003 Elsevier Inc. All rights reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
Ctr Univ Franciscano, Dept Ciencias Exatas, BR-97101032 Santa Maria, RS, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
RP Fagan, SB, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
Brazil.
EM sfagan@mail.ufsm.br
CR ALRUBAIEY N, 1998, J PHYS CHEM A, V102, P8564
ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
BAIERLE RJ, 2001, PHYS REV B, V64
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DASH AK, 2002, J ALLOY COMPD, V344, P65
FYE JL, 1997, J PHYS CHEM A, V101, P1836
GULSEREN O, 2001, PHYS REV LETT, V87
KIMURA T, 1996, CHEM PHYS LETT, V256, P269
KONG J, 2000, SCIENCE, V287, P622
MICKELSON ET, 1998, CHEM PHYS LETT, V296, P188
ORDEJON P, 1996, PHYS REV B, V53
PENG S, 2000, NANOTECHNOLOGY, V11, P57
PERDEW JP, 1981, PHYS REV B, V23, P5048
RAY C, 1998, PHYS REV LETT, V80, P5365
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANKEY OF, 1989, PHYS REV B, V40, P3979
SRIVASTAVA D, 1999, PHYS REV LETT, V83, P2973
TRANKLER KA, 2001, ORGANOMETALLICS, V20, P5139
TROULLIER N, 1991, PHYS REV B, V43, P1993
YANG J, 2001, PHYS REV B, V64, P85420
ZHAO J, 2000, PHYS REV LETT, V85, P1706
ZHAO J, 2001, CONDENS MATTER, V1
NR 22
TC 3
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1044-5803
J9 MATER CHARACT
JI Mater. Charact.
PD MAR
PY 2003
VL 50
IS 2-3
BP 183
EP 187
PG 5
SC Materials Science, Characterization & Testing
GA 737UJ
UT ISI:000186249900016
ER
PT J
AU Guedes, RC
Coutinho, K
Cabral, BJC
Canuto, S
Correia, CF
dos Santos, RMB
Simoes, JAM
TI Solvent effects on the energetics of the phenol O-H bond: Differential
solvation of phenol and phenoxy radical in benzene and acetonitrile
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID SUBSTITUTED CYCLOPENTADIENYL RADICALS; CARLO-QUANTUM-MECHANICS; SMALL
CLUSTERS; BASIS-SET; PHOTOACOUSTIC CALORIMETRY; THERMAL-DECOMPOSITION;
TOTAL ENERGIES; AB-INITIO; HYDRATION; WATER
AB Monte Carlo statistical mechanics simulations, density-functional
theory calculations, time-resolved photoacoustic calorimetry, and
isoperibol reaction-solution calorimetry experiments were carried out
to investigate the solvation enthalpies and solvent effects on the
energetics of the phenol O-H bond in benzene and acetonitrile. A good
agreement between theoretical and experimental results is obtained for
the solvation enthalpies of phenol in benzene and acetonitrile. The
theoretical calculations also indicate that the differences between the
solvation enthalpies of phenol (PhOH) and phenoxy radical (PhO*) in
both benzene and acetonitrile are significantly smaller than previous
estimations based on the ECW model. The results for the solvation
enthalpies are used to obtain the O-H bond dissociation enthalpies in
benzene and acetonitrile. For benzene and acetonitrile, the theoretical
results of 89.4 +/- 1.2 and 90.5 +/- 1.7 kcal mol(-1), respectively,
are in good agreement with the experimental values (90.9 +/- 1.3 and
92.9 +/- 0.9 kcal mol(-1)), obtained by photoacoustic calorimetry. The
solute-solvent interaction energies of phenol and phenoxy radical with
both acetonitrile and benzene differ by less than 2 kcal mol-1. A
detailed analysis of the solvent contributions to the differential
solvation enthalpy is made in terms of the hydrogen bonds and the
solute-solvent interactions. Both PhOH and PhO* induce a significant,
although equivalent, solvent reorganization enthalpy. Finally, the
convergence of the solute-solvent interaction is analyzed as a function
of the distance to the solute and illustrates the advantages and
limitations of local models such as microsolvation and
hydrogen-bond-only models.
C1 Univ Lisbon, Fac Ciencias, Dept Quim & Bioquim, P-1749016 Lisbon, Portugal.
Univ Lisbon, Grp Fis Matemat, P-1649003 Lisbon, Portugal.
Univ Mogi Cruzes, BR-08701970 Sao Paulo, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Algarve, Fac Engn Recursos Nat, P-8005139 Faro, Portugal.
RP Cabral, BJC, Univ Lisbon, Fac Ciencias, Dept Quim & Bioquim, P-1749016
Lisbon, Portugal.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
BESLER BH, 1990, J COMPUT CHEM, V11, P431
BOHM HJ, 1983, MOL PHYS, V49, P347
BOYS SF, 1970, MOL PHYS, V19, P553
BRAY JA, 1999, J PHYS CHEM A, V103, P2214
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
CHIPMAN DM, 1999, J PHYS CHEM A, V103, P11181
CORREIA CF, 2003, UNPUB J PHYS CHEM A
COUTINHO K, 2000, DICE GEN MONTE CARLO
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
COUTO PC, 2002, INT J QUANTUM CHEM, V86, P297
DIOGO HP, 1995, J CHEM THERMODYN, V27, P597
DIOGO HP, 2001, J ORGANOMET CHEM, V632, P188
DOSSANTOS RMB, 1998, J PHYS CHEM REF DATA, V27, P707
DOSSANTOS RMB, 1999, J CHEM THERMODYN, V31, P1483
DOSSANTOS RMB, 2001, J AM CHEM SOC, V123, P12670
DOSSANTOS RMB, 2002, J PHYS CHEM A, V106, P9883
DRAGO RS, 1993, INORG CHEM, V32, P2473
DRAGO RS, 1994, APPL ELECTROSTATIC C
FERNANDEZ JA, 1997, J CHEM PHYS, V107, P3363
FERNANDEZ JA, 1999, J CHEM PHYS, V110, P5159
FERNANDEZ JA, 1999, J CHEM PHYS, V110, P5183
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GUEDES RC, 2000, J PHYS CHEM A, V104, P6062
GUEDES RC, 2003, J PHYS CHEM B, V107, P4304
IRIKURA KK, 1998, ACS S SERIES, V677
ITOH S, 2000, COORDIN CHEM REV, V198, P3
JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
JORGENSEN WL, 1990, J AM CHEM SOC, V112, P4768
JORGENSEN WL, 1993, J COMPUT CHEM, V14, P195
KAGAN VE, 1998, ANN NY ACAD SCI, P854
KATRITZKY AR, 1986, J AM CHEM SOC, V108, P7213
KIRKWOOD JG, 1935, J CHEM PHYS, V3, P300
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
KRYACHKO ES, 2002, J PHYS CHEM A, V106, P4267
LAZARIDIS T, 2000, J PHYS CHEM B, V104, P4964
LEE C, 1988, PHYS REV B, V37, P785
LEVCHUK VN, 1991, CHEM PHYS LETT, V185, P339
LIN CY, 1986, J PHYS CHEM-US, V90, P425
LIU RF, 1996, J PHYS CHEM-US, V100, P9314
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MCCLENMAN AL, 1963, TABLES EXPT DIPOLE M, V1
MOONEY DA, 1998, CHEM PHYS LETT, V294, P135
PARKER VD, 1993, J AM CHEM SOC, V115, P1201
PEDLEY JB, 1994, THERMODYNAMIC DATA S, V1
PETERSSON GA, 1988, J CHEM PHYS, V89, P2193
PLATZ J, 1998, J PHYS CHEM A, V102, P7964
SIBENER SJ, 1980, J CHEM PHYS, V72, P4341
SINGH UC, 1984, J COMPUT CHEM, V5, P129
STRAATSMA TP, 1989, J CHEM PHYS, V90, P3300
VOGEL GC, 1996, J CHEM EDUC, V73, P701
WAYNER DDM, 1995, J AM CHEM SOC, V117, P8737
WEAVER EC, 1968, ANNU REV PLANT PHYS, V19, P283
XANTHEAS SS, 1996, J CHEM PHYS, V104, P8821
YAO J, 1999, J CHEM PHYS, V110, P5174
ZWANZIG RW, 1954, J CHEM PHYS, V22, P1420
NR 57
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 30
PY 2003
VL 107
IS 43
BP 9197
EP 9207
PG 11
SC Chemistry, Physical
GA 736DQ
UT ISI:000186156000018
ER
PT J
AU Souza-Neto, NM
Ramos, AY
Tolentino, HCN
Favre-Nicolin, E
Ranno, L
TI Local anisotropy in strained manganite thin films
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID MAGNETIC-ANISOTROPY; MAGNETORESISTANCE; SPECTROSCOPY; DEPENDENCE
AB We report on an angular resolved x-ray absorption spectroscopy study of
the local atomic structure around the manganese ions in La0.7Sr0.3MnO3
thin films epitaxially grown on tensile and compressive substrates. Ab
initio calculations provide strong support to the analysis of the
experimental data and make possible the unambiguous derivation of a
model of local distortion around the manganese atoms, without
modification of the tilt angle Mn-O-Mn, among the octahedra. This
distortion, tending to localize the charge carriers, is the driving
parameter in the modifications of the magnetic and transport properties
observed in thin films with respect to bulk systems. (C) 2003 American
Institute of Physics.
C1 LNLS, BR-13084971 Campinas, Brazil.
UNICAMP, Inst Fis Gleb Wataghin, BR-13083970 Campinas, Brazil.
LMCP, CNRS, UMR 7590, Paris, France.
Univ Grenoble 1, CNRS, UPR 5051, Lab Louis Neel, Grenoble, France.
RP Souza-Neto, NM, LNLS, CP 6192, BR-13084971 Campinas, Brazil.
CR ANKUDINOV AL, 2002, PHYS REV B, V65
DHO J, 2003, APPL PHYS LETT, V82, P1434
MANCEAU A, 1992, AM MINERAL, V77, P1133
MILLIS AJ, 1998, J APPL PHYS, V83, P1588
MILLIS AJ, 1998, NATURE, V392, P147
MINIOTAS A, 2001, J APPL PHYS, V89, P2134
PRELLIER W, 2001, J PHYS-CONDENS MAT, V13, R915
QIAN Q, 2001, PHYS REV B, V63
RAMOS AY, 2003, AIP CONF PROC, V652, P456
RANNO L, 2002, APPL SURF SCI, V188, P170
STEENBECK K, 2002, APPL PHYS LETT, V80, P3361
TOLENTINO HCN, 2001, J SYNCHROTRON RADI 3, V8, P1040
TYSON TA, 1996, PHYS REV B, V53, P13985
URUSHIBARA A, 1995, PHYS REV B, V51, P14103
WU XW, 2000, PHYS REV B, V61, P501
NR 15
TC 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 27
PY 2003
VL 83
IS 17
BP 3587
EP 3589
PG 3
SC Physics, Applied
GA 734QQ
UT ISI:000186068400048
ER
PT J
AU de Oliveira, HCB
Fonseca, TL
Castro, MA
Amaral, OAV
Cunha, S
TI Theoretical study of the static first hyperpolarizability of
azo-enaminone compounds
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID CONJUGATED ORGANIC-MOLECULES; NONLINEAR-OPTICAL-PROPERTIES; BOND-LENGTH
ALTERNATION; AB-INITIO; ELECTRON CORRELATION; AROMATIC-COMPOUNDS;
DIPOLE-MOMENT; FIRST-ORDER; POLARIZABILITIES; DERIVATIVES
AB In this work the static electric properties of azo-enaminones, with
special emphasis to the vector component of the first
hyperpolarizability beta(vec), are determined at the Hartree-Fock (HF)
level with the electron correlation (EC) effects included through the
second-order Moller-Plesset perturbation theory (MP2). The ab initio
results, in accordance with previous semiempirical calculations, show
that appropriate choices of substituents to be incorporated to the
molecular structure can have a marked influence on the first
hyperpolarizability. An initial study about the changes on the
beta(vec) values of these compounds, as a result of the incorporation
of different donor groups, indicates that this property increases as
function of the donor group strength tending to a saturated value. A
comparison between our HF and MP2 results, for all compounds studied
here, show that the beta(vec) values are strongly affected by the
effects of the electron correlation correction. (C) 2003 American
Institute of Physics.
C1 Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
Univ Fed Bahia, Inst Quim, BR-41170290 Salvador, BA, Brazil.
RP de Oliveira, HCB, Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go,
Brazil.
CR ABE J, 1997, J PHYS CHEM B, V101, P576
ADANT C, 1997, J PHYS CHEM A, V101, P3025
BOSSHARD C, 1992, J APPL PHYS, V71, P1594
BOSSHARD C, 1995, ORGANIC NONLINEAR OP
BOURHILL G, 1994, J AM CHEM SOC, V116, P2619
BURKELAING M, 1976, ACTA CRYSTALLOGR, V32, P3216
CHEMLA DS, 1987, NONLINEAR OPTICAL PR, V1
CHEMLA DS, 1987, NONLINEAR OPTICAL PR, V2
DANIEL C, 1990, CHEM PHYS LETT, V171, P209
EBERLIN MN, 1990, J MOL STRUCT THEOCHE, V207, P143
EDAFIOGHO O, 2002, BIOORGAN MED CHEM, V10, P993
FIGEIREDO LJO, 1997, J ORG CHEM, V62, P1164
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GILLI P, 2000, J AM CHEM SOC, V122, P10405
HURST GJB, 1988, J CHEM PHYS, V89, P385
JACQUEMIN D, 1998, CHEM PHYS LETT, V284, P24
KANIS DR, 1994, CHEM REV, V94, P195
KETTMANN V, 2001, ACTA CRYSTALLOGR C 6, V57, P737
KUBICKI M, 2000, J MOL STRUCT, V525, P141
LALAMA SJ, 1979, PHYS REV A, V20, P1179
LEVINE BF, 1974, APPL PHYS LETT, V24, P445
MACHACEK V, 2000, MAGN RESON CHEM, V38, P293
MADER SR, 1994, SCIENCE, V265, P632
MARDER SR, 1991, SCIENCE, V252, P103
MAROULIS G, 1999, J PHYS CHEM A, V103, P4359
MEYERS F, 1994, J AM CHEM SOC, V116, P10703
NARINGREKAR VH, 1990, J PHARM SCI, V79, P138
OLIVEIRA LN, 2003, CHEM PHYS, V289, P221
OUDAR JL, 1977, J CHEM PHYS, V66, P2664
OUDAR JL, 1977, J CHEM PHYS, V67, P446
PRASAD P, 1991, INTRO NONLINEAR OPTI
RODRIGUES BL, 1996, ACTA CRYSTALLOGR C 3, V52, P705
SHMUELI U, 1973, J CHEM SOC P2, V2, P657
SIM F, 1993, J PHYS CHEM-US, V97, P1158
SIMUNEK P, 2002, J MOL STRUCT, V642, P41
SINGER KD, 1981, J CHEM PHYS, V75, P3572
STAHELIN M, 1993, J CHEM PHYS, V98, P5595
TIEMANN BG, 1993, J CHEM SOC CHEM COMM, P735
TOTO TT, 1995, CHEM PHYS LETT, V244, P59
TSUNEKAWA T, 1992, J PHYS CHEM-US, V96, P10268
WANG P, 1999, J PHYS CHEM A, V103, P7076
YANG ML, 2002, CHEM PHYS LETT, V354, P316
ZHU WH, 2002, CHEM PHYS LETT, V358, P1
NR 43
TC 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD OCT 22
PY 2003
VL 119
IS 16
BP 8417
EP 8423
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 731BW
UT ISI:000185865500024
ER
PT J
AU Perpetuo, GJ
Janczak, J
TI Three-dimensional self-assembly supramolecular structure of hydrogen
bonded melaminium citrate
SO POLISH JOURNAL OF CHEMISTRY
LA English
DT Article
DE melaminium; citrate; crystal structure; self-assembling; conformation;
hydrogen bond
ID ANHYDROUS CITRIC ACID; RAY CRYSTAL ANALYSIS; X-RAY; SOLID-STATE; TAPES;
TETRAHYDRATE; ARCHITECTURE; SECONDARY; ACONITASE; COMPLEXES
AB The melaminium dihydrogencitrate,
(C3H7N6)(HOOC-CH2-C(OH)(COOH)-CH2-COO), crystallizes from water
solution at room temperature in the P2(1)/c space group of the
monoclinic system with the lattice parameters of a = 5.531(1), b =
20.869(4), c = 11.282(2) Angstrom and beta = 99.96(3)degrees and Z = 4.
The crystals are built up from singly protonated at the one N-ring atom
melaminium cations that interact in a near linear fashion through a
pair of N-(HN)-N-... hydrogen bonds to form the centrosymmetric dimeric
structure. The dihydrogencitrate(-) anions interact in the head-to-tail
fashion via the terminal dissociated (COO-) and non-dissociated (COOH)
carboxyl groups to form O-(HO)-O-... hydrogen bonded zigzag infinite
chains. The hydroxyl group of dihydrogencitrate(-) ions is involved
into O-(HO)-O-... hydrogen bonds that linked together the
dihydrogencitrate(-) chains into two-dimensional network. The
centrosymmetric dimers of melaminiurn moieties interact with the sheets
of dihydrogencitrate(-) to form the three-dimensional hydrogen bonded
network. The conformation of the dihydrogencitrate(-) ion in the
crystal is compared with the conformation in the gas-phase obtained by
the ab-initio molecular orbital calculation.
C1 Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland.
Univ Fed Ouro Preto, Inst Ciencias Exatas & Biol, Dept Fis, BR-35400000 Ouro Preto, MG, Brazil.
RP Janczak, J, Polish Acad Sci, Inst Low Temp & Struct Res, POB 1410,
PL-50950 Wroclaw, Poland.
CR *KUMA KM 4 CCD SOF, 1999, VER 163 US GUID
ALLEN FH, 1987, J CHEM SOC P2, S1
ALLEN FH, 1993, CHEM DESIGN AUTOMATI, V8, P31
AUKERBY CB, 2001, AUST J CHEM, V54, P409
BATES RG, 1949, J AM CHEM SOC, V71, P1274
DESIRAJU GR, 1990, CRYSTAL ENG DESIGN O
DESIRAJU GR, 1995, ANGEW CHEM INT EDIT, V34, P2311
DESIRAJU GR, 1999, WEAK HYDROGEN BOND S
FRISCH MJ, 1995, GAUSSIAN94 REVISION
FYFE MCT, 1997, ACCOUNTS CHEM RES, V30, P393
GILLESPIE RJ, 1963, J CHEM EDUC, V40, P295
GILLESPIE RJ, 1992, CHEM SOC REV, V21, P59
GLUSKER JP, 1969, ACTA CRYSTALLOGR B, V25, P1066
GLUSKER JP, 1980, ACCOUNTS CHEM RES, V13, P345
JANCZAK J, 2001, ACTA CRYSTALLOGR 12, V57, P1431
JANCZAK J, 2001, ACTA CRYSTALLOGR C 1, V57, P123
JANCZAK J, 2001, ACTA CRYSTALLOGR C 7, V57, P873
JANCZAK J, 2001, ACTA CRYSTALLOGR C 9, V57, P1120
JANCZAK J, 2002, ACTA CRYSTALLOGR C 8, V58, O455
JANCZAK J, 2002, ACTA CRYSTALLOGR C, V58, O112
JANCZAK J, 2002, ACTA CRYSTALLOGR C, V58, O431
JANCZAK J, 2003, ACTA CRYSTALLOGR C 6, V59, O349
KRISCHE MJ, 2000, STRUCT BOND, V96, P3
MACDONALD JC, 1994, CHEM REV, V94, P2382
MARCHEWKA M, 2003, SOLID STATE SCI, V5, P643
MARTIN A, 1995, ACTA CRYSTALLOGR 10, V51, P2174
NORDMAN CE, 1960, ACTA CRYSTALLOGR, V13, P418
ROELOFSEN G, 1972, CRYST STRUCT COMMUN, V1, P23
ROW TNG, 1999, COORDIN CHEM REV, V183, P81
SHELDRICK GM, 1990, SHELXTL PROGRAM
SHELDRICK GM, 1997, SHELXL97 PROGRAM SOL
VARGHESE JN, 1977, ACTA CRYSTALLOGR B, V33, P2102
VISHWESHWAR P, 2002, J ORG CHEM, V67, P556
WHITESIDES GM, 1995, ACCOUNTS CHEM RES, V28, P81
ZACHARIAS DE, 1984, ACTA CRYSTALLOGR C, V40, P2100
ZERKOWSKI J, 1994, J AM CHEM SOC, V116, P2982
ZERKOWSKI JA, 1990, J AM CHEM SOC, V112, P9025
ZERKOWSKI JA, 1994, CHEM MATER, V6, P1250
ZERKOWSKI JA, 1994, J AM CHEM SOC, V116, P4298
NR 39
TC 4
PU POLISH CHEMICAL SOCIETY
PI WARSAW
PA C/O POLISH ACAD SCIENCES, INST PHYSICAL CHEMISTRY, UL KASPRZAKA 44/52,
01-224 WARSAW, POLAND
SN 0137-5083
J9 POLISH J CHEM
JI Pol. J. Chem.
PD OCT
PY 2003
VL 77
IS 10
BP 1323
EP 1337
PG 15
SC Chemistry, Multidisciplinary
GA 730VK
UT ISI:000185850700012
ER
PT J
AU Trasferetti, BC
Davanzo, CU
de Moraes, MAB
TI LO-TO splittings in plasma-deposited siloxane films
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID INFRARED-REFLECTANCE SPECTRA; CHEMICAL-VAPOR-DEPOSITION; GEL-DERIVED
SILICA; THIN-FILMS; VIBRATIONAL-SPECTRA; SI/SIO2 INTERFACE; AB-INITIO;
SPECTROSCOPY; OXYGEN; ABSORPTION
AB The present work presents LO and TO functions in the mid-infrared
region for thin films deposited from glow discharge plasmas of
tetramethylsilane (TMS) diluted either in Ar or O-2 or in mixtures of
these two gases. These functions were calculated through the
Kramers-Kronig analysis of transmittance spectra of the films supported
on KBr disks. To correlate structural aspects of the films with the
observed LO-TO splittings, a group frequency analysis based on the
literature was made. Such an analysis indicated that the films
deposited from the TMS Ar mixture were formed mainly by a
polycarbosilane skeleton, whereas those deposited from TMS-O-2 and
TMS-O-2-Ar were formed by a random network of four types of distorted
tetrahedra: (CH3)(3)SiO0.5, (CH3)(2)SiO, (CH3SiO1.5), and SiO2. From
the LO-TO splitting for the asymmetrical stretching mode of Si-O-Si
groups, the density and the presence of defects in samples obtained
from TMS-O-2 and TMS-O-2-Ar mixtures were evaluated. The number of
defects increased as the Ar-to-O-2 flow rate decreased. We also report
for the first time LO-TO splittings for bands related to the bending of
CH3 and to the stretching of the Si-C bond in Si(CH3)(x) groups. The
knowledge of such splittings is very important for a correct evaluation
of the infrared reflection -absorption spectra taken at oblique
incidence of thin films containing Si-O bonds and Si(CH3)(x) groups
deposited on metals.
C1 Univ Estadual Campinas, Inst Quim, BR-13083862 Campinas, SP, Brazil.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13087970 Campinas, SP, Brazil.
RP Davanzo, CU, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
BR-13083862 Campinas, SP, Brazil.
CR ALLARA DL, 1985, LANGMUIR, V1, P52
ALMEIDA RM, 1992, PHYS REV B, V45, P161
ALMEIDA RM, 1996, PHYS REV B, V53, P14656
ANDERSON DR, 1974, ANAL SILICONES
BELLAMY LJ, 1975, INFRARED SPECTRA COM
BERREMAN DW, 1963, PHYS REV, V130, P2193
BLAKEMORE JS, 1995, SOLID STATE PHYSICS
DACRUZ NC, 1998, J POLYM SCI POL PHYS, V36, P1873
DECIUS JC, 1968, J CHEM PHYS, V49, P1387
DELEEUW SW, 1985, PHYS REV LETT, V55, P2879
DEVINE RAB, 1996, APPL PHYS LETT, V68, P3108
FLEISCHER H, 1999, J PHYS CHEM A, V103, P727
FURUSAWA T, 2001, ELECTROCHEM SOLID ST, V4, G31
GALEENER FL, 1976, PHYS REV LETT, V37, P1474
GUITON TA, 1993, COLLOID SURFACE A, V74, P33
HARBECKE B, 1985, APPL PHYS A-SOLID, V38, P263
HAWRANEK JP, 1976, SPECTROCHIM ACTA A, V32, P99
HINDS BJ, 1998, J NONCRYST SOLIDS, V227, P507
JONES LH, 1991, J PHYS CHEM-US, V95, P2701
KAMITSOS EI, 1993, PHYS REV B, V48, P12499
KAMITSOS EI, 1996, PHYS REV B, V53, P14659
KIRK CT, 1988, PHYS REV B, V38, P1255
KITTEL C, 1996, INTRO SOLID STATE PH
LEWIS HGP, 2000, CHEM MATER, V12, P3488
LEWIS HGP, 2001, J ELECTROCHEM SOC, V148, F212
LUCOVSKY G, 1980, SOL CELLS, V2, P431
LUCOVSKY G, 1998, J NONCRYST SOLIDS, V227, P1
MAGNI D, 2001, J PHYS D APPL PHYS, V34, P87
MARCHAND A, 1962, CHIM PHYS, V59, P1142
MARTINET C, 1997, J APPL PHYS, V81, P6996
MCKEAN DC, 1970, SPECTROCHIM ACTA A, V26, P1815
MCKEAN DCC, 1999, SPECTROCHIM ACTA A, V55, P1485
PAI PG, 1986, J VAC SCI TECHNOL A, V4, P689
PASQUARELLO A, 1997, PHYS REV LETT, V79, P1766
PAYNE MC, 1984, J NON-CRYST SOLIDS, V68, P351
QUEENEY KT, 2000, J APPL PHYS, V87, P1322
RAU C, 1994, THIN SOLID FILMS, V249, P28
SARNTHEIN J, 1997, SCIENCE, V275, P1925
SCARLETE M, 1994, CHEM MATER, V6, P977
SEKIMOTO K, 1982, PHYS REV B, V26, P3411
SMITH AL, 1984, APPL SPECTROSC, V38, P822
SMITH DY, 1985, HDB OPTICAL CONSTANT
SUGAHARA S, 1999, JPN J APPL PHYS 1, V38, P1428
SUGAHARA S, 2001, J ELECTROCHEM SOC, V148, F120
TEN YS, 1989, PHYS CHEM, V93, P7208
TRASFERETTI BC, UNPUB
TRASFERETTI BC, 2000, APPL SPECTROSC, V54, P502
TSU DV, 1989, PHYS REV B, V40, P1795
USAMI K, 2000, P 7 INT S QUANT EFF
WOLFE DM, 1999, J VAC SCI TECHNOL 2, V17, P2170
WROBEL AM, 1980, J MACROMOL SCI CHEM, V14, P321
YAMAMOTO K, 1994, VIB SPECTROSC, V8, P1
ZHANG CX, 1998, J AM CHEM SOC, V120, P8380
NR 53
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD OCT 2
PY 2003
VL 107
IS 39
BP 10699
EP 10708
PG 10
SC Chemistry, Physical
GA 726QC
UT ISI:000185609600005
ER
PT J
AU Ramalho, TC
Martins, TLC
Borges, LEP
Figueroa-Villar, JD
TI Influence of nonbonded interactions in the kinetics of formation of
chalcogenol esters from chalcogenoacetylenes
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE chalcogenoacetylene; chalcogenol ester; DFT; kinetics of formation;
nonbonded interactions; transition state
ID POLARIZABLE CONTINUUM MODEL; SELENAZOFURIN; TIAZOFURIN; CONTACTS;
THIAZOLE; SOLVENT; ENERGY; SULFUR; AGENT
AB The influence of nonbonded interactions in the kinetics of formation of
chalcogenol (thiol and selenol) esters from chalcogenoacetylenes was
studied by molecular modeling. Using semiempirical and density
functional theory methods it was possible to explain the differences
between the reaction rates for the analogous sulfur and selenium
chalcogenoacetylenes as well as evaluate the structural and electronic
effects (nonbonded interactions) on the formation of the esters. The
differences in the reaction rates can be explained in terms of the
carbocation stabilization by the chalcogen atom. It is proposed that
these differences are due to the differences in the intensity of the
dominant interaction pi(CO)(*)/n(Y) between the nonbonding orbitals of
sulfur and selenium with the vacant orbital of carbon in the cationic
transition state. (C) 2003 Wiley Periodicals, Inc.
C1 Inst Militar Engn, Dept Quim, BR-22290270 Rio De Janeiro, Brazil.
RP Figueroa-Villar, JD, Inst Militar Engn, Dept Quim, Praca Gen Tiburcio
80, BR-22290270 Rio De Janeiro, Brazil.
CR BACA M, 1995, J AM CHEM SOC, V117, P1881
BARONE V, 1998, J COMPUT CHEM, V19, P404
BECKE AD, 1988, PHYS REV A, V38, P3089
BRAGA AL, 1999, J CHEM CRYSTALLOGR, V29, P77
BRAGA AL, 2001, SYNLETT MAR, P371
BRAGA AL, 2001, TETRAHEDRON, V57, P3297
BURLING FT, 1992, J AM CHEM SOC, V114, P2313
CAMMI R, 1994, J CHEM PHYS, V100, P7495
CANTOR CR, 1980, BIOPHYSICAL CHEM 1, CH5
CAROLINE P, 1996, J PHYS CHEM-US, V100, P17797
CHO SG, 2000, J MOL STRUC-THEOCHEM, V532, P279
COHENADDAD C, 1984, J CHEM SOC P2, P191
ELTAHER S, 2001, INT J QUANTUM CHEM, V20, P242
FRISCH MJ, 2001, GAUSSIAN 98 REVISION
GOLDSTEIN BM, 1983, J AM CHEM SOC, V105, P7416
GOLDSTEIN BM, 1985, J AM CHEM SOC, V107, P1394
GOLDSTEIN BM, 1988, J MED CHEM, V31, P1026
GOLDSTEIN BM, 1990, J AM CHEM SOC, V112, P8265
GURUROW TN, 1981, J AM CHEM SOC, V103, P477
HALGREN TA, 1996, J COMPUT CHEM, V17, P490
HEHRE WJ, 1999, PC SPAR TAN PRO
KUCSMAN A, 1985, ORGANIC SULFUR CHEM, CH4
LI HG, 2001, J AM CHEM SOC, V123, P2326
MOTTANETO DJ, 1992, J QUANTUM CHEM QUANT, V19, P225
MUKAIYAMA T, 1973, J AM CHEM SOC, V95, P4763
PERDEW JP, 1986, PHYS REV B, V33, P8822
RAMASUBBU N, 1987, PHOSPHORUS SULFUR, V31, P221
ROSENFIELD RE, 1977, J AM CHEM SOC, V99, P4860
SALZNER U, 1993, J AM CHEM SOC, V115, P10231
TOMASI J, 1994, CHEM REV, V94, P2027
WANG P, 1991, J AM CHEM SOC, V113, P55
WANG X, 1999, J AM CHEM SOC, V121, P8567
WIRTH T, 1998, J AM CHEM SOC, V120, P3376
NR 33
TC 4
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD NOV 5
PY 2003
VL 95
IS 3
BP 267
EP 273
PG 7
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 728CF
UT ISI:000185697100009
ER
PT J
AU Laschuk, EF
Martins, MM
Evangelisti, S
TI Ab initio potentials for weakly interacting systems: Homonuclear rare
gas dimers
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE ab initio; rare gas dimers; rovibrational spectroscopy; second virial
coefficient
ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; WAVE-FUNCTIONS;
ENERGY CURVES; INTERMOLECULAR INTERACTIONS; BENCHMARK CALCULATIONS;
SCHRODINGER-EQUATION; ELECTRIC PROPERTIES; NEON DIMER; AR-2
AB A series of high-level ab initio interatomic potentials for the
homonuclear rare gas dimers He-2, Ne-2, and Ar-2 is presented, with
predictions of rovibrational spectroscopic parameters and second virial
coefficients. These potentials were created by using d-aug-cc-pVnZ, n =
D,T,Q basis sets, NP4 and CCSD(T) correlation energy treatments, the
counterpoise correction to the basis set superposition error, and
extrapolation schemes for estimating complete basis set (CBS) limits. A
careful FCI correction was added to our best He-2 CCSD(T) potential.
The characteristic parameters D-e, R-e, k, and sigma of the ab initio
potentials were compared with those of reliable empirical and ab initio
potentials. Our best results for He-2 recovered 99.9% of Janzen's SAPT2
well depth. In the case of Ar-2, we recovered 99.8% of Aziz's HFDID1
well depth. For neon, second virial coefficients typically came to
within 0.5-1.0 cm(3)mol(-1) of experimental values and rovibrational
energy levels exhibited errors of about 1.4 cm(-1). Our best argon
results exhibited second virial coefficients in agreement of 0.25
cm(3)mol(-1) with experiment and rovibrational energy level errors
around 0.2 cm(-1). (C) 2003 Wiley Periodicals, Inc.
C1 Univ Fed Rio Grande Sul, Theoret Chem Grp, BR-91501970 Porto Alegre, RS, Brazil.
Univ Bologna, Theoret & Inorgan Chem Dept, Bologna, Italy.
RP Laschuk, EF, Univ Fed Rio Grande Sul, Theoret Chem Grp, BR-91501970
Porto Alegre, RS, Brazil.
CR ANDERSON JB, 2001, J CHEM PHYS, V115, P4546
AZIZ RA, 1989, CHEM PHYS, V130, P187
AZIZ RA, 1993, J CHEM PHYS, V99, P4518
BALINTKURTI GG, 1992, INT REV PHYS CHEM, V11, P317
BURDA JV, 1996, MOL PHYS, V89, P425
COLBOURN EA, 1976, J CHEM PHYS, V65, P1741
CYBULSKI SM, 1999, J CHEM PHYS, V111, P10520
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FERNANDEZ B, 1998, J CHEM PHYS, V109, P10255
FRISCH MJ, 1995, GAUSSIAN 98
GDANITZ RJ, 2000, J CHEM PHYS, V113, P5145
GDANITZ RJ, 2001, CHEM PHYS LETT, V348, P67
GROCHOLA G, 1998, MOL PHYS, V95, P471
HATTIG C, 1999, J CHEM PHYS, V111, P10099
HERMAN PR, 1988, J CHEM PHYS, V89, P4535
JANZEN AR, 1997, J CHEM PHYS, V107, P914
KENDALL RA, 1992, J CHEM PHYS, V96, P6796
KOCH H, 1999, J CHEM PHYS, V111, P10108
LEROY RJ, 1974, MOL PHYS, V28, P587
MARSTON CC, 1989, J CHEM PHYS, V91, P3571
TANAKA Y, 1972, J CHEM PHYS, V57, P2964
TAO FM, 1994, MOL PHYS, V81, P507
TELEGER C, 1999, J PHYS CHEM REF DATA, V28, P779
VANDEBOVENKAMP J, 1999, CHEM PHYS LETT, V309, P287
VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
VANMOURIK T, 1999, MOL PHYS, V96, P529
WERNER HJ, 1997, MOLPRO
WOON DE, 1993, J CHEM PHYS, V98, P1358
WOON DE, 1994, J CHEM PHYS, V100, P2838
WOON DE, 1994, J CHEM PHYS, V100, P2975
NR 30
TC 3
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD NOV 5
PY 2003
VL 95
IS 3
BP 303
EP 312
PG 10
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 728CF
UT ISI:000185697100014
ER
PT J
AU Alexandre, SS
Artacho, E
Soler, JM
Chacham, H
TI Small polarons in dry DNA
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID CHARGE MIGRATION; DOUBLE HELIX; LAMBDA-DNA; TRANSPORT; MODEL;
PSEUDOPOTENTIALS; CONDUCTIVITY; MOLECULES; DAMAGE; MOTION
AB We report ab initio calculations for positively charged fragments of
dry poly(dC)-poly(dG) DNA, with up to 4 C-G pairs. We find a strong
hole-lattice coupling and clear evidence for the formation of small
polarons. The largest geometry distortions occur in only one or two
base pairs. They involve the stretching of weak bonds within each base
pair, increasing the distance of positive hydrogens, and decreasing
that of negative oxygens, to the region in which the hole localizes. We
obtain an energy of similar to0.30 eV for the polaron formation, nearly
independent of the chain size. From it, we can estimate an activation
energy for polaron hopping of similar to0.15 eV, consistent with the
available experimental value.
C1 Univ Fed Minas Gerais, Dept Fis, ICEx, BR-30123970 Belo Horizonte, MG, Brazil.
Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England.
Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain.
RP Alexandre, SS, Univ Fed Minas Gerais, Dept Fis, ICEx, CP 702,
BR-30123970 Belo Horizonte, MG, Brazil.
CR ARTACHO E, IN PRESS MOL PHYS
BARNETT RN, 2001, SCIENCE, V294, P567
BERATAN DN, 1997, CHEM BIOL, V4, P3
BRUINSMA R, 2000, PHYS REV LETT, V85, P4393
CONWELL EM, 2000, P NATL ACAD SCI USA, V97, P4556
CUNIBERTI G, 2002, PHYS REV B, V65
DEMPLE B, 1994, ANNU REV BIOCHEM, V63, P915
DEPABLO PJ, 2000, PHYS REV LETT, V85, P4992
FINK HW, 1999, NATURE, V398, P407
GERVASIO FL, 2002, PHYS REV LETT, V89
HOLSTEIN T, 1959, ANN PHYS-NEW YORK, V8, P325
HOLSTEIN T, 1959, ANN PHYS-NEW YORK, V8, P343
KALOSAKAS G, 1998, PHYS REV B, V58, P3094
KELLEY SO, 1999, SCIENCE, V283, P375
KIM JN, 1995, PHYS REV B, V52, P1640
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KOHN W, 1965, PHYS REV, V140, A1133
LOFT S, 1996, J MOL MED-JMM, V74, P297
MAHAN GD, 1986, MANY PARTICLE PHYSIC
MAKOV G, 1995, PHYS REV B, V51, P4014
ORDEJON P, 1995, PHYS REV B, V51, P1456
ORDEJON P, 1996, PHYS REV B, V53
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PORATH D, 2000, NATURE, V403, P635
SARTOR V, 1999, J AM CHEM SOC, V121, P11027
SOLER JM, 2002, J PHYS-CONDENS MAT, V14, P2745
TRAN P, 2000, PHYS REV LETT, V85, P1564
TROULLIER N, 1991, PHYS REV B, V43, P1993
VERISSIMOALVES M, 2001, PHYS REV LETT, V86, P3372
YOO KH, 2001, PHYS REV LETT, V87
YU ZG, 2001, PHYS REV LETT, V86, P6018
ZHANG W, 2002, PHYS REV B, V66
NR 32
TC 18
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD SEP 5
PY 2003
VL 91
IS 10
AR 108105
DI ARTN 108105
PG 4
SC Physics, Multidisciplinary
GA 724KA
UT ISI:000185485700048
ER
PT J
AU Coutinho, K
Canuto, S
TI The sequential Monte Carlo-quantum mechanics methodology. Application
to the solvent effects in the Stokes shift of acetone in water
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Monte Carlo-quantum mechanics methodology; super-molecular calculation;
solvent effects
ID POLARIZABLE CONTINUUM MODEL; MOLECULAR-DYNAMICS SIMULATIONS;
INTEGRAL-EQUATION FORMALISM; FORBIDDEN VIBRONIC SPECTRA; PI-ASTERISK
TRANSITION; SELF-CONSISTENT-FIELD; LIQUID WATER; AQUEOUS-SOLUTION;
AB-INITIO; CONFIGURATION-INTERACTION
AB The sequential Monte Carlo quantum mechanics methodology is used to
obtain the solvent effects on the Stokes shift of acetone in water. One
of the great advantages of this methodology is that all the important
statistical information is known before running into the costly quantum
mechanical calculations. This advantage is discussed not only with
respect to the statistical correlation between the different structures
generated by the simulation but also in the proper identification of
hydrogen bonds in liquids. To obtain the solvent effects in the Stokes
shift of the n-pi* absorption transition of acetone in water,
quantum-mechanical calculations are performed in super-molecular
structures generated by NVT Monte Carlo simulation. The statistical
correlation between configurations is analyzed using the
auto-correlation function of the energy. The largest calculations
include one acetone and 170 water molecules. One-hundred INDO/CIS
super-molecular calculations are performed for each solvation shell to
obtain the statistical average value. The calculated solvatochromic
shift of the n-pi* absorption transition of acetone in water, compared
to gas phase, is similar to 1310 cm(-1) in good agreement with the
experimental blue shift of 1500 +/- 200 cm(-1). For the emission of the
relaxed excited state, the calculated shift is similar to 1850 cm(-1).
The total calculated solvent effect on the Stokes shift of acetone in
aqueous solution is thus 540 cm(-1). A detailed analysis of the
sampling of the configurations obtained in the Monte Carlo simulation
is made and it is shown that all results represent statistically
converged values. (C) 2003 Elsevier B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Mogi das Cruzes, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
ANTONCZAK S, 1998, J AM CHEM SOC, V120, P8825
BABA M, 1985, J CHEM PHYS, V82, P3938
BAYLISS NS, 1954, J PHYS CHEM-US, V58, P1006
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BISWAS R, 1999, J PHYS CHEM A, V103, P2495
BLAIR JT, 1989, J AM CHEM SOC, V111, P6948
BROO A, 1997, J PHYS CHEM A, V101, P2478
CAMMI R, 1995, J COMPUT CHEM, V16, P1449
CAMMI R, 1998, J AM CHEM SOC, V120, P8834
CANCES E, 1997, J CHEM PHYS, V107, P3032
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
CANUTO S, 2002, CURRENT DEV ATOMIC M, P127
CANUTO S, 2003, ADV QUANTUM CHEM, V41, P161
CHATFIELD C, 1984, ANAL TIME SERIES INT
CHIPOT C, 1991, CHEM PHYS LETT, V191, P287
CHRISTIANSEN O, 1999, J CHEM PHYS, V110, P1365
COSSI M, 2002, J CHEM PHYS, V117, P43
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 1997, DICE MONTE CARLO PRO
COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
CRAMER CJ, 1991, J AM CHEM SOC, V113, P8305
CRAMER CJ, 1999, CHEM REV, V99, P2161
DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
DEVRIES AH, 1996, INT J QUANTUM CHEM, V57, P1067
FIELD MJ, 1990, J COMPUT CHEM, V11, P700
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GAO JL, 1992, SCIENCE, V258, P631
GAO JL, 1994, J AM CHEM SOC, V116, P9324
GAO JL, 1997, J AM CHEM SOC, V119, P2962
HAYES WP, 1965, SPECTROCHIM ACTA, V21, P529
HONMA K, 1991, J CHEM PHYS, V94, P3496
HOUJOU H, 1997, J CHEM PHYS, V107, P5652
IFTIMIE R, 2000, J CHEM PHYS, V113, P4852
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
KARELSON MM, 1992, J PHYS CHEM-US, V96, P6949
KIRKWOOD JG, 1934, J CHEM PHYS, V2, P351
KLAMT A, 1993, J CHEM SOC P2, P799
KRATSCHMER R, 1976, J STAT PHYS, V15, P267
LEVY RM, 1990, J PHYS CHEM-US, V94, P4470
LIAO DW, 1999, J CHEM PHYS, V111, P205
MALASPINA T, 2002, J CHEM PHYS, P117
MARTIN ME, 2000, J CHEM PHYS, V113, P6308
MARTIN ME, 2002, J CHEM PHYS, V116, P1613
MENNUCCI B, 1998, J CHEM PHYS, V109, P2798
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
MEZEI M, 1981, J CHEM PHYS, V74, P622
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIKKELSEN KV, 1988, J CHEM PHYS, V89, P3086
MONARD G, 1999, ACCOUNTS CHEM RES, V32, P904
NAKA K, 1999, J CHEM PHYS, V110, P3484
OGILBY PR, 1999, ACCOUNTS CHEM RES, V32, P512
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
POULSEN TD, 1999, J CHEM PHYS, V111, P2678
RAHMAN A, 1971, J CHEM PHYS, V55, P3336
REICHHARDT C, 1979, SOLVENT EFFECTS ORGA
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
RIVAIL JL, 1976, CHEM PHYS, V18, P233
RIVAIL JL, 1998, J MOL GRAPH MODEL, V16, P272
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
ROCHA WR, 2001, CHEM PHYS LETT, V345, P171
ROCHA WR, 2002, THEOR CHEM ACC, V108, P31
SANCHEZ ML, 1995, J PHYS CHEM-US, V99, P15758
SATO H, 1999, J CHEM PHYS, V111, P8545
SERRANOANDRES L, 1997, INT J QUANTUM CHEM, V65, P167
SHIU YJ, 2001, J CHEM PHYS, V115, P4080
STILLINGER FH, 1974, J CHEM PHYS, V60, P1545
STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
SUPPAN P, 1997, SOLVATOCHROMISM
SVENSSON M, 1996, J PHYS CHEM-US, V100, P19357
TANG S, 1987, PHYS REV B, V36, P567
TAPIA O, 1975, MOL PHYS, V29, P1653
TENNO S, 1993, CHEM PHYS LETT, V214, P391
TENNO S, 1994, J CHEM PHYS, V100, P7443
THOMPSON MA, 1996, J PHYS CHEM-US, V100, P14494
THURBER MC, 1999, APPL PHYS B-LASERS O, V69, P229
TOMASI J, 1994, CHEM REV, V94, P2027
VANDUUREN BL, 1963, CHEM REV, V63, P325
VREVEN T, 2001, J CHEM PHYS, V115, P62
WARSHEL A, 1976, J MOL BIOL, V103, P227
ZENG J, 1993, J CHEM PHYS, V99, P1496
ZERNER MC, 1999, ZINDO SEMIEMPIRICAL
NR 85
TC 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD AUG 1
PY 2003
VL 632
SI Sp. Iss. SI
BP 235
EP 246
PG 12
SC Chemistry, Physical
GA 722VQ
UT ISI:000185399100019
ER
PT J
AU Branicio, PS
Rino, JP
Shimojo, F
Kalia, RK
Nakano, A
Vashishta, P
TI Molecular dynamics study of structural, mechanical, and vibrational
properties of crystalline and amorphous Gal-xInxAs alloys
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID SILICON-NITRIDE; PHONON DISPERSIONS; GALLIUM-ARSENIDE; SQUARE
NANOMESAS; SOLID-SOLUTIONS; GA1-XINXAS; FRACTURE; AMORPHIZATION;
BEHAVIOR; SIMULATION
AB Using an interaction potential scheme, molecular dynamics (MD)
simulations are performed to investigate structural, mechanical, and
vibrational properties of Ga1-xInxAs alloys in the crystalline and
amorphous phases. For the crystalline phase we find that: (i) Ga-As and
In-As bond lengths vary only slightly for different compositions; (ii)
the nearest-neighbor cation-cation distribution has a broad peak; and
(iii) there are two nearest-neighbor As-As distances in the As (anion)
sublattice. These MD results are in excellent agreement with extended
x-ray absorption fine structure and high-energy x-ray diffraction data
and also with ab initio MD simulation results. The calculated lattice
constant deviates less than 0.18% from Vegard's law. The calculated
phonon density of states exhibits a two-mode behavior for
high-frequency optical phonons with peaks close to those in binary
alloys (GaAs and InAs), which agrees well with a recent Raman study.
Calculated elastic constants show a significant nonlinear dependence on
the composition. For the amorphous phase, MD results show that: (i) the
nearest-neighbor cation-anion distribution splits into well-defined
As-Ga and As-In peaks as in the crystal phase; (ii) the cation-cation
distribution is similar to that in the crystal phase; and (iii) the
As-As distribution is quite different from that in the crystal, having
only one nearest-neighbor distance. (C) 2003 American Institute of
Physics.
C1 Univ So Calif, Dept Mat Sci & Engn, Collab Adv Comp & Simulat, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Biomed Engn, Los Angeles, CA 90089 USA.
Univ Fed Sao Carlos, Dept Fis, Sao Paulo, Brazil.
Kumamoto Univ, Dept Phys, Kumamoto 860, Japan.
RP Branicio, PS, Univ So Calif, Dept Mat Sci & Engn, Collab Adv Comp &
Simulat, Los Angeles, CA 90089 USA.
CR ALLEN MP, 1987, COMPUTER SIMULATION
BARONI S, 1990, PHYS REV LETT, V65, P84
BAZANT MZ, 1997, PHYS REV B, V56, P8542
BRANICIO PS, 2003, APPL PHYS LETT, V82, P1057
BRENNER DW, 2000, PHYS STATUS SOLIDI B, V217, P23
BRIGGS EL, 1996, PHYS REV B, V54, P14362
BRODSKY MH, 1968, PHYS REV LETT, V21, P990
CHATTERJEE A, 2000, APPL PHYS LETT, V77, P1132
CHELIKOWSKY JR, 1994, PHYS REV B, V50, P11355
COHEN ML, 1993, SCIENCE, V261, P307
EBBSJO I, 2000, J APPL PHYS, V87, P7708
FONG CY, 1976, PHYS REV B, V14, P5387
GEHRSITZ S, 1999, PHYS REV B, V60, P11601
GIANNOZZI P, 1991, PHYS REV B, V43, P7231
GROENEN J, 1998, PHYS REV B, V58, P10452
HOHENBERG P, 1964, PHYS REV B, V136, P864
KALIA RK, 1997, PHYS REV LETT, V78, P2144
KALIA RK, 1997, PHYS REV LETT, V78, P689
KODIYALAM S, 2001, PHYS REV LETT, V86, P55
KOHN W, 1983, INHOMOGENEOUS ELECT, P79
KRESSE G, 1994, PHYS REV B, V49, P14251
LI W, 1996, PHYS REV LETT, V77, P2241
MARTINS JL, 1984, PHYS REV B, V30, P6217
MIGLIORATO MA, 2002, PHYS REV B, V65
MIKKELSEN JC, 1982, PHYS REV LETT, V49, P1412
PATEL C, 1984, J MOL STRUCT, V115, P149
PAULING L, 1967, NATURE CHEM BOND
PETKOV V, 1999, PHYS REV LETT, V83, P4089
PHILIPS BA, 1995, PHYS REV LETT, V74, P3640
PHILLIPS JC, 1973, BONDS BANDS SEMICOND, P214
SHIMOJO F, 2001, COMPUT PHYS COMMUN, V140, P303
SU XT, 2001, APPL PHYS LETT, V78, P3717
SU XT, 2001, APPL PHYS LETT, V79, P4577
TERSOFF J, 1989, PHYS REV B, V39, P5566
TROULLIER N, 1991, PHYS REV B, V43, P8861
TSURUTA K, 1998, J AM CERAM SOC, V81, P433
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
VASHISHTA P, 1989, PHYS REV LETT, V62, P1651
VASHISHTA P, 1990, PHYS REV B, V41, P12197
VASHISHTA P, 1995, PHYS REV LETT, V75, P858
VEGARD L, 1921, Z PHYS, V5, P17
WALSH P, 2000, APPL PHYS LETT, V77, P4332
WALSH P, 2001, APPL PHYS LETT, V78, P3328
NR 43
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD SEP 15
PY 2003
VL 94
IS 6
BP 3840
EP 3848
PG 9
SC Physics, Applied
GA 723EN
UT ISI:000185419600023
ER
PT J
AU Meurer, EC
Gozzo, FC
Augusti, R
Eberlin, MN
TI The kinetic method as a structural diagnostic tool: ionized
alpha-diketones as loosely one-electron bonded diacylium ion dimers
SO EUROPEAN JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
ID POLYCYCLIC AROMATIC-HYDROCARBONS; QUADRUPOLE MASS SPECTROMETERS;
PROTON-BOUND DIMERS; GAS-PHASE ACIDITIES; RADICAL CATIONS;
THERMOCHEMICAL DETERMINATIONS; DISSOCIATION ENERGIES; IONIZATION
ENERGIES; ATTACHMENT SITES; CHIRAL ANALYSIS
AB The kinetic method is used to corroborate the description of ground
state ionized alpha-diketones as loosely electron-bonded acylium ion
dimers: R'-C=O+---e(-)---O+=C-R-2. The abundance ratio of both the
acylium ion fragments (RCO)-C-1* and (RCO+)-C-2 (summed to those of
their respective secondary fragments) formed upon low energy (5 eV)
collision-induced dissociation of several ionized alpha-diketones is
found to correlate linearly with the ionization energies (IEs) of the
corresponding (RCO.)-C-1 and (RCO.)-C-2 free radicals as predicted by
density functional theory calculations at the B3LY/P/6-311++G(d,p)
level. However, when these abundances are taken from 70 eV electron
ionization mass spectra, lower and sometimes inverted ratios
(2,3-pentanedione and 2,3-hexanedione) are observed. Inverted ratios
are also observed via charge-exchange mass spectrometry/mass
spectrometry (MS/MS) experiments for ionized 2,3-pentanodione formed
with relatively high internal energies. Ionized alpha-diketones are
found to display an effective temperature of 1705 K, which indicates an
intermediate loosely-bonded nature. B3LY/P/6-311++G(d,p) optimized
geometries and charge and spin densities also corroborate the
description of ground state ionized alpha-diketones as loosely
electron-bonded diacylium ion dimers.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
UFMG, Dept Chem, BR-31270901 Belo Horizonte, MG, Brazil.
RP Eberlin, MN, UNICAMP, Inst Chem, CP154, BR-13083970 Campinas, SP,
Brazil.
CR AUGUSTI DV, 2002, ANAL CHEM, V74, P3458
BAER T, 1997, J AM SOC MASS SPECTR, V8, P103
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BOAND G, 1983, J AM CHEM SOC, V105, P2203
BURINSKY DJ, 1984, J AM CHEM SOC, V106, P2770
CERDA BA, 1996, J AM CHEM SOC, V118, P11884
CERDA BA, 1998, J AM CHEM SOC, V120, P2437
CHEN G, 1996, J AM SOC MASS SPECTR, V7, P619
CHEN GD, 1997, ANAL CHEM, V69, P3641
CHEN GD, 1997, J MASS SPECTROM, V32, P1305
CHEN GD, 1997, J MASS SPECTROM, V32, P333
CHENG XH, 1993, J AM CHEM SOC, V115, P4844
COOKS RG, 1977, J AM CHEM SOC, V99, P1279
COOKS RG, 1994, MASS SPECTROM REV, V13, P287
COOKS RG, 1998, ACCOUNTS CHEM RES, V31, P379
DAMRAUER R, 1988, J AM CHEM SOC, V110, P2005
DENAULT JW, 1998, J AM SOC MASS SPECTR, V9, P1141
DENAULT JW, 2000, J PHYS CHEM A, V104, P11290
DEPUY CH, 1984, J AM CHEM SOC, V106, P4051
DERRICK PJ, 1995, ADV MASS SPECTROM, V13, P23
DEVISSER SP, 1998, INT J MASS SPECTROM, V180, P43
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DRAHOS L, 1999, J MASS SPECTROM, V34, P79
DRAHOS L, 2001, J MASS SPECTROM, V36, P237
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GOZZO FC, 2001, J MASS SPECTROM, V36, P1140
GRESE RP, 1990, J AM SOC MASS SPECTR, V1, P172
GRIFFIN LL, 2002, INT J MASS SPECTROM, V217, P23
GUO JH, 1999, ANGEW CHEM INT EDIT, V38, P1755
HANLEY JH, 1992, J PHYS CHEM-US, V92, P5803
HARCOURT RD, 1997, J PHYS CHEM A, V101, P5962
JARROLD MF, 1987, J CHEM PHYS, V86, P3876
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KISHORE K, 2000, J PHYS CHEM A, V104, P9646
LIAS SG, 1988, J PHYS CHEM REF D S1, V17, P1
LIAS SG, 2001, ION ENERGETICS DATA
LUND KH, 1996, INT J MASS SPECTROM, V156, P203
MA SG, 1997, INT J MASS SPECTROM, V163, P89
MA SG, 1998, J MASS SPECTROM, V33, P943
MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
MCLUCKEY SA, 1983, INT J MASS SPECTROM, V52, P165
MCLUCKEY SA, 1984, ORG MASS SPECTROM, V19, P545
MURAD E, 1964, J CHEM PHYS, V41, P404
ROBINSON PJ, 1972, UNIMOLECULAR REACTIO
SCHROETER K, 1998, EUR J ORG CHEM APR, P565
SHEN WY, 1997, RAPID COMMUN MASS SP, V11, P71
STEVENSON DP, 1951, DISCUSS FARADAY SOC, P35
STOCKIGT D, 1995, INT J MASS SPECTROM, V150, P1
TAO WA, 1999, ANAL CHEM, V71, P4427
TAO WA, 2001, ANAL CHEM, V73, P1692
TAO WA, 2003, ANAL CHEM, V75, A25
TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
TRIKOUPIS MA, 1999, J AM SOC MASS SPECTR, V10, P869
VEKEY K, 1997, ANAL CHEM, V69, P1700
WANG F, 1998, INT J MASS SPECTROM, V180, P195
WONG PSH, 1996, ANAL CHEM, V68, P4254
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
WONG PSH, 1997, J ORGANOMET CHEM, V539, P131
WRIGHT LG, 1982, INT J MASS SPECTROM, V42, P115
YANG SS, 1995, J MASS SPECTROM, V30, P807
YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
NR 63
TC 4
PU IM PUBLICATIONS
PI W SUSSEX
PA 6 CHARLTON MILL, CHARLTON, CHICHESTER,, W SUSSEX PO18 0HY, ENGLAND
SN 1469-0667
J9 EUR J MASS SPECTROM
JI Eur. J. Mass Spectrom.
PY 2003
VL 9
IS 4
BP 295
EP 304
PG 10
SC Physics, Atomic, Molecular & Chemical; Spectroscopy
GA 723XD
UT ISI:000185456100009
ER
PT J
AU Ruini, A
Bussi, G
Ferretti, A
Caldas, MJ
Molinari, E
TI Charge transport and radiative recombination in polythiophene crystals:
a first-principles study
SO SYNTHETIC METALS
LA English
DT Article
DE density-functional theory; optical absorption; charge transport;
polythiophene
ID ORGANIC SEMICONDUCTORS; SINGLE-CRYSTALS; AB-INITIO; GROWTH
AB We investigate two phases of polythiophene crystals by means of
first-principles calculations, focusing on the effect of the different
structure on charge transport parameters and luminescence quantum
yield. The resulting microscopic interpretation highlights the impact
of solid-state interchain coupling on both transport and emissive
properties of semiconducting polymer crystals. (C) 2003 Elsevier B.V.
All rights reserved.
C1 INFM, Natl Ctr NanoStruct & BioSyst Surfaces S3, Modena, Italy.
Univ Modena, Dipartimento Fis, I-41100 Modena, Italy.
Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
RP Ruini, A, INFM, Natl Ctr NanoStruct & BioSyst Surfaces S3, Modena,
Italy.
CR ACKERMANN J, 2002, THIN SOLID FILMS, V403, P157
BREDAS JL, 2002, P NATL ACAD SCI USA, V99, P5804
BUSSI G, 2002, APPL PHYS LETT, V80, P4118
DAVYDOV AS, 1962, THEORY MOL EXCITONS
FERRETTI A, 2003, PHYS REV LETT, V90
GEBAUER W, 1998, CHEM PHYS, V227, P33
GIGLI G, 1998, APPL PHYS LETT, V72, P1013
GRANSTROM M, 1999, SYNTHETIC MET, V102, P957
HOHENESTER U, 2001, PHYS REV B, V64
KOHN W, 1965, PHYS REV, V140, A1133
KOUKI F, 2000, J CHEM PHYS, V113, P385
MARCUS RA, 1985, BIOCHIM BIOPHYS ACTA, V811, P265
MARKS RN, 1995, EUROPHYS LETT, V32, P523
MOLLER S, 2000, PHYS REV B, V61, P15749
MUCCINI M, 2000, PHYS REV B, V62, P6296
PUSCHNIG P, 2001, SYNTHETIC MET, V119, P245
ROHLFING M, 1998, PHYS REV LETT, V81, P2312
ROHLFING M, 2000, PHYS REV B, V62, P4927
RUINI A, 2002, PHYS REV LETT, V88
RUINI A, 2002, RAD MATTER INTRACTIO, P155
SIEGRIST T, 1998, ADV MATER, V10, P379
SIRRINGHAUS H, 1998, SCIENCE, V280, P1741
SLATER JC, 1954, PHYS REV, V94, P1498
NR 23
TC 3
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD OCT 9
PY 2003
VL 139
IS 3
BP 755
EP 757
PG 3
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
Polymer Science
GA 721EG
UT ISI:000185303600050
ER
PT J
AU Coluci, VR
Braga, SF
Legoas, SB
Galvao, DS
Baughman, RH
TI Families of carbon nanotubes: Graphyne-based nanotubes
SO PHYSICAL REVIEW B
LA English
DT Article
ID GRAPHDIYNE SUBSTRUCTURES; ELECTRONIC-STRUCTURE; DEHYDROBENZOANNULENES;
MICROTUBULES; SYSTEM
AB New families of carbon single-walled nanotubes are proposed and their
electronic structures are investigated. These nanotubes, called
graphynes, result from the elongation of covalent interconnections of
graphite-based nanotubes by the introduction of yne groups. Analogously
to ordinary nanotubes, armchair, zigzag, and chiral graphyne nanotubes
are possible. We here predict the electronic properties of these
unusual nanotubes using tight-binding and ab initio density functional
methods. Of the three graphyne nanotube families analyzed here, two
provide metallic behavior for armchair tubes and either metallic or
semiconducting behavior for zigzag nanotubes. A diameter- and
chirality-independent band gap is predicted for the other investigated
graphyne family, as well as an oscillatory dependence of the effective
mass on nanotube diameter.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
Univ Texas, NanoTech Inst, Richardson, TX USA.
Univ Texas, Dept Chem, Richardson, TX 75083 USA.
RP Coluci, VR, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
BR-13083970 Campinas, SP, Brazil.
CR ANTHONY JE, 1997, TETRAHEDRON LETT, V38, P3499
BAUGHMAN RH, 1987, J CHEM PHYS, V87, P6687
BELL ML, 2001, TETRAHEDRON, V57, P3507
CLEMENTI E, 1963, J CHEM PHYS, V38, P2686
COLUCI VR, UNPUB
CUMINGS J, 2000, SCIENCE, V289, P602
GALLAGHER ME, 2001, TETRAHEDRON LETT, V42, P7533
HALEY MM, 1997, ANGEW CHEM INT EDIT, V36, P836
HAMADA N, 1992, PHYS REV LETT, V68, P1579
HARIGAYA K, 1999, PCCP PHYS CHEM CH PH, V1, P1687
HOFFMANN R, 1963, J CHEM PHYS, V39, P1397
IIJIMA S, 1991, NATURE, V354, P56
KEHOE JM, 2000, ORG LETT, V2, P969
KIM P, 2001, PHYS REV LETT, V87
KOCIAK M, 2001, PHYS REV LETT, V86, P2416
KOPELMAN R, 1997, PHYS REV LETT, V78, P1239
LEGOAS SB, 2003, PHYS REV LETT, V90
MULLIKEN RS, 1949, J CHEM PHYS, V17, P1248
NARITA N, 1998, PHYS REV B, V58, P11009
NARITA N, 2000, PHYS REV B, V62, P11146
ORDEJON P, 1996, PHYS REV B, V53
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
RANA D, 2001, CHEM PHYS LETT, V334, P314
RINZLER AG, 1995, SCIENCE, V269, P1550
SAITO R, 1992, PHYS REV B, V46, P1804
SINNOTT SB, 2001, CRIT REV SOLID STATE, V26, P145
SONODA M, 2001, ORG LETT, V3, P2419
SRINIVASAN M, 2000, ORG LETT, V2, P3849
TANS SJ, 1997, NATURE, V386, P474
TROULLIER N, 1991, PHYS REV B, V43, P1993
WALLACE PR, 1947, PHYS REV, V71, P622
WAN WB, 2001, J ORG CHEM, V66, P3893
ZHENG QS, 2002, PHYS REV LETT, V88
ZHOU YF, 2002, SOLID STATE COMMUN, V122, P307
NR 34
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL 15
PY 2003
VL 68
IS 3
AR 035430
DI ARTN 035430
PG 6
SC Physics, Condensed Matter
GA 719XD
UT ISI:000185229600144
ER
PT J
AU Orestes, E
Marcasso, T
Capelle, K
TI Density-functional calculation of ionization energies of
current-carrying atomic states
SO PHYSICAL REVIEW A
LA English
DT Article
ID INHOMOGENEOUS ELECTRON-GAS; STRONG MAGNETIC-FIELDS; EXCHANGE; SYSTEMS;
POTENTIALS; SUPERCONDUCTORS; APPROXIMATIONS; FORMALISM; SOLIDS
AB Current-density-functional theory is used to calculate ionization
energies of current-carrying atomic states. A recently proposed
perturbative approximation to full current-density-functional theory is
implemented and found to be numerically feasible. Different
parametrizations for the current-dependence of the density functional
are critically compared. Orbital currents in open-shell atoms turn out
to produce a small shift in the ionization energies. We find that
modern density functionals have reached an accuracy at which small
current-related terms appearing in open-shell configurations are not
negligible anymore, compared to the remaining difference to experiment.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil.
RP Orestes, E, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol,
Caixa Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR BAERENDS EJ, 1997, CHEM PHYS LETT, V265, P481
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 2002, J CHEM PHYS, V117, P6935
CAPELLE K, 1997, PHYS REV LETT, V78, P1872
CAPELLE K, 1999, PHYS REV A, V60, P733
CAPELLE K, 2000, EUROPHYS LETT, V49, P376
CAPELLE K, 2000, PHYS REV B, V61, P15228
CHEN JQ, 1996, PHYS REV A, V54, P3939
CHONG DP, 2002, J CHEM PHYS, V116, P1760
COLWELL SM, 1994, CHEM PHYS LETT, V217, P271
DREIZLER RM, 1990, DENSITY FUNCTIONAL T
EBERT H, 1997, EUROPHYS LETT, V40, P545
GUNNARSSON O, 1976, PHYS REV B, V13, P4274
HOHENBERG P, 1964, PHYS REV, V136, B864
KOHN W, 1996, J PHYS CHEM-US, V100, P12974
KOHN W, 1999, REV MOD PHYS, V71, P1253
KURTH S, 1999, PHYS REV LETT, V83, P2628
LEE AM, 1994, CHEM PHYS LETT, V229, P225
LEE AM, 1995, J CHEM PHYS, V103, P10095
LEE AM, 1999, PHYS REV A, V59, P209
LEE C, 1988, PHYS REV B, V37, P785
MACDONALD AH, 1979, J PHYS C SOLID STATE, V12, P2977
OLIVEIRA LN, 1988, PHYS REV LETT, V60, P2430
PARR RG, 1989, DENSITY FUNCTIONAL T
PERDEW JP, 1981, PHYS REV B, V23, P5048
PETERSILKA M, 2000, INT J QUANTUM CHEM, V80, P534
RAJAGOPAL AK, 1973, PHYS REV B, V7, P1912
RASOLT M, 1992, PHYS REV LETT, V69, P2563
STRANGE P, 1998, RELATIVISTIC QUANTUM
VIGNALE G, 1987, PHYS REV LETT, V59, P2360
VIGNALE G, 1988, PHYS REV B, V37, P10685
VIGNALE G, 1988, PHYS REV B, V37, P2502
VIGNALE G, 1990, ADV QUANTUM CHEM, V21, P235
VIGNALE G, 1992, PHYS REV B, V46, P10232
VIGNALE G, 1993, PHYS REV B, V47, P10105
NR 35
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD AUG
PY 2003
VL 68
IS 2
AR 022105
DI ARTN 022105
PG 6
SC Physics, Atomic, Molecular & Chemical; Optics
GA 719FC
UT ISI:000185192100011
ER
PT J
AU Borges, JC
Fischer, H
Craievich, AF
Hansen, LD
Ramos, CHI
TI Free human mitochondrial GrpE is a symmetric dimer in solution
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
ID HEAT-SHOCK PROTEINS; LAMBDA-DNA REPLICATION; NUCLEOTIDE EXCHANGE
FACTOR; ESCHERICHIA-COLI DNAK; SOLUTION SCATTERING; BIOLOGICAL
MACROMOLECULES; SWISS-MODEL; SYSTEM; GENE; BACTERIOPHAGE
AB The co-chaperone GrpE is essential for the activities of the Hsp70
system, which assists protein folding. GrpE is present in several
organisms, and characterization of homologous GrpEs is important for
developing structure-function relationships. Cloning, producing, and
conformational studies of the recombinant human mitochondrial GrpE are
reported here. Circular dichroism measurements demonstrate that the
purified protein is folded. Thermal unfolding of human GrpE measured
both by circular dichroism and differential scanning calorimetry
differs from that of prokaryotic GrpE. Analytical ultracentrifugation
data indicate that human GrpE is a dimer, and the sedimentation
coefficient agrees with an elongated shape model. Small angle x-ray
scattering analysis shows that the protein possesses an elongated shape
in solution and demonstrates that its envelope, determined by an ab
initio method, is similar to the high resolution envelope of
Escherichia coli GrpE bound to DnaK obtained from single crystal x-ray
diffraction. However, in these conditions, the E. coli GrpE dimer is
asymmetric because the monomer that binds DnaK adopts an open
conformation. It is of considerable importance for structural GrpE
research to answer the question of whether the GrpE dimer is only
asymmetric while bound to DnaK or also as a free dimer in solution. The
low resolution structure of human GrpE presented here suggests that
GrpE is a symmetric dimer when not bound to DnaK. This information is
important for understanding the conformational changes GrpE undergoes
on binding to DnaK.
C1 Lab Nacl Luz Sincroton, Ctr Biol Mol Estrutural, BR-13084971 Campinas, SP, Brazil.
UNICAMP, Inst Biol, Dept Bioquim, BR-13084971 Sao Paulo, Brazil.
Univ Sao Paulo, Inst Fis, Dept Fis Aplicada, BR-05389970 Sao Paulo, Brazil.
Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA.
RP Ramos, CHI, Lab Nacl Luz Sincroton, Ctr Biol Mol Estrutural, POB 6192,
BR-13084971 Campinas, SP, Brazil.
CR ANG D, 1986, J BACTERIOL, V167, P25
BALDI P, 1999, BIOINFORMATICS, V15, P937
BORGES JC, 2001, GENET MOL BIOL, V24, P85
CHOGLAY AA, 2001, GENE, V267, P125
DELATORRE JG, 1997, EUR BIOPHYS J BIOPHY, V25, P361
DELATORRE JG, 2000, BIOPHYS J, V78, P719
EDELHOCH H, 1967, BIOCHEMISTRY-US, V6, P1948
FEIGIN LA, 1987, STRUCTURE ANAL SMALL, P83
FINK AL, 1999, PHYSIOL REV, V79, P425
FLAHERTY KM, 1990, NATURE, V346, P623
FRIEDMAN DI, 1984, MICROBIOL REV, V48, P299
GELINAS AD, 2002, J MOL BIOL, V323, P131
GETHING MJ, 1992, NATURE, V355, P33
GILL SC, 1989, ANAL BIOCHEM, V182, P319
GOLDBERG RJ, 1953, J PHYS CHEM-US, V57, P194
GRIMSHAW JPA, 2001, J BIOL CHEM, V276, P6098
GUEX N, 1997, ELECTROPHORESIS, V18, P2714
HARRISON CJ, 1997, SCIENCE, V276, P431
JOHNSON C, 1989, J BACTERIOL, V171, P1590
JOHNSON ML, 1981, BIOPHYS J, V36, P575
KELLERMANN G, 1997, J APPL CRYSTALLOGR 5, V30, P880
KONAREV PV, 2001, J APPL CRYSTALLOGR 4, V34, P527
KOZIN MB, 2001, J APPL CRYSTALLOGR 1, V34, P33
LAEMMLI UK, 1970, NATURE, V227, P680
LANGER T, 1992, NATURE, V356, P683
LIBEREK K, 1991, P NATL ACAD SCI USA, V88, P2874
MARTIN AS, 1997, ADV MATER OPT ELECTR, V7, P45
MAYER MP, 2001, ADV PROTEIN CHEM, V59, P1
MEHL AF, 2001, BIOCHEM BIOPH RES CO, V282, P562
NAYLOR DJ, 1998, J BIOL CHEM, V273, P21169
OSIPIUK J, 1993, J BIOL CHEM, V268, P4821
PEITSCH MC, 1995, BIO-TECHNOL, V13, P658
PEITSCH MC, 1996, BIOCHEM SOC T, V24, P274
PELHAM HRB, 1986, CELL, V46, P959
POROD G, 1982, SMALL ANGLE XRAY SCA, P17
SCHLICHER T, 1997, PLANT MOL BIOL, V33, P181
SCHONFELD HJ, 1995, J BIOL CHEM, V270, P2183
SCHRODER H, 1993, EMBO J, V12, P4137
SKOWYRA D, 1990, CELL, V62, P939
STAFFORD WF, 1994, METHOD ENZYMOL, V240, P478
SVERGUN D, 1995, J APPL CRYSTALLOGR 6, V28, P768
SVERGUN DI, 1991, ACTA CRYSTALLOGR A, V47, P736
SVERGUN DI, 1992, J APPL CRYSTALLOGR, V25, P495
SVERGUN DI, 1999, BIOPHYS J, V76, P2879
SZABO A, 1994, P NATL ACAD SCI USA, V91, P10345
VANHOLDE KE, 1978, BIOPOLYMERS, V17, P1397
WU B, 1994, J BACTERIOL, V176, P6965
ZYLICZ M, 1987, J BIOL CHEM, V262, P17437
ZYLICZ M, 1989, EMBO J, V8, P1601
NR 49
TC 3
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
J9 J BIOL CHEM
JI J. Biol. Chem.
PD SEP 12
PY 2003
VL 278
IS 37
BP 35337
EP 35344
PG 8
SC Biochemistry & Molecular Biology
GA 718UG
UT ISI:000185164400073
ER
PT J
AU da Silva, CO
Mennucci, B
Vreven, T
TI Combining microsolvation and polarizable continuum studies: New
insights in the rotation mechanism of amides in water
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID N BOND ROTATION; AB-INITIO; ELECTRON-DIFFRACTION; MOLECULAR-STRUCTURE;
INTERNAL-ROTATION; HYDROGEN-BOND; BARRIER; MODEL;
N,N-DIMETHYLAMINOACRYLONITRILE; N,N-DIMETHYLFORMAMIDE
AB We present a quantum mechanical investigation of the rotation
mechanisms of N,N-dimethylformamide (DMF) and NN-dimethylacetamide
(DMA) in water. This rotation can happen through two distinct
transition states known as TS1 and TS2, where the nitrogen lone pair is
on the opposite side of the oxygen atom or on the same side,
respectively. The analysis is focused on complementary descriptions of
the solvent, either represented by a limited number of explicit solvent
molecules (microsolvation), by an implicit (or continuum) solvation, or
by combinations of these two approaches. The combined approach
(microsolvation + continuum) can provide quantitative agreement with
the experimental results for the gas to solution shift of the
rotational barrier. For both amides, continuum effects alone are
sufficient to select the correct channels. However, hydrogen-bond
effects (via the explicit solvent molecules) are necessary to obtain
quantitative agreement with experiment, provided this is combined with
a continuum description. In the rotation in DMF, it seems that a single
water molecule is directly involved, while the other solvent molecules
act as a "mean field" (the bulk), which is well reproduced by a
polarizable continuum medium. The mechanism in DMA is less clear. In
gas phase the steric repulsive interactions between methyl groups make
TS1 clearly favored with respect to TS2. In water, the larger dipole
moment of TS2 produces an opposite effect with respect to the repulsion
interactions, making the corresponding channel less disfavored than in
gas phase. The results are compared with previous Monte Carlo
simulations, and this comparison is used to draw a more general picture
about how different descriptions of the solvent can take into account
long-range and mediated effects on one side and shorter-range and
dynamic effects on the other side.
C1 Univ Pisa, Dipartimento Chim & Chim Ind, Pisa, Italy.
Univ Fed Rio de Janeiro, Dept Quim, Rio De Janeiro, Brazil.
Gaussian Inc, N Haven, CT 06473 USA.
RP Vreven, T, Univ Pisa, Dipartimento Chim & Chim Ind, Via Risorgimento
35, Pisa, Italy.
CR BONDI A, 1964, J PHYS CHEM-US, V68, P441
CAMMI R, 1995, J COMPUT CHEM, V16, P1449
CANCES E, 1997, J CHEM PHYS, V107, P3032
CAPPELLI C, 2000, J CHEM PHYS, V112, P5382
CLAVERIE P, 1978, INTERMOLECULAR INTER
DRAKENBERG T, 1972, J PHYS CHEM-US, V76, P2178
DUFFY EM, 1992, J AM CHEM SOC, V114, P7535
FISCHER G, 1990, BIOCHEMISTRY-US, V29, P2205
FLORIS FM, 1991, J COMPUT CHEM, V12, P784
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 2002, DEV VERSION
GAO JL, 1993, J AM CHEM SOC, V115, P2930
KITANO M, 1973, B CHEM SOC JPN, V46, P384
LANGLEY CH, 2002, J PHYS CHEM A, V106, P5638
LEIS J, 2001, COMPUT CHEM, V25, P171
MENNUCCI B, 2002, J AM CHEM SOC, V124, P1506
MIERTUS S, 1981, CHEM PHYS, V55, P117
MOHAMED AA, 2001, J PHYS CHEM A, V105, P3259
PIEROTTI RA, 1976, CHEM REV, V76, P717
RABLEN PR, 1999, J AM CHEM SOC, V121, P218
RABLEN PR, 1999, J AM CHEM SOC, V121, P227
RAOS G, 1999, INT J QUANTUM CHEM, V74, P249
RE S, 2001, J PHYS CHEM A, V105, P7185
RIVELINO R, 2002, J PHYS CHEM B, V106, P12317
SCHREIBER SL, 1991, SCIENCE, V251, P283
SCHULTZ G, 1993, J PHYS CHEM-US, V97, P4966
SICINSKA D, 2002, J PHYS CHEM B, V106, P2708
VASSILEV NG, 2000, J MOL STRUCT, V522, P37
WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
NR 29
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 28
PY 2003
VL 107
IS 34
BP 6630
EP 6637
PG 8
SC Chemistry, Physical
GA 715JD
UT ISI:000184967600019
ER
PT J
AU Treu, O
Pinheiro, JC
Kondo, RT
Marques, RFC
Paiva-Santos, CO
Davolos, MR
Jafelicci, M
TI Development of basis sets to calculations of the electronic structure
of YMnO3
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Gaussian basis sets; contracted basis sets; dipole moments; total
energy; total atomic charges; YMnO3
ID COORDINATE HARTREE-FOCK; MOLECULAR-SYSTEMS; WAVE-FUNCTIONS;
GAUSSIAN-BASIS; AB-INITIO; FORMALISM; ATOMS
AB The generator coordinate Hartree-Fock method was used to develop
20s17p, 30s20p14d, and 30s21p16d Gaussian basis sets for the O ((3)p),
Mn (S-6), and Y (D-2) atoms, respectively. The Gaussian basis sets were
contracted to 20s17p/9s7p, 30s20p14d/11s7p7d, and 30s21p16d/14s7p7d and
utilized in calculations of total energy and orbital energies of the
(MnO1+)-Mn-5 and (YO1+)-Y-3 fragments to evaluate its quality in
molecular studies. Finally, the contracted basis set for O atom was
supplemented with one polarization function of d symmetry and used
along with the other contracted basis sets (for Mn and Y) to calculate
dipole moments, total energy, and total atomic charges in YMnO3 in
space group D-6h. The analysis of those properties showed that is
reasonable to believe that YMnO3 present behavior of piezoelectric
material. (C) 2003 Elsevier B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab Quim Teor & Computac, BR-66075110 Belem, Para, Brazil.
UNESP, Inst Quim, Araraquara, SP, Brazil.
Cooperat Ctr Educ Cient & Empreendedora Amazonia, BR-66601306 Belem, Para, Brazil.
Univ Sao Paulo, Ctr Informat Sao Carlos, Seccao Tecn Suporte, BR-13560970 Sao Carlos, SP, Brazil.
RP Pinheiro, JC, Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab
Quim Teor & Computac, CP 101101, BR-66075110 Belem, Para, Brazil.
CR CHAKRAVORY SJ, 1989, MOTEC MODERN TECHNIQ
DACOSTA HFM, 1991, CHEM PHYS, V154, P379
DACOSTA HFM, 1992, CHEM PHYS LETT, V192, P195
DUNNING TH, 1977, METHODS ELECT STRUCT
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GIORDAN M, 1997, CHEM PHYS LETT, V279, P396
JAFFE B, 1991, PIEZOELECTRIC CERAMI
JARDIM IN, 1999, J MOL STRUC-THEOCHEM, V464, P15
KOGA T, 1993, PHYS REV A B, V47, P4510
LUKASZEWICZ K, 1974, FERROELECTRICS, V7, P81
MCWEENY R, 1968, J CHEM PHYS, V49, P4852
MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
SAVEDRA RML, 2002, J MOL STRUC-THEOCHEM, V587, P9
SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
TREU O, UNPUB
NR 20
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JUL 4
PY 2003
VL 629
BP 21
EP 26
PG 6
SC Chemistry, Physical
GA 714CT
UT ISI:000184895300004
ER
PT J
AU Sambrano, JR
Vasconcellos, LA
Martins, JBL
Santos, MRC
Longo, E
Beltran, A
TI A theoretical analysis on electronic structure of the (110) surface of
TiO2-SnO2 mixed oxide
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE mixed oxide; titanium oxide; surface defects; clusters; ab initio
ID TIO2 THIN-FILMS; TITANIUM-DIOXIDE; ELECTRICAL-PROPERTIES; GAS SENSORS;
OPTICAL-PROPERTIES; OXYGEN VACANCIES; VARISTOR SYSTEM; PHOTOCATALYTIC
DEGRADATION; SOLID-SOLUTIONS; DOPING PROCESS
AB Mixed oxide compounds, such as TiO2-SnO2 system are widely used as gas
sensors and should also provide varistor properties modifying the TiO2
surface. Therefore, a theoretical investigation has been carried out
characterizing the effect of SnO2 on TiO2 addition on the electronic
structure by means of ab initio SCF-LCAO calculations using all
electrons. In order to take into account the finite size of the
cluster, we have used the point charge model for the (TiO2)(15) cluster
to study the effect on electronic structure of doping the TiO2 (110)
Surface. The contracted basis set for titanium (4322/42/3), oxygen
(33/3) and tin (43333/4333/43) atoms were used. The charge
distributions, dipole moments, and density of states of doping TiO2 and
vacancy formation are reported and analysed. (C) 2003 Elsevier B.V. All
rights reserved.
C1 Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
Univ Estadual Paulista, Lab Simulacao Mol, BR-17033360 Bauru, SP, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
RP Martins, JBL, Univ Brasilia, Inst Quim, Campus Univ,LQC Caixa Postal
04478, BR-70919970 Brasilia, DF, Brazil.
CR ANTUNES AC, 2000, J MATER SCI, V35, P1453
BELTRAN A, 2001, SURF SCI, V490, P116
BUENO PR, 1996, J MATER SCI LETT, V15, P2048
BUENO PR, 1998, J APPL PHYS, V84, P3700
BUENO PR, 2001, APPL PHYS LETT, V79, P48
BUENO PR, 2002, J AM CERAM SOC, V85, P282
CALATAYUD M, 1999, SURF SCI, V430, P213
CAO Y, 2000, CHEM MATER, V12, P3445
CARDONA M, 1965, PHYS REV, V137, P1467
DUSASTRE V, 1999, J MATER CHEM, V9, P965
EDELMAN F, 1999, SOLID STATE PHENOM, V67, P269
EDELMAN F, 2000, MAT SCI ENG B-SOLID, V69, P386
FAHMI A, 1993, PHYS REV B, V47, P11717
GERCHER VA, 1994, SURF SCI, V306, P279
GERCHER VA, 1994, SURF SCI, V312, P106
GERCHER VA, 1995, SURF SCI, V322, P177
GLASSFORD KM, 1992, PHYS REV B, V45, P3874
GLASSFORD KM, 1992, PHYS REV B, V46, P1284
GODIN TJ, 1993, PHYS REV B, V47, P6518
GONIAKOWSKI J, 1996, SURF SCI, V350, P145
HENRICH E, 1994, SURFACE SCI METAL OX
HENRICH VE, 1985, REP PROG PHYS, V48, P1481
HIRD B, 1997, SURF SCI, V385, L1023
HUZINAGA S, 1985, COMPUT PHYS REP, V2, P281
IIZUKA Y, 1997, CATAL TODAY, V36, P115
KOHL D, 1989, SENSOR ACTUATOR, V18, P71
KOKUSEN H, 1996, CATAL TODAY, V28, P191
KONG LB, 1998, J MATER SCI LETT, V17, P769
LEVY B, 1997, J PHYS CHEM B, V101, P1810
LIN J, 1999, J CATAL, V183, P368
LIU P, 2001, ACTA PHYS-CHIM SIN, V17, P265
MARUCCO JF, 1981, J PHYS CHEM SOLIDS, V42, P363
MEDVEDEVA NI, 1990, PHYS STATUS SOLIDI B, V160, P517
MO SD, 1995, PHYS REV B, V51, P13023
MUSCAT J, 2000, SURF SCI, V446, P119
NAIDU HP, 1998, J AM CERAM SOC, V81, P2176
NASR C, 1996, J PHYS CHEM-US, V100, P8436
OLIVEIRA MM, 2002, MATER CHEM PHYS, V74, P150
OLIVER PM, 1997, J MATER CHEM, V7, P563
PARK M, 1975, J AM CERAM SOC, V58, P43
PENNEWISS J, 1990, MATER LETT, V9, P219
PIANARO SA, 1995, J MATER SCI LETT, V14, P692
PIANARO SA, 1997, J MATER SCI LETT, V16, P634
RADECKA M, 1998, SENSOR ACTUAT B-CHEM, V47, P194
RANTALA T, 1998, SENSOR ACTUAT B-CHEM, V47, P59
RANTALA TS, 1996, J APPL PHYS, V79, P9206
RANTALA TT, 1999, SURF SCI, V420, P103
RICKERBY DG, 1998, NANOSTRUCT MATER, V10, P357
RITTNER F, 1998, PHYS REV B, V57, P4160
RITTNER F, 1999, LANGMUIR, V15, P1449
ROHRER GS, 1992, SURF SCI, V278, P146
SAKAI Y, 1982, J COMPUT CHEM, V3, P6
SAMBRANO JR, 1997, INT J QUANTUM CHEM, V65, P625
SAMBRANO JR, 2001, INT J QUANTUM CHEM, V85, P44
SANTOS MRC, 2001, J EUR CERAM SOC, V21, P161
SAUER J, 1989, CHEM REV, V89, P199
SCHELLING PK, 1998, PHYS REV B, V58, P1279
SCHIERBAUM KD, 1996, SURF SCI, V345, P261
SENSATO FR, 2001, J MOL STRUC-THEOCHEM, V541, P69
STASHANS A, 1996, J PHYS CHEM SOLIDS, V57, P1293
TADA H, 2000, J PHYS CHEM B, V104, P4585
TATEWAKI H, 1980, J COMPUT CHEM, V1, P205
TIT N, 1993, APPL SURF SCI, V65, P246
TIT N, 1993, NUOVO CIMENTO SOC IT, V15, P1405
VINODGOPAL K, 1995, ENVIRON SCI TECHNOL, V29, P841
VINODGOPAL K, 1996, CHEM MATER, V8, P2180
WATANABE Y, 1994, J NON-CRYST SOLIDS, V178, P84
YANG SL, 1995, J MATER RES, V10, P345
YUE LH, 1999, ACTA CHIM SINICA, V57, P1219
ZAKRZEWSKA K, 1997, ACTA PHYS POL A, V91, P899
ZAKRZEWSKA K, 1997, THIN SOLID FILMS, V310, P161
ZAKRZEWSKA K, 2001, THIN SOLID FILMS, V391, P229
NR 72
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JUL 4
PY 2003
VL 629
BP 307
EP 314
PG 8
SC Chemistry, Physical
GA 714CT
UT ISI:000184895300032
ER
PT J
AU Gordon, ML
Cooper, G
Morin, C
Araki, T
Turci, CC
Kaznatcheev, K
Hitchcock, AP
TI Inner-shell excitation spectroscopy of the peptide bond: Comparison of
the C 1s, N 1s, and O 1s spectra of glycine, glycyl-glycine, and
glycyl-glycyl-glycine
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID X-RAY-ABSORPTION; MILLIMETER WAVE SPECTRUM; EDGE XANES SPECTROSCOPY;
ADVANCED LIGHT-SOURCE; AMINO-ACIDS; PHOTOELECTRON-SPECTROSCOPY;
ELECTRONIC-STRUCTURE; GASEOUS GLYCINE; GAS-PHASE; MOLECULES
AB Oscillator strengths for C 1s, N 1s, and O 1s excitation spectra of
gaseous glycine and the dipeptide, glycyl glycine, have been derived
from inner-shell electron energy-loss spectroscopy recorded under
scattering conditions where electric dipole transitions dominate (2.5
keV residual energy, theta approximate to 2degrees). X-ray absorption
spectra of solid glycine, glycyl-glycine, glycyl-glycyl-glycine, and a
large protein, fibrinogen, were recorded in a scanning transmission
X-ray microscope. The experimental spectra are assigned through
interspecies comparisons and by comparison to ab initio computed
spectra of various conformations of glycine and glycylglycine.
Inner-shell excitation spectral features characteristic of the peptide
bond are readily identified by comparison of the spectra of gas-phase
glycine and glycyl-glycine. They include a clear broadening and a
similar to0.3 eV shift of the C 1s - pi*(C=O) peak and introduction of
a new pre-edge feature in the N 1s spectrum. These effects are due to
1s --> pi*(amide) transitions introduced with formation of the peptide
bond. Similar changes occur in the spectra of the solids. The
computational results support the interpretation of the experimental
inner-shell spectra and provide insight into electron density
distributions in the core excited states. Possible conformational
dependence of the inner-shell excitation spectra was explored by
computing the spectra of neutral glycine in its four most common
conformations, and of glycyl-glycine in planar and two twisted
conformations. A strong dependence of the computed C 1s, N 1s, and O 1s
spectra of glycylglycine on the conformation about the amide linkage
was confirmed by additional ab initio calculations of the
conformational dependence of the spectra of formamide.
C1 McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
Univ Fed Rio de Janeiro, Inst Quim, BR-21910 Rio De Janeiro, Brazil.
Univ Saskatchewan, Canadian Light Source, Saskatoon, SK S7N 5C6, Canada.
RP Hitchcock, AP, McMaster Univ, Dept Chem, 1280 Main St W, Hamilton, ON
L8S 4M1, Canada.
CR ABRAMOV YA, 2000, J PHYS CHEM B, V104, P2183
ADE H, 1998, EXPT METHODS PHYSICA, V32, P225
ADE H, 2002, CHEM APPL SYNCHROTRO, P285
BARONE V, 1995, J CHEM PHYS, V102, P364
BOESE J, 1997, J ELECTRON SPECTROSC, V85, P9
BOMBEN KD, 1988, ANAL CHEM, V60, P1393
BRION CE, 1982, AIP C P, V94, P429
BROWN RD, 1978, J CHEM SOC CHEM COMM, P547
CANNINGTON PH, 1979, J ELECT SPECTROSC RE, V15, P79
CANNINGTON PH, 1983, J ELECTRON SPECTROSC, V32, P139
CARRAVETTA V, 1998, J CHEM PHYS, V109, P1456
CSASZAR AG, 1992, J AM CHEM SOC, V114, P9568
DEBIES TP, 1974, J ELECTRON SPECTROSC, V3, P315
GODDARD WA, 1969, CHEM PHYS LETT, V3, P414
GODFREY PD, 1995, J AM CHEM SOC, V117, P2019
HASSELSTROM J, 1998, SURF SCI, V407, P221
HITCHCOCK AP, 1987, J ELECTRON SPECTROSC, V42, P11
HITCHCOCK AP, 1990, PHYSICA SCRIPTA T, V31, P159
HITCHCOCK AP, 1994, J ELECTRON SPECTROSC, V67, P1
HITCHCOCK AP, 2000, J ELECTRON SPECTROSC, V112, P9
HITCHCOCK AP, 2001, J SYNCHROTRON RADI 2, V8, P66
HITCHCOCK AP, 2002, J BIOMAT SCI-POLYM E, V13, P919
HU CH, 1993, J AM CHEM SOC, V115, P2923
HUZINGA S, 1984, GAUSSIAN BASIS SETS
ISHII I, 1987, J CHEM PHYS, V87, P4344
ISHII I, 1987, J CHEM PHYS, V87, P830
ISHII I, 1988, J ELECTRON SPECTROSC, V46, P55
JENSEN JH, 1991, J AM CHEM SOC, V113, P7917
JOLLY WL, 1984, ATOM DATA NUCL DATA, V31, P433
KAZNACHEYEV K, 2002, J PHYS CHEM A, V106, P3153
KILCOYNE ALD, 2003, J SYNCHROTRON RADI 2, V10, P125
KLASINC L, 1976, J ELECTRON SPECTROSC, V8, P161
KOSUGI N, 1980, CHEM PHYS LETT, V74, P490
KOSUGI N, 1987, THEOR CHIM ACTA, V72, P149
KOSUGI N, 2002, CHEM APPL SYNCHROTRO, P228
LESSARD RJ, UNPUB
LOO BW, 2001, J MICROSC-OXFORD 1, V204, P69
MEYERILSE W, 2001, J MICROSC-OXFORD 3, V201, P395
NYBERG M, 2000, J CHEM PHYS, V112, P5420
OUTKA DA, 1987, SURF SCI, V185, P53
RAMACHANDRAN GN, 1968, ADV PROTEIN CHEM, V23, P283
RAMEK M, 1991, THEOCHEM-J MOL STRUC, V81, P1
RICKER G, 1984, J ELECT SPECTROSC RE, V34, P327
SCHAFER L, 1980, J AM CHEM SOC, V102, P6566
SODHI RNS, 1984, J ELECTRON SPECTROSC, V34, P363
STEINBERGER IT, 1999, PHYS REV B, V60, P3995
STOHR J, 1992, SPRINGER TRACTS SURF
SUENRAM RD, 1978, J MOL SPECTROSC, V72, P372
SUENRAM RD, 1980, J AM CHEM SOC, V102, P7180
TANAKA M, 2001, J SYNCHROTRON RADI 2, V8, P1009
URQUHART SG, 2002, J PHYS CHEM B, V106, P8531
VAIRAVAMURTHY A, 2002, ENVIRON SCI TECHNOL, V36, P3050
WARWICK T, 2002, J SYNCHROTRON RADI 4, V9, P254
WEISS K, 1999, J CHEM PHYS, V111, P6834
YANG L, 1999, J SYNCHROTRON RADI 3, V6, P708
YU D, 1992, CAN J CHEM, V70, P1762
ZUBAVICHUS Y, UNPUB J ELECT SPECTR
NR 57
TC 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 14
PY 2003
VL 107
IS 32
BP 6144
EP 6159
PG 16
SC Chemistry, Physical
GA 710DC
UT ISI:000184664700004
ER
PT J
AU Treu, O
Pinheiro, JC
Kondo, RT
Marques, RFC
Paiva-Santos, CO
Davolos, MR
Jafelicci, M
TI Gaussian basis sets to the theoretical study of the electronic
structure of perovskite (LaMnO3)
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Gaussian basis sets; Generator Coordinate Hartree-Fock method;
perovskite; LaMnO3; piezoelectric
ID COORDINATE HARTREE-FOCK; DIATOMIC-MOLECULES; 2ND-ROW ATOMS; AB-INITIO;
OPTIMIZATION; CHOICE
AB The Generator Coordinate Hartree-Fock (GCHF) method is applied to
generate extended (20s14p), (30s19p13d), and (31s23p18d) Gaussian basis
sets for the 0, Mn, and La atoms, respectively. The role of the weight
functions (WFs) in the assessment of the numerical integration range of
the GCHF equations is shown. These basis sets are then contracted to
[5s3p] and [11s6p6d] for 0 and Mn atoms, respectively, and [17s11p7d]
for La atom by a standard procedure. For quality evaluation of
contracted basis sets in molecular calculations, we have accomplished
calculations of total and orbital energies in the Hartree-Fock-Roothaan
(HFR) method for (MnO1+)-Mn-5 and (LaO1+)-La-1 fragments. The results
obtained with the contracted basis sets are compared with values
obtained with the extended basis sets. The addition of one d
polarization function in the contracted basis set for 0 atom and its
utilization with the contracted basis sets for Mn and La atoms leads to
the calculations of dipole moment and total atomic charges of
perovskite (LaMnO3). The calculations were performed at the HFR level
with the crystal [LaMnO3](2) fragment in space group C-2v The values of
dipole moment, total energy, and total atomic charges showed that it is
reasonable to believe that LaMnO3 presents behaviour of piezoelectric
material. (C) 2003 Elsevier B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Naturais, Dept Quim, Lab Quim Teor & Computac, BR-66075110 Belem, Para, Brazil.
UNESP, Inst Quim, Araraquara, SP, Brazil.
Cooperat Ctr Educ Cientifica & Empreendedora Amaz, BR-66013060 Belem, Para, Brazil.
Univ Sao Paulo, Ctr Informat Sao Carlos, Seccao Tecn Suporte, BR-13560970 Sao Carlos, SP, Brazil.
RP Pinheiro, JC, Fed Univ Para, Ctr Ciencias Exatas & Naturais, Dept Quim,
Lab Quim Teor & Computac, CP 101101, BR-66075110 Belem, Para, Brazil.
CR CADY WG, 1964, PIEZOELECTRICITY
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
DECASTRO EVR, 1999, CHEM PHYS, V243, P1
DUNNING TH, 1977, METHODS ELECT STRUCT
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GERLOCH M, 1994, TRANSITION METAL CHE
GOLDSCHMIDT VM, 1926, MAT NATURV KL, V2, P8
JAFFE B, 1971, PIEZOELECTRIC CERAMI
JARDIM IN, 1999, J MOL STRUC-THEOCHEM, V464, P15
KALTSOYANNIS N, 1999, F ELEMENTS
KAY HF, 1949, PHILOS MAG, V40, P1019
MILLINI R, 1994, J MATER SCI, V29, P4065
MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
PAVANI R, 1989, 518 RU IBM RES
PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
PINHEIRO JC, 1999, J MOL STRUC-THEOCHEM, V491, P81
PINHEIRO JC, 2000, INT J QUANTUM CHEM, V78, P15
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
SAVEDRA RML, 2002, J MOL STRUC-THEOCHEM, V587, P9
SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
NR 23
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD AUG 1
PY 2003
VL 631
BP 93
EP 99
PG 7
SC Chemistry, Physical
GA 707PD
UT ISI:000184518300011
ER
PT J
AU Beltran, A
Andres, J
Longo, E
Leite, ER
TI Thermodynamic argument about SnO2 nanoribbon growth
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID OXIDE NANOWIRES; CRYSTAL-GROWTH; TIN OXIDE; NANOTUBES; SURFACES;
MICROSTRUCTURE; TEMPERATURE; ENERGETICS; MECHANISM; DENSITY
AB Calculations based on density functional theory at Becke's
three-parameter exchange functional combined with the Lee-Yang-Parr
correlation functional (B3LYP) level and periodic slab models have been
done to obtain: (i) the surface energy per unit area of different
stoichiometric SnO2 surfaces, and (ii) by using a simple Wulff
construction equation-type, the thermodynamic stability associated to
the formation of nanoribbons from these surfaces has been obtained. In
agreement with previous theoretical studies, the (110) face is the
thermodynamically most stable surface. The present theoretical results
and high-resolution transmission electron microscopy data reveal that
the nanoribbons preferentially grow along the [101] crystal direction.
(C) 2003 American Institute of Physics.
C1 Univ Jaume I, Dept Ciencies Expt, Castello 12080, Spain.
Univ Fed Sao Carlos, Dept Chem, BR-13565905 Sao Carlos, SP, Brazil.
RP Beltran, A, Univ Jaume I, Dept Ciencies Expt, POB 6029 AP, Castello
12080, Spain.
CR ALIVISATOS AP, 1996, SCIENCE, V271, P993
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BRENNER SS, 1956, ACTA METALL, V4, P268
CALATAYUD M, 1999, SURF SCI, V430, P213
DAI ZR, 2001, SOLID STATE COMMUN, V118, P351
DAI ZR, 2002, J PHYS CHEM B, V106, P1274
DURAND P, 1975, THEOR CHIM ACTA, V38, P283
GROSS A, 2003, THEORETICAL SURFACE
HU JT, 1999, ACCOUNTS CHEM RES, V32, P435
HUANG MH, 2001, ADV MATER, V13, P113
KHARE SV, 2003, SURF SCI, V52, P75
LAW M, 2002, ANGEW CHEM, V114, P2511
LEE C, 1988, PHYS REV B, V37, P785
LEITE ER, 2000, ADV MATER, V12, P965
LEITE ER, 2002, J NANOSCI NANOTECHNO, V2, P125
MULHEARN PA, 1992, MODEL SIMUL MATER SC, V1, P233
MURRAY CB, 1995, SCIENCE, V270, P1335
MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
NEGISHI N, 1999, J MATER SCI LETT, V18, P515
OVIEDO J, 2000, SURF SCI, V463, P93
PAN ZW, 2001, SCIENCE, V291, P1947
PENN RL, 1998, SCIENCE, V281, P969
PENN RL, 1999, GEOCHIM COSMOCHIM AC, V63, P1549
POSTMA HWC, 2000, ADV MATER, V12, P1299
POSTMA HWC, 2001, SCIENCE, V293, P76
RAMAMOORTHY M, 1994, PHYS REV B, V49, P16721
SAUNDERS VR, 1998, CRYSTAL98 USERS MANU
SENSATO FR, 2002, SURF SCI, V512, P408
SLATER B, 1999, J PHYS CHEM B, V103, P10644
WAGNER RS, 1964, APPL PHYS LETT, V4, P89
WEBER IT, 2001, SENSOR ACTUAT B-CHEM, V72, P180
WULFF G, 1901, Z KRISTALLOGR, V34, P449
YANG PD, 1997, J MATER RES, V12, P2981
NR 33
TC 13
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUL 28
PY 2003
VL 83
IS 4
BP 635
EP 637
PG 3
SC Physics, Applied
GA 704JM
UT ISI:000184336600015
ER
PT J
AU deAzevedo, ER
Franco, RWA
Marletta, A
Faria, RM
Bonagamba, TJ
TI Conformational dynamics of phenylene rings in poly(p-phenylene
vinylene) as revealed by C-13 magic-angle-spinning exchange nuclear
magnetic resonance experiments
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID CENTERBAND-ONLY DETECTION; NMR CHARACTERIZATION; MOLECULAR MOTIONS; MAS
NMR; FILMS; SOLIDS; MORPHOLOGY; DEPENDENCE; RELAXATION; PRINCIPLES
AB Poly(p-phenylene vinylene) (PPV) has shown a great potential for
electro-optical applications due to its electroluminescent and
semiconducting properties. Such properties are directly related with
the polymer chain conformation and dynamics. Then, it is important to
understand in detail the local chain motions. In this work, three C-13
solid-state magic-angle-spinning (MAS) exchange NMR techniques were
used to study conformational dynamics of phenylene rings in PPV. The
standard 2D MAS exchange experiment was used to identify exchange
processes between equivalent and nonequivalent sites. Centerband-only
detection of exchange (CODEX) experiments were applied to determine the
amplitude of the phenylene ring flips and small-angle oscillations.
Additionally, a new version of the CODEX technique, which allows for
the selective observation of segments executing exchange between
non-equivalent sites, is demonstrated and applied to determine the
flipping fractions and the activation energies of the phenylene ring
rotations. It was found that, at -15 degreesC, (26+/-3)% of the rings
undergo 180degrees flips in the millisecond time scale, with average
imprecision of (30+/-5)degrees and activation energies of (23+/-3)
kJ/mol. Other (31+/-10)% of the rings perform only small-angle
oscillations with an average amplitude of (9+/-2)degrees. These results
corroborate previous experimental data and agree with recent ab initio
calculations of potential energies barriers in phenylenevinylene
oligomers. (C) 2003 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
RP Bonagamba, TJ, Univ Sao Paulo, Inst Fis Sao Carlos, Caixa Postal 369,
BR-13560970 Sao Carlos, SP, Brazil.
CR BIELECKI A, 1995, J MAGN RESON SER A, V116, P215
BJORKLUND TG, 2002, SYNTHETIC MET, V126, P295
BONAGAMBA TJ, 2001, J POLYM SCI POL PHYS, V39, P2444
CAPAZ RB, 2003, PHYS REV B, V67
CLAUDIO GC, 2001, CHEM PHYS, V276, P81
CONNOR C, 1985, CHEM PHYS LETT, V113, P123
CUMBRERA FL, 1993, J MATER SCI, V28, P5387
DAMLIN P, 1999, ELECTROCHIM ACTA, V44, P4087
DEAZEVEDO ER, 1999, J AM CHEM SOC, V121, P8411
DEAZEVEDO ER, 2000, CHEM PHYS LETT, V321, P43
DEAZEVEDO ER, 2000, J CHEM PHYS, V112, P8988
GROZEMA FC, 2002, J CHEM PHYS, V117, P11366
GULLION T, 1989, ADV MAGN RESON, V13, P57
HAGEMEYER A, 1989, ADV MAGN RESON, V13, P85
HALLIDAY DA, 1993, SYNTHETIC MET, V55, P902
HERZFELD J, 1980, J CHEM PHYS, V73, P6021
JEENER J, 1979, J CHEM PHYS, V71, P4546
KENTGENS APM, 1985, MACROMOLECULES, V18, P1045
KENTGENS APM, 1987, J CHEM PHYS, V87, P6859
KROPEWNICKI ML, 2002, SOLID STATE NUCL MAG, V22, P275
LUZ Z, 1992, ISRAEL J CHEM, V32, P145
LUZ Z, 2002, PROG NUCL MAG RES SP, V41, P83
MASSE MA, 1990, J MATER SCI, V25, P311
MEHRING M, 1982, HIGH RESOLUTION NMR
OU RQ, 2001, POLYM ENG SCI, V41, P1705
REICHERT D, 2000, SOLID STATE NUCL MAG, V18, P17
REICHERT D, 2001, J MAGN RESON, V151, P129
SAALWACHTER K, 2002, J MAGN RESON, V157, P17
SCHMIDT C, 1988, J MAGN RESON, V79, P269
SCHMIDTROHR K, 1994, MACROMOLECULES, V27, P4733
SCHMIDTROHR K, 1994, MULTIDIMENSIONAL SOL
SCHMIDTROHR K, 2002, ENCY NMR, V9, P633
SIMPSON JH, 1990, J POLYM SCI POL PHYS, V28, P1859
SIMPSON JH, 1992, J POLYM SCI POL PHYS, V30, P11
SIMPSON JH, 1992, MACROMOLECULES, V25, P3068
SZEVERENYI NM, 1983, J AM CHEM SOC, V105, P2579
TONELLI AE, 1989, NMR SPECTROSCOPY POL
TRETIAK S, 2002, PHYS REV LETT, V89
VANDONGENTORMAN.JD, 1978, J CHEM PHYS, V68, P3233
VEEMAN WS, 1984, PROG NUCL MAG RES SP, V16, P193
WEFING S, 1988, J CHEM PHYS, V89, P1234
WILLIAMS G, 1970, T FARADAY SOC, V66, P80
ZHONG GL, 2002, MOL CRYST LIQ CRYST, V377, P169
NR 43
TC 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD AUG 1
PY 2003
VL 119
IS 5
BP 2923
EP 2934
PG 12
SC Physics, Atomic, Molecular & Chemical
GA 702UE
UT ISI:000184242100050
ER
PT J
AU Fileti, EE
Coutinho, K
Malaspina, T
Canuto, S
TI Electronic changes due to thermal disorder of hydrogen bonds in
liquids: Pyridine in an aqueous environment
SO PHYSICAL REVIEW E
LA English
DT Article
ID CARLO-QUANTUM-MECHANICS; QUADRUPOLE COUPLING-CONSTANTS; AB-INITIO;
VANDERWAALS MOLECULES; (HCN)(N) CLUSTERS; INTERMOLECULAR FORCES; WATER
DIMER; SPECTROSCOPY; POLARIZABILITIES; FORMALDEHYDE
AB Combined Metropolis Monte Carlo computer simulation and
first-principles quantum mechanical calculations of pyridine in water
are performed to analyze the role of thermal disorder in the electronic
properties of hydrogen bonds in an aqueous environment. The simulation
uses the NVT ensemble and includes one pyridine and 400 water
molecules. Using a very efficient geometric-energetic criterion, the
hydrogen bonds between pyridine and water C5H5N---H2O are identified
and separated for subsequent quantum mechanical calculations of the
electronic and spectroscopic properties. Statistically uncorrelated
configurations composed of one pyridine and one water molecule are used
to represent the configuration space of the hydrogen bonds in the
liquid. The quantum mechanical calculations on these structures are
performed at the correlated second-order perturbation theory level and
all results are corrected for basis-set superposition error. The
results are compared with the equivalent electronic properties of the
hydrogen bond in the minimum-energy configuration. Charge transfer,
dipole moment, and dipole polarizabilities are calculated for the
thermally disordered and minimum-energy structures. In addition, using
the mean and anisotropic polarizabilities, the Rayleigh depolarizations
are obtained. All properties obtained for the thermally disordered
structures are represented by a statistical distribution and a
convergence of the average values is obtained. The results indicate
that the charge transfer, dipole moment, and average depolarization
ratios are systematically decreased in the liquid compared to the
optimized cluster. This study quantifies, using ab initio quantum
mechanics and statistical analysis, the important aspect of the thermal
disorder of the hydrogen bond in a liquid system.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Mogi Cruzed, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
CR ABDURAHMAN A, 2002, PHYS REV B, V66
ALLEN MP, 1987, COMPUTER SIMULATION
BALL P, 2000, H2O BIOGRAPHY WATER
BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BAZTERRA VE, 2002, J CHEM PHYS, V117, P11158
BELL TW, 2002, J AM CHEM SOC, V124, P14092
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BERNSTEIN ER, 1990, ATOMIC MOL CLUSTERS
BLANCH EW, 2002, J PHYS CHEM A, V106, P4257
BONIN KD, 1997, ELECT DIPOLE POLARIZ
BOYS SF, 1970, MOL PHYS, V19, P553
BUCKINGHAM AD, 1983, J CHEM PHYS, V79, P6426
BUCKINGHAM AD, 1986, INT REV PHYS CHEM, V5, P107
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
CANUTO S, 1997, ADV QUANTUM CHEM, V28, P90
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
CORNILESCU G, 1999, J AM CHEM SOC, V121, P2949
COUTINHO K, 2000, DICE VERSION 2 8
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
DINGLEY AJ, 1998, J AM CHEM SOC, V120, P8293
DYKSTRA CE, 1986, J MOL STRUCT THEOCHE, V135, P357
DYKSTRA CE, 1993, CHEM REV, V93, P2339
EISENBERG D, 1969, STRUCTURE PROPERTIES
FABELLINSKII IL, 1968, MOL SCATTERING LIGHT
FILETI EE, 2003, J PHYS B-AT MOL OPT, V36, P399
FINNEY JL, 2002, PHYS REV LETT, V88
FOWLER PW, 1983, MOL PHYS, V50, P1349
FRANKS F, 1972, WATER COMPREHENSIVE
GALE GM, 1999, PHYS REV LETT, V82, P1068
GHANTY TK, 2000, J AM CHEM SOC, V122, P1210
GUO JH, 2002, PHYS REV LETT, V89
HERZBERG G, 1945, INFRARED RAMAN SPECT
ISAACS ED, 1999, PHYS REV LETT, V82, P600
JEFFREY GA, 1997, INTRO HYDROGEN BOND
JENSEN L, 2002, J CHEM PHYS, V117, P3316
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
JORGENSEN WL, 1998, J MOL STRUCT THEOCHE, V424, P145
KING BF, 1995, J CHEM PHYS, V103, P333
KING BF, 1995, J CHEM PHYS, V103, P348
LUDWIG R, 1995, J PHYS CHEM-US, V99, P9681
LUDWIG R, 1997, J CHEM PHYS, V107, P499
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MAROULIS G, 2000, J CHEM PHYS, V113, P1813
MEZEI M, 1981, J CHEM PHYS, V74, P622
MORGENSTERN K, 2002, PHYS REV LETT, V88
MORITA A, 1999, J CHEM PHYS, V110, P11987
MOROKUMA K, 1977, ACCOUNTS CHEM RES, V10, P294
RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
REED AE, 1988, CHEM REV, V88, P899
RISCH MJ, 1998, GAUSSIAN 98 REVISION
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
SATO H, 1999, J CHEM PHYS, V111, P8545
SCHEINER S, 1997, HYDROGEN BONDING THE
SCOLES G, 1990, CHEM PHYSICS ATOMIC
STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
STONE AJ, 1997, J CHEM PHYS, V107, P1030
VANDERVAART A, 2002, J CHEM PHYS, V116, P7380
WILSON KR, 2000, PHYS REV LETT, V85, P4289
ZWIER TS, 1996, ANNU REV PHYS CHEM, V47, P205
NR 60
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1063-651X
J9 PHYS REV E
JI Phys. Rev. E
PD JUN
PY 2003
VL 67
IS 6
PN Part 1
AR 061504
DI ARTN 061504
PG 7
SC Physics, Fluids & Plasmas; Physics, Mathematical
GA 699XD
UT ISI:000184081000046
ER
PT J
AU Skaf, MS
Vechi, SM
TI Polarizability anisotropy relaxation in pure and aqueous
dimethylsulfoxide
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; SULFOXIDE-WATER MIXTURES; DEPOLARIZED
LIGHT-SCATTERING; FEMTOSECOND OPTICAL KERR; PERIODIC
BOUNDARY-CONDITIONS; LIQUID DIMETHYL-SULFOXIDE; INTERMOLECULAR
DYNAMICS; DIELECTRIC-PROPERTIES; COMPUTER-SIMULATION; ULTRAFAST DYNAMICS
AB A molecular dynamics simulation study is presented for the relaxation
of the polarizability anisotropy of liquid dimethylsulfoxide (DMSO) and
DMSO-water mixtures of DMSO mole fractions x(D)=0.05, 0.10, 0.25, 0.50,
and 0.75. The system's collective polarizability is computed through a
dipolar induction mechanism involving the intrinsic polarizability and
first hyperpolarizability tensors for water and DMSO, obtained from ab
initio quantum chemical calculations at the MP2/6-311++G(d,p) level.
The rotational-diffusion components of the anisotropy relaxation of the
pure liquids increase upon mixing to a maximum near 25% DMSO, showing
consistency with other dynamical properties of these mixtures. Features
of the optical Kerr effect (OKE) nuclear response of liquid water,
previously ascribed to hydrogen bonding distortions, show significant
enhancement upon addition of DMSO due to the formation of strong
DMSO-water H-bonds. The OKE spectrum for DMSO is in close agreement
with experimental measurements, but there are discrepancies for pure
water in the vicinity of 60 cm(-1), pointing to the existence of
inaccuracies in our description of OKE sensitive polarizability
fluctuations of water. The mixtures OKE spectra feature an enhancement
in the high frequency water librational band. (C) 2003 American
Institute of Physics.
C1 Univ Estadual Campinas, Inst Quim, BR-13084971 Campinas, SP, Brazil.
RP Skaf, MS, Univ Estadual Campinas, Inst Quim, Cx P 6154, BR-13084971
Campinas, SP, Brazil.
CR ALLEN MP, COMPUTER SIMULATION
AMEY RL, 1968, J PHYS CHEM-US, V72, P3358
BAKER ES, 1985, J PHYS CHEM-US, V89, P1730
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
BERNE BJ, 2000, DYNAMIC LIGHT SCATTE
BERTOLUZZA A, 1979, J RAMAN SPECTROSC, V8, P231
BORIN IA, 1998, CHEM PHYS LETT, V296, P125
BORYSOW J, 1985, MOL PHYS, V56, P913
BURSULAYA BD, 1997, J PHYS CHEM B, V101, P10994
BURSULAYA BD, 1998, J CHEM PHYS, V109, P4911
CABRAL JT, 2000, J CHEM PHYS, V113, P8736
CASTNER EW, 1995, J CHEM PHYS, V102, P653
CHALARIS M, 2002, J MOL LIQ, V98, P399
CHANG YJ, 1993, J CHEM PHYS, V99, P7289
CHO MH, 1993, J CHEM PHYS, V99, P2410
COWIE MG, 1964, CAN J CHEM, V39, P224
DELATORRE JC, 1983, ANN NY ACAD SCI, V411, P1
DELEEUW S, 1980, P ROY SOC LOND A MAT, V373, P57
DELEEUW SW, 1980, P ROY SOC LOND A MAT, V373, P27
DELEEUW SW, 1986, ANNU REV PHYS CHEM, V37, P245
FAURSKOVNIELSEN O, 1993, ANNU REP PROG CHEM C, V90, P3
FECKO CJ, 2002, J CHEM PHYS, V117, P1139
FOX MF, 1974, J CHEM SOC FARADAY T, V75, P1407
FOX T, 1998, J PHYS CHEM B, V102, P8070
FRIEDMAN JS, 1993, J CHEM PHYS, V99, P4960
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GEIGER LC, 1987, J CHEM PHYS, V87, P191
GEIGER LC, 1989, CHEM PHYS LETT, V159, P413
GORDALLA BC, 1986, MOL PHYS, V59, P817
HIGASHIGAKI Y, 1981, J PHYS CHEM-US, V85, P2531
HOCKNEY RW, 1970, METHOD COMPUT PHYS, V9, P136
JACOB SW, 1975, BIOL ACTIONS DIMETHY, V243
JANSEN TIC, 2001, J CHEM PHYS, V114, P10910
KAATZE U, 1989, J PHYS CHEM-US, V93, P5623
KIRCHNER B, 2002, J AM CHEM SOC, V124, P6206
KIYOHARA K, 2000, J CHEM PHYS, V112, P6338
LADANYI BM, 1985, CHEM PHYS LETT, V121, P351
LADANYI BM, 1995, J CHEM PHYS, V103, P6325
LADANYI BM, 1996, J CHEM PHYS, V105, P1552
LAI JTW, 1995, J SOLUTION CHEM, V24, P89
LIU HY, 1995, J AM CHEM SOC, V117, P4363
LUTHER BM, 2000, THESIS COLORADO STAT
LUZAR A, 1993, J CHEM PHYS, V98, P8160
LUZAR A, 1994, NATO ADV STUDIES I C, V435
LUZAR A, 1996, FARADAY DISCUSS, V103, P29
LUZAR A, 1996, NATURE, V379, P55
MADDEN PA, 1985, ULTRAFAST PHENOMENA, V4, P244
MARTIN D, 1975, DIMETHYL SULFOXIDE
MARTINS LR, 2003, J CHEM PHYS, V118, P5955
MCMORROW D, 1988, IEEE J QUANTUM ELECT, V24, P443
MCMORROW D, 1991, J PHYS CHEM-US, V95, P10395
MCMORROW D, 1996, J PHYS CHEM-US, V100, P10389
MILLER KJ, 1990, J AM CHEM SOC, V112, P8533
MRAZKOVA E, 2003, J PHYS CHEM A, V107, P1032
MUKAMEL S, 1999, PRINCIPLES NONLINEAR
PACAK P, 1987, J SOLUTION CHEM, V16, P71
PACKER KJ, 1971, T FARADAY SOC, V67, P1302
PALESE S, 1994, J PHYS CHEM-US, V98, P6308
PURANIK SM, 1992, J CHEM SOC FARADAY T, V88, P433
RAO BG, 1990, J AM CHEM SOC, V112, P3803
RIGHINI R, 1993, SCIENCE, V262, P1386
ROSENTHAL SJ, 1993, ULTRAFAST PHENOMENA
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327
SAFFORD GJ, 1969, J CHEM PHYS, V50, P2140
SAITO S, 1997, J CHEM PHYS, V106, P4889
SHEN DN, 2001, J PHYS CHEM B, V105, P6759
SHIROTA H, 2001, J AM CHEM SOC, V123, P12877
SKAF MS, 1997, J CHEM PHYS, V107, P7996
SKAF MS, 1999, J PHYS CHEM A, V103, P10719
SMITH NA, 1997, J PHYS CHEM A, V101, P9578
SMITH NA, 2000, J PHYS CHEM A, V104, P4223
SOPER AK, 1996, J PHYS CHEM-US, V100, P1357
STASSEN H, 1994, J CHEM PHYS, V100, P6318
STASSEN H, 1999, J CHEM PHYS, V110, P7382
STEFFEN T, 1998, J PHYS CHEM A, V102, P4213
TOKUHIRO T, 1974, J CHEM PHYS, V61, P2275
TOMMILA E, 1969, SUOM KEMISTIL B, V41, P172
TORII H, 2001, CHEM PHYS LETT, V353, P431
VAISMAN II, 1992, J AM CHEM SOC, V114, P7889
VISHNYAKOV A, 2001, J PHYS CHEM A, V105, P1702
WIEWIOR PP, 2002, J CHEM PHYS, V116, P4643
WINKLER K, 2000, J CHEM PHYS, V113, P4674
NR 82
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUL 22
PY 2003
VL 119
IS 4
BP 2181
EP 2187
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 700FY
UT ISI:000184103000035
ER
PT J
AU Dardenne, LE
Werneck, AS
Neto, MD
Bisch, PM
TI Electrostatic properties in the catalytic site of papain: A possible
regulatory mechanism for the reactivity of the ion pair
SO PROTEINS-STRUCTURE FUNCTION AND GENETICS
LA English
DT Article
DE papain; cysteine proteinases; electrostatic properties; enzymatic
catalysis; ab initio calculations; multicenter multipolar expansions
ID CYSTEINE PROTEASE PAPAIN; DISTRIBUTED MULTIPOLE ANALYSIS; MOLECULAR
CHARGE-DISTRIBUTION; ACTIVE-SITE; QUANTUM-CHEMISTRY; ENZYME CATALYSIS;
IONIZATION CHARACTERISTICS; DIELECTRIC-CONSTANTS; PROTEINASE ACTIVITY;
SERINE PROTEINASES
AB We present an analysis of the electrostatic properties in the catalytic
site of papain (EC 3.4.22.2), an archetype enzyme of the C1 cysteine
proteinase family, and we investigate their possible role in the
formation, stabilization and regulation of the Cys25((-))...His159((+))
catalytic ion pair. The electrostatic properties were computed using a
reassociation method based in multicentered multipolar expansions
obtained from ab initio quantum calculations of overlapping protein
fragments. Solvent effects were introduced by coupling the use of
multicentered multipolar expansions to two continuum boundary element
methods to solve the Poisson and the linearized Poisson-Boltzmann
equations. The electrostatic profile found in the proton transfer
region of papain showed that this enzyme has a well-defined
electrostatic environment to favor the formation and stabilization of
the catalytic ion pair. The papain catalytic site electrostatic profile
can be considered as an electrostatic fingerprint of the papain family
with the following characteristics: (i) the presence of a net electric
field highly aligned in the (Cys25)-SG-->(His159)-ND1 direction; (ii)
the electrostatic profile has a saddle-point character; (iii) it is
basically a local environmental effect. Furthermore, our analysis
describes a possible regulatory mechanism (the ESG-->ND1 attenuation
effect) controlling the ion pair reactivity and permits to infer the
Asp57 acidic residue as the most probable candidate to act as the
electrostatic modulator. (C) 2003 Wiley-Liss, Inc.
C1 Fed Univ Rio De Janeiro, Lab Fis Biol, Inst Biofis Carlos Chagas Filho, BR-21949900 Rio De Janeiro, RJ, Brazil.
LNCC, BR-25651070 Petropolis, RJ, Brazil.
UCB, Dept Fis, BR-72030170 Taguatinga, DF, Brazil.
Univ Brasilia, Inst Quim, BR-70910900 Brasilia, DF, Brazil.
RP Bisch, PM, Fed Univ Rio De Janeiro, Lab Fis Biol, Inst Biofis Carlos
Chagas Filho, CCS,Bloco G Ilha Fundao, BR-21949900 Rio De Janeiro, RJ,
Brazil.
CR ALTSCHUH D, 1994, PROTEIN ENG, V7, P769
ANGYAN J, 1983, J THEOR BIOL, V103, P349
ANGYAN JG, 1994, INT J QUANTUM CHEM, V52, P17
ARAD D, 1990, J AM CHEM SOC, V112, P491
BENTZIEN J, 1998, J PHYS CHEM B, V102, P2293
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
BERTI PJ, 1995, J MOL BIOL, V246, P273
BEVERIDGE AJ, 1996, PROTEIN SCI, V5, P1355
CAFFARENA ER, 2000, J MOL GRAPH MODEL, V18, P119
CAMMI R, 1995, J COMPUT CHEM, V16, P1449
CARTER CE, 2000, BIOCHEMISTRY-US, V39, P11005
CAZZULO JJ, 1997, BIOL CHEM, V378, P1
CHIPOT C, 1993, J PHYS CHEM-US, V97, P9788
COITINO EL, 1995, J COMPUT CHEM, V16, P20
COLONNA F, 1992, J COMPUT CHEM, V13, P1234
CONNOLLY ML, 1983, SCIENCE, V221, P709
CONNOLLY ML, 1993, MDS MOL DOT SURFACE
DARDENNE LE, 2001, J COMPUT CHEM, V22, P689
DAY PN, 1996, J CHEM PHYS, V105, P1968
DESIDERI A, 1992, J MOL BIOL, V223, P337
DEVRIES AH, 1995, J COMPUT CHEM, V16, P37
DIJKMAN JP, 1987, INT J QUANTUM CHEM Q, V14, P211
DIJKMAN JP, 1989, INT J QUANTUM CHEM, V35, P241
DRENTH J, 1976, BIOCHEMISTRY-US, V15, P3731
DUNCAN GD, 1992, J AM CHEM SOC, V114, P5784
EURENIUS KP, 1996, INT J QUANTUM CHEM, V60, P1189
FREITAG MA, 2000, J CHEM PHYS, V112, P7300
GARAVITO RM, 1977, BIOCHEMISTRY-US, V16, P5065
GARMER DR, 1998, PROTEINS, V31, P42
GILSON MK, 1988, PROTEINS, V3, P32
GOLDBLUM A, 1997, UNDERS CH R, V19, P295
GRESH N, 1984, THEOR CHIM ACTA, V66, P1
GRESH N, 1986, INT J QUANTUM CHEM, V29, P101
GRESH N, 1997, BIOPOLYMERS, V41, P145
GRIMSLEY GR, 1999, PROTEIN SCI, V8, P1843
HARRISON MJ, 1997, J AM CHEM SOC, V119, P12285
HUMPHREY W, 1996, J MOL GRAPHICS, V14, P33
HWANG JK, 1995, CHEM PHYS LETT, V243, P171
IKEUCHI Y, 1998, FEBS LETT, V437, P91
JUFFER AH, 1991, J COMPUT PHYS, V97, P144
KAMPHUIS IG, 1984, J MOL BIOL, V179, P233
KAMPHUIS IG, 1985, J MOL BIOL, V182, P317
LAMOTTEBRASSEUR J, 1990, J THEOR BIOL, V145, P183
LANGLET J, 1988, J PHYS CHEM-US, V92, P1617
LAVERY R, 1983, INT J QUANTUM CHEM, V24, P353
LEE B, 1971, J MOL BIOL, V55, P379
LEWIS SD, 1976, BIOCHEMISTRY-US, V15, P5009
LEWIS SD, 1981, BIOCHEMISTRY-US, V20, P48
LIMA APC, 2001, MOL BIOCHEM PARASIT, V114, P1
MCKERROW JH, 1993, ANNU REV MICROBIOL, V47, P821
MELLOR GW, 1993, BIOCHEM J 1, V294, P201
MELLOR GW, 1993, BIOCHEM J, V290, P289
MENARD R, 1990, BIOCHEMISTRY-US, V29, P6706
MENARD R, 1991, BIOCHEMISTRY-US, V30, P5531
MENARD R, 1991, PROTEIN ENG, V4, P307
MENARD R, 1995, BIOCHEMISTRY-US, V34, P464
MINIKIS RM, 2001, J PHYS CHEM A, V105, P3829
MONARD G, 1996, INT J QUANTUM CHEM, V58, P153
NAKAMURA H, 1996, Q REV BIOPHYS, V29, P1
NARAYSZABO G, 1997, UNDERS CH R, V19, P237
NOBLE MA, 2000, BIOCHEM J 3, V351, P723
PASCUTTI PG, 1999, J COMPUT CHEM, V20, P971
PERAHIA D, 1977, THEOR CHIM ACTA, V43, P207
PICKERSGILL RW, 1988, BIOCHEM J, V254, P235
PINITGLANG S, 1997, BIOCHEMISTRY-US, V36, P9968
PLOU FJ, 1996, J MOL BIOL, V257, P1088
POORNIMA CS, 1995, J COMPUT AID MOL DES, V9, P500
POORNIMA CS, 1995, J COMPUT AID MOL DES, V9, P513
RASHIN AA, 1987, J PHYS CHEM-US, V91, P6003
RIPOLL DR, 1993, P NATL ACAD SCI USA, V90, P5128
RULLMANN JAC, 1989, J MOL BIOL, V206, P101
RUSSELL AJ, 1987, NATURE, V328, P496
SANSCHAGRIN PC, 1998, PROTEIN SCI, V7, P2054
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHRODER E, 1993, FEBS LETT, V315, P38
SCHUTZ CN, 2001, PROTEINS, V44, P400
SHAM YY, 1998, BIOPHYS J, V74, P1744
SHARP KA, 1997, UNDERS CH R, V19, P199
SHENAI BR, 2000, J BIOL CHEM, V275, P29000
SIMONSON T, 2002, ACCOUNTS CHEM RES, V35, P430
SMITH LJ, 1995, BIOCHEMISTRY-US, V34, P10918
STONE AJ, 1981, CHEM PHYS LETT, V83, P233
STONE AJ, 1985, MOL PHYS, V56, P1047
TAYLOR MAJ, 1994, PROTEIN ENG, V7, P1267
TOPHAM CM, 1991, BIOCHEM J, V280, P79
VANGUNSTEREN WF, 1987, GRONINGEN MOL SIMULA
VERNET T, 1995, J BIOL CHEM, V270, P16645
VIGNEMAEDER F, 1988, J CHEM PHYS, V88, P4934
WARSHEL A, 1976, J MOL BIOL, V103, P227
WARSHEL A, 1991, COMPUTER MODELING CH, P140
WARSHEL A, 1998, J BIOL CHEM, V273, P27035
WARSHEL A, 1998, P NATL ACAD SCI USA, V95, P5950
WERNECK AS, 1998, THEOCHEM-J MOL STRUC, V427, P15
YOON BJ, 1990, J COMPUT CHEM, V11, P1080
NR 94
TC 6
PU WILEY-LISS
PI NEW YORK
PA DIV JOHN WILEY & SONS INC, 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0887-3585
J9 PROTEIN-STRUCT FUNCT GENET
JI Proteins
PD AUG 1
PY 2003
VL 52
IS 2
BP 236
EP 253
PG 18
SC Biochemistry & Molecular Biology; Genetics & Heredity
GA 697BW
UT ISI:000183923200012
ER
PT J
AU Arenzon, JJ
Levin, Y
Sellitto, M
TI Slow dynamics under gravity: a nonlinear diffusion model
SO PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
LA English
DT Article
DE granular matter; structural arrest; glass transition; compaction
dynamics
ID VIBRATED GRANULAR MATERIAL; LATTICE-GAS MODEL; GLASS-TRANSITION;
DENSITY-FLUCTUATIONS; COMPACTION; RELAXATION; MATTER; LIQUIDS; MEDIA;
CRYSTALLIZATION
AB We present an analytical and numerical study of a nonlinear diffusion
model which describes density relaxation of densely packed particles
under gravity and weak random (thermal) vibration, and compare the
results with Monte Carlo simulations of a lattice gas under gravity.
The dynamical equation can be thought of as a local density functional
theory for a class of lattice gases used to model slow relaxation of
glassy and granular materials. The theory predicts a jamming transition
line between a low-density fluid phase and a high-density glassy
regime, characterized by diverging relaxation time and logarithmic or
power-law compaction according to the specific form of the diffusion
coefficient. In particular, we show that the model exhibits
history-dependent properties, such as quasi-reversible-irreversible
cycle and memory effects-as observed in recent experiments, and
dynamical heterogeneities. (C) 2003 Elsevier Science B.V. All rights
reserved.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
Abdus Salam Int Ctr Theoret Phys, I-34100 Trieste, Italy.
RP Arenzon, JJ, Univ Fed Rio Grande Sul, Inst Fis, CP 15051, BR-91501970
Porto Alegre, RS, Brazil.
CR BARRAT A, 2000, J PHYS A-MATH GEN, V33, P4401
BARRAT A, 2001, EUROPHYS LETT, V53, P297
BERG J, 2001, EUROPHYS LETT, V56, P784
BOUCHAUD JP, CONDMAT0211196
BOUCHAUD JP, 1997, SPIN GLASSES RANDOM
BOUTREUX T, 1997, PHYSICA A, V244, P59
BREY JJ, 1999, PHYS REV E B, V60, P5685
BREY JJ, 2001, PHYS REV E 1, V63
CLEMENT E, 1991, EUROPHYS LETT, V16, P133
DANNA G, 2001, NATURE, V413, P407
DANNA G, 2001, PHYS REV LETT, V87
DEGENNES PG, 1998, PHYSICA A, V261, P267
DURAN J, 2000, SANDS POWDERS GRAINS
EDWARDS SF, 1991, DISORDER CONDENSED M
EDWARDS SF, 1994, GRANULAR MATTER INTE
FRANZ S, 2002, PHYS REV E 1, V65
FUSCO C, 2002, PHYS REV E 1, V66
GOTZE W, 1992, REP PROG PHYS, V55, P241
HEAD DA, 2000, PHYS REV E B, V62, P2439
IMPARATO A, 2000, PHYS LETT A, V269, P154
JOSSERAND C, 2000, PHYS REV LETT, V85, P3632
KADANOFF LP, 1999, REV MOD PHYS, V71, P435
KNIGHT JB, 1995, PHYS REV E A, V51, P3957
KOB W, 1993, PHYS REV E, V48, P4364
KOVACS AJ, 1963, FORTSCH HOCHPOLYM FO, V3, P394
LAWLOR A, 2002, PHYS REV LETT, V89
LEVIN Y, 2000, PHYSICA A, V287, P100
LEVIN Y, 2001, EUROPHYS LETT, V55, P767
LIU AJ, 1998, NATURE, V396, P21
NICODEMI M, 1997, PHYS REV E, V55, P3962
NICOLAS M, 2000, EUR PHYS J E, V3, P309
NOWAK ER, 1997, POWDER TECHNOL, V94, P79
NOWAK ER, 1998, PHYS REV E B, V57, P1971
PELITI L, 1998, J PHYS IV, V8, PR6
PHILIPPE P, 2001, PHYS REV E 1, V63
POULIQUEN O, 1997, PHYS REV LETT, V79, P3640
PRADOS A, 2000, PHYSICA A, V284, P277
RICHERT R, 2002, J PHYS-CONDENS MAT, V14, R703
RITORT F, CONDMAT0210382
SELLITTO M, 2000, PHYS REV E A, V62, P7793
SELLITTO M, 2001, PHYS REV E 1, V63
SILLESCU H, 1999, J NON-CRYST SOLIDS, V243, P81
STARIOLO DA, 1997, PHYS REV E, V55, P4806
STRUIK LCE, 1978, PHYSICAL AGING AMORP
TOKUYAMA M, 1995, PHYSICA A, V216, P85
VANMEGEN W, 1998, PHYS REV E B, V58, P6073
VILLARRUEL FX, 2000, PHYS REV E B, V61, P6914
WARR S, 1996, EUROPHYS LETT, V36, P589
WILDMAN RD, 2000, PHYS REV E B, V62, P3826
WILDMAN RD, 2001, PHYS REV E 1, V63
YANG XY, 2002, PHYS REV LETT, V88
NR 51
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD JUL 15
PY 2003
VL 325
IS 3-4
BP 371
EP 395
PG 25
SC Physics, Multidisciplinary
GA 696VZ
UT ISI:000183909400006
ER
PT J
AU Capelle, K
TI Variational calculation of many-body wave functions and energies from
density functional theory
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID GENERATOR-COORDINATE METHOD; NONORTHOGONAL SLATER DETERMINANTS;
EXCITATION-ENERGIES; ELECTRON-GAS; DISCRETIZATION; SUPERPOSITION;
APPROXIMATION; STATES; ATOMS
AB A generating coordinate is introduced into the exchange-correlation
functional of density functional theory (DFT). The many-body wave
function is represented as a superposition of Kohn-Sham (KS) Slater
determinants arising from different values of the generating
coordinate. This superposition is used to variationally calculate
many-body energies and wave functions from solutions of the KS equation
of DFT. The method works for ground and excited states, and does not
depend on identifying the KS orbitals and energies with physical ones.
Numerical application to the Helium isoelectronic series illustrates
the method's viability and potential. (C) 2003 American Institute of
Physics.
C1 Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
RP Capelle, K, Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim Sao Carlos,
Caixa Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR ANDREJKOVICS I, 1998, CHEM PHYS LETT, V296, P489
ARICKX F, 1981, J COMPUT PHYS, V39, P272
BECKE AD, 1988, PHYS REV A, V38, P3098
BROECKHOVE J, 1979, Z PHYS A, V292, P243
CHATTOPADYAY P, 1978, Z PHYS A, V285, P7
DASILVA ABF, 1989, MOL PHYS, V68, P433
DASILVA ABF, 1993, CHEM PHYS LETT, V203, P201
DAVIDSON ER, 1991, PHYS REV A, V44, P7071
DEUMENS E, 1984, INT J QUANTUM CHEM, V18, P339
FUKUTOME H, 1988, PROG THEOR PHYS, V80, P417
GORLING A, 1999, PHYS REV A, V59, P3359
GRIFFIN JJ, 1957, PHYS REV, V108, P311
GROSS EKU, 1988, PHYS REV A, V37, P2805
HILL DL, 1953, PHYS REV, V89, P1106
HOHENBERG P, 1964, PHYS REV, V136, B864
JOHANSSON B, 1978, PHYSICA B, V94, P152
LASKOWSKI B, 1976, J CHEM PHYS, V69, P5222
LASKOWSKI B, 1976, QUANTUM SCI METHODS
LEE C, 1988, PHYS REV B, V37, P785
MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
PETERSILKA M, 1996, PHYS REV LETT, V76, P1212
SZABO A, 1989, MODERN QUANTUM CHEM
TENNO S, 1997, THEOR CHEM ACC, V98, P182
TOMITA N, 1996, CHEM PHYS LETT, V263, P687
NR 24
TC 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUL 15
PY 2003
VL 119
IS 3
BP 1285
EP 1288
PG 4
SC Physics, Atomic, Molecular & Chemical
GA 696YL
UT ISI:000183915100001
ER
PT J
AU Capaz, RB
Caldas, MJ
TI Ab initio calculations of structural and dynamical properties of
poly(p-phenylene) and poly(p-phenylene vinylene)
SO PHYSICAL REVIEW B
LA English
DT Article
ID VIBRATIONAL-SPECTRA; DOPED POLYPARAPHENYLENE; CRYSTAL-STRUCTURE;
PHASE-TRANSITION; X-RAY; PERDEUTERATED BIPHENYL; OPTICAL
INVESTIGATIONS; ELECTRONIC-STRUCTURE; CONJUGATED POLYMERS; PHENYLENE
VINYLENE
AB We perform ab initio calculations within the local density
approximation for infinite, isolated chains of poly(para-phenylene)
(PPP) and poly(para-phenylene-vinylene) (PPV). Phonon frequencies at
(k) over right arrow = (0) over right arrow and structural properties
are investigated with special focus on the ring-torsion barriers. Our
results for PPV indicate a planar geometry, while for PPP we find a
ring-torsion potential that is not affected by next-nearest-neighbor
rings. This suggests the existence of a multiply degenerate ground
state for PPP, with chiral, ordered, or random angle-alternating
configurations having the same energy. In addition, we couple these
results to a simple molecular-dynamics simulation in order to
investigate the finite temperature behavior of the systems.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil.
Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, Brazil.
RP Capaz, RB, Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528,
BR-21941972 Rio De Janeiro, Brazil.
CR ALMENNINGEN A, 1985, J MOL STRUCT, V128, P59
AMBROSCHDRAXL C, 1995, PHYS REV B, V51, P9668
BAITOUL M, 2000, POLYMER, V41, P6955
BASTIANSEN O, 1985, J MOL STRUCT, V128, P115
BAUDOUR JL, 1977, ACTA CRYSTALLOGR B, V33, P1773
BAUDOUR JL, 1978, ACTA CRYSTALLOGR B, V34, P625
BAUDOUR JL, 1991, ACTA CRYSTALLOGR B, V47, P935
BRADLEY DDC, 1987, J PHYS D APPL PHYS, V20, P1389
BREDAS JL, 1984, PHYS REV B, V29, P6761
CAPAZ RB, 1999, J MOL STRUC-THEOCHEM, V464, P31
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHEN D, 1990, PHYS REV B, V41, P6759
CHEN D, 1992, POLYMER, V33, P3116
CHOI CH, 1997, J PHYS CHEM A, V101, P3823
CUFF L, 1994, MACROMOLECULES, V27, P762
CUFF LL, 1994, J AM CHEM SOC, V116, P9269
DELUGEARD Y, 1976, ACTA CRYSTALLOGR, V32, P702
FINCHER CR, 1982, PHYS REV LETT, V48, P100
FINDER CJ, 1974, ACTA CRYSTALLOGR B, V30, P411
FRIEND RH, 1999, NATURE, V397, P121
FURUKAWA Y, 1991, SPECTROCHIM ACTA A, V47, P1367
GINDER JM, 1990, PHYS REV B, V41, P10674
HOHENBERG P, 1964, PHYS REV, V136, B864
HONG SY, 1990, PHYS REV B, V41, P11368
KOHN W, 1965, PHYS REV, V140, A1133
KOVACIC P, 1968, J APPL POLYM SCI, V12, P1735
MARTIN SJ, 1999, PHYS REV B, V59, P15133
ORION I, 1998, PHYS REV B, V57, P7050
PAPANEK P, 1994, PHYS REV B, V50, P15668
PAYNE MC, 1992, REV MOD PHYS, V64, P1045
PELOUS Y, 1989, SYNTHETIC MET, V29, E17
PERDEW JP, 1981, PHYS REV B, V23, P5048
RAKOVIC D, 1990, PHYS REV B, V41, P10744
RAPPE AM, 1990, PHYS REV B, V41, P1227
RIETVELD HM, 1970, ACTA CRYSTALLOGR B, V26, P693
SAKAMOTO A, 1992, J PHYS CHEM-US, V96, P1490
SHACKLETTE LW, 1979, SYNTHETIC MET, V1, P307
SIMPSON JH, 1992, J POLYM SCI POL PHYS, V30, P11
STAMM M, 1983, J PHYS-PARIS, V44, P667
STAMM M, 1985, MOL CRYST LIQ CRYST, V118, P281
TIAN B, 1991, J CHEM PHYS, V95, P3191
TIAN B, 1991, J CHEM PHYS, V95, P3198
TOUDIC B, 1983, SOLID STATE COMMUN, V47, P291
TUYAROT DE, 2000, PHYS REV B, V61, P7187
WANG WZ, 1994, PHYS REV B, V50, P6068
ZANNONI G, 1985, J CHEM PHYS, V82, P31
NR 46
TC 8
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2003
VL 67
IS 20
AR 205205
DI ARTN 205205
PG 9
SC Physics, Condensed Matter
GA 689GL
UT ISI:000183483200032
ER
PT J
AU Fagan, SB
Mota, R
da Silva, AJR
Fazzio, A
TI Ab initio study of an iron atom interacting with single-wall carbon
nanotubes
SO PHYSICAL REVIEW B
LA English
DT Article
ID TRANSITION-METAL ADATOMS; MOLECULAR-DYNAMICS; LARGE SYSTEMS; GRAPHITE;
MAGNETISM; GROWTH; IMPURITIES; ADSORPTION; PARTICLES; SPECTRA
AB The interaction of an iron atom with a single-wall carbon nanotube is
investigated using spin-polarized total-energy first-principles
calculations. A systematic study for the atom approaching the tube
surface, both from outside and inside, is presented for several
configurations to determine the equilibrium distances and the binding
energies. It is shown that when the atom interacts with the tube from
outside, a 3d(7) 4s(1) effective configuration is obtained and the
total magnetization is close to the atomic value. For the inside case,
as a consequence of higher hybridization and a confinement effect, the
magnetization decreases and the finally obtained effective
configuration is 3d(8) 4s(0).
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Fagan, SB, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
Brazil.
CR ANDRIOTIS AN, 2000, APPL PHYS LETT, V76, P3890
ANDRIOTIS AN, 2000, PHYS REV B, V61, P13393
ANDRIOTIS AN, 2000, PHYS REV LETT, V85, P3193
ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
BINNS C, 1996, PHYS REV B, V53, P7451
BUMER M, 1995, SURF SCI, V327, P321
DAI HJ, 2002, SURF SCI, V500, P218
DRESSELHAUS MS, 2001, CARBON NANOTUBES
DUFFY DM, 1998, PHYS REV B, V58, P7443
FAZZIO A, 1984, PHYS REV B, V30, P3430
HOHENBERG P, 1964, PHYS REV, V136, B864
JOURNET C, 1997, NATURE, V388, P756
KATAYAMAYOSHIDA H, 1984, PHYS REV LETT, V53, P1256
KATAYAMAYOSHIDA H, 1985, PHYS REV B, V31, P7877
KOHN W, 1965, PHYS REV, V140, A1133
KONG K, 1999, PHYS REV B, V60, P6074
KRUGER P, 1998, PHYS REV B, V57, P5276
KRUGER P, 1999, PHYS REV B, V59, P15093
LEE YH, 1997, PHYS REV LETT, V78, P2393
MENON M, 2000, CHEM PHYS LETT, V320, P425
MINTMIRE JW, 1992, PHYS REV LETT, V68, P631
NARDELLI MB, 2001, PHYS REV B, V64
ORDEJON P, 1996, PHYS REV B, V53
PANDEY R, 2000, CHEM PHYS LETT, V321, P142
PENG SS, 1996, PHILOS MAG B, V73, P611
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANKEY OF, 1989, PHYS REV B, V40, P3979
SETLUR AA, 1998, J MATER RES, V13, P2139
TIBBETTS GG, 1987, CARBON, V25, P367
TROULLIER N, 1991, PHYS REV B, V43, P1993
TSUKAGOSHI K, 1999, NATURE, V401, P572
ZHANG Y, 2000, CHEM PHYS LETT, V331, P35
NR 33
TC 13
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2003
VL 67
IS 20
AR 205414
DI ARTN 205414
PG 5
SC Physics, Condensed Matter
GA 689GL
UT ISI:000183483200087
ER
PT J
AU Guerini, S
Piquini, P
TI Theoretical investigation of TiB2 nanotubes
SO MICROELECTRONICS JOURNAL
LA English
DT Article
DE TiB2 nanotubes; density of states; strain energy
ID HARTREE-FOCK
AB We investigated the energetic and electronic properties of zig-zag
titanium diboride (TiB2) nanotubes through ab initio density functional
theory. It is determined that an isolated (6,0) bilayered TiB2 nanotube
has a semiconductor character, with an energy gap of 1.32 eV. The
strain energy to form the (6,0) TiB2 nanotube is calculated to be 0.26
eV per unit formula. The electronic density of states of a three-layer
tube ((6,0) TiB2 + (12,0) B tube) shows a metallic behavior for this
system, which is consistent with previous calculations on similar
hypothetical nanotubes. (C) 2003 Elsevier Science Ltd. All rights
reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Piquini, P, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
RS, Brazil.
CR BARTHELAT JC, 1977, MOL PHYS, V33, P159
BLASE X, 1994, EUROPHYS LETT, V28, P225
CAUSA M, 1991, PHYS REV B, V43, P11937
CHERNOZATONSKII LA, 2001, JETP LETT, V74, P369
CHOPRA NG, 1995, SCIENCE, V269, P966
COTE M, 1998, PHYS REV B, V58, R4277
FELDMAN Y, 1995, SCIENCE, V267, P222
HACOHEN YR, 1998, NATURE, V395, P336
HARRIS PJF, 1999, CARBON NANOTUBES REL
LEE SM, 1999, PHYS REV B, V60, P7788
LI XY, 1996, J APPL PHYS, V80, P3860
LIJIMA S, 1991, NATURE, V354, P56
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PEROTTONI CA, 2000, J PHYS-CONDENS MAT, V12, P7205
QUANDT A, 2001, PHYS REV B, V64
SAUNDERS VR, 1998, CRYSTALS 98 USERS MA
SEIFERT G, 2000, CHEM PHYS LETT, V318, P355
SILVER AH, 1963, J CHEM PHYS, V38, P865
NR 19
TC 3
PU ELSEVIER ADVANCED TECHNOLOGY
PI OXFORD
PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON,
OXFORD OX5 1GB, OXON, ENGLAND
SN 0026-2692
J9 MICROELECTR J
JI Microelectron. J.
PD MAY-AUG
PY 2003
VL 34
IS 5-8
BP 495
EP 497
PG 3
SC Engineering, Electrical & Electronic
GA 691LH
UT ISI:000183607400039
ER
PT J
AU Machado, M
Mota, R
Piquini, P
TI Electronic properties of BN nanocones under electric fields
SO MICROELECTRONICS JOURNAL
LA English
DT Article
DE electronic structures of nanoscale materials; nanocones; BN
ID EMISSION PROPERTIES; CARBON NANOTUBES; LARGE SYSTEMS; CONES
AB The electronic properties of BN nanocones with 240degrees disclination
under electric fields are investigated using first-principles
calculations based on the density-functional theory. The cones are
studied under the influence of electric fields, up to 1.13 V/Angstrom,
applied along the cone axis. The densities of states (DOS) of these BN
nanocones show different patterns depending on the termination two
atoms (BN, BB or NN) and the electric field strength. A decreasing of
the gap is observed with increasing field. The field emission
properties are very sensitive to the DOS and we show that the
termination atoms, as well as the electric field, contribute to enhance
the electron field emission. (C) 2003 Elsevier Science Ltd. All rights
reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Machado, M, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
RS, Brazil.
CR BAIERLE RJ, 2001, PHYS REV B, V64
BOURGEOIS L, 2000, PHYS REV B, V61, P7686
CHARLIER JC, 2001, PHYS REV LETT, V86, P5970
CHARLIER JC, 2002, NANO LETT, V2, P1191
MACHADO, 2003, EUR PHYS J D, V23, P91
MEUNIER V, 2002, APPL PHYS LETT, V81, P46
MOTA R, 2003, PHYS STATUS SOLIDI C, P799
ORDEJON P, 1996, PHYS REV B, V53
RUBIO A, 1994, PHYS REV B, V49, P5081
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
TERAUCHI M, 2000, CHEM PHYS LETT, V324, P359
ZHANG G, 2002, APPL PHYS LETT, V80, P2589
NR 12
TC 5
PU ELSEVIER ADVANCED TECHNOLOGY
PI OXFORD
PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON,
OXFORD OX5 1GB, OXON, ENGLAND
SN 0026-2692
J9 MICROELECTR J
JI Microelectron. J.
PD MAY-AUG
PY 2003
VL 34
IS 5-8
BP 545
EP 547
PG 3
SC Engineering, Electrical & Electronic
GA 691LH
UT ISI:000183607400051
ER
PT J
AU Arissawa, M
Taft, CA
Felcman, J
TI Investigation of nucleoside analogs with anti-HIV activity
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE HIV; reverse transcriptase; drug-DNA interaction; nucleoside analogs
ID HUMAN-IMMUNODEFICIENCY-VIRUS; TYPE-1 REVERSE-TRANSCRIPTASE; BLOOD
MONONUCLEAR-CELLS; DRUG-RESISTANCE; AB-INITIO; 2',3'-DIDEOXYNUCLEOSIDE
ANALOGS; POPULATION ANALYSIS; ANTI-HIV-1 ACTIVITY; HUMAN-LYMPHOCYTES;
LAMIVUDINE 3TC
AB Although a relatively large number of drugs that inhibit human
immunodeficiency syndrome (HIV)-1 reverse transcriptase have been
developed-such as AZT, d4T, ddI, 3TC, and ddC, which are chain
terminating nucleoside analogs-resistance is still a major problem.
Atomic charges, regioselective patterns of chemical reactivity, and
other indices of biochemical activity may help us acquire a better
understanding of how the drugs work and the mechanism of drug
resistance. In this work, we investigated the above-mentioned
nucleoside analogs using the ab initio Hartree-Fock method with 3-21G,
3-21G*, 6-31G, 6-31G*, 6-31G**, and 6-31+G** basis sets as well as
B3LYP/6-31G**, including thus diffusion, polarization, and correlation
effects to obtain fully optimized geometric parameters. Vibrational
frequencies were calculated and we also investigated the effects of
solvents, Mulliken, and natural bond orbital charge distribution, as
well as hydrogen bond effects. We tried to correlate very low and very
high anti-HIV activity with charges, vibrational stretching
frequencies, interatomic distances, and the effect of solvents. (C)
2003 Wiley Periodicals, Inc.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290 Rio De Janeiro, Brazil.
Pontificia Univ Catolica Rio de Janeiro, Dept Quim, Rio De Janeiro, Brazil.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
Estatist, Rua Dr Xavier Sigaud,150, BR-22290 Rio De Janeiro, Brazil.
CR ALBER F, 2000, PROTEIN SCI, V9, P2535
ALTONA C, 1972, J AM CHEM SOC, V94, P8205
BALZARINI J, 1989, BIOCHEM PHARMACOL, V38, P869
BIRNBAUM GI, 1988, BIOCHEM BIOPH RES CO, V151, P608
BOYER PL, 1994, P NATL ACAD SCI USA, V91, P4882
BROSSETTE T, 2001, TETRAHEDRON, V57, P8129
CAMERMAN A, 1987, P NATL ACAD SCI USA, V84, P8239
CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
CHOI Y, 2002, ORG LETT, V4, P305
CHU CK, 1988, BIOCHEM PHARMACOL, V37, P3543
CIUFFO GM, 1998, THEOCHEM-J MOL STRUC, V428, P155
COATES JAV, 1992, ANTIMICROB AGENTS CH, V36, P202
COLACINO E, 2001, TETRAHEDRON, V57, P8551
DECLERCQ E, 1989, NUCLEOS NUCLEOT, V8, P659
ELIEL EL, 1993, STEREOCHEMISTRY ORGA
FARAJ A, 2000, ANTIVIR RES, V47, P97
FIDANZA NG, 2001, J MOL STRUC-THEOCHEM, V543, P185
FISHER MA, 1994, J MOL RECOGNIT, V7, P211
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FOSTER JP, 1980, J AM CHEM SOC, V102, P7211
FRISCH MJ, 1998, GAUSSIAN98 REVISION
GALISTEO D, 1995, J MOL STRUCT, V350, P147
GAO WY, 1993, J CLIN INVEST, V91, P2326
GU ZX, 1992, J VIROL, V66, P7128
HARTE WE, 1991, BIOCHEM BIOPH RES CO, V175, P298
HERDEWIJN P, 1987, J MED CHEM, V30, P1270
HUANG HF, 1998, SCIENCE, V282, P1669
KIM HO, 1993, J MED CHEM, V36, P30
LIN TS, 1987, BIOCHEM PHARMACOL, V36, P2713
LIN TS, 1988, J MED CHEM, V31, P336
MAAG H, 1994, J MED CHEM, V37, P431
MARQUEZ VE, 1998, J AM CHEM SOC, V120, P2780
MARTINS JBL, 1998, INT J QUANTUM CHEM, V69, P117
MARTINS JBL, 2002, INT J QUANTUM CHEM, V90, P575
MCLEAN AR, 1995, REV MED VIROL, V5, P141
MICKLE T, 2000, ANTIMICROB AGENTS CH, V44, P2939
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
NETO JDM, 1992, INT J QUANTUM CHEM Q, V19, P225
NISHIMURA Y, 1986, J MOL STRUCT, V146, P123
PAINTER GR, 1993, BIOCHEM BIOPH RES CO, V191, P1166
PAINTER GR, 2000, NUCLEOS NUCLEOT NUCL, V19, P13
PASTORANGLADA M, 1998, TRENDS PHARMACOL SCI, V19, P424
PERACH M, 1997, J MOL BIOL, V268, P648
PLAVEC J, 1992, J BIOCHEM BIOPH METH, V25, P253
QUAN YD, 1998, J MOL BIOL, V277, P237
REARDON JE, 1992, BIOCHEMISTRY-US, V31, P4473
REED AE, 1980, J AM CHEM SOC, V102, P7211
REED AE, 1985, J CHEM PHYS, V83, P735
REED AE, 1988, CHEM REV, V88, P899
SAENGER W, 1984, PRINCIPLES NUCLEIC A, P9
SARAFIANOS SG, 1999, P NATL ACAD SCI USA, V96, P10027
SCHINAZI RF, 1990, ANTIMICROB AGENTS CH, V34, P1061
SCHINAZI RF, 1992, ANTIMICROB AGENTS CH, V36, P672
SCHINAZI RF, 1993, ANTIMICROB AGENTS CH, V37, P875
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SOOK G, 1996, TETRAHEDRON, V52, P12643
TANTILLO C, 1994, J MOL BIOL, V243, P369
VANROEY P, 1988, J AM CHEM SOC, V110, P2277
VANROEY P, 1989, P NATL ACAD SCI USA, V86, P3929
WEINHOLD H, 1988, STRUCTURE SMALL MOL, P227
WONG MW, 1991, J AM CHEM SOC, V113, P4776
YOO SJ, 2002, BIOORGAN MED CHEM, V10, P215
ZHANG XG, 2002, J ORG CHEM, V67, P1016
NR 63
TC 5
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD JUL 5
PY 2003
VL 93
IS 6
BP 422
EP 432
PG 11
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 689WH
UT ISI:000183515600006
ER
PT J
AU Janczak, J
Perpetuo, GJ
TI Bis(melaminium) DL-malate tetrahydrate
SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS
LA English
DT Article
ID HYDROGEN; DIHYDRATE; SECONDARY; TAPES; ACID
AB The crystal structure of the title melaminium salt, bis(2,4,6-
triamino-1,3,5-triazin-1-ium) DL-malate tetrahydrate,
2C(3)H(7)N(6)(+).C4H4O52-.4H(2)O, consists of singly protonated
melaminium residues, DL-malate dianions and water molecules. The
melaminium residues are connected into chains by four N-H...N hydrogen
bonds, and these chains form a stacking structure along the c axis. The
DL-malate dianions form hydrogen-bonded chains and, together with
hydrogen-bonded water molecules, form a layer parallel to the ( 100)
plane. The conformation of the malate ion is compared with an ab initio
molecular-orbital calculation. The oppositely charged moieties, i.e.
the stacks of melaminium chains and hydrogen-bonded DL-malate anions
and water molecules, form a three-dimensional polymeric structure, in
which N-H...O hydrogen bonds stabilize the stacking.
C1 Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland.
Univ Fed Ouro Preto, Dept Fis, Inst Ciencias Exatas & Biolog, BR-35400000 Ouro Preto, MG, Brazil.
RP Janczak, J, Polish Acad Sci, Inst Low Temp & Struct Res, POB 1410,
PL-50950 Wroclaw, Poland.
CR *KUM DIFFR, 2000, KM 4 SOFTW VERS 163
ALLEN FH, 1987, J CHEM SOC P2, V2, P1
ALLEN FH, 2002, ACTA CRYSTALLOGR B 3, V58, P380
DESIRAJU GR, 1990, CRYSTAL ENG DESIGN O
FRISCH JM, 1995, GAUSSIAN94 REVISION
GILLESPIE RJ, 1963, J CHEM EDUC, V40, P295
GILLESPIE RJ, 1992, CHEM SOC REV, V21, P59
JANCZAK J, 1999, ACTA CHEM SCAND, V53, P606
JANCZAK J, 2001, ACTA CRYSTALLOGR 12, V57, P1431
JANCZAK J, 2001, ACTA CRYSTALLOGR C 1, V57, P123
JANCZAK J, 2001, ACTA CRYSTALLOGR C 7, V57, P873
JANCZAK J, 2001, ACTA CRYSTALLOGR C 9, V57, P1120
JANCZAK J, 2002, ACTA CRYSTALLOGR C 6, V58, O339
JANCZAK J, 2002, ACTA CRYSTALLOGR C 8, V58, O455
KRISCHE MJ, 2000, STRUCT BOND, V96, P3
MACDONALD JC, 1994, CHEM REV, V94, P2383
PAULING L, 1960, NATURE CHEM BOND, V3, P260
PERPETUO GJ, 2002, ACTA CRYSTALLOGR C 2, V58, O112
PERPETUO GJ, 2002, ACTA CRYSTALLOGR C 7, V58, O431
ROW TNG, 1999, COORDIN CHEM REV, V183, P81
SHELDRICK GM, 1990, SHELXTL
SHELDRICK GM, 1997, SHELXS97 SHELXL97
SHERRINGTON DC, 2001, CHEM SOC REV, V30, P83
VANDERSLUIS P, 1985, ACTA CRYSTALLOGR C, V41, P956
VANDERSLUIS P, 1989, ACTA CRYSTALLOGR C, V45, P1406
ZERKOWSKI JA, 1994, CHEM MATER, V6, P1250
NR 26
TC 8
PU BLACKWELL MUNKSGAARD
PI COPENHAGEN
PA 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK
SN 0108-2701
J9 ACTA CRYSTALLOGR C-CRYST STR
JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun.
PD JUN
PY 2003
VL 59
PN Part 6
BP O349
EP O352
PG 4
SC Crystallography
GA 686WZ
UT ISI:000183345100047
ER
PT J
AU Costa, LAS
Rocha, WR
De Almeida, WB
Dos Santos, HF
TI The hydrolysis process of the
cis-dichloro(ethylenediamine)platinum(II): A theoretical study
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; AB-INITIO;
CONFORMATIONAL-ANALYSIS; ORGANIC-MOLECULES; ANTITUMOR DRUGS; CISPLATIN;
DNA; COMPLEXES; PATH
AB The hydrolysis process of the cisplatin analog
cis-dichloro(ethylenediamine)platinum(II) (cis-DEP) was theoretically
investigated at the Hartree-Fock, density functional theory and the
second order Moller-Plesset perturbation theory levels of calculation.
The stationary points on the gas phase potential energy surface for the
first and second hydrolysis steps were fully optimized and
characterized. For the first aquation process the gas phase results are
in satisfactory agreement with the experimental data. However in order
to reproduce the observed rate constant for the second hydrolysis step
it is essential to include the solvent effect. The structures and
energetic properties are similar to the values found for the parent
compound cisplatin, showing that the cis-DEP analog should be
considered as a potential drug concerning its hydrolysis process. (C)
2003 American Institute of Physics.
C1 Univ Fed Juiz de Fora, NEQC, Dept Quim, ICE, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Minas Gerais, LQC MM, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
EPCAR, DEPENS, BR-36200000 Barbacena, MG, Brazil.
Univ Fed Pernambuco, Dept Quim Fundamental, CCEN, BR-50740901 Recife, PE, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, NEQC, Dept Quim, ICE, Campus
Univ Martelos, BR-36036330 Juiz De Fora, MG, Brazil.
CR BANCROFT DP, 1990, J AM CHEM SOC, V112, P6860
BECKE AD, 1993, J CHEM PHYS, V98, P5648
CARLONI P, 1995, CHEM PHYS LETT, V234, P50
CARLONI P, 2000, J PHYS CHEM B, V104, P823
CHVAL Z, 2000, J MOL STRUC-THEOCHEM, V532, P59
COLEY RF, 1973, INORG CHIM ACTA, V7, P573
CONNORS KA, 1990, CHEM KINETICS, P200
CUNDARI TR, 1998, THEOCHEM-J MOL STRUC, V425, P51
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DOSSANTOS HF, 2002, CHEM PHYS, V280, P31
DOSSANTOS HF, 2002, THEOR CHEM ACC, V107, P229
EASTMAN A, 1983, BIOCHEMISTRY-US, V22, P3927
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
HAY PJ, 1985, J CHEM PHYS, V82, P299
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
JESTIN JL, 1994, INORG CHEM, V33, P4277
LOEHRER PJ, 1984, ANN INTERN MED, V100, P704
MARCELIS ATM, 1980, J INORG BIOCHEM, V13, P213
MILBURN GHW, 1966, J CHEM SOC A, P1609
MILLER SE, 1989, INORG CHIM ACTA, V166, P189
MILLER SE, 1991, INORG CHIM ACTA, V190, P135
MULLANEY M, 1997, INORG CHIM ACTA, V265, P275
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1992, PHYS REV B, V46, P6671
RAJSKI SR, 1998, CHEM REV, V98, P2723
ROSENBERG B, 1965, NATURE, V205, P689
ROSENBERG B, 1969, NATURE, V222, P385
SHERMAN SE, 1987, CHEM REV, V87, P1153
TEO BK, 1978, J AM CHEM SOC, V100, P3225
YAO S, 1994, INORG CHEM, V33, P6061
ZHANG Y, 2001, J AM CHEM SOC, V123, P9378
ZILBERBERG IL, 1997, THEOCHEM-J MOL STRUC, V418, P73
NR 36
TC 8
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 15
PY 2003
VL 118
IS 23
BP 10584
EP 10592
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 683AJ
UT ISI:000183124300025
ER
PT J
AU Rivelino, R
Chaudhuri, P
Canuto, S
TI Quantifying multiple-body interaction terms in H-bonded HCN chains with
many-body perturbation/coupled-cluster theories
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID AB-INITIO; QUANTUM-CHEMISTRY; (HCN)(N) CLUSTERS; HYDROGEN-CYANIDE;
WATER CLUSTERS; COMPLEXES; DELOCALIZATION; COOPERATIVITY; SPECTROSCOPY;
MOLECULE
AB Many-body perturbation/coupled-cluster calculations have been carried
out to investigate the multiple-body energy terms and their
contribution to the interaction energy of linear (HCN)(N) chains. All
minimum energy geometries of the clusters (N = 2-7) are obtained at the
second-order many-body perturbation (MP2) levels of theory. Electron
correlation and cooperative effects in the C-H...N hydrogen bonds are
also quantitatively characterized during the aggregation process. It is
found that the two- and three-body terms account for nearly all of the
total interaction energy, but all high-body terms increase with the
size of the cluster. Detailed numerical values are given for all the
many-body contributions of the (HCN)(N) chains. Electron correlation
effects are found to be important for the two- and three-body terms but
have decreased importance for the higher-body terms. Cooperative
effects are also investigated for the binding energy and dipole moment.
The dipole moments of the HCN oligomers are larger than the sum of the
individual monomers with differences ranging between 12% (N = 2) and
28% (N = 7). The limiting values for the binding energy and dipole
moment of (HCN)(N), per monomer, corresponding to very large N values,
are estimated to be 22.9 kJ/mol and 3.87 D, per monomer, respectively.
These results correspond to cooperative contributions of 5.8 kJ/mol to
the energy, and 1.0 D to the dipole moment. (C) 2003 American Institute
of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BHATTACHARYA BN, 1960, PHYS REV, V119, P144
BOYS SF, 1970, MOL PHYS, V19, P553
CABALEIROLAGO EM, 1998, J CHEM PHYS, V108, P3598
CAMPBELL EJ, 1983, CHEM PHYS, V76, P225
DESIRAJU GR, 2001, NATURE, V412, P397
DULMAGE WJ, 1951, ACTA CRYSTALLOGR, V4, P330
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FELSING WA, 1936, J AM CHEM SOC, V58, P1714
FRISCH MJ, 1998, GAUSSIAN 98
HANKINS D, 1970, J CHEM PHYS, V53, P4544
HEHRE WJ, 1986, AB INITIO MOL ORBITA, CH4
HEIKKILA A, 1999, J PHYS CHEM A, V103, P2945
HEIKKILA AT, 2000, J PHYS CHEM A, V104, P6637
HERSCHBACH D, 1999, REV MOD PHYS, V71, S411
HEYES DM, 1997, LIQUID STATE APPL MO
KING BF, 1995, J CHEM PHYS, V103, P333
KOFRANEK M, 1987, CHEM PHYS, V113, P53
KOFRANEK M, 1987, MOL PHYS, V61, P1519
LEGON AC, 1977, CHEM PHYS LETT, V47, P589
LIU K, 1996, SCIENCE, V271, P929
PALDUS J, 1999, ADV CHEM PHYS, V110, P1
PAULING L, 1960, NATURE CHEM BOND, P215
RINCON L, 2001, J CHEM PHYS, V114, P5552
RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
RIVELINO R, 2001, J PHYS CHEM A, V105, P11260
RUOFF RS, 1988, J CHEM PHYS, V89, P138
SCHEIER P, 2000, PHYS REV LETT, V84, P55
SCHEINER S, 1997, HYDROGEN BONDING THE, CH5
SMETS J, 1998, CHEM PHYS LETT, V297, P451
STONE AJ, 1997, J CHEM PHYS, V107, P1030
SUHAI S, 1994, INT J QUANTUM CHEM, V52, P395
XANTHEAS SS, 1994, J CHEM PHYS, V100, P7523
NR 33
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 15
PY 2003
VL 118
IS 23
BP 10593
EP 10601
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 683AJ
UT ISI:000183124300026
ER
PT J
AU Freitas, MP
Tormena, CF
Rittner, R
Abraham, RJ
TI The utility of infrared spectroscopy for quantitative conformational
analysis at a single temperature
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE infrared spectroscopy; conformational analysis; molar absorption
coefficients; 2-bromocyclohexanone
ID R(0) STRUCTURAL PARAMETERS; AB-INITIO CALCULATIONS; VIBRATIONAL
ASSIGNMENT; RAMAN-SPECTRA; ELECTRONIC INTERACTION; NMR; SOLVATION;
STABILITY; ISOMERISM
AB The carbonyl stretching vibration of 2-bromocyclohexanone (1) has been
measured in a variety of solvents. It is shown that its component
intensities are not only dependent on the populations of the axial and
equatorial conformers, but are also dependent on the molar
absorptivities (epsilon) which are specific for each conformer in each
solvent. In CCl4, the axial and equatorial conformers have, values of
417 and 818 1 mol(-1) cm(-1), respectively, while in CH3CN solution,
the values were 664 and 293 1 mol(-1) cm(-1). These results are
supported by results of theoretical calculations of frequencies, which
gave an intensity of 223.8 kM mol(-1) (1782 cm(-1)) for the axial and
174.4 kM mol(-1) (1802 cm(-1)) for the equatorial conformer, indicating
that the axial conformer presents a larger molar absorptivity than the
equatorial one in the vapor phase. Moreover, the results presented here
clearly demonstrate that although infrared spectroscopy at a single
temperature can be an important auxiliary technique for conformational
analysis, it must not be used to quantify conformational preferences of
a molecule if the absorption molar coefficients for each conformer are
not known or not amenable to experimental determination. (C) 2003
Elsevier Science B.V. All rights reserved.
C1 UNICAMP, Inst Quim, Chim Organ Phys Lab, BR-13083862 Campinas, SP, Brazil.
Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Rittner, R, UNICAMP, Inst Quim, Chim Organ Phys Lab, Cx Postal 6154,
BR-13083862 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1999, J CHEM SOC PERK AUG, P1663
ALLINGER J, 1958, TETRAHEDRON, V2, P64
BASSO EA, 1993, J ORG CHEM, V58, P7865
BERVELT JP, 1968, SPECTROCHIM ACTA A, V24, P1411
BODOT H, 1967, B SOC CHIM FR, P870
CHEN CY, 1965, J CHEM SOC, P3700
DURIG JR, 2002, J MOL STRUCT, V607, P117
DURIG JR, 2002, SPECTROCHIM ACTA A, V58, P91
DURIG JR, 2002, STRUCT CHEM, V13, P1
GARBISCH EW, 1964, J AM CHEM SOC, V86, P1780
GUIRGIS GA, 2002, PHYS CHEM CHEM PHYS, V4, P1438
KLAEBOE P, 1957, ACTA CHEM SCAND, V11, P1677
OLIVATO PR, 1996, REV HETEROATOM CHEM, V15, P115
OLIVATO PR, 2002, J MOL STRUCT, V607, P87
PAN YH, 1967, CAN J CHEM, V45, P2943
PERRIN DD, 1988, PURIFICATION LAB CHE
RITTNER R, 1988, MAGN RESON CHEM, V26, P51
SHIRATORI Y, 1999, SPECTROCHIM ACTA A, V55, P2659
WOLFE S, 1967, J CHEM SOC CHEM COMM, P872
YOSHINAGA F, 2002, J CHEM SOC PERK T 2, P1494
NR 22
TC 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUN
PY 2003
VL 59
IS 8
BP 1783
EP 1789
PG 7
SC Spectroscopy
GA 680YB
UT ISI:000183006700014
ER
PT J
AU Milas, I
Nascimento, MAC
TI The dehydrogenation and cracking reactions of isobutane over the ZSM-5
zeolite
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; LIGHT ALKANES; AB-INITIO; ACIDIC CATALYSTS;
ISOMERIZATION; EXCHANGE; PROTON; HZSM-5; RATES
AB The dehydrogenation and cracking reactions of isobutane over zeolite
HZMS-5 were studied at the DFT/B3LYP level of calculation. The zeolite
was represented by the 'double-ring' 20T cluster. The activation
energies for the reactions were 9-12 kcal/mol lower than those obtained
with the linear 5T cluster. In both cases the attack of the acid site
proton was directly on a carbon atom of the substrate, and not on the
C-H and C-C bonds, evidencing carbonium-ion-type transition states. The
results suggest that the reactions should be competitive, although the
more hindered acid sites should favor the dehydrogenation over the
cracking reaction. (C) 2003 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Dept Quim Fis, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Dept Quim Fis, Inst Quim,
Cidade Univ,CT Bloco A,Sala 412, BR-21949900 Rio De Janeiro, Brazil.
CR *SCHR INC, 1998, JAG 3 5
AGARWAL N, 2002, IND ENG CHEM RES, V41, P4016
ASENSI MA, 1998, APPL CATAL A-GEN, V174, P163
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENCO L, 2001, MICRO MESO MAT, V41, P1
BENCO L, 2002, COMMUNICATION MAY
BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
BORONAT M, 2000, PHYS CHEM CHEM PHYS, V2, P3327
CORMA A, 1994, J CATAL, V145, P171
DEVRIES AH, 1999, J PHYS CHEM B, V103, P6133
FURTADO EA, 2001, PHYS STATUS SOLIDI A, V187, P275
KAZANSKY VB, 1989, J CATAL, V119, P108
KAZANSKY VB, 1996, APPL CATAL A-GEN, V146, P225
KISSIN YV, 1996, J CATAL, V163, P50
KOTREL S, 2000, MICROPOR MESOPOR MAT, V35, P11
MAKOV G, 1995, PHYS REV B, V51, P4014
MARTINEZMAGADAN JM, 2002, INT J QUANTUM CHEM, V88, P750
MILAS I, 2001, CHEM PHYS LETT, V338, P67
NARBESHUBER TF, 1997, J CATAL, V172, P127
NASCIMENTO MAC, 1999, J MOL STRUC-THEOCHEM, V464, P239
RAMACHANDRAN S, 1996, J PHYS CHEM-US, V100, P5898
ROZANSKA X, 2001, THEORETICAL ASPECTS, CH1
ROZANSKA X, 2002, J PHYS CHEM B, V106, P4652
SAUER J, 2000, J COMPUT CHEM, V21, P1470
STEFANADIS C, 1991, J MOL CATAL, V67, P363
TREESUKOL P, 2001, CHEM PHYS LETT, V350, P128
VIRUELA P, 1993, J PHYS CHEM-US, V97, P12719
VOSS AM, 2001, J AM CHEM SOC, V123, P2799
NR 28
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 20
PY 2003
VL 373
IS 3-4
BP 379
EP 384
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 681BG
UT ISI:000183016300023
ER
PT J
AU Verissimo-Alves, M
Koiller, B
Chacham, H
Capaz, RB
TI Electromechanical effects in carbon nanotubes: Ab initio and analytical
tight-binding calculations
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRONIC-STRUCTURE; LARGE SYSTEMS; MICROTUBULES; JUNCTIONS
AB We perform ab initio calculations of charged graphene and single-wall
carbon nanotubes (CNTs). A wealth of electromechanical behaviors is
obtained. (1) Both nanotubes and graphene expand upon electron
injection. (2) Upon hole injection, metallic nanotubes and graphene
display a nonmonotonic behavior. Upon increasing hole densities, the
lattice constant initially contracts, reaches a minimum, and then
starts to expand. The hole densities at minimum lattice constants are
0.3 \e\/atom for graphene and between 0.1 and 0.3\e\/atom for the
metallic nanotubes studied. (3) Semiconducting CNT's with small
diameters (dless than or similar to20 Angstrom) always expand upon hole
injection. (4) Semiconducting CNT's with large diameters (dgreater than
or similar to20 Angstrom) display a behavior intermediate between those
of metallic and large-gap CNT's. (5) The strain versus extra charge
displays a linear plus power-law behavior, with characteristic
exponents for graphene, metallic, and semiconducting CNT's. All these
features are physically understood within a simple tight-binding
total-energy model.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil.
Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
Univ Fed Minas Gerais, Dept Fis, ICEx, BR-30123970 Belo Horizonte, MG, Brazil.
RP Verissimo-Alves, M, Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio
De Janeiro, Brazil.
CR BAUGHMAN RH, 1999, SCIENCE, V284, P1340
CUMINGS J, 2000, SCIENCE, V289, P602
DRESSELHAUS MS, 1981, ADV PHYS, V30, P139
FISCHER JE, 1996, J PHYS CHEM SOLIDS, V57, R9
FORRO L, 2000, SCIENCE, V289, P560
GARTSTEIN YN, 2002, PHYS REV LETT, V89
HAMADA N, 1992, PHYS REV LETT, V68, P1579
IIJIMA S, 1991, NATURE, V354, P56
KERTESZ M, 1983, MATERIALS RES SOC P, V20, P141
KIM P, 1999, SCIENCE, V286, P2148
MAZZONI MSC, 2000, PHYS REV B, V61, P7312
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
ORDEJON P, 1996, PHYS REV B, V53
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PONCHARAL P, 1999, SCIENCE, V283, P1513
REICH S, 2001, PHYS REV B, V64
SAITO R, 1992, APPL PHYS LETT, V60, P2204
SAITO R, 1998, PHYSICAL PROPERTIES
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANCHEZPORTAL D, 1999, PHYS REV B, V59, P12678
TANS SJ, 1998, NATURE, V393, P49
TROULLIER N, 1991, PHYS REV B, V43, P1993
VERISSIMOALVES M, 2001, PHYS REV LETT, V86, P3372
WILDOER JWG, 1998, NATURE, V391, P59
YAO Z, 1999, NATURE, V402, P273
YOON YG, 2001, PHYS REV LETT, V86, P688
NR 26
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD APR 15
PY 2003
VL 67
IS 16
AR 161401
DI ARTN 161401
PG 4
SC Physics, Condensed Matter
GA 677TT
UT ISI:000182824200017
ER
PT J
AU Machado, MP
Piquini, P
Mota, R
TI Energetics and electronic properties of BN nanocones with pentagonal
rings at their apexes
SO EUROPEAN PHYSICAL JOURNAL D
LA English
DT Article
ID BORON-NITRIDE NANOTUBES; CARBON NANOTUBES; CONES; GROWTH; FRUSTRATION;
STATES
AB The geometric structures, energetics and electronic properties of the
recently discovered BN nanocones are investigated using
first-principles calculations based on the density-functional theory.
We have proposed one particular structure for BN nanocones associated
with the 240degrees disclination, derived by the extraction of four
60degrees segments, presenting as characteristic four pentagons at the
apex and termination in two atoms. The cones are simulated by three
clusters containing 58 B plus N atoms and additional 12 H atoms to
saturate the dangling bonds at the edge. The most stable configuration
is obtained when the two terminating atoms are one B and one N. For the
cases where the two terminating atoms are of the same kind, the tip
with B atoms is determined to have lower binding energy than with N
atoms. The local densities of states of these BN nanocones are
investigated and sharp states are found in the regions close (below and
above) to the Fermi energy.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Machado, MP, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria,
RS, Brazil.
CR AHLRICHS R, 1989, CHEM PHYS LETT, V162, P165
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BLASE X, 1998, PHYS REV LETT, V80, P1666
BOURGEOIS L, 1999, ACTA CRYSTALLOGR A 2, V55, P168
BOURGEOIS L, 2000, PHYS REV B, V61, P7686
CARROLL DL, 1997, PHYS REV LETT, V78, P2811
CHARLIER JC, 2001, PHYS REV LETT, V86, P5970
CHOI WB, 1999, APPL PHYS LETT, V75, P3129
FOWLER PW, 1999, CHEM PHYS LETT, V299, P359
GE M, 1994, CHEM PHYS LETT, V220, P192
GE MH, 1994, APPL PHYS LETT, V64, P710
IIJIMA S, 1992, NATURE, V356, P776
KIM P, 1999, PHYS REV LETT, V82, P1225
KRISHNAN A, 1997, NATURE, V388, P451
MARTIN JML, 1996, CHEM PHYS LETT, V248, P95
MENON M, 1999, CHEM PHYS LETT, V307, P407
MOTA R, 2003, PHYS STAT SOL C
ROGERS KM, 2000, CHEM PHYS LETT, V332, P43
RUBIO A, 1994, PHYS REV B, V49, P5081
SEIFERT G, 1997, CHEM PHYS LETT, V268, P352
TERAUCHI M, 2000, CHEM PHYS LETT, V324, P359
TREACY MMJ, 2001, MAT RES S P, V673
NR 22
TC 5
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6060
J9 EUR PHYS J D
JI Eur. Phys. J. D
PD APR
PY 2003
VL 23
IS 1
BP 91
EP 93
PG 3
SC Physics, Atomic, Molecular & Chemical
GA 679HN
UT ISI:000182914800012
ER
PT J
AU Bhering, DL
Ramirez-Solis, A
Mota, CJA
TI A density functional theory based approach to extraframework aluminum
species in zeolites
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID COMPACT EFFECTIVE POTENTIALS; EXTRA-FRAMEWORK ALUMINUM; EXPONENT
BASIS-SETS; Y-TYPE ZEOLITES; H-Y; LEWIS ACIDITY; DEALUMINATION;
CRACKING; MODELS; SITES
AB The structures of six different extraframework aluminum (EFAL) species,
possibly present in zeolites, were studied by density functional theory
methods. A T-6 cluster (T = Si, Al), with different Si/Al ratios, was
used to simulate the real zeolite Y structure and the coordination of
the chosen EFAL species (Al3+, Al(OH)(2+), AlO+, AI(OH)(2)(+), AlO(OH),
and Al(OH)(3)) The monovalent cations prefer to attain bicoordination
with the framework AlO4- moiety, while di- and trivalent cations
usually achieve tetracoordination. One important result is that, in all
cases, coordination occurs with the oxygen atoms nearest to the
framework aluminum ones. A single water molecule addition to the
optimized Al3+.T-6 cluster produces a strongly exothermic reaction,
leading to formation of a hydroxyaluminum cation and an acidic site on
the zeolite. The addition of a second water molecule produces only
minor energetic and structural changes.
C1 Fed Univ Rio De Janeiro, Inst Quim, Dept Quim Organ, BR-21949900 Rio De Janeiro, Brazil.
Univ Autonoma Estado Morelos, Fac Ciencias, Dept Fis, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Fed Univ Rio De Janeiro, Inst Quim, Dept Quim Organ, Cidade
Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR BENCO L, 2002, J CATAL, V209, P480
BERAN S, 1990, J PHYS CHEM-US, V94, P335
BEYERLEIN RA, 1997, TOP CATAL, V4, P27
BIAGLOW AI, 1994, J CATAL, V148, P213
BORODZINSKI A, 1980, CAN J CHEM ENG, V58, P219
CARVAJAL R, 1990, J CATAL, V125, P121
CATANA G, 2001, J PHYS CHEM B, V105, P4904
CORMA A, 1990, APPL CATAL, V59, P267
CUSUMANO JA, 1992, PERSPECTIVES CATALYS
DATKA J, 1981, J CHEM SOC F1, V77, P2877
FLEISCH TF, 1986, J CATAL, V118, P85
FRISCH MJ, 1998, GAUSSIAN 98
FRITZ PO, 1989, J CATAL, V118, P85
GUISNET M, 1990, CATAL LETT, V4, P299
HABIB ET, 1990, HYDROCARBON CHEM FCC, P1
HEHRE WJ, 1986, AB INITIO MOL ORBITA
JACOBS PA, 1979, J PHYS CHEM-US, V83, P1174
KEIR D, 1988, ZEOLITES, V8, P228
KUEHNE MA, 1997, J CATAL, V171, P293
LEE C, 1988, PHYS REV B, V37, P785
LONYI F, 1992, J CATAL, V136, P566
LUKINSKAS P, 2001, APPL CATAL A-GEN, V209, P193
MARYNEN P, 1984, ZEOLITES, V4, P287
MOTA CJA, 1994, J CHEM SOC FARADAY T, V90, P227
NACE D, 1980, IND ENG CHEM PROD RD, V58, P219
OLAH GA, 1985, SUPERACIDS
PINE LA, 1984, J CATAL, V85, P466
PINES H, 1981, CHEM CATALYTIC HYDRO
REMY MJ, 1996, J PHYS CHEM-US, V100, P12440
RUIZ JM, 1997, J PHYS CHEM B, V101, P1733
SCHERZER J, 1984, ACS SYM SER, V248, P157
SHANNON RD, 1985, J PHYS CHEM-US, V89, P4778
SOKOL AA, 2000, ADV MATER, V12, P1801
SOKOL AA, 2002, J PHYS CHEM B, V106, P6163
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEVENS WJ, 1992, CAN J CHEM, V70, P612
TUNG SE, 1968, J CATAL, V10, P166
UMANSKY BS, 1990, J CATAL, V124, P97
UMANSKY BS, 1990, J CATAL, V127, P128
WANG QL, 1991, J CATAL, V130, P459
WANG QL, 1991, J CATAL, V130, P471
WARD JW, 1976, ADV CHEM SER, V171, P118
XU T, 1994, J AM CHEM SOC, V116, P1962
ZHIDOMIROV GM, 1999, CATAL TODAY, V51, P397
NR 44
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD MAY 8
PY 2003
VL 107
IS 18
BP 4342
EP 4347
PG 6
SC Chemistry, Physical
GA 676BX
UT ISI:000182733000018
ER
PT J
AU Fischer, H
Dias, SMG
Santos, MAM
Alves, AC
Zanchin, N
Craievich, AF
Apriletti, JW
Baxter, JD
Webb, P
Neves, FAR
Ribeiro, RCJ
Polikarpov, I
TI Low resolution structures of the retinoid X receptor DNA-binding and
ligand-binding domains revealed by synchrotron x-ray solution scattering
SO JOURNAL OF BIOLOGICAL CHEMISTRY
LA English
DT Article
ID DIRECT SHAPE DETERMINATION; THYROID-HORMONE RECEPTORS; SMALL-ANGLE
SCATTERING; NUCLEAR RECEPTORS; BIOLOGICAL MACROMOLECULES; TETRAMER
FORMATION; CRYSTAL-STRUCTURE; RXR-ALPHA; ACID; HETERODIMERS
AB Nuclear receptors are ligand-inducible transcription factors that share
structurally related DNA-binding (DBD) and ligand-binding (LBD)
domains. Biochemical and structural studies have revealed the modular
nature of DBD and LBD. Nevertheless, the domains function in concert in
vivo. While high-resolution crystal structures of nuclear receptor DBDs
and LBDs are available, there are no x-ray structural studies of
nuclear receptor proteins containing multiple domains. We report the
solution structures of the human retinoid X receptor DBD-LBD
(hRXRalphaDeltaAB) region. We obtained ab initio shapes of
hRXRalphaDeltaAB dimer and tetramer to 3.3 and 1.7 nm resolutions,
respectively, and established the position and orientation of the DBD
and LBD by fitting atomic coordinates of hRXRalpha DBD and LBD. The
dimer is U-shaped with DBDs spaced at similar to2 nm in a head to head
orientation forming an angle of about 10degrees with respect to each
other and with an extensive interface area provided by the LBD. The
tetramer is a more elongated X-shaped molecule formed by two dimers in
head to head arrangement in which the DBDs are extended from the
structure and spaced at about 6 nm. The close proximity of DBDs in
dimers may facilitate homodimer formation on DNA, however, for the
homodimer to bind to a DNA element containing two directly repeated
half-sites, one of the DBDs would need to rotate with respect to the
other element. By contrast, the separation of DBDs in the tetramers may
account for their decreased ability to recognize DNA.
C1 Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
Lab Nacl Luz Sincrotron, BR-13084971 Campinas, SP, Brazil.
Univ Calif San Francisco, Ctr Diabet, Metab Res Unit, San Francisco, CA 94143 USA.
Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA.
Univ Brasilia, Dept Ciencias Farmaceut, BR-70900910 Brasilia, DF, Brazil.
RP Polikarpov, I, Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao
Carlos, Av Trabalhador Sao Carlense 400, BR-13560970 Sao Carlos, SP,
Brazil.
CR BOURGUET W, 1995, NATURE, V375, P377
CHAWLA A, 2001, SCIENCE, V294, P1866
CHEN HW, 1995, P NATL ACAD SCI USA, V92, P422
CHEN ZP, 1998, J MOL BIOL, V275, P55
DELATORRE JG, 2000, BIOPHYS J, V78, P719
DEURQUIZA AM, 2000, SCIENCE, V290, P2140
EGEA PF, 2000, EMBO J, V19, P2592
EGEA PF, 2001, J MOL BIOL, V307, P557
EVANS RM, 1988, SCIENCE, V240, P889
FEIGIN LA, 1987, STRUCTURE ANAL SMALL, P83
GAMPE RT, 2000, GENE DEV, V14, P2229
GUINIER A, 1955, SMALL ANGLE SCATTERI
HORWITZ KB, 1996, MOL ENDOCRINOL, V10, P1167
KASTNER P, 1995, CELL, V83, P859
KELLERMANN G, 1997, J APPL CRYSTALLOGR 5, V30, P880
KERSTEN S, 1995, BIOCHEMISTRY-US, V34, P13717
KERSTEN S, 1995, BIOCHEMISTRY-US, V34, P14263
KONAREV PV, 2001, J APPL CRYSTALLOGR 4, V34, P527
KOZIN MB, 2001, J APPL CRYSTALLOGR 1, V34, P33
LAZAR MA, 1993, ENDOCR REV, V14, P184
LIN BC, 1997, J BIOL CHEM, V272, P9860
MAGLI E, 2000, RRD PATTERN RECOGN I, V1, P1
MANGELSDORF DJ, 1991, CELL, V66, P555
MANGELSDORF DJ, 1995, CELL, V83, P841
MARIMUTHU A, 2002, MOL ENDOCRINOL, V16, P271
MORAS D, 1998, CURR OPIN CELL BIOL, V10, P384
MUKHERJEE R, 1997, NATURE, V386, P407
MUKHERJEE R, 1998, ARTERIOSCL THROM VAS, V18, P272
POROD G, 1982, SMALL ANGLE XRAY SCA, P17
RASTINEJAD F, 1995, NATURE, V375, P203
RASTINEJAD F, 2000, EMBO J, V19, P1045
RIBEIRO RC, 1992, MOL ENDOCRINOL, V6, P1142
RIBEIRO RCJ, 1994, ENDOCRINOLOGY, V135, P2076
RIBEIRO RCJ, 1998, RECENT PROG HORM RES, V53, P351
RIBEIRO RCJ, 2001, J BIOL CHEM, V276, P14987
SHANNON CE, 1949, MATH THEORY COMMUNIC
SPORN MB, 1994, RETINOIDS BIOL CHEM
STURMANN HB, 1970, J PHYS CHEM-US, V72, P177
SVERGUN D, 1995, J APPL CRYSTALLOGR 6, V28, P768
SVERGUN DI, 1991, ACTA CRYSTALLOGR A, V47, P736
SVERGUN DI, 1992, J APPL CRYSTALLOGR, V25, P495
SVERGUN DI, 1996, ACTA CRYSTALLOGR A 3, V52, P419
SVERGUN DI, 1997, J APPL CRYSTALLOGR 5, V30, P798
SVERGUN DI, 1999, BIOPHYS J, V76, P2879
TSAI MJ, 1994, ANNU REV BIOCHEM, V63, P451
WURTZ JM, 1996, NAT STRUCT BIOL, V3, P87
YEN PM, 1992, J BIOL CHEM, V267, P3565
ZHAO Q, 1998, MOL CELL, V1, P849
ZHAO Q, 2000, J MOL BIOL, V296, P509
NR 49
TC 3
PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
PI BETHESDA
PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
SN 0021-9258
J9 J BIOL CHEM
JI J. Biol. Chem.
PD MAY 2
PY 2003
VL 278
IS 18
BP 16030
EP 16038
PG 9
SC Biochemistry & Molecular Biology
GA 675EL
UT ISI:000182680000074
ER
PT J
AU Autschbach, J
Jorge, FE
Zlegler, T
TI Density functional calculations on electronic circular dichroism
spectra of chiral transition metal complexes
SO INORGANIC CHEMISTRY
LA English
DT Article
ID EXCHANGE-CORRELATION POTENTIALS; D-3 LANTHANIDE(III) COMPLEXES; F-F
TRANSITIONS; EXCITATION-ENERGIES; RESPONSE THEORY; OPTICAL-ACTIVITY;
CHIROPTICAL PROPERTIES; MAGNETIC-PROPERTIES; ORGANIC-MOLECULES; MODEL
AB Time-dependent density functional theory (TD-DFT) has for the first
time been applied to the computation of circular dichroism (CD) spectra
of transition metal complexes, and a detailed comparison with
experimental spectra has been made. Absorption spectra are also
reported. Various Co-III complexes as well as [Rh(en)(3)](3+) are
studied in this work. The resulting simulated CD spectra are generally
in good agreement with experimental spectra after corrections for
systematic errors in a few of the lowest excitation energies are
applied. This allows for an interpretation and assignment of the
spectra for the whole experimentally accessible energy range (UV/vis).
Solvent effects on the excitations are estimated via inclusion of a
continuum solvent model. This significantly improves the computed
excitation energies for charge-transfer bands for complexes of charge
+3, but has only a small effect on those for neutral or singly charged
complexes. The energies of the weak d-to-d transitions of the Co
complexes are systematically overestimated due to deficiencies of the
density functionals. These errors are much smaller for the 4d metal
complex. Taking these systematic errors and the effect of a solvent
into consideration, TD-DFT computations are demonstrated to be a
reliable tool in order to assist with the assignment and interpretation
of CD spectra of chiral transition metal complexes.
C1 Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada.
Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES, Brazil.
RP Autschbach, J, Univ Erlangen Nurnberg, Lehrstuhl Theoret Chem,
Egerlandstr 3, D-91058 Erlangen, Germany.
CR AUTSCHBACH J, IN PRESS
AUTSCHBACH J, UNPUB
AUTSCHBACH J, 2002, J CHEM PHYS, V116, P6930
AUTSCHBACH J, 2002, J CHEM PHYS, V116, P891
AUTSCHBACH J, 2002, J CHEM PHYS, V117, P581
BAIK MH, 2000, J AM CHEM SOC, V122, P9143
BALLHAUSEN CJ, 1979, MOL ELECT STRUCTURES
BAUERNSCHMITT R, 1996, CHEM PHYS LETT, V256, P454
BEATTIE JK, 1971, ACCOUNTS CHEM RES, V4, P253
BECKE AD, 1988, PHYS REV A, V38, P3098
BEDDOE PG, 1968, INORG NUCL CHEM LETT, V4, P433
BROWN A, 1971, J CHEM SOC A, P751
CALDWELL DJ, 1971, THEORY OPTICAL ACTIV
CASIDA ME, 1995, RECENT ADV DENSITY F, V1
CASIDA ME, 1998, INT J QUANTUM CHEM, V70, P933
CASIDA ME, 2000, J CHEM PHYS, V113, P7062
CHARNEY E, 1979, MOL BASIS OPTICAL AC
CONDON EU, 1937, REV MOD PHYS, V9, P432
COREY EJ, 1959, J AM CHEM SOC, V81, P2620
CRAMER CJ, 1999, CHEM REV, V99, P2161
CRAMER CJ, 2002, ESSENTIALS COMPUTATI
DIAZACOSTA I, 2001, J PHYS CHEM A, V105, P238
DOBSON JF, 1998, RECENT PROGR NEW DIR
DOUGLAS BE, 1980, ACS S SERIES, V119
EVANS RS, 1974, INORG CHEM, V13, P2185
FRANTZ J, 2002, G3DATA
FREEDMAN TB, 2002, J PHYS CHEM A, V106, P3560
FURCHE F, 2000, J AM CHEM SOC, V122, P1717
FURCHE F, 2001, J CHEM PHYS, V114, P5982
GORELSKY SI, 2001, J ORGANOMET CHEM, V635, P187
GROSS EKU, 1990, ADV QUANTUM CHEM, V21, P255
GROSS EKU, 1996, TOP CURR CHEM, V181, P81
GRUNING M, 2001, J CHEM PHYS, V114, P652
GUERRA CF, 1995, METHODS TECHNIQUES C
HANSEN AE, 1980, ADV CHEM PHYS, V44, P545
HE YN, 2001, J AM CHEM SOC, V123, P11320
HEARSON JA, 1977, INORG CHIM ACTA, P95
JAMORSKI C, 1996, J CHEM PHYS, V104, P5134
JUDKINS RR, 1974, INORG CHEM, V13, P945
KLAMT A, 1993, J CHEM SOC P2, P799
KLAMT A, 1996, J PHYS CHEM-US, V100, P3349
KOOTSTRA F, 2000, J CHEM PHYS, V112, P6517
KRAL M, 1973, THEOR CHIM ACTA, V30, P339
KRAL M, 1979, THEOR CHIM ACTA, V50, P355
KURODA R, 1994, CIRCULAR DICHROISM P
LARSSON R, 1968, J CHEM SOC A, P1310
MALKIN VG, 1995, MODERN DENSITY FUNCT, V2
MASON SF, 1969, J CHEM SOC A, P1442
MASON SF, 1976, MOL PHYS, V31, P755
MASON SF, 1977, J CHEM SOC DA, P937
MCCAFFERY AJ, 1965, J CHEM SOC CHEM COMM, V3, P49
MCCAFFERY AJ, 1965, J CHEM SOC, P2883
MCCAFFERY AJ, 1965, J CHEM SOC, P5094
MCCAFFERY AJ, 1968, J CHEM SOC A, P1304
MCCAFFERY AJ, 1969, J CHEM SOC A, P1428
MENNUCCI B, 2002, J PHYS CHEM A, V106, P6102
MOSCOWITZ A, 1962, ADV CHEM PHYS, V4, P67
NAKANISHI K, 1994, CIRCULAR DICHROISM P
ODDERSHEDE J, 1978, ADV QUANTUM CHEM, V11, P275
ODDERSHEDE J, 1987, AB INITION METHODS Q, V2
PARR RG, 1989, DENSITY FUNCTIONAL T
PATCHKOVSKII S, 2000, J AM CHEM SOC, V122, P3506
PATCHKOVSKII S, 2001, J CHEM PHYS, V115, P26
PERDEW JP, 1986, PHYS REV B, V33, P8822
PYE CC, 1999, THEOR CHEM ACC, V101, P396
RICCIARDI G, 2000, J PHYS CHEM A, V104, P635
RICCIARDI G, 2001, J PHYS CHEM A, V105, P5242
RICHARDSON FS, 1982, J CHEM PHYS, V76, P1595
ROSA A, 1999, J AM CHEM SOC, V121, P10356
ROSA A, 2001, J PHYS CHEM A, V105, P3311
SAXE JD, 1982, J CHEM PHYS, V76, P1607
SCHIPPER PE, 1978, J AM CHEM SOC, V100, P1433
SCHIPPER PRT, 2000, J CHEM PHYS, V112, P1344
SCHLAFER HL, 1969, BASIC PRINCIPLES LIG
SOLOMON EI, 1999, INORGANIC ELECT STRU, V1
STRICKLAND RW, 1973, INORG CHEM, V12, P1025
TEVELDE G, 2001, J COMPUT CHEM, V22, P931
TOMASI J, 1994, CHEM REV, V94, P2027
TOZER DJ, 1998, J CHEM PHYS, V109, P10180
VANGISBERGEN SJA, 1995, J CHEM PHYS, V103, P9347
VANGISBERGEN SJA, 1998, PHYS REV A, V57, P2556
VANGISBERGEN SJA, 1999, COMPUT PHYS COMMUN, V118, P119
VANGISBERGEN SJA, 1999, J PHYS CHEM A, V103, P6835
VANGISBERGEN SJA, 2000, J COMPUT CHEM, V21, P1511
VOLOSOV A, 1994, CIRCULAR DICHROISM P
VOSKO SH, 1980, CAN J PHYS, V58, P1200
ZIEGLER T, 2002, J CHEM SOC DALT 0307, P642
NR 87
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD MAY 5
PY 2003
VL 42
IS 9
BP 2867
EP 2877
PG 11
SC Chemistry, Inorganic & Nuclear
GA 674RU
UT ISI:000182650400012
ER
PT J
AU Lima, NA
Silva, MF
Oliveira, LN
Capelle, K
TI Density functionals not based on the electron gas: Local-density
approximation for a luttinger liquid
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SOLVABLE SEMICONDUCTOR MODEL; DIMENSIONAL HUBBARD-MODEL; FORMALISM
AB By shifting the reference system for the local-density approximation
(LDA) from the electron gas to other model systems, one obtains a new
class of density functionals, which by design account for the
correlations present in the chosen reference system. This strategy is
illustrated by constructing an explicit LDA for the one-dimensional
Hubbard model. While the traditional ab initio LDA is based on a Fermi
liquid (the three-dimensional interacting electron gas), this one is
based on a Luttinger liquid. First applications to inhomogeneous
Hubbard models, including one containing a localized impurity, are
reported.
C1 Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, Sao Paulo, Brazil.
Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, Sao Paulo, Brazil.
RP Lima, NA, Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao Carlos,
Caixa Postal 369, BR-13560970 Sao Carlos, Sao Paulo, Brazil.
CR ARYASETIAWAN F, 1998, REP PROG PHYS, V61, P237
BEDURFTIG G, 1998, PHYS REV B, V58, P10225
BETHE H, 1931, Z PHYS, V71, P205
CAPELLE K, CONDMAT0209245
GUNNARSSON O, 1986, PHYS REV LETT, V56, P1968
HOHENBERG P, 1964, PHYS REV, V136, B864
KOHN W, 1965, PHYS REV, V140, A1133
KOHN W, 1999, REV MOD PHYS, V71, P1253
LIEB EH, 1968, PHYS REV LETT, V20, P1445
LIMA NA, 2002, EUROPHYS LETT, V60, P601
MAJEWSKI JA, 1992, PHYS REV B, V46, P12219
OGATA M, 1990, PHYS REV B, V41, P2326
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
ROJO AG, 1989, PHYS REV B, V39, P2685
RUNGE E, 1996, ANN PHYS-LEIPZIG, V5, P333
SCHLOTTMANN P, 1997, INT J MOD PHYS B, V11, P355
SCHONHAMMER K, 1995, PHYS REV B, V52, P2504
SCHULZ HJ, 1990, PHYS REV LETT, V64, P2831
SEB P, 1996, PHYS REV B, V53, P328
SHAM LJ, 1988, PHYS REV LETT, V60, P1582
SVANE A, 1988, PHYS REV B, V37, P9919
SZABO A, 1989, MODERN QUANTUM CHEM
VOIT J, 1995, REP PROG PHYS, V58, P977
VONDERLINDEN W, 1992, PHYS REP, V220, P53
WHITE SR, 1992, PHYS REV LETT, V69, P2863
XIE YN, 1998, PHYS REV B, V58, P12721
ZVYAGIN AA, 1997, PHYS REV B, V56, P300
NR 27
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD APR 11
PY 2003
VL 90
IS 14
AR 146402
DI ARTN 146402
PG 4
SC Physics, Multidisciplinary
GA 668XH
UT ISI:000182320100037
ER
PT J
AU Jellinek, J
Acioli, PH
TI Converting Kohn-Sham eigenenergies into electron binding energies
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; SELF-INTERACTION CORRECTION; TO-METAL
TRANSITION; PHOTOELECTRON-SPECTROSCOPY; MAGNESIUM CLUSTERS; REMOVAL
ENERGIES; APPROXIMATION; EIGENVALUE; BEHAVIOR; NEON
AB A new accurate scheme for converting the Kohn-Sham eigenenergies into
electron binding energies is formulated. The accuracy of the scheme is
illustrated in applications to ten atoms and three molecules. (C) 2003
American Institute of Physics.
C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA.
Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil.
RP Jellinek, J, Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL
60439 USA.
CR ACIOLI PH, IN PRESS EUR PHYS D
ACIOLI PH, 2002, PHYS REV LETT, V89
AKOLA J, 2000, EUR PHYS J D, V8, P93
AKOLA J, 2000, PHYS REV B, V62, P13216
BECKE AD, 1988, PHYS REV A, V38, P3098
DUFFY P, 1993, ORG MASS SPECTROM, V28, P321
GODBOUT N, 1992, CAN J CHEM, V70, P560
HAMEL S, 2002, J CHEM PHYS, V116, P8276
HAMEL S, 2002, J ELECTRON SPECTROSC, V123, P345
HARRIS M, 1999, CHEM PHYS LETT, V303, P420
HOHENBERG P, 1964, PHYS REV, V136, B864
JANAK JF, 1978, PHYS REV B, V18, P7165
JELLINEK J, 2002, J PHYS CHEM A, V106, P10919
JELLINEK J, 2003, J PHYS CHEM A, V107, P1670
KIMURA K, 1981, HDB HEI PHOTOELECTRO
KLEINMAN L, 1997, PHYS REV B, V56, P12042
KLEINMAN L, 1997, PHYS REV B, V56, P16029
KOHN W, 1965, PHYS REV, V140, A1133
LEVY M, 1984, PHYS REV A, V30, P2745
LIDE DR, 2001, CRC HDB CHEM PHYSICS
NESBET RK, 1997, PHYS REV A, V56, P2665
NORMAN MR, 1983, PHYS REV B, V28, P2135
PERDEW JP, 1981, PHYS REV B, V23, P5048
PERDEW JP, 1982, PHYS REV LETT, V49, P1691
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1997, PHYS REV B, V56, P16021
SEVIER KD, 1979, ATOM DATA NUCL DATA, V24, P323
SHIRLEY DA, 1977, PHYS REV B, V15, P544
THOMAS OC, 2002, PHYS REV LETT, V89
TRICKEY SB, 1986, PHYS REV LETT, V56, P881
VANLONKHUYZEN H, 1984, CHEM PHYS, V89, P313
VOSKO SH, 1980, CAN J PHYS, V58, P1200
WANG LS, 1998, Z PHYS CHEM 1-2, V203, P45
NR 33
TC 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAY 1
PY 2003
VL 118
IS 17
BP 7783
EP 7796
PG 14
SC Physics, Atomic, Molecular & Chemical
GA 668DY
UT ISI:000182276100008
ER
PT J
AU Treu, O
Kondo, RT
Pinheiro, JC
TI Contracted GTF basis sets applied to the theoretical interpretation of
the Raman spectrum of hexaaquachromium(III) ion
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE contracted basis sets; GTF basis sets; generator coordinate
Hartree-Fock method; vibrational properties of molecular species;
theoretical interpretation of the Raman spectrum
ID COORDINATE HARTREE-FOCK; GAUSSIAN-BASIS; AB-INITIO; ATOMS; CHOICE
AB Contracted GTF basis sets designed with aid of the Generator Coordinate
Hartree-Fock (GCHF) method for H(S-2), O2-(IS), and Cr3+(F-4) atomic
species are applied to perform theoretical interpretation of the Raman
spectrum of hexaaquachromium(III) ion. The 16s, 16s10p, and 24s17p13d
GTF basis sets were contracted to [4s] for H atom, [6s4p], and [9s6p3d]
for O2- and Cr3+, respectively, by Dunning's scheme. For Cr3+, the
[9s6p3d] basis set was enriched with f polarization function and used
in combination com [4s] and [6s4p] in the study of our interest. The
results obtained in this report show that the contracted GTF basis sets
used are a useful alternative for the theoretical interpretation of
Raman spectrum of hexaaquachromium(III) ion and that GCHF method is an
effective alternative to selection of GTF basis sets for theoretical
study of vibrational properties of poliatomic species. (C) 2003
Elsevier Science B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab Quim Teor & Computac, BR-66075110 Belem, Para, Brazil.
UNESP, Inst Quim, Araraquara, SP, Brazil.
Univ Sao Paulo, Ctr Informat Sao Carlos, Secao Suporte, BR-13560970 Sao Carlos, SP, Brazil.
Cooperat Ctr Educ Cient & Empreendedore Amazonia, BR-66013060 Belem, Para, Brazil.
RP Pinheiro, JC, Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab
Quim Teor & Computac, CP 10101, BR-66075110 Belem, Para, Brazil.
CR CHAKRAVORTY SJ, 1989, MODERN TECHNIQUES CO
DACOSTA HFM, 1987, MOL PHYS, V62, P91
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GOORDSON DZ, 1982, J PHYS CHEM-US, V86, P659
JACOBS H, 1987, Z ANORG ALLG CHEM, V546, P33
JARDIM IN, 1999, J MOL STRUC-THEOCHEM, V464, P15
MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
MOHELLEM JR, 1987, J CHEM PHYS, V86, P5043
MOROSIN B, 1966, ACTA CRYSTALLOGR, V21, P280
PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
SAVEDRA RML, UNPUB
SAVEDRA RML, 2002, J MOL STRUC-THEOCHEM, V587, P9
SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
SOPOTRAJANOV B, 1999, J MOL STRUCT, V482, P109
STEFOV V, 1993, J MOL STRUCT, V293, P97
NR 18
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 25
PY 2003
VL 624
BP 153
EP 157
PG 5
SC Chemistry, Physical
GA 666HC
UT ISI:000182170700019
ER
PT J
AU Zamora, MA
Masman, MF
Bombasaro, JA
Freile, ML
Cechinel, V
Lopez, SN
Zacchino, SA
Enriz, RD
TI Conformational and electronic study of
N-phenylalkyl-3,4-dichloromaleimides: Ab initio and DFT study
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE maleimides; ab initio and DFT calculations; conformational study;
antifungal activity
ID FUNGAL CELL-WALL; GEOMETRICAL ALGORITHM; SPACE GASCOS; SEARCH;
ELECTROSTATICS; RECOGNITION; MECHANISM; MOLECULES
AB A conformational and electronic study on
N-phenylalkyl-3,4-dichloromaleimides, a new series of antifungal
compounds, was carried out. In this study ab initio [RHF/3-21G and
RHF/6-31G(d)] and density functional theory (B3LYP/6-31G(d))
calculations were performed. The effect of solvent (water) was taken
into account by performing calculations with the isodensity polarizable
continuum model method. The electronic study of the compounds was
carried out using molecular electrostatic potentials. The presence of
two symmetrical aromatic systems reduces notably the conformational
possibilities of these maleimides. The results permit the recognition
of the minimal structural requirements for the production of the
antifungal response; a 3,4-dichloroimido ring and a benzene ring appear
to be indispensable. Also, theoretical calculations suggest that the
optimum interatomic distance between these moieties is about 3.5-5.0
Angstrom. (C) 2003 Wiley Periodicals, Inc.
C1 Univ Nacl San Luis, Fac Quim Bioquim & Farm, Dept Quim, RA-5700 San Luis, Argentina.
UNPSJB, Fac Ciencias Nat, Dept Quim, RA-9000 Comodoro Rivadavia, Chubut, Argentina.
Univ Vale Itajai, CCS, NIQFAR, Itajai, SC, Brazil.
Univ Nacl Rosario, Fac Ciencias Bioquim & Farmaceut, RA-2000 Rosario, Santa Fe, Argentina.
RP Enriz, RD, Univ Nacl San Luis, Fac Quim Bioquim & Farm, Dept Quim,
Chacabuco 917, RA-5700 San Luis, Argentina.
CR *WAV INC, 1996, PC SPARTAN PRO
ALLINGER NL, 1977, J AM CHEM SOC, V99, P8127
BANDYOPADHYAY P, 2000, J CHEM PHYS, V113, P1104
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5618
CARRUPT PA, 1991, METHOD ENZYMOL, V203, P638
CSIZMADIA IG, 1974, CHEM THIOL GROUP, CH1
FARKAS O, 1996, THEOCHEM-J MOL STRUC, V367, P25
FEIGEL M, 1966, J MOL STRUCT THEOCHE, V366, P83
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
FROMTLING RA, 1999, DRUG NEW PERSPECT, V12, P557
GREELING P, 1996, THEORETICAL COMPUTAT, V3, P587
JAUREGUI EA, 1997, TEMAS ACTUALES QUIMI, V29, P327
JHON JS, 1999, J PHYS CHEM A, V103, P5436
LEE C, 1988, PHYS REV B, V37, P785
LOPEZ SN, UNPUB BIOORG MED CHE
LOPEZ SN, 2001, BIOORGAN MED CHEM, V9, P1999
MEADOWS DH, 1969, J MOL BIOL, V45, P491
MIERTUS S, 1981, CHEM PHYS, V55, P117
NARAYSZABO G, 1995, CHEM REV, V95, P829
NORTH ACT, 1989, J MOL GRAPHICS, V7, P67
PETERSON MR, 1978, J AM CHEM SOC, V100, P6911
PETERSON MR, 1982, RECENT ADV, V3, P190
POLILZER P, 1991, CHEM APPL ATOMIC MOL
POLITZER P, 1991, REV COMPUTATIONAL CH, V2, CH7
RADKIEWICZ JL, 1996, J AM CHEM SOC, V118, P9148
RODRIQUEZ CF, 1996, THEOCHEM-J MOL STRUC, V363, P131
ROGERS P, 1973, FEBS LETT, V36, P330
SANTAGATA LN, 1999, J MOL STRUC-THEOCHEM, V465, P33
SANTAGATA LN, 2000, J MOL STRUC-THEOCHEM, V507, P89
SANTAGATA LN, 2001, J MOL STRUC-THEOCHEM, V536, P173
SANTAGATA LN, 2001, J MOL STRUC-THEOCHEM, V571, P91
SARAI A, 1989, J THEOR BIOL, V140, P137
SCROCCO E, 1973, TOP CURR CHEM, V42, P95
SHUKLA MK, 2000, J COMPUT CHEM, V21, P826
URBINA JM, 2000, BIOORGAN MED CHEM, V8, P691
VILLAGRA SE, 2001, J MOL STRUC-THEOCHEM, V549, P217
WALSH TJ, 1992, EMERGING TARGETS ANT, P349
WHITE TC, 1998, CLIN MICROBIOL REV, V11, P382
ZACCHINO SA, IN PRESS NEED NEW AT
ZACCHINO SA, 1999, J NAT PROD, V62, P1353
NR 42
TC 5
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD MAY 15
PY 2003
VL 93
IS 1
BP 32
EP 46
PG 15
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 667HY
UT ISI:000182226700004
ER
PT J
AU Oliveira, LN
Amaral, OAV
Castro, MA
Fonseca, TL
TI Static polarizabilities of doubly charged polyacetylene oligomers:
basis set and electron correlation effects
SO CHEMICAL PHYSICS
LA English
DT Article
DE polarizabilities; polyacetylene oligomers; charged bipolarons
ID VARIATIONAL PERTURBATIONAL TREATMENT; DYNAMIC DIPOLE POLARIZABILITIES;
NONLINEAR-OPTICAL PROPERTIES; BOND-LENGTH ALTERNATION; STABLE ATOMIC
ANIONS; PUSH-PULL POLYENES; CONJUGATED CHAINS; FIRST
HYPERPOLARIZABILITY; LINEAR-POLARIZABILITIES; POLARONS
AB Ab initio calculations, carried out with different basis sets, for the
static longitudinal linear polarizability, alpha(L), and second order
hyperpolarizability, gamma(L), Of Small doubly charged polyacetylene
(PA) chains, are presented. The polarizabilities were calculated using
the Hartree-Fock (HF) method while the electron correlation effects
were included through the second-order Moller-Plesset perturbation
theory (MP2). Positively and negatively charged bipolarons were
studied. The results obtained for positive and negative chains show
that the ionization state effect decreases more rapidly, as the chain
length is increased, for alpha(L) than for gamma(L). For both types of
charged chains, the incorporation of the electron correlation increases
the alpha(L) and gamma(L) values, as compared to the HF values. A
comparison between the results obtained using the standard 6-31G basis
set and augmented versions of this set, obtained by the addition of
diffuse and polarization functions, shows that 6-31G basis set does not
provide a good description of the negative chains studied here and that
the addition of extra diffuse functions on the basis set is needed in
order to obtain reliable estimates for polarizabilities, specially for
gamma(L). (C) 2003 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
RP Fonseca, TL, Univ Fed Goias, Inst Fis, Campus 2,Caixa Postal 131,
BR-74001970 Goiania, Go, Brazil.
CR AHLHEIM M, 1996, SCIENCE, V271, P335
AN Z, 2001, J CHEM PHYS, V114, P1010
ANDRADE OP, 2002, MOL PHYS, V100, P1975
BEZERRA AG, 1999, J CHEM PHYS, V111, P1
BISHOP DM, 1991, J CHEM PHYS, V95, P2646
BISHOP DM, 1992, J CHEM PHYS, V97, P5255
BOSSHARD CH, 1995, ORGANIC NONLINEAR OP
BOUDREAUX DS, 1983, PHYS REV B, V28, P6927
BREDAS JL, 1982, PHYS REV B, V26, P5843
CANUTO S, 1994, PHYS REV A, V49, P3515
CASTRO MA, 1996, PHYS REV A, V53, P3664
CHAMPAGNE B, 1997, J CHEM PHYS, V107, P5433
CHAMPAGNE B, 2002, J CHEM PHYS, V116, P3935
COSTA MF, 1999, PHYS LETT A, V263, P186
DEMELO CP, 1987, CHEM PHYS LETT, V140, P537
DEMELO CP, 1988, J CHEM PHYS, V88, P2558
DEMELO CP, 1988, J CHEM PHYS, V88, P2567
DEMELO CP, 1996, CHEM PHYS LETT, V28, P261
FONSECA TL, 2001, SYNTHETIC MET, V123, P11
FRISCH MJ, 1995, GAUSSIAN 94 REV
HURST GJB, 1988, J CHEM PHYS, V89, P385
JACQUEMIN D, 1997, INT J QUANTUM CHEM, V65, P679
JACQUEMIN D, 1998, CHEM PHYS LETT, V284, P24
JACQUEMIN D, 1998, THEOCHEM-J MOL STRUC, V425, P69
KANIS DR, 1994, CHEM REV, V94, P195
KIRTMAN B, 1990, CHEM PHYS LETT, V175, P601
LUIS JM, 1997, J CHEM PHYS, V107, P1501
LUIS JM, 1999, J CHEM PHYS, V111, P875
MADER SR, 1994, SCIENCE, V265, P632
MARDER SR, 1994, SCIENCE, V263, P511
MAROULIS G, 1999, J PHYS CHEM A, V103, P4359
MEYERS F, 1994, J AM CHEM SOC, V116, P10703
PRASAD P, 1991, INTRO NONLINEAR OPTI
SCHMALZLIN E, 1997, CHEM PHYS LETT, V280, P551
STAHELIN M, 1993, J CHEM PHYS, V98, P5595
STAHELIN M, 1996, J OPT SOC AM B, V13, P2401
SUHAI S, 1983, CHEM PHYS LETT, V96, P619
TOTO JL, 1995, CHEM PHYS LETT, V245, P660
TOTO TT, 1995, CHEM PHYS LETT, V244, P59
VERBIEST T, 1997, J MATER CHEM, V7, P2175
VILLAR HO, 1988, PHYS REV B, V37, P2520
NR 41
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD APR 15
PY 2003
VL 289
IS 2-3
BP 221
EP 230
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 665DH
UT ISI:000182104000004
ER
PT J
AU Gonzales-Ormeno, PG
Petrilli, HM
Schon, CG
TI Ab-initio calculations of the formation energies of BCC-based
superlattices in the Fe-Al system
SO CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY
LA English
DT Article
ID ROOM-TEMPERATURE DUCTILITY; FE3AL-BASED ALLOYS; IRON ALUMINIDES;
PHASE-DIAGRAMS; GROUND-STATE; ORDER; TENSILE; NICKEL; FE3AL; FCC
AB First-principles calculations of the total energies of A2 iron and
Aluminum, B2 (FeAl), B32 (FeAl) and D0(3) (Fe3Al and FeAl3) compounds
were performed in the frame of density functional theory (DFT) using
the Full Potential - Linear Augmented Plane Wave method (FP-LAPW).
These results have been used to obtain formation energies of the
respective ground states. The calculated formation energies of the
D0(3) (Fe3Al) and B2 (FeAl) compounds show excellent agreement with
available calorimetric data on standard enthalpies of formation of
Fe-Al alloys up to 50 at.% aluminum. As the Fe-Al system has a
controversial magnetic behavior when described by ab-initio methods in
the DFT, this agreement is remarkable. (C) 2003 Elsevier Science Ltd.
All rights reserved.
C1 Univ Sao Paulo, Escola Politecn, Dept Met & Mat Engn, Computat Mat Sci Lab, BR-05508900 Sao Paulo, Brazil.
Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, BR-05508900 Sao Paulo, Brazil.
RP Schon, CG, Univ Sao Paulo, Escola Politecn, Dept Met & Mat Engn,
Computat Mat Sci Lab, Av Prof Mello Moraes 2463, BR-05508900 Sao Paulo,
Brazil.
EM schoen@usp.br
CR ALEXANDER DJ, 1998, MAT SCI ENG A-STRUCT, V258, P276
BAGNO P, 1989, PHYS REV B, V40, P1997
BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
BOGNER J, 1998, PHYS REV B, V58, P14922
CHEN Q, 2001, J PHASE EQUILIB, V22, P631
DEEVI SC, 1996, INTERMETALLICS, V4, P357
DEEVI SC, 1997, PROG MATER SCI, V42, P177
DEFONTAINE D, 1995, CALPHAD, V19, P499
ELDRIDGE J, 1964, T TMS AIME, V230, P226
FERRO R, 2000, THERMOCHIM ACTA, V347, P103
HACK K, 1996, SGTE CASEBOOK THERMO
HUANG YD, 1999, MAT SCI ENG A-STRUCT, V263, P75
HUANG YD, 2001, INTERMETALLICS, V9, P119
HUANG YD, 2001, INTERMETALLICS, V9, P331
INDEN G, 1981, PHYSICA B, V103, P82
INDEN G, 1990, Z METALLKD, V81, P770
INDEN G, 1991, PHASE TRANSFORMATION, P499
KOHN W, 1965, PHYS REV, V140, A1133
KUBASCHEWSKI O, 1982, IRON BINARY PHASE DI
LECHERMANN F, 2002, PHYS REV B, V65
LIU CT, 1998, MAT SCI ENG A-STRUCT, V258, P84
MOHN P, 2001, PHYS REV LETT, V87
MORRIS DG, 1997, SCRIPTA MATER, V37, P71
NOGUEIRA RN, 2002, J PHYS-CONDENS MAT, V14, P1067
OELSEN W, 1937, MITT KAISER WILHELM, V19, P1
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PICKART SJ, 1961, PHYS REV, V123, P1163
RADCLIFFE SV, 1961, ACTA METALL, V9, P169
RZYMAN K, 2000, CALPHAD, V24, P309
SCHON CG, 1997, J CHIM PHYS PCB, V94, P1143
SCHON CG, 1998, ACTA MATER, V46, P4219
SCHON CG, 1998, THESIS U DORTMUND GE
SCHON CG, 1999, CALPHAD, V23, P3
VILLARS P, 1985, PEARSONS HDB CRYSTAL
NR 34
TC 6
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0364-5916
J9 CALPHAD-COMPUT COUP PHASE DIA
JI Calphad-Comput. Coupling Ph. Diagrams Thermochem.
PD DEC
PY 2002
VL 26
IS 4
BP 573
EP 582
PG 10
SC Chemistry, Physical; Thermodynamics
GA 657TK
UT ISI:000181682300007
ER
PT J
AU Bechstedt, F
Furthmuller, J
Ferhat, M
Teles, LK
Scolfaro, LMR
Leite, JR
Davydov, VY
Ambacher, O
Goldhahn, R
TI Energy gap and optical properties of In(x)Gal(1-x)N
SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE
LA English
DT Article
ID CHEMICAL-VAPOR-DEPOSITION; BAND-GAP; INXGA1-XN ALLOYS;
STRUCTURAL-PROPERTIES; EPITAXIAL LAYERS; INDIUM NITRIDE; INN;
SEMICONDUCTORS; 1ST-PRINCIPLES; CRYSTALS
AB We present ab initio calculations of the electronic structure and the
optical properties of InxGa1-xN. They are completed by studies of the
strain influence on the alloys. The results are critically discussed in
the light of recent experiments. We find an energy gap of InN < 1 eV
and a nonparabolic absorption edge. The strong variation of the alloy
gap with the In molar fraction is described by a composition-dependent
bowing parameter. The tendency of spinodal decomposition is suppressed
by biaxial strain. Its extent depends on the realization of strain
accommodation.
C1 Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743 Jena, Germany.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Carlos, SP, Brazil.
Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia.
Tech Univ, Ctr Micro & Nanotechnol, D-98693 Ilmenau, Germany.
Tech Univ Ilmenau, Inst Phys, D-98684 Ilmenau, Germany.
RP Bechstedt, F, Univ Jena, Inst Festkorpertheorie & Theoret Opt, Max Wien
Pl 1, D-07743 Jena, Germany.
EM bechstedt@ifto.physik.uni-jena.de
CR ADOLPH B, 2001, PHYS REV B, V63
BECHSTEDT F, 1988, PHYS REV B, V38, P7710
BECHSTEDT F, 2002, J CRYST GROWTH, V246, P315
BECHSTEDT F, 2002, LOW DIMENSIONAL NITR, P11
BU Y, 1993, J VAC SCI TECHNOL A, V11, P2931
DAVYDOV VY, 2002, PHYS STATUS SOLIDI B, V229, R1
DAVYDOV VY, 2002, PHYS STATUS SOLIDI B, V230, R4
FERHAT M, 2002, APPL PHYS LETT, V80, P1394
FERHAT M, 2002, PHYS REV B, V65
GROSSNER U, 1998, PHYS REV B, V58, R1722
GUO Q, 1997, SOLID STATE COMMUN, V83, P721
GUO QX, 1994, JPN J APPL PHYS PT 1, V33, P2453
GUO QX, 1998, PHYS REV B, V58, P15304
KIM MH, 1999, PHYS STATUS SOLIDI A, V176, P269
KRESSE G, 1996, COMP MATER SCI, V6, P15
LAMBRECHT WRL, 1997, SOLID STATE ELECTRON, V41, P195
LAMBRECHT WRL, 2002, SOLID STATE COMMUN, V121, P549
LISCHKA K, 2002, APPL PHYS LETT, V88, P769
ODONNELL KP, 2000, MAT RES SOC S, V595
PERSSON C, 2001, J PHYS-CONDENS MAT, V13, P8945
RIEGER MM, 1995, PHYS REV B, V52, P16567
SHAN W, 1996, APPL PHYS LETT, V69, P3315
STAMPFL C, 1999, PHYS REV B, V59, P5529
TABATA A, 1999, APPL PHYS LETT, V74, P362
TABATA A, 2002, APPL PHYS LETT, V80, P769
TANSLEY TL, 1986, J APPL PHYS, V59, P3241
TELES LK, UNPUB
TELES LK, 2000, PHYS REV B, V62, P2475
TELES LK, 2001, PHYS REV B, V63
WENZIEN B, 1995, PHYS REV B, V51, P14701
NR 30
TC 29
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0031-8965
J9 PHYS STATUS SOLIDI A-APPL RES
JI Phys. Status Solidi A-Appl. Res.
PD FEB
PY 2003
VL 195
IS 3
BP 628
EP 633
PG 6
SC Physics, Condensed Matter
GA 656GA
UT ISI:000181599300027
ER
PT J
AU Fagan, SB
da Silva, LB
Mota, R
TI Ab initio study of radial deformation plus vacancy on carbon nanotubes:
Energetics and electronic properties
SO NANO LETTERS
LA English
DT Article
ID LARGE SYSTEMS; CONDUCTANCE
AB The effects of radial deformation and single vacancy on the electronic
properties of a single-wall carbon nanotube are studied through ab
initio method. Different paths are considered: the tube is deformed and
subsequently a vacancy is produced, or a vacancy is created and the
tube is deformed later. The involved energies, band structures, and
densities of states following several paths are discussed, and a simple
way to induce fundamental changes on the electronic properties is
proposed.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Mota, R, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
Brazil.
EM mota@ccne.ufsm.br
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
BAIERLE RJ, 2001, PHYS REV B, V64
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DRESSELHAUS MS, 2000, CARBON NANOTUBES SYN
FAGAN SB, 2003, PHYS REV B, V67
GULSEREN O, 2001, PHYS REV LETT, V87
GULSEREN O, 2002, PHYS REV B, V65
HANSSON A, 2000, PHYS REV B, V62, P7639
IGAMI M, 1999, J PHYS SOC JPN, V68, P716
MAITI A, 2002, PHYS REV LETT, V88
ORDEJON P, 1996, PHYS REV B, V53
PERDEW JP, 1981, PHYS REV B, V23, P5048
ROCHEFORT A, 1999, PHYS REV B, V60, P13824
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANKEY OF, 1989, PHYS REV B, V40, P3979
SRIVASTAVA D, 1999, PHYS REV LETT, V83, P2973
TROULLIER N, 1991, PHYS REV B, V43, P1993
NR 17
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1530-6984
J9 NANO LETT
JI Nano Lett.
PD MAR
PY 2003
VL 3
IS 3
BP 289
EP 291
PG 3
SC Chemistry, Multidisciplinary; Materials Science, Multidisciplinary
GA 656AN
UT ISI:000181586600004
ER
PT J
AU Schiwietz, G
Grande, PL
TI The role of basic energy-loss processes in layer-resolved surface
investigations with ions
SO CURRENT APPLIED PHYSICS
LA English
DT Article
DE electronic energy-loss distribution; stopping power; backscattering;
coupled-channel calculations; protons; aluminum surface; innershell
ionizaton
ID SCATTERING EXPERIMENTS; ANGULAR-DEPENDENCE; HE; INCIDENT; BARE
AB Ab initio quantum mechanical calculations have been performed for the
energy loss of protons backscattered from an Al surface. Results from
first-order perturbation theory are compared to full numerical
atomic-orbital coupled-channel calculations. It is shown that both
inner shells and non-perturbative effects are important for the
understanding of ion energy-loss spectra. (C) 2002 Elsevier Science
B.V. All rights reserved.
C1 Hahn Meitner Inst Berlin GmbH, Abt SF4, Bereich Strukturforsch, D-14109 Berlin, Germany.
Univ Fed Rio Grande Sul, Inst Fis, BR-91501470 Porto Alegre, RS, Brazil.
RP Schiwietz, G, Hahn Meitner Inst Berlin GmbH, Abt SF4, Bereich
Strukturforsch, Glienicker Str 100, D-14109 Berlin, Germany.
CR DOSSANTOS JHR, 1997, PHYS REV B, V55, P4332
FRENKEN JWM, 1986, NUCL INSTRUM METH B, V17, P334
GRANDE PL, UNPUB
GRANDE PL, 1991, PHYS REV A, V44, P2984
GRANDE PL, 1993, PHYS REV A, V47, P1119
GRNDE PL, 1998, NUCL INSTRUM METH B, V136, P125
SCHIWIETZ G, 1990, PHYS REV A, V42, P296
SCHIWIETZ G, 1992, NUCL INSTRUM METH B, V69, P10
SCHIWIETZ G, 1994, PHYS REV LETT, V72, P2159
SCHULTE WH, 2001, NUCL INSTRUM METH B, V183, P16
NR 10
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1567-1739
J9 CURR APPL PHYS
JI Curr. Appl. Phys.
PD FEB
PY 2003
VL 3
IS 1
BP 35
EP 37
PG 3
SC Materials Science, Multidisciplinary; Physics, Applied
GA 657FV
UT ISI:000181656100008
ER
PT J
AU Ornellas, FR
Resende, SM
Machado, FBC
Roberto-Neto, O
TI A high level theoretical investigation of the N2O4 -> 2 NO2
dissociation reaction: Is there a transition state?
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID POTENTIAL-ENERGY FUNCTION; DINITROGEN TETROXIDE; AB-INITIO;
ELECTRON-DIFFRACTION; GAS; TEMPERATURE; DYNAMICS; ABINITIO
AB The N2O4-->2 NO2 dissociation reaction was investigated at a high level
of theory using the couple cluster with all single and double
excitations and connected triples [CCSD(T)] and complete active space
self-consistent field approaches, and the cc-pVDZ, aug-cc-pVDZ, and
cc-pVTZ basis sets. Only at the coupled cluster level a first-order
saddle point was found connecting reactant and products. Collectively,
structural, vibrational, and thermodynamic data for the three
stationary points represent the best theoretical description of this
reaction system to date, and are in good agreement with available
experimental results. Unimolecular transition state theory rate
constants (k(infinity)) were also evaluated at 250, 298.15, and 350 K.
At the CCSD(T)/cc-pVTZ level of calculation these results are
0.62x10(1), 1.90x10(3), and 1.66x10(5) s(-1), respectively. Known
experimental results at 298 K vary from 1.7x10(5) to 1.0x10(6) s(-1).
Including an estimate for basis set superposition error, we predict
DeltaH(298)(0) for the dissociation reaction to be 12.76 kcal/mol
(Expt. 13.1-13.7 kcal/mol). (C) 2003 American Institute of Physics.
C1 Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05513970 Sao Paulo, Brazil.
Ctr Tecn Aeroesp, Dept Quim, Inst Tecnol Aeronaut, BR-12228900 Sao Paulo, Brazil.
Inst Estudos Avancados, BR-1228840 Sao Jose Dos Campos, Brazil.
RP Ornellas, FR, Univ Sao Paulo, Inst Quim, Dept Quim Fundamental,
BR-05513970 Sao Paulo, Brazil.
CR BAUSCHLICHER CW, 1983, J AM CHEM SOC, V105, P745
BIBART CH, 1974, J CHEM PHYS, V61, P1284
BIRD GR, 1964, J CHEM PHYS, V40, P3378
BORDEN WT, 1996, ACCOUNTS CHEM RES, V29, P67
BORISENKO KB, 1997, J MOL STRUCT, V121, P413
BOYS SF, 1970, MOL PHYS, V19, P553
CARRINGTON T, 1953, J PHYS CHEM-US, V57, P418
CARTWRIGHT BS, 1966, CHEM COMMUN, V3, P82
CHER M, 1962, J CHEM PHYS, V37, P2564
DOMENECH JL, 1994, J CHEM PHYS, V100, P6993
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
ELYOUSSOUFI Y, 1997, SPECTROCHIM ACTA A, V53, P881
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GIAUQUE WF, 1938, J CHEM PHYS, V6, P40
GIVAN A, 1989, J CHEM PHYS, V90, P6135
GUTMAN A, 1962, J CHEM PHYS, V36, P98
HISATSUNE IC, 1961, J PHYS CHEM-US, V65, P2249
HOZBA P, 1988, CHEM REV, V88, P871
JACOX ME, 1984, J PHYS CHEM REF DATA, V13, P945
KATO T, 1996, J CHEM PHYS, V105, P4511
KOHATA K, 1982, J PHYS CHEM-US, V86, P602
KOPUT J, 1993, CHEM PHYS LETT, V204, P183
KOPUT J, 1995, CHEM PHYS LETT, V240, P553
KVICK A, 1982, J CHEM PHYS, V76, P3754
LEE TJ, 1995, QUANTUM MECH ELECT S, P47
LIDE DR, 1994, CRC HDB CHEM PHYSICS
LIU RF, 1993, J PHYS CHEM-US, V97, P4413
LOUIS RV, 1965, J CHEM PHYS, V42, P857
MACHADO FBC, 2002, CHEM PHYS LETT, V352, P120
MCCLELLAND BW, 1972, J CHEM PHYS, V56, P4541
MCKEE ML, 1995, J AM CHEM SOC, V117, P1629
MORINO Y, 1983, J MOL SPECTROSC, V98, P330
PASTIRK I, 2001, CHEM PHYS LETT, V349, P71
RAGHAVACHARI K, 1989, CHEM PHYS LETT, V479, P157
SHEN Q, 1998, J PHYS CHEM A, V102, P6470
STEINFELD JI, 1989, CHEM KINETICS DYNAMI
WANG XF, 1998, THEOCHEM-J MOL STRUC, V432, P55
WERNER HJ, 1985, J CHEM PHYS, V82, P5053
WERNER HJ, 1988, J CHEM PHYS, V89, P5803
WERNER HJ, 2000, MOLPRO
WESOLOWSKI SS, 1997, J CHEM PHYS, V106, P7178
YANG JA, 1991, J PHYS CHEM-US, V95, P9221
NR 42
TC 3
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAR 1
PY 2003
VL 118
IS 9
BP 4060
EP 4065
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 646DC
UT ISI:000181018700018
ER
PT J
AU Branicio, PS
Kalia, RK
Nakano, A
Rino, JP
Shimojo, F
Vashishta, P
TI Structural, mechanical, and vibrational properties of Ga1-xInxAs
alloys: A molecular dynamics study
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ABSORPTION FINE-STRUCTURE; RANDOM SOLID-SOLUTIONS
AB Structural, mechanical, and vibrational properties of Ga1-xInxAs (0less
than or equal toxless than or equal to1) random solid solutions are
investigated with classical and ab initio molecular-dynamics
simulations. We find that the Ga-As and In-As bond lengths change only
slightly as a function of x, despite the large lattice mismatch
(similar to7%) between GaAs and InAs crystals. The nearest
cation-cation distance has a broad distribution, whereas the nearest
neighbor anion-anion distance distribution has two distinct peaks. The
elastic constants exhibit a significant nonlinear dependence on x. The
phonon density-of-states exhibits two high-frequency optical modes.
These results are in excellent agreement with experiments. (C) 2003
American Institute of Physics.
C1 Univ So Calif, Dept Phys & Astron, Collaboratory Adv Comp & Simulat, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Comp Sci, Los Angeles, CA 90089 USA.
Univ So Calif, Dept Mat Sci & Engn, Los Angeles, CA 90089 USA.
Univ Fed Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
Kumamoto Univ, Kumamoto, Japan.
RP Branicio, PS, Univ So Calif, Dept Phys & Astron, Collaboratory Adv Comp
& Simulat, Los Angeles, CA 90089 USA.
CR BAZANT MZ, 1997, PHYS REV B, V56, P8542
BOYCE JB, 1989, J CRYST GROWTH, V98, P37
BRENNER DW, 2000, PHYS STATUS SOLIDI B, V217, P23
BRIGGS EL, 1996, PHYS REV B, V54, P14362
BRODSKY MH, 1968, PHYS REV LETT, V21, P990
CHELIKOWSKY JR, 1994, PHYS REV B, V50, P11355
COHEN ML, 1993, SCIENCE, V261, P307
EBBSJO I, 2000, J APPL PHYS, V87, P7708
GIANNOZZI P, 1991, PHYS REV B, V43, P7231
GROENEN J, 1998, PHYS REV B, V58, P10452
HOHENBERG P, 1964, PHYS REV B, V136, P864
MARTINS JL, 1984, PHYS REV B, V30, P6217
MIGLIORATO MA, 2002, PHYS REV B, V65
MIKKELSEN JC, 1982, PHYS REV LETT, V49, P1412
MIKKELSEN JC, 1983, PHYS REV B, V28, P7130
PATREL C, 1984, J MOL STRUCT, V115, P149
PAULING L, 1967, NATURE CHEM BOND
PHILLIPS JC, 1973, BONDS BANDS SEMICOND, P214
SHIMOJO F, 2001, COMPUT PHYS COMMUN, V140, P303
TROULLIER N, 1991, PHYS REV B, V43, P8861
VEGARD L, 1921, Z PHYS, V5, P17
NR 21
TC 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 17
PY 2003
VL 82
IS 7
BP 1057
EP 1059
PG 3
SC Physics, Applied
GA 644KR
UT ISI:000180917000019
ER
PT J
AU Fileti, EE
Rivelino, R
Canuto, S
TI Rayleigh light scattering of hydrogen bonded clusters investigated by
means of ab initio calculations
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
ID WATER-METHANOL COMPLEXES; MATRIX-ISOLATION; BASIS-SET;
ELECTRON-CORRELATION; INTERACTION ENERGY; DIMER; POLARIZABILITIES;
HYPERPOLARIZABILITY; SPECTRA; HCN-H2O
AB Ab initio calculations of depolarization ratios and intensities of
classically scattered light, in terms of dipole polarizabilities and
polarizability anisotropies, are reported for different hydrogen bonded
molecular clusters. Five different groups of organic heterodimers
formed with water are considered: HCHO...H2O, CH3HO...H2O, HCOOH...H2O,
CH3CN...H2O, and (CH3)(2)CO...H2O, together with the water dimer
H2O...H2O. The geometries of all complexes have been optimized by means
of the second-order Moller-Plesset many-body perturbation theory (MP2),
using the augmented correlation-consistent basis set with polarized
valence of double-zeta quality (aug-cc-pVDZ). The calculated average
dipole polarizabilities of the isolated molecules are in good agreement
with available experimental results. The calculations are then extended
to the complexes and, from these, the Rayleigh scattering activities
and depolarization ratio changes, upon hydrogen bond formation, are
obtained and analysed. The differences in activity and depolarization
for Rayleigh scattered radiation between two groups of isomers, (i)
HCN...H2O and H2O...HCN and (ii) CH3HO...H2O and CH3OH...OH2, have also
been investigated.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Fileti, EE, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BAKKAS N, 1993, J CHEM PHYS, V99, P3335
BAKKAS N, 1995, CHEM PHYS LETT, V232, P90
BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BELL AJ, 1993, J PHYS D APPL PHYS, V26, P994
BONIN KD, 1997, ELECT DIPOLE POLARIS
BUCKINGHAM AD, 1967, ADV CHEM PHYS, V12, P107
BUCKINGHAM AD, 1988, CHEM REV, V88, P827
BUSH AM, 1998, J PHYS CHEM A, V102, P6457
CASTRO MA, 1993, J PHYS B-AT MOL OPT, V26, P4301
CERNUSAK I, 1986, PHYS REV A, V33, P814
COHEN HD, 1965, J CHEM PHYS S, V43, P34
COULING VW, 2001, J PHYS CHEM A, V105, P4365
COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
CURTISS LA, 1975, J MOL SPECTROSC, V55, P1
DIERCKSEN GHF, 1975, THEOR CHIM ACTA, V36, P249
DIERCKSEN GHF, 1988, CHEM PHYS LETT, V153, P93
DIXIT S, 2002, NATURE, V416, P829
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
DYKSTRA CE, 1989, J CHEM PHYS, V91, P6472
ENGDAHL A, 1987, J CHEM PHYS, V86, P4831
FABELLINSKII IL, 1968, MOL SCATTERING LIGHT
FEYEREISEN MW, 1996, J PHYS CHEM-US, V100, P2993
FRISCH MJ, 1985, J PHYS CHEM-US, V89, P3664
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GONZALEZ L, 1998, J CHEM PHYS, V109, P139
HEIKKILA A, 1999, J PHYS CHEM A, V103, P2945
HERZBERG G, 1945, INFRARED RAMAN SPECT
HUISKEN F, 1991, CHEM PHYS LETT, V180, P355
KIRSCHNER KN, 2001, J PHYS CHEM A, V105, P4150
LIDE R, 1992, HDB CHEM PHYSICS
LIU K, 1996, SCIENCE, V271, P929
LOVAS FJ, 1978, J PHYS CHEM REF DATA, V7, P1445
MAROULIS G, 2000, J CHEM PHYS, V113, P1813
MAROULIS G, 2001, J PHYS B-AT MOL OPT, V34, P3727
MEULENBROEKS RFG, 1992, PHYS REV LETT, V69, P1379
MICALI N, 1996, PHYS REV E, V54, P1720
NAKAGAWA S, 1997, CHEM PHYS LETT, V278, P272
ODUTOLA JA, 1980, J CHEM PHYS, V72, P5062
PARK HS, 1999, J PHYS CHEM B, V103, P2355
RAMAN CV, 1930, MOL SCTATTERIN LIGHT, P267
RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
RIVELINO R, 2002, J MOL STRUCT, V615, P259
SCHUTZ M, 1997, J CHEM PHYS, V107, P4597
STOCKMAN PA, 1997, J CHEM PHYS, V107, P3782
TERAGISHI Y, 1999, J ELECTROANAL CHEM, V473, P132
TSUZUKI S, 1999, J CHEM PHYS, V110, P11906
WEI DQ, 2002, J CHEM PHYS, V116, P6028
WILSON EB, 1980, MOL VIBRATIONS THEOR
XANTHEAS SS, 1993, J CHEM PHYS, V99, P8774
XANTHEAS SS, 1996, J CHEM PHYS, V104, P8821
ZHOU T, 2000, J PHYS CHEM A, V104, P2204
NR 51
TC 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS-B-AT MOL OPT PHYS
JI J. Phys. B-At. Mol. Opt. Phys.
PD JAN 28
PY 2003
VL 36
IS 2
BP 399
EP 408
PG 10
SC Physics, Atomic, Molecular & Chemical; Optics
GA 642YT
UT ISI:000180835500021
ER
PT J
AU Borges, I
Varandas, AM
Rocha, AB
Bielschowsky, CE
TI Forbidden transitions in benzene
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Herzberg-Teller effect; vibronic coupling; complete active space self
consistent field wavefunctions
ID JET-COOLED BENZENE; ELECTRONIC-TRANSITION; AB-INITIO; SPECTRA; ACETONE;
STATES
AB We have computed the optical oscillator strengths for the
symmetry-forbidden transitions 1 B-1(2u) <-- (X) over tilde and 1
B-1(1u) <-- (X) over tilde for benzene through vibronic coupling.
Electronic transition dipole moments were calculated at the complete
active space self consistent field level along the normal coordinates.
Optical oscillator strengths for the sum of the total vibronic
excitations are compared with available theoretical and experimental
results. (C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Dept Fisicoquim, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Univ Coimbra, Dept Quim, P-3049 Coimbra, Portugal.
Univ Fed Rio de Janeiro, Inst Fis, BR-21945 Rio De Janeiro, Brazil.
RP Borges, I, Univ Fed Rio de Janeiro, Dept Fisicoquim, Inst Quim, Cidade
Univ,CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR ALBRECHT AC, 1960, J CHEM PHYS, V33, P169
BERGER R, 1998, J PHYS CHEM A, V102, P7157
BERNHARDSSON A, 2000, J CHEM PHYS, V112, P2798
BRITH M, 1971, J CHEM PHYS, V54, P5104
CALLOMON JH, 1966, PHILOS T ROY SOC A, V259, P499
CHRISTIANSEN O, 1998, J CHEM PHYS, V108, P3987
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FISHER G, 1977, CHEM PHYS LETT, V49, P427
GOODMAN L, 1991, J PHYS CHEM-US, V95, P9044
HARRIS DC, 1989, SYMMETRY SPECTROSCOP
HEHRE WJ, 1972, J CHEM PHYS, V62, P2921
HERZBERG G, 1933, Z PHYS CHEM B-CHEM E, V21, P410
HIRAYA A, 1991, J CHEM PHYS 1, V94, P7700
KOPPEL H, 1984, ADV CHEM PHYS, V57, P59
LIAO DW, 1999, J CHEM PHYS, V111, P205
METZ F, 1977, CHEM PHYS LETT, V51, P8
MURRELL JN, 1956, P PHYS SOC LOND A, V69, P245
ORLANDI G, 1994, J CHEM PHYS, V100, P2458
PANTOS E, 1978, J MOL SPECTROSC, V72, P36
ROCHA AB, 2000, CHEM PHYS, V253, P51
ROCHA AB, 2001, CHEM PHYS LETT, V337, P331
ROCHA AB, 2001, J MOL STRUC-THEOCHEM, V539, P145
ROCHE M, 1974, J CHEM PHYS, V60, P1193
ROOS BO, 1992, CHEM PHYS LETT, V192, P5
SCHUMM S, 2000, J PHYS CHEM A, V104, P10648
SMALL GJ, 1971, J CHEM PHYS, V54, P3300
STEPHENSON TA, 1984, J CHEM PHYS, V81, P1060
WERNER HJ, 2000, MOLPRO
ZIEGLER L, 1974, J CHEM PHYS, V60, P3558
NR 29
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD FEB 3
PY 2003
VL 621
IS 1-2
BP 99
EP 105
PG 7
SC Chemistry, Physical
GA 640FE
UT ISI:000180677000012
ER
PT J
AU Capelle, K
Gyorffy, BL
TI Exploring dynamical magnetism with time-dependent density-functional
theory: From spin fluctuations to Gilbert damping
SO EUROPHYSICS LETTERS
LA English
DT Article
ID FERROMAGNETS; STATE
AB We use time-dependent spin-density-functional theory to study dynamical
magnetic phenomena. First, we recall that the local-spin-density
approximation (LSDA) fails to account correctly for magnetic
fluctuations in the paramagnetic state of iron and other itinerant
ferromagnets. Next, we construct a gradient-dependent density
functional that does not suffer from this problem of the LSDA. This
functional is then used to derive, for the first time, the
phenomenological Gilbert equation of micromagnetics directly from
time-dependent density-functional theory. Limitations and extensions of
Gilbert damping are discussed on this basis, and some comparisons with
phenomenological theories and experiments are made.
C1 Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim, BR-13560970 Sao Carlos, SP, Brazil.
Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
RP Capelle, K, Univ Sao Paulo, Dept Quim & Fis Mol, Inst Quim, Caixa
Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR ANTROPOV VP, 1995, PHYS REV LETT, V75, P729
BROWN WF, 1978, MICROMAGNETICS
CAPELLE K, 2001, PHYS REV LETT, V87
EDWARDS DM, 1984, J MAGN MAGN MATER, V45, P151
GABAUER R, 2000, PHYS REV B, V61, P6459
GROSS EKU, 1996, TOPICS CURRENT CHEM, V181
GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337
HALILOV SV, 1998, PHYS REV B, V58, P293
LIFSHITZ EM, 1980, COURSE THEORETICAL P, V9
LONZARICH GG, 1985, J PHYS C SOLID STATE, V18, P4339
MOHN P, 1987, J PHYS F MET PHYS, V17, P2421
MORIYA T, 1956, PROG THEOR PHYS, V16, P23
MURATA KK, 1972, PHYS REV LETT, V29, P285
NIU Q, 1998, PHYS REV LETT, V80, P2205
PRINZ GA, 1998, SCIENCE, V282, P1660
RUNGE E, 1984, PHYS REV LETT, V52, P997
SAVRASOV SY, 1998, PHYS REV LETT, V81, P2570
SCHREFL T, 2001, ADV SOLID STATE PHYS, V41, P623
SCHWITALLA J, 2001, PHYS REV B, V63
TSERKOVNYAK Y, 2002, PHYS REV LETT, V88
URBAN R, 2001, PHYS REV LETT, V87
VANLEEUWEN R, 1999, PHYS REV LETT, V82, P3863
WOLF SA, 2001, SCIENCE, V294, P1488
NR 23
TC 5
PU E D P SCIENCES
PI LES ULIS CEDEXA
PA 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944 LES
ULIS CEDEXA, FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD FEB
PY 2003
VL 61
IS 3
BP 354
EP 360
PG 7
SC Physics, Multidisciplinary
GA 639PN
UT ISI:000180638600011
ER
PT J
AU Freedman, TB
Cao, XL
Oliveira, RV
Cass, QB
Nafie, LA
TI Determination of the absolute configuration and solution conformation
of gossypol by vibrational circular dichroism
SO CHIRALITY
LA English
DT Article
DE vibrational circular dichroism; gossypol; DFT calculations; absolute
configuration; solution conformation
ID TUMOR-CELL LINES; BREAST-CANCER; ENANTIOMERS
AB Vibrational circular dichroism (VCD) measurements and density
functional theory (DFT) calculations were used to obtain the first
definitive assignment of the absolute configuration for the
polyphenolic binaphpthyl dialdehyde gossypol and a determination of the
solution conformation in CDCl3. VCD spectra recorded for the two
resolved enantiomers are near mirror images and excellent agreement
between the observed IR and VCD spectra and intensity calculations
carried out at the DFT (B3LYP/6-31G*) level establish the absolute
configurations of (+)-gossypol as P and (-)-gossypol as M, with two
conformations in CDCl3 solution that differ in isopropyl group
orientation.
C1 Syracuse Univ, Dept Chem, Ctr Sci & Technol 1 014, Syracuse, NY 13244 USA.
Univ Fed Sao Carlos, Dept Chem, BR-13565905 Sao Carlos, SP, Brazil.
RP Freedman, TB, Syracuse Univ, Dept Chem, Ctr Sci & Technol 1 014,
Syracuse, NY 13244 USA.
CR BRZEZINSKI B, 1990, J MOL STRUCT, V220, P261
BUSHUNOW P, 1999, J NEURO-ONCOL, V43, P79
CASS QB, 1991, PHYTOCHEMISTRY, V30, P2655
CASS QB, 1995, 18 ANN M BRAZ CHEM S
CASS QB, 2002, J LIQ CHROMATOGR R T, V25, P819
CHEESEMAN JR, 1996, CHEM PHYS LETT, V252, P211
DUKOR RK, 2000, ENCY ANAL CHEM INSTR, P662
DYATKIN AB, 2002, CHIRALITY, V14, P215
FISH RG, 1995, TETRAHEDRON-ASYMMETR, V6, P873
FREEDMAN TB, 2002, HELV CHIM ACTA, V85, P1160
FRISCH MJ, 1998, GAUSSIAN 98
HARADA N, 1983, CIRCULAR DICHROIC SP
HRON RJ, 1999, J AM OIL CHEM SOC, P76
HUANG L, 1988, COLLECT CZECH CHEM C, V53, P2664
IBRAGIMOV BT, 1981, KHIM PRIR SOEDIN, V5, P664
JAROSZEWSKI JW, 1992, CHIRALITY, V4, P216
JAROSZEWSKI JW, 1992, PLANTA MED, V58, P454
LINDBERG MC, 1987, INT J ANDROL, V10, P619
MEYERS AI, 1998, TETRAHEDRON, V54, P10493
NAFIE LA, 2000, APPL SPECTROSC, V54, P1634
NAFIE LA, 2000, CIRCULAR DICHROISM P, P97
NAFIE LA, 2000, ENCY SPECTROSCOPY, P2391
NAFIE LA, 2001, INFRARED RAMAN SPECT, P15
POLAVARAPU PL, 2000, FRESEN J ANAL CHEM, V366, P727
SCHMIDT JH, 1990, J AGR FOOD CHEM, V38, P505
SEGAL SJ, 1985, GOSSYPOL POTENTIAL A
SEIDMAN AD, 1998, INVEST MED, V46, A213
SHAH RD, 2001, CURR OPIN DRUG DISC, V4, P764
SHELLEY MD, 1999, CANCER LETT, V135, P171
SHELLEY MD, 2000, ANTI-CANCER DRUG, V11, P209
SOLLADIECAVALLO A, 2001, TETRAHEDRON-ASYMMETR, V12, P2605
SOLLADIECAVALLO A, 2001, TETRAHEDRON-ASYMMETR, V12, P2703
SOLLADIECAVALLO A, 2002, EUR J ORG CHEM JUN, P1788
SONENBERG M, 1988, CONTRACEPTION, V37, P247
STEPHENS PJ, 2000, CHIRALITY, V12, P172
TALIPOV SA, 1985, KHIM PRIR SOEDIN, V6, P835
VANPOZNAK C, 2001, BREAST CANCER RES TR, V66, P239
WAITES GMH, 1998, INT J ANDROL, V21, P8
WANG XH, 2000, LIFE SCI, V67, P2663
XU C, 1982, SCI SINICA SER B, V25, P1194
ZHOU RH, 1988, CONTRACEPTION, V37, P239
NR 41
TC 16
PU WILEY-LISS
PI NEW YORK
PA DIV JOHN WILEY & SONS INC, 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0899-0042
J9 CHIRALITY
JI Chirality
PD FEB
PY 2003
VL 15
IS 2
BP 196
EP 200
PG 5
SC Chemistry, Analytical; Chemistry, Medicinal; Chemistry, Organic;
Pharmacology & Pharmacy
GA 640PH
UT ISI:000180696800014
ER
PT J
AU Duarte, HA
Duani, H
De Almeida, WB
TI Ab initio correlated comparative study of the torsional potentials for
2,2-bipyrrole and 2,2 '-bifuran five membered heterocyclic dimers
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID GAUSSIAN-BASIS SETS; MOLECULAR CALCULATIONS; CONDUCTING POLYMERS;
INTERNAL-ROTATION; POLYPYRROLE; ATOMS; 2,2'-BITHIOPHENE; APPROXIMATION;
BITHIOPHENE; EXCHANGE
AB This Letter reports an MP4(SDQ) ab initio investigation of the electron
correlation and basis set effects on the torsional potentials for
2,2'-bipyrrole and 2,2'-bifuran. Pople's standard basis sets and
Dunning's double-zeta (D95**) and correlated consistent basis sets
(aug-cc-pVDZ) were employed. We also included for the first time
thermal corrections to the ab initio relative energies. The torsional
potentials were fitted to a truncated Fourier expansion. Our
MP4(SDQ)/6-311++G** and MP4(SDQ)/aug-cc-pVDZ improved levels show an
agreement within ca. 2 U mol(-1), indicating that convergence has been
virtually achieved. Therefore, our new torsional energy data should be
used as reference for further studies. (C) 2003 Elsevier Science B.V.
All rights reserved.
C1 Univ Fed Minas Gerais, LQC MM, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, Univ Fed Minas Gerais, LQC MM, Dept Quim, ICEx,
BR-31270901 Belo Horizonte, MG, Brazil.
CR AYALA PY, 1998, J CHEM PHYS, V108, P2315
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P1372
BECKE AD, 1993, J CHEM PHYS, V98, P5648
CASIDA ME, 1996, DEMON SOFTWARE DEMON
CHADWICK JE, 1994, J PHYS CHEM-US, V98, P3631
CHUANG YY, 2000, J CHEM PHYS, V112, P1221
DIAZ AF, 1979, J CHEM SOC CHEM COMM, P635
DIAZ AF, 1998, J CHEM SOC CHEM COMM, P183
DOSSANTOS HF, 2002, CHEM PHYS, V280, P31
DUARTE HA, 2000, J CHEM PHYS, V113, P4206
DUNNING TH, 1976, MODERN THEORETICAL C, V3, P1
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FRISCH MJ, 1995, GAUSSIAN 94
GHOSHAL SK, 1989, CHEM PHYS LETT, V158, P65
HEEGER AJ, 1988, REV MOD PHYS, V60, P781
INGANAS O, 1988, SYNTHETIC MET, V22, P395
KANAZAWA KK, 1980, SYNTHETIC MET, V1, P329
KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
KUANI H, 2003, IN PRESS P 11 BRAZ S
LEE C, 1988, PHYS REV B, V37, P785
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
MILLEFIORI S, 1998, J CHEM SOC FARADAY T, V94, P25
NYGAARD L, 1969, J MOL STRUCT, V3, P491
ORTI E, 1987, J PHYS CHEM-US, V91, P545
ORTI E, 1995, J PHYS CHEM-US, V99, P4955
PATIL AO, 1988, CHEM REV, V88, P183
PREZYNA LA, 1991, MACROMOLECULES, V24, P5283
PROYNOV EI, 1995, INT J QUANTUM CHEM S, V29, P61
SKOTHEIM TA, 1986, HDB CONDUCTING POLYM, V1
STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
SZABO A, 1996, MODERN QUANTUM CHEM
TRUHLAR DG, 1991, J COMPUT CHEM, V12, P266
VIRUELA PM, 1998, INT J QUANTUM CHEM, V70, P303
WOON DE, 1993, J CHEM PHYS, V98, P1358
NR 36
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD FEB 7
PY 2003
VL 369
IS 1-2
BP 114
EP 124
PG 11
SC Physics, Atomic, Molecular & Chemical
GA 642GE
UT ISI:000180795200017
ER
PT J
AU Novaes, FD
da Silva, AJR
da Silva, EZ
Fazzio, A
TI Effect of impurities in the large Au-Au distances in gold nanowires
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID LARGE SYSTEMS; ATOMS; MICROSCOPY; WIRE
AB Experimentally obtained atomically thin gold nanowires have presented
exceedingly large Au-Au interatomic distances before they break. Since
no theoretical calculations of pure gold nanowires have been able to
produce such large distances, we have investigated, through ab initio
calculations, how impurities could affect them. We have studied the
effect of H, B, C, N, O, and S impurities on the nanowire electronic
and structural properties, in particular how they affect the maximum
Au-Au bond length. We find that the most likely candidates to explain
the distances in the range of 3.6 Angstrom and 4.8 Angstromare H and S
impurity atoms, respectively.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
UNICAMP, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Novaes, FD, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
BAHN SR, 2002, PHYS REV B, V66
DASILVA EZ, UNPUB
DASILVA EZ, 2001, PHYS REV LETT, V87
HOHENBERG P, 1964, PHYS REV, V136, B864
KOHN W, 1965, PHYS REV, V140, A1133
KOIZUMI H, 2001, ULTRAMICROSCOPY, V88, P17
KONDO Y, 2000, SCIENCE, V289, P606
LEGOAS SB, 2002, PHYS REV LETT, V88
MEHREZ H, 2002, PHYS REV B, V65
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
OHNISHI H, 1998, NATURE, V395, P780
ORDEJON P, 1996, PHYS REV B, V53
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
RODRIGUES V, 2001, PHYS REV B, V63
RUBIOBOLLINGER G, 2001, PHYS REV LETT, V87
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SKORODUMOVA NV, CONDMAT0203162
TAKAI Y, 2001, PHYS REV LETT, V87
TORRES JA, 1999, SURF SCI LETT, V83, P441
TOSATTI E, 2001, SCIENCE, V291, P288
TROULLIER N, 1991, PHYS REV B, V43, P1993
UNTIEDT C, 2002, PHYS REV B, V66
YANSON AI, 1998, NATURE, V395, P783
NR 24
TC 20
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JAN 24
PY 2003
VL 90
IS 3
AR 036101
DI ARTN 036101
PG 4
SC Physics, Multidisciplinary
GA 638PJ
UT ISI:000180579200037
ER
PT J
AU Junqueira, GMA
Rocha, WR
De Almeida, WB
Dos Santos, HF
TI Theoretical analysis of the oxocarbons: The solvent and counter-ion
effects on the structure and spectroscopic properties of the squarate
ion
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID DIFFERENTIAL-OVERLAP TECHNIQUE; MOLECULAR-ORBITAL METHODS; MONTE-CARLO;
INTERMEDIATE NEGLECT; RAMAN-SPECTROSCOPY; CROCONATE DIANION; BASIS SET;
TRANSITION; WATER; COMPLEXES
AB The squarate anion and their coordination compounds with Li+, Na+ and
K+ are studied in gas phase and aqueous solution using ab initio
quantum chemical methods and a sequential Monte Carlo/quantum
mechanical procedure. The infrared and Raman spectra were calculated
and the vibrational modes assigned at the second order Moller-Plesset
perturbation (MP2) level of theory, employing standard split-valence
basis set with inclusion of polarization and diffuse functions
(6-31G(d), 6-31+G(d), 6-311+G(d), 6-311+G(2d), 6-311+G(2df)) on the O
and C atoms. The vibrational analysis showed an important role played
by the polarization functions on the low frequency vibrations. The
solvent and counter-ions effects on the electronic spectrum are
analyzed showing that both should be included in the calculation in
order to reproduce the observed UV spectrum. This conclusion supports
our previous analysis on the oxocarbon series.
C1 Univ Fed Juiz de Fora, NEQC, Dept Quim, ICE, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Pernambuco, Dept Quim Fundamental, CCEN, BR-50740901 Recife, PE, Brazil.
Univ Fed Minas Gerais, LQC MM, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, NEQC, Dept Quim, ICE, Campus
Martelos, BR-36036330 Juiz De Fora, MG, Brazil.
CR 1992, HDB CHEM PHYSICS
AIHARA J, 1981, J AM CHEM SOC, V103, P1633
ALLEN MP, 1987, COMPUTER SIMULATION
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 1997, DICE MONTE CARLO PRO
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
DAMM W, 1997, J COMPUT CHEM, V18, P1995
DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
DEMIRANDA SG, 2002, J BRAZIL CHEM SOC, V13, P324
DEOLIVEIRA LFC, 1991, J MOL STRUCT, V245, P215
DEOLIVEIRA LFC, 1992, J MOL STRUCT, V269, P85
DEOLIVEIRA LFC, 1999, J MOL STRUCT, V510, P97
DORY M, 1994, J CHEM SOC FARADAY T, V90, P2319
DUMESTRE F, 1998, J CHEM SOC DA, V24, P4131
EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
EGGERDING D, 1975, J AM CHEM SOC, V97, P207
FABRE PL, 2000, ELECTROCHIM ACTA, V45, P2697
FARNELL L, 1981, J MOL STRUCT, V76, P1
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GLICK MD, 1964, INORG CHEM, V3, P1712
GLICK MD, 1966, INORG CHEM, V5, P289
GONCALVES NS, 1996, ACTA CRYSTALLOGR C 3, V52, P622
HA TK, 1986, J MOL STRUCT, V137, P183
HEAD JD, 1986, CHEM PHYS LETT, V131, P359
ITO M, 1963, J AM CHEM SOC, V85, P2580
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JUNQUEIRA GMA, 2001, PHYS CHEM CHEM PHYS, V3, P3499
JUNQUEIRA GMA, 2002, PHYS CHEM CHEM PHYS, V4, P2517
JUNQUEIRA GMA, 2002, PHYS CHEM CHEM PHYS, V4, P2919
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
LOPES JGS, 2001, SPECTROCHIM ACTA A, V57, P399
MACINTYRE WM, 1964, J CHEM PHYS, V42, P3563
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
PETERSSON GA, 1991, J CHEM PHYS, V94, P6081
PUEBLA C, 1986, J MOL STRUCT THEOCHE, V137, P171
QUINONERO D, 2001, CHEM PHYS LETT, V350, P331
RIBEIRO MCC, 2002, PHYS CHEM CHEM PHYS, V4, P2917
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROCHA WR, 2001, CHEM PHYS LETT, V127, P335
SANTOS PS, 1991, J MOL STRUCT, V243, P223
SEITZ G, 1992, CHEM REV, V92, P1227
SPASSOVA M, 2000, J MOL STRUC-THEOCHEM, V528, P151
TAKAHASHI M, 1978, CHEM PHYS, V35, P293
TORII H, 1995, J MOL STRUCT THEOCHE, V334, P15
VON RP, 2000, J ORG CHEM, V65, P426
WEST R, 1960, J AM CHEM SOC, V82, P6204
WEST R, 1963, J AM CHEM SOC, V85, P2577
WEST R, 1963, J AM CHEM SOC, V85, P2586
WEST R, 1979, J AM CHEM SOC, V101, P1710
WEST R, 1981, J AM CHEM SOC, V103, P5073
ZERNER MC, 1980, J AM CHEM SOC, V102, P589
ZHAO B, 1992, CAN J CHEM, V70, P135
NR 55
TC 3
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2003
VL 5
IS 3
BP 437
EP 445
PG 9
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 635YG
UT ISI:000180427300002
ER
PT J
AU El Akramine, O
Lester, WA
Krokidis, X
Taft, CA
Guimaraes, TC
Pavao, AC
Zhu, R
TI Quantum Monte Carlo study of the CO interaction with a dimer model
surface for Cr(110)
SO MOLECULAR PHYSICS
LA English
DT Article
ID ELECTRON LOCALIZATION FUNCTION; METAL-SURFACES; EFFECTIVE POTENTIALS;
WAVE-FUNCTIONS; CLUSTERS; ATOMS; DISSOCIATION; SIMULATIONS; MOLECULES;
SOLIDS
AB The chemisorption of CO on a Cr( 110) surface is investigated using the
quantum Monte Carlo method in the diffusion Monte Carlo (DMC) variant
and a model Cr2CO cluster. The present results are consistent with the
earlier ab initio HF study with this model that showed the tilted/
near-parallel orientation as energetically favoured over the
perpendicular arrangement. The DMC energy difference between the two
orientations is larger (1.9 eV) than that computed in the previous
study. The distribution and reorganization of electrons during CO
adsorption on the model surface are analysed using the topological
electron localization function method that yields electron populations,
charge transfer and clear insight on the chemical bonding that occurs
with CO adsorption and dissociation on the model surface.
C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Dept Chem, Kenneth S Pitzer Ctr Theoret Chem, Berkeley, CA 94720 USA.
Accelrys, Mat Sci, F-91898 Orsay, France.
Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
Chinese Acad Sci, LNM, Inst Mech, Beijing 100864, Peoples R China.
RP Lester, WA, Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci,
Berkeley, CA 94720 USA.
CR ANDERSON JB, 1999, REV COMP CH, V13, P133
ASPURUGUZIK A, UNPUB
BADER RFW, 1990, ATOMS MOL QUANTUM TH
BAGUS PS, 1983, PHYS REV B, V28, P5423
BARTLETT RJ, 1990, CHEM PHYS LETT, V165, P513
BAUSCHLICHER CW, 1986, J CHEM PHYS, V85, P354
BECKE AD, 1990, J CHEM PHYS, V92, P5397
BELOHOREC P, 1993, J CHEM PHYS, V98, P6401
BLYHOLDER G, 1964, J PHYS CHEM-US, V68, P2772
BOYS SF, 1969, P ROY SOC LOND A MAT, V310, P43
CEYER ST, 1988, ANNU REV PHYS CHEM, V39, P479
CHRISTIANSEN PA, 1991, J CHEM PHYS, V95, P361
FLAD HJ, 1997, J CHEM PHYS, V107, P7951
FOULKES WMC, 2001, REV MOD PHYS, V73, P33
GREEFF CW, 1997, J CHEM PHYS, V106, P6412
GROSSMAN JC, 2000, J AM CHEM SOC, V122, P705
GROSSMAN JC, 2001, PHYS REV LETT, V86, P472
GUIMARAES TC, 1997, PHYS REV B, V56, P7001
HAMMOND BL, 1994, MONTE CARLO METHODS
HARKLESS JA, 2001, J CHEM PHYS, V113, P2680
KROKIDIS X, 1997, J PHYS CHEM A, V101, P7277
KROKIDIS X, 1998, NEW J CHEM, P1341
KROKIDIS X, 1999, CHEM PHYS LETT, V314, P534
LESTER WS, 1997, RECENT ADV QUANTUM M
LUECHOW A, 2000, ANNU REV PHYS CHEM, V51, P501
MEHANDRU SP, 1986, SURF SCI, V169, L281
MITAS L, 1994, PHYS REV A, V49, P4411
MITAS L, 1996, ADV CHEM PHYS, V93, P1
NOURY S, 1997, TOPOLOGICAL MOL DESC
NOURY S, 1999, COMPUT CHEM, V23, P597
OVCHARENKO IV, 2001, J CHEM PHYS, V114, P9028
PAVAO AC, 1991, PHYS REV B, V44, P1910
PAVAO AC, 1994, PHYS REV B, V50, P1868
PAVAO AC, 1995, SURF SCI, V323, P340
PAVAO AC, 1999, J MOL STRUC-THEOCHEM, V458, P99
PAVAO AC, 2001, J PHYS CHEM A, V105, P5
PEPKE E, 1993, SCIAN
PLUMMER EW, 1985, SURF SCI, V158, P58
PORTER AR, 2001, J CHEM PHYS, V114, P7795
ROTHSTEIN SM, 1996, INT J QUANTUM CHEM, V60, P803
SCHAUTZ F, 1998, THEOR CHEM ACC, V99, P231
SCHMIDT KE, 1990, J CHEM PHYS, V93, P4172
SELVI B, 1994, NATURE, V371, P683
SHINN ND, 1984, PHYS REV LETT, V53, P2481
SILVI B, 2000, J PHYS CHEM A, V104, P947
SOKOLOVA S, 2000, CHEM PHYS LETT, V320, P421
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
SUNG SS, 1985, J AM CHEM SOC, V107, P578
TAFT CA, 1999, INT REV PHYS CHEM, V18, P163
XIAO C, 2001, J MOL STRUC-THEOCHEM, V549, P181
NR 50
TC 4
PU TAYLOR & FRANCIS LTD
PI ABINGDON
PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND
SN 0026-8976
J9 MOL PHYS
JI Mol. Phys.
PY 2003
VL 101
IS 1-2
BP 277
EP 285
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 633QC
UT ISI:000180293100030
ER
PT J
AU Freitas, MP
Tormena, CF
Rittner, R
Abraham, RJ
TI Conformational analysis of trans-2-halocyclohexanols and their methyl
ethers: a H-1 NMR, theoretical and solvation approach
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE trans-1,2-disubstituted cyclohexanes; conformational analysis; NMR;
density functional theory
ID AB-INITIO; ISOMERISM; CYCLOHEXANES; OH
AB The conformational equilibria of trans-1-methoxy-2-chloro- (1),
trans-1-methoxy-2-bromo- (2) and trans-1-methoxy-2-iodocyclohexane (3),
and their corresponding alcohols (4-6), were studied through a combined
method of NMR, theoretical calculations and solvation theory. They can
be described in terms of the axial-axial and equatorial-equatorial
conformations, taking into account the main rotamers of each of these
conformations. From the NMR experiments at 183 K in (CDCl2)-Cl-2-CS2,
it was possible to observe proton H-2 in the ax-ax and eq-eq conformers
separately for 1 and 2, but not for 3, which gave directly their
populations and conformer energies. In the alcohols the proportion of
the ax-ax. conformer was too low to be detected by NMR under these
conditions. Those HH couplings together with the values at room
temperature, in a variety of solvents allowed the determination of the
solvent dependence of the conformer energies and hence the vapor state
energy difference. The DeltaE (E-ax-E-eq) values in the vapor state for
1, 2 and 3 are -0.05, 0.20 and 0.55 kcal mol(-1), respectively,
increasing to 1.10, 1.22 and 1.41 kcal mol(-1) in CD3CN solution (I
kcal = 4.184 kJ). For 4-6 the eq-eq conformation is always much more
stable in both non-polar and polar solvents, with energy differences
ranging from 1.78, 1.94 and 1.86 kcal mol(-1) (in CCl4) to 1.27, 1.49
and 1.54 kcal mol(-1) (in DMSO), respectively. Comparison of the
hydroxy and methoxy compounds gives the intramolecular hydrogen bonding
energy for the alcohols as 1.40, 1.36 and 1.00 kcal mol(-1) (in CCl4)
for 4, 5 and 6, respectively. Copyright (C) 2002 John Wiley Sons, Ltd.
C1 UNICAMP, Phys Organ Chem Lab, Inst Quim, BR-13084971 Campinas, SP, Brazil.
Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Rittner, R, UNICAMP, Phys Organ Chem Lab, Inst Quim, Caixa Postal 6154,
BR-13084971 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1996, J CHEM SOC PERK SEP, P1949
ABRAHAM RJ, 1999, J CHEM SOC PERK AUG, P1663
ALLINGER J, 1958, TETRAHEDRON, V2, P64
ALLINGER NL, 1958, J AM CHEM SOC, V80, P5476
BAJWA JS, 1991, TETRAHEDRON LETT, V32, P3021
BASSO EA, 1993, J ORG CHEM, V58, P7865
BERVELT JP, 1968, SPECTROCHIM ACTA A, V24, P1411
BODOT H, 1967, B SOC CHIM FR, P870
CARRENO MC, 1990, TETRAHEDRON, V46, P5649
COLLIN P, 1995, MONOSACCHARIDES THEI
CRAIG NC, 1997, J AM CHEM SOC, V119, P4789
EPIOTIS ND, 1973, J AM CHEM SOC, V95, P3087
FREITAS MP, 2001, J MOL STRUCT, V570, P175
FREITAS MP, 2001, J PHYS ORG CHEM, V14, P317
FRISCH MJ, 1998, GAUSSIAN 98
GANGULY B, 2000, J ORG CHEM, V65, P558
GUSS CO, 1955, J AM CHEM SOC, V77, P2549
JONES DC, 1928, J CHEM SOC, P1193
KAY JB, 1970, J PHARM PHARMACOL, V22, P214
LAGOWSKI JJ, 1976, CHEM NONAQUEOUS SOLV, V3
LI ZH, 2001, J PHYS CHEM A, V105, P10890
RABLEN PR, 1999, J CHEM SOC PERK AUG, P1719
ROCKWELL GD, 1996, AUST J CHEM, V49, P379
SENDEROWITZ H, 1997, THEOCHEM-J MOL STRUC, V395, P123
SOSNOVSKII GM, 1990, ZH ORG KHIM, V26, P911
TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
WIBERG KB, 1990, J PHYS CHEM-US, V94, P6956
WOLFE S, 1967, J CHEM SOC CHEM COMM, P872
ZEFIROV NS, 1976, TETRAHEDRON, V32, P1211
ZEFIROV NS, 1978, TETRAHEDRON, V34, P2953
NR 33
TC 4
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD JAN
PY 2003
VL 16
IS 1
BP 27
EP 33
PG 7
SC Chemistry, Organic; Chemistry, Physical
GA 635PB
UT ISI:000180407000005
ER
PT J
AU Miwa, RH
Srivastava, GP
TI Self-organized Bi lines on the Si(001) surface: A theoretical study
SO PHYSICAL REVIEW B
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; ELECTRONIC-STRUCTURE; SI(100) SURFACE;
BISMUTH; X-1); PSEUDOPOTENTIALS; NANOWIRE; GROWTH; CHAINS; STATE
AB We have performed an ab initio theoretical study of the stability,
atomic geometry, and electronic structure of the self-organized Bi
lines on the Si(001) surface. We have examined the two currently
proposed models and two new hybrid models for the structure of Bi
lines. Our results confirm the model proposed by Miki , in which the Bi
lines are formed by Bi dimers parallel to the surrounding Si dimers,
with a missing dimer row between the Bi dimers. However, in contrast to
the proposal of symmetrically disposed surface Si dimers (i.e., with no
buckling) by Miki , our total-energy calculations indicate that the
buckling of the Si dimers is an exothermic process, reducing the
surface total energy by 0.11 eV/dimer. Our theoretically simulated
scanning tunneling microscopy results suggest a low density of states
close to the valence-band maximum, localized on the Bi lines,
supporting the recently proposed model of quantum antiwire systems for
Bi lines on the Si(001) surface.
C1 Univ Fed Uberlandia, Fac Fis, BR-38400902 Uberlandia, MG, Brazil.
Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP Miwa, RH, Univ Fed Uberlandia, Fac Fis, Caixa Postal 593, BR-38400902
Uberlandia, MG, Brazil.
CR ABUKAWA T, 1995, SURF SCI, V325, P33
BOWLER DR, 2000, PHYS REV B, V62, P7237
BUNK O, 1999, PHYS REV B, V59, P12228
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHO JH, 2001, PHYS REV B, V64
DABROWSKI J, 1992, APPL SURF SCI, V56, P15
GAY SCA, 1999, PHYS REV B, V60, P1488
GONZE X, 1991, PHYS REV B, V44, P8503
JENKINS SJ, 1996, J PHYS-CONDENS MAT, V8, P6641
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
LOUIE SG, 1982, PHYS REV B, V26, P1738
MIKI K, 1999, PHYS REV B, V59, P14868
MIKI K, 1999, SURF SCI, V421, P397
MIWA RH, 2001, SURF SCI, V473, P123
MIWA RH, 2002, SURF SCI, V507, P368
NAITOH M, 1997, SURF SCI, V377, P899
NAITOH M, 1999, APPL SURF SCI, V142, P38
NAITOH M, 2000, JPN J APPL PHYS 1, V39, P2793
NAITOH M, 2001, SURF SCI 2, V482, P1440
NAKAMURA J, 2001, PHYS REV B, V63
NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
PERDEW JP, 1981, PHYS REV B, V23, P5048
SHIMOMURA M, 2000, SURF SCI, V447, L169
TERSOFF J, 1985, PHYS REV B, V31, P805
TUTUNCU HM, 1997, PHYS REV B, V56, P4656
TUTUNCU HM, 2000, SURF SCI, V454, P504
YEOM HW, 1999, PHYS REV LETT, V82, P4898
NR 27
TC 9
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD DEC 15
PY 2002
VL 66
IS 23
AR 235317
DI ARTN 235317
PG 6
SC Physics, Condensed Matter
GA 633JL
UT ISI:000180279400084
ER
PT J
AU Gomez, JA
Guenzburger, D
TI Hyperfine fields and field gradients of thin films of
face-centred-cubic Fe on Cu(001)
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; FCC IRON FILMS; GAMMA-FE; FE/CU(001)
OVERLAYERS; COMPLEX RECONSTRUCTION; ELECTRONIC-STRUCTURE;
MAGNETIC-PROPERTIES; FIRST-PRINCIPLES; ULTRATHIN FILMS; GROUND-STATE
AB The discrete variational method in density functional theory was
employed to perform first-principles electronic structure calculations
for embedded clusters representing thin films of face-centred-cubic Fe
on a Cu(001) substrate. 3, 4 and 5 ML of Fe were investigated; the
ferromagnetic and several types of antiferromagnetic spin
configurations were considered. Layer-by-layer calculations of the
contact and dipolar components of the magnetic hyperfine field are
reported, as well as electric-field gradients at the surface and
interface layers. Significant field gradients were found at the
surfaces. Clusters modelling the interdiffusion of Fe and Cu between
two layers at the interface were also investigated, to determine the
effects on the properties.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil.
RP Gomez, JA, Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150,
BR-22290180 Rio De Janeiro, RJ, Brazil.
CR ABRAGAM A, 1961, PRINCIPLES NUCL MAGN
ALLENSPACH R, 1994, J MAGN MAGN MATER, V129, P160
ASADA T, 1997, PHYS REV LETT, V79, P507
BLAHA P, 1988, PHYS REV B, V37, P2792
CEPERLEY D, 1978, PHYS REV B, V18, P3126
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DELLEY B, 1982, J CHEM PHYS, V76, P1949
DUNN JH, 1996, PHYS REV B, V54
ELLERBROCK RD, 1995, PHYS REV LETT, V74, P3053
ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
ELLIS DE, 1970, PHYS REV B, V2, P2887
ELLIS DE, 1999, ADV QUANTUM CHEM, V34, P51
FERNANDO GW, 1988, PHYS REV B, V38, P3016
FU CL, 1987, PHYS REV B, V35, P925
GOMEZ JA, 2001, J MAGN MAGN MATER 1, V226, P381
GOMEZ JA, 2001, PHYS REV B, V63
GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
GUENZBURGER D, 1995, PHYS REV B, V51, P12519
GUENZBURGER D, 1995, PHYS REV B, V52, P13390
GUO GY, 1996, HYPERFINE INTERACT, V97, P11
GUO GY, 1996, PHYS REV B, V53, P2492
HALBAUER R, 1983, J MAGN MAGN MATER, V35, P55
HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V1
HEINRICH B, 1994, ULTRATHIN MAGNETIC S, V2
HEINZ K, 1996, SURF SCI, V352, P942
KEUNE W, 1989, PHYSICA B, V161, P269
KEUNE W, 1996, J APPL PHYS 1, V79, P4265
KIRK KJ, 2000, CONTEMP PHYS, V41, P61
LI C, 1990, J MAGN MAGN MATER, V83, P51
LI DQ, 1994, PHYS REV LETT, V72, P3112
LINDGREN B, 1990, EUROPHYS LETT, V11, P555
MACEDO WAA, 1988, PHYS REV LETT, V61, P475
MACEDO WAA, 1991, J MAGN MAGN MATER, V93, P552
MAGNAN H, 1991, PHYS REV LETT, V67, P859
MORONI EG, 1999, J MAGN MAGN MATER, V198, P551
MORONI EG, 1999, J PHYS-CONDENS MAT, V11, L35
MORUZZI VL, 1986, PHYS REV B, V34, P1784
MRYASOV ON, 1992, PHYS REV B, V45, P12330
MULLER S, 1995, PHYS REV LETT, V74, P765
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
PARR RG, 1989, DENSITY FUNCTIONAL A
PEDUTO PR, 1997, BRAZ J PHYS, V27, P574
PESCIA D, 1987, PHYS REV LETT, V58, P2126
PIZZINI S, 1995, PHYS REV LETT, V74, P1470
POPESCU V, 2000, PHYS REV B, V61, P15241
QIAN D, 2001, PHYS REV LETT, V87
SCHMITZ D, 1999, PHYS REV B, V59, P4327
SPISAK D, 2000, PHYS REV B, V61, P16129
STRAUB M, 1996, PHYS REV LETT, V77, P743
SZUNYOGH L, 1997, PHYS REV B, V55, P14392
THOMASSEN J, 1992, PHYS REV LETT, V69, P3831
UHL M, 1992, J MAGN MAGN MATER, V103, P314
UJFALUSSY B, 1996, PHYS REV B, V54, P9883
VOSKO SH, 1980, CAN J PHYS, V58, P1200
WANG CS, 1985, PHYS REV LETT, V54, P1852
WUTTIG M, 1993, SURF SCI, V282, P237
ZHARNIKOV M, 1996, PHYS REV LETT, V76, P4620
NR 58
TC 3
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD DEC 2
PY 2002
VL 14
IS 47
BP 12311
EP 12328
PG 18
SC Physics, Condensed Matter
GA 634DC
UT ISI:000180323900011
ER
PT J
AU Machado, AED
de Miranda, JA
Guilardi, S
Nicodem, DE
Severino, D
TI Photophysics and spectroscopic properties of
3-benzoxazol-2-yl-chromen-2-one
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE photophysics; coumarin derivative; molecular structure; electronic
structure; PM3; ZINDO/S; ab initio
ID DERIVATIVES; COUMARINS; COMPOUND; SOLVENT; STATE; AM1
AB The photophysics of 3-benzoxazol-2-yl-chromen-2-one was studied in
different solvents. High molar absorptivities, between 14 800 and 22
900 dm(3)/mol cm, were observed for the absorption peak related to the
S-0 --> S-1 transition which suggests a pi --> pi*character. This
compound presents a limited solvatochromism, attributed to the
benzoxazole group, and high fluorescence quantum yields, Phi(f). The
fluorescence quantum yield is lowered with the increase of solvent
polarity, favouring the participation of internal conversion as
deactivation path of the S, state. The Stokes shift shows that the
excited state is stabilised with increasing solvent polarity. The
dipole moment was estimated by ab initio calculations as being between
5.28 and 5.62 Debye for S-1, and 4.75 Debye for S-0. Phosphorescence
was not observed. A small but not negligible quantum yield of singlet
oxygen generation ((Phi(Delta) = 0.15) was measured in chloroform. The
geometric parameters obtained by semi-empirical calculation (PM3) are
in good agreement with crystallographic data, showing a r.m.s.
deviation of 0.153 Angstrom for the superposition of both structures.
The predicted structure is all planar, while the crystallographic data
reveal a dihedral angle of 6.5degrees, between the coumarin and
benzoxazole rings. The theoretical description of the electronic
spectra, obtained from a PM3 CI calculation, shows excellent agreement
with the experimental data. Deviations lower than 2% are observed in
the predicted absorption maxima, with best results when solvation is
considered. For electronic states calculation, ZINDO/S gave a better
prediction of excited state energies, with a deviation lower than 7%
for the S, energy. The most probable sequence for the first four
excited states is: T-1(npi*) < T-2(pipi*) < S-1(pipi*) < S-2(npi*). (C)
2002 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Uberlandia, Inst Quim, Lab Fotoquim, GFQL, BR-38400089 Uberlandia, MG, Brazil.
Univ Fed Rio de Janeiro, Inst Quim, Lab Espectroscopia Resolvida Tempo, BR-21949900 Rio De Janeiro, Brazil.
RP Machado, AED, Univ Fed Uberlandia, Inst Quim, Lab Fotoquim, GFQL, POB
593, BR-38400089 Uberlandia, MG, Brazil.
CR 1999, HYPERCHEMISTRY 5 11
ARBELOA TL, 1993, J PHYS CHEM-US, V97, P4704
DEMELO JSS, 1994, J PHYS CHEM-US, V98, P6054
DREXHAGE KH, 1973, TOPICS APPL PHYSICS, V1
EATON DF, 1988, PURE APPL CHEM, V60, P1107
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GAO F, 2000, DYES PIGMENTS, V47, P231
GILBERT A, 1991, ESSENTIALS MOL PHOTO
GUILARDI S, UNPUB
JONES G, 1994, J PHYS CHEM-US, V98, P13028
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
KRASOVITSKII BM, 1988, ORGANIC LUMINESCENT, CH7
LAKOWICZ JR, 1999, PRINCIPLES FLUORESCE
LIPPERT E, 1955, Z NATURFORSCHG A, V10, P541
LUAN XH, UNPUB ADV COLOUR SCI
MACHADO AED, 2001, J PHOTOCH PHOTOBIO A, V141, P109
MACHADO AEH, UNPUB
MACHADO AEH, 2001, J PHOTOCH PHOTOBIO A, V146, P72
MCCARTHY PK, 1993, J PHYS CHEM-US, V97, P12205
MIRANDA JA, 2001, THESIS U FEDERAL UBE
RAJU BB, 1994, J PHYS CHEM-US, V98, P8903
RAJU BB, 1998, J PHOTOCH PHOTOBIO A, V116, P135
REICHARDT C, 1988, SOLVENTS SOLVENT EFF
SCHMIDT R, 1994, J PHOTOCH PHOTOBIO A, V79, P11
SILVERSTEIN RM, 1991, SPECTROMETRIC IDENTI
TURRO NJ, 1991, MODERN MOL PHOTOCHEM
WHEELOCK CE, 1959, J AM CHEM SOC, V81, P1348
NR 27
TC 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JAN 1
PY 2003
VL 59
IS 2
BP 345
EP 355
PG 11
SC Spectroscopy
GA 626PY
UT ISI:000179882900017
ER
PT J
AU Bruns, RE
Haiduke, RLA
do Amaral, AT
TI The linear relationship between Koopmans' and hydrogen bond energies
for some simple carbonyl molecules
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE hydrogen bonding; atomic charges; Koopmans' energy; QSAR
ID DIPOLE-MOMENT DERIVATIVES; FIELD ANALYSIS; AB-INITIO;
CONFORMATIONAL-ANALYSIS; SEMIEMPIRICAL METHODS; INFRARED INTENSITIES;
ATOMIC CHARGES; POLAR TENSORS; DESCRIPTORS; POTENTIALS
AB Recently Galabov and Bobadova-Parvanova have shown that the energy of
hydrogen bond formation calculated at the HF/6-31G(d,p) level is highly
correlated with the molecular electrostatic potential at the acceptor
site for a number of simple carbonyl compounds. Here it is shown that
the electrostatic potential can be replaced by Koopmans' energy. The
correlation between this energy and the hydrogen bond formation energy
is just as high as the one observed by Galabov and Bobadova-Parvanova.
The Siegbahn simple potential relating Koopmans' energies and GAPT
charges shows that the hydrogen bond energy is not simply correlated
with the charge of the acceptor site because the charges on the
neighboring atoms are also important in the hydrogen bonding process.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Bruns, RE, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13083970
Campinas, SP, Brazil.
CR BESLER BH, 1990, J COMPUT CHEM, V11, P431
BIARGE JF, 1961, ANALES REAL SOC ES A, V57, P81
BOBADOVAPARVANOVA P, 1998, J PHYS CHEM A, V102, P1815
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BUREAU R, 1996, QUANT STRUCT-ACT REL, V15, P373
CIOSLOWSKI J, 1989, J AM CHEM SOC, V111, P8333
DEOLIVEIRA AE, 2000, J PHYS CHEM A, V104, P5320
FOLKERS G, 1993, 3D QSAR DRUG DESIGN, P583
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GALABOV B, 1999, J PHYS CHEM A, V103, P6793
GANCIA E, 2000, J COMPUT AID MOL DES, V14, P293
GUADAGNINI PH, 1997, J AM CHEM SOC, V119, P4224
HAIDUKE RLA, 2002, J PHYS CHEM A, V106, P1824
KARELSON M, 1996, CHEM REV, V96, P1027
KROEMER RT, 1996, J COMPUT CHEM, V17, P1296
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
NAVAJAS C, 1996, QUANT STRUCT-ACT REL, V15, P189
OVEREND J, 1963, INFRARED SPECTROSCOP, CH10
PERSON WB, 1974, J CHEM PHYS, V61, P1040
RECANATINI M, 1996, J COMPUT AID MOL DES, V10, P74
TONMUNPHEAN S, 1998, J COMPUT AID MOL DES, V12, P397
WALLER CL, 1993, J MED CHEM, V36, P2390
WILSON EB, 1955, MOL VIBRATIONS
NR 23
TC 3
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD NOV-DEC
PY 2002
VL 13
IS 6
BP 800
EP 805
PG 6
SC Chemistry, Multidisciplinary
GA 627DC
UT ISI:000179914600011
ER
PT J
AU de Andrade, J
Boes, ES
Stassen, H
TI Computational study of room temperature molten salts composed by
1-alkyl-3-methylimidazolium cations-force-field proposal and validation
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID IONIC LIQUIDS; CHLOROALUMINATE MELTS; MOLECULAR-DYNAMICS; IMIDAZOLIUM
SALTS; SIMULATIONS; CATALYSIS; SOLVENTS; SPECTROSCOPY; CHLORIDE; SEARCH
AB We present a complete force field for liquid-state simulations on ionic
liquids containing 1-ethyl-3-methylimidazolium and
1-n-butyl-3-methylimidazolium cations and the tetrachloroaluminate and
tetrafluoroborate anions. The force field is compatible with the AMBER
methodology and is easily extendable to other dialkylimidazolium salts.
On the basis of the general AMBER procedures to develop lacking
intramolecular parameters and the RESP approach to calculate the atomic
point charges, we obtained an all-atom force field which was validated
against the experimental density, diffusion coefficient, vibrational
frequencies, as well as X-ray (crystal state) and neutron (liquid
state) diffraction structural data. Moreover, molecular mechanics
calculations for the developed force field produce the cation's
structures and dipole moments in very good agreement with quantum
mechanical ab initio calculations. In addition, a basic study
concerning the simulated liquid structure in terms of the radial
distribution functions has been undertaken using molecular dynamics
simulation. In summary, we achieved a very consistent picture in the
computed data for the four room-temperature molten salts.
C1 Univ Fed Rio Grande Sul, Inst Quim, Grp Quim Teor, BR-91540000 Porto Alegre, RS, Brazil.
RP Stassen, H, Univ Fed Rio Grande Sul, Inst Quim, Grp Quim Teor,
BR-91540000 Porto Alegre, RS, Brazil.
CR AKDENIZ Z, 1999, Z NATURFORSCH A, V54, P180
ALLEN MP, 1987, COMPUTER SIMULATIONS
BAYLY CI, 1993, J PHYS CHEM-US, V97, P10269
BOLM C, 1999, ANGEW CHEM INT EDIT, V38, P907
CAMPBELL JLE, 1994, INORG CHEM, V33, P3340
CASE DA, 1999, AMBER, V6
CHITRA R, 1997, J PHYS CHEM B, V101, P5437
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179
DEANDRADE J, 2002, J PHYS CHEM B, V106, P3546
DUDEK MJ, 1998, J COMPUT CHEM, V19, P548
DUPONT J, 2000, CHEM-EUR J, V6, P2377
DUPONT J, 2000, J BRAZIL CHEM SOC, V11, P337
DYMEK CJ, 1989, INORG CHEM, V28, P1472
ELAIWI A, 1995, J CHEM SOC DA, P3467
FANNIN AA, 1984, J PHYS CHEM-US, V88, P2614
FISH RH, 1999, CHEM-EUR J, V5, P1677
FOX T, 1998, J PHYS CHEM B, V102, P8070
FRANCL MM, 1982, J CHEM PHYS, V77, P3654
GORDON CM, 1998, J MATER CHEM, V8, P2627
GOUGH CA, 1992, J COMPUT CHEM, V13, P963
HAGIWARA R, 2000, J FLUORINE CHEM, V105, P221
HANKE CG, 2001, MOL PHYS, V99, P801
HANKE CG, 2002, GREEN CHEM, V4, P107
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HUGHES DJ, 1955, US ATOMIC ENERGY COM
JESSOP PG, 1999, CHEM REV, V99, P475
KAUPP G, 1994, ANGEW CHEM INT EDIT, V33, P1452
KAUPP G, 1994, ANGEW CHEM, V106, P1519
LARIVE CK, 1995, J PHYS CHEM-US, V99, P12409
LIDE DR, 1999, HDB CHEM PHYSICS
LYUBARTSEV AP, 2000, COMPUT PHYS COMMUN, V128, P565
MARTYNA GJ, 1996, MOL PHYS, V87, P1117
MAYO SL, 1990, J PHYS CHEM-US, V94, P8897
MENG Z, 2002, J MOL STRUC-THEOCHEM, V585, P119
PAPPU RV, 1998, J PHYS CHEM B, V102, P9725
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SHAH JK, 2002, GREEN CHEM, V4, P112
SUAREZ PAZ, 1998, J CHIM PHYS PCB, V95, P1626
TAKAHASHI S, 1995, INORG CHEM, V34, P2990
TAKAHASHI S, 1999, Z PHYS CHEM 2, V209, P209
TOSI MP, 1993, ANNU REV PHYS CHEM, V44, P173
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
WASSERSCHEID P, 2000, ANGEW CHEM INT EDIT, V39, P3772
WELTON T, 1999, CHEM REV, V99, P2071
WILKES JS, 1982, INORG CHEM, V21, P1263
NR 45
TC 32
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD DEC 26
PY 2002
VL 106
IS 51
BP 13344
EP 13351
PG 8
SC Chemistry, Physical
GA 628GQ
UT ISI:000179985100035
ER
PT J
AU Oliveira, HPM
Camargo, AJ
Macedo, LG
Gehlen, MH
da Silva, ABF
TI Synthesis, structure, electronic and vibrational spectra of
9-(diethylamino)-benzo(a)phenoxazin-7-ium-5-N-methacrylamide
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE dye laser; Nile Blue; photophysical properties; DFT calculations
ID DENSITY-FUNCTIONAL THERMOCHEMISTRY; NILE-RED; ZIRCONIUM-PHOSPHATE;
PROTON-TRANSFER; DYES; FLUORESCENCE; ANISOTROPY; EXCHANGE; DYNAMICS;
BLUE
AB The electronic and vibrational spectra of
9-(Diethylamino)-benzo(a)phenoxazin-7-ium-5-N-methacrylamide (Nile
Blue-5-N-methacrylamide) are measured, and the results are compared
with the theoretical values obtained by quantum chemical calculations.
The geometry, electronic transitions, charge distribution, and the IR
normal modes of this new dye and of its precursor Nile Blue have been
computed by using Density Functional Theory (DFT) method with the
functional B3LYP and the 6-31G(d) Gaussian basis set. The molecular
properties of the two dyes, predicted and observed, are very similar in
the electronic ground state. In the excited state, however, the longer
lifetime and larger fluorescence quantum yield of the Nile
Blue-5-methacrylamide is ascribed to an inhibition of the twisted
intramolecular charge transfer (TICT) process, when the NH2 is
substituted by the methacrylamide in the 5-position of the aromatic
extended ring of the dye. The change in charge density of the N atom in
5-position, as well as the difference in dipole moment and ionization
potential of the two dyes molecules, explain the attenuation of TICT
process. The vibration spectra of both dyes are simulated properly by
using the DFT method. (C) 2002 Elsevier Science B.V. All rights
reserved.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
RP Gehlen, MH, Univ Sao Paulo, Inst Quim Sao Carlos, CP 780, BR-13560970
Sao Carlos, SP, Brazil.
CR BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1992, J CHEM PHYS, V96, P2155
BECKE AD, 1993, J CHEM PHYS, V98, P5648
DEBACKER S, 1996, J PHYS CHEM-US, V100, P512
DIAS LC, 1999, CHEM PHYS LETT, V302, P505
DUNKERS J, 1995, SPECTROCHIM ACTA A, V51, P1061
DUTT GB, 1991, J CHEM PHYS, V94, P5360
DUTTA AK, 1996, J PHOTOCH PHOTOBIO A, V93, P57
GHONEIM N, 2000, SPECTROCHIM ACTA A, V56, P1003
GOLINI CM, 1998, J FLUORESC, V8, P395
GROFCSIK A, 1996, CHEM PHYS LETT, V250, P261
GROFCSIK A, 2000, J MOL STRUCT, V555, P15
KICQ P, 1987, BIOELECTROCH BIOENER, V17, P277
LEE C, 1988, PHYS REV B, V37, P785
MALINAUSKAS A, 2000, J ELECTROANAL CHEM, V484, P55
NAKASHIMA K, 1993, LANGMUIR, V9, P2825
PESSOA CA, 1997, J ELECTROANAL CHEM, V431, P23
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SOMLOI J, 1992, SPECTROCHIM ACTA A, V48, P77
SOUTAR I, 1996, J PHOTOCH PHOTOBIO A, V102, P87
VISWANATHAN K, 1996, J PHOTOCH PHOTOBIO A, V95, P245
WONG MW, 1996, CHEM PHYS LETT, V256, P391
NR 22
TC 4
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD DEC
PY 2002
VL 58
IS 14
BP 3103
EP 3111
PG 9
SC Spectroscopy
GA 620CD
UT ISI:000179514900007
ER
PT J
AU Menegon, G
Shimizu, K
Farah, JPS
Dias, LG
Chaimovich, H
TI Parameterization of the electronegativity equalization method based on
the charge model 1
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID ATOMIC CHARGES; AB-INITIO; ELECTROSTATIC POTENTIALS; MOLECULES;
HARDNESS; POLARIZABILITY; DEPENDENCE; CHEMISTRY
AB Fast calculation of charge distributions in molecules is feasible in
the electronegativity equalization method, EEM. Atomic
electronegativities and hardnesses, fundamental parameters in EEM, were
obtained here by using CM1 atomic charges at semiempirical PM3 level as
targets. A new optimization approach composed of Genetic and Simplex
algorithms is also described. The correlation between EEM and CM1
charges improved considerably (correlation coefficient improved from
0.931 to 0.977, standard deviation from 0.079 to 0.032 and Fisher's F
from 31 627 to 102 977, for 4093 data points) in comparison to previous
EEM parameters ( L. G. Dias et al., Chem. Phys., 2002, 282, 237, ref.
23). Atomic parameters obtained here are discussed and compared to
other EEM schemes and to parameters derived from empirical approaches.
C1 Univ Sao Paulo, Inst Chem, Dept Biochem, Sao Paulo, Brazil.
Univ Sao Paulo, Inst Chem, Dept Chem, Sao Paulo, Brazil.
RP Menegon, G, Univ Sao Paulo, Inst Chem, Dept Biochem, Sao Paulo, Brazil.
CR BADER RFW, 1981, ADV QUANTUM CHEM, V14, P63
BAKOWIES D, 1996, J COMPUT CHEM, V17, P87
BANKS JL, 1999, J CHEM PHYS, V110, P741
BAYLY CI, 1993, J PHYS CHEM-US, V97, P10269
CHAMBERS CC, 1996, J PHYS CHEM-US, V100, P16385
CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
CHO KH, 2001, J PHYS CHEM B, V105, P3624
CONG Y, 2000, CHEM PHYS LETT, V316, P324
DEPROFT F, 1993, J PHYS CHEM-US, V97, P1826
DIAS LG, 2002, CHEM PHYS, V282, P237
GOLDBERG DE, 1989, GENETIC ALGORITHMS S
HAWKINS GD, 1999, AMSOL VERSION6 6
KOMATSUZAKI T, 1996, MOL SIMULAT, V16, P321
KOMOROWSKI L, 1987, CHEM PHYS, V114, P55
LI JB, 1998, J PHYS CHEM A, V102, P1820
LIU YP, 1998, J CHEM PHYS, V108, P4739
LOWDIN PO, 1950, J CHEM PHYS, V18, P365
MARTIN B, 2000, INT J QUANTUM CHEM, V77, P473
MILLER KJ, 1990, J AM CHEM SOC, V112, P8533
MORTIER WJ, 1985, J AM CHEM SOC, V107, P829
MORTIER WJ, 1986, J AM CHEM SOC, V108, P4315
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
NALEWAJSKI RF, 1988, INT J QUANT CHEM S, V22, P349
NO KT, 1993, J AM CHEM SOC, V115, P2005
PARR RG, 1989, DENSITY FUNCTIONAL T
PEARSON RG, 1988, INORG CHEM, V27, P734
PRESS WH, 1992, NUMERICAL RECIPES FO
REED AE, 1985, J CHEM PHYS, V83, P735
RIBEIRO MCC, 1999, J CHEM PHYS, V110, P11445
RIBEIRO MCC, 2000, J CHEM PHYS, V113, P4722
STORER JW, 1995, J COMPUT AID MOL DES, V9, P87
TOUFAR H, 1996, J PHYS CHEM-US, V100, P15383
YANG ZZ, 1997, J PHYS CHEM A, V101, P6315
NR 33
TC 7
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2002
VL 4
IS 24
BP 5933
EP 5936
PG 4
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 620XD
UT ISI:000179558000003
ER
PT J
AU Pereira, AS
Perottoni, CA
da Jornada, JAH
Leger, JM
Haines, J
TI Compressibility of AlB2-type transition metal diborides
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID TITANIUM DIBORIDE; STATE
AB The pressure behaviour of a series of transition metal borides has been
studied both experimentally and by means of ab initio calculations.
X-ray diffraction patterns measured up to similar to50 GPa for VB2 and
ZrB2 show no obvious phase transition. Bulk moduli of 322 and 317 GPa,
respectively, were obtained using a Murnaghan equation of state.
Hartree-Fock LCCO (linear combination of crystal orbitals) calculations
performed for TiB2 have allowed its compression behaviour to be
studied. The bulk modulus obtained (292 GPa) and the proposed important
contribution of the interlayer interaction to the elastic behaviour
under high pressure are consistent with the experimental results for
the other borides.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
UFRGS, Escola Engn, BR-90035190 Porto Alegre, RS, Brazil.
Univ Caxias Sul, Ctr Ciencias Exatas & Tecnol, BR-95070560 Caxias Do Sul, RS, Brazil.
Inst Nacl Metrol Normalizacao & Qualidade Ind, Duque De Caxias, RJ, Brazil.
Lab Proprietes Mecan & Thermodynam Mat, Villetaneuse, France.
Univ Montpellier 2, Lab Phys Chim Mat Condensee, Montpellier, France.
RP Pereira, AS, Univ Fed Rio Grande Sul, Inst Fis, Caixa Postal 15051,
BR-91501970 Porto Alegre, RS, Brazil.
CR CHEN XL, 2001, J PHYS-CONDENS MAT, V13, L723
CUTLER RA, 1991, ENG PROPERTIES BORID
MUNRO RG, 2000, J RES NATL INST STAN, V105, P709
PEROTTONI CA, 2000, J PHYS-CONDENS MAT, V12, P7205
PISANI C, 1988, SPRINGER LECT NOTES, V48
VAJEESTON P, 2001, PHYS REV B, V63
NR 6
TC 5
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD NOV 11
PY 2002
VL 14
IS 44
BP 10615
EP 10618
PG 4
SC Physics, Condensed Matter
GA 620PL
UT ISI:000179541700043
ER
PT J
AU Rivelino, R
Coutinho, K
Canuto, S
TI A Monte Carlo-quantum mechanics study of the solvent-induced spectral
shift and the specific role of hydrogen bonds in the conformational
equilibrium of furfural in water
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID LIQUID WATER; AB-INITIO; ROTATIONAL BARRIERS; MOLECULAR-STRUCTURE;
SPECTROSCOPY; SIMULATION; DYNAMICS; NMR; TRANSITION; ISOMERISM
AB The solvation shift of the lowest absorption transition of furfural in
water is analyzed as a function of the rotation angle for the
interconversion between the two conformations, OO-cis and OO-trans, of
furfural. In total, 20 Monte Carlo NPT simulations are performed,
corresponding to different rotation angles of the carbonyl group. The
solvation shift of the n-pi* state is calculated to be 1230 +/- 45
cm(-1) in the most stable OO-cis form. This calculated shift is found
to be essentially independent of the rotation angle. The hydrogen bonds
between furfural and water are also analyzed along the interconversion
path. These hydrogen bonds are found to be equivalent, both in number
and in binding energy, for all rotation angles. The results for the
solvent-induced spectral shift and the hydrogen bond interactions
confirm that in water they make no preference for any rotamer of
furfural and lead to small contribution to the entropic activation
barrier of furfural in protic solvents.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Mogi Cruzes, CIIB, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ABRAHAM RJ, 1972, TETRAHEDRON, V28, P3015
ABRAHAM RJ, 1974, INTERNAL ROTATIONAL, CH13
ABRAHAM RJ, 1982, TETRAHEDRON, V38, P3245
ALEN MP, 1987, COMPUTER SIMULATION
ALLEN G, 1955, CAN J CHEM, V33, P1055
ALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
BAIN AD, 1997, J PHYS CHEM A, V101, P7182
BALDRIDGE KK, 2000, J CHEM PHYS, V113, P7519
BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BENASSI R, 1987, ADV HETEROCYCL CHEM, V41, P75
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BIRNSTOCK F, 1976, THEOR CHIM ACTA, V42, P311
BRAATHEN GO, 1986, J MOL STRUCT, V145, P45
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
CANUTO S, 2002, IN PRESS ADV QUANTUM
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 1997, MONTE CARLO PROGRAM
COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HIRAOKA H, 1968, J CHEM PHYS, V48, P2185
JOHNSON P, 2001, J ECON THEORY, V100, P1
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JORGENSEN WL, 1996, J AM CHEM SOC, V118, P11225
KAMIYA H, 1998, HYBRIDOMA, V17, P87
LITTLE TS, 1989, SPECTROCHIM ACTA A, V45, P789
MALASPINA T, 2002, J CHEM PHYS, V117, P1692
MARTIN ML, 1970, TETRAHEDRON LETT, V39, P3407
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
MEZEI M, 1981, J CHEM PHYS, V74, P622
MILLER FA, 1967, SPECTROCHIM ACTA A, V23, P891
MIYAHARA Y, 1996, THEOCHEM-J MOL STRUC, V364, P131
MONNIG F, 1965, Z NATURFORSCH A, V20, P1323
MONTAUDO G, 1973, TETRAHEDRON, V29, P3915
MORADIEZ N, 1998, THEOCHEM-J MOL STRUC, V453, P49
PETRONGOLO C, 1976, CHEM PHYS LETT, V42, P512
RAHMAN A, 1971, J CHEM PHYS, V55, P3336
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
ROQUES B, 1970, TETRAHEDRON, V26, P3555
SALMAN SR, 1982, ORG MAGN RESONANCE, V20, P151
STILLINGER FH, 1974, J CHEM PHYS, V60, P1545
STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
ZERNER MC, 1997, ZINDO SEMIEMPIRICAL
NR 48
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 28
PY 2002
VL 106
IS 47
BP 12317
EP 12322
PG 6
SC Chemistry, Physical
GA 620QJ
UT ISI:000179543800035
ER
PT J
AU Teles, LK
Scolfaro, LMR
Leite, JR
Furthmuller, J
Bechstedt, F
TI Phase diagram, chemical bonds, and gap bowing of cubic InxAl1-xN
alloys: Ab initio calculations
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID FIRST-PRINCIPLES CALCULATIONS; MOLECULAR-BEAM EPITAXY; FORCE-FIELD
MODEL; STRUCTURAL-PROPERTIES; SEMICONDUCTOR ALLOYS; INXGA1-XN; ENERGY;
REGION; INGAN; INN
AB Thermodynamic, structural, and electronic properties of cubic InxAl1-xN
alloys are studied by combining first-principles total energy
calculations and the generalized quasichemical approach. Results for
bond-lengths, second-nearest-neighbors distances, and bond angles in
the alloy are presented. The calculated phase diagram of the alloy
shows a broad and asymmetric miscibility gap. The gap fluctuations in
the alloy allow for the definition of a minimum gap and an average gap
with different bowing parameters, that can provide an explanation for
the discrepancies found in the experimental values for the bowing
parameter. It is also found that lattice matched In0.2Al0.8N with GaN
is suitable to form a barrier material for electronic and
optoelectronic nitride based devices. (C) 2002 American Institute of
Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743 Jena, Germany.
RP Teles, LK, Univ Sao Paulo, Inst Fis, CP66318, BR-05315970 Sao Paulo,
Brazil.
CR ABERNATHY CR, 1995, J VAC SCI TECHNOL 1, V13, P716
CHEN AB, 1995, SEMICONDUCTOR ALLOYS
DAVYDOV VY, 2002, PHYS STATUS SOLIDI B, V229, R1
FERHAT M, 2002, PHYS REV B, V65
GOANO M, 2000, J APPL PHYS, V88, P6476
GOLDHAHN R, 2000, APPL PHYS LETT, V76, P291
GUO QX, 1995, J CRYST GROWTH, V146, P462
ITO T, 2000, PHYS STATUS SOLIDI B, V217, R7
KIM KS, 1997, APPL PHYS LETT, V71, P800
KRESSE G, 1996, COMP MATER SCI, V6, P15
LEMOS V, 2000, PHYS REV LETT, V84, P3666
LIMA AP, 1999, J CRYST GROWTH, V201, P396
LUKITSCH MJ, 2001, APPL PHYS LETT, V79, P632
MATSUOKA T, 1997, APPL PHYS LETT, V71, P105
NAKAMURA S, 1997, BLUE LASER DIODE GAN
OKUMURA H, 1998, J CRYST GROWTH, V189, P390
PANKOVE JI, 1998, SEMICONDUCT SEMIMET, V50, P127
PEARTON SJ, 1994, APPL PHYS LETT, V64, P3643
PEARTON SJ, 1995, APPL PHYS LETT, V67, P2329
PENG T, 1997, APPL PHYS LETT, V71, P243
SAITO T, 1999, PHYS REV B, V60, P1701
SCOLFARO LMR, 2002, PHYS STATUS SOLIDI A, V190, P15
SHER A, 1987, PHYS REV B, V36, P4279
TABATA A, 1999, APPL PHYS LETT, V74, P362
TABATA A, 2002, APPL PHYS LETT, V80, P769
TAKAYAMA T, 2000, JPN J APPL PHYS 1, V39, P5057
TAKAYAMA T, 2001, J CRYST GROWTH, V222, P29
TELES LK, 2000, PHYS REV B, V62, P2475
TELES LK, 2001, PHYS REV B, V63
TELES LK, 2002, APPL PHYS LETT, V80, P1177
VANSCHILFGAARDE M, 1997, J CRYST GROWTH, V178, P8
WEI SH, 1990, PHYS REV B, V41, P8240
WRIGHT AF, 1995, APPL PHYS LETT, V66, P3465
YAMAGUCHI S, 1998, J CRYST GROWTH, V195, P309
ZUNGER A, 1994, STATICS DYNAMICS ALL, P361
NR 35
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD DEC 15
PY 2002
VL 92
IS 12
BP 7109
EP 7113
PG 5
SC Physics, Applied
GA 619UD
UT ISI:000179495100021
ER
PT J
AU Levin, Y
TI Electrostatic correlations: from plasma to biology
SO REPORTS ON PROGRESS IN PHYSICS
LA English
DT Review
ID ONE-COMPONENT PLASMA; DIPOLAR HARD-SPHERES; CHARGED COLLOIDAL
PARTICLES; HYPERNETTED-CHAIN APPROXIMATION; 2-DIMENSIONAL COULOMB GAS;
VAPOR-LIQUID CONDENSATION; DENSITY-FUNCTIONAL THEORY; DEBYE-HUCKEL
THEORY; RESTRICTED PRIMITIVE MODEL; MONTE-CARLO SIMULATIONS
AB Electrostatic correlations play an important role in physics, chemistry
and biology. In plasmas they result in thermodynamic instability
similar to the liquid-gas phase transition of simple molecular fluids.
For charged colloidal suspensions the electrostatic correlations are
responsible for screening and colloidal charge renormalization. In
aqueous solutions containing multivalent counterions they can lead to
charge inversion and flocculation. In biological systems the
correlations account for the organization of cytoskeleton and the
compaction of genetic material. In spite of their ubiquity, the true
importance of electrostatic correlations has come to be fully
appreciated only quite recently. In this paper, we will review the
thermodynamic consequences of electrostatic correlations in a variety
of systems ranging from classical plasmas to molecular biology.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
RP Levin, Y, Univ Fed Rio Grande Sul, Inst Fis, Caixa Postal 15051,
BR-91501970 Porto Alegre, RS, Brazil.
CR ALEXANDER S, 1984, J CHEM PHYS, V80, P5776
ALLAHYAROV E, 1998, PHYS REV LETT, V81, P1334
ALLEN R, 2001, PHYS CHEM CHEM PHYS, V3, P4177
ANDELMAN D, 2000, CR ACAD SCI IV-PHYS, V1, P1153
ARENZON JJ, 1999, EUR PHYS J B, V12, P79
ARIEL G, CONDMAT0206361
ARRHENIUS S, 1887, Z PHYS CHEM, V1, P631
AUFFINGER P, 1996, FARADAY DISCUSS, V103, P151
AUFFINGER P, 1998, CURR OPIN STRUC BIOL, V8, P227
BANERJEE S, 1998, J STAT PHYS, V93, P109
BARBOSA MC, 2000, EUROPHYS LETT, V52, P80
BARRAT JL, 1996, ADV CHEM PHYS, V94, P1
BAUS M, 1980, PHYS REP, V59, P1
BELLONI L, 1986, PHYS REV LETT, V57, P2026
BELLONI L, 1993, J CHEM PHYS, V98, P8080
BELLONI L, 1998, COLLOID SURFACE A, V140, P227
BELLONI L, 2000, J PHYS-CONDENS MAT, V12, R549
BJERRUM N, 1926, KGL DANSKE VIDENSKAB, V7, P1
BLOCH F, 1930, Z PHYS, V61, P206
BLOOMFIELD VA, 1991, BIOPOLYMERS, V31, P1471
BLOOMFIELD VA, 1997, BIOPOLYMERS, V44, P269
BORUKHOV I, 2002, J CHEM PHYS, V117, P462
BOWEN WR, 1998, NATURE, V393, P663
CAILLOL JM, 1993, J CHEM PHYS, V98, P9835
CAILLOL JM, 1994, J CHEM PHYS, V100, P2161
CAILLOL JM, 1997, J CHEM PHYS, V107, P1565
CAMP PJ, 1999, J CHEM PHYS, V111, P9000
CHAN DYC, 2001, LANGMUIR, V17, P4202
CHAPLICK AV, 1971, SOV PHYS JETP, V35, P395
CHAPMAN DL, 1913, PHILOS MAG, V25, P475
CHUI ST, 1976, PHYS REV B, V14, P4978
CRANDALL RS, 1971, PHYS LETTERS A, V34, P404
CROCKER JC, 1994, PHYS REV LETT, V73, P352
CURTIN WA, 1985, PHYS REV A, V32, P2909
DEBYE P, 1923, PHYS Z, V24, P185
DEGENNES PG, 1970, PHYS KONDENS MATER, V11, P189
DEGENNES PG, 1976, J PHYS-PARIS, V37, P1461
DERJAGUIN BV, 1941, ACTA PHYSICOCHIMICA, V14
DESERNO M, CONDMAT0202029
DESERNO M, CONDMAT0206126
DESERNO M, 2001, ELECTROSTATIC EFFECT, V46
DIEHL A, 2001, EUROPHYS LETT, V53, P86
DIEHL A, 2001, PHYS REV E 1, V64
DOBRYNIN AV, 1995, J PHYS II, V5, P677
DOBRYNIN AV, 1996, MACROMOLECULES, V29, P2974
EBELING W, 1968, Z PHYS CHEM-LEIPZIG, V238, P400
FALKENHAGEN H, 1971, IONIC INTERACTIONS
FELGNER PL, 1989, NATURE, V337, P387
FELGNER PL, 1997, SCI AM, V276, P86
FERNANDEZNIEVES A, 2000, LANGMUIR, V16, P4090
FERNANDEZNIEVES A, 2001, PHYS REV E 1, V63
FIREY B, 1977, PHYS REV A, V15, P2072
FISHER ME, 1981, PHYS REV LETT, V47, P421
FISHER ME, 1993, PHYS REV LETT, V71, P3826
FISHER ME, 1994, J CHEM PHYS, V101, P2273
FISHER ME, 1995, J STAT PHYS, V79, P1
FISHER ME, 1996, PHYS REV LETT, V77, P3561
FLORESMENA JE, 2001, PHYS REV E 2, V63
FRIEDMANN T, 1997, SCI AM, V276, P80
FUOSS RM, 1951, P NATL ACAD SCI USA, V37, P579
GANN RC, 1979, PHYS REV B, V20, P326
GILSON MK, 1985, J MOL BIOL, V184, P503
GLASSTONE S, 1946, TXB PHYSICAL CHEM
GOLESTANIAN R, 1999, PHYS REV LETT, V82, P4456
GOLESTANIAN R, 2000, EUROPHYS LETT, V52, P47
GONZALESTOVAR E, 1985, J CHEM PHYS, V83, P361
GOSULE LC, 1976, NATURE, V259, P333
GOULDING D, 1998, MOL PHYS, V95, P649
GOULDING D, 1999, EUROPHYS LETT, V46, P407
GOUY G, 1910, J PHYS-PARIS, V9, P457
GRIER DG, UNPUB COMMUNICATION
GRIER DG, 2000, J PHYS-CONDENS MAT, V12, A85
GRIER DG, 2000, PHYS REV E, V61, P980
GRIMES CC, 1979, PHYS REV LETT, V42, P795
GROH B, 1994, PHYS REV E, V50, P3814
GROH B, 1996, PHYS REV E, V54, P1687
GROH B, 1997, PHYS REV LETT, V79, P749
GRONBECHJENSEN N, 1997, PHYS REV LETT, V78, P2477
GRONBECHJENSEN N, 1998, PHYSICA A, V261, P74
GROOT RD, 1991, J CHEM PHYS, V95, P9191
GROSBERG AY, 2002, REV MOD PHYS, V74, P329
GULDBRAND L, 1984, J CHEM PHYS, V80, P2221
HA BY, CONDMAT0003162
HA BY, 1997, PHYS REV LETT, V79, P1289
HA BY, 1999, EUROPHYS LETT, V46, P624
HANSEN JP, 1976, THEORY SIMPLE LIQUID
HANSEN JP, 2000, ANNU REV PHYS CHEM, V51, P209
HIGGS PG, 1991, J CHEM PHYS, V94, P1543
HOPE MJ, 1998, MOL MEMBR BIOL, V15, P1
ISRAELACHVILI JN, 1976, J CHEM SOC FARADAY T, V72, P1525
JANCOVICI B, 1982, J STAT PHYS, V28, P43
JANCOVICI B, 1982, J STAT PHYS, V29, P263
KANTOR Y, 1995, PHYS REV E, V51, P1299
KARDAR M, 1999, REV MOD PHYS, V71, P1233
KEPLER GM, 1994, PHYS REV LETT, V73, P356
KHOKHLOV AR, 1980, J PHYS A, V13, P979
KHOLODENKO AL, 1995, PHYS REV LETT, V74, P4679
KHRAPUNOV SN, BIOCH BIOPHYSICA ACT, V1351, P213
KJELLANDER R, 1984, CHEM PHYS LETT, V112, P49
KJELLANDER R, 1986, J PHYS CHEM-US, V90, P1230
KLEIN R, 2001, PURE APPL CHEM, V73, P1705
KLIMENKO SM, 1967, J MOL BIOL, V23, P523
KORNYSHEV AA, 1999, PHYS REV LETT, V82, P4138
KORNYSHEV AA, 2000, PHYS REV E B, V62, P2576
KOSTERLITZ JM, 1973, J PHYS C SOLID STATE, V6, P1181
KUHN P, 1998, CHEM PHYS LETT, V298, P5
KUHN PS, 1998, MACROMOLECULES, V31, P8347
KUHN PS, 1999, PHYSICA A, V274, P8
LANDAU LD, 1937, PHYS Z SOWJETUNION, V11, P26
LARSEN AE, 1996, PHYS REV LETT, V76, P3862
LAU AWC, 2000, PHYS REV LETT, V84, P4116
LEE N, 2001, MACROMOLECULES, V34, P3446
LEVIN Y, 1994, PHYS REV LETT, V73, P2716
LEVIN Y, 1995, EUROPHYS LETT, V31, P513
LEVIN Y, 1996, EUROPHYS LETT, V34, P405
LEVIN Y, 1996, PHYSICA A, V225, P164
LEVIN Y, 1998, EUROPHYS LETT, V41, P123
LEVIN Y, 1998, PHYSICA A, V257, P408
LEVIN Y, 1999, PHYS REV LETT, V83, P1159
LEVIN Y, 1999, PHYS REV LETT, V83, P2680
LEVIN Y, 1999, PHYSICA A, V265, P432
LI XJ, 1994, EUROPHYS LETT, V26, P683
LINSE P, 1999, PHYS REV LETT, V83, P4208
LINSE P, 2000, J CHEM PHYS, V112, P3917
LINSE P, 2000, J CHEM PHYS, V113, P4359
LOBASKIN V, 2000, J MOL LIQ, V84, P131
LOWEN H, 1993, J CHEM PHYS, V98, P3275
LOWEN H, 1994, J CHEM PHYS, V100, P6738
LOZADACASSOU M, 1982, J CHEM PHYS, V77, P5150
LUIJTEN E, CONDMAT0112388
LUIJTEN E, UNPUB
MANNING GS, 1969, J CHEM PHYS, V51, P924
MANNING GS, 1978, Q REV BIOPHYS, V11, P179
MANSOORI GA, 1969, J CHEM PHYS, V51, P4958
MARCUS RA, 1955, J CHEM PHYS, V23, P1057
MATEESCU EM, 1999, EUROPHYS LETT, V46, P493
MCMILLAN WG, 1945, J CHEM PHYS, V13, P276
MERMIN ND, 1968, PHYS REV, V171, P272
MESSINA R, CONDMAT0111335
MESSINA R, 2000, PHYS REV LETT, V85, P872
MESSINA R, 2001, PHYS REV E 1, V64
MICKA U, 1999, LANGMUIR, V15, P4033
MINNHAGEN P, 1987, REV MOD PHYS, V59, P1001
NARAYANAN T, 1994, PHYS REV LETT, V73, P3002
NARAYANAN T, 1995, J CHEM PHYS, V102, P8118
NELSON DR, 1983, PHASE TRANSITIONS CR, P1
NETZ R, CONDMAT0203364
NETZ RR, 1999, EUROPHYS LETT, V45, P726
NEU JC, 1999, PHYS REV LETT, V82, P1072
NG KC, 1974, J CHEM PHYS, V61, P2680
NGUYEN TT, CONDMAT0005304
NGUYEN TT, 2000, J CHEM PHYS, V112, P2562
NGUYEN TT, 2000, J CHEM PHYS, V113, P1110
NGUYEN TT, 2000, PHYS REV LETT, V85, P1568
NINHAM BW, 1971, J THEOR BIOL, V31, P405
NORDHOLM S, 1984, CHEM PHYS LETT, V105, P302
ODIJK T, 1998, BIOPHYS J, V75, P1223
ONSAGER L, 1933, CHEM REV, V13, P1933
OOSAWA F, 1971, POLYELECTROLYTES
ORKOULAS G, 1996, J CHEM PHYS, V104, P7205
ORKOULAS G, 1999, J CHEM PHYS, V110, P1581
OVERBEEK JTG, 1987, J CHEM PHYS, V87, P4406
PALBERG T, 1994, PHYS REV LETT, V72, P786
PANAGIOTOPOULOS AZ, 1902, PHYS REV LETT, V88
PARK SY, 1998, BIOPHYS J, V75, P714
PARK SY, 1999, EUROPHYS LETT, V46, P493
PATEY GN, 1980, J CHEM PHYS, V72, P5763
PEIERLS RE, 1935, ANN I H POINCARE, V5, P177
PELTA J, 1996, BIOPHYS J, V71, P48
PELTA J, 1996, J BIOL CHEM, V271, P5656
PENFOLD R, 1990, J CHEM PHYS, V92, P1915
PENFOLD R, 1998, J PHYS CHEM B, V102, P8599
PITZER KS, 1995, J PHYS CHEM-US, V99, P13070
PODGORNIK R, 1998, PHYS REV LETT, V80, P1560
POLLOCK EL, 1973, PHYS REV A, V8, P3110
QUESADAPEREZ M, 2000, PHYS REV E, V61, P574
ROBBINS MO, 1988, J CHEM PHYS, V88, P3286
ROGERS FJ, 1983, PHYS REV A, V28, P2990
ROUZINA I, 1996, J PHYS CHEM-US, V100, P9977
RUSHBROOKE GS, 1973, MOL PHYS, V26, P1199
RUSSEL WB, 1989, COLLOIDAL DISPERSION
SABIR AK, 1998, MOL PHYS, V93, P405
SADER JE, 1999, J COLLOID INTERF SCI, V213, P268
SAMINATHAN M, 1999, BIOCHEMISTRY-US, V38, P3821
SCHMIDT A, 1999, J CHEM PHYS, V110, P113
SCHMIDT AB, 2001, PHYSICA A, V293, P21
SEAR RP, 1996, PHYS REV LETT, V76, P2310
SHKLOVSKII BI, 1999, PHYS REV E B, V60, P5802
SHKLOVSKII BI, 1999, PHYS REV LETT, V82, P3628
SOGAMI I, 1984, J CHEM PHYS, V81, P6320
SOLIS FJ, 1999, PHYS REV E B, V60, P4496
SOLIS FJ, 2000, J CHEM PHYS, V112, P2030
SPASSOV V, 1998, PROTEIN SCI, V7, P554
SQUIRES TM, 2001, PHYS REV LETT, V86, P5266
STEVENS MJ, 1990, EUROPHYS LETT, V12, P81
STEVENS MJ, 1995, J CHEM PHYS, V103, P1669
STEVENS MJ, 1996, J CHEM PHYS, V104, P5209
STILCK JF, 2002, J STAT PHYS, V106, P287
STREY HH, 1998, CURR OPIN STRUC BIOL, V8, P309
TAMASHIRO MN, UNPUB
TAMASHIRO MN, 1999, PHYSICA A, V268, P24
TANAKA M, 2001, J CHEM PHYS, V115, P567
TANG JX, 1996, BER BUNSEN PHYS CHEM, V100, P796
TANG JX, 1996, J BIOL CHEM, V271, P8556
TANG JX, 1997, EUR J BIOCHEM, V247, P432
TARAZONA P, 1985, PHYS REV A, V31, P2672
TARNASHIRO MN, 1998, PHYSICA A, V258, P341
TATA BVR, 1992, PHYS REV LETT, V69, P3778
TATA BVR, 1994, PHYS REV LETT, V72, P787
TAVARES JM, 1997, PHYS REV E, V56, P6252
TORRIE GM, 1980, J CHEM PHYS, V73, P5807
TOTSUJI H, 1975, J PHYS SOC JPN, V39, P253
TOTSUJI H, 1976, J PHYS SOC JPN, V40, P857
TRIZAC E, CONDMAT0201510
TRIZAC E, UNPUB
TRIZAC E, 1999, PHYS REV E A, V60, P6530
TRIZAC E, 2000, PHYS REV E A, V62, R1465
VANDERWAALS JD, 1873, THESIS LEIDEN
VANLEEUWEN ME, 1993, PHYS REV LETT, V71, P3991
VANROIJ R, 1996, PHYS REV LETT, V76, P3348
VANROIJ R, 1997, PHYS REV LETT, V79, P3082
VELAZQUEZ ES, 1997, PHYSICA A, V244, P453
VERWEY EJW, 1948, THEORY STABILITY LYO
VONGRUNBERG HH, 2001, EUROPHYS LETT, V55, P580
WARREN PB, 2000, J CHEM PHYS, V112, P4683
WEEKS JD, 1981, PHYS REV B, V24, P1530
WEIS JJ, 1993, PHYS REV LETT, V71, P2729
WEISS P, 1907, J PHYS, V6, P667
WENNERSTROM H, 1982, J CHEM PHYS, V76, P4665
WIEGAND S, 1998, J CHEM PHYS, V109, P9038
YAN QL, 1999, J CHEM PHYS, V111, P9509
NR 231
TC 117
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0034-4885
J9 REP PROGR PHYS
JI Rep. Prog. Phys.
PD NOV
PY 2002
VL 65
IS 11
BP 1577
EP 1632
PG 56
SC Physics, Multidisciplinary
GA 619JH
UT ISI:000179472500001
ER
PT J
AU Acioli, PH
Jellinek, J
TI Electron binding energies of anionic magnesium clusters and the
nonmetal-to-metal transition
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MG CLUSTERS; DENSITY; APPROXIMATION; GAS; NA
AB The binding energies of the two most external electrons in Mg-n(-), n =
2-22, clusters are computed using the gradient-corrected density
functional theory and a new scheme for converting the Kohn-Sham
eigenenergies into electron removal energies. The computations are
performed for the anionic clusters considered in the most stable
configurations of both Mg-n(-) and Mg-n. The results are compared with
photoelectron spectroscopy data [O. C. Thomas et al., following Letter,
Phys. Rev. Lett. 89, 213403 (2002)], and their implications for the
finite-size analog of the nonmetal-to-metal transition are analyzed.
C1 Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA.
Univ Brasilia, Inst Fis, Nucleo Fis Atom Mol & Fluidos, BR-70919970 Brasilia, DF, Brazil.
RP Acioli, PH, Argonne Natl Lab, Div Chem, 9700 S Cass Ave, Argonne, IL
60439 USA.
CR ACIOLI PH, IN PRESS
AKOLA J, 2001, EUR PHYS J D, V16, P21
BARAILLE I, 1998, J PHYS-CONDENS MAT, V10, P10969
BECKE AD, 1988, PHYS REV A, V38, P3098
DAVIDSON ER, 1997, J CHEM PHYS, V106, P2331
DELALY P, 1992, PHYS REV B, V45, P3838
DIEDERICH T, 2001, PHYS REV LETT, V86, P4807
ERIKSSON LA, 1995, J CHEM PHYS, V103, P1050
GONG XG, 1993, PHYS LETT A, V181, P459
GUPTA RP, 1976, PHYS REV LETT, V36, P1194
JELLINEK J, IN PRESS
JELLINEK J, 2002, J PHYS CHEM A, V106, P10919
KOHN A, 2001, PHYS CHEM CHEM PHYS, V3, P711
KUMAR V, 1991, PHYS REV B, V44, P8243
LEE TJ, 1990, J CHEM PHYS, V93, P6636
PERDEW JP, 1986, PHYS REV B, V33, P8822
REUSE F, 1990, PHYS REV B, V41, P11743
RIEMANN SM, 1997, PHYS REV B, V56, P12147
ROTHLISBERGER U, 1992, J CHEM PHYS, V96, P1248
THOMAS OC, 2002, PHYS REV LETT, V89
WADT WR, 1985, J CHEM PHYS, V82, P284
NR 21
TC 15
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 18
PY 2002
VL 89
IS 21
AR 213402
DI ARTN 213402
PG 4
SC Physics, Multidisciplinary
GA 612HH
UT ISI:000179068000015
ER
PT J
AU Frota-Pessoa, S
Klautau, AB
Legoas, SB
TI Influence of interface mixing on the magnetic properties of Ni/Pt
multilayers
SO PHYSICAL REVIEW B
LA English
DT Article
ID REAL-SPACE; ANISOTROPY; FE; NI; IMPURITIES; MOMENTS
AB Motivated by existing experimental data, we study here the influence of
interface mixing on the magnetic behavior of Ni-6/Pt-5(111)
multilayers. In the present ab initio calculations the mixing,
restricted to the interface layers, was simulated by ordered
two-dimensional Ni-Pt lattices. Two different degrees of mixing of the
components at the interface were considered-namely, 25% and 50%. The
perfect interface was also calculated and for some of the systems
orbital moments were obtained. We find that interface mixing explains
rather well the observed magnetic moment profile for Ni sites. But even
with the inclusion of orbital contributions, the theoretical results
tend to underestimate the induced moment at the Pt sites found
experimentally.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Fed Univ Para, Dept Fis, BR-66059 Belem, Para, Brazil.
Univ Estadual Campinas, Inst Fis, Campinas, SP, Brazil.
RP Frota-Pessoa, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, Brazil.
CR ANDERSEN OK, 1975, PHYS REV B, V12, P3060
ANDERSEN OK, 1985, HIGHLIGHTS CONDENSED
BEER N, 1984, ELECT STRUCTURE COMP
ERIKSSON O, 1990, PHYS REV B, V42, P2707
FROTAPESSOA S, UNPUB
FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
FROTAPESSOA S, 1993, PHYS REV LETT, V71, P4206
HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215
KIRSCH R, 2002, EUROPHYS LETT, V59, P430
KLAUTAU AB, 1999, PHYS REV B, V60, P3421
KLAUTAU AB, 2002, SURF SCI, V497, P385
KRISHNAN R, 1993, J APPL PHYS 2B, V73, P6433
LEGOAS SB, 2000, PHYS REV B, V61, P10417
NOUGUEIRA RN, 2001, J PHYS CONDENS MATT, V14, P1067
PARRA RE, 1979, J APPL PHYS, V50, P7522
PEDUTO PR, 1991, PHYS REV B, V44, P13283
POULOPOULOS P, 1995, J MAGN MAGN MATER 1, V140, P613
POULOPOULOS P, 2001, J APPL PHYS, V89, P3874
SHIN SC, 1998, APPL PHYS LETT, V73, P393
STOEFFLER D, 1991, PHYS REV B, V44, P10389
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
WILHELM F, 2000, PHYS REV B, V61, P8647
WILHELM F, 2000, PHYS REV LETT, V85, P413
NR 23
TC 5
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD OCT 1
PY 2002
VL 66
IS 13
AR 132416
DI ARTN 132416
PG 4
SC Physics, Condensed Matter
GA 612HG
UT ISI:000179067900030
ER
PT J
AU Orellana, W
Ferraz, AC
TI Stability and electronic structure of hydrogen-nitrogen complexes in
GaAs
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID GALLIUM-ARSENIDE; AB-INITIO; PSEUDOPOTENTIALS; DEFECTS
AB We investigate the stability and electronic properties of defects
formed by a substitutional nitrogen in GaAs (N-As) plus interstitial
hydrogen atoms using first-principles total-energy calculations. We
find the formation of strong N-As-H bond when a single H atom is
incorporated in the lowest-energy bond centered (BC) position. This
defect induces an electrically active level in the GaAs band gap. When
two H atoms are incorporated, we find the stable N-As-H-2* complex as
the lowest-energy configuration, with one H atom at the BC position and
the second H atom at an antibonding position. The electronic structure
of this complex shows the passivation of the gap level restoring the
GaAs band gap. (C) 2002 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Orellana, W, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BALDASSARRI G, 2001, APPL PHYS LETT, V78, P3472
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BONAPASTA AA, 1995, PHYS REV B, V51, P4172
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
ESTREICHER SK, 1995, MAT SCI ENG R, V14, P319
FRANCOEUR S, 1998, APPL PHYS LETT, V72, P1857
HOHENBERG P, 1964, PHYS REV B, V136, P864
JANOTTI A, 2002, PHYS REV LETT, V88
KOHN W, 1965, PHYS REV, V140, A1133
KOHN W, 1985, PHYS REV A, V140, P2471
LOUIE SG, 1982, PHYS REV B, V26, P1738
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
ORELLANA W, 1997, THESIS U SAO PAULO
ORELLANA W, 2001, APPL PHYS LETT, V78, P1231
PAVESI L, 1992, PHYS REV B, V46, P4621
POLIMENI A, 2001, PHYSICA B, V308, P850
TROULLIER N, 1991, PHYS REV B, V43, P1993
ZHANG Y, 2000, PHYS REV B, V61, P7579
ZHANG Y, 2001, PHYS REV B, V63
NR 19
TC 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD NOV 11
PY 2002
VL 81
IS 20
BP 3816
EP 3818
PG 3
SC Physics, Applied
GA 611XB
UT ISI:000179042200038
ER
PT J
AU Braga, SF
Galvao, DS
TI A semiempirical study on the electronic structure of
10-deacetylbaccatin-III
SO JOURNAL OF MOLECULAR GRAPHICS & MODELLING
LA English
DT Article
DE paclitaxel; taxoids; baccatin; semiempirical methods; molecular orbital
calculations
ID POLYCYCLIC AROMATIC-HYDROCARBONS; IDENTIFY CARCINOGENIC ACTIVITY;
SIDE-CHAIN; ANTIMITOTIC ACTIVITY; PACLITAXEL TAXOL(R);
MOLECULAR-STRUCTURE; CRYSTAL-STRUCTURE; PACIFIC YEW; AB-INITIO; ANALOGS
AB We performed a conformational and electronic analysis for
10-deacetylbaccatin-III (DBAC) using well-known semiempirical methods
(parametric method 3 (PM3) and Zerner's intermediate neglect of
differential overlap (ZINDO)) coupled to the concepts of total and
local density of states (LDOS). Our results indicate that regions
presented by paclitaxel (Taxol(R)) as important for the biological
activity can be traced out by the electronic features present in DBAC.
These molecules differ only by a phenylisoserine side chain. Compared
to paclitaxel, DBAC has a simpler structure in terms of molecular size
and number of degrees of freedom (d.f.). This makes DBAC a good
candidate for a preliminary investigation of the taxoid family. Our
results question the importance of the oxetane group, which seems to be
consistent with recent experimental data. (C) 2002 Elsevier Science
Inc. All rights reserved.
C1 Univ Estadual Campinas, UNICAMP, Inst Fis Gleb Wataghin, BR-13091970 Campinas, SP, Brazil.
RP Galvao, DS, Univ Estadual Campinas, UNICAMP, Inst Fis Gleb Wataghin, CP
6165, BR-13091970 Campinas, SP, Brazil.
CR *EIU, 1990, EIU MARK EUR TRAD RE
*MOPAC, MOPAC PROGR VERS 6 0
BALLONE P, 1999, J PHYS CHEM A, V103, P3097
BARONE PMVB, 1996, PHYS REV LETT, V77, P1186
BARONE PMVB, 1999, J MOL STRUC-THEOCHEM, V465, P219
BARONE PMVB, 2000, J MOL STRUC-THEOCHEM, V505, P55
BAUMANN H, 1999, J COMPUT CHEM, V20, P396
BOLIVARMARINEZ LE, 1996, J PHYS CHEM-US, V100, P11029
BOLIVARMARINEZ LE, 1999, J PHYS CHEM B, V103, P2993
BRAGA RS, 2000, J CHEM INF COMP SCI, V40, P1377
BRAGA SF, IN PRESS STRUCTURE A
CAMPBELL SJ, 1995, ACS SYM SER, V583, P58
CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
CHEN SH, 1995, ACS SYM SER, V583, P247
COMMERCON A, 1995, ACS SYM SER, V583, P233
CYRILLO M, 1999, J MOL STRUC-THEOCHEM, V464, P267
DEWAR MJS, 1977, J AM CHEM SOC, V99, P5231
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DEWAR MJS, 1990, J COMPUT CHEM, V11, P541
DOSSANTOS HF, 1995, J MOL STRUC-THEOCHEM, V335, P129
DUBOIS J, 1993, TETRAHEDRON, V49, P6533
EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
FARINA V, 1995, CHEM PHARM TAXOL
GALVAO DS, 1993, J CHEM PHYS, V98, P3016
GAO Q, 1995, ACTA CRYSTALLOGR, V51, P2995
GAO Q, 1996, TETRAHEDRON LETT, V37, P3425
GAO Q, 1996, TETRAHEDRON, V52, P2291
GEORG GI, 1995, ACS SYM SER, V583, P217
GORB L, 1998, THEOCHEM-J MOL STRUC, V425, P137
GUENARD D, 1993, ACCOUNTS CHEM RES, V26, P160
GUERITTEVOEGELEIN F, 1991, J MED CHEM, V34, P992
HOLTON RA, 1994, J AM CHEM SOC, V116, P1597
HOLTON RA, 1994, J AM CHEM SOC, V116, P1599
JAYASINGHE LR, 1994, J MED CHEM, V37, P2981
JEFFORD CW, 1995, THEOCHEM-J MOL STRUC, V337, P31
JENKINS P, 1996, CHEM BRIT, V11, P43
KISLOV VV, 1999, INTERNET J CHEM, V2, P1
KOLL A, 2000, J MOL STRUCT, V552, P193
LEVINE IN, 1991, QUANTUM CHEM
LI YK, 2000, BIOCHEMISTRY-US, V39, P281
LODISH H, 1995, MOL CELL BIOL
LOZYNSKI M, 1995, TETRAHEDRON LETT, V36, P8849
LYTHGOE B, 1968, ALKALOIDS, V10, P597
MASTROPAOLO D, 1995, P NATL ACAD SCI USA, V92, P6920
MCKINNEL RG, 1998, BIOL BASIS CANC
MILANESIO M, 1999, J MED CHEM, V42, P291
NICOLAOU KC, 1994, NATURE, V367, P630
PALAFOX MA, 1999, J MOL STRUC-THEOCHEM, V459, P239
RIDLEY JE, 1976, THEOR CHIM ACTA, V42, P223
RUDDON RW, 1987, CANC BIOL
SANTO LLD, 1999, J MOL STRUC-THEOCHEM, V464, P273
SCANO P, 1991, J COMPUT CHEM, V12, P172
SNYDER JP, 2000, J AM CHEM SOC, V122, P724
SOOS ZG, 1994, J PHYS CHEM-US, V98, P1029
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
STIERLE A, 1995, ACS SYM SER, V583, P81
SUFFNESS M, 1995, ACS SYM SER, V583, P1
SUGIMURA T, 1992, SCIENCE, V258, P603
SWINDELL CS, 1991, J MED CHEM, V34, P1176
VENDRAME R, IN PRESS J CHEM INF
VENDRAME R, 1999, J CHEM INF COMP SCI, V39, P1094
WANG MM, 2000, J ORG CHEM, V65, P1059
WESSJOHANN L, 1994, ANGEW CHEM INT EDIT, V33, P959
WILLIAMS HJ, 1996, J MED CHEM, V39, P1555
ZERNER MC, 1991, REV COMPUTATIONAL CH, V2, P313
NR 66
TC 3
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA
SN 1093-3263
J9 J MOL GRAPH MODEL
JI J. Mol. Graph.
PD AUG
PY 2002
VL 21
IS 1
BP 57
EP 70
PG 14
SC Computer Science, Interdisciplinary Applications; Biochemical Research
Methods; Biochemistry & Molecular Biology; Crystallography
GA 611LX
UT ISI:000179019900008
ER
PT J
AU Dalpian, GM
Venezuela, P
da Silva, AJR
Fazzio, A
TI Ab initio calculations of vacancies in SixGe1-x
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SILICON; ALLOYS
AB Ab initio calculations are used to investigate the structural and
electronic properties of vacancies in SixGe1-x. The (+ +), (+), (0),
and (-) charge states are studied and the substitutional disorder of
the alloy is considered explicitly. We found a linear relationship
between the effective-U for the system formed by the ( + +), ( +), and
(0) charge states and the number of Si atoms in the first neighborhood
of a vacancy (N-Si). The effective-U is positive when N-Si is zero, and
it is negative when N-Si is 2 and 4. In all cases, the absolute value
of the effective-U in the alloy is significantly smaller than its value
for pure Si and pure Ge. (C) 2002 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Dalpian, GM, Univ Fed Fluminense, Inst Fis, BR-24210340 Niteroi, RJ,
Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BARAFF GA, 1980, PHYS REV B, V21, P5662
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BOGUSLAWSKI P, 1999, PHYS REV B, V59, P1567
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
FAZZIO A, 2000, PHYS REV B, V61, P2401
HASSLEIN H, 1998, PHYS REV LETT, V80, P2626
JANOTTI A, 1999, PHYSICA B, V273, P575
LENTO J, 2000, APPL PHYS LETT, V77, P232
STURM JC, 2000, PROPERTIES SIGE SIGE, P305
VENEZUELA P, 2001, PHYS REV B, V64
VENEZUELA P, 2002, PHYS REV B, V65
VRIJEN R, 2000, PHYS REV A, V62
WATKINS GD, 1980, PHYS REV LETT, V44, P593
WATKINS GD, 1986, DEEP CTR SEMICONDUCT, P147
WEI SH, 1990, PHYS REV B, V42, P9622
NR 16
TC 5
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD OCT 28
PY 2002
VL 81
IS 18
BP 3383
EP 3385
PG 3
SC Physics, Applied
GA 609BB
UT ISI:000178881800025
ER
PT J
AU Giroldo, T
Riveros, JM
TI Keto-enol isomerization of gas-phase 2 '-methylacetophenone molecular
ions probed by high-temperature near-blackbody-induced dissociation,
ion-molecule reactions, and ab initio calculations
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID INFRARED RADIATIVE DISSOCIATION; HYDRATED ALUMINUM CATIONS; TANDEM
MASS-SPECTROMETRY; CNH2NO RADICAL CATIONS; UNIMOLECULAR DISSOCIATION;
MULTIPHOTON DISSOCIATION; ACTIVATION-ENERGIES; LASER PHOTODISSOCIATION;
THERMAL-DISSOCIATION; CARBONYL-COMPOUNDS
AB The thermal dissociation of several substituted acetophenone molecular
ions induced by infrared radiation from a hot wire has been studied in
a Fourier transform ion cyclotron resonance spectrometer. The
temperature dependence of the dissociation rate constants reveals that
the 2'-methylacetophenone molecular ion is characterized by a much
higher activation energy for dissociation than other acetophenones.
This molecular ion also exhibits a very different behavior with respect
to charge-transfer reactions. Unlike molecular ions obtained from other
isomeric acetophenones, the 2'-methylacetophenone M+. ion does not
promote charge exchange with dimethyl disulfide but does undergo
relatively slow electron transfer with ferrocene (IE = 6.74 eV). Ab
initio calculations at the MP2/6-31G(d) level predict that the
2-MeC6H4COCH3+. ion (1) can undergo facile tautomerization to the much
more stable enol ion 2,2'-(CH2C6H4C+)-C-.(OH)CH3, by a 1,4-hydrogen
migration (calculated energy barrier of 20 kJ mol(-1)). The calculated
recombination energy of this ion is in good agreement with the
observations from the charge-exchange experiments. A full analysis of
the potential energy surface suggests that, at low ionizing energies
(less than or equal to 11.5 eV), essentially all of the long-lived
molecular ions have isomerized to 2. The present example reveals the
versatility and some of the advantages of the high-temperature
near-blackbody-induced dissociation (hot wire emission) for probing
structural problems in ion chemistry.
C1 Univ Sao Paulo, Inst Quim, BR-05515970 Sao Paulo, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05515970
Sao Paulo, Brazil.
CR AASERUD DJ, 1997, INT J MASS SPECTROM, V167, P705
ANDREWS L, 1981, J AM CHEM SOC, V103, P99
BAR R, 1982, CHEM PHYS LETT, V91, P440
BARKOW A, 1995, EUR MASS SPECTROM, V1, P525
BAYKUT G, 1985, J AM CHEM SOC, V107, P8036
BEYER M, 1996, J AM CHEM SOC, V118, P7386
BEYER M, 1999, J PHYS CHEM A, V103, P671
BOMBACH R, 1983, J AM CHEM SOC, V105, P4205
BOMSE DS, 1979, J AM CHEM SOC, V101, P5503
BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P1
BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P203
BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR, P162
BURSEY MM, 1966, J AM CHEM SOC, V88, P529
CENTINEO G, 1978, J MOL STRUCT, V44, P203
CHAMOTROOKE J, 2000, INT J MASS SPECTROM, V195, P385
DAS PK, 1979, J AM CHEM SOC, V101, P6965
DUNBAR RC, 1991, J CHEM PHYS, V95, P2537
DUNBAR RC, 1994, J PHYS CHEM-US, V98, P8705
DUNBAR RC, 1998, SCIENCE, V279, P194
FOX BS, 2001, J PHYS CHEM A, V105, P6386
FREITAS MA, 2000, J AM CHEM SOC, V122, P7768
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GAMBI A, 1980, SPECTROCHIM ACTA A, V36, P871
GAUMANN T, 1991, J AM SOC MASS SPECTR, V2, P372
GRELLMANN KH, 1983, CHEM PHYS LETT, V95, P195
HAAG R, 1977, HELV CHIM ACTA, V60, P2595
HEINRICH N, 1988, J AM CHEM SOC, V110, P8183
HEYDORN LN, 2001, Z PHYS CHEM 2, V215, P141
HOLMES JL, 1980, J AM CHEM SOC, V102, P1591
JOCKUSCH RA, 1997, ANAL CHEM, V69, P1119
JOCKUSCH RA, 2000, J PHYS CHEM A, V104, P3188
KUKOL A, 1993, ORG MASS SPECTROM, V28, P1107
LEE SW, 1998, J AM CHEM SOC, V120, P11758
LEE SW, 1999, J AM CHEM SOC, V121, P10152
LI WK, 1993, J CHEM PHYS, V99, P8440
LIFSHITZ C, 1993, INT J MASS SPECTROM, V125, R7
LIN CY, 1996, J PHYS CHEM-US, V100, P19659
LIN CY, 1996, J PHYS CHEM-US, V100, P655
LITTLE DP, 1994, ANAL CHEM, V66, P2809
MARCINEK A, 1992, J CHEM SOC P2, P1353
MCLOUGHLIN RG, 1979, ORG MASS SPECTROM, V14, P434
MCLUCKEY SA, 1997, J MASS SPECTROM, V32, P461
MEYERSON S, 1957, J AM CHEM SOC, V79, P1058
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 2001, J AM SOC MASS SPECTR, V12, P150
MORGON NH, 1996, J PHYS CHEM-US, V100, P18048
MOURGUES P, 1993, ORG MASS SPECTROM, V28, P193
PEIRIS DM, 1996, INT J MASS SPECTROM, V159, P169
PRICE WD, 1996, ANAL CHEM, V68, P859
PRICE WD, 1997, J PHYS CHEM B, V101, P664
RABBIH MA, 1980, ORG MASS SPECTROM, V15, P195
RABBIH MA, 1981, INDIAN J PURE APPL P, V19, P335
REBRIONROWE C, 2000, J CHEM PHYS, V113, P3039
RIVEROS JM, 1998, PURE APPL CHEM, V70, P1969
RODRIGUEZCRUZ SE, 1998, J AM CHEM SOC, V120, P5842
RYAN MF, 1992, J AM CHEM SOC, V114, P8611
SCHNIER PD, 1998, ANAL CHEM, V70, P3033
SCHNIER PD, 1998, J AM CHEM SOC, V120, P9605
SCHWARZ H, 1978, TOP CURR CHEM, V73, P232
SCHWARZ H, 1985, ADV MASS SPECTROM, V10, P13
SENA M, UNPUB
SENA M, 1994, RAPID COMMUN MASS SP, V8, P1031
SENA M, 1997, J PHYS CHEM A, V101, P4384
SENA M, 2000, CHEM-EUR J, V6, P785
SENA M, 2001, ADV MASS SPECTROM, V15, P783
SENA M, 2001, THESIS U SAO PAULO S
SHIN SK, 1990, J AM CHEM SOC, V112, P2066
SILVA MLP, 1997, INT J MASS SPECTROM, V165, P83
STIRK KM, 1992, J AM CHEM SOC, V114, P8604
STRITTMATTER EF, 1999, J AM SOC MASS SPECTR, V10, P1095
THOLMANN D, 1994, J PHYS CHEM-US, V98, P2002
THORNE LR, 1984, GAS PHASE ION CHEM, V3, P42
TURECEK F, 1990, CHEM ENOLS, P95
UECHI GT, 1992, J CHEM PHYS, V96, P8897
VANDEREST G, 2000, INT J MASS SPECTROM, V195, P385
WOODIN RL, 1979, CHEM BIOCH APPL LASE, V4, P355
XAVIER LA, 1998, INT J MASS SPECTROM, V179, P223
NR 77
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 24
PY 2002
VL 106
IS 42
BP 9930
EP 9938
PG 9
SC Chemistry, Physical
GA 607LA
UT ISI:000178792000038
ER
PT J
AU Basso, EA
Pontes, RM
TI Further studies on the rotational barriers of Carbamates. An NMR and
DFT analysis of the solvent effect for Cyclohexyl N,N-dimethylcarbamate
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE carbamates; rotational barriers; DFT calculations; SCRF theory
ID C-N BOND; INTERNAL-ROTATION; AB-INITIO; HARTREE-FOCK; AMIDES;
N,N-DIMETHYLFORMAMIDE; RESONANCE; THIOFORMAMIDE; SUBSTITUENT; FORMAMIDE
AB The solvent effect on the Gibbs energy of activation for rotation
around the (C=O)-N bond in cyclohexyl N,N-dimethylcarbamate was
investigated by dynamic NMR spectroscopy and density-functional theory
at the B3LYP/6-311 + G** level. The experimental barriers were about 15
kcal mol(-1) with no appreciable variation when the solvent polarity
was changed. A reaction field model was applied to theoretically
mediate the solvent effect and the results were comparable to the
experimental data. An analysis, based on the Onsager solvation theory,
showed that the solvent effect on rotational barriers can be understood
employing the total molecular dipole moment, the difference between the
dipole moments of the ground and the transition state structures, or
both, as appropriate. (C) 2002 Elsevier Science B.V. All rights
reserved.
C1 Univ Estadual Maringa, Dept Quim, BR-87020900 Maringa, Parana, Brazil.
RP Basso, EA, Univ Estadual Maringa, Dept Quim, Av Colombo 5790,
BR-87020900 Maringa, Parana, Brazil.
CR ALLERHAND A, 1966, J AM CHEM SOC, V88, P3185
BASSO EA, 2001, J BRAZIL CHEM SOC, V12, P215
BECKE AD, 1993, J CHEM PHYS, V98, P1372
COX C, 1998, J ORG CHEM, V63, P2426
DRAKENBERG T, 1972, J PHYS CHEM-US, V76, P2178
DUFFI EM, 1992, J AM CHEM SOC, V114, P7235
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
KINCAID JF, 1941, CHEM REV, V28, P301
KIRKWOOD JG, 1934, J CHEM PHYS, V2, P351
LAIDIG KE, 1996, J AM CHEM SOC, V118, P1737
LAUVERGNAT D, 1997, J AM CHEM SOC, V119, P9478
LEE C, 1988, PHYS REV B, V37, P785
LEMASTER CB, 1989, J PHYS CHEM-US, V93, P1307
LIM KT, 1987, J PHYS CHEM-US, V91, P2716
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
PENG C, 1994, ISRAEL J CHEM, V33, P449
PENG CY, 1996, J COMPUT CHEM, V17, P49
PLIEGO JR, 2001, J PHYS CHEM A, V30, P7241
RABLEN PR, 1999, J AM CHEM SOC, V121, P218
RABLEN PR, 2000, J ORG CHEM, V65, P7930
ROSS BD, 1984, J AM CHEM SOC, V106, P2451
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
STEWART WE, 1970, CHEM REV, V70, P517
TOMASI J, 1994, CHEM REV, V94, P2027
VASSILEV NG, 1999, J MOL STRUCT, V484, P39
WIBERG KB, 1992, J AM CHEM SOC, V114, P831
WIBERG KB, 1993, J AM CHEM SOC, V115, P9234
WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
WONG MW, 1991, J PHYS CHEM-US, V95, P8491
NR 29
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD OCT 18
PY 2002
VL 594
IS 3
BP 199
EP 206
PG 8
SC Chemistry, Physical
GA 602MM
UT ISI:000178509100009
ER
PT J
AU Tutuncu, HM
Miotto, R
Srivastava, GP
Tse, JS
TI Phonons on group-III nitride (110) surfaces
SO PHYSICAL REVIEW B
LA English
DT Article
ID BOND-CHARGE MODEL; DENSITY-FUNCTIONAL CALCULATIONS; AB-INITIO;
LATTICE-DYNAMICS; FIRST-PRINCIPLES; GALLIUM NITRIDE; SEMICONDUCTOR
SURFACES; ELECTRONIC-PROPERTIES; SI(001)(2X1) SURFACE; EPITAXIAL LAYERS
AB We have applied the adiabatic bond-charge model within a supercell
approach to study the lattice dynamics of group-III nitride (110)
surfaces. The structural and electronic information necessary for these
calculations is obtained from using the ab initio pseudopotential
method. The phonon dispersion curves for the group-III nitride (110)
surfaces are presented and compared with each other in detail. From
this comparison, it is found that the InN(110) and GaN(110) surfaces
show similar dynamical behavior due to their large cation-anion mass
differences. It is pointed out that in general surface phonon modes on
group-III nitride (110) can be related to their counterparts on
non-nitride III-V(110) and II-VI(110) surfaces provided that results
are scaled with respect to the reduced mass and lattice constant
differences. The rotational phonon mode predicted for other
semiconductor surfaces is also identified for the group-III nitride
(110) surfaces.
C1 Sakarya Univ, Fen Edebiyat Fak, Fiz Bolumu, Adapazari, Turkey.
Natl Res Council Canada, Steacie Inst Mol Sci, Ottawa, ON K1A 0R6, Canada.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP Tutuncu, HM, Sakarya Univ, Fen Edebiyat Fak, Fiz Bolumu, Adapazari,
Turkey.
CR AGRAWAL BK, 1998, SURF SCI, V405, P54
ALLAN DC, 1984, PHYS REV LETT, V53, P826
ALVES JLA, 1991, PHYS REV B, V44, P6188
AZUHATA T, 1995, J PHYS CONDENS MATT, V7, P1949
AZUHATA T, 1995, J PHYS CONDENS MATT, V7, L129
BECHSTEDT F, 2000, PHYS REV B, V62, P8003
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
CHEN XJ, 1995, PHYS REV B, V52, P2348
DOLL GL, 1994, PROPERTIES GROUP, V3
EREMETS MI, 1995, PHYS REV B, V52, P8854
FILIPPIDIS L, 1996, PHYS STATUS SOLIDI B, V198, P621
FRITSCH J, 1999, PHYS REP, V309, P209
GROSSNER U, 1998, PHYS REV B, V58, R1722
HARTEN U, 1987, EUROPHYS LETT, V4, P833
JAFFE JE, 1996, PHYS REV B, V53, R4209
JENKINS SJ, 1994, J PHYS-CONDENS MAT, V6, P8781
KARCH K, 1997, PHYS REV B, V56, P7404
KARCH K, 1998, PHYS REV B, V57, P7043
LOUIE SG, 1982, PHYS REV B, V26, P1738
MIOTTO R, 1999, PHYS REV B, V59, P3008
MIOTTO R, 1999, SURF SCI, V426, P75
MIOTTO R, 2000, SOLID STATE COMMUN, V115, P67
NIENHAUS H, 1995, SURF SCI, V328, L561
NIENHAUS H, 1997, PHYS REV B, V56, P13194
PERDEW JP, 1981, PHYS REV B, V23, P5048
POLLMANN J, 1986, APPL PHYS A-SOLID, V41, P21
RAJPUT BD, 1996, PHYS REV B, V53, P9052
RUSTAGI KC, 1979, SOLID STATE COMMUN, V18, P673
SANJURJO JA, 1983, PHYS REV B, V28, P5479
SIEGLE H, 1995, SOLID STATE COMMUN, V96, P943
SRIVASTAVA GP, 1997, REP PROG PHYS, V60, P561
SWARTS CA, 1981, SURF SCI, V110, P400
TABATA A, 1996, J APPL PHYS 1, V79, P4137
TABATA A, 1999, APPL PHYS LETT, V74, P362
TAKAGI N, 1999, PHYS REV B, V60, P10919
TROULLIER N, 1991, PHYS REV B, V43, P1993
TUTUNCU HM, 1996, J PHYS-CONDENS MAT, V8, P1345
TUTUNCU HM, 1997, PHYS REV B, V56, P4656
TUTUNCU HM, 1999, PHYS REV B, V59, P4925
TUTUNCU HM, 2000, PHYS REV B, V62, P15797
TUTUNCU HM, 2000, PHYS REV B, V62, P5028
TUTUNCU HM, 2002, APPL PHYS LETT, V80, P3322
TUTUNCU HM, 2002, PHYSICA B, V316, P190
WEBER W, 1974, PHYS REV LETT, V33, P371
WEBER W, 1977, PHYS REV B, V15, P4789
ZANGWILL A, 1992, PHYSICS SURFACES
ZAPOL P, 1997, J PHYS-CONDENS MAT, V9, P9517
NR 47
TC 5
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD SEP 15
PY 2002
VL 66
IS 11
AR 115304
DI ARTN 115304
PG 11
SC Physics, Condensed Matter
GA 601RG
UT ISI:000178461000050
ER
PT J
AU Menegon, G
Loos, M
Chaimovich, H
TI Ab initio study of the thiolysis of trimethyl phosphate ester in the
gas phase
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PROTEIN-TYROSINE-PHOSPHATASE; VIBRATIONAL FREQUENCIES;
AQUEOUS-SOLUTION; HYDROLYSIS; REACTIVITY; MECHANISMS; CATALYSIS;
SPECTROSCOPY; INSIGHTS; ATTACK
AB Phosphate esters are key compounds in important biological reactions,
One family of enzymes, PTPases, catalyze the dephosphorylation of
tyrosine residues from other proteins by a cystein side-chain
nucleophilic attack at tyrosin phosphate. Very little is known about
the intrinsic reactivity of thiol nucleophiles with phosphor-us
centers. To explore this important reaction, we have performed ab
initio calculations on the trimethyl phosphate ester (TMP) thiolysis by
(CH3S)(-). Results in the gas phase indicate that attack at TMP carbon
is essentially predominant over phosphorus. Mechanisms are A(n)D(n) and
exoergic for reaction at carbon and A(n) + D-n with large activation
barriers and endoergic reaction for attack on phosphorus. A
trigonal-bipyramid intermediate was formed upon (CH3S)(-) reaction at
phosphorus and two different and competitive pathways were found for
the elimination of methoxide from this intermediate. One of the
elimination pathways is positioned in-line to the thiol group, as
proposed in the enzymatic mechanism. If PTPases work by the same
mechanism as the gas-phase reaction, these enzymes should drastically
lower the activation barriers for attack at phosphorus.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Menegon, G, Univ Sao Paulo, Inst Quim, Av Lineu Prestes 748,
BR-05508900 Sao Paulo, Brazil.
CR ADMIRAAL SJ, 2000, J AM CHEM SOC, V122, P2145
AHN N, 2001, CHEM REV, V101
ASUBIOJO OI, 1977, J AM CHEM SOC, V99, P7707
AYALA PY, 1998, J CHEM PHYS, V108, P2314
BARFORD D, 1998, ANNU REV BIOPH BIOM, V27, P133
BILLING GD, 1996, INTRO MOL DYNAMICS C
BUNTON CA, 1970, ACCOUNTS CHEM RES, V3, P257
BUNTON CA, 1997, J PHYS ORG CHEM, V10, P221
CHANG NY, 1997, J PHYS CHEM A, V101, P8706
CHANG NY, 1998, J AM CHEM SOC, V120, P2156
CLELAND WW, 1995, FASEB J, V9, P1585
COX JR, 1964, CHEM REV, V64, P317
DANTZMAN CL, 1996, J AM CHEM SOC, V118, P11715
DEJAEGERE A, 1994, J CHEM SOC FARADAY T, V90, P1763
FLORIAN J, 1997, J AM CHEM SOC, V119, P5473
FLORIAN J, 1998, J AM CHEM SOC, V120, P11524
FLORIAN J, 1998, J PHYS CHEM B, V102, P719
FRISCH MJ, 1998, GAUSSIAN 98 REV A 9
FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
GEORGE L, 1997, J PHYS CHEM A, V101, P2459
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
GUTHRIE RD, 1989, ACCOUNTS CHEM RES, V22, P343
HODGES RV, 1980, J AM CHEM SOC, V102, P935
JACKSON MD, 2001, CHEM REV, V101, P2313
LIM C, 1990, J AM CHEM SOC, V112, P5872
LUM RC, 1992, J AM CHEM SOC, V114, P8619
MCQUARRIE DA, 1973, STAT THERMODYNAMICS
MERCERO JM, 2000, J COMPUT CHEM, V21, P43
MOLLER C, 1934, PHYS REV, V46, P618
OCHTERSKI JW, 1999, WHITE PAPER VIBRATIO
PANNIFER ADB, 1998, J BIOL CHEM, V273, P10454
POPLE JA, 1993, ISRAEL J CHEM, V33, P345
SHAIK SS, 1992, THEORETICAL ASPECTS
STRECK R, 1996, J MOL STRUCT, V376, P277
THATCHER GRJ, 1989, ADV PHYS ORG CHEM, V25, P99
WESTHEIMER FH, 1968, ACCOUNTS CHEM RES, V1, P70
WESTHEIMER FH, 1987, SCIENCE, V235, P1173
YLINIEMELA A, 1993, J AM CHEM SOC, V115, P3032
ZHANG ZY, 1993, BIOCHEMISTRY-US, V32, P9340
NR 39
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 3
PY 2002
VL 106
IS 39
BP 9078
EP 9084
PG 7
SC Chemistry, Physical
GA 598JU
UT ISI:000178273400014
ER
PT J
AU Martins, JBL
Perez, MA
Silva, CHT
Taft, CA
Arissawa, M
Longo, E
Mello, PC
Stamato, FMLG
Tostes, JGR
TI Theoretical ab initio study of ranitidine
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE ab initio; ranitidine; conformation
ID HELICOBACTER-PYLORI INFECTION; CITRATE PLUS CLARITHROMYCIN;
DUODENAL-ULCER; ACTIVATION MECHANISM; BISMUTH CITRATE; RECEPTOR MODEL;
H-2-RECEPTOR ANTAGONISTS; HISTAMINE H-2-RECEPTOR; MOLECULAR MECHANISM;
GASTRIC PH
AB The presence of a heterocyclic ring containing a basic center linked
via a methylene chain to a substituted guanidine or thiourea polar side
chain, such as found in the H2-antagonist metiamide, which has an
imidazole heterocyclic ring, has often been identified as one of the
requirements for H-2-antagonist activity. In ranitidine, on the other
hand, the imidazole ring is substituted for a furan ring, yielding a
more active biological H2 antagonist. hi this work, we have used the ab
initio Hartree-Fock (HF) and second-order Moller-Plesset (MP2) methods
in order to investigate the open and folded ranitidine conformations,
of the type observed in metiamide. Five basis sets (3-21G, 3-21+G**,
6-31G, 6-31+G**, and 6-31+G**) were used in order to obtain fully
optimized geometric parameters that indicated good agreement with the
experimental crystallographic data, We have also investigated in this
work the effects of solvents in both ranitidine and metiamide.
Monocationic ranitidine was also investigated. All our results,
indicate that, as in metiamide, the folded conformation is also
preferred. We have investigated Mulliken and natural bond order (NBO)
charge distributions, electrostatic and hydrogen bond effects on
stabilizing the conformations and discussed the interactions of
ranitidine with the biological receptor. (C) 2002 Wiley Periodicals,
Inc.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estat, BR-22290180 Rio De Janeiro, Brazil.
Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
Univ Estadual Ponta Grossa, Dept Quim, BR-84031510 Ponta Grossa, Parana, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Estadual Norte Fluminense, Lab Ciencias Quim, Ctr Ciencias Exatas & Tecnol, BR-18015620 Campos, RJ, Brazil.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
Estat, R Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil.
CR BARDHAN KD, 1998, AM J GASTROENTEROL, V93, P380
BARDITCHCROVO PA, 1998, ANTIVIR RES, V38, P209
BARTLETT JA, 1998, J INFECT DIS, V177, P231
BLACK JW, 1975, J MED CHEM, V18, P905
BUSCHAUER A, 1989, RECEPTOR PHARM FUNCT, P293
CHIARI G, 1983, J CHEM SOC P2, V1, P1815
DURANT GJ, 1975, J MED CHEM, V18, P905
EGGLESTON A, 1998, GUT, V42, P13
ERICKS JC, 1993, MOL PHARMACOL, V44, P886
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRANKE R, 1984, THEORETICAL DRUG DES
FRISCH MJ, 1995, GAUSSIAN 94
GANELLIN CR, 1973, J MED CHEM, V16, P610
GANELLIN CR, 1973, J MED CHEM, V16, P620
GANELLIN CR, 1974, MOL QUANTUM PHARM, P43
GANELLIN CR, 1982, PHARM HISTAMINE RECE, P10
GANTZ I, 1992, J BIOL CHEM, V267, P20840
GIRALDO J, 1992, MOL PHARMACOL, V42, P373
GIRALDO J, 1999, BIOCHEM PHARMACOL, V58, P343
GREEN JP, 1977, P NATL ACAD SCI USA, V74, P5697
HARRISON AM, 1998, CRIT CARE MED, V26, P1433
ISHIDA T, 1990, ACTA CRYSTALLOGR C, V46, P1893
KANEKO H, 1998, BBA-MOL BASIS DIS, V1407, P193
KIER LB, 1986, J MED CHEM, V11, P441
KIMURA E, 1984, CHEM PHARM BULL, V32, P3569
KLOTZ U, 1991, PHARMACOL THERAPEUT, V50, P233
KOJICPRODIC B, 1982, ACTA CRYSTALLOGR B, V38, P1837
KUIPERS EJ, 1997, BAILLIERE CLIN INF D, V4, P395
LANZA FL, 1998, HELICOBACTER, V3, P212
LEFF P, 1997, TRENDS PHARMACOL SCI, V18, P355
LIN JH, 1991, CLIN PHARMACOKINET, V20, P218
LUQUE FJ, 1990, J CHIM PHYS PCB, V87, P1569
MACRI G, 1998, AM J GASTROENTEROL, V93, P925
MANES G, 1998, ITAL J GASTROENTEROL, V30, P28
MARTINS JBL, 1998, INT J QUANTUM CHEM, V38, P727
MAZZUREK AP, 1987, MOL PHARMACOL, V31, P345
MEINING A, 1998, ALIMENT PHARM THERAP, V12, P735
MIERTUS S, 1982, CHEM PHYS, V65, P239
MOLDEN G, 1999, SCAFTENAAR CAOS
NAGY PI, 1994, J AM CHEM SOC, V116, P4898
NEER EJ, 1995, CELL, V80, P249
NETZER P, 1998, ALIMENT PHARM THERAP, V12, P337
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
PAPPA KA, 1998, CURR THER RES CLIN E, V59, P454
PARDO L, 1991, MOL PHARMACOL, V40, P980
PARDO L, 1997, EUR J PHARMACOL, V335, P73
PARKMAN HP, 1998, DIGEST DIS SCI, V43, P497
PARKMAN HP, 1998, GUT, V42, P243
PORRO GB, 1998, ALIMENT PHARM THERAP, V12, P355
POZZATO P, 1998, ALIMENT PHARM THERAP, V12, P447
PROUT K, 1974, ACTA CRYSTALLOGR B, V30, P2284
PULLMAN B, 1974, MOL PHARMACOL, V10, P360
REGGIO P, 1986, J MED CHEM, V29, P2412
REILLY TG, 1998, ALIMENT PHARM THERAP, V12, P469
RICHARDS WG, 1977, QUANTUM PHARM
RODGERS PT, 1998, PHARMACOTHERAPY, V18, P404
SARAN A, 1992, IND J BIOCH BIOPHYS, V29, P54
SIMANOWSKI UA, 1998, DIGESTION, V59, P314
SMEYERS YG, 1985, J MOL STRUCT THEOCHE, V123, P431
SMEYERS YG, 1985, P 5 EUR QSAR S VCH W, P374
SMEYERS YG, 1990, J MOL STRUCT THEOCHE, V207, P157
STAMATO FML, 1990, J MOL STRUCT THEOCHE, V210, P447
STAMATO FML, 1992, J MOL STRUCT THEOCHE, V254, P505
TOPIOL S, 1984, J MED CHEM, V27, P1531
TOPIOL S, 1987, J COMPUT CHEM, V8, P142
VEIDIS MV, 1969, J CHEM SOC A, V17, P2659
VOGELSANGER B, 1991, J AM CHEM SOC, V113, P7864
WEINSTEIN H, 1976, MOL PHARMACOL, V12, P738
WEINSTEIN H, 1976, MOL PHARMACOL, V12, P738
WEINSTEIN H, 1986, MOL PHARMACOL, V29, P28
NR 70
TC 6
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD OCT 15
PY 2002
VL 90
IS 2
BP 575
EP 586
PG 12
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 595UE
UT ISI:000178126500011
ER
PT J
AU Rivelino, R
Ludwig, V
Rissi, E
Canuto, S
TI Theoretical studies of hydrogen bonding in water-cyanides and in the
base pair Gu-Cy
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE ab initio; hydrogen bond; water-cyanides; base pair
ID DENSITY-FUNCTIONAL-THEORY; PI-ASTERISK TRANSITION; AB-INITIO;
MOLECULAR-INTERACTIONS; SOLVATOCHROMIC SHIFTS; ELECTRON CORRELATION;
CORRELATION-ENERGY; QUANTUM-CHEMISTRY; BONDED COMPLEXES; ACETONE
AB Density-functional (DFF) and many-body-perturbation theories (MIBPT/CC)
are used to study the hydrogen bonding in the water-cyanide complexes
H-C=N...H2O, H3C-C=N...H2O and (CH3)(3)C-C=N...H2O. Structures, binding
energies and changes in vibrational frequencies are analyzed. The
calculated C=N stretching frequency is found to shift to the blue upon
complexation in H-C=N...H2O and H3C-C=N...H2O. To investigate electron
correlation effects on the binding energies of these complexes,
single-point calculations are performed at the MBPT/CC (MP2, MP3, MP4,
CCSD and CCSD(T)) levels using the optimized MP2 geometries. Binding
energies are also obtained at different levels of DFT (B3LYP and PW91)
and compared with the MBPT/CC results. All calculations include
corrections for basis set superposition error (BSSE) and zero-point
vibrational energies. Additionally, the triple hydrogen-bonded.
guanine-cytosine (Gu-Cy) base pair is analyzed. The binding energy of
the Watson-Crick model for Gu-Cy is calculated using the Hartree-Fock
calculations and DFT (B3LYP and BP86) methods. The results for the
hydrogen bonding distances and binding energies are in good agreement
with experimental and recent theoretical values. The calculated dipole
moment of the Gu-Cy complex is compared with the direct vector sum of
the isolated bases. After taking into account the BSSE effects we find
that the electron polarization due to the hydrogen binding leads to an
increase of similar to20% of the calculated dipole moment of the
complex. (C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, POB 66318, BR-05315970 Sao Paulo,
Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BERTRAN J, 1998, J AM CHEM SOC, V120, P8159
BISWAS R, 1997, J MOL BIOL, V270, P511
BONG DT, 2001, ANGEW CHEM INT EDIT, V40, P988
BOYS SF, 1970, MOL PHYS, V19, P553
BRANDL M, 1999, THEOR CHEM ACC, V101, P103
COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
CRUZAN JD, 1996, SCIENCE, V271, P59
DAMEWOOD JR, 1987, J PHYS CHEM-US, V91, P3449
DELBENE JE, 1997, INTERMOLECULAR INTER
DESFRANCOIS C, 1995, SCIENCE, V269, P1707
DEVRIES AH, 1995, THESIS U GRONINGEN
DEVRIES AH, 1996, INT J QUANTUM CHEM, V57, P1067
ELSTNER M, 2001, J CHEM PHYS, V114, P5149
FOX T, 1992, CHEM PHYS LETT, V191, P33
GAO JL, 1994, J AM CHEM SOC, V116, P9324
GOGONEA V, 1999, J PHYS CHEM A, V103, P5171
GOULD IR, 1994, J AM CHEM SOC, V116, P2493
GUERRA CF, 2000, J AM CHEM SOC, V122, P4117
GUTOWSKY HS, 1992, J CHEM PHYS, V96, P5808
HEIKKILA A, 1999, J PHYS CHEM A, V103, P2945
HEIKKILA AT, 2000, J PHYS CHEM A, V104, P6637
HOBZA P, 2000, CHEM REV, V100, P4253
JEFFREY GA, 1991, HYDROGEN BONDING BIO
KARLSTROM G, 1982, THEOR CHIM ACTA, V61, P1
KURDI L, 1987, CHEM PHYS, V92, P92
LAASONEN K, 1993, J CHEM PHYS, V99, P9081
LATAJKA Z, 1987, J CHEM PHYS, V87, P1194
LEE C, 1988, PHYS REV B, V37, P785
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
MEYER M, 2001, J COMPUT CHEM, V22, P109
PAPPALARDO RR, 1993, CHEM PHYS LETT, V212, P12
PARR RG, 1983, ANNU REV PHYS CHEM, V34, P631
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1992, PHYS REV B, V45, P13244
PERDEW JP, 1996, PHYS REV B, V54, P16533
PIMENTEL GC, 1971, ANNU REV PHYS CHEM, V22, P347
PORTMANN S, 2000, J CHEM PHYS, V113, P9577
RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
RINCON L, 2001, J CHEM PHYS, V114, P5552
RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
RIVELINO R, 2001, J PHYS CHEM A, V105, P11260
SAENGER W, 1984, PRINCIPLES NUCL ACID
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANTAMARIA R, 1994, J COMPUT CHEM, V15, P981
SCHEINER S, 1997, HYDROGEN BONDING THE
SCHEINER S, 2001, J BIOL CHEM, V276, P9832
SPONER J, 1996, J PHYS CHEM-US, V100, P1965
STEINER T, 1992, J AM CHEM SOC, V114, P10146
SUHAI S, 1995, J PHYS CHEM-US, V99, P1172
THOMPSON MA, 1996, J PHYS CHEM-US, V100, P14492
TSUZUKI S, 2001, J CHEM PHYS, V114, P3949
VANDERVAART A, 2000, J COMPUT CHEM, V21, P1494
VANDERVAART A, 2000, J PHYS CHEM B, V104, P9554
VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
WATSON JD, 1953, NATURE, V171, P737
XANTHEAS SS, 1994, J CHEM PHYS, V100, P7523
YANSON IK, 1979, BIOPOLYMERS, V18, P1149
YE YJ, 2000, J COMPUT CHEM, V21, P1109
NR 62
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD SEP 26
PY 2002
VL 615
IS 1-3
BP 257
EP 266
PG 10
SC Chemistry, Physical
GA 594XC
UT ISI:000178076800028
ER
PT J
AU Ramos, LE
Furthmuller, J
Scolfaro, LMR
Leite, JR
Bechstedt, F
TI Substitutional carbon in group-III nitrides: Ab initio description of
shallow and deep levels
SO PHYSICAL REVIEW B
LA English
DT Article
ID CUBIC BORON-NITRIDE; PERIODIC BOUNDARY-CONDITIONS; TOTAL-ENERGY
CALCULATIONS; MOLECULAR-BEAM EPITAXY; WAVE BASIS-SET; THIN-FILMS; GAN;
RELAXATION; GROWTH; ALN
AB We present ab initio pseudopotential plane-wave calculations for the
neutral and negatively charged carbon impurity on a nitrogen site in
group-III nitrides. Ultrasoft non-norm-conserving Vanderbilt
pseudopotentials allow the use of extremely large supercells up to 2744
atoms. These supercells attenuate the defect-defect interaction and,
hence, give an accurate description of the resulting acceptor levels in
BN, AlN, GaN, and InN. We calculate atomic geometries and energetical
positions of the defect levels, Franck-Condon shifts, and formation
energies. The defect stability and the transition of the shallow-deep
character are discussed along the series BN, AlN, GaN, and InN. For GaN
we calculate a hole activation energy of about 0.2 eV in correspondence
with photoluminescence and temperature-dependent Hall measurements.
C1 Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743 Jena, Germany.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Ramos, LE, Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743
Jena, Germany.
CR ABERNATHY CR, 1995, APPL PHYS LETT, V66, P1969
AMBACHER O, 1998, J PHYS D APPL PHYS, V31, P2653
AS DJ, 1998, PHYS STATUS SOLIDI B, V210, P445
AS DJ, 1999, MRS INT J NITRIDE SE
AS DJ, 2001, J PHYS-CONDENS MAT, V13, P8923
BIRKLE U, 1999, MRS INT J NITRIDE SE
BOGUSLAWSKI P, 1996, APPL PHYS LETT, V69, P233
BOGUSLAWSKI P, 1997, PHYS REV B, V56, P9496
DAVYDOV VY, 2002, PHYS STATUS SOLIDI B, V229, R1
EDGAR JH, 1994, PROPERTIES GROUP 3 N
FEYNMAN RP, 1939, PHYS REV, V56, P340
FISCHER S, 1995, APPL PHYS LETT, V67, P1298
FURTHMULLER J, 2000, PHYS REV B, V61, P4576
GORCZYCA I, 1997, MRS INTERNET J N S R, V2
GORCZYCA I, 1997, SOLID STATE COMMUN, V101, P747
GORCZYCA I, 1999, PHYS REV B, V60, P8147
GROSSNER U, 1998, PHYS REV B, V58, R1722
GROSSNER U, 1999, APPL PHYS LETT, V74, P3851
GUBANOV VA, 1996, APPL PHYS LETT, V69, P227
HOHENBERG P, 1964, PHYS REV, V136, B864
JANAK JF, 1978, PHYS REV B, V18, P7165
JENKINS DW, 1989, PHYS REV B, V39, P3317
KANTOROVICH LN, 1999, J PHYS-CONDENS MAT, V11, P6159
KANTOROVICH LN, 1999, PHYS REV B, V60, P15476
KOHLER U, 2001, PHYSICA B, V308, P126
KOHN W, 1965, PHYS REV, V140, A1139
KRESSE G, 1996, COMP MATER SCI, V6, P15
KRESSE G, 1996, PHYS REV B, V54, P11169
LAASONEN K, 1992, PHYS REV B, V45, P4122
LIMA AP, 1999, J CRYST GROWTH, V201, P396
LU M, 1994, APPL PHYS LETT, V64, P1514
MAKOV G, 1995, PHYS REV B, V51, P4014
MARQUES M, 2001, P 25 INT C PHYS SEM, P1411
MONEMAR B, 1974, PHYS REV B, V10, P676
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
NEUGEBAUER J, 1996, FESTKOR A S, V35, P25
OKUMURA H, 1998, MATER SCI FORUM 1-2, V264, P1167
ORELLANA W, 2000, PHYS REV B, V62, P10135
PANKOVE JI, 1971, OPTICAL PROCESSES SE
PERDEW JP, 1981, PHYS REV B, V23, P5048
PETROV I, 1992, APPL PHYS LETT, V60, P2491
POWELL RC, 1993, J APPL PHYS, V73, P189
RAMOS LE, 2001, PHYS REV B, V63
RUBIO A, 1993, PHYS REV B, V48
SLATER JC, 1972, ADVANCES QUANTUM CHE, V6, P1
STAMPFL C, 2000, PHYS REV B, V61, P7846
SURH MP, 1991, PHYS REV B, V43, P9126
TABATA A, 1999, APPL PHYS LETT, V74, P362
TANG X, 1998, APPL PHYS LETT, V72, P1501
TELES LK, 1999, PHYS STATUS SOLIDI B, V216, P541
THOMPSON MP, 2001, J APPL PHYS, V89, P3331
VANDEWALLE CG, 1993, PHYS REV B, V47, P9425
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
WENTORF RH, 1957, J CHEM PHYS, V26, P956
WIDMAYER P, 1999, PHYS REV B, V59, P5233
YI GC, 1997, APPL PHYS LETT, V70, P357
ZHANG SB, 1991, PHYS REV LETT, V67, P2339
NR 57
TC 8
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 15
PY 2002
VL 66
IS 7
AR 075209
DI ARTN 075209
PG 9
SC Physics, Condensed Matter
GA 593AV
UT ISI:000177969800082
ER
PT J
AU Yoshinaga, F
Tormena, CF
Freitas, MP
Rittner, R
Abraham, RJ
TI Conformational analysis of 2-halocyclohexanones: an NMR, theoretical
and solvation study
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID STEREOCHEMICAL CONSEQUENCES; ORGANIC-MOLECULES; ISOMERISM; PAIRS
AB The conformational equilibria of 2-fluoro-, 2-chloro- and
2-iodo-cyclohexanone have been determined in various solvents by
measurement of the J(2-3) couplings. The observed couplings were
analysed using theoretical and solvation calculations to give both the
conformer energies in the solvents studied plus the vapour phase
energies and the coupling constants in the distinct conformers. These
plus previous results for the 2-bromo compound give the conformer
energies and couplings of all the 2-halocyclohexanones. In the 2-fluoro
compound the axial conformation is the most stable one in the vapour
phase (E-eq - E-ax = 0.45 kcal mol(-1)), while the equatorial conformer
predominates in all the solvents studied. The other haloketones show
similar behaviour, but the energy difference in the vapour phase is
larger (E-eq - E-ax = 1.05, 1.50 and 1.90 kcal mol(-1), for the chloro,
bromo and iodo compounds respectively) and the axial conformer is still
the prevailing conformer in CCl4 solution for the chloro and bromo
ketones and is the major form in all solvents for the iodo compound.
The vapour state conformer energies for the fluoro and chloro compounds
are in complete agreement with the ab initio calculated energies, but
those for the bromo and iodo are not in such good agreement. Both the
ab initio calculations and molecular mechanics are used to discuss the
origins of the conformer energies. It is shown that the interaction
between the C2 halogen and the C=O oxygen in the equatorial conformer
is strongly attractive for fluorine, much less so for chlorine, ca.
zero for bromine and repulsive for iodine. Comparison of the conformer
couplings obtained here with calculated values show generally good
agreement.
C1 Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
Inst Quim, Phys Organ Chem Lab, BR-13083970 Campinas, SP, Brazil.
RP Abraham, RJ, Univ Liverpool, Dept Chem, POB 147, Liverpool L69 3BX,
Merseyside, England.
CR *SER SOFTW, PCMODEL VERS 7 1
ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1996, J CHEM SOC PERK SEP, P1949
ABRAHAM RJ, 1999, J CHEM SOC PERK AUG, P1663
ABRAHAM RJ, 2001, J CHEM SOC PERK T 2, P815
ALLINGER NL, 1958, J AM CHEM SOC, V80, P5476
BASSO EA, 1993, J ORG CHEM, V58, P7865
BEDOUKIAN PZ, 1945, J AM CHEM SOC, V67, P1430
EISENSTEIN O, 1974, TETRAHEDRON, V30, P1717
ELIEL EL, 1994, STEREOCHEMISTRY ORGA
ELIEL EL, 1994, STEREOCHEMISTRY ORGA, P696
EPIOTIS ND, 1973, J AM CHEM SOC, V95, P3087
FORESMAN JB, 1996, EXPLORING CHEM ELECT
FREITAS MP, 2001, J PHYS ORG CHEM, V14, P317
FRISCH MJ, 1998, GAUSSIAN 98
GARBISCH EW, 1964, J AM CHEM SOC, V86, P1780
HAASNOOT CAG, 1980, TETRAHEDRON, V36, P2783
PAN YH, 1967, CAN J CHEM, V45, P2943
RABLEN PR, 1999, J CHEM SOC PERK AUG, P1719
SENDEROWITZ H, 1997, THEOCHEM-J MOL STRUC, V395, P123
TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
WEAST RC, 1985, HDB CHEM PHYSICS
WIBERG KB, 1990, J PHYS CHEM-US, V94, P6956
WOLFE S, 1972, ACCOUNTS CHEM RES, V5, P102
ZEFIROV NS, 1978, TETRAHEDRON, V34, P2953
NR 28
TC 7
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1472-779X
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2002
IS 9
BP 1494
EP 1498
PG 5
SC Chemistry, Organic; Chemistry, Physical
GA 587ZQ
UT ISI:000177675300002
ER
PT J
AU Rocha, WR
Martins, VM
Coutinho, K
Canuto, S
TI Solvent effects on the electronic absorption spectrum of formamide
studied by a sequential Monte Carlo/quantum mechanical approach
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Article
DE formamide; QM/MM; solvent effects; absorption spectrum; Monte Carlo
simulation
ID CIRCULAR-DICHROISM CALCULATIONS; CARLO-QUANTUM-MECHANICS;
N-METHYLACETAMIDE; AB-INITIO; EXCITED-STATES; HYDROGEN-BOND; LIQUID
WATER; POTENTIAL FUNCTIONS; AMIDE CHROMOPHORE; AQUEOUS-SOLUTION
AB Sequential Monte Carlo/quantum mechanical calculations are performed to
study the solvent effects on the electronic absorption spectrum of
formamide (FMA) in aqueous solution, varying from hydrogen bonds to the
outer solvation shells. Full quantum-mechanical intermediate neglect of
differential overlap/singly excited configuration interaction
calculations are performed in the supermolecular structures generated
by the Monte Carlo simulation. The largest calculation involves the
ensemble average of 75 statistically uncorrelated quantum mechanical
results obtained with the FMA solute surrounded by 150 water solvent
molecules. We find that the n --> pi* transition suffers a blueshift of
1,600 cm(-1) upon solvation and the pi --> pi* transition undergoes a
redshift of 800 cm(-1). On average, 1.5 hydrogen bonds are formed
between FMA and water and these contribute with about 20% and about 30%
of the total solvation shifts of the n --> pi* and pi --> pi*
transitions, respectively. The autocorrelation function of the energy
is used to sample configurations from the Monte Carlo simulation, and
the solvation shifts are shown to be converged values.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Fed Juiz Fora, Dept Quim, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Mogi Cruzes, CCET, BR-08710970 Mogi das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BESLEY NA, 1998, J PHYS CHEM A, V102, P10791
BESLEY NA, 1999, J AM CHEM SOC, V121, P8559
BESLEY NA, 2000, J MOL STRUC-THEOCHEM, V506, P161
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
CANUTO S, 2002, IN PRESS ADV QUANTUM
CLARK LB, 1995, J AM CHEM SOC, V117, P7974
CONTADOR JC, 1996, J CHEM PHYS, V104, P5539
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 1997, DICE MONTE CARLO PRO
COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
DAMM W, 1997, J COMPUT CHEM, V18, P1995
DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
DELBENE JE, 1975, J CHEM PHYS, V62, P1961
FIELD MJ, 1990, J COMPUT CHEM, V11, P700
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GAO JL, 1992, SCIENCE, V258, P631
GINGELL JM, 1997, CHEM PHYS, V220, P191
HIRST JD, 1996, J PHYS CHEM-US, V100, P13487
HIRST JD, 1997, J PHYS CHEM A, V101, P4821
HIRST JD, 1998, J CHEM PHYS, V109, P782
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JORGENSEN WL, 1985, J AM CHEM SOC, V107, P1489
KRAUSS M, 1997, J CHEM PHYS, V107, P5771
KUZNETSOVA LM, 1996, J MOL STRUCT, V380, P23
LUDWIG R, 1997, J PHYS CHEM A, V101, P8861
MARCHESE FT, 1984, J PHYS CHEM-US, V88, P5692
MCCREERY JH, 1976, J AM CHEM SOC, V98, P7198
MEZEI M, 1981, J CHEM PHYS, V74, P622
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
ROCHA WR, 2001, CHEM PHYS LETT, V345, P171
SCHWEITZERSTENNER R, 1998, J PHYS CHEM A, V102, P118
SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P12190
SIELER G, 1997, J AM CHEM SOC, V119, P1720
SIM F, 1992, J AM CHEM SOC, V114, P4391
SOBOLEWSKI AL, 1995, J PHOTOCH PHOTOBIO A, V89, P89
STILINGER FH, 1974, J CHEM PHYS, V60, P3336
SZALAY PG, 1997, CHEM PHYS LETT, V270, P406
VANHOLDE KE, 1998, PRINCIPLES PHYSICAL
WARSHEL A, 1976, J MOL BIOL, V103, P227
WOODY RW, 1995, METHOD ENZYMOL, V246, P34
WOODY RW, 1999, J CHEM PHYS, V111, P2844
WOODY RW, 1999, J PHYS CHEM B, V103, P8984
ZERNER MC, ZINDO SEMIEMPIRICAL
NR 50
TC 5
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD JUL
PY 2002
VL 108
IS 1
BP 31
EP 37
PG 7
SC Chemistry, Physical
GA 584XM
UT ISI:000177494100005
ER
PT J
AU Miotto, R
Ferraz, AC
TI A theoretical study of C2H2 adsorption on the Ge(001) surface
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; surface relaxation and reconstruction;
chemisorption; germanium; silicon
ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS; ORGANIC-MOLECULES;
SI(001) SURFACE; ACETYLENE; SI(100)
AB Using a first-principles pseudopotential technique, we have
investigated the adsorption of C2H2, on the Ge(0 01) surface. We have
found that, at low temperatures, the di-sigma bond configuration is the
most stable structure from the energetic point of view. According to
our calculations, it is not possible to conclude if C2H2 adsorbs
preferentially on alternate or adjacent dimer sites. The di-sigma
adsorbed system is characterized by symmetric and slightly elongated
Ge-Ge dimers, and by a symmetric C-C bond with length close to the
double carbon bond length of the ethylene molecule. Our total energy
calculations suggest that other meta-stable configurations, like the
1,2-hydrogen transfer model, are also possible. This behaviour was also
observed for the silicon based system. In addition, we present
theoretical scanning tunneling microscopy images and calculated
vibrational modes for the adsorbed system with a view to contribute to
further experimental investigations. (C) 2002 Elsevier Science B.V. All
rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Miotto, R, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
CR *NIST, 2000, NIST CHEM WEBB
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BOONE AJ, 1998, INT J QUANTUM CHEM, V70, P925
DYSON AJ, 1997, SURF SCI, V375, P45
HAMERS RJ, 1999, JPN J APPL PHYS 1, V38, P3879
HIPPS KW, 2001, SCIENCE, V294, P536
KITTEL C, 1996, INTRO SOLID STATE PH
LIDE DR, 1995, HDB CHEM PHYSICS
LIU HB, 1998, SURF SCI, V416, P354
MEZHENNY S, 2001, CHEM PHYS LETT, V344, P7
MIOTTO R, 2000, PHYS REV B, V62, P13623
MIOTTO R, 2002, PHYS REV B, V65, P75401
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PILING MJ, 1995, REACTION KINETICS
REMEDIAKIS IN, 1999, PHYS REV B, V59, P5536
SORESCU DC, 2000, J PHYS CHEM B, V104, P8259
SRIVASTAVA GP, 1990, PHYSICS PHONONS
SRIVASTAVA GP, 1997, REP PROG PHYS, V60, P561
SRIVASTAVA GP, 1999, THEORETICAL MODELLIN
TERBORG R, 2000, PHYS REV B, V61, P16697
TOSCANO M, 1989, J MOL CATAL, V55, P101
TROULLIER N, 1991, PHYS REV B, V43, P1993
XU SH, 1999, PHYS REV B, V60, P11586
XU SH, 2000, PHYS REV LETT, V84, P939
NR 24
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD AUG 1
PY 2002
VL 513
IS 3
BP 422
EP 430
PG 9
SC Chemistry, Physical
GA 581XH
UT ISI:000177319500007
ER
PT J
AU Pliego, JR
Riveros, JM
TI Theoretical calculation of pK(a) using the cluster-continuum model
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID COMPLETE BASIS-SET; SOLVATION FREE-ENERGY; AB-INITIO; AQUEOUS-SOLUTION;
CARBOXYLIC-ACIDS; ORGANIC-COMPOUNDS; HALOACETIC ACIDS; HYDROXIDE ION;
GAS-PHASE; ABSOLUTE
AB The pK(a)'s of 17 species from - 10 to 50 were calculated using the ab
initio MP2/6-311+G(2df,2p) level of theory and inclusion of solvent
effects by the cluster-continuum model, a hybrid approach that combines
gas-phase clustering by explicit solvent molecules and solvation of the
cluster by the dielectric continuum. In addition, the pure continuum
methods SM5.42R and PCM were also used for comparison purposes. Species
such as alcohols, carboxylic acids, phenol, acetaldehyde and its
hydrate, thiols, hydrochloric acid, amines, and ethane were included.
Our results show that the cluster-continuum model yields much better
agreement with experiment than do the above-mentioned pure continuum
methods, with a rms error of 2.2 pK(a) units as opposed to 7 pK(a)
units for the SM5.42R and PCM methods. The good performance of the
cluster-continuum model can be attributed to the introduction of strong
and specific solute-solvent interactions with the molecules in the
first solvation shell of ions. This feature decreases the dielectric
continuum contribution to the difference in the solvation free energy
between ions, making the method less susceptible to error because of
the continuum contribution to solvation. Because the method is not
based on extensive parametrizations and it is shown to fare well for
several functional groups, the present results suggest that this method
could be used as a general approach for predicting reliable pK(a)
values.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
Sao Paulo, Brazil.
CR *NIST, 2001, NIST CHEM WEBB
ALBERT A, 1984, DETERMINATION IONIZA
BARONE V, 1997, J CHEM PHYS, V107, P3210
BENNAIM A, 1978, J PHYS CHEM-US, V82, P792
COSSI M, 1996, CHEM PHYS LETT, V255, P327
DASILVA CO, 1999, INT J QUANTUM CHEM, V74, P417
DASILVA CO, 1999, J PHYS CHEM A, V103, P11194
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 1995, GAUSSIAN 94
GAO JL, 1996, J AM CHEM SOC, V118, P4912
HILL TL, 1960, INTRO STAT THERMODYN
JANG YH, 2001, J PHYS CHEM A, V105, P274
JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
JORGENSEN WL, 1987, J AM CHEM SOC, V109, P6857
JORGENSEN WL, 1989, J AM CHEM SOC, V111, P4190
KALLIES B, 1997, J PHYS CHEM B, V101, P2959
KAWATA M, 1995, CHEM PHYS LETT, V240, P199
KLICIC JJ, 2002, J PHYS CHEM A, V106, P1327
KOLLMAN P, 1993, CHEM REV, V93, P2395
LI J, 1996, INORG CHEM, V35, P4694
LI J, 1999, GAMESOL
LI JB, 1999, THEOR CHEM ACC, V103, P9
LIM C, 1991, J PHYS CHEM-US, V95, P5610
LIPTAK MD, 2001, INT J QUANTUM CHEM, V85, P727
LIPTAK MD, 2001, J AM CHEM SOC, V123, P7314
PITARCH J, 1998, J AM CHEM SOC, V120, P2146
PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
PLIEGO JR, 2000, J PHYS CHEM B, V104, P5155
PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
PLIEGO JR, 2002, CHEM-EUR J, V8, P1945
PLIEGO JR, 2002, PHYS CHEM CHEM PHYS, V4, P1622
RICHARD JP, 1999, J AM CHEM SOC, V121, P715
RICHARDSON WH, 1997, INT J QUANTUM CHEM, V61, P207
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHUURMANN G, 1998, J PHYS CHEM A, V102, P6706
SHAPLEY WA, 1998, J PHYS CHEM B, V102, P1938
SILVA CO, 2000, J PHYS CHEM A, V104, P2402
TOPOL IA, 1997, J PHYS CHEM A, V101, P10075
TOTH AM, 2001, J CHEM PHYS, V114, P4595
TUNON I, 1992, J PHYS CHEM-US, V96, P9043
TUNON I, 1993, J AM CHEM SOC, V115, P2226
WIBERG KB, 2000, J PHYS CHEM A, V104, P7625
NR 42
TC 38
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 15
PY 2002
VL 106
IS 32
BP 7434
EP 7439
PG 6
SC Chemistry, Physical
GA 582LZ
UT ISI:000177353700024
ER
PT J
AU Kirsch, R
Prandolini, MJ
Beutler, O
Brewer, WD
Gruyters, M
Kapoor, J
Riegel, D
Ebert, H
Frota-Pessoa, S
TI The formation of orbital moments on iron impurities in Ag1-xAux alloys
SO EUROPHYSICS LETTERS
LA English
DT Article
ID LOCAL ENVIRONMENT; HYPERFINE FIELDS; ALKALI-METALS; CO; FE; SURFACES;
3D; MAGNETISM; SPIN; NI
AB Using the high specificity and sensitivity of the in-beam perturbed
gamma-ray angular distribution method, we have investigated the
magnetic behavior of very dilute Fe-54 probes in Ag1-xAux alloys. The
nuclear damping time and local susceptibility of Fe are found to depend
strongly on its local environment, showing inhomogeneous line
broadening as well as discrete magnetic responses due to the different
configurations of Ag/Au nearest neighbors. The results can be
understood with the aid of ab initio calculations of electronic
structure, magnetic moments and hyperfine fields. They underline the
central importance of orbital magnetism for understanding the
experimental results.
C1 Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany.
Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany.
Univ Munich, D-81377 Munich, Germany.
USP, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Kirsch, R, Free Univ Berlin, Fachbereich Phys, Arnimallee 14, D-14195
Berlin, Germany.
CR AKAI H, 1999, HYPERFINE INTERACT, V121, P3
BLUGEL S, 1987, PHYS REV B, V35, P3271
EBERT H, 1988, Z PHYS B, V73, P77
EBERT H, 2000, LECT NOTES PHYS, V535, P191
ERIKSSON O, 1990, PHYS REV B, V42, P2707
FARLE M, 1998, REP PROG PHYS, V61, P755
FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
GRUYTERS M, 2000, PHYS REV LETT, V85, P1582
GUO GY, 2000, PHYS REV B, V62, P14609
HJORTSTAM O, 1996, PHYS REV B, V53, P9204
JACCARINO V, 1965, PHYS REV LETT, V15, P258
KIRSCH R, UNPUB
KITCHENS TA, 1974, PHYS REV B, V9, P344
LEGOAS SB, 2000, PHYS REV B, V61, P10417
METZ A, 1994, PHYS REV LETT, V73, P3161
PUGACZOWAMICHALSKA M, 1998, J MAGN MAGN MATER, V185, P35
RIEGEL D, 1988, NATO ADV STUDY I E, V144, P327
RIEGEL D, 1998, AUST J PHYS, V51, P157
STEINER P, 1975, PHYS REV B, V12, P842
TISCHER M, 1995, PHYS REV LETT, V75, P1602
UBA S, 1998, PHYS REV B, V57, P1534
NR 21
TC 6
PU E D P SCIENCES
PI LES ULIS CEDEXA
PA 7, AVE DU HOGGAR, PARC D ACTIVITES COURTABOEUF, BP 112, F-91944 LES
ULIS CEDEXA, FRANCE
SN 0295-5075
J9 EUROPHYS LETT
JI Europhys. Lett.
PD AUG
PY 2002
VL 59
IS 3
BP 430
EP 436
PG 7
SC Physics, Multidisciplinary
GA 581QP
UT ISI:000177304600018
ER
PT J
AU Davila, LYA
Caldas, MJ
TI Applicability of MNDO techniques AM1 and PM3 to ring-structured polymers
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE structural properties; torsion angles; semiempirical models; ab initio;
electronic structure
ID ELECTRONIC-PROPERTIES; SEMIEMPIRICAL METHODS; CONJUGATED POLYMERS;
ADJACENT RINGS; TORSION ANGLE; POLYANILINE; PARAMETERS; OPTIMIZATION;
EVOLUTION; VINYLENE)
AB Semiempirical Hartree-Fock techniques are widely used to study
properties of long ring-structured chains, although these types of
systems were not included in the original parametrization ensembles.
These techniques are very useful for an ample class of studies, and
their predictive power should be tested. We present here a study of the
applicability of some techniques from the NDDO family (MNDO, AM1, and
PM3) to the calculation of the ground state geometries of a specific
set of molecules with the ring-structure characteristic. For this we
have chosen to compare results against ab initio Restricted
Hartree-Fock 6-31G(d,p) calculations, extended to Moller-Plesset 2
perturbation theory for special cases. The systems investigated
comprise the orthobenzoquinone (O2C6H4) molecule and dimers
(O2C6H4)(2), as well as trimers of polyaniline, which present
characteristics that extend to several systems of interest in the field
of conducting polymers, such as ring structure and heterosubstitution.
We focus on the torsion between rings, because this angle is known to
affect strongly the electronic and optical properties of conjugated
polymers. We find that AM1 is always in qualitative agreement with the
ab initio results, and is thus indicated for further studies of longer,
more complicated chains.
C1 USP, Inst Fis, BR-66318 Sao Paulo, Brazil.
RP Caldas, MJ, USP, Inst Fis, BR-66318 Sao Paulo, Brazil.
CR *IND U, MOPAC 6 0 PROGR 464
AMBROSCHDRAXL C, 1995, PHYS REV B, V51, P9668
BRAGA SF, IN PRESS
BREDAS JL, 1985, J CHEM PHYS, V83, P1323
BREDAS JL, 1991, PHYS REV B, V44, P6002
BURROUGHES JH, 1990, NATURE, V347, P539
CAPAZ RB, 1999, J MOL STRUC-THEOCHEM, V464, P31
COULSON CA, 1947, P ROY SOC LOND A MAT, V191, P39
DACOSTA PG, 1993, PHYS REV B, V47, P1800
DAVILA LYA, 2001, SYNTHETIC MET, V119, P241
DEWAR MJS, 1964, J COMPUT CHEM, V86, P4550
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DEWAR MJS, 1990, J COMPUT CHEM, V11, P541
DOSSANTOS HF, 1995, J MOL STRUC-THEOCHEM, V335, P129
FRISCH MJ, 1995, GAUSSIAN 94 GAUSSIAN
GALVAO DS, 1989, PHYS REV LETT, V63, P786
GALVAO DS, 1990, J CHEM PHYS, V93, P2848
GALVAO DS, 1993, J CHEM PHYS, V98, P3016
GORB L, 1998, THEOCHEM-J MOL STRUC, V425, P137
KOLL A, 2000, J MOL STRUCT, V552, P193
LIPKOWITZ KB, 1991, REV COMPUTATIONAL CH, V2, P313
MACDIARMID AG, 1987, SYNTHETIC MET, V18, P285
PARISER R, 1953, J CHEM PHYS, V21, P466
POPLE JA, 1965, J CHEM PHYS, V43, S129
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
SCANO P, 1991, J COMPUT CHEM, V12, P172
SEGAL GA, 1977, MODERN THEORETICAL A, V7
SHIRAKAWA H, 1977, J CHEM SOC CHEM COMM, P578
STAFSTROM S, 1986, SYNTHETIC MET, V14, P297
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
STEWART JJP, 1990, J COMPUT CHEM, V11, P543
NR 33
TC 11
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD SEP
PY 2002
VL 23
IS 12
BP 1135
EP 1142
PG 8
SC Chemistry, Multidisciplinary
GA 578ER
UT ISI:000177104900002
ER
PT J
AU Dabrowski, J
Mussig, HJ
Zavodinsky, V
Baierle, R
Caldas, MJ
TI Mechanism of dopant segregation to SiO2/Si(001) interfaces
SO PHYSICAL REVIEW B
LA English
DT Article
ID TRANSIENT ENHANCED DIFFUSION; PHOSPHORUS PILE-UP; POINT-DEFECTS; DOSE
LOSS; ELECTRONIC-STRUCTURE; SI-SIO2 INTERFACE; SILICON DIOXIDE; MODEL;
SI; PSEUDOPOTENTIALS
AB Dopant atoms can segregate to SiO2/Si(001) interfaces and be
deactivated there. Using phosphorus as a typical example of a donor and
guided by results of ab initio calculations, we present a model of
donor segregation. We find that P is trapped at the interface in the
form of threefold-coordinated atoms. The atomic detailed configuration
and the process of P incorporation depend on P concentration C-P in the
vicinity of the interface. At low C-P, phosphorus atoms prefer to
substitute Si atoms with dangling bonds. At high C-P, phosphorus pairs
are formed. At intermediate C-P, (around 10(17)-10(19) cm(-3))
segregation occurs to sites associated with interface roughness and to
interface Si-Si bridges, and is mediated by diffusion and annihilation
of Si dangling bonds and by reoxidation during oxide annealing. Making
diffusion of dangling bonds more difficult (for example, by
nitridation) should, therefore, reduce the trapping efficiency of
SiO2/Si(001) in the technologically important regime of intermediate
C-P.
C1 IHP, D-15236 Frankfurt, Germany.
Inst Automat & Control Proc, Vladivostok 690041, Russia.
Univ Fed Santa Maria, Dept Fis, BR-9711030 Santa Maria, RS, Brazil.
Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
RP Dabrowski, J, IHP, Technol Pk 25, D-15236 Frankfurt, Germany.
CR ASENOV A, 1998, P SISPAD 98, P223
ASENOV A, 1999, IEEE T COMPUT AID D, V18, P1558
BACHELET GB, 1982, PHYS REV B, V26, P4199
BAIERLE R, 1999, PHYSICA B, V273, P260
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BOTT E, 1998, J MATH PHYS, V39, P3393
CALDAS MJ, 1990, PHYS REV LETT, V65, P2046
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHOU NJ, 1974, APPL PHYS LETT, V24, P200
DABROWSKI J, 1998, SURF SCI, V411, P54
DABROWSKI J, 1999, ADV SOLID STATE PHYS, V38, P565
DABROWSKI J, 2000, J VAC SCI TECHNOL B, V18, P2160
DABROWSKI J, 2000, SILICON SURFACES FOR, P360
DABROWSKI J, 2000, SPECIAL DEFECTS SEMI, P23
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DUNHAM ST, 1992, J APPL PHYS, V71, P685
DUNHAM ST, 1992, J ELECTROCHEM SOC, V139, P2628
FAHEY PM, 1989, REV MOD PHYS, V61, P289
GRIFFIN PB, 1995, APPL PHYS LETT, V67, P482
HAMANN DR, 1989, PHYS REV B, V40, P2980
HUNTER LP, 1976, HDB SEMICONDUCTOR EL, P1
JARAIZ M, 1996, APPL PHYS LETT, V68, P409
JOHANNESSEN JS, 1978, J APPL PHYS, V49, P4453
KASNAVI R, 1998, P SISPAD 98, P48
KASNAVI R, 2000, J APPL PHYS, V87, P2255
KHAVRYUTCHENKO VD, 1993, DYQUAMOD DYNAMICAL Q
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
LAU F, 1989, APPL PHYS A-SOLID, V49, P671
LUCOVSKY G, 1996, J VAC SCI TECHNOL B, V14, P2832
METHFESSEL M, 2000, IN PRESS LECT NOTES
NORTHRUP JE, 1993, PHYS REV B, V47, P6791
ORLOWSKI M, 1989, APPL PHYS LETT, V55, P1762
PACKAN PA, 1999, SCIENCE, V285, P2079
PERDEW JP, 1981, PHYS REV B, V23, P5048
QUEIROLO G, 1980, J ELECTROCHEM SOC, V127, P2438
SAKAMOTO H, 1997, P SISPAD 97, P81
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SATO Y, 1993, J ELECTROCHEM SOC, V140, P2679
SATO Y, 1995, J ELECTROCHEM SOC, V142, P655
SATO Y, 1995, J ELECTROCHEM SOC, V142, P660
SATO Y, 1997, J ELECTROCHEM SOC, V144, P2548
SCHWARZ SA, 1981, J ELECTROCHEM SOC, V128, P1101
STOLK PA, 1997, J APPL PHYS, V81, P6031
SZE SM, 1981, PHYSICS SEMICONDUCTO
TAKEDA S, 1995, PHYS REV B, V51, P2148
VUONG HH, 1996, IEEE T ELECTRON DEV, V43, P1144
VUONG HH, 1997, P SISPAD 97, P85
VUONG HH, 1998, P SISPAD 98, P380
VUONG HH, 2000, J VAC SCI TECHNOL B, V18, P428
ZAYETZ VA, 1990, CLUSTER Z1 QUANTUM C
NR 50
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 15
PY 2002
VL 65
IS 24
AR 245305
DI ARTN 245305
PG 11
SC Physics, Condensed Matter
GA 577CA
UT ISI:000177043100064
ER
PT J
AU Savedra, RML
Pinheiro, JC
Treu, O
Kondo, RT
TI Gaussian basis sets by generator coordinate Hartree-Fock method to ab
initio calculations of electron affinities of enolates
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Gaussian basis sets; GCHFM; electron affinities; calculations of
enolates; electron affinities of enolates
ID FIRST-ROW ATOMS; DIATOMIC-MOLECULES; 2ND-ROW ATOMS; CHOICE;
CONTRACTION; EQUATIONS; EXCHANGE; VERSION; BASES; CO
AB The Generator Coordinate Hartree-Fock (GCHF) method is employed to
generate uncontracted 15s and 18s11p gaussian basis sets for the H, C
and O atoms, respectively. These basis sets are then contracted to 3s
and 4s H atom and 6s5p, for C and O atoms by a standard procedure. For
quality evaluation of contracted basis sets in molecular calculations,
we have accomplished calculations of total and orbital energies in the
Hartree-Fock-Roothaaii (HFR) approach for CH, C-2 and CO molecules. The
results obtained with the uncontracted basis sets are compared with
values obtained with the standard D95, 6-311G basis sets and with
values reported in the literature. The 4s and 6s5p basis sets are
enriched with polarization and diffuse functions for atoms of the
parent neutral systems and of the enolates anions (cycloheptanone
enolate, 2,5-dimethyleyelopentanone enolate, 4-heptanone enolate, and
di-isopropyl ketone enolate) from the literature, in order to assess
their performance in ab initio molecular calculations, and applied for
calculations of electron affinities of the enolates. The calculations
were performed at the DFT (BLYP and B3LYP) and HF levels and compared
with the corresponding experimental values and with those obtained by
using other 6-3 1 + +G((*)) and 6-311 + +G((*)) basis sets from
literature. For the enolates studied, the differences between the
electron affinities obtained with GCHF basis sets, at the B3LYP level,
and the experimental values are -0.001, -0,014, -0.001, and -0.001 eV.
(C) 2002 Elsevier Science B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab Quim Teor & Computac, BR-66075110 Belem, Para, Brazil.
CEAM, Cooperat Ctr Educ Cient & Empreendedora Amazonia, BR-66013060 Belem, Para, Brazil.
Univ Estadual Paulista, Inst Quim Araraquara, BR-14801970 Araraquara, SP, Brazil.
Univ Sao Paulo, Ctr Informat Sao Carlos, Secao Suporte, BR-13560970 Sao Carlos, SP, Brazil.
RP Pinheiro, JC, Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, Lab
Quim Teor & Computac, Caixa Postal 101101, BR-66075110 Belem, Para,
Brazil.
CR BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
CADE PE, 1967, J CHEM PHYS, V47, P614
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
DACOSTA HFM, 1987, MOL PHYS, V62, P91
DACOSTA HFM, 1992, CHEM PHYS LETT, V192, P195
DASILVA ABF, 1989, MOL PHYS, V68, P433
DECASTRO EVR, 1999, CHEM PHYS, V243, P1
DRZAIC PS, 1984, GAS PHASE ION CHEM, V3
DUNNING TH, 1997, METHODS ELECT STRUCT
EVANS DA, 1984, ASYMMETRIC SYNTHESIS, V3
FISCHER CF, 1977, HARTREE FOCK METHOD
FRISCH MJ, 1995, GAUSSIAN 94 REV
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HUZINAGA S, 1985, CAN J CHEM, V63, P1812
JARDIM IN, 1999, J MOL STRUC-THEOCHEM, V464, P15
LEE C, 1988, PHYS REV B, V37, P785
MEKELBURGER HB, 1991, COMPREHENSIVE ORGANI, V2
MOHALLEM JR, 1986, INT J QUANTUM CHEM S, V20, P45
MOHALLEM JR, 1987, J CHEM PHYS, V86, P5043
NARAYSZABO G, 1987, APPL QUANTUM CHEM
PAVANI P, 1989, RJ518 IBM RES
PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
PINHEIRO JC, 1999, J MOL STRUC-THEOCHEM, V491, P81
PINHEIRO JC, 2000, INT J QUANTUM CHEM, V78, P15
PINHEIRO JC, 2001, J MOL STRUC-THEOCHEM, V539, P29
PYYKKO P, 1987, MOL PHYS, V60, P597
RAFFENETTI RC, 1973, J CHEM PHYS, V58, P4452
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
SIMONS J, 1987, CHEM PHYS REV, V8, P535
NR 31
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JUL 5
PY 2002
VL 587
BP 9
EP 17
PG 9
SC Chemistry, Physical
GA 576TA
UT ISI:000177020100002
ER
PT J
AU Vilela, AFA
Neto, JJS
Mundim, KC
Mundim, MSP
Gargano, R
TI Fitting potential energy surface for reactive scattering dynamics
through generalized simulated annealing
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID OPTIMIZATION
AB We propose a stochastic optimization technique, based on generalized
simulated annealing (GSA), as a new option to fit potential energy
surfaces (PES) for reactive scattering dynamics. In order to show this,
we reproduced the PES of the Na + HF --> NaF + H reaction utilizing the
ab initio calculation as well as the trial function published by Lagan
et al. Topological studies were done on the Na + HF GSA PES considering
a great number of the nuclear configurations. These studies showed that
the quality of the Na + HF GSA PES is comparable to the Na + HF PES
obtained by Lagan et al. (C) 2002 Published by Elsevier Science B.V.
C1 Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil.
RP Gargano, R, Univ Brasilia, Inst Fis, Caixa Postal 04455, BR-70919970
Brasilia, DF, Brazil.
CR AREAS EPG, 1995, J PHYS CHEM-US, V99, P14885
BARTOSZEK FE, 1981, J CHEM PHYS, V74, P3400
CEPERLY D, 2001, SCIENCE, V539, P215
CURADO EMF, 1991, J PHYS A, V24, P3187
DUREN R, 1989, J CHEM SOC FARAD T 8, V85, P1017
GARGANO R, 1998, J CHEM PHYS, V108, P6266
GARGANO R, 2001, J MOL STRUC-THEOCHEM, V539, P215
KIRKPATRICK S, 1983, SCIENCE, V220, P671
KIRKPATRICK S, 1984, J STAT PHYS, V34, P975
LAGANA A, 1996, LECT NOTES COMPUT SC, V1041, P361
LAGANA A, 1997, J CHEM PHYS, V106, P10222
LOESCH HJ, 1989, J CHEM SOC FARADAY T, V85, P1052
MIRANDA MP, 1999, CHEM PHYS LETT, V309, P257
MORET MA, 1998, J COMPUT CHEM, V19, P647
MUNDIM KC, 1996, INT J QUANTUM CHEM, V58, P373
MUNDIM KC, 1998, PHYSICA A, V252, P405
SZU H, 1987, PHYS LETT A, V122, P157
TSALLIS C, 1988, J STAT PHYS, V52, P479
WEISS PS, 1988, CHEM PHYS, V126, P93
NR 19
TC 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JUN 27
PY 2002
VL 359
IS 5-6
BP 420
EP 427
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 576XN
UT ISI:000177032600011
ER
PT J
AU Malaspina, T
Coutinho, K
Canuto, S
TI Ab initio calculation of hydrogen bonds in liquids: A sequential Monte
Carlo quantum mechanics study of pyridine in water
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-INTERACTIONS; BIOLOGICAL INTEREST; AQUEOUS-SOLUTIONS;
AROMATIC BASES; REACTION FIELD; SOLVENT; COMPLEXES; SPECTROSCOPY;
SIMULATION; DYNAMICS
AB A systematic procedure based on the sequential Monte Carlo quantum
mechanics (S-MC/QM) methodology has been used to obtain hydrogen bond
strength and structures in liquids. The system considered is pyridine
in water. The structures are generated by NVT Monte Carlo simulation,
of one pyridine molecule and 400 water molecules. The hydrogen bonds
are obtained using a geometric and energetic procedure. Detailed
analysis shows that 62% of the configurations have one hydrogen bond.
In the average, pyridine in liquid water makes 1.1 hydrogen bonds. The
sampling of the structures for the quantum mechanical calculations is
made using the interval of statistical correlation obtained by the
autocorrelation function of the energy. A detailed statistical analysis
is presented and converged results are obtained. The QM calculations
are performed at the ab initio MP2/6-31+G(d) level and the results are
compared with the optimized 1:1 cluster. Our results using QM
calculations on 155 structures making one hydrogen bond gives an
average binding energy of 3.7 kcal/mol, after correcting for basis set
superposition error, indicating that in the liquid the binding energy
is about 2/3 of the corresponding binding in the optimized cluster. (C)
2002 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Mogi das Cruzes, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
AQUINO AJA, 2002, J PHYS CHEM A, V106, P1862
BENEDICT WS, 1956, J CHEM PHYS, V24, P1139
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BERNSTEIN ER, 1990, ATOMIC MOL CLUSTERS
BLAIR JT, 1989, J AM CHEM SOC, V111, P6948
BOYS SF, 1970, MOL PHYS, V19, P553
BROVCHENKO IV, 1997, J CHEM PHYS, V106, P7756
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
CAMINATI W, 1998, J PHYS CHEM A, V102, P8097
CANUTO S, IN PRESS ADV QUANTUM
CANUTO S, 1997, ADV QUANTUM CHEM, V28, P90
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
CHATFIELD C, 1984, ANAL TIME SERIES INT
COUTINHO K, 1998, INT J QUANTUM CHEM, V66, P249
COUTINHO K, 1999, J MOL STRUC-THEOCHEM, V466, P69
COUTINHO K, 2000, DICE VERSION 2 8 GEN
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
CRAMER CJ, 1999, CHEM REV, V99, P2161
CRUZAN JD, 1996, SCIENCE, V271, P59
DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
DELBENE JE, 1995, J PHYS CHEM-US, V99, P10705
DKHISSI A, 2000, J PHYS CHEM A, V104, P2112
EVANS GT, 2001, J CHEM PHYS, V115, P1440
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GAO JL, 1994, J AM CHEM SOC, V116, P9324
GILLI G, 2000, J MOL STRUCT, V552, P1
HOBZA P, 2000, CHEM REV, V100, P4253
INNES KK, 1988, J MOL SPECTROSC, V132, P492
JEFFREY GA, 1991, HYDROGEN BONDING BIO
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
JORGENSEN WL, 1998, J MOL STRUCT THEOCHE, V424, P145
KARELSON MM, 1992, J PHYS CHEM-US, V96, P6949
KAWAHARA S, 1999, J PHYS CHEM A, V103, P8516
KLAMT A, 1993, J CHEM SOC P2, V2, P799
KRATSCHMER R, 1976, J STAT PHYS, V15, P267
LADANYI BM, 1993, ANNU REV PHYS CHEM, V44, P335
LADANYI BM, 1995, J MOL STRUCT THEOCHE, V335, P181
LIDE DR, 1992, HDB CHEM PHYSICS
LUQUE FJ, 2000, THEOR CHEM ACC, V103, P343
MAES G, 1997, J MOL STRUCT, V410, P315
MARTOPRAWIRO MA, 1995, MOL PHYS, V85, P573
MELANDRI S, 1998, J AM CHEM SOC, V120, P11504
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
MEZEI M, 1981, J CHEM PHYS, V74, P622
MIERTUS S, 1981, CHEM PHYS, V55, P117
MULLERKRUMBHAAR H, 1973, J STAT PHYS, V8, P1
OPADHYAY DM, 2001, INT J QUANTUM CHEM, V81, P90
PERRIN CL, 1997, ANNU REV PHYS CHEM, V48, P511
PIMENTEL GC, 1971, ANNU REV PHYS CHEM, V22, P347
RAHMAN A, 1971, J CHEM PHYS, V55, P3336
RINCON L, 2001, J CHEM PHYS, V114, P5552
RIVAIL JL, 1976, CHEM PHYS, V18, P233
RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
RIVELINO R, 2001, J PHYS CHEM A, V105, P11260
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
ROCHA WR, 2001, CHEM PHYS LETT, V345, P171
SCHEINER S, 1997, HYDROGEN BONDING THE
SCHEINER S, 2001, J BIOL CHEM, V276, P9832
SCOLES G, 1990, CHEM PHYSICS ATOMIC
SMETS J, 1999, J MOL STRUCT, V476, P27
STILLINGER FH, 1974, J CHEM PHYS, V60, P1545
STILLINGER FH, 1975, ADV CHEM PHYS, V31, P1
SZCZESNIAK MM, 1986, J MOL STRUCT THEOCHE, V135, P179
TANG S, 1987, PHYS REV B, V36, P567
TAPIA O, 1975, MOL PHYS, V29, P1653
TOMASI J, 1994, CHEM REV, V94, P2027
TOMASI J, 2000, THEOR CHEM ACC, V103, P196
VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
XANTHEAS SS, 1994, J CHEM PHYS, V100, P7523
ZENG J, 1993, J CHEM PHYS, V99, P1496
ZWIER TS, 1996, ANNU REV PHYS CHEM, V47, P205
NR 74
TC 19
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUL 22
PY 2002
VL 117
IS 4
BP 1692
EP 1699
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 572DM
UT ISI:000176758200034
ER
PT J
AU Miotto, R
Ferraz, AC
Srivastava, GP
TI Comparative study of the adsorption of C2H4 on the Si(001) and Ge(001)
surfaces
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; surface relaxation and reconstruction;
chemisorption; vibrations of adsorbed molecules; silicon; germanium
ID SI(100)-(2X1) SURFACE; ETHYLENE ADSORPTION; FIRST-PRINCIPLES;
ACETYLENE; SPECTROSCOPY; SI(100)(2X1); BEHAVIOR; STATES; X-1
AB Using a first-principles pseudopotential method we have compared the
interaction processes involved in the adsorption of ethylene on the
silicon and germanium surfaces. We have found that, at low
temperatures, the di-sigma bond configuration is the most stable
structure from the energetic point of view. According to our
calculations C2H4 adsorbs preferentially on the alternate dimer sites,
corresponding to a coverage of 0.5 ML. The di-sigma adsorbed system is
characterized by symmetric and slightly elongated Si-Si (Ge-Ge) dimers,
and by a symmetric C-C bond close to the single carbon bond length of
the ethane molecule. The electronic band structure derived from our
calculations suggest that the adsorption of the C2H4 molecule leaves a
surface state in the fundamental band gap that is mainly localized
around the adsorbate. Finally, our ab initio vibrational spectra
further support the di-sigma model for the ethylene adsorption on
IV(001)-(2 x 2). (C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP Miotto, R, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
CR BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
CAO PL, 1993, J PHYS-CONDENS MAT, V5, P2887
CHO JH, 2001, PHYS REV B, V63
CLEMEN L, 1992, SURF SCI, V268, P205
HUANG C, 1994, SURF SCI, V315, L953
LAL P, 1999, J CHEM PHYS, V110, P10545
LIDE DR, 1995, HDB CHEM PHYSICS
MATSUI F, 2000, PHYS REV B, V62, P5036
MAYNE AJ, 1993, SURF SCI, V284, P247
MIOTTO R, 2001, PHYS REV B, V63
PAN W, 1997, J CHEM PHYS, V107, P3981
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PILLING MJ, 1995, REACTION KINETICS
ROCHET F, 1998, PHYS REV B, V58, P11029
SORESCU DC, 2000, J PHYS CHEM B, V104, P8259
SRIVASTAVA GP, 1990, PHYSICS PHONONS
TERBORG R, 2000, PHYS REV B, V61, P16697
TROULLIER N, 1991, PHYS REV B, V43, P1993
WIDDRA W, 1998, PHYS REV LETT, V80, P4269
YOSHINOBU J, 1987, J CHEM PHYS, V87, P7332
NR 20
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD JUN 1
PY 2002
VL 507
BP 12
EP 17
PG 6
SC Chemistry, Physical
GA 569CV
UT ISI:000176583700004
ER
PT J
AU Miwa, RH
Schmidt, TM
Srivastava, GP
TI Ab initio study of the self-organised Bi-lines on the SK(001) surface
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; surface electronic phenomena (work
function, surface potential, surface states, etc.); bismuth;
self-assembly
ID SCANNING-TUNNELING-MICROSCOPY; ELECTRONIC-STRUCTURE; BISMUTH; SI(001);
NANOWIRE; CHAINS; STATE; X-1)
AB We have perfomed an ab initio theoretical study of the stability,
atomic geometry and electronic structure of the self-organised Bi-lines
on the Si(0 0 1) surface. Our results show that the Bi-lines are formed
by Bi-dimers parallel to the surrounding Si-dimers, with a missing
dimer row between the Bi-dimers. In contrast to a recently proposed
model of symmetrically disposed surface Si-dimers (i.e. with no
buckling). our total energy calculations indicate that the buckling of
the Si-dimers is an exothermic process, reducing the surface total
energy by 0.11 eV/dimer. Our theoretically simulated STM results
suggest a low density of states close to the valence band maximum,
localized on the Bi-lines, supporting a recently proposed model of
quantum antiwire systems for Bi-lines on the Si(0 0 1) surface. (C)
2002 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Uberlandia, Fac Fis, BR-38400902 Uberlandia, MG, Brazil.
Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
RP Miwa, RH, Univ Fed Uberlandia, Fac Fis, CP 593, BR-38400902 Uberlandia,
MG, Brazil.
CR ABUKAWA T, 1995, SURF SCI, V325, P33
BOWLER DR, 2000, PHYS REV B, V62, P7237
BUNK O, 1999, PHYS REV B, V59, P12228
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DABROWSKI J, 1992, APPL SURF SCI, V56, P15
GAY SCA, 1999, PHYS REV B, V60, P1488
GONZE X, 1991, PHYS REV B, V44, P8503
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
LOUIE SG, 1982, PHYS REV B, V26, P1739
MIKI K, 1999, PHYS REV B, V59, P14868
MIKI K, 1999, SURF SCI, V421, P397
MIWA RH, 2001, SURF SCI, V473, P123
NAITOH M, 1999, APPL SURF SCI, V142, P38
NAITOH M, 2000, JPN J APPL PHYS 1, V39, P2793
NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
PERDEW JP, 1981, PHYS REV B, V23, P5048
SHIMOMURA M, 2000, SURF SCI, V447, L169
TERSOFF J, 1985, PHYS REV B, V31, P805
TUTUNCU HM, 1997, PHYS REV B, V56, P4656
TUTUNCU HM, 2000, SURF SCI, V454, P504
YEOM HW, 1999, PHYS REV LETT, V82, P4898
NR 21
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD JUN 1
PY 2002
VL 507
BP 368
EP 373
PG 6
SC Chemistry, Physical
GA 569CV
UT ISI:000176583700067
ER
PT J
AU Freire, HJP
Egues, JC
TI Subband structure of II-VI modulation-doped magnetic quantum wells
SO BRAZILIAN JOURNAL OF PHYSICS
LA English
DT Article
ID ELECTRICAL SPIN INJECTION; SEMICONDUCTOR HETEROSTRUCTURE; TRANSPORT;
MAGNETORESISTANCE; SUPERLATTICES; DENSITY
AB Here we investigate the spin-dependent subband structure of
newly-developed Mn-based modulation-doped quantum wells. In the
presence of an external magnetic field, the s-d exchange coupling
between carriers and localized d electrons of the Mn impurities gives
rise to large spin splittings resulting in a magnetic-field dependent
subband structure. Within the framework of the effective-mass
approximation, we self-consistently calculate the subband structure at
zero temperature using Density Functional Theory (DFT) with a Local
Spin Density Approximation (LSDA). We present results for the
magnetic-field dependence of the subband structure of shallow
ZnSe/ZnCdMnSe modulation doped quantum wells. Our results show a
significant contribution to the self-consistent potential due to the
exchange-correlation term. These calculations are the first step in the
study of a variety of interesting spin-dependent phenomena, e.g.,
spin-resolved transport and many-body effects in polarized
two-dimensional electron gases.
C1 Univ Sao Paulo, Inst Fis Sao Carlos, Dept Fis Informat, BR-13560970 Sao Carlos, SP, Brazil.
RP Freire, HJP, Univ Sao Paulo, Inst Fis Sao Carlos, Dept Fis Informat,
BR-13560970 Sao Carlos, SP, Brazil.
CR AWSCHALOM DD, 1999, J MAGN MAGN MATER, V200, P130
BARAFF GA, 1981, PHYS REV B, V24, P2274
BERRY JJ, 2000, J VAC SCI TECHNOL B, V18, P1692
CHANG K, 2001, SOLID STATE COMMUN, V120, P181
CROOKER SA, 1995, PHYS REV LETT, V75, P505
EGUES JC, 1998, PHYS REV LETT, V80, P4578
EGUES JC, 2001, PHYS REV B, V64
FIEDERLING R, 1999, NATURE, V402, P787
FURDYNA JK, 1988, J APPL PHYS, V64, P29
GUNNARSSON O, 1976, PHYS REV B, V13, P4274
GUO Y, 2001, PHYS REV B, V64
JONKER BT, 2000, PHYS REV B, V62, P8180
KNOBEL R, 2000, PHYSICA E, V6, P786
OHNO Y, 1999, NATURE, V402, P790
SCHMIDT G, 2001, PHYS REV LETT, V87
SMORCHKOVA I, 1996, APPL PHYS LETT, V69, P1640
SMORCHKOVA IP, 1997, PHYS REV LETT, V78, P3571
STORMER HL, 1983, SCIENCE, V220, P1241
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
VONKLITZING K, 1980, PHYS REV LETT, V45, P494
NR 20
TC 3
PU SOCIEDADE BRASILEIRA FISICA
PI SAO PAULO
PA CAIXA POSTAL 66328, 05315-970 SAO PAULO, BRAZIL
SN 0103-9733
J9 BRAZ J PHYS
JI Braz. J. Phys.
PD JUN
PY 2002
VL 32
IS 2
BP 327
EP 330
PG 4
SC Physics, Multidisciplinary
GA 568BF
UT ISI:000176522000021
ER
PT J
AU Perpetuo, GJ
Janczak, J
TI 3-Amino-1,2,4-triazine
SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS
LA English
DT Article
ID HYDROGEN; DIHYDRATE; SECONDARY; COMPLEXES; TAPES
AB In the crystal structure of 3-amino-1,2,4-triazine, C3H4N4, the
molecules form hydrogen-bonded chains that are almost parallel to the b
axis (3.2degrees), and which are inclined to the a and c axes by
similar to21 and similar to69degrees, respectively. The distortion of
the 1,2,4-triazine ring in the crystal is compared with gas-phase ab
initio molecular-orbital calculations.
C1 Univ Fed Ouro Preto, Inst Ciencias Exatas & Biol, Dept Fis, BR-35400000 Ouro Preto, MG, Brazil.
Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland.
RP Janczak, J, Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Quim,
BR-31270901 Belo Horizonte, MG, Brazil.
CR *SIEM AN XRAY INST, 1991, XSCANS US MAN VERS 2
ALLEN FH, 1987, J CHEM SOC P2, V2, P1
FRISCH MJ, 1995, GAUSSIAN94
GILLESPIE RJ, 1963, J CHEM EDUC, V40, P295
GILLESPIE RJ, 1992, CHEM SOC REV, V21, P59
JANCZAK J, 1999, ACTA CHEM SCAND, V53, P606
JANCZAK J, 2001, ACTA CRYSTALLOGR 12, V57, P1431
JANCZAK J, 2001, ACTA CRYSTALLOGR C 1, V57, P123
JANCZAK J, 2001, ACTA CRYSTALLOGR C 7, V57, P873
JANCZAK J, 2001, ACTA CRYSTALLOGR C 9, V57, P1120
JANCZAK J, 2002, ACTA CRYSTALLOGR C 6, V58, O339
KRISCHE MJ, 2000, STRUCT BOND, V96, P3
MACDONALD JC, 1994, CHEM REV, V94, P2383
MATHIAS JP, 1994, J AM CHEM SOC, V116, P4316
PAULING L, 1960, NATURE CHEM BOND, P262
PERPETUO GJ, 2002, ACTA CRYSTALLOGR C 2, V58, O112
ROW TNG, 1999, COORDIN CHEM REV, V183, P81
SHELDRICK GM, 1990, SHELXTL
SHELDRICK GM, 1997, SHELXL97
SHELDRICK GM, 1997, SHELXS97
SHERRINGTON DC, 2001, CHEM SOC REV, V30, P83
ZERKOWSKI JA, 1994, J AM CHEM SOC, V116, P4298
NR 22
TC 3
PU BLACKWELL MUNKSGAARD
PI COPENHAGEN
PA 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK
SN 0108-2701
J9 ACTA CRYSTALLOGR C-CRYST STR
JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun.
PD JUL
PY 2002
VL 58
PN Part 7
BP O431
EP O432
PG 2
SC Crystallography
GA 568WF
UT ISI:000176567300047
ER
PT J
AU Sensato, FR
Custodio, R
Calatayud, M
Beltran, A
Andres, J
Sambrano, JR
Longo, E
TI Periodic study on the structural and electronic properties of bulk,
oxidized and reduced SnO2(110) surfaces and the interaction with O-2
SO SURFACE SCIENCE
LA English
DT Article
DE ab initio quantum chemical method and calculations; density functional
calculations; models of surface chemical reactions; chemisorption;
surface electronic phenomena (work function, surface potential, surface
states. etc.); oxygen; tin oxides; semiconducting surfaces
ID OXYGEN VACANCIES; THEORETICAL-ANALYSIS; FUNCTIONAL THEORY; TIN OXIDES;
THIN-FILM; SNO2 110; PHOTOEMISSION; ADSORPTION; ANTIMONY; METHANE
AB The structural and electronic properties of bulk and both oxidized and
reduced SnO2(110) surfaces as well as the adsorption process of O-2 on
the reduced surface have been investigated by periodic DFT calculations
at B3LYP level. The lattice parameters, charge distribution, density of
states and band structure are reported for the bulk and surfaces.
Surface relaxation effects have been explicitly taken into account by
optimizing slab models of nine and seven atomic layers representing the
oxidized and reduced surfaces, respectively. The conductivity behavior
of the reduced SnO2(110) surface is explained by a distribution of the
electrons in the electronic states in the band gap induced by oxygen
vacancies. Three types of adsorption approaches of O-2 on the four-fold
tin at the reduced SuO(2)(110) surface have been considered. The most
exothermic channel corresponds to the adsorption of O-2 parallel to the
surface and to the four-fold tin row, and it is believed to be
associated with the formation of a peroxo O-2(2-) species. The
chemisorption of O-2 on reduced SnO2(110) surface causes a significant
depopulation of states along the band gap and it is shown to trap the
electrons in the chemisorbed complex producing an electron-depleted
space-charge layer in the inner surface region of the material in
agreement with some experimental evidences. (C) 2002 Elsevier Science
B.V. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
Univ Estadual Paulista, Dept Matemat, BR-17030360 Bauru, SP, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Sensato, FR, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13083970
Campinas, SP, Brazil.
CR ANTUNES AC, 2001, J MATER SCI-MATER EL, V12, P69
BAUR WH, 1956, ACTA CRYSTALLOGR, V9, P515
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BOYS SF, 1970, MOL PHYS, V19, P553
BUENO PR, 2000, J APPL PHYS, V88, P6545
CALATAYUD M, 1999, SURF SCI, V430, P213
CASSIASANTOS MR, 2001, J EUR CERAM SOC, V21, P161
CATLOW CRA, 1990, NATURE, V347, P243
CAVICCHI R, 1990, J VAC SCI TECHNOL 2, V8, P2347
CHANG SC, 1980, J VAC SCI TECHNOL, V17, P366
COX DF, 1988, PHYS REV B, V38, P2072
COX PA, 1982, SURF SCI, V123, P179
DURAND P, 1975, THEOR CHIM ACTA, V38, P283
GERCHER VA, 1995, SURF SCI, V322, P177
GOBBY PL, 1976, P 13 C PHYS SEM AMST
GODIN TJ, 1993, PHYS REV B, V47, P6518
GREENWOOD NN, 1994, CHEM ELEMENTS
HAINES J, 1997, PHYS REV B, V55, P11144
HENRICH VE, 1994, SURFACE SCI METAL OX
JONES FH, 1997, SURF SCI, V376, P367
KAWABE T, 2000, SURF SCI, V448, P101
KAWAZOE Y, 2001, MATER DESIGN, V22, P61
KOHL D, 1989, SENSOR ACTUATOR, V18, P71
KOJALJ A, 1999, J MOL GRAPH MODEL, V17, P176
LEE C, 1988, PHYS REV B, V37, P785
LINDAN PJD, 2000, CHEM PHYS LETT, V328, P325
MANASSIDIS I, 1995, SURF SCI, V339, P258
MARKOVITS A, 1997, J MOL CATAL A-CHEM, V119, P195
MELLEFRANCO M, 2000, SURF SCI, V461, P54
MISHRA KC, 1995, PHYS REV B, V51, P13972
MUSCAT J, 2001, CHEM PHYS LETT, V342, P397
NAGASAWA Y, 1999, SURF SCI, V435, P226
OVIEDO J, 2000, SURF SCI, V467, P35
PISANI C, 1999, J MOL STRUC-THEOCHEM, V463, P125
POWELL MJD, 1970, NUMERICAL METHODS NO
RANTALA TT, 1999, SURF SCI, V420, P103
ROBERTSON J, 1979, J PHYS C SOLID STATE, V12, P4767
SAUER J, 1989, CHEM REV, V89, P199
SAUNDERS VR, 1998, CRYSTAL98 USERS MANU
SENSATO FR, 2001, J MOL STRUC-THEOCHEM, V541, P69
SHEN GL, 1992, VACUUM, V43, P1129
SHERWOOD PMA, 1990, PHYS REV B, V41, P10151
SLATER B, 1999, J PHYS CHEM B, V103, P10644
SLATER B, 2000, CHEM COMMUN, P1235
SZUBER J, 2000, SENSOR ACTUAT B-CHEM, V70, P177
TAFT CA, 2000, RECENT RES DEV QUANT, V1
THEMLIN JM, 1990, PHYS REV B, V42, P11914
THEMLIN JM, 1992, PHYS REV B, V46, P2460
YAMAGUCHI Y, 1998, INT J QUANTUM CHEM, V69, P669
YAMAGUCHI Y, 1999, INT J QUANTUM CHEM, V74, P423
YAMAGUCHI Y, 2000, CHEM PHYS LETT, V316, P477
YAMAZOE N, 1991, SENSOR ACTUAT B-CHEM, V5, P7
NR 52
TC 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD JUN 10
PY 2002
VL 511
IS 1-3
BP 408
EP 420
PG 13
SC Chemistry, Physical
GA 569CY
UT ISI:000176584000048
ER
PT J
AU Dos Santos, HF
Rocha, WR
De Almeida, WB
TI On the evaluation of thermal corrections to gas phase ab initio
relative energies: implications to the conformational analysis study of
cyclooctane
SO CHEMICAL PHYSICS
LA English
DT Article
DE ab initio; DFT; thermal correction; conformational population; low
frequency modes
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-BASIS SETS; MECHANICS CALCULATIONS;
ELECTRON-DIFFRACTION; ORGANIC-MOLECULES; APPROXIMATION; ATOMS;
EXCHANGE; MINIMUM; SPECTRA
AB In this paper we present an investigation of the influence of the
thermal correction on the conformational population for the boat-chair
(BC) and CROWN forms of the cyclooctane molecule, calculated using
quantum mechanical ab initio Hartree-Fock (HF), MP2, MP4SDQ, CCSD and
density functional methods (B3LYP, BLYP, BP86) in conjunction with
various basis sets. A previous experimental gas phase electron
diffraction study pointed out that the BC is either the exclusive or at
least the strongly predominant form in gas phase at room temperature.
We therefore analyzed the performance of various levels of calculation
for the evaluation of the relative conformational population and also
the role played by the thermal correction to gas phase calculated
relative energies. It turns out that the thermal correction is very
sensitive to the presence of low frequency modes that are indeed
internal rotations and need to be treated separately, in what the
cyclooctane molecule is concerned. Once internal rotations were
considered, it can be seen that the HF level of calculation produces
very satisfactory values for thermal correction, compared to MP2.
Therefore, it can be used in single-point energy calculations employing
a high correlated level of theory (MP4SDQ, CCSD), leading to a quite
trustable Gibbs free energy difference data. When thermal energies are
not corrected for low frequency internal rotation modes, a range of
contrasting results is obtained by varying both the quantum mechanical
approach and the basis set. (C) 2002 Elsevier Science B.V. All rights
reserved.
C1 LQC MM, BR-31270970 Belo Horizonte, MG, Brazil.
UFMG, ICEx, Dept Quim, BR-31270970 Belo Horizonte, MG, Brazil.
NEQC, BR-36036330 Juiz de Fora, MG, Brazil.
UFJF, ICE, Dept Quim, BR-36036330 Juiz de Fora, MG, Brazil.
RP De Almeida, WB, LQC MM, BR-31270970 Belo Horizonte, MG, Brazil.
CR ALMENNINGEN A, 1966, ACTA CHEM SCAND, V20, P2689
ANET FAL, 1973, J AM CHEM SOC, V95, P4424
ANET FAL, 1974, FORTSCHR CHEM FORSCH, V45, P169
AYALA PY, 1998, J CHEM PHYS, V108, P2315
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P1372
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BRECKNELL DJ, 1985, J MOL STRUCT THEOCHE, V124, P343
BURGI HB, 1968, HELV CHIM ACTA, V51, P1514
BURKERT U, 1982, MOL MECH
CHANG G, 1989, J AM CHEM SOC, V111, P4379
CHUANG YY, 2000, J CHEM PHYS, V112, P1221
DEALMEIDA VB, 2000, QUIM NOVA, V23, P600
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DOBLER M, 1966, HELV CHIM ACTA, V49, P2492
DOROFEEVA OV, 1985, J PHYS CHEM-US, V89, P252
DOROFEEVA OV, 1990, J STRUCT CHEM, V31, P153
DOSSANTOS HF, 2002, IN PRESS THEORET CHE
DUARTE HA, 2000, J CHEM PHYS, V113, P4206
DUARTE HA, 2001, ANN 11 BRAZ S THEOR
DUNNING TH, 1976, MODERN THEORETICAL C, V3, P1
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
EGMOND JV, 1969, TETRAHEDRON, V25, P2693
ELIEL EL, 1965, CONFORMATIONAL ANAL
FERGUSON DM, 1992, J COMPUT CHEM, V13, P525
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HARIHARAN PC, 1974, MOL PHYS, V27, P2309
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HENRICKSON JB, 1964, J AM CHEM SOC, V86, P4854
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
LEE C, 1988, PHYS REV B, V37, P785
LIPTON M, 1988, J COMPUT CHEM, V9, P343
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
MCQUARRIE DA, 1997, PHYSICAL CHEM MOL AP
MCQUARRIE DA, 1999, MOL THERMODYNAMICS
MEIBOOM S, 1977, J CHEM PHYS, V66, P4041
MOLLER C, 1934, PHYS REV, V46, P618
PAKES PW, 1981, J PHYS CHEM-US, V85, P2476
PERDEW JP, 1986, PHYS REV B, V33, P8822
ROCHA WR, 1998, J COMPUT CHEM, V19, P524
ROUNDS TC, 1978, VIB SPECTRA STRUCT, V7, P238
SAUNDERS M, 1987, J AM CHEM SOC, V109, P3150
SRINIVASAN R, 1971, TETRAHEDRON, V27, P1009
STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
TRUHLAR DG, 1971, J MOL SPECTROSC, V38, P415
TRUHLAR DG, 1991, J COMPUT CHEM, V12, P266
WOON DE, 1993, J CHEM PHYS, V98, P1358
NR 50
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD JUN 15
PY 2002
VL 280
IS 1-2
BP 31
EP 42
PG 12
SC Physics, Atomic, Molecular & Chemical
GA 566UY
UT ISI:000176447700003
ER
PT J
AU Junqueira, GMA
Rocha, WR
De Almeida, WB
Dos Santos, HF
TI Theoretical analysis of the oxocarbons: The role played by the solvent
and counter-ions in the electronic spectrum of the deltate ion
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID DIFFERENTIAL-OVERLAP TECHNIQUE; MONTE-CARLO; INTERMEDIATE NEGLECT;
CROCONATE DIANION; SPECTROSCOPY; WATER; TRANSITION; FORMALDEHYDE;
COMPLEXES; LITHIUM
AB The structure and spectroscopic properties of the deltate anion are
calculated in the gas phase using ab initio quantum chemical methods
and in aqueous solution through a sequential Monte Carlo-quantum
mechanical procedure. The effects of the solvent and counter-ions on
the electronic spectrum are analyzed, showing that both should be
included in the calculation in order to reproduce the observed UV
spectrum. For the smallest cyclic oxocarbon, the deltate anion, the
calculated electronic transitions were 254 and 246 nm considering the
[Li-2(C3O3)(H2O)(20)] species. This is in accordance with the expected
behavior for the oxocarbon series, predicting absorption bands close to
200 nm for the deltate anion.
C1 Univ Fed Juiz de Fora, ICE, Dept Quim, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Minas Gerais, ICEx, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, ICE, Dept Quim, NEQC, Campus
Martelos, BR-36036330 Juiz De Fora, MG, Brazil.
CR 1992, HDB CHEM PHYSICS
AIHARA J, 1981, J AM CHEM SOC, V103, P1633
ALLEN MP, 1987, COMPUTER SIMULATION
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
COUTINHO K, DICE MONTE CARLO PRO
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
DEOLIVEIRA LFC, 1999, J MOL STRUCT, V510, P97
DORY M, 1994, J CHEM SOC FARADAY T, V90, P2319
DUMESTRE F, 1998, J CHEM SOC DA, V24, P4131
EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
EGGERDING D, 1975, J AM CHEM SOC, V97, P207
FABRE PL, 2000, ELECTROCHIM ACTA, V45, P2697
FARNELL L, 1981, J MOL STRUCT, V76, P1
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GLICK MD, 1964, INORG CHEM, V3, P1712
GLICK MD, 1966, INORG CHEM, V5, P289
GONCALVES NS, 1996, ACTA CRYSTALLOGR C 3, V52, P622
HA TK, 1986, J MOL STRUCT, V137, P183
HEAD JD, 1986, CHEM PHYS LETT, V131, P359
ITO M, 1963, J AM CHEM SOC, V85, P2580
JORGENSEN WL, BOSS VERSION 3 5 BIO
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JUNQUEIRA GMA, 2001, PHYS CHEM CHEM PHYS, V3, P3499
LOPES JGS, 2001, SPECTROCHIM ACTA A, V57, P399
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
PUEBLA C, 1986, J MOL STRUCT THEOCHE, V137, P171
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROCHA WR, 2001, CHEM PHYS LETT, V127, P335
SANTOS PS, 1991, J MOL STRUCT, V243, P223
SCHLEYER PV, 2000, J ORG CHEM, V65, P426
SEITZ G, 1992, CHEM REV, V92, P1227
TAKAHASHI M, 1978, CHEM PHYS, V35, P293
TORII H, 1995, J MOL STRUCT THEOCHE, V334, P15
WEST R, 1960, J AM CHEM SOC, V82, P6204
WEST R, 1963, J AM CHEM SOC, V85, P2577
WEST R, 1963, J AM CHEM SOC, V85, P2586
WEST R, 1979, J AM CHEM SOC, V101, P1710
WEST R, 1981, J AM CHEM SOC, V103, P5073
ZERNER MC, ZINDO SEMIEMPIRICAL
ZERNER MC, 1980, J AM CHEM SOC, V102, P589
ZHAO B, 1992, CAN J CHEM, V70, P135
NR 44
TC 4
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS,
ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2002
VL 4
IS 12
BP 2517
EP 2523
PG 7
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 563FY
UT ISI:000176246700006
ER
PT J
AU de Paiva, R
Alves, JLA
Nogueira, RA
de Oliveira, C
Alves, HWL
Scolfaro, LMR
Leite, JR
TI Theoretical study of the AlxGa1-xN alloys
SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
TECHNOLOGY
LA English
DT Article
DE GaN; AlN; AlGaN; alloys; effective masses
ID ALUMINUM NITRIDE; ZINCBLENDE GAN; SEMICONDUCTORS; ALN
AB In this work we use a first-principles method based on the density
functional theory, the full-potential linear augmented plane-wave
method (FPLAPW), in order to calculate the electronic structures of the
Al(x)Gal(1-x)N alloys in the cubic modification. We adopt a model which
allows the simulation of the composition x = 0.0, 0.25, 0.50, 0.75 and
1.0. We obtain the equilibrium lattice parameters, the bulk moduli, the
formation energies, the miscibility curves and the effective masses of
the conduction and valence bands in the [100], [111] and [110]
directions. The results can be used in the parameterization of theories
based on effective hamiltonians. To our knowledge, this is the first
time such a systematic ab initio study of effective masses of these
semiconductor alloys is accomplished. (C) 2002 Elsevier Science B.V.
All rights reserved.
C1 UFMG, Dept Fis, BR-13081970 Belo Horizonte, MG, Brazil.
FUNREI, Dept Ciencias Nat, BR-36300000 Sao Joao Del Rei, MG, Brazil.
USP, LNMS, Dept Fis Mat & Mecan, BR-05389970 Sao Paulo, Brazil.
RP de Paiva, R, UFMG, Dept Fis, CP 702, BR-13081970 Belo Horizonte, MG,
Brazil.
CR ALBANESI EA, 1993, PHYS REV B, V48, P17841
BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHEN AB, 1996, SEMICONDUCTOR ALLOYS
FAN WJ, 1996, J APPL PHYS, V79, P188
FANCIULLI M, 1993, PHYS REV B, V48, P15144
GERLICH D, 1986, J PHYS CHEM SOLIDS, V47, P437
MIWA K, 1993, PHYS REV B, V48, P7897
NAKAMURA S, 1997, BLUE LASER DIODE
SUZUKI M, 1995, PHYS REV B, V52, P8132
WEI SH, 1988, PHYS REV B, V37, P8958
WETTLING W, 1984, SOLID STATE COMMUN, V50, P33
WIMMER E, 1981, PHYS REV B, V24, P864
WRIGHT AF, 1995, PHYS REV B, V51, P7866
WU YF, 1996, APPL PHYS LETT, V69, P1438
YEH CY, 1992, PHYS REV B, V46, P10086
YEH CY, 1994, PHYS REV B, V50, P2715
NR 17
TC 3
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5107
J9 MATER SCI ENG B-SOLID STATE M
JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
PD MAY 30
PY 2002
VL 93
IS 1-3
BP 2
EP 5
PG 4
SC Materials Science, Multidisciplinary; Physics, Condensed Matter
GA 560NY
UT ISI:000176089200002
ER
PT J
AU de Oliveira, LFC
Edwards, HGM
Velozo, ES
Nesbitt, M
TI Vibrational spectroscopic study of brazilin and brazilein, the main
constituents of brazilwood from Brazil
SO VIBRATIONAL SPECTROSCOPY
LA English
DT Article
DE brazilin; brazilein; Brazilwood; FT-Raman spectroscopy
ID HARMONIC FORCE-FIELD; CAESALPINIA-SAPPAN; AB-INITIO; RAMAN-SPECTRA;
1,4-BENZOQUINONE; NU(2); WOOD; MICE
AB In this work, the vibrational spectra (FT-Raman and infrared spectra)
of brazilin, the major component of brazilwood Caesalpinia echinata
(from Bahia, Brazil), and brazilein, the oxidised pigment, are
investigated. The FT-Raman spectra of the compounds show different
patterns in the carbonyl stretching region, where brazilein presents a
Raman feature at 1697 cm(-1) that is tentatively assigned to a coupled
vibrational mode described by C=O and aromatic C=C stretching. Infrared
measurements are used to support this assignment. The spectral region
between 1700 and 1500 cm(-1) is also proposed as a fingerprint for
brazilin and brazilein. Comparisons with some quinones and polyalcohols
as parent molecules and other deep red resin pigments such as "dragon's
blood" are undertaken to assist the vibrational assignment. As a test
of the spectroscopic protocol for the identification of these pigments
in natural brazilwoods, an 80-year-old archival specimen of Caesalpinia
echinata was analysed non-destructively and the feature of brazilein
shown from the Raman spectrum. (C) 2002 Elsevier Science B.V. All
rights reserved.
C1 Univ Bradford, Dept Chem & Forens Sci, Bradford BD7 1DP, W Yorkshire, England.
Univ Fed Juiz De Fora, Dept Quim, Inst Ciencias Exatas, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Bahia, Fac Farm, BR-41170290 Salvador, BA, Brazil.
Royal Bot Gardens, Ctr Econ Bot, Richmond TW9 3AE, Surrey, England.
RP de Oliveira, LFC, Univ Bradford, Dept Chem & Forens Sci, Bradford BD7
1DP, W Yorkshire, England.
CR BAEK NI, 2000, ARCH PHARM RES, V23, P344
BECKER ED, 1991, J PHYS CHEM-US, V95, P2818
DEFILIPPS RA, 1998, ARCH NATURAL HIST, V25, P103
EDWARDS HGM, 2001, IN PRESS SPECTROCH A
FUKE C, 1985, PHYTOCHEMISTRY, V24, P2403
HWANG GS, 1998, ARCH PHARM RES, V21, P774
KHIL LY, 1999, BIOCHEM PHARMACOL, V58, P1705
KIM DS, 1997, PHYTOCHEMISTRY, V46, P177
KIM SG, 1998, ARCH PHARM RES, V21, P140
MATSUNAGA M, 2000, J WOOD SCI, V46, P253
MOK MS, 1998, ARCH PHARM RES, V21, P769
NONELLA M, 1997, CHEM PHYS LETT, V280, P91
OH SR, 1998, PLANTA MED, V64, P140
PERKIN AG, 1918, NATURAL ORGANIC COLO
SPOLITI M, 1997, THEOCHEM-J MOL STRUC, V390, P139
SZABO A, 1999, J MOL STRUCT, V510, P215
XIE YW, 2000, LIFE SCI, V67, P1913
YANG KM, 2000, ARCH PHARM RES, V23, P626
ZHAN CG, 1998, CHEM PHYS, V230, P45
ZHAN CG, 2000, J MOL STRUC-THEOCHEM, V531, P33
ZHAO XJ, 1996, CHEM PHYS LETT, V262, P643
NR 21
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0924-2031
J9 VIB SPECTROSC
JI Vib. Spectrosc.
PD APR 26
PY 2002
VL 28
IS 2
BP 243
EP 249
PG 7
SC Chemistry, Analytical; Chemistry, Physical; Spectroscopy
GA 556LV
UT ISI:000175852000004
ER
PT J
AU Venezuela, P
Dalpian, GM
da Silva, AJR
Fazzio, A
TI Vacancy-mediated diffusion in disordered alloys: Ge self-diffusion in
Si1-xGex
SO PHYSICAL REVIEW B
LA English
DT Article
ID NATIVE POINT-DEFECTS; AB-INITIO; FIRST-PRINCIPLES; BORON-DIFFUSION;
SILICON; PSEUDOPOTENTIALS; GERMANIUM; SYSTEMS
AB A model is proposed for vacancy mediated diffusion in disordered
alloys, with particular application to Ge self-diffusion in Si1-xGex.
We argue that if the vacancies formation energies (VFE) have a strong
dependence on the configuration of nearest neighbor (NN) atoms, there
will be preferential diffusion paths for some concentrations. For
Si1-xGex we show that the VFE vary linearly from 2 to 3 eV as the
number of NN Ge atoms varies from 4 to 0. Thus, the equilibrium
population of the various kinds of vacancies changes significantly with
x, and the diffusion proceeds by paths that do not necessarily resemble
the concentration of the alloy.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Venezuela, P, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BLOCHL PE, 1993, PHYS REV LETT, V70, P2435
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BRACHT H, 2000, NATURE, V408, P69
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DORENBOS P, 1987, PHYS REV B, V35, P5766
FAHEY P, 1989, APPL PHYS LETT, V54, P843
FAZZIO A, 2000, PHYS REV B, V61, P2401
HOHENBERG P, 1964, PHYS REV B, V136, P864
JANOTTI A, 1999, PHYSICA B, V273, P575
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KOHAN AF, 2000, PHYS REV B, V61, P15019
KOHN W, 1965, PHYS REV, V140, A1133
PERDEW JP, 1981, PHYS REV B, V23, P5048
PUSKA MJ, 1998, PHYS REV B, V58, P1318
SADIGH B, 1999, PHYS REV LETT, V83, P4341
URAL A, 1999, PHYS REV LETT, V83, P3454
VENEZUELA P, 2001, PHYS REV B, V64
VRIJEN R, 2000, PHYS REV A, V62
WEI SH, 1990, PHYS REV B, V42, P9622
WERNER M, 1985, PHYS REV B, V32, P3930
WINDL W, 1999, PHYS REV LETT, V83, P4345
ZANGENBERG NR, 2001, PHYS REV LETT, V87
NR 23
TC 10
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2002
VL 65
IS 19
AR 193306
DI ARTN 193306
PG 4
SC Physics, Condensed Matter
GA 556QR
UT ISI:000175860900018
ER
PT J
AU Bussi, G
Ruini, A
Molinari, E
Caldas, MJ
Puschnig, P
Ambrosch-Draxl, C
TI Interchain interaction and Davydov splitting in polythiophene crystals:
An ab initio approach
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID SEXITHIOPHENE SINGLE-CRYSTALS; QUANTUM-WIRE STRUCTURES;
OPTICAL-SPECTRA; OLIGOTHIOPHENES; EXCITATIONS; EMISSION; POLYMERS
AB The crystal-induced energy splitting of the lowest excitonic state in
polymer crystals, the so-called Davydov splitting Delta, is calculated
with a first-principles density-matrix scheme. We show that different
crystalline arrangements lead to significant variations in Delta, from
below to above the thermal energy k(B)T at room temperature, with
relevant implications on the luminescence efficiency. This is one more
piece of evidence supporting the fact that control of interchain
interactions and solid-state packing is essential for the design of
efficient optical devices. (C) 2002 American Institute of Physics.
C1 Univ Modena & Reggio Emilia, INFMS3, I-41100 Modena, Italy.
Univ Modena & Reggio Emilia, Dipartimento Fis, I-41100 Modena, Italy.
Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, Brazil.
Karl Franzens Univ Graz, Inst Theoret Phys, A-8010 Graz, Austria.
RP Bussi, G, Univ Modena & Reggio Emilia, INFMS3, Via Campi 213-A, I-41100
Modena, Italy.
CR CALDAS MJ, 2001, APPL PHYS LETT, V79, P2505
CORNIL J, 2001, SYNTHETIC MET, V119, P1
DAVYDOV AS, 1962, THEORY MOL EXCITONS
GARNIER F, 1998, APPL PHYS LETT, V72, P2087
GEBAUER W, 1998, CHEM PHYS, V227, P33
GIGLI G, 2001, APPL PHYS LETT, V78, P1493
HOHENESTER U, 2001, PHYS REV B, V64
KOHN W, 1965, PHYS REV, V140, A1133
KOUKI F, 2000, J CHEM PHYS, V113, P385
MOLLER S, 2000, PHYS REV B, V61, P15749
MUCCINI M, 2000, PHYS REV B, V62, P6296
OELKRUG D, 1996, THIN SOLID FILMS, V284, P267
PUSCHNIG P, 2001, SYNTHETIC MET, V119, P245
ROHLFING M, 2000, PHYS REV B, V62, P4927
ROSSI F, 1996, PHYS REV B, V53, P16462
ROSSI F, 1996, PHYS REV LETT, V76, P3642
RUINI A, IN PRESS PHYS REV LE
SCHON JH, 2000, SCIENCE, V290, P963
SIEGRIST T, 1998, ADV MATER, V10, P379
SIRRINGHAUS H, 1998, SCIENCE, V280, P1741
TALIANI C, 1999, HDB OLIGO POLYTHIOPH, P361
VANDERHORST JW, 2000, PHYS REV B, V61, P15817
NR 22
TC 12
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JUN 3
PY 2002
VL 80
IS 22
BP 4118
EP 4120
PG 3
SC Physics, Applied
GA 555BB
UT ISI:000175771800012
ER
PT J
AU Hitchcock, AP
Johnston, S
Tyliszczak, T
Turci, CC
Barbatti, M
Rocha, AB
Bielschowsky, CE
TI Generalized oscillator strengths for C 1s excitation of acetylene and
ethylene
SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
LA English
DT Article
DE generalized oscillator strength; electron scattering; EELS; quadrupole
transitions
ID INNER-SHELL EXCITATION; IMPACT CORE EXCITATION; ENERGY-LOSS
SPECTROSCOPY; ELECTRON-IMPACT; C-1S PHOTOIONIZATION; MOMENTUM-TRANSFER;
SHAPE RESONANCES; MOLECULES; SF6; C2H2
AB The generalized oscillator strength profiles for discrete C 1s excited
states of C2H2 and C2H4 have been derived from angle-dependent
inelastic electron scattering cross-sections measured with 1300 eV
final electron energy. The measured GOS profiles for the strong C
1s-->pi* transition in each species are compared to theoretical
calculations computed within the first Born approximation, using
ab-initio generalized multi structural wave functions. These wave
functions include relaxation, correlation and hole localization
effects. Theory predicts large quadrupole contributions to the pi* GOS
of each species, analogous to those previously reported for computed
GOS profiles for O 1s-->pi* excitation of CO2. We find good agreement
between experiment and theory as to the shape of the pi* GOS but, when
the relative GOS extracted from the experimental data is normalized to
the optical oscillator strength at K-2=0, the magnitude is in better
agreement with the GOS computed for only the dipole channel than for
the sum of the dipole and quadrupole channels. (C) 2002 Elsevier
Science B.V. All rights reserved.
C1 McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
Univ Fed Rio de Janeiro, Inst Quim, BR-21910900 Rio De Janeiro, Brazil.
RP Hitchcock, AP, McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
CR BARTH A, 1980, CHEM PHYS, V46, P149
BETHE H, 1930, ANN PHYS-BERLIN, V5, P325
BIELSCHOWSKY CE, 1992, PHYS REV A, V45, P7942
BONHAM RA, 1979, ELECTRON SPECTROSCOP, V3, P127
BRION CE, 1972, MTP INT REV SCI 1, V5, P55
BRION CE, 1982, AIP C P, V94, P429
DEMIRANDA MP, 1993, J MOL STRUCT, V282, P71
DEMIRANDA MP, 1994, PHYS REV A, V49, P2399
EUSTATIU IG, 1999, CHEM PHYS LETT, V300, P676
EUSTATIU IG, 2000, CHEM PHYS, V257, P235
EUSTATIU IG, 2000, PHYS REV A, V61
FARREN RE, 1991, CHEM PHYS LETT, V177, P307
FRANCIS JT, 1994, CAN J PHYS, V72, P879
FRANCIS JT, 1994, J CHEM PHYS, V101, P10429
FRANCIS JT, 1995, PHYS REV A, V52, P4665
FRANCIS JT, 1995, THESIS MCMASTER U
HENKE BL, 1993, ATOM DATA NUCL DATA, V54, P181
HITCHCOCK AP, 1977, J ELECTRON SPECTROSC, V10, P317
HITCHCOCK AP, 1994, J ELECTRON SPECTROSC, V67, P1
HITCHCOCK AP, 1998, J ELECTRON SPECTROSC, V88, P77
HITCHCOCK AP, 2000, J ELECTRON SPECTROSC, V112, P9
INOKUTI M, 1971, REV MOD PHYS, V43, P297
ITCHKAWITZ BS, 1995, REV SCI INSTRUM 2, V66, P1531
IWATA S, 1978, JPN J APPL PHYS, V17, P105
KEMPGENS B, 1997, J CHEM PHYS, V107, P4219
KEMPGENS B, 1997, PHYS REV LETT, V79, P35
KEMPGENS B, 1999, SURF SCI, V425, L376
KILCOYNE ALD, 1993, J CHEM PHYS, V98, P6735
LASSETTRE EN, 1974, METHODS EXPT PHYSI B, V3, P868
MCLAREN R, 1987, PHYS REV A, V36, P1683
ROCHA AB, 2002, J PHYS CHEM A, V106, P181
TAM WC, 1973, J ELECT SPECTROSC RE, V2, P111
TAM WC, 1973, J ELECT SPECTROSC RE, V3, P479
TAM WC, 1974, J ELECT SPECTROSC RE, V3, P269
TAM WC, 1974, J ELECT SPECTROSC RE, V4, P139
TAM WC, 1974, J ELECT SPECTROSC RE, V4, P149
TAM WC, 1974, J ELECT SPECTROSC RE, V4, P77
TAM WC, 1974, J ELECTRON SPECTROSC, V3, P281
TRAJMAR S, 1970, ADV CHEM PHYS, V18, P15
TRONC M, 1979, J PHYS B ATOM MOL PH, V12, P137
TURCI CC, 1995, PHYS REV A, V52, P4678
TYLISZCZAK T, 2001, J ELECTRON SPECTROSC, V114, P93
WIGHT GR, 1976, J PHYS B ATOM MOL PH, V9, P675
NR 43
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0368-2048
J9 J ELECTRON SPECTROSC RELAT PH
JI J. Electron Spectrosc. Relat. Phenom.
PD MAY
PY 2002
VL 123
IS 2-3
BP 303
EP 314
PG 12
SC Spectroscopy
GA 552WM
UT ISI:000175643100017
ER
PT J
AU Ruini, A
Caldas, MJ
Bussi, G
Molinari, E
TI Solid state effects on exciton states and optical properties of PPV
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID QUANTUM-WIRE STRUCTURES; AB-INITIO CALCULATION; CONJUGATED POLYMERS;
POLY(PHENYLENE VINYLENE); EXCITATIONS; ABSORPTION;
POLY(P-PHENYLENEVINYLENE); SEMICONDUCTORS; SPECTRA; ENERGY
AB We perform ab initio calculations of optical properties for a typical
semiconductor conjugated polymer, poly-para-phenylenevinylene, in both
isolated chain and crystalline packing. In order to obtain results for
excitonic energies and real-space wave functions we explicitly include
electron-hole interaction within the density-matrix formalism. We find
that the details of crystalline arrangement crucially affect the
optical properties, leading to a richer exciton structure and opening
nonradiative decay channels. This has implications for the optical
activity and optoelectronic applications of polymer films.
C1 Univ Modena & Reggio Emilia, INFM S, I-41100 Modena, Italy.
Univ Modena & Reggio Emilia, Dipartimento Fis, I-41100 Modena, Italy.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Ruini, A, Univ Modena & Reggio Emilia, INFM S, Via Campi 213A, I-41100
Modena, Italy.
CR ALVARADO SF, 1996, PHYS REV LETT, V53, P16462
BARTH S, 1997, PHYS REV LETT, V79, P4445
BELJONNE D, 1999, J CHEM PHYS, V111, P2829
BUSSI G, IN PRESS APPL PHYS L
CAMPBELL IH, 1996, PHYS REV LETT, V76, P1900
CAPAZ RB, IN PRESS
CHANDROSS M, 1997, PHYS REV B, V55, P1486
CHEN D, 1992, POLYMER, V33, P3116
CONWELL EM, 1996, SYNTHETIC MET, V83, P101
CORNIL J, 2001, SYNTHETIC MET, V119, P1
DACOSTA PG, 1993, PHYS REV B, V48, P1993
DAVYDOV AS, 1962, THEORY MOL EXCITONS
ECKHARDT H, 1989, J CHEM PHYS, V91, P1303
FRIEND RH, 1999, NATURE, V397, P121
FROLOV SV, 2000, PHYS REV LETT, V85, P2196
HANKE W, 1979, PHYS REV LETT, V43, P387
HILL IG, 2000, CHEM PHYS LETT, V327, P181
HOHENESTER U, 2001, PHYS REV B, V64
KOHN W, 1965, PHYS REV, V140, A1133
LENG JM, 1994, PHYS REV LETT, V72, P156
MARTIN SJ, 1999, PHYS REV B, V59, P15133
MOSES D, 2000, CHEM PHYS LETT, V316, P356
MOSES D, 2001, SYNTHETIC MET, V125, P93
MUCCINI M, 2000, PHYS REV B, V62, P6296
OGAWA T, 1991, PHYS REV B, V44, P8138
RINALDI R, 2001, PHYS REV B, V63
ROHLFING M, 1999, PHYS REV LETT, V82, P1959
ROSSI F, 1996, PHYS REV B, V53, P16462
ROSSI F, 1996, PHYS REV LETT, V76, P3642
ROSSI L, 2001, SYNTHETIC MET, V334, P303
RUINI A, 2001, SYNTHETIC MET, V119, P257
SAKAMOTO A, 1992, J PHYS CHEM-US, V96, P1490
SHAM LJ, 1966, PHYS REV, V144, P708
TIAN B, 1991, J CHEM PHYS, V95, P3198
VANDERHORST JW, 1999, PHYS REV LETT, V83, P4413
WU MW, 1997, PHYS REV B, V56
YAN M, 1995, PHYS REV LETT, V75, P1992
NR 37
TC 41
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD MAY 20
PY 2002
VL 88
IS 20
AR 206403
DI ARTN 206403
PG 4
SC Physics, Multidisciplinary
GA 549UY
UT ISI:000175466200034
ER
PT J
AU Boye, S
Campos, A
Douin, S
Fellows, C
Gauyacq, D
Shafizadeh, N
Halvick, P
Boggio-Pasqua, M
TI Visible emission from the vibrationally hot C2H radical following
vacuum-ultraviolet photolysis of acetylene: Experiment and theory
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID LASER-INDUCED FLUORESCENCE; POTENTIAL-ENERGY SURFACES; 193.3 NM;
PHOTODISSOCIATION DYNAMICS; RECURSIVE EVALUATION; STATE DISTRIBUTION;
ANGULAR MOMENTA; RYDBERG STATES; 121.6 NM; PHOTOCHEMISTRY
AB Photolysis of acetylene has been performed by vacuum-ultraviolet
excitation with the synchrotron radiation via the Rydberg states
converging to the first ionization potential (IP) at 11.4 eV. Only the
visible fluorescence of the ethynyl radical was observed in the (A)
over tilde (2)Pi-(X) over tilde (2)Sigma(+) system. Excitation of
several Rydberg states of acetylene over a large energy range between 9
and 11.4 eV allowed us to observe for the first time the evolution of
this continuum with increasing Rydberg excitation. Intensity
calculations based on accurate ab initio potential energy surfaces of
C2H were performed by using a one-dimensional model accounting for the
large-amplitude motion of the H atom around the C-C bond and for the
overall rotation of the radical. These calculations successfully
reproduce the observed visible continuum (maximum at 500 nm and blue
side cutoff at 400 nm) and bring new information on the distribution of
the internal energy deposited in the fragment. For most excited Rydberg
states, predissociation occurs in a rather low time scale, leaving the
C2H fragment in the (A) over tilde state, vibrationally hot, mostly
with significant excitation in the bending mode around the
isomerization barrier. (C) 2002 American Institute of Physics.
C1 Univ Paris 11, CNRS, Photophys Mol Lab, F-91405 Orsay, France.
Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil.
Univ Bordeaux 1, Lab Physicochim Mol, CNRS, UMR 5803, F-33405 Talence, France.
RP Boye, S, Univ Paris 11, CNRS, Photophys Mol Lab, Batiment 210, F-91405
Orsay, France.
CR ARTHURS AM, 1960, P ROY SOC LOND A MAT, V256, P540
BALKO BA, 1991, J CHEM PHYS 1, V94, P7958
BECKER KH, 1971, Z NATURFORSCH A, V26, P1770
BERGEAT A, 1999, J PHYS CHEM A, V103, P6360
BOGGIOPASQUA M, 1998, J PHYS CHEM A, V102, P2009
BOGGIOPASQUA M, 2000, PHYS CHEM CHEM PHYS, V2, P1693
CAMPOS A, 1999, CHEM PHYS LETT, V314, P91
CURL RF, 1985, J CHEM PHYS, V82, P3479
DOUIN S, UNPUB
DRAINE BT, 1978, ASTROPHYS J, V36, P595
FILLION JH, 1996, J CHEM PHYS, V105, P22
FLETCHER TR, 1989, J CHEM PHYS, V90, P871
GLASSGOLD AE, 1996, ANNU REV ASTRON ASTR, V34, P241
HAN JC, 1989, J CHEM PHYS, V90, P4000
HERMAN M, 1981, J MOL SPECTROSC, V85, P449
HERMAN M, 1982, PHYS SCRIPTA, V25, P275
HERZBERG G, 1966, MOL SPECTRA MOL STRU, V3
HSU YC, 1992, CHEM PHYS LETT, V190, P507
HSU YC, 1996, J CHEM PHYS, V105, P9153
HUGGINS PJ, 1982, AP J, V252, P201
HUGGINS PJ, 1984, ASTROPHYS J, V279, P284
JACKSON WM, 1978, CHEM PHYS LETT, V55, P254
LAFONT S, 1982, ASTRON ASTROPHYS, V106, P201
LAI LH, 1996, J PHYS CHEM-US, V100, P6376
LAURELLE F, UNPUB
LIEVIN J, 1992, J MOL SPECTROSC, V156, P123
LOFFLER P, 1996, CHEM PHYS LETT, V252, P304
LOFFLER P, 1998, J CHEM PHYS, V109, P5231
NAHON L, 1998, NUCL INSTRUM METH A, V404, P418
NAKAYAMA T, 1964, J CHEM PHYS, V40, P558
OKABE H, 1975, J CHEM PHYS, V62, P2782
OKABE H, 1981, J CHEM PHYS, V75, P2772
OKABE H, 1983, CAN J CHEM, V61, P850
OKABE H, 1983, J CHEM PHYS, V78, P1312
OKABE H, 1985, CHEM PHYS, V92, P67
SAITO Y, 1984, J CHEM PHYS, V80, P31
SANDER RK, 1988, J CHEM PHYS, V89, P3495
SATYAPAL S, 1991, J PHYS CHEM-US, V95, P8004
SCHULTEN K, 1975, J MATH PHYS, V16, P1961
SCHULTEN K, 1975, J MATH PHYS, V16, P1971
SCHULTEN K, 1976, COMPUT PHYS COMMUN, V11, P269
SEGALL J, 1991, J PHYS CHEM-US, V95, P8078
SHOKOOHI F, 1989, J CHEM PHYS, V90, P871
SOME E, 1995, J MOL SPECTROSC, V173, P44
SUTO M, 1984, J CHEM PHYS, V80, P4824
TRUONGBACH, 1987, ASTRON ASTROPHYS, V176, P285
URDAHL RS, 1988, CHEM PHYS LETT, V152, P485
WANG JH, 1997, J PHYS CHEM A, V101, P6593
WERNER HJ, MOLPRO PACKAGE AB IN
WODTKE AM, 1985, J PHYS CHEM-US, V89, P4744
NR 50
TC 6
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAY 22
PY 2002
VL 116
IS 20
BP 8843
EP 8855
PG 13
SC Physics, Atomic, Molecular & Chemical
GA 549EK
UT ISI:000175431400020
ER
PT J
AU Tostes, JGR
Dias, JF
Seidl, PR
Carneiro, JWD
Taft, C
TI Steric and electronic contributions to conformational effects on
chemical shifts of acyclic alcohols
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE DFT/GIAO calculations; chemical shifts; hyperconjugation; acyclic
alcohols; electronic effects; steric effects
ID AB-INITIO IGLO; C-13; EXCHANGE; CARBON
AB Our calculations on bi- and polycyclic alcohols reveal that the
Mulliken charge distribution and chemical shift patterns due to
hyperconjugation of lone pairs on oxygen with neighboring groups break
down or are attenuated for certain spatial relationships of the
hydroxyl group. Since in strained ring systems other effects on these
parameters may be present, we applied a similar analysis to acyclic
alcohols. Calculations at the B3LYP/6-31G* level on conformers of
methanol, ethanol, 1- and 2-propanol, 2methyl- l-propanol,
2-methyl-2-propanol, 2-butanol, 2-methyl-2-butanol, 1- 2- and
3-pentanol and 2-methyl-3-pentanol, where hyperconjugation may be
present, reveal steric effects as modifiers of hyperconjugative
patterns affecting carbon-13 chemical shifts in such alcohols. Contrary
to what is observed in bi- and policyclic systems, where electrostatic
effects interfere with effects due to hyperconjugation, these steric
effects may be the main cause for the attenuation of deshielding of
nuclei that are subject to hyperconjugation. Electrostatic effects are
also present but they do not interfere with hyperconjugation by lone
pairs. Conformational effects fall off sharply after the third carbon
in the chain. (C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Estadual Norte Fluminense, Ctr Ciencias & Tecnol, Lab Ciencias Quim, BR-28015620 Campos dos Goytacazes, RJ, Brazil.
Inst Mil Engn, Dept Engn Quim, Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Escola Quim, Rio De Janeiro, Brazil.
Univ Fed Fluminense, Dept Quim Geral & Inorgan, Niteroi, RJ, Brazil.
Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil.
RP Tostes, JGR, Univ Estadual Norte Fluminense, Ctr Ciencias & Tecnol, Lab
Ciencias Quim, Av Alberto Lamego 2000, BR-28015620 Campos dos
Goytacazes, RJ, Brazil.
CR BARFIELD M, 1995, J AM CHEM SOC, V117, P2862
BARFIELD M, 1998, MAGN RESON CHEM, V36, S93
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
DEDIOS AC, 1993, SCIENCE, V260, P1491
DITCHFIELD R, 1974, MOL PHYS, V27, P789
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
LEE C, 1988, PHYS REV B, V37, P785
SEIDL PR, UNPUB
SEIDL PR, 1998, ATUALIDADES FISICO Q, P127
SEIDL PR, 1998, MAGN RESON CHEM, V36, P261
SEIDL PR, 1999, J MOL STRUC-THEOCHEM, V488, P151
SEIDL PR, 2001, J MOL STRUC-THEOCHEM, V539, P163
TOSTES JGR, 1994, J MOL STRUCT THEOCHE, V306, P101
TOSTES JR, 1996, THEOCHEM-J MOL STRUC, V388, P85
WHITESELL JK, 1988, J AM CHEM SOC, V110, P991
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 18
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAR 29
PY 2002
VL 580
SI Sp. Iss. SI
BP 75
EP 83
PG 9
SC Chemistry, Physical
GA 546DG
UT ISI:000175256200010
ER
PT J
AU Bauerfeldt, GF
de Albuquerque, LMM
Arbilla, G
da Silva, EC
TI Unimolecular reactions on formaldehyde S0PES
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE H2CO; unimolecular reactions; direct dynamics; variational RRKM rate
coefficients
ID TRANSITION-STATE; RATE CONSTANTS; PHOTOFRAGMENTATION DYNAMICS; INFRARED
INTENSITIES; PHOTO-DISSOCIATION; AB-INITIO; ENERGY; DISTRIBUTIONS;
SURFACE; H2CO
AB The competitive unimolecular reactions of formaldehyde., H2CO --> H-2 +
CO; H2CO --> trans-HCOH and H2CO --> H + HCO, were comparatively
studied under the direct dynamics formalism, using Density functional
and ab initio levels of theory. In addition, the geometric
isomerization trans-HCOH --> cis-HCOH was evaluated. Calculated
reaction path properties were used in the determination of
Rice-Ramsperger-Kassel-Marcus microcanonical rate coefficients. The
reaction dynamics was evaluated for each individual process based on
the nuclear displacements in the reaction path and normal coordinate
analysis. Our results found are in very good agreement with
experimental barrier heights and quantum yields trends. (C) 2002
Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, Ctr Tecnol, BR-21949900 Rio De Janeiro, Brazil.
RP Bauerfeldt, GF, Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim,
Ctr Tecnol, Bloco A Cidade Univ, BR-21949900 Rio De Janeiro, Brazil.
CR BAKER J, 1986, J COMPUT CHEM, V7, P385
BAMFORD DJ, 1985, J CHEM PHYS, V82, P3032
BAUERFELDT GF, 1999, THESIS U FEDERAL RIO
BAUERFELDT GF, 2000, J PHYS CHEM A, V104, P10895
BAUERFELDT GF, 2001, J MOL STRUCT THEOCHE, V593, P223
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENSON SW, 1976, THERMOCHEMICAL KINET
BEYER T, 1973, COMMUN ASS COMPUT MA, V16, P379
BUTENHOFF TJ, 1990, J CHEM PHYS, V92, P377
CHANG YT, 1992, J CHEM PHYS, V96, P4341
DEBARRE D, 1985, J CHEM PHYS, V83, P4476
DUNCAN JL, 1973, CHEM PHYS LETT, V23, P597
DUNCAN JL, 1974, MOL PHYS, V28, P1177
DUNNING TH, 1976, MODERN THEORETICAL C
DUPUIS M, 1983, J CHEM PHYS, V79, P6167
FINLAYSONPITTS BJ, 1986, ATMOSPHERIC CHEM FUN
FRISCH MJ, 1981, J PHYS CHEM-US, V85, P1467
FRISCH MJ, 1984, J CHEM PHYS, V81, P1882
FROST W, 1991, J CHEM SOC FARADAY T, V87, P2307
FROST W, 1991, J PHYS CHEM-US, V95, P3612
FUKUI K, 1982, PURE APPL CHEM, V54, P1825
GODDARD JD, 1979, J CHEM PHYS, V70, P5117
GODDARD JD, 1981, J CHEM PHYS, V75, P3459
GREEN WH, 1990, CHEM PHYS LETT, V169, P127
GREENHILL PG, 1986, J PHYS CHEM-US, V90, P3104
HERZBERG G, 1991, MOL SPECTRA MOL STRU, V3
HOHENBERG P, 1964, PHYS REV B, V136, P864
HOUSTON PL, 1976, J CHEM PHYS, V65, P757
JENSEY FJ, 1998, INTRO COMPUTATIONAL
JURSIC BS, 1997, THEOCHEM-J MOL STRUC, V418, P11
LEVINE IN, 1991, QUANTUM CHEM
LUKHAUS D, 1996, J CHEM PHYS, V104, P3472
MARTINS LMM, 2000, THESIS U FEDERAL RIO
MARTINS LMMD, 1998, J PHYS CHEM A, V102, P10805
MILLER WH, 1979, J AM CHEM SOC, V101, P6810
MOORE CB, 1983, ANNU REV PHYS CHEM, V34, P525
POLIK WF, 1990, J CHEM PHYS, V92, P3453
REISNER DE, 1984, J CHEM PHYS, V80, P5968
SCUSERIA GE, 1989, J CHEM PHYS, V90, P3629
SEINFELD JH, 1997, ATMOSPHERIC CHEM PHY
SILVA AM, 1999, THESIS U FEDERAL RIO
SILVA AM, 2000, J PHYS CHEM A, V104, P9535
STANTON JF, 1991, J CHEM PHYS, V94, P404
TAGAKI K, 1963, J PHYS SOC JPN, V18, P1174
TANAKA Y, 1977, J MOL SPECTROSC, V64, P429
TERENTIS AC, 1996, CHEM PHYS LETT, V258, P626
TROE J, 1977, J CHEM PHYS, V66, P4745
TROE J, 1984, J PHYS CHEM-US, V88, P4375
WAYNE RP, 1991, CHEM ATMOSPHERES
WOON DE, 1993, J CHEM PHYS, V98, P1358
YAMADA K, 1971, J MOL SPECTROSC, V38, P70
YEUNG ES, 1973, J CHEM PHYS, V58, P3988
YU JSK, 1997, CHEM PHYS LETT, V271, P259
ZHU L, GEN RRKM PROGRAM
NR 54
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAR 29
PY 2002
VL 580
SI Sp. Iss. SI
BP 147
EP 160
PG 14
SC Chemistry, Physical
GA 546DG
UT ISI:000175256200018
ER
PT J
AU Roberto-Neto, O
Machado, FBC
TI An ab initio study of the Cl(P-2)+C2H6 -> C2H5+HCl abstraction reaction
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE abstraction reaction; ethane; chlorine; ab initio; rate constants
ID DIRECT DYNAMICS CALCULATIONS; TRANSITION-STATE THEORY; HYDROGEN
ABSTRACTION; PERTURBATION-THEORY; CHLORINE ATOMS; REACTION-RATES; C2H5
RADICALS; ETHANE; KINETICS; PROPANE
AB Electronic energies, geometries, and harmonic vibration frequencies for
the reactants, products, and transition state for the Cl(P-3) + C2H6
--> C2H5 + HCl abstraction reaction were evaluated at the HF and MP2
levels using several correlation consistent polarized-valence basis
sets. Single-point calculations at PMP2, MP4, QCISD(T), and CCSD(T)
levels were also carried out. The values of the forward activation
energies obtained at the MP4/cc-pVTZ, QCISD(T)/cc-pVTZ, and
CCSD(T)/cc-pVTZ levels using the MP2/cc-pVTZ structures are equal to
-0.1, -0.4, and -0.3 kcal/mol, respectively. The experimental value is
equal to 0.3 +/- 0.2 kcal/mol. We found that the MP2/aug-cc-pVTZ
adiabatic vibration energy for the reaction (-2.4 kcal/mol) agrees well
with the experimental value -(2.2-2.6) kcal/mol. Rate constants
calculated with the zeroth-order interpolated variational transition
state (IVTST-0) method are in good agreement with experiment. In
general, the theoretical rate constants differ from experiment by, at
most, a factor of 2.6. (C) 2002 Elsevier Science B.V. All rights
reserved.
C1 Ctr Tecn Aeroesp, Inst Estudos Avancados, BR-12228840 Sao Jose Dos Campos, SP, Brazil.
Ctr Aerosp Technol, Inst Tecnol Aeronaut, Dept Quim, BR-12228900 Sao Jose Dos Campos, SP, Brazil.
RP Roberto-Neto, O, Ctr Tecn Aeroesp, Inst Estudos Avancados, BR-12228840
Sao Jose Dos Campos, SP, Brazil.
CR ATKINSON R, 1992, J PHYS CHEM REF DATA, V21, P1125
ATKINSON R, 1992, J PHYS CHEM REF DATA, V21, P1416
BOTTONI A, 1995, THEOCHEM-J MOL STRUC, V337, P161
CATELLANO AL, 1981, J AM CHEM SOC, V103, P4262
CHETTUR G, 1987, J PHYS CHEM-US, V91, P3483
CHUANG YY, 1999, POLYRATE VERSION 8 1
CORCHADO JC, 1998, J PHYS CHEM A, V102, P4899
CORCHADO JC, 2000, J CHEM PHYS, V112, P9375
DOBBIS O, 1994, J PHYS CHEM-US, V98, P12284
DUNCAN JL, 1979, J MOL SPECTROSC, V74, P361
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FOSTER SC, 1989, J PHYS CHEM-US, V93, P5986
FRISCH MJ, 1980, CHEM PHYS LETT, V75, P66
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GONZALEZLAFONT A, 1991, J CHEM PHYS, V95, P8875
HERZBERG G, 1945, MOL SPECTRA MOL STRU, V2
HERZBERG G, 1979, MOL SPECTRA MOL STRU, V4
JUNGKAMP TPW, 1997, J CHEM PHYS, V107, P1513
JURSIC BS, 1998, J MOL STRUC-THEOCHEM, V430, P17
KOBAYASHI Y, 2000, CHEM PHYS LETT, V319, P695
LAIDLER KJ, 1987, CHEM KINETICS
LIDE DR, 1994, CRC HDB CHEM PHYSICS
MARSHALL P, 1999, J PHYS CHEM A, V103, P4560
MOORE CE, 1971, NATL STAND REF DATA, V2
PACANSKY J, 1982, J AM CHEM SOC, V104, P415
PARMAR SS, 1989, J AM CHEM SOC, V111, P57
PILGRIM JS, 1997, J PHYS CHEM A, V101, P1873
POPLE JA, 1976, INT J QUANTUM CHEM S, V10, P1
POPLE JA, 1987, J CHEM PHYS, V87, P5968
RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P157
ROBERTONETO O, 1998, J PHYS CHEM A, V102, P4568
ROBERTONETO O, 1999, J CHEM PHYS, V111, P10046
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
RUDOLPH J, 1996, ATMOS ENVIRON, V30, P1887
SCHLEGEL HB, 1986, J CHEM PHYS, V84, P4530
SEARS TJ, 1996, J CHEM PHYS, V104, P781
SVERDLEY LM, 1974, VIBRATION SPECTRA PO
TRUHLAR DG, 1971, CHEM PHYS LETT, V9, P269
TYNDALL GS, 1997, INT J CHEM KINET, V29, P43
WIGNER E, 1932, Z PHYS CHEM B-CHEM E, V19, P203
NR 40
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAR 29
PY 2002
VL 580
SI Sp. Iss. SI
BP 161
EP 170
PG 10
SC Chemistry, Physical
GA 546DG
UT ISI:000175256200019
ER
PT J
AU Goncalves, PFB
Stassen, H
TI New approach to free energy of solvation applying continuum models to
molecular dynamics simulation
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE solvation free energy; molecular dynamics; continuum model; aqueous
solutions
ID AB-INITIO; AQUEOUS-SOLUTION; SOLVENT; WATER; OPTIMIZATION; PARAMETERS;
HYDRATION; PROFILES; DOCKING; RADII
AB A new approach to the calculation of the free energy of solvation from
trajectories obtained by molecular dynamics simulation is presented.
The free energy of solvation is computed as the sum of three
contributions originated at the cavitation of the solute by the
solvent, the solute-solvent nonpolax (repulsion and dispersion)
interactions, and the electrostatic solvation of the solute. The
electrostatic term is calculated based on ideas developed for the
broadly used continuum models, the cavitational contribution from the
excluded volume by the Claverie-Pierotti model, and the Van der Waals
term directly from the molecular dynamics simulation. The proposed
model is tested for diluted aqueous solutions of simple molecules
containing a variety of chemically important functions: methanol,
methylamine. water, methanethiol, and dichloromethane. These solutions
were treated by molecular dynamics simulations using SPC/E water and
the OPLS force field for the organic molecules. Obtained free energies
of solvation a-re in very good agreement with experimental data.
C1 Univ Fed Rio Grande Sul, Inst Quim, Grp Quim Teor, BR-91540000 Porto Alegre, RS, Brazil.
RP Stassen, H, Univ Fed Rio Grande Sul, Inst Quim, Grp Quim Teor,
BR-91540000 Porto Alegre, RS, Brazil.
CR ADAMS DJ, 1974, MOL PHYS, V28, P1241
ALLEN MP, 1987, COMPUTER SIMULATION
APOSTOLAKIS J, 1998, J COMPUT CHEM, V19, P21
BENNAIM A, 1987, SOLUTION THERMODYNAM
BENNETT CH, 1976, J COMPUT PHYS, V22, P245
BERENDSEN HJC, 1987, J PHYS CHEM-US, V91, P6269
BONDI A, 1964, J PHYS CHEM-US, V68, P441
BOTTCHER CFJ, 1973, THEORY ELECT POLARIS
CABANI S, 1981, J SOLUTION CHEM, V10, P563
CAFLISCH A, 1997, J COMPUT CHEM, V18, P723
COLOMINAS C, 1999, J COMPUT CHEM, V20, P665
COLOMINAS C, 1999, J PHYS CHEM A, V103, P6200
CRAMER CJ, 1991, J AM CHEM SOC, V113, P8305
CRAMER CJ, 1999, CHEM REV, V99, P2161
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3901
FLORIS FM, 1991, J COMPUT CHEM, V12, P784
FRISCH MJ, 1998, GAUSSIAN98
GILSON MK, 1995, J COMPUT CHEM, V16, P1081
GONCALVES PFB, 1999, CHEM PHYS LETT, V304, P438
GRAY CG, 1984, THEORY MOL FLUIDS, V1
GUARNIERI F, 1996, J AM CHEM SOC, V118, P5580
JORGENSEN WL, 1988, J AM CHEM SOC, V110, P1657
JORGENSEN WL, 1990, J AM CHEM SOC, V112, P4768
KAMINSKI G, 1994, J PHYS CHEM-US, V98, P13077
KOLLMAN P, 1993, CHEM REV, V93, P2395
LIPTON MA, 1996, TETRAHEDRON LETT, V37, P287
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
MAHONEY MW, 2000, J CHEM PHYS, V112, P8910
MARCHI M, 2001, J CHEM PHYS, V114, P4377
MAXWELL DS, 1995, J COMPUT CHEM, V16, P984
MEZEI M, 1993, MOL SIMULAT, V10, P225
NOSE S, 1984, MOL PHYS, V52, P255
OROZCO M, 1995, J COMPUT CHEM, V16, P563
PASCUALAHUIR JL, 1990, J COMPUT CHEM, V11, P1047
PERLMAN A, 1994, J CHEM PHYS, V98, P1487
PERLMAN A, 1994, J COMPUT CHEM, V15, P105
PIEROTTI RA, 1976, CHEM REV, V76, P717
QIU D, 1997, J PHYS CHEM A, V101, P3005
REDDY MR, 1998, J COMPUT CHEM, V19, P769
SENDEROWITZ H, 1995, J AM CHEM SOC, V117, P8211
SENDEROWITZ H, 1996, J AM CHEM SOC, V118, P2078
SILLA E, 1990, J MOL GRAPHICS, V8, P168
SILLA E, 1991, J COMPUT CHEM, V12, P1077
SMART JL, 1997, J COMPUT CHEM, V18, P1751
STEWART JJP, MOPAC93 00 MANUAL RE
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STILL WC, 1990, J AM CHEM SOC, V112, P6127
STRAATSMA TP, 1986, J CHEM PHYS, V85, P6720
TOMASI J, 1994, CHEM REV, V94, P2027
WIDOM B, 1963, J CHEM PHYS, V39, P2804
ZWANZIG RW, 1954, J CHEM PHYS, V22, P1420
NR 51
TC 6
PU JOHN WILEY & SONS INC
PI HOBOKEN
PA 111 RIVER ST, HOBOKEN, NJ 07030 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD MAY
PY 2002
VL 23
IS 7
BP 706
EP 714
PG 9
SC Chemistry, Multidisciplinary
GA 546VH
UT ISI:000175295300003
ER
PT J
AU Pliego, JR
Riveros, JM
TI Parametrization of the PCM model for calculating solvation free energy
of anions in dimethyl sulfoxide solutions
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; AB-INITIO; AQUEOUS SOLVATION;
TRANSITION-STATES; ATOMIC RADII; SOLVENT; IONS; MOLECULES; WATER;
OPTIMIZATION
AB We report the first parametrization of a continuum model for the
solvation of anions in DMSO solution. The present parameters used in
conjunction with the PCM method predict the solvation free energy of 21
anions in DMSO solution with an average error of -1.2 kcal mol(-1), and
a S.D. for the average error of only 2.2 kcal mol(-1). This low, value
of the S.D. shows that the present parametrization is capable of
predicting accurate differences of the solvation free energies in DMSO
solution and is reliable for modeling liquid phase chemical reactions.
(C) 2002 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, SP, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
Sao Paulo, SP, Brazil.
CR CANCES E, 1997, J CHEM PHYS, V107, P3032
CHAMBERS CC, 1996, J PHYS CHEM-US, V100, P16385
CHENG A, 2000, J MOL GRAPH MODEL, V18, P273
COSSI M, 1996, CHEM PHYS LETT, V255, P327
CRAMER CJ, 1992, SCIENCE, V256, P213
CRAMER CJ, 1999, CHEM REV, V99, P2161
CUCCOVIA IM, 2000, J CHEM SOC PERK T 2, P1896
CURUTCHET C, 2001, J COMPUT CHEM, V22, P1180
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
GONCALVES PFB, 1999, CHEM PHYS LETT, V304, P438
GONZALEZ C, 1998, J PHYS CHEM A, V102, P2732
HUMMER G, 1998, J PHYS CHEM A, V102, P7885
LI JB, 1998, CHEM PHYS LETT, V288, P293
LI JB, 1999, THEOR CHEM ACC, V103, P9
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
MASSOVA I, 1999, J PHYS CHEM B, V103, P8628
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIERTUS S, 1982, CHEM PHYS, V65, P239
MOHAN V, 1992, J PHYS CHEM-US, V96, P6428
OROZCO M, 1994, CHEM PHYS, V182, P237
PLIEGO JR, IN PRESS PHYS CHEM C
PLIEGO JR, 2000, CHEM PHYS LETT, V332, P597
PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
QIU D, 1997, J PHYS CHEM A, V101, P3005
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SITKOFF D, 1996, J PHYS CHEM-US, V100, P2744
STEFANOVICH EV, 1995, CHEM PHYS LETT, V244, P65
STILL WC, 1990, J AM CHEM SOC, V112, P6127
TANTILLO DJ, 1999, J ORG CHEM, V64, P3066
TOMASI J, 1994, CHEM REV, V94, P2027
WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
WIBERG KB, 1995, J PHYS CHEM-US, V99, P9072
NR 34
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 8
PY 2002
VL 355
IS 5-6
BP 543
EP 546
PG 4
SC Physics, Atomic, Molecular & Chemical
GA 547AT
UT ISI:000175310400023
ER
PT J
AU Tormena, CF
Rittner, R
Abraham, RJ
TI An NMR, IR and theoretical investigation of the methyl effect on
conformational isomerism in 3-fluoro-3-methyl-2-butanone and
1-fluoro-3,3-dimethyl-2-butanone
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE conformational analysis; fluoroketones; NMR; solvation; theoretical
calculations
ID VIBRATIONAL ASSIGNMENT; ABINITIO CALCULATIONS; INTERNAL-ROTATION;
SOLVATION; FLUOROACETONE; BARRIERS
AB The solvent dependence of the H-1 and C-13 NMR spectra of
3-fluoro-3-methyl-2-butanone (FMB) and 1-fluoro-3,3-dimethyl-2-butanone
(FDMB) was examined and the (4)J(HF), (1)J(CF) and (2)J(CF) couplings
are reported. Density functional theory (DFT) at the B3LYP/6-311 ++
G(2df,2p) level with ZPE (zero point energy) corrections was used to
obtain the conformer geometries. In both FMB and FDMB, the DFT method
gave only two minima for cis (F-C-C=O, 0degrees) and trans (F-C-C=O,
180degrees) rotamers. Assuming the cis and trans forms, the observed
couplings in FM B when analysed by solvation theory gave the energy
difference E-cis-E-trans of 3.80 kcal mol(-1) (1 kcal = 4.184 kJ) in
the vapour phase (cf. the DFT value of 3.21 kcal mol(-1)), decreasing
to 2.6 kcal mol(-1) in CCl4 and to 0.27 kcal mol(-1) in DMSO. In FDMB
the observed couplings when analysed similarly by solvation theory gave
E-cis - E-trans = 1.80 kcal mol(-1) in the vapour phase, decreasing to
0.47 kcal mol(-1) in CCl4 and to - 1.25 kcal mol(-1) in DMSO. The
introduction of a methyl group geminal to the fluorine atom shifts the
conformational equilibrium towards the trans rotamer, in contrast to no
significant effect when the methyl group is introduced at the
alpha-carbon further from the fluorine atom. Copyright (C) 2002 John
Wiley Sons, Ltd.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Rittner, R, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
BR-13083970 Campinas, SP, Brazil.
CR *CIBA, 1972, CIBA S CARB FLUOR CO
ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1999, J CHEM SOC PERK AUG, P1663
ABRAHAM RJ, 2001, J CHEM SOC PERK T 2, P815
BERGMANN ED, 1961, J CHEM SOC, P3452
BODOT H, 1967, B SOC CHIM FR, P870
BOGOLYUBSKII AV, 1987, J ORG CHEM USSR, V23, P2027
COX RA, 1972, CAN J CHEM, V50, P3242
DURIG JR, 1989, J CHEM PHYS, V90, P6840
DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
FORESMAN JB, 1996, EXPLORING CHEM ELECT
FRISCH MJ, 1998, GAUSSIAN 98
FRY AJ, 1979, TETRAHEDRON LETT, V36, P3357
OLIVATO PR, 1996, REV HETEROATOM CHEM, V15, P115
SAEGEBARTH E, 1970, J CHEM PHYS, V52, P3555
TAYLOR NF, 1988, ACS S SERIES, V374
TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
VANEIJCK BP, 1972, J MOL STRUCT, V11, P67
NR 20
TC 7
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD APR
PY 2002
VL 15
IS 4
BP 211
EP 217
PG 7
SC Chemistry, Organic; Chemistry, Physical
GA 544AB
UT ISI:000175135100004
ER
PT J
AU Antonelli, A
Justo, JF
Fazzio, A
TI Interaction of As impurities with 30 degrees partial dislocations in
Si: An ab initio investigation
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID EXTENDED DEFECTS; SILICON; SEGREGATION; PSEUDOPOTENTIALS
AB We investigated through ab initio total energy calculations the
interaction of arsenic impurities with the core of a 30degrees partial
dislocation in silicon. It was found that when an arsenic atom sits in
a crystalline position near the dislocation core, there is charge
transfer from the arsenic towards the dislocation core. As a result,
the arsenic becomes positively charged and the core negatively charged.
The results indicate that the structural changes around the impurity
are very small in both environments, namely, the crystal and the
dislocation core. In this scenario, the interaction between arsenic and
the core is essentially electrostatic, which eventually leads to
arsenic segregation. The segregation energy was found to be as large as
0.5 eV/atom. Additionally, it was found that arsenic pairing inside the
core is not energetically favorable. (C) 2002 American Institute of
Physics.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
Univ Sao Paulo, Escola Politecn, PSI, BR-05424970 Sao Paulo, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Antonelli, A, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
BR-13083970 Campinas, SP, Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
ALEXANDER H, 1989, I PHYS C SER, V104, P281
BACHELET GB, 1982, PHYS REV B, V26, P4199
BAZANT MZ, 1997, PHYS REV B, V56, P8542
BERGHOLZ W, 2000, PHYS STATUS SOLIDI B, V222, P5
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BULATOV VV, 2001, PHILOS MAG A, V81, P1257
EBERT P, 2001, APPL PHYS LETT, V78, P480
HIRTH JP, 1982, THEORY DISLOCATIONS
JUSTO JF, 1998, PHYS REV B, V58, P2539
JUSTO JF, 1999, PHYSICA B, V274, P473
JUSTO JF, 2000, PHYS REV LETT, V84, P2172
JUSTO JF, 2001, SOLID STATE COMMUN, V118, P651
KAPLAN T, 2000, PHYS REV B, V61, P1674
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
MAITI A, 1996, PHYS REV LETT, V77, P1306
MAITI A, 1997, APPL PHYS LETT, V70, P336
PATEL JR, 1966, PHYS REV, V143, P601
PATEL JR, 1976, PHYS REV B, V13, P3548
PIZZINI S, 1999, PHYS STATUS SOLIDI A, V171, P123
SUZUKI T, 1991, DISLOCATION DYNAMICS
NR 21
TC 4
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD MAY 1
PY 2002
VL 91
IS 9
BP 5892
EP 5895
PG 4
SC Physics, Applied
GA 542WR
UT ISI:000175069000053
ER
PT J
AU Pliego, JR
Riveros, JM
TI A theoretical analysis of the free-energy profile of the different
pathways in the alkaline hydrolysis of methyl formate in aqueous
solution
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE ab initio calculations; computer chemistry; ester hydrolysis;
free-energy profile; nucleophilic addition
ID NUCLEOPHILIC DISPLACEMENT-REACTIONS; CARBOXYLIC-ACID ESTERS; GAS-PHASE
REACTIONS; REACTION FIELD CALCULATIONS; DISCRETE-CONTINUUM MODELS;
ANION CLUSTERS X-(H2O)N; X = OH; AB-INITIO; MOLECULAR-ENERGIES;
GAUSSIAN-1 THEORY
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
Sao Paulo, Brazil.
CR ACHATZ U, 1998, J AM CHEM SOC, V120, P1876
ALEMAN C, 1998, CHEM PHYS, V232, P151
AMOVILLI C, 2001, ORGANOMETALLICS, V20, P1310
ARNOLD ST, 1997, J PHYS CHEM A, V101, P2859
BAKOWIES D, 1999, J AM CHEM SOC, V121, P5712
BANDYOPADHYAY P, 2000, J CHEM PHYS, V113, P1104
BASAIF S, 1989, J AM CHEM SOC, V111, P2647
BENDER ML, 1956, J AM CHEM SOC, V78, P317
BENDER ML, 1960, CHEM REV, V60, P53
BOHME DK, 1981, J AM CHEM SOC, V103, P978
BOHME DK, 1984, J AM CHEM SOC, V106, P3447
BRUICE TC, 1968, J AM CHEM SOC, V90, P7136
CAREY FA, 1990, ADV ORGANIC CHEM A, P465
CHABINYC ML, 1998, SCIENCE, V279, P1882
CLAVERIE P, 1978, J PHYS CHEM-US, V82, P405
CRAMER CJ, 1999, CHEM REV, V99, P2161
CURTISS LA, 1990, J CHEM PHYS, V93, P2537
CURTISS LA, 1991, J CHEM PHYS, V94, P7221
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
DEPUY CH, 1985, J AM CHEM SOC, V107, P1093
DEPUY CH, 1990, J AM CHEM SOC, V112, P8650
ENSING B, 2001, J PHYS CHEM A, V105, P3300
FERNANDEZ MA, 1999, J ORG CHEM, V64, P6000
FERNANDO J, 1976, J AM CHEM SOC, V98, P2049
FLORIAN J, 1998, J PHYS CHEM B, V102, P719
FLORIS F, 1995, CHEM PHYS, V195, P207
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FREITAS LCG, 1992, J CHEM SOC FARADAY T, V88, P189
FRINK BT, 1999, J CHEM SOC PERK NOV, P2397
FRISCH MJ, 1994, GAUSSIAN 94 REVISION
GRIMM AR, 1995, MOL PHYS, V86, P369
GRONERT S, 2001, CHEM REV, V101, P329
GUTHRIE JP, 1973, J AM CHEM SOC, V95, P6999
GUTHRIE JP, 1991, J AM CHEM SOC, V113, P3941
HAEFFNER F, 1999, J MOL STRUC-THEOCHEM, V459, P85
HENGGE AC, 1994, J AM CHEM SOC, V116, P11256
HIERL PM, 1986, J AM CHEM SOC, V108, P3142
HUMPHREYS HM, 1956, J AM CHEM SOC, V78, P521
JORGENSEN WL, 1987, ACS SYM SER, V353, P200
LOPEZ X, 1999, J AM CHEM SOC, V121, P5548
LOWRY TH, 1981, MECH THEORY ORGANIC, P650
MARCOS ES, 1985, J PHYS CHEM-US, V89, P4695
MARCOS ES, 1991, J PHYS CHEM-US, V95, P8928
MARLIER JF, 1993, J AM CHEM SOC, V115, P5935
NOBES RH, 1982, CHEM PHYS LETT, V89, P497
OHAIR RAJ, 1994, J AM CHEM SOC, V116, P3609
PLIEGO JR, 2000, CHEM PHYS LETT, V332, P597
PLIEGO JR, 2001, CHEM-EUR J, V7, P169
PLIEGO JR, 2001, J PHYS CHEM A, V105, P7241
PLIEGO JR, 2002, J PHYS CHEM A, V106, P371
POPLE JA, 1989, J CHEM PHYS, V90, P5622
POWERS JC, 1965, TETRAHEDRON LETT, P1713
PRANATA J, 1994, J PHYS CHEM-US, V98, P1180
RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
STEFANIDIS D, 1993, J AM CHEM SOC, V115, P6045
TAKASHIMA K, 1978, J AM CHEM SOC, V100, P6128
TANTILLO DJ, 1999, J ORG CHEM, V64, P3066
TOMASI J, 1994, CHEM REV, V94, P2027
TOPOL IA, 1999, J CHEM PHYS, V111, P10998
TUNON I, 1993, J PHYS CHEM-US, V97, P5547
TUNON I, 1995, J PHYS CHEM-US, V99, P3798
VIGGIANO AA, 1996, J PHYS CHEM-US, V100, P14397
WILLIAMS A, 1989, ACCOUNTS CHEM RES, V22, P387
WINCEL H, 1996, J PHYS CHEM-US, V100, P7488
WINCEL H, 1997, J PHYS CHEM A, V101, P8248
YANG X, 1991, J AM CHEM SOC, V113, P6766
YANG X, 1991, J PHYS CHEM-US, V95, P6182
ZHAN CG, 2000, J AM CHEM SOC, V122, P1522
ZHAN CG, 2000, J AM CHEM SOC, V122, P2621
ZHAN CG, 2000, J PHYS CHEM A, V104, P7672
ZHAN CG, 2001, J PHYS CHEM A, V105, P1296
NR 71
TC 13
PU WILEY-V C H VERLAG GMBH
PI WEINHEIM
PA PO BOX 10 11 61, D-69451 WEINHEIM, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD APR 15
PY 2002
VL 8
IS 8
BP 1945
EP 1953
PG 9
SC Chemistry, Multidisciplinary
GA 543CQ
UT ISI:000175084000020
ER
PT J
AU de Andrade, J
Boes, ES
Stassen, H
TI A force field for liquid state simulations on room temperature molten
salts: 1-ethyl-3-methylimidazolium tetrachloroaluminate
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Letter
ID IONIC LIQUIDS; SOLVENTS
AB A classical force field for the room temperature molten salt
1-ethyl-3-methylimidazolium tetrachloroaluminate has been developed and
successfully tested against experimental data (neutron diffraction,
diffusion constants) by molecular dynamics computer simulation
corresponding to a temperature of 298 K. The force field parameters for
the cation have been derived from the AMBER description for the
protonated amino acid histidine, whereas the AlCl4- parameters have
been achieved by parametrization of intramolecular terms with van der
Waals parameters taken from the Literature. All atomic partial charges
have been obtained from ab initio calculations using the RESP
methodology.
C1 Univ Fed Rio Grande Sul, Grp Quim Teor, Inst Quim, BR-91540000 Porto Alegre, RS, Brazil.
RP Stassen, H, Univ Fed Rio Grande Sul, Grp Quim Teor, Inst Quim,
BR-91540000 Porto Alegre, RS, Brazil.
CR AKDENIZ Z, 1999, Z NATURFORSCH A, V54, P180
ALLEN MP, 1987, COMPUTER SIMULATION
CARPER WR, 1996, J PHYS CHEM-US, V100, P4724
CASE DA, 1999, AMBER 6
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179
DUDEK MJ, 1998, J COMPUT CHEM, V19, P548
DUPONT J, 2000, J BRAZIL CHEM SOC, V11, P337
DYMEK CJ, 1989, INORG CHEM, V28, P1472
FANNIN AA, 1984, J PHYS CHEM-US, V88, P2614
FOX T, 1998, J PHYS CHEM B, V102, P8070
HANKE CH, 2001, MOL PHYS, V99, P807
LARIVE CK, 1995, J PHYS CHEM-US, V99, P12400
LYUBARTSEV AP, 2000, COMPUT PHYS COMMUN, V128, P565
MAYO SL, 1990, J PHYS CHEM-US, V94, P8897
NOSE S, 1984, MOL PHYS, V52, P525
PAPPU RV, 1998, J PHYS CHEM B, V102, P9725
SABOUNGI ML, COMMUNICATION
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
TAKAHASHI S, 1995, INORG CHEM, V34, P2990
TAKAHASHI S, 1999, Z PHYS CHEM 2, V209, P209
TOSI MP, 1993, ANNU REV PHYS CHEM, V44, P173
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
WASSERSCHEID P, 2000, ANGEW CHEM INT EDIT, V39, P3772
WELTON T, 1999, CHEM REV, V99, P2071
NR 24
TC 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1520-6106
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD APR 11
PY 2002
VL 106
IS 14
BP 3546
EP 3548
PG 3
SC Chemistry, Physical
GA 542AW
UT ISI:000175022100007
ER
PT J
AU Alves, CN
da Silva, ABF
Marti, S
Moliner, V
Oliva, M
Andres, J
Domingo, LR
TI An AMI theoretical study on the effect of Zn2+ Lewis acid catalysis on
the mechanism of the cycloaddition between
3-phenyl-1-(2-pyridyl)-2-propen-1-one and cyclopentadiene
SO TETRAHEDRON
LA English
DT Article
DE AM1 theoretical study; Diels-Alder reaction; Zn2+ Lewis acid catalyst
ID DIELS-ALDER REACTION; AQUEOUS-MEDIA; TRANSITION STRUCTURES; AB-INITIO;
ACCELERATION; WATER; SELECTIVITY; ALGORITHM; STATES; STEP
AB The mechanism of the Diels-Alder reaction between
3-phenyl-1-(2-pyridyl)-2-propen-1-one and cyclopentadiene has been
investigated with the AM1 semiempirical method. Stationary points for
two reactive channels, endo-cis and exo-cis, have been characterized.
The role of the Lewis acid catalyst has been modeled taking into
account the formation of a complex between Zn2+ and the carbonyl oxygen
atom and the pyridyl nitrogen atom of the
3-phenyl-1-(2-pyiidyl)-2-propen-1-one system with and without the
presence of two molecules of water around the cation. The mechanism of
the uncatalyzed reaction corresponds to a concerted process, but in the
presence of Lewis acid catalyst the mechanism changes and the reaction
takes place through a stepwise mechanism. A first step involves the
nucleophilic attack of the cyclopentadiene in the double bond of the
dienophile which produces an intermediate. A second step involves the
closure of the intermediate yielding the corresponding final
cycloadduct. The inclusion of the Zn2+ catalyst drastically decreases
the energy barrier associated with the carbon-carbon bond formation of
the first step in comparison to the concerted process. (C) 2002
Elsevier Science Ltd. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Naturais, Dept Quim, BR-66075110 Belem, Para, Brazil.
Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
Univ Valencia, Dept Quim Organ, Valencia, Spain.
RP da Silva, ABF, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis
Mol, CP 780, BR-13560970 Sao Carlos, SP, Brazil.
EM alberico@iqsc.sc.usp.br
CR *SEM, 1997, AMPAC 6 0 US MAN
ALVES CN, 2001, TETRAHEDRON, V57, P6877
ANDRES J, 1994, J CHEM SOC FARADAY T, V90, P1703
BAKER J, 1986, J COMPUT CHEM, V7, P385
BOSNICH B, 1998, ALDRICHIM ACTA, V31, P76
CARRUTHERS W, 1990, CYCLOADDITION REACTI
CATIVIELA C, 1996, CHEM SOC REV, V25, P209
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
FLEMING I, 1996, FRONTIER ORBITALS OR
FRINGUELLI F, 1990, ORG PREP PROCED INT, V22, P131
FRINGUELLI F, 1993, ACTA CHEM SCAND, V47, P255
FRINGUELLI F, 2001, EUR J ORG CHEM FEB, P439
GARCIA JI, 1998, J AM CHEM SOC, V120, P2415
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
GONZALEZ C, 1991, J CHEM PHYS, V95, P5853
JORGENSEN WL, 1993, J AM CHEM SOC, V115, P2936
KAGAN HB, 1992, CHEM REV, V92, P1007
KUMAR A, 2001, CHEM REV, V101, P1
LASCHAT S, 1996, ANGEW CHEM INT EDIT, V35, P289
LI CJ, 1993, CHEM REV, V93, P2023
MCIVER JW, 1974, ACCOUNTS CHEM RES, V7, P72
OPPOLZER W, 1984, ANGEW CHEM INT EDIT, V33, P497
OTTO S, 1995, TETRAHEDRON LETT, V36, P2645
OTTO S, 1996, J AM CHEM SOC, V118, P7702
OTTO S, 1998, J AM CHEM SOC, V120, P9517
PINDUR U, 1993, CHEM REV, V93, P741
RESSIG HU, 1991, ORGANIC SYNTHESIS HI, P71
ROBERSON M, 2001, TETRAHEDRON, V57, P907
SCHLEGEL HB, 1982, J CHEM PHYS, V77, P3676
SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
STEWART NC, 1990, SEMIEMPIRICAL MOL OR
STIPANOVIC RD, 1992, ENV SCI RES, V44, P319
TANAKA J, 2001, TETRAHEDRON, V57, P899
TAPIA O, 1984, CHEM PHYS LETT, V109, P471
TAPIA O, 1994, J CHEM SOC FARADAY T, V90, P2365
TOGNI A, 1994, ANGEW CHEM INT EDIT, V33, P497
YATES P, 1960, J AM CHEM SOC, V82, P4436
ZERNER MC, 1991, SEMIEMPPIRICAL MOL O
NR 38
TC 6
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0040-4020
J9 TETRAHEDRON
JI Tetrahedron
PD MAR 25
PY 2002
VL 58
IS 13
BP 2695
EP 2700
PG 6
SC Chemistry, Organic
GA 538MV
UT ISI:000174820500024
ER
PT J
AU Fontoura, LAM
Rigotti, IJD
Correia, CRD
TI Experimental and theoretical studies on the rotational barrier of
1-acyl- and 1-alkoxycarbonyl-2-pyrrolines
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE dynamic NMR; computational methods; rotational barrier; enamides and
enecarbamates
ID INTERNAL-ROTATION; AB-INITIO; BOND; AMIDES; N,N-DIMETHYLFORMAMIDE;
ISOMERIZATION; RESONANCE; FORMAMIDE; EFFICIENT; ACIDS
AB The conformational equilibrium as a result of the N-carbonyl bond
rotation of several N-acyl- and N-alkoxycarbonyl-2-pyrrolines have been
studied. The equilibrium constants and the rotational barriers were
determined by theoretical methods (AM1, PM3, HF/3-21G( * ) and
HF/6-31G*) and, experimentally, by dynamic NMR (coalescence
temperature). The measured rotational barriers for enecarbamates were
found to be similar to 16 kcal mol(-1) in C6D6 or C6D5NO2, whereas
slightly higher values were found for enamides in C6D5NO2,. Contrary to
enamides, the rotational barriers for enecarbamates were not affected
by changes in the polarity of the solvent employed. (C) 2002 Elsevier
Science B.V. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, Dept Quim, BR-13083970 Campinas, SP, Brazil.
CIENTEC R, Fundacao Ciencia & Tecnol, Dept Quim, BR-90010460 Porto Alegre, Brazil.
RP Correia, CRD, Univ Estadual Campinas, Inst Quim, Dept Quim, Caixa
Postal 6157, BR-13083970 Campinas, SP, Brazil.
CR *WAV, 1998, PC SPART PLUS 1 5
ABRAHAM RJ, 1988, INTRO NMR SPECTROSCO
BENNET AJ, 1991, J AM CHEM SOC, V113, P7563
BINSCH G, 1980, ANGEW CHEM INT EDIT, V19, P411
BONACORSO HG, 1992, QUIM NOVA, V15, P208
CARPES MJS, 1997, TETRAHEDRON LETT, V38, P1869
COSSY J, 1997, SYNTHETIC COMMUN, V27, P2769
COSTENARO ER, 2001, TETRAHEDRON LETT, V42, P1599
COX C, 1998, J ORG CHEM, V63, P2426
DIETER RK, 1996, J ORG CHEM, V61, P4180
DUFFY EM, 1992, J AM CHEM SOC, V114, P7535
ELIEL E, 1994, STEREOCHEMISTRY ORGA
FISCHER G, 2000, CHEM SOC REV, V29, P119
GUTOWSKY HS, 1956, J CHEM PHYS, V25, P1228
JEENER J, 1979, J CHEM PHYS, V71, P4546
KRAUS GA, 1981, J ORG CHEM, V46, P4791
LAMBERT JB, 1981, ANGEW CHEM INT EDIT, V20, P487
LAUVERGNAT D, 1997, J AM CHEM SOC, V119, P9478
LIDE DR, 1993, HDB CHEM PHYSICS, P148
LIDE DR, 1993, HDB CHEM PHYSICS, P9
OLIVEIRA DF, 1999, J ORG CHEM, V64, P6646
OLIVEIRA DF, 1999, TETRAHEDRON LETT, V40, P2083
OZAWA T, 1997, MAGN RESON CHEM, V35, P323
PHILLIPS WD, 1955, J CHEM PHYS, V23, P1363
POHLIT AM, 1997, HETEROCYCLES, V45, P2321
SHANANATIDI H, 1970, J PHYS CHEM-US, V74, P961
SOUZA WF, 1996, J PHYS ORG CHEM, V9, P179
SUGISAKI CH, 1998, TETRAHEDRON LETT, V39, P3413
VASSILEV NG, 1999, J MOL STRUCT, V484, P39
WANG QP, 1991, J AM CHEM SOC, V113, P5757
WIBERG KB, 1992, J AM CHEM SOC, V114, P831
WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
WOODBREY JC, 1962, J AM CHEM SOC, V84, P12
NR 33
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD MAY 30
PY 2002
VL 609
IS 1-3
BP 73
EP 81
PG 9
SC Chemistry, Physical
GA 538ZV
UT ISI:000174845700010
ER
PT J
AU Terrazos, LA
Petrilli, HM
Marszalek, M
Saitovitch, H
Silva, PRJ
Blaha, P
Schwarz, K
TI Electric field gradients at Ta in Zr and Hf inter-metallic compounds
SO SOLID STATE COMMUNICATIONS
LA English
DT Article
DE metals; electronic band structure; NQR; electric field gradients
ID PERTURBED-ANGULAR-CORRELATION; TA-181
AB Here we calculate the electric field gradient (EFG) at the nucleus of
the substitutional Ta impurity site in Zr2T and Hf2T (T = Cu, Ag, Au,
and Pd) C11(b), inter-metallic compounds. We use the ab initio FP-LAPW
method as embodied in the Wien97 code in a super-cell approach and
include lattice relaxations around the impurity. Our results are
compared with EFG values inferred from measurements of the quadrupole
coupling constants at the Ta-111 probe in these compounds performed
with the time differential perturbed angular correlation (TDPAC)
technique. We also performed EFG calculations for the pure
inter-metallic compounds. Through the comparison of theoretical and
experimental EFGs in these cases, we elucidate the role played by the
Ta probe in the TDPAC measurements of Hf and Zr compounds. Our results
show that, although the EFGs at the Hf site are very similar to the
EFGs at the Ta impurity, there is no direct correlation between the Zr
and Ta EFGs. (C) 2002 Elsevier Science Ltd. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland.
Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
Vienna Tech Univ, Inst Mat Chem, A-1060 Vienna, Austria.
RP Petrilli, HM, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, Brazil.
CR AKAI H, 1990, PROG THEOR PHYS SUPP, P11
BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
BLAHA P, 1999, WIEN97 CODE
BUTZ T, 1983, PHYS LETT A, V97, P217
DAMONTE LC, 1989, PHYS REV B, V39, P12492
DEMELLO LA, 1993, J PHYS-CONDENS MAT, V5, P8935
FEIOCK FD, 1969, PHYS REV, V187, P39
MARSZALEK M, 1994, II28 INP
MENDOZAZELIS LA, 1986, PHYS REV B, V34, P2982
PERDEW JP, 1992, PHYS REV B, V15, P13214
PETRILLI HM, 1991, PHYS REV B, V44, P10493
PETRILLI HM, 1998, PHYS REV B, V57, P11190
VILLARS P, 1991, PEARSONS HDB CRYSTAL
WODNIECKA B, 1995, J ALLOY COMPD, V219, P132
WODNIECKI P, 1996, Z NATURFORSCH A, V51, S437
NR 15
TC 7
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-1098
J9 SOLID STATE COMMUN
JI Solid State Commun.
PY 2002
VL 121
IS 9-10
BP 525
EP 529
PG 5
SC Physics, Condensed Matter
GA 537HQ
UT ISI:000174753200016
ER
PT J
AU Capelle, K
Vignale, G
TI Nonuniqueness and derivative discontinuities in density-functional
theories for current-carrying and superconducting systems
SO PHYSICAL REVIEW B
LA English
DT Article
ID STRONG MAGNETIC-FIELDS
AB Current-carrying and superconducting systems can be treated within
density-functional theory if suitable additional density variables (the
current density and the superconducting order parameter, respectively!
are included in the density-functional formalism. Here we show that the
corresponding conjugate potentials (vector and pair potentials,
respectively) are not uniquely determined by the densities. The
Hohenberg-Kohn theorem of these generalized density-functional theories
is thus weaker than the original one. We give explicit examples and
explore some consequences.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA.
RP Capelle, K, Univ Sao Paulo, Inst Quim Sao Carlos, Caixa Postal 780,
BR-13560970 Sao Carlos, SP, Brazil.
CR ARGAMAN N, 2000, AM J PHYS, V68, P69
CAPELLE K, 2001, PHYS REV LETT, V86, P5546
ESCHRIG H, 2001, SOLID STATE COMMUN, V118, P123
HOHENBERG P, 1964, PHYS REV, V136, B864
KOHN W, 1965, PHYS REV, V140, A1133
KOHN W, 1989, J PHYS-PARIS, V50, P2601
KOHN W, 1999, REV MOD PHYS, V71, P1253
KURTH S, 1999, PHYS REV LETT, V83, P2628
LEE AM, 1999, PHYS REV A, V59, P209
OLIVEIRA LN, 1988, PHYS REV LETT, V60, P2430
PERDEW JP, 1982, PHYS REV LETT, V49, P1691
PERDEW JP, 1983, PHYS REV LETT, V51, P1884
TEMMERMAN WM, 1996, PHYS REV LETT, V76, P307
TINKHAMM, 1996, INTRO SUPERCONDUCTIV
VIGNALE G, 1987, PHYS REV LETT, V59, P2360
VIGNALE G, 1988, PHYS REV B, V37, P10685
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
NR 17
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 15
PY 2002
VL 65
IS 11
AR 113106
DI ARTN 113106
PG 4
SC Physics, Condensed Matter
GA 533UH
UT ISI:000174548400006
ER
PT J
AU Tormena, CF
Amadeu, NS
Ritter, R
Abraham, RJ
TI Conformational analysis in N-methylfluoroamides. A theoretical, NMR and
IR investigation
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID SOLVATION; ISOMERISM
AB Theoretical calculations plus the solvent dependence of the H-1, C-13
NMR and IR spectra were used to determine the conformational
equilibrium in N-methyl-2-fluoroacetamide (NMFA) and
N-methyl-2-fluoropropionamide (NMFP). Ab initio calculations were used
to identify the stable rotamers and obtain their geometries and the
application of solvation theory on the (1)J(CF) coupling constant gave
the conformer populations in the solvents studied. In NMFA ab initio
calculations at the CBS-Q level yielded only two stable rotamers, the
cis and trans, with DeltaE(cis-trans) = 19.7 kJ mol(-1). The presence
of two conformers was confirmed by the FTIR spectra. Assuming these
forms, the observed couplings when analysed by solvation theory gave
DeltaE = 21.3 kJ mol(-1) in the vapour phase, decreasing to 8.9 kJ
mol(-1) in CDCl3 and to 0.8 kJ mol(-1) in DMSO. For NMFP the B3LYP
calculations at the 6-311++g(2df,2p) level gave only the trans rotamer
as stable, while the gauche form was a plateau in the potential energy
surface. However the FTIR spectra clearly showed the presence of two
conformers. A minimum for the gauche rotamer was only found when the
SCRF (self consistent reaction field) routine was included in the
theoretical calculations. The equilibrium in NMFP was therefore
analysed by solvation theory in terms of the trans and gauche rotamers
to give DeltaE(gauche-trans) = 15.9 kJ mol(-1) in the vapour phase,
decreasing to 10.8 kJ mol(-1) in CCl4 and to 0.5 kJ mol(-1) in DMSO.
C1 Univ Estadual Campinas, Inst Quim, Phys Organ Chem Lab, BR-13083970 Campinas, SP, Brazil.
Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Abraham, RJ, Univ Estadual Campinas, Inst Quim, Phys Organ Chem Lab, CP
6154, BR-13083970 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
ABRAHAM RJ, 1999, J CHEM SOC PERK AUG, P1663
ABRAHAM RJ, 1999, PROG NUCL MAG RES SP, V35, P85
ABRAHAM RJ, 2001, J CHEM SOC PERK T 2, P815
ABRAMSON KH, 1966, CAN J CHEM, V44, P1685
BANKS JW, 1999, J CHEM SOC PERK NOV, P2409
BANKS JW, 2000, J FLUORINE CHEM, V102, P235
FORESMAN JB, 1996, EXPLORING CHEM ELECT, P155
FRISCH MJ, 1998, GAUSSIAN98 REVISION
OHAGAN D, 1997, CHEM COMMUN 0407, P645
PHAN HV, 1990, J MOL STRUCT THEOCHE, V209, P333
TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
TORMENA CF, 2002, J PHYS ORG CHEM, V15, P211
VOET D, 1995, BIOCHEMISTRY, CH9
NR 16
TC 10
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1472-779X
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2002
IS 4
BP 773
EP 778
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 533UQ
UT ISI:000174549100012
ER
PT J
AU Esteves, PM
Ramirez-Solis, A
Mota, CJA
TI The nature of superacid electrophilic species in HF/SbF5: A density
functional theory study
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID HYDROGEN-DEUTERIUM EXCHANGE; PROTOLYSIS DEUTEROLYSIS; SINGLE BONDS;
SYSTEM; ALKANES
AB A density functional theory study at the B3LYP/6-31++G** + RECP(Sb)
level of the HF/SbF5 superacid system was carried out. The geometries
of possible electrophilic species, such as H2F+.Sb2F11- and
H3F2+.Sb2F11-, were calculated and correspond with available
experimental results. Calculations of different equilibrium reactions
involving HF and SbF5 allowed the relative concentration of the most
energetically favorable species present in 1:1 HF/SbF5 solutions to be
estimated. These species are H+.Sb2F11-, H2F+.Sb2F11-, H3F2+.Sb2F11-,
and H4F3+-Sb2F11-, which correspond to 36.9, 16.8, 36.9, and 9.4%,
respectively. Calculations of the acid strength of the electrophilic
species were also performed and indicated that, for the same anion, the
acid strength increases with the solvation degree. The entropic term
also plays a significant role in proton-transfer reactions in superacid
systems.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Univ Autonoma Estado Morelos, Fac Ciencias, Dept Fis, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR BERGNER A, 1993, MOL PHYS, V80, P1431
BONNET B, 1975, HEBD SEANCES ACAD SC, V281, P1011
BONNET B, 1980, INORG CHEM, V19, P785
CULMANN JC, 1990, J AM CHEM SOC, V112, P4057
CULMANN JC, 1999, NEW J CHEM, V23, P863
ESTEVES PM, 2000, J BRAZIL CHEM SOC, V11, P345
ESTEVES PM, 2001, J PHYS CHEM B, V105, P4331
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GILLESPIE RJ, 1966, J CHEM SOC A, P1170
HOOGEVEEN H, 1968, RECL TRAV CHIM PAY B, V87, P1295
HYMAN HH, 1961, J PHYS CHEM-US, V65, P123
JOST R, 1988, REV CHEM INTERMED, V9, P171
KIM D, 2000, J PHYS CHEM B, V104, P10074
MOOTZ D, 1988, ANGEW CHEM INT EDIT, V27, P391
MOOTZ D, 1988, ANGEW CHEM, V100, P424
MOOTZ D, 1991, Z NATURFORSCH B, V46, P1659
OLAH GA, 1971, J AM CHEM SOC, V93, P1251
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1985, SUPERACIDS
TOUITI D, 1986, J CHEM SOC P2, P1793
NR 20
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD MAR 20
PY 2002
VL 124
IS 11
BP 2672
EP 2677
PG 6
SC Chemistry, Multidisciplinary
GA 531UM
UT ISI:000174435700058
ER
PT J
AU Erben, MF
Della Vedova, CO
Romano, RM
Boese, R
Oberhammer, H
Willner, H
Sala, O
TI Anomeric and mesomeric effects in methoxycarbonylsulfenyl chloride,
CH3OC(O)SCl: An experimental and theoretical study
SO INORGANIC CHEMISTRY
LA English
DT Article
ID GAS-PHASE STRUCTURE; METHYL THIOLFLUOROFORMATE; CONFORMATIONAL
PROPERTIES; MONOTHIOFORMIC ACID; SPECTRUM
AB The molecular structure and conformational properties of
methoxycarbonylsulfenyl chloride, CH3OC(O)SCl, were determinated in the
gas and solid phases by gas electron diffraction, low-temperature X-ray
diffraction, and vibrational spectroscopy. Furthermore, quantum
chemical calculations were performed. Experimental and theoretical
methods result in structures with a planar C-O-C(O)-S-Cl skeleton. The
electron diffraction intensities are reproduced best with a mixture of
72(8)% syn and 28(8)% anti conformers (S-Cl bond
synperiplanar/antiperiplanar with respect to C=O bond) and the O-CH3
bond synperiplanar with respect to the C=O bond. The syn form is the
preferred form and becomes the exclusive form in the crystalline solid
at low temperature. This experimental result is reproduced very well by
Hartree-Fock approximation and by density functional theory at
different levels of theory but not by the MP2/6-31 1G* method, which
overestimates the value of AGO between the syn and anti conformers. The
results are discussed in terms of anomeric effects and a natural bond
orbital (NBO) calculation, Photolysis of matrix-isolated CH3OC(O)SCl
with broad-band UV-visible irradiation produces an interconversion of
the conformers, and the concomitant decomposition leads to formation of
OCS and CO molecules.
C1 Natl Univ La Plata, Fac Ciencias Exactas, Dept Quim, CEQUINOR,CONICET, RA-1900 La Plata, Argentina.
Natl Univ La Plata, Lab Serv Ind & Sistema Cientif, RA-1900 La Plata, Argentina.
Univ Essen Gesamthsch, Inst Anorgan Chem, D-45117 Essen, Germany.
Univ Tubingen, Inst Phys & Theoret Chem, D-7400 Tubingen, Germany.
Univ Duisburg Gesamthsch, D-47048 Duisburg, Germany.
Univ Sao Paulo, Inst Quim, Sao Paulo, Brazil.
RP Della Vedova, CO, CC 962, RA-1900 La Plata, Argentina.
CR *SIEM, 1991, SHELTX PLUS VERS SGI
BOESE R, 1994, ORGANIC CRYSTAL CHEM, P20
BRODALLA D, 1985, J APPL CRYSTALLOGR, V18, P316
CAMINATI W, 1981, J MOL SPECTROSC, V90, P15
CAMINATI W, 1981, J MOL SPECTROSC, V90, P303
CAMINATI W, 1981, J MOL SPECTROSC, V90, P315
CROWDER GA, 1973, APPL SPECTROSC, V27, P440
DELLAVEDOVA CO, 1989, J RAMAN SPECTROSC, V20, P483
DELLAVEDOVA CO, 1991, J RAMAN SPECTROSC, V22, P291
DELLAVEDOVA CO, 1993, INORG CHEM, V32, P948
FRISCH MJ, 1998, GAUSSIAN 98
GOBBATO KI, 1996, INORG CHEM, V35, P6152
HAMILTON WC, 1965, ACTA CRYSTALLOGR, V18, P502
HEDBERG L, 1993, J MOL SPECTROSC, V160, P117
HOCKING WH, 1977, Z NATURFORSCH A, V32, P1108
KIRBY AJ, 1983, ANOMERIC EFFECT RELA
LARSON JR, 1978, J AM CHEM SOC, V100, P5713
MACK HG, 1991, J PHYS CHEM-US, V95, P4238
MACK HG, 1992, J MOL STRUCT, V265, P347
MACK HG, 1992, J PHYS CHEM-US, V96, P9215
NOE EA, 1977, J AM CHEM SOC, V99, P2803
OBERHAMMER H, 1976, MOL STRUCTURES DIFFR, V4, P24
OBERHAMMER H, 1981, J MOL STRUCT, V70, P273
ROMANO RM, UNPUB
ROMANO RM, 2001, J AM CHEM SOC, V123, P12623
ROMANO RM, 2001, J AM CHEM SOC, V123, P5794
WILLNER H, 1984, Z NATURFORSCH B, V39, P314
NR 27
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD MAR 11
PY 2002
VL 41
IS 5
BP 1064
EP 1071
PG 8
SC Chemistry, Inorganic & Nuclear
GA 528TM
UT ISI:000174259300009
ER
PT J
AU Okulik, NB
Sosa, LG
Esteves, PM
Mota, CJA
Jubert, AH
Peruchena, NM
TI Ab initio topological analysis of the electronic density in n-butonium
cations and their van der Waals complexes
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID POTENTIAL-ENERGY SURFACE; ISOBUTONIUM CATIONS; CH5+
AB In this work, the topology of the ab initio electronic density charge,
using the theory of atoms in molecules (AIM). developed by Bader, is
studied for the n-C4H11 species, the protonated n-butane. The
electronic delocalization that operates through the sigma bonds in
saturated molecules and specifically in protonated alkanes is studied
by means of analysis of the charge density and the bond critical
points. This analysis is used in order to establish a relationship
among the parameters that determine the stability order found for the
different species and relate them with the carbonium ions structure.
Comparing these results with the i-C4H11 allow us to study the nature
of the 3c-2e bonds in alkanes in greater detail, permitting the
description on the a basicity and reactivity scales in terms of
structural parameters of the carbonium ions.
C1 UNNE, Fac Agroind, RA-3700 Peia R Saenz Pena, Chaco, Argentina.
UNNE, Fac Ciencias Exactas Nat & Agrim, Dept Quim, Area Quim Fis, RA-3400 Corrientes, Argentina.
Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
UNLP, Fac Ciencias Exactas, Ctr Quim Inorgan, CEQUINOR,CONICET, RA-1900 La Plata, Argentina.
RP Okulik, NB, UNNE, Fac Agroind, Cte Fernandez 755, RA-3700 Peia R Saenz
Pena, Chaco, Argentina.
CR BADER RFW, 1990, ATOMS MOL QUANTUM TH
CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
ESTEVES PM, 1998, TOP CATAL, V6, P163
ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
ESTEVES PM, 2000, J PHYS CHEM A, V104, P6233
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HIRAOKA K, 1993, CHEM PHYS LETT, V207, P178
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P371
KLIEGERKONIG W, 1982, J COMPUT CHEM, V3, P317
KOCK W, 1989, J AM CHEM SOC, V11, P3479
MARX D, 1995, NATURE, V375, P216
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
OKULIK N, 1999, J PHYS CHEM A, V103, P8491
OKULIK N, 2000, J PHYS CHEM A, V104, P7586
OLAH GA, 1968, J AM CHEM SOC, V90, P2726
OLAH GA, 1969, J AM CHEM SOC, V91, P3261
OLAH GA, 1972, J AM CHEM SOC, V94, P807
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
PALLIS J, 1970, PURE MATH, V14, P223
POPELIER PLA, 1999, ATOMS MOL INTRO
RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
SIEBER S, 1993, J AM CHEM SOC, V115, P259
NR 26
TC 9
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD FEB 28
PY 2002
VL 106
IS 8
BP 1584
EP 1595
PG 12
SC Chemistry, Physical
GA 527ME
UT ISI:000174189200014
ER
PT J
AU Legoas, SB
Galvao, DS
Rodrigues, V
Ugarte, D
TI Origin of anomalously long interatomic distances in suspended gold
chains
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID TRANSMISSION ELECTRON-MICROSCOPY; QUANTIZED CONDUCTANCE; POINT-CONTACT;
MECHANISMS; MOLECULES; NANOWIRES; SIGNATURE; CLUSTERS; SURFACES; ATOMS
AB The discovery of long bonds in gold atom chains has represented a
challenge for physical interpretation. In fact, interatomic distances
frequently attain 3.0-3.6 Angstrom values, and distances as large as
5.0 Angstrom may be occasionally observed. Here we studied gold chains
by transmission electron microscopy and performed theoretical
calculations using cluster ab initio density functional formalism. We
show that the insertion of two carbon atoms is required to account for
the longest bonds, while distances above 3 Angstrom may be due to a
mixture of clean and one C atom contaminated bonds.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
Lab Nacl Luz Sincrotron, BR-13084971 Campinas, SP, Brazil.
RP Legoas, SB, Univ Estadual Campinas, Inst Fis Gleb Wataghin, CP 6165,
BR-13083970 Campinas, SP, Brazil.
CR *WAV INC, TIT
AGRAIT N, 1993, PHYS REV B, V47
DASILVA EZ, 2001, PHYS REV LETT, V87
DELLEY B, 1990, J CHEM PHYS, V92, P508
DELLEY B, 2000, J CHEM PHYS, V113, P7756
HABERLEN OD, 1994, INT J QUANTUM CHEM Q, V28, P595
HABERLEN OD, 1997, J CHEM PHYS, V106, P5189
HAKKINEN H, 1999, J PHYS CHEM B, V103, P8814
KIZUKA T, 1997, PHYS REV B, V55, R7398
KIZUKA T, 1998, PHYS REV LETT, V81, P4448
KIZUKA T, 2001, JPN J APPL PHYS 2, V40, L71
KOIZUMI H, 2001, ULTRAMICROSCOPY, V88, P17
KONDO Y, 1999, B AM PHYS SOC, V44, P312
KRANS JM, 1995, NATURE, V375, P767
LANDMAN U, 1990, SCIENCE, V248, P454
LANDMAN U, 1996, PHYS REV LETT, V77, P1362
MULLER CJ, 1992, PHYSICA C, V191, P485
OHNISHI H, 1998, NATURE, V395, P780
OKAMOTO M, 1999, PHYS REV B, V60, P7808
OLESEN L, 1994, PHYS REV LETT, V72, P2251
PACCHIONI G, 1994, CHEM PHYS, V184, P125
PASCUAL JI, 1993, PHYS REV LETT, V71, P1852
PYYKKO P, 1991, ANGEW CHEM INT EDIT, V30, P604
REIMER L, 1997, SPRINGER SERIES OPTI
RODRIGUES V, CONDMAT0201156
RODRIGUES V, IN PRESS PHYS REV B
RODRIGUES V, IN PRESS
RODRIGUES V, 2000, PHYS REV LETT, V85, P4124
RODRIGUES V, 2001, EUR PHYS J D, V16, P395
RODRIGUES V, 2001, PHYS REV B, V63
RUBIOBOLLINGER G, 2001, PHYS REV LETT, V87
SANCHEZPORTAL D, 1999, PHYS REV LETT, V83, P3884
SORENSEN MR, 1998, PHYS REV B, V57, P3283
TAKAI Y, 2001, PHYS REV LETT, V87
VANRUITENBEEK JM, 2000, CLUSTER SERIES
VOSKO SH, 1980, CAN J PHYS, V58, P1200
WANG Y, 1991, PHYS REV B, V43, P8911
YANSON AI, 1998, NATURE, V395, P783
YU BD, 1997, PHYS REV B, V56
NR 39
TC 30
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD FEB 18
PY 2002
VL 88
IS 7
AR 076105
DI ARTN 076105
PG 4
SC Physics, Multidisciplinary
GA 524PB
UT ISI:000174021100051
ER
PT J
AU Biswas, PK
TI Effect of H- ion formation on positronium-hydrogen elastic scattering
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
ID CLOSE-COUPLING APPROXIMATION; STATIC-EXCHANGE MODEL; ATOM SCATTERING;
ELECTRON-EXCHANGE; CHANNEL FRAMEWORK; HELIUM; MOLECULES; ANNIHILATION;
COLLISIONS; HYDRIDE
AB Positronium-hydrogen scattering has been reinvestigated considering the
charge-transfer rearrangement channel Ps + H--> e(+) + H- in the
coupled-channel formalism. The virtual effects of this rearrangement
channel on scattering length, PsH binding energy, and low-energy (0-10
eV) elastic cross sections are evaluated and H- formation cross
sections are reported for energies up to 100 eV. Results indicate that
the inclusion of such a rearrangement channel could be of significant
importance in obtaining a converged description of PsH scattering in
any ab initio coupled-channel model.
C1 Inst Tecnol Aeronaut, CTA, Dept Fis, BR-12228900 Sao Jose Dos Campos, SP, Brazil.
RP Biswas, PK, Inst Tecnol Aeronaut, CTA, Dept Fis, BR-12228900 Sao Jose
Dos Campos, SP, Brazil.
CR ADHIKARI SK, 1999, PHYS REV A, V59, P2058
ADHIKARI SK, 1999, PHYS REV A, V59, P4829
ADHIKARI SK, 2000, J PHYS B-AT MOL OPT, V33, L761
ADHIKARI SK, 2001, J PHYS B-AT MOL OPT, V34, L187
BARKER MI, 1968, J PHYS B ATOM MOL PH, V1, P1109
BARKER MI, 1969, J PHYS B ATOM MOL PH, V2, P730
BASU A, 2001, PHYS REV A, V63
BISWAS PK, IN PRESS NUCL INST B
BISWAS PK, 1998, J PHYS B-AT MOL OPT, V31, P3147
BISWAS PK, 1998, J PHYS B-AT MOL OPT, V31, P5404
BISWAS PK, 1998, J PHYS B-AT MOL OPT, V31, L315
BISWAS PK, 1998, J PHYS B-AT MOL OPT, V31, L737
BISWAS PK, 1999, PHYS REV A, V59, P363
BISWAS PK, 2000, CHEM PHYS LETT, V129, P317
BISWAS PK, 2000, J PHYS B-AT MOL OPT, V33, P1575
BISWAS PK, 2000, NUCL INSTRUM METH B, V171, P135
BISWAS PK, 2000, PHYS REV A, V61
BISWAS PK, 2000, RADIAT PHYS CHEM, V58, P443
BLACKWOOD JE, 1999, PHYS REV A, V60, P4454
CAMPBELL CP, 1998, PHYS REV LETT, V80, P5097
CANTER KF, 1975, PHYS REV A, V12, P375
CHANDRASEKHAR S, 1944, ASTROPHYS J, V100, P176
DRACHMAN RJ, 1970, J PHYS B ATOM MOL PH, V3, P1657
DRACHMAN RJ, 1975, PHYS REV A, V12, P885
DRACHMAN RJ, 1976, PHYS REV A, V14, P894
DRACHMAN RJ, 1979, PHYS REV A, V19, P1900
FRASER PA, 1961, P PHYS SOC LOND, V78, P329
FROLOV AM, 1997, PHYS REV A, V55, P2662
GARNER AJ, 1996, J PHYS B-AT MOL OPT, V29, P5961
GARNER AJ, 1998, NUCL INSTRUM METH B, V143, P155
GARNER AJ, 2000, J PHYS B ATOM MOL PH, V31, P329
GHOSH AS, COMMUNICATION
GHOSH AS, 1982, PHYS REP, V87, P313
HARA S, 1975, J PHYS B ATOM MOL PH, V8, L472
HILL RN, 1977, PHYS REV LETT, V38, P643
HO YK, 1978, PHYS REV A, V17, P1675
HO YK, 1986, PHYS REV A, V34, P609
HO YK, 1992, HYPERFINE INTERACT, V73, P109
KERNOGHAN AA, 1995, J PHYS B-AT MOL OPT, V28, P1079
LARICCHIA G, 1996, HYPERFINE INTERACT, V100, P71
MANDAL P, 1975, J PHYS B ATOM MOL PH, V8, P2377
MASSEY HSW, 1954, P PHYS SOC A, V67, P695
MCALINDEN MT, 1996, CAN J PHYS, V74, P434
NAGASHIMA Y, 1998, J PHYS B-AT MOL OPT, V31, P329
PAGE BAP, 1976, J PHYS B ATOM MOL PH, V9, P1111
RAY H, 1996, J PHYS B-AT MOL OPT, V29, P5505
RAY H, 1997, J PHYS B-AT MOL OPT, V30, P3745
RAY H, 1999, PHYS LETT A, V252, P316
RAY H, 2000, J PHYS B-AT MOL OPT, V33, P4285
SARKA NK, 1999, J PHYS B-AT MOL OPT, V32, P1657
SARKAR NK, 1997, J PHYS B-AT MOL OPT, V30, P4591
SCHRADER DM, 1992, PHYS REV LETT, V69, P57
SINHA PK, 1997, J PHYS B-AT MOL OPT, V30, P4643
SINHA PK, 1998, PHYS REV A, V58, P242
SINHA PK, 2000, J PHYS B-AT MOL OPT, V33, P2579
SKALSEY M, 1998, PHYS REV LETT, V80, P3727
ZAFAR N, 1996, PHYS REV LETT, V76, P1595
NR 57
TC 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS-B-AT MOL OPT PHYS
JI J. Phys. B-At. Mol. Opt. Phys.
PD DEC 14
PY 2001
VL 34
IS 23
BP 4831
EP 4844
PG 14
SC Physics, Atomic, Molecular & Chemical; Optics
GA 522HQ
UT ISI:000173890700026
ER
PT J
AU Seidl, PR
Carneiro, JWD
Tostes, JGR
Dias, JF
Pinto, PSS
Costa, VEU
Taft, CA
TI Conformational effects on NMR chemical shifts of half-cage alcohols
calculated by GIAO-DFT
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE NMR; chemical shifts; hyperconjugation; DFF-GIAO; half-cage alcohols;
conformational effects
ID SHIELDING TENSORS; BETA-SUBSTITUENT; ABINITIO IGLO; AB-INITIO; C-C;
C-13; HYPERCONJUGATION; METHYL; PENTACYCLODODECANE; DEPENDENCIES
AB Half-cage compounds have played an important role in the investigation
of the way steric compression affects physical and chemical properties
of organic molecules. Recent theoretical studies of half-cage alcohols
have also shown that rotation around the carbon-oxygen bond of the
hydroxyl group leads to low-energy conformers in which hyperconjugation
affects bond lengths, bond angles, and charge distribution on carbon
and hydrogen atoms in its vicinity while charge distribution is also
affected by electrostatic effects. Chemical shifts are also sensitive
to such variations, but we found that in smaller model systems steric
effects may strongly attenuate those due to hyperconjugation so we
optimized geometries for low energy rotamers of 'outside' and 'inside'
half-cage alcohols, where these effects can be separated, and
calculated their respective hydrogen and carbon-13 chemical shifts by
gauge-independent atomic orbital (GIAO) methods at the 133LYP/6-31G(d)
level. Results are compared to those obtained for the corresponding
norbornyl alcohols as well as for the half-cage hydrocarbon. Carbon-13
chemical shifts respond more strongly to effects owing to
hyperconjugation while hydrogen chemical shifts are more sensitive to
electrostatic effects due to the proximity of the hydroxyl group. (C)
2002 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Escola Quim, BR-21949900 Rio De Janeiro, RJ, Brazil.
Univ Fed Fluminense, Dept Quim Geral & Inorgan, BR-24020150 Niteroi, RJ, Brazil.
Univ Estadual Norte Fluminense, Ctr Ciencias & Tecnol, Lab Ciencias Quim, BR-28015620 Sao Jose Dos Campos, RJ, Brazil.
Inst Militar Engn, Dept Engn Quim, BR-22290270 Rio De Janeiro, RJ, Brazil.
Univ Fed Rio Grande Sul, Inst Quim, BR-91509900 Porto Alegre, RS, Brazil.
Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, RJ, Brazil.
RP Seidl, PR, Univ Fed Rio de Janeiro, Escola Quim, Cidade Univ,
BR-21949900 Rio De Janeiro, RJ, Brazil.
CR ABRAHAM RJ, 1997, J CHEM SOC P2, P1751
ABRAHAM RJ, 1999, PROG NUCL MAG RES SP, V35, P85
ADCOCK W, 1999, MAGN RESON CHEM, V37, P167
ANET FAL, 1965, J AM CHEM SOC, V87, P5249
ANET FAL, 1965, J AM CHEM SOC, V87, P5250
ANET FAL, 1979, J AM CHEM SOC, V101, P5449
AXT M, 1996, MAGN RESON CHEM, V34, P929
BARFIELD M, 1990, J AM CHEM SOC, V112, P4747
BARFIELD M, 1993, J AM CHEM SOC, V115, P6916
BARFIELD M, 1993, NUCLEAR MAGNETIC SHI, P523
BARFIELD M, 1997, J AM CHEM SOC, V119, P8699
BARFIELD M, 1998, MAGN RESON CHEM, V36, P93
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BIRD CW, 1961, J AM CHEM SOC, V84, P4809
BRUCK P, 1960, CHEM IND-LONDON, P405
CARNEIRO JWD, 1985, ANAIS ASS BRAS QUIM, V36, P32
CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
COSTA VEU, 1998, TETRAHEDRON-ASYMMETR, V9, P2579
COSTA VEU, 2000, J MOL STRUCT, V519, P37
DEDIOS AC, 1993, J AM CHEM SOC, V115, P9768
DEDIOS AC, 1993, SCIENCE, V260, P1491
DEDIOS AC, 1994, J AM CHEM SOC, V116, P11485
DEDIOS AC, 1994, J AM CHEM SOC, V116, P453
DEDIOS AC, 1994, J AM CHEM SOC, V116, P7784
DELLA EW, 2000, MAGN RESON CHEM, V38, P395
DITCHFIELD R, 1974, MOL PHYS, V27, P789
ERMER O, 1985, J AM CHEM SOC, V107, P2330
FORSYTH DA, 1986, J AM CHEM SOC, V108, P2157
FRISCH MJ, 1995, GAUSSIAN 94W
HOUK KN, 1993, J AM CHEM SOC, V115, P4170
HOWE RK, 1972, J ORG CHEM, V94, P2171
HRICOVINI M, 1997, J PHYS CHEM A, V101, P9756
JIAO D, 1993, MAGN RESON CHEM, V31, P75
KIVELSON D, 1961, J AM CHEM SOC, V83, P2938
KUPKA T, 2000, MAGN RESON CHEM, V38, P149
LAMBERT JB, 1992, J AM CHEM SOC, V114, P10246
LEE C, 1988, PHYS REV B, V37, P785
MARCHAND AP, 1982, STEREOCHEMICAL APPL
PAULING L, 1960, NATURE CHEM BOND, P309
PERALTA JE, 1999, MAGN RESON CHEM, V37, P31
RAUK A, 1996, J AM CHEM SOC, V118, P3761
SEIDL PR, 1990, J MOL STRUCT THEOCHE, V204, P183
SEIDL PR, 1998, ATUALIDADES FISICO Q, P127
SEIDL PR, 1998, MAGN RESON CHEM, V36, P261
SEIDL PR, 1999, J MOL STRUC-THEOCHEM, V488, P151
SEIDL PR, 2001, J MOL STRUC-THEOCHEM, V539, P163
SMITH WB, 1999, MAGN RESON CHEM, V37, P110
SOLOWAY SB, 1960, J AM CHEM SOC, V82, P5195
TOLBERT LM, 1990, J AM CHEM SOC, V112, P9519
TOSTES JGR, IN PRESS
TOSTES JR, 1996, THEOCHEM-J MOL STRUC, V388, P85
WEBB GA, 1996, ENCY MAGN RESON, V7, P4307
WINSTEIN S, 1965, J AM CHEM SOC, V87, P5247
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 55
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAR 1
PY 2002
VL 579
BP 101
EP 107
PG 7
SC Chemistry, Physical
GA 523GT
UT ISI:000173946200012
ER
PT J
AU Klautau, AB
Frota-Pessoa, S
TI Magnetism of Co clusters embedded in Cu(001) surfaces: an ab initio
study
SO SURFACE SCIENCE
LA English
DT Article
DE cobalt; copper; surface defects; clusters; magnetic surfaces;
metal-metal magnetic heterostructures
ID FE IMPURITIES; REAL-SPACE; ELECTRONIC-STRUCTURE; TRANSITION; CU(100);
GROWTH; NANOSTRUCTURES; EXCHANGE; MOMENTS; METALS
AB We report calculations of electronic structure and magnetic properties
of Co clusters (up to 50 atoms) embedded in Cu(0 0 1) surfaces,
performed using the first-principles linear muffin tin orbital-atomic
sphere approximation method, implemented directly in real space. Co
agglomerates of different sizes and shapes are considered in order to
investigate the influence of the local environment around the Co sites
to the magnetism in this class of systems. We find that the magnitude
of the Co moments is mainly governed by two factors: the position of
the site relative to the Cu(0 0 1) surface layer and the number of Cu
neighbors. The results show moment enhancement for sites located above
the surface and/ or placed substitutionally in the surface layer, due
to their reduced coordination numbers. For sites with the same
coordination number, the moment tends to decrease as the number of Cu
neighbors increases. As a consequence, in Co agglomerates, the magnetic
moment decreases considerably as one goes from more central sites to
those close to the grain boundary at the Co-Cu interface. (C) 2001
Published by Elsevier Science B.V.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
RP Klautau, AB, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, SP, Brazil.
CR ALDEN M, 1992, PHYS REV B, V46, P6303
ANDERSEN OK, 1975, PHYS REV B, V12, P3060
ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571
ANDERSEN OK, 1985, HIGHLIGHTS CONDENSED, P2571
BEER N, 1984, ELECT STRUCTURE COMP
BINASCH G, 1989, PHYS REV B, V39, P4828
BRUNO P, 1991, PHYS REV LETT, V67, P1602
BRUNO P, 1995, PHYS REV B, V52, P411
CLEMENS W, 1992, SOLID STATE COMMUN, V81, P739
DEBOER FR, 1985, COHESION METALS, V1
DRITTLER B, 1991, SOLID STATE COMMUN, V79, P31
FASSBENDER J, 1997, SURF SCI, V383, L742
FERNANDO GW, 1988, PHYS REV B, V38, P3016
FORTAPESSOA S, 2001, HYPERFINE INTERACT, V133, P207
FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
FROTAPESSOA S, 1993, PHYS REV LETT, V71, P4206
HAYDOCK R, 1980, SOLID STATE PHYS, V35, P215
HERGERT W, 1999, J MAGN MAGN MATER, V198, P233
HJORTSTAM O, 1996, PHYS REV B, V53, P9204
IZQUIERDO J, 2001, PHYS REV B, V63
KIEF MT, 1993, PHYS REV B, V47, P10785
KIM SK, 2000, SURF SCI, V453, P47
KLAUTAU AB, 1998, J MAGN MAGN MATER, V186, P223
KLAUTAU AB, 1999, PHYS REV B, V60, P3421
KOHL U, 1998, SURF SCI, V407, P104
KORZHAVYI PA, 1999, PHYS REV B, V59, P11693
LANG P, 1994, SOLID STATE COMMUN, V92, P755
LI C, 1990, J MAGN MAGN MATER, V83, P51
NOGUEIRA RN, 2001, PHYS REV B, V63, P2405
NOUVERTNE F, 1999, PHYS REV B, V60, P14382
PAPANIKOLAOU N, 1992, PHYS REV B, V46, P10858
PEDERSEN MO, 1997, SURF SCI, V387, P86
PEDUTO PR, 1991, PHYS REV B, V44, P13283
PEDUTO PR, 1997, BRAZ J PHYS, V27, P574
PENTCHEVA R, 2000, PHYS REV B, V61, P2211
PETRILLI HM, 1993, PHYS REV B, V48, P7148
SKRIVER HL, 1991, PHYS REV B, V43, P9538
STEPANYUK VS, 1997, J MAGN MAGN MATER, V165, P271
STEPANYUK VS, 1997, SURF SCI, V377, P495
STEPANYUK VS, 1999, PHYS REV B, V59, P1681
SZUNYOGH L, 1998, PHYS REV B, V57, P8838
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
WILDBERGER K, 1995, PHYS REV LETT, V75, P509
WU RQ, 1992, J MAGN MAGN MATER, V116, P202
ZIMMERMANN CG, 1999, PHYS REV LETT, V83, P1163
NR 45
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD JAN 20
PY 2002
VL 497
IS 1-3
BP 385
EP 397
PG 13
SC Chemistry, Physical
GA 519QP
UT ISI:000173737200039
ER
PT J
AU Barbosa, KO
Machado, WVM
Assali, LVC
TI First-principles studies of Ti impurities in SiC
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE transition metals; silicon carbide; ab initio methods
AB In this work we perform a theoretical investigation on the atomic
structure, atomic geometry, and formation energy of isolated
substitutional and interstitial Ti impurities in cubic silicon carbide
(3C-SiC). using the spill-polarized full-potential linearized augmented
plane wave method. For each configuration, the atoms around the
impurity site are allowed to relax without any constraints, following
the damped Newton dynamics scheme. The overall structural stability is
analyzed in the light of the electronic structure and the bonding
features. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, BR-05315970 Sao Paulo, Brazil.
RP Assali, LVC, Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, CP 66318,
BR-05315970 Sao Paulo, Brazil.
CR BAUMHAUER H, 1912, Z KRISTALLOGR, V50, P33
BEELER F, 1990, PHYS REV B, V41, P1603
BLAHA P, 1999, WIEN97 FULL POTENTIA
HOHENBERG P, 1964, PHYS REV B, V136, P864
JEPPS NW, 1983, J CRYST GROWTH CHARA, V7, P259
KOHN W, 1965, PHYS REV, V140, A1133
LEBEDEV AA, 1999, SEMICONDUCTORS+, V33, P107
MADELUNG O, 1982, NUMERICAL DATA FUNCT, V17
MULLER STG, 1995, SILICON CARBIDE RELA
PASLOVSKY L, 1993, J LUMIN, V55, P167
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
SINGH DJ, 1994, PLANEWAVES PSEUDOPOT
SON NT, 1994, APPL PHYS LETT, V65, P2687
VERMA AP, 1966, POLYMORPHISM POLYTYP
NR 14
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD DEC
PY 2001
VL 308
BP 726
EP 729
PG 4
SC Physics, Condensed Matter
GA 518GV
UT ISI:000173660100182
ER
PT J
AU Ahuja, R
da Silva, AF
Persson, C
Osorio-Guillen, JM
Pepe, I
Jarrendahl, K
Lindquist, OPA
Edwards, NV
Wahab, Q
Johansson, B
TI Optical properties of 4H-SiC
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID SIC POLYTYPES; N-TYPE; POWER APPLICATIONS; BRILLOUIN-ZONE; SPECIAL
POINTS; BAND; SYSTEMS; DEVICES
AB The optical band gap energy and the dielectric functions of n-type
4H-SiC have been investigated experimentally by transmission
spectroscopy and spectroscopic ellipsometry and theoretically by an ab
initio full-potential linear muffin-tin-orbital method. We present the
real and imaginary parts of the dielectric functions, resolved into the
transverse and longitudinal photon moment a, and we show that the
anisotropy is small in 4H-SiC. The measurements and the calculations
fall closely together in a wide range of energies. (C) 2002 American
Institute of Physics.
C1 Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, SE-75121 Uppsala, Sweden.
Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil.
Linkoping Univ, Dept Phys & Measurement Technol, SE-58183 Linkoping, Sweden.
Motorola Inc, Semicond Prod Sector, Mesa, AZ 85202 USA.
Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden.
RP Ahuja, R, Uppsala Univ, Dept Phys, Condensed Matter Theory Grp, POB
530, SE-75121 Uppsala, Sweden.
CR ADOLPH B, 1997, PHYS REV B, V55, P1422
AHUJA R, 1997, PHYS REV B, V55, P4999
ANDERSEN OK, 1975, PHYS REV B, V12, P3060
ARAUJO CM, 2000, PHYS REV B, V62, P12882
CHADI DJ, 1973, PHYS REV B, V8, P5747
COYKE WJ, 1969, MAT RES B, V4, P141
EDMONDS AR, 1974, ANGULAR MOMENTUM QUA
EDWARDS NV, IN PRESS SURF SCI LE
FROYEN S, 1989, PHYS REV B, V39, P3168
GASHE T, 1993, THESIS UPPSALA U
HARRIS GL, 1995, PROPERTIES SILICON C
HEDIN L, 1971, J PHYS C SOLID STATE, V4, P2064
JANSSON R, 2000, PHYS STATUS SOLIDI B, V218, R1
JANZEN E, 1997, MAT SCI ENG B-SOLID, V46, P203
LIMPIJUMNONG S, 1999, PHYS REV B, V59, P12890
LINDQUIST OPA, 2000, MATER SCI FORUM, V338, P575
LINDQUIST OPA, 2001, APPL PHYS LETT, V78, P2751
MORKOC H, 1994, J APPL PHYS, V76, P1363
OPPENEER PM, 1992, PHYS REV B, V45, P10924
PALMOUR JW, 1993, PHYSICA B, V185, P461
PERSSON C, 1998, J APPL PHYS, V83, P266
PERSSON C, 1998, P 7 INT C SIL CARB 3, V264
PERSSON C, 1999, J APPL PHYS, V86, P4419
PERSSON C, 1999, PHYS REV B, V60, P16479
PRICE DL, 1989, PHYS REV B, V39, P4945
SKRIVER HL, 1984, LMTO METHOD
TREW RJ, 1991, P IEEE, V79, P598
WAHAB Q, 2000, APPL PHYS LETT, V76, P2725
WILLS JM, UNPUB
WILLS JM, 1987, PHYS REV B, V36, P3809
ZANGOOIE S, 2000, J APPL PHYS, V87, P8497
ZHUKOVA II, 1968, FIZ TVERD TELA, V10, P1097
ZOLLNER S, 1999, J APPL PHYS, V85, P8353
NR 33
TC 7
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD FEB 15
PY 2002
VL 91
IS 4
BP 2099
EP 2103
PG 5
SC Physics, Applied
GA 516LB
UT ISI:000173553800052
ER
PT J
AU Tabata, A
Teles, LK
Scolfaro, LMR
Leite, JR
Kharchenko, A
Frey, T
As, DJ
Schikora, D
Lischka, K
Furthmuller, J
Bechstedt, F
TI Phase separation suppression in InGaN epitaxial layers due to biaxial
strain
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID RESONANT RAMAN-SCATTERING; INXGA1-XN
AB Phase separation suppression due to external biaxial strain is observed
in InxGa1-xN alloy layers by Raman scattering spectroscopy. The effect
is taking place in thin epitaxial layers pseudomorphically grown by
molecular-beam epitaxy on unstrained GaN(001) buffers. Ab initio
calculations carried out for the alloy free energy predict and Raman
measurements confirm that biaxial strain suppress the formation of
phase-separated In-rich quantum dots in the InxGa1-xN layers. Since
quantum dots are effective radiative recombination centers in InGaN, we
conclude that strain quenches an important channel of light emission in
optoelectronic devices based on pseudobinary group-III nitride
semiconductors. (C) 2002 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Gesamthsch Paderborn, D-33095 Paderborn, Germany.
Univ Jena, Inst Festkorpertheorie & Theoret Opt, D-07743 Jena, Germany.
Univ Estadual Paulista, BR-17033360 Bauva, SP, Brazil.
RP Leite, JR, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
CR CHICHIBU S, 1996, APPL PHYS LETT, V69, P4188
CHICHIBU S, 1997, APPL PHYS LETT, V70, P2822
KARPOV SY, 1998, MRS INTERNET J N S R, V3
LEMOS V, 2000, PHYS REV LETT, V84, P3666
ODONNELL KP, 1999, PHYS REV LETT, V82, P237
SILVEIRA E, 1999, APPL PHYS LETT, V75, P3602
SINGH R, 1997, APPL PHYS LETT, V70, P1089
TABATA A, 1996, J APPL PHYS 1, V79, P4137
TELES LK, 2000, PHYS REV B, V62, P2475
WANG T, 2001, APPL PHYS LETT, V78, P2617
ZUNGER A, 1994, HDB CRYSTAL GROWTH, V3, P998
NR 11
TC 24
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 4
PY 2002
VL 80
IS 5
BP 769
EP 771
PG 3
SC Physics, Applied
GA 517NW
UT ISI:000173617700022
ER
PT J
AU Correa, RJ
Mota, CJA
TI Theoretical study of protonation of butene isomers on acidic zeolite:
the relative stability among primary, secondary and tertiary alkoxy
intermediates
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID HARTREE-FOCK CALCULATIONS; SOLID ACIDS; SKELETAL ISOMERIZATION;
AB-INITIO; ELECTROSTATIC POTENTIALS; HYDROCARBON CONVERSION; SN2-SN1
SPECTRUM; DEUTERATED ZSM-5; MOLECULAR-MODELS; LINEAR BUTENES
AB A density functional theory (DFT) study of the protonation of
but-1-ene, (E)-but-2-ene and isobutene over a cluster representing the
zeolite acid site (HT3) was carried out. At the B3LYP=6-31+G** level of
calculation all the reactions were exothermic, with respect to the
isolated reactants, in forming an alkoxy species. Formation of a
pi-complex involving the double bond and the acidic proton was the
first step and shows a small dependence with the olefin structure. The
proton transfer involves a transition state with carbenium ion like
character, which is reflected in the calculated DeltaH(double dagger),
being higher for the but-1-ene (to afford the 1-butoxy intermediate)
and lower for the isobutene (to afford the tert-butoxy intermediate).
However, the stability of the alkoxy formed shows a different trend.
The tert-butoxy was computed to be only 1.5 kcal mol(-1) lower in
energy than the pi-complex between isobutene and HT3 at the
B3LYP/6-31+G** level of calculation, but the reaction becomes
endothermic by 2.5 kcal mol(-1) when computed at B3LYP/6-311++G**. The
calculated order of stability among the alkoxy species was 2-butoxy >
1-butoxy > tert-butoxy. These results show that electronic effects
dominate DeltaH(double dagger), which is associated with the kinetics
of the protonation process, while steric effects play a major role in
the stability of the alkoxy, which in turn is related to the
thermodynamics of protonation.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, BR-21949900 Rio De Janeiro, Brazil.
RP Mota, CJA, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Cidade
Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR ARONSON MT, 1989, J AM CHEM SOC, V111, P840
BENTLEY TW, 1976, J AM CHEM SOC, V98, P7658
BENTLEY TW, 1981, J AM CHEM SOC, V103, P5466
BORONAT M, 1998, J PHYS CHEM A, V102, P982
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BUTLER AC, 1993, CATAL TODAY, V18, P443
CHANG CD, 1983, HYDROCARBONS METHANO
CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
CORMA A, 1993, CATAL REV, V35, P483
CORMA A, 1995, CHEM REV, V95, P559
ESTEVES PM, 1997, MOL ENG, V7, P429
ESTEVES PM, 1999, THESIS FEDERAL U RIO
FRASH MV, 1997, J PHYS CHEM B, V101, P5346
FRASH MV, 1998, J PHYS CHEM B, V102, P2232
FRASH MV, 1999, TOP CATAL, V9, P191
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HAW JF, 1989, J AM CHEM SOC, V111, P2052
HAW JF, 1996, ACCOUNTS CHEM RES, V29, P259
ISHIKAWA H, 1999, J PHYS CHEM B, V103, P5681
KAZANSKY VB, 1991, ACCOUNTS CHEM RES, V24, P379
KAZANSKY VB, 1996, APPL CATAL A-GEN, V146, P225
KONDO JN, 1998, CATAL LETT, V53, P215
KONDO JN, 1998, J PHYS CHEM B, V102, P2259
KONDO JN, 1999, J PHYS CHEM B, V103, P8538
LAZO ND, 1991, J PHYS CHEM-US, V95, P9420
MOTA CJA, 1996, APPL CATAL A-GEN, V146, P181
NIVARTHY GS, 2000, MICROPOR MESOPOR MAT, V35, P75
OLAH GA, 1998, ONIUM IONS, CH3
PINE LA, 1984, J CATAL, V85, P466
RAO P, 1996, OIL GAS J, V94, P56
RIGBY AM, 1997, J CATAL, V170, P1
RIGBY AM, 1997, J MOL CATAL A-CHEM, V126, P61
SAUER J, 1989, CHEM REV, V89, P199
SAUER J, 1994, ADV MOL EL, V2, P111
SCHERZER J, 1989, CATAL REV SCI ENG, V31, P215
SEDRAN UA, 1994, CATAL REV, V36, P405
SINCLAIR PE, 1998, J CHEM SOC FARADAY T, V94, P3401
SOMMER J, 1994, J AM CHEM SOC, V116, P5491
SOMMER J, 1995, J AM CHEM SOC, V117, P1135
STEPANOV AG, 1992, CATAL LETT, V13, P407
VENUTO PB, 1979, FLUID CATALYTIC CRAC
VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13713
NR 42
TC 13
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2002
VL 4
IS 2
BP 375
EP 380
PG 6
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 514MX
UT ISI:000173444900030
ER
PT J
AU Pliego, JR
Riveros, JM
TI Theoretical study of the gas-phase reaction of fluoride and chloride
ions with methyl formate
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID NUCLEOPHILIC DISPLACEMENT-REACTIONS; CYCLOTRON RESONANCE SPECTROSCOPY;
INFRARED MULTIPLE-PHOTON; RELATIVE STABILITY; FLOWING AFTERGLOW;
HYDROGEN-BONDS; NEGATIVE-IONS; ANIONS; COMPLEXES; PHOTODETACHMENT
AB The potential energy surface of the gas-phase reaction between halide
ions (F- and Cl-) and methyl formate has been investigated by ab initio
calculations. For F-, two pathways have been observed at thermal
energies and identified in the calculations: (1) a-elimination of CO to
yield a fluoride-methanol adduct, the so-called Riveros reaction that
has found wide application in gas-phase ion chemistry, and (2) S(N)2
displacement of HCOO-. The first reaction is shown to proceed by the
initial formation of a loose complex followed by formal abstraction of
a formyl hydrogen to yield a three-body complex that dissociates into
the final products. The S(N)2 reaction initially involves formation of
a loose complex with the fluoride attached to the methyl group of the
ester. The first pathway is calculated to go through a lower energy
local transition state than the corresponding S(N)2 reaction but the
transition states are located below the energy of the reagents. Both
ion-neutral complexes can interconvert via formation of a stable
tetrahedral intermediate. The product distribution was estimated via a
simple RRKM calculation that predicts 92% of alpha-elimination and 8%
Of S(N)2 reaction. This prediction is in excellent agreement with
measurements carried out by FT-ICR. This product distribution is
predicted to remain essentially unchanged for the reaction with DCOOCH3
in agreement with experimental observations. A similar analysis of the
corresponding Cl- + HCOOCH3 reaction reveals that a-elimination has a
substantial activation energy (well above the reagents) accounting for
the failure to observe this reaction even though it is exothermic.
These calculations also reveal that for the Cl- system, the tetrahedral
intermediate is not a stable intermediate in agreement with previous
experimental data on related systems.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
Sao Paulo, Brazil.
CR ASUBIOJO OI, 1979, J AM CHEM SOC, V101, P3715
BAER S, 1989, J AM CHEM SOC, V111, P4097
BAER S, 1992, J AM CHEM SOC, V114, P5733
BERNASCONI CF, 1990, J AM CHEM SOC, V112, P9044
BLAIR LK, 1973, J AM CHEM SOC, V95, P1057
BLAKE JF, 1987, J AM CHEM SOC, V109, P3856
BOGDANOV B, 1999, INT J MASS SPECTROM, V185, P707
BOTSCHWINA P, 1997, BER BUNSEN PHYS CHEM, V101, P387
CALDWELL G, 1984, J AM CHEM SOC, V106, P4660
CHABINYC ML, 1998, J AM CHEM SOC, V120, P10863
CHABINYC ML, 1998, SCIENCE, V279, P1882
CHABINYC ML, 2000, J AM CHEM SOC, V122, P8739
DEPUY CH, 1985, J AM CHEM SOC, V107, P1093
DEPUY CH, 2000, INT J MASS SPECTROM, V200, P79
DODD JA, 1991, J AM CHEM SOC, V113, P5942
FERNANDO J, 1976, J AM CHEM SOC, V98, P2049
FRINK BT, 1999, J CHEM SOC PERK NOV, P2397
FRISCH MJ, 1994, GAUSSIAN 94 VERSION
GRONERT S, 2001, CHEM REV, V101, P329
HASE WL, 1994, SCIENCE, V266, P998
ISOLANI PC, 1975, CHEM PHYS LETT, V33, P361
JOHLMAN CL, 1985, J AM CHEM SOC, V107, P327
JOSE SM, 1977, NOUV J CHIM, V1, P113
LARSON JW, 1983, J AM CHEM SOC, V105, P2944
LIM KF, 1991, J CHEM PHYS, V94, P7164
MALLARD WG, 2000, 69 NIST
MCIVER RT, 1989, ANAL CHEM, V61, P491
MIHALICK JE, 1996, J AM CHEM SOC, V118, P12424
MOINI M, 1989, INT J MASS SPECTROM, V87, P29
MORAES PRP, 2000, J AM CHEM SOC, V122, P10133
NIXDORF A, 2000, INT J MASS SPECTROM, V195, P533
PEIRIS DM, 1996, INT J MASS SPECTROM, V159, P169
PLIEGO JR, 2001, CHEM-EUR J, V7, P169
REMPEL DL, 1986, INT J MASS SPECTROM, V70, P163
RIVEROS JM, 1973, J AM CHEM SOC, V95, P4066
RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
SILVA MLP, 1995, INT J MASS SPECTROM, V30, P733
TAKASHIMA K, 1978, J AM CHEM SOC, V100, P6128
TAKASHIMA K, 1998, MASS SPECTROM REV, V17, P409
UECHI GT, 1992, J AM SOC MASS SPECTR, V3, P734
VANDERWEL H, 1986, INT J MASS SPECTROM, V72, P145
VANDERWEL H, 1988, RECL TRAV CHIM PAY B, V107, P479
WILBUR JL, 1994, J AM CHEM SOC, V116, P5839
WILBUR JL, 1994, JAM CHEM SOC, V116, P12125
WLADKOWSKI BD, 1994, J CHEM PHYS, V100, P2058
YANG YJ, 1997, J PHYS CHEM A, V101, P2371
ZHAN CG, 2000, J AM CHEM SOC, V122, P1522
ZHU L, 1993, GEN RRKM PROGRAM
NR 48
TC 5
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JAN 17
PY 2002
VL 106
IS 2
BP 371
EP 378
PG 8
SC Chemistry, Physical
GA 513AN
UT ISI:000173355900021
ER
PT J
AU Chaudhuri, P
Canuto, S
TI An ab initio study of the peptide bond formation between alanine and
glycine: electron correlation effects on the structure and binding
energy
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE peptide bond; ab initio; electron correlation effects;
density-functional theory; structure and properties
ID DENSITY-FUNCTIONAL APPROXIMATION; AQUEOUS-SOLUTION; CONFORMERS;
DIPEPTIDES; GEOMETRIES; ABINITIO; H2O-HCN; MODELS; MP2; GAS
AB Ab initio methods are used to analyze the structure, energetics and
binding energy of the four possible dipeptides that can be formed from
alanine and glycine in gas phase. The structures of the peptides are
optimized using Hartree-Fock, second-order Moller-Plesset perturbation
theory and density functional methods (DFT). The effect of electron
correlation is analyzed with special emphasis on the calculated binding
energies. Single-point energy calculations are performed with CCSD(T)
on MP2 geometries to get some additional information on the correlation
effects. Electron correlation effects and zero-point vibrational energy
corrections increase the binding energy. At the highest level, CCSD(T),
we find that the binding energies for alanylalanine, alanylglycine,
glycylalanine and glycylglycine are 4.86, 5.09, 5.61 and 5.89 kcal/mol,
respectively. These numerical results suggest that glycine donates the
OH group easier than alanine. A comparison between the Moller-Plesset
and DFT in different basis sets is made and gives indication of the
usefulness of these methods for bio-molecules and peptide formation.
Two functionals, B3LYP and B3P86 with different basis sets differing by
the systematic inclusion of diffuse and polarization functions, are
used in the DFT method. The results obtained using both functionals
with a basis that includes both diffuse and polarization functions are
in reasonable agreement with the Moller-Plesset results. However,
without including zero-point corrections, some DFT results lead to
non-bonding of the peptide molecule. (C) 2002 Elsevier Science B.V. All
rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1997
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENEDETTI E, 1977, PEPTIDES
BOHM HJ, 1991, J AM CHEM SOC, V113, P7129
CHANDRA AK, 1998, CHEM PHYS, V232, P299
COREY RB, 1953, P ROY SOC LONDON B, V141, P10
CORNELL WD, 1997, THEOCHEM-J MOL STRUC, V392, P101
CSASZAR AG, 1992, J AM CHEM SOC, V114, P9568
CSASZAR AG, 1996, J PHYS CHEM-US, V100, P3541
CSASZAR AG, 1999, PROG BIOPHYS MOL BIO, V71, P243
DEPROFT F, 1996, CHEM PHYS LETT, V250, P393
FRISCH MJ, 1998, GAUSSIAN 98 REV A 7
GODFREY PD, 1993, J AM CHEM SOC, V115, P9687
GODFREY PD, 1995, J AM CHEM SOC, V117, P2019
GOULD IR, 1994, J AM CHEM SOC, V116, P9250
GRONERT S, 1995, J AM CHEM SOC, V117, P2071
GUTOWSKY HS, 1992, J CHEM PHYS, V96, P5808
HEADGORDON T, 1991, J AM CHEM SOC, V113, P5989
JAKLI I, 2000, J COMPUT CHEM, V21, P626
JANSEN JH, 1991, J AM CHEM SOC, V113, P7917
LEE C, 1988, PHYS REV B, V37, P785
MARSH RE, 1967, ADV PROTEIN CHEM, V22, P249
NOVOA JJ, 1995, J PHYS CHEM-US, V99, P15837
PERCZEL A, 1991, J AM CHEM SOC, V113, P6256
PERDEW JP, 1986, PHYS REV B, V33, P8822
PETTITT BM, 1985, CHEM PHYS LETT, V121, P194
POPLE JA, 1987, J CHEM PHYS, V87, P5968
RAMACHANDRAN GN, 1968, ADVANCES PROTEIN CHE, V23, P284
RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
ROTERMAN IK, 1989, J BIOMOL STRUCT DYN, V7, P421
SCARSDALE JN, 1983, J AM CHEM SOC, V105, P3438
SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
SHIOTANI M, 2000, J AM CHEM SOC, V122, P207
VISHVESHWARA S, 1977, J AM CHEM SOC, V99, P422
WONG MW, 1996, CHEM PHYS LETT, V256, P391
NR 35
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JAN 31
PY 2002
VL 577
IS 2-3
BP 267
EP 279
PG 13
SC Chemistry, Physical
GA 514FQ
UT ISI:000173428400018
ER
PT J
AU Avery, MA
Alvim-Gaston, M
Rodrigues, CR
Barreiro, EJ
Cohen, FE
Sabnis, YA
Woolfrey, JR
TI Structure-activity relationships of the antimalarial agent artemisinin.
6. The development of predictive in vitro potency models using CoMFA
and HQSAR methodologies
SO JOURNAL OF MEDICINAL CHEMISTRY
LA English
DT Article
ID MOLECULAR-FIELD ANALYSIS; SOLUBLE DIHYDROARTEMISININ DERIVATIVES;
QINGHAOSU ARTEMISININ; TRICYCLIC ANALOGS; IN-VITRO; PEROXIDIC
ANTIMALARIALS; HEPATIC-METABOLISM; AB-INITIO; DRUG; MECHANISM
AB Artemisinin (1) is a unique sesquiterpene peroxide occurring as a
constituent of Artemisia annua L. Because of the effectiveness of
Artemisinin in the treatment of drug-resistant Plasmodium falciparum
and its rapid clearance of cerebral malaria, development of clinically
useful semisynthetic drugs for severe and complicated malaria
(artemether, artesunate) was prompt. However, recent reports of fatal
neurotoxicity in animals with dihydroartemisinin derivatives such as
artemether have spawned a renewed effort to develop nontoxic analogues
of artemisinin. In our effort to develop more potent, less neurotoxic
agents for the oral treatment of drug-resistant malaria, we utilized
comparative molecular field analysis (CoMFA) and hologram QSAR (HQSAR),
beginning with a series of 211 artemisinin analogues with known in
vitro antimalarial activity. CoMFA models were based on two
conformational hypotheses: (a) that the X-ray structure of artemisinin
represents the bioactive shape of the molecule or (b) that the
hemin-docked conformation is the bioactive form of the drug. In
addition, we examined the effect of inclusion or exclusion of racemates
in the partial least squares (pls) analysis. Databases derived from the
original 211 were split into chiral (n = 157), achiral (n = 34), and
mixed databases (n = 191) after leaving out a test set of 20 compounds.
HQSAR and CoMFA models were compared in terms of their potential to
generate robust QSAR models. The r(2) and q(2) (cross-validated r(2))
were used to assess the statistical quality of our models. Another
statistical parameter, the ratio of the standard error to the activity
range (s/AR), was also generated. CoMFA and HQSAR models were developed
having statistically excellent properties, which also possessed good
predictive ability for test set compounds. The best model was obtained
when racemates were excluded from QSAR analysis. Thus, CoMFA of the n =
157 database gave excellent predictions with outstanding statistical
properties. HQSAR did an outstanding job in statistical analysis and
also handled predictions well.
C1 Univ Mississippi, Sch Pharm, Thad Cochran Natl Ctr Nat Prod Res, Dept Med Chem, University, MS 38677 USA.
Univ Mississippi, Dept Chem, University, MS 38677 USA.
UFRJ, Dept Farmacos, Fac Farm, LASSBio, BR-21944910 Rio De Janeiro, Brazil.
Univ Calif San Francisco, Dept Cellular Mol Pharmacol, San Francisco, CA 94143 USA.
RP Avery, MA, Univ Mississippi, Sch Pharm, Thad Cochran Natl Ctr Nat Prod
Res, Dept Med Chem, University, MS 38677 USA.
CR ACTON N, 1993, J MED CHEM, V36, P2552
ALVIMGASTON M, 1999, 217 ACS NAT M AN CA
AVERY MA, 1990, J CHEM SOC CHEM COMM, P1487
AVERY MA, 1990, TETRAHEDRON LETT, V31, P1799
AVERY MA, 1993, J MED CHEM, V36, P4264
AVERY MA, 1994, TETRAHEDRON, V50, P957
AVERY MA, 1995, J MED CHEM, V38, P5038
AVERY MA, 1996, J MED CHEM, V39, P1885
AVERY MA, 1996, J MED CHEM, V39, P4149
AVERY MA, 1999, ADV MED CH, V4, P125
AVERY MA, 2000, BIOL ACT NAT PROD, P121
BHATTACHARYA AK, 1999, HETEROCYCLES, V51, P1681
BLOODWORTH AJ, 1995, TETRAHEDRON LETT, V36, P7551
BOUKOUVALAS J, 2000, COMMUNICATION
BROSSI A, 1988, J MED CHEM, V31, P645
BUTLER AR, 1998, FREE RADICAL RES, V28, P471
CRAMER RD, 1988, J AM CHEM SOC, V110, P5959
CRAMER RD, 1988, QUANT STRUCT-ACT REL, V7, P18
CUMMING JN, 1997, ADV PHARMACOL, V37, P253
DAI LX, 1999, CHEMTRACTS, V12, P687
DONG YX, 1999, J MED CHEM, V42, P1477
DOWEYKO AM, 1997, 213 ACS NAT M SAN FR
GRACE JM, 1999, XENOBIOTICA, V29, P703
GU J, 1999, J MOL STRUC-THEOCHEM, V491, P57
HARALDSON CA, 1997, BIOORG MED CHEM LETT, V7, P2357
HAWLEY SR, 1998, ANTIMICROB AGENTS CH, V42, P682
HAYNES RK, 1996, TETRAHEDRON LETT, V37, P257
HAYNES RK, 1997, ACCOUNTS CHEM RES, V30, P73
HERITAGE TW, 1999, MOL HOLOGRAM QSAR RA, P212
HU YL, 1992, BIOORG CHEM, V20, P148
JEFFORD CW, 1993, HELV CHIM ACTA, V76, P2775
JEFFORD CW, 1993, PERSPECTIVES MED CHE, P459
JEFFORD CW, 1997, ADV DRUG RES, V29, P271
JIANG HL, 1994, ACTA PHARM SINIC, V15, P481
JUNG M, 1990, J MED CHEM, V33, P1516
KAMCHONWONGGPAISAN S, 1996, GEN PHARMACOL, V27, P587
KLAYMAN DL, 1985, SCIENCE, V228, P1049
KUBINYI H, 1993, 3D QSAR DRUG DESIGN
LESKOVAC V, 1991, COMP BIOCHEM PHYS C, V99, P383
LIN AJ, 1987, J MED CHEM, V30, P2147
LIN AJ, 1990, J MED CHEM, V33, P2610
LIN AJ, 1997, J MED CHEM, V40, P1396
LISGARTEN JN, 1998, J CHEM CRYSTALLOGR, V28, P539
LIU C, 1999, HUAXUE JINZHAN, V11, P41
LUNDSTEDT T, 1997, COMPUTER ASSISTED LE
MEKONNEN B, 1997, TETRAHEDRON LETT, V38, P731
MESHNICK SR, 1993, ANTIMICROB AGENTS CH, V37, P1108
MESHNICK SR, 1994, T ROY SOC TROP MED H, V88, P31
MESHNICK SR, 1996, PARASITOL TODAY, V12, P79
MILHOUS WK, 1985, ANTIMICROB AGENTS CH, V27, P525
NGUYENCONG V, 1996, EUR J MED CHEM, V31, P797
ODOWD H, 1999, TETRAHEDRON, V55, P3625
ONEILL PM, 1999, TETRAHEDRON LETT, V40, P9133
PAITAYATAT S, 1997, J MED CHEM, V40, P633
PANDEY AV, 1999, J BIOL CHEM, V274, P19383
POSNER GH, 1992, J MED CHEM, V35, P2459
POSNER GH, 1995, HETEROATOM CHEM, V6, P105
POSNER GH, 1995, J AM CHEM SOC, V117, P5885
POSNER GH, 1996, J AM CHEM SOC, V118, P3537
POSNER GH, 1996, TETRAHEDRON LETT, V37, P815
POSNER GH, 1998, TETRAHEDRON LETT, V39, P2273
PU YM, 1995, J MED CHEM, V38, P4120
ROBERT A, 1998, CHEM SOC REV, V27, P273
SHUKLA KL, 1995, J MOL GRAPH MODEL, V13, P215
SMITH SL, 1998, NEUROTOXICOLOGY, V19, P557
SVENSSON USH, 1999, BRIT J CLIN PHARMACO, V48, P528
TANG Y, 1996, INDIAN J CHEM B, V35, P325
TONMUNPHEAN S, 1998, J COMPUT AID MOL DES, V12, P397
TONMUNPHEAN S, 1998, THEOCHEM-J MOL STRUC, V454, P87
TREGOVA A, 1996, BRIT J PHARMACOL, V119, P336
VATTANAVIBOON P, 1998, MOL PHARMACOL, V53, P492
VROMAN JA, 1999, CURR PHARM DESIGN, V5, P101
VYAS N, IN PRESS ANTIMICROB
WOOLFREY JR, 1998, J COMPUT AID MOL DES, V12, P165
WOOLFREY JR, 1999, 217 ACS NAT M AN CA
WU J, 1991, PROG NAT SCI, V1, P72
WU WM, 1998, J AM CHEM SOC, V120, P13002
WU WM, 1998, J AM CHEM SOC, V120, P3316
WU YL, 1999, PURE APPL CHEM, V71, P1139
NR 79
TC 28
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-2623
J9 J MED CHEM
JI J. Med. Chem.
PD JAN 17
PY 2002
VL 45
IS 2
BP 292
EP 303
PG 12
SC Chemistry, Medicinal
GA 513YJ
UT ISI:000173408400007
ER
PT J
AU Borin, AC
TI The A(1)Pi-X-1 Sigma(+) transition in NiC
SO CHEMICAL PHYSICS
LA English
DT Article
DE nickel carbide; A(1)II excited electronic state and radiative
lifetimes; A(1)II-X-1 Sigma(-) transition dipole moment; spectroscopic
properties; multireference configuration interaction
ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS;
ELECTRONIC-TRANSITIONS; RADIATIVE LIFETIMES; DIATOMIC-MOLECULES; METAL
HYDRIDES; SCF METHOD; AB-INITIO; STATES; MOMENTS
AB The multireference configuration interaction (MRCI) method, based on
complete-active-space self-consistent-field wave functions, has been
employed to study the X(1)Sigma (+) and A(1)Pi states of NiC. Potential
energy curves, dipole moments, and transition dipole moment functions
(TDM) have been computed over a wide range of internuclear separations,
Based on these results, the Franck-Condon factors and radiative
lifetimes for several vibrational levels of the A(1)Pi state were
computed. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Borin, AC, Univ Sao Paulo, Inst Quim, Av Prof Lineu Prestes 748,
BR-05508900 Sao Paulo, Brazil.
CR ADAM AG, 1997, J MOL SPECTROSC, V181, P24
ALLEN MD, 1996, ASTROPHYS J 2, V472, L57
ANDERSSON K, 1992, CHEM PHYS LETT, V191, P507
BALFOUR WJ, 1995, J CHEM PHYS, V103, P4046
BARNES M, 1995, J CHEM PHYS, V103, P8360
BAUSCHLICHER CW, 1988, THEOR CHIM ACTA, V74, P479
BAUSCHLICHER CW, 1989, J CHEM PHYS, V91, P2399
BAUSCHLICHER CW, 1995, MODERN ELECT STRUCTU
BORIN AC, 1995, CHEM PHYS, V190, P43
BORIN AC, 1996, CHEM PHYS LETT, V262, P80
BORIN AC, 2000, CHEM PHYS LETT, V322, P149
BRUGH DJ, 1997, J CHEM PHYS, V107, P9772
CHONG DP, 1986, J CHEM PHYS, V84, P5606
CHONG DP, 1986, J CHEM PHYS, V85, P2850
COTTON FA, 1988, ADV INORGANIC CHEM C
COWAN RD, 1976, J OPT SOC AM, V66, P1010
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
HARRISON JF, 2000, CHEM REV, V100, P679
KITAURA K, 1982, J MOL STRUCT, V88, P119
KNOWLES PJ, 1985, CHEM PHYS LETT, V115, P259
KNOWLES PJ, 1988, CHEM PHYS LETT, V145, P514
LARSSON M, 1983, ASTRON ASTROPHYS, V128, P291
MACLAGAN RGAR, 1997, J CHEM PHYS, V106, P1491
MARIAN CM, 1989, J CHEM PHYS, V91, P3589
MARTIN RL, 1983, J PHYS CHEM-US, V87, P750
MARTINHO JA, 1990, CHEM REV, V90, P629
MEUNIER B, 1992, CHEM REV, V92, P1411
PARTRIDGE H, 1995, QUANTUM MECH ELECT S
ROOS BO, 1996, ADV CHEM PHYS, V93, P219
SAUVAL AJ, 1978, ASTRON ASTROPHYS, V62, P295
SHIM I, 1989, Z PHYS D ATOM MOL CL, V12, P373
SHIM I, 1999, CHEM PHYS LETT, V303, P87
SIEGBAHN PEM, 1987, ADV CHEM PHYS, P333
WACHTERS AJH, 1969, RJ584 IBM
WACHTERS AJH, 1970, J CHEM PHYS, V52, P1033
WALCH SP, 1983, J CHEM PHYS, V78, P4597
WALCH SP, 1985, J CHEM PHYS, V83, P5351
WERNER HJ, MOLPRO IS PACKAGE AB
WERNER HJ, 1982, J CHEM PHYS, V76, P3144
WERNER HJ, 1985, J CHEM PHYS, V82, P5053
WERNER HJ, 1987, ADV CHEM PHYS, P1
WERNER HJ, 1988, J CHEM PHYS, V89, P5803
WHEELER JC, 1989, ANNU REV ASTRON ASTR, V27, P279
WHITING EE, 1980, J MOL SPECTROSC, V80, P249
WING RF, 1977, ASTROPHYS J, V216, P659
WOON DE, 1993, J CHEM PHYS, V98, P1358
ZEMKE WT, 1981, QCPE, V4, P79
NR 47
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD DEC 15
PY 2001
VL 274
IS 2-3
BP 99
EP 108
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 507FE
UT ISI:000173015700003
ER
PT J
AU Rivelino, R
Canuto, S
TI Theoretical study of mixed hydrogen-bonded complexes: H2O center dot
center dot center dot HCN center dot center dot center dot H2O and H2O
center dot center dot center dot HCN center dot center dot center dot
HCN center dot center dot center dot H2O
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID AB-INITIO CALCULATIONS; INTERMOLECULAR INTERACTIONS; QUANTUM-CHEMISTRY;
CYANIDE POLYMERS; MATRIX-ISOLATION; CLUSTERS; WATER; SPECTRA;
COOPERATIVITY; SPECTROSCOPY
AB Mixed hydrogen-bonded clusters H2O . . . HCN, HCN . . .H2O, H2O . . .
HCN . . .H2O, and H2O . . . HCN . . . HCN . . .H2O are studied by using
ab initio calculations. The optimized structures and harmonic
vibrational frequencies are obtained at the DFT/B3LYP and MBPT/MP2
levels with the 6-311++G(d,p) basis set. To investigate electron
correlation effects on the binding energies, single-point calculations
are also performed using the CCSD(T) method with the optimized MP2
geometric,,. The complexation energies are obtained for these systems
including correction for basis set superposition error. In addition,
the cooperative effects in the properties of the complexes are
investigated quantitatively. We found a cooperativity contribution of
around 10% relative to the total interaction energy of the complex H2O
. . . HCN . . .H2O. In the case of H2O . . . HCN . . . HCN . . .H2O,
the binding energy of the HCN . . . HCN is ca. 8 kJ/mol stronger in the
mixed tetramer than in the corresponding isolated dimer. The effects of
higher-order electron correlation are found to be mild, with MP2 giving
a well-balanced result. Cooperative effects are predicted either by MP2
or by B3LYP in hydrogen bond distances and dipole moments of the
clusters. In contrast, the B3LYP functional fails to account fur the
out-of-plane bend angle in H2O . . . HCN, which is well-described by
the MP2 method.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, POB 66318, BR-05315970 Sao Paulo,
Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENTWOOD RM, 1980, J MOL SPECTROSC, V84, P391
BOYS SF, 1970, MOL PHYS, V19, P553
CABALEIROLAGO EM, 1999, J PHYS CHEM A, V103, P6468
CABALEIROLAGO EM, 2000, J MOL STRUC-THEOCHEM, V498, P21
CHALASINSKI G, 1994, CHEM REV, V94, P1723
CRUZAN JD, 1996, SCIENCE, V271, P59
DELBENE JE, 1995, J PHYS CHEM-US, V99, P10705
FILLERYTRAVIS AJ, 1984, P ROY SOC LOND A MAT, V396, P405
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GOTTLIEB CA, 2000, J CHEM PHYS, V113, P1910
GUTOWSKY HS, 1992, J CHEM PHYS, V96, P5808
HARRIS DC, 1989, SYMMETRY SPECTROSCOP
HEIKKILA A, 1999, J PHYS CHEM A, V103, P2945
HEIKKILA AT, 2000, J PHYS CHEM A, V104, P6637
JEFFREY GA, 1977, J AM CHEM SOC, V99, P609
JEFFREY GA, 1991, HYDROGEN BONDING BIO
LEE C, 1988, PHYS REV B, V37, P785
LIEBMAN SA, 1994, ADV SPACE RES, V15, P71
MASELLA M, 1998, J CHEM SOC FARADAY T, V94, P2745
MATTHEWS CN, 1992, ORIGINS LIFE, V21, P421
MEOTNER M, 1989, J PHYS CHEM-US, V93, P3663
RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
RIVELINO R, 2000, CHEM PHYS LETT, V322, P207
SAMUELS AC, 1998, THEOCHEM-J MOL STRUC, V427, P199
SCHEINER S, 1997, HYDROGEN BONDING THE
SMITH DMA, 1998, CHEM PHYS LETT, V288, P609
STEINER T, 1990, J AM CHEM SOC, V112, P6184
SUM AK, 2000, J PHYS CHEM A, V104, P1121
TSHEHLA TM, 1994, B POL ACAD SCI-CHEM, V42, P397
TURI L, 1993, J PHYS CHEM-US, V97, P7899
VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
VIGOUROUX C, 2000, J MOL SPECTROSC, V202, P1
XANTHEAS SS, 1994, J CHEM PHYS, V100, P7523
NR 35
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 20
PY 2001
VL 105
IS 50
BP 11260
EP 11265
PG 6
SC Chemistry, Physical
GA 505ZN
UT ISI:000172945600014
ER
PT J
AU Silva, THA
Oliveira, AB
Dos Santos, HF
De Almeida, WB
TI Conformational analysis of epiquinine and epiquinidine
SO STRUCTURAL CHEMISTRY
LA English
DT Article
DE conformational analysis; antimalarial; epiquinine; epiquinidine
ID POLARIZABLE CONTINUUM MODEL; CINCHONA ALKALOIDS; PLASMODIUM-FALCIPARUM;
ANTIMALARIAL ACTIVITY; COMBINED NMR
AB The conformational potential energy surfaces for the epiquinine and
epiquinidine molecules were analyzed in gas phase and water solution
using semiempirical and ab initio levels of theory. The results
obtained showed that the main conformation of the nonactive threo
epimers is distinct from those observed for the active parent compounds
quinine and quinidine. This result might be used, on a qualitative way,
to understand the loss of activity of the threo epimers and allow
selecting important conformations to be considered in molecular
modeling quantitative studies addressing the drug-receptor interactions.
C1 UFMG, ICEx, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Fed Minas Gerais, Fac Farm, Dept Prod Farmaceut, Belo Horizonte, MG, Brazil.
Univ Fed Juiz de Fora, ICE, Dept Quim, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
RP De Almeida, WB, UFMG, ICEx, Dept Quim, LQCMM, BR-31270901 Belo
Horizonte, MG, Brazil.
CR ALLINGER NL, 1997, PCMODEL 1993 SERENA
BARONE V, 1997, J CHEM PHYS, V107, P3210
COSSI M, 1996, CHEM PHYS LETT, V255, P327
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DIJKSTRA GDH, 1989, J AM CHEM SOC, V111, P8069
DIJKSTRA GDH, 1989, RECL TRAV CHIM PAY B, V108, P195
DIJKSTRA GDH, 1990, J ORG CHEM, V55, P6121
FERREIRA EI, 1993, REV FORM BIOQUIM, V29, P1
FRISCH MJ, 1998, GAUSSIAN 98
HOLTJE HD, 1996, MOL MODELING BASIC P
KARLE JM, 1992, ACTA CRYSTALLOGR C, V48, P1975
KARLE JM, 1992, ANTIMICROB AGENTS CH, V36, P1538
KARLE JM, 1993, EXP PARASITOL, V76, P345
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIERTUS S, 1982, CHEM PHYS, V65, P239
OLEKSYN BJ, 1992, J PHARM SCI, V81, P122
PRAKASH O, 1988, INDIAN J CHEM B, V27, P950
PRELOG V, 1954, HELV CHIM ACTA, V37, P1634
SILVA THA, 1997, BIOORGAN MED CHEM, V5, P353
SILVA THA, 1997, STRUCT CHEM, V8, P95
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JP, 1990, MOPAC VERSION 6 0
NR 22
TC 4
PU KLUWER ACADEMIC/PLENUM PUBL
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1040-0400
J9 STRUCT CHEM
JI Struct. Chem.
PD DEC
PY 2001
VL 12
IS 6
BP 431
EP 437
PG 7
SC Chemistry, Multidisciplinary
GA 500QK
UT ISI:000172638100002
ER
PT J
AU de Koning, M
Antonelli, A
Yip, S
TI Single-simulation determination of phase boundaries: A dynamic
Clausius-Clapeyron integration method
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID FREE-ENERGY CALCULATIONS; SOLID-FLUID COEXISTENCE; MOLECULAR-DYNAMICS;
MELTING CURVE; NONEQUILIBRIUM MEASUREMENTS; STRUCTURAL-PROPERTIES;
MODEL SYSTEMS; PURE THEORY; ARGON; EQUILIBRIUM
AB We present a dynamic implementation of the Clausius-Clapeyron
integration (CCI) method for mapping out phase-coexistence boundaries
through a single atomistic simulation run. In contrast to previous
implementations, where the reversible path of coexistence conditions is
generated from a series of independent equilibrium simulations, dynamic
Clausius-Clapeyron integration (d-CCI) explores an entire coexistence
boundary in a single nonequilibrium simulation. The method gives
accurately the melting curve for a system of particles interacting
through the Lennard-Jones potential. Furthermore, we apply d-CCI to
compute the melting curve of an ab initio pair potential for argon and
verify earlier studies on the effects of many-body interactions and
quantum effects in the melting of argon. The d-CCI method shows to be
effective in both applications, giving converged coexistence curves
spanning a wide range of thermodynamic states from relatively short
nonequilibrium simulations. (C) 2001 American Institute of Physics.
C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
MIT, Dept Nucl Engn, Cambridge, MA 02139 USA.
RP de Koning, M, Lawrence Livermore Natl Lab, L-371, Livermore, CA 94550
USA.
CR AGRAWAL R, 1995, MOL PHYS, V85, P23
AGRAWAL R, 1995, MOL PHYS, V85, P43
AGRAWAL R, 1995, PHYS REV LETT, V74, P122
ALLEN MP, 1989, COMPUTER SIMULATION
AMON LM, 2000, J CHEM PHYS, V113, P3573
BOEHLER R, 1996, PHYS REV B, V53, P556
CROOKS GE, 1998, J STAT PHYS, V90, P1481
DEKONING M, 1999, PHYS REV LETT, V83, P3973
DEKONING M, 2000, COMPUT SCI ENG, V2, P88
ERMAKOVA E, 1995, J CHEM PHYS, V102, P4942
FRENKEL D, 1984, J CHEM PHYS, V81, P3188
FRENKEL D, 1996, UNDERSTANDING MOL SI
HARDY WH, 1971, J CHEM PHYS, V54, P1005
HENDRIX DA, 2001, J CHEM PHYS, V114, P5974
HITCHCOCK MR, 1999, J CHEM PHYS, V110, P11433
HUNTER JE, 1993, J CHEM PHYS, V99, P6856
JARZYNSKI C, 1997, PHYS REV E A, V56, P5018
JARZYNSKI C, 1997, PHYS REV LETT, V78, P2690
KOFKE DA, 1993, J CHEM PHYS, V98, P4149
KOFKE DA, 1993, MOL PHYS, V78, P1331
KOFKE DA, 1999, MONTE CARLO METHODS, V105
LUTSKO JF, 1989, PHYS REV B, V40, P2841
MARTYNA GJ, 1992, J CHEM PHYS, V97, P2635
MARTYNA GJ, 1994, J CHEM PHYS, V101, P4177
MEIJER EJ, 1997, J CHEM PHYS, V106, P4678
MILLER MA, 2000, J CHEM PHYS, V113, P7035
PHILLPOT SR, 1989, PHYS REV B, V40, P2831
POLSON JM, 1999, J CHEM PHYS, V111, P1501
REINHARDT WP, 1992, J CHEM PHYS, V97, P1599
SOLCA J, 1997, CHEM PHYS, V224, P253
SOLCA J, 1998, J CHEM PHYS, V108, P4107
STRACHAN A, 1999, PHYS REV B, V60, P15084
STURGEON JB, 2000, PHYS REV B, V62, P14720
WOON DE, 1993, CHEM PHYS LETT, V204, P29
YOUNG DA, 1984, J CHEM PHYS, V81, P2789
NR 35
TC 14
PU AMER INST PHYSICS
PI MELVILLE
PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1,
MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD DEC 22
PY 2001
VL 115
IS 24
BP 11025
EP 11035
PG 11
SC Physics, Atomic, Molecular & Chemical
GA 501KE
UT ISI:000172683200003
ER
PT J
AU Nasar, RS
Cerqueira, M
Longo, E
Varela, JA
Beltran, A
TI Experimental and theoretical study of the ferroelectric and
piezoelectric behavior of strontium-doped PZT
SO JOURNAL OF THE EUROPEAN CERAMIC SOCIETY
LA English
DT Article
DE calculations-aiPI; ferroelectrics; piezoelectrics; PZT
ID SOLID-SOLUTIONS; X-RAY; CERAMICS
AB Theoretical data using ab initio perturbed ion calculation were
compared with ferroelectric and piezoelectric experimental data of
strontium doped PZT. Various concentrations of SrO in PZT at constant
temperature and sintering time were carried out. Experimental results,
such as the remanent polarization, P-R of 6.9-8.9 muC/Cm-2, the
coercive field, E-C of 6.6-7.8 kVcm, and the planar coupling factor, Kp
of 0.45-0.53, were compared with the energy of Zr4+ and Ti4+ ion
dislocation and the lattice interaction energy which show that
strontium increment in PZT alter the energies and increase the values
of piezoelectric and ferroelectric variables. Calculations of lattice
energy of the rhombohedral phase show that a phase non-stability is
coincident with increasing experimental values of the P-R, E-C and Kp.
(C) 2001 Elsevier Science Ltd. All rights reserved.
C1 UFRN, Dept Quim, BR-59072970 Natal, RN, Brazil.
UFSCar, Dept Quim, Lab Interdisciplinar Eletroqulmica & Ceram, BR-13565905 Sao Carlos, SP, Brazil.
UNESP, Inst Quim, BR-14800900 Araraquara, SP, Brazil.
Univ Jaume, Dept Ciencies Expt, Castello, Spain.
RP Nasar, RS, UFRN, Dept Quim, Caixa Postal 1662, BR-59072970 Natal, RN,
Brazil.
CR ARIGUR P, 1974, SOLID STATE COMMUN, V15, P1077
ATKINS PW, 1994, PHYSICAL CHEM, P446
BENGUIGUI L, 1976, SOLID STATE COMMUN, V19, P979
BERNARD J, 1971, PIEZOELECTRIC CERAMI
CADY WG, 1971, PIEZOELECTRICITY
CERQUEIRA M, 1997, J MATER SCI, V32, P2381
CHANDLER D, 1987, INTRO STAT MECH
GALASSO FS, 1969, STRUCTURE PROPERTIES
HAERTLING GH, 1986, CERAMIC MAT ELECT
HAERTLING GH, 1986, CERAMIC MAT ELECT, P168
HOWARD CJ, 1991, J MATER SCI, V26, P127
ISOPOV VA, 1975, SOLID STATE COMMUN, V17, P1331
ISOPOV VA, 1976, SOV PHYS-SOLID STATE, V18, P529
JAFFE B, 1971, PIEZOELECTRIC CERAMI
KAKEGAWA K, 1977, SOLID STATE COMMUN, V24, P769
KANAI H, 1994, J AM CERAM SOC, V77
KIRBY K, 1993, ENCY APPL PHYSICS, V6, P45
KULCSAR F, 1959, J AM CERAM SOC, V42, P49
LAL R, 1988, BRIT CERAM TRANS J, V87, P99
LINES EM, 1977, PRINCIPLES APPL FERR
MABUD SA, 1980, J APPL CRYSTALLOGR, V13, P211
NASAR RS, 1999, J MATER SCI, V34, P3659
SAHA SK, 1992, AM CERAM SOC BULL, V71, P1424
SAWAGUCHI E, 1953, J PHYS SOC JPN, V8, P615
YAMAMOTO T, 1992, AM CERAM SOC BULL, V71, P978
ZHANG QM, 1994, J APPL PHYS, V1, P75
NR 26
TC 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0955-2219
J9 J EUR CERAM SOC
JI J. European Ceram. Soc.
PD FEB
PY 2002
VL 22
IS 2
BP 209
EP 218
PG 10
SC Materials Science, Ceramics
GA 498RE
UT ISI:000172523600009
ER
PT J
AU Critchley, ADJ
King, GC
Kreynin, P
Lopes, MCA
McNab, IR
Yencha, AJ
TI TPEsCO spectra of HCl2+ and DCl2+: experiment and theory
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID PHOTOELECTRONS COINCIDENCE SPECTROSCOPY; INITIO CI CALCULATIONS;
DOUBLY-CHARGED IONS; AB-INITIO; INFRARED-SPECTRUM; MOLECULES; DYNAMICS;
N-2(2+); PREDISSOCIATION; CHLORIDE
AB Vibrationally resolved threshold photoelectrons in coincidence (TPEsCO)
spectra of the X(3)Sigma (-) and a(1)Delta states of HCl2+ and DCl2+
are compared with ab initio simulations. The four resonances observed
in the TPEsCO spectra of both the X(3)Sigma (-) and a(1)Delta states of
HCl2+ are assigned as three quasi-bound vibrational levels and one
continuum resonance with an energy greater than the potential barrier
maximum. The four clearly identified resonances observed in Cl2+ the
TPEsCO spectra of both the X(3)Sigma (-) and a(1)Delta states of DCl2+
are assigned as quasi-bound vibrational levels. (C) 2001 Elsevier
Science B.V. All rights reserved.
C1 Univ Newcastle Upon Tyne, Dept Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England.
Univ Manchester, Dept Phys & Astron, Manchester M13 9PL, Lancs, England.
Univ Fed Juiz de Fora, ICE, Dept Fis, BR-36036330 Juiz De Fora, MG, Brazil.
SUNY Albany, Dept Chem, Albany, NY 12222 USA.
RP McNab, IR, Univ Newcastle Upon Tyne, Dept Phys, Newcastle Upon Tyne NE1
7RU, Tyne & Wear, England.
CR ABUSEN R, 1998, J CHEM PHYS, V108, P1761
BENNETT FR, 1995, CHEM PHYS, V190, P53
BENNETT FR, 1996, CHEM PHYS LETT, V250, P40
BENNETT FR, 1996, CHEM PHYS LETT, V251, P405
BENNETT FR, 1999, MOL PHYS, V97, P35
CHANDRA N, 1999, EUR PHYS J D, V6, P457
COX SG, 2001, UNPUB PCCP
CRITCHLEY ADJ, 2001, THESIS U NEWCASTLE U
EDVARDSSON D, 1996, CHEM PHYS LETT, V256, P341
ELLINGSEN K, 2000, PHYS REV A, V6203, P2505
FURUHASHI O, 2001, CHEM PHYS LETT, V337, P97
HOCHLAF M, 1988, CHEM PHYS, V234, P249
HRUSAK J, 2001, CHEM PHYS LETT, V338, P189
LARSSON M, 1993, COMMENTS AT MOL PHYS, V29, P39
LEROY RJ, 1989, COMPUT PHYS COMMUN, V52, P383
LEROY RJ, 1993, CP329R U WAT CHEM PH
LEROY RJ, 1996, CP555R U WAT CHEM PH
LUNDQVIST M, 1996, J PHYS B-AT MOL OPT, V29, P499
MARTIN PA, 1994, J CHEM PHYS, V100, P4766
MCCONKEY AG, 1994, J PHYS B ATOM MOL PH, V27, P271
MULLIN AS, 1992, J CHEM PHYS, V96, P3636
PRICE SD, 1997, J CHEM SOC FARADAY T, V93, P2451
SUNDSTROM G, 1994, CHEM PHYS LETT, V218, P17
SVENSSON S, 1989, PHYS REV A, V40, P4369
WERNER HJ, MOLPRO
YENCHA AJ, 1999, CHEM PHYS LETT, V315, P37
NR 26
TC 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD NOV 23
PY 2001
VL 349
IS 1-2
BP 79
EP 83
PG 5
SC Physics, Atomic, Molecular & Chemical
GA 500AL
UT ISI:000172603600013
ER
PT J
AU Bezerra, EF
Souza, AG
Freire, VN
Mendes, J
Lemos, V
TI Strong interface localization of phonons in nonabrupt InN/GaN
superlattices
SO PHYSICAL REVIEW B
LA English
DT Article
ID RESONANT RAMAN-SCATTERING; QUANTUM-WELL STRUCTURES; EPITAXIAL LAYERS;
OPTICAL PHONONS; AB-INITIO; GAN; SPECTROSCOPY; INN; MICROSTRUCTURES;
DYNAMICS
AB The Raman spectra of zinc-blende InN/GaN superlattices were calculated
assuming the existence of an inter-face region with thickness delta
varying from one to three monolayers. The acoustic branches are weakly
affected by interfacing, but the optical branches can present frequency
shifts up to 60 cm(-1). A downward shift is observed for the higher
frequency and an upward shift for the lower frequency modes. As a
consequence, the Raman peaks collapse together in the middle frequency
range giving rise to a most prominent structure in the spectrum, for
delta = 3. These effects are tracked to the localization of atomic
displacements at the direct and inverse interface regions. The
localization effects are strong in the InN/GaN superlattices because of
the wide gap observed in the phonon density of states for both
constituent materials.
C1 Univ Fed Ceara, Ctr Ciencias, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil.
RP Lemos, V, Univ Fed Ceara, Ctr Ciencias, Dept Fis, Caixa Postal
6030,Campus Pici, BR-60455760 Fortaleza, Ceara, Brazil.
EM volia@fisica.ufc.br
CR BECHSTEDT F, 2000, PHYS REV B, V62, P8003
BEHR D, 1997, APPL PHYS LETT, V70, P363
BEZERRA EF, 2000, PHYS REV B, V61, P13060
BOGUSLAWSKI P, 2000, PHYS REV B, V61, P10820
BUNGARO C, 2000, PHYS REV B, V61, P6720
GIEHLER M, 1995, APPL PHYS LETT, V67, P733
JUSSERAND B, 1989, TOP APPL PHYS, V66, P49
KACZMARCZYK G, 2000, APPL PHYS LETT, V76, P2122
KARCH K, 1998, PHYS REV B, V57, P7043
KISIELOWSKI C, 1997, JPN J APPL PHYS 1, V36, P6932
LEMOS V, 1996, J BRAZIL CHEM SOC, V7, P471
LEMOS V, 1998, RADIAT EFF DEFECT S, V146, P187
LEOSSON K, 2000, PHYS REV B, V61, P10322
NAKAMURA S, 1997, BLUE LASER DIODE GAN
NAKAMURA S, 1999, SEMICOND SCI TECH, V14, R27
SAMSON B, 1992, PHYS REV B, V46, P2375
SIEGLE H, 1995, SOLID STATE COMMUN, V96, P943
SILVA MAA, 1996, J RAMAN SPECTROSC, V27, P257
SILVA MAA, 1996, PHYS REV B, V53, P15871
TABATA A, 1999, APPL PHYS LETT, V74, P362
TABATA A, 1999, APPL PHYS LETT, V75, P1095
TABATA A, 1999, SEMICOND SCI TECH, V14, P318
TSEN KT, 1991, J APPL PHYS, V70, P418
TSEN KT, 1996, J RAMAN SPECTROSC, V27, P277
NR 24
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 15
PY 2001
VL 6420
IS 20
AR 201306
DI ARTN 201306
PG 4
SC Physics, Condensed Matter
GA 497PL
UT ISI:000172464600014
ER
PT J
AU Venezuela, P
Dalpian, GM
da Silva, AJR
Fazzio, A
TI Ab initio determination of the atomistic structure of SixGe1-x alloy
SO PHYSICAL REVIEW B
LA English
DT Article
ID RANDOM SEMICONDUCTOR ALLOYS; LENGTH MISMATCH; BOND LENGTHS;
CRYSTALLINE; SIGE; PSEUDOPOTENTIALS; SUPERLATTICES; SIMULATION;
RELAXATION; PARAMETERS
AB We have performed systematical ab initio studies of the structural
properties of SixGe1-x alloy. To simulate the disordered alloy we use
supercells where the Si and Ge atoms are randomly placed with the
constraint that the pair correlation functions agree with their values
for a perfect random alloy within a given tolerance. We obtain that the
Si-Si, Si-Ge, and Ge-Ge bond lengths dependence with composition varies
only slightly for the different kinds of bonds, with topological
rigidity parameters between 0.6 and 0.7.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Venezuela, P, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, Brazil.
CR 1999, SEMICOND SEMIMET, V56
AUBRY JC, 1999, PHYS REV B, V59, P12872
BACHELET GB, 1982, PHYS REV B, V26, P4199
BERNARD JE, 1991, PHYS REV B, V44, P1663
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
CAI Y, 1992, PHYS REV B, V46, P15872
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DEGIRONCOLI S, 1991, PHYS REV LETT, V66, P2116
DISMUKES JP, 1964, J PHYS CHEM-US, V68, P3021
HOHENBERG P, 1964, PHYS REV, V136, B864
KELIRES PC, 1989, PHYS REV LETT, V63, P1164
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KOHN W, 1965, PHYS REV, V140, A1133
LEGOUES FK, 1991, PHYS REV LETT, V66, P2903
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
MOONEY PM, 2000, ANNU REV MATER SCI, V30, P335
MOUSSEAU N, 1992, PHYS REV B, V46, P15887
MURNAGHAN FD, 1944, P NATL ACAD SCI USA, V30, P244
PAUL D, 2000, PHYS WORLD, V13, P27
PAULING L, 1967, NATURE CHEM BOND
PERDEW JP, 1981, PHYS REV B, V23, P5048
RIDGWAY MC, 1999, PHYS REV B, V60, P10831
RIEGER MM, 1993, PHYS REV B, V48, P14276
STRINGFELLOW GB, 1973, J PHYS CHEM SOLIDS, V34, P1749
THEODOROU G, 1994, PHYS REV B, V50, P18355
VEGARD L, 1921, Z PHYS, V5, P17
WEI SH, 1990, PHYS REV B, V42, P9622
WEIDMANN MR, 1992, PHYS REV B, V45, P8388
NR 28
TC 16
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 15
PY 2001
VL 64
IS 19
BP art. no.
EP 193202
AR 193202
PG 4
SC Physics, Condensed Matter
GA 494WB
UT ISI:000172307900005
ER
PT J
AU dos Santos, AS
Masili, M
De Groote, JJ
TI Binding energies of excitons trapped by ionized donors in semiconductors
SO PHYSICAL REVIEW B
LA English
DT Article
ID HYPERSPHERICAL ADIABATIC APPROACH; 3-ELECTRON ATOMIC SYSTEMS; HELIUM
ATOM; POTENTIAL CURVES; BOUND EXCITONS; STATES; FORMALISM; IMPURITY;
HYDROGEN
AB Using the hyperspherical adiabatic approach in a coupled-channel
calculation, we present precise binding energies of excitons trapped by
impurity donors in semiconductors within the effective-mass
approximation. Energies for such three-body systems are presented as a
function of the relative electron-hole mass sigma in the range 1 less
than or equal to1/sigma less than or equal to6, where the
Born-Oppenheimer approach is not efficiently applicable. The
hyperspherical approach leads to precise energies using the intuitive
picture of potential curves and nonadiabatic couplings in an ab initio
procedure. We also present an estimation for a critical value of sigma
(sigma (crit)) for which no bound state can be found. Comparisons are
given with results of prior work by other authors.
C1 Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
Assoc Escolas Reunidas, BR-13563470 Sao Carlos, SP, Brazil.
Univ Estadual Paulista, Inst Quim Araraquara, BR-14801970 Araraquara, SP, Brazil.
RP dos Santos, AS, Univ Sao Paulo, Inst Fis Sao Carlos, Caixa Postal 369,
BR-13560970 Sao Carlos, SP, Brazil.
CR ABRAMOWITIZ M, 1965, HDB MATH FUNCTIONS
BAO CG, 1994, FEW-BODY SYST, V16, P47
BARTLETT JH, 1937, PHYS REV, V51, P661
CANCIO AC, 1993, PHYS REV B, V47, P13246
CLARK CW, 1980, PHYS REV A, V21, P1786
COELHO HT, 1991, PHYS REV A, V43, P6379
COELHO HT, 1992, PHYS REV A, V46, P5443
DAS TK, 1994, PHYS REV A, V50, P3521
DEGROOTE JJ, 1992, PHYS REV B, V46, P2101
DEGROOTE JJ, 1998, J PHYS B-AT MOL OPT, V31, P4755
DEGROOTE JJ, 1998, PHYS REV B, V58, P10383
DEGROOTE JJ, 2000, PHYS REV A, V62
ELKOMOSS SG, 1975, PHYS REV B, V11, P2222
FANO U, 1976, PHYS TODAY, V29, P32
FOCK VA, 1954, IZV AN SSSR FIZ, V18, P161
FROST AA, 1964, J CHEM PHYS, V41, P482
GELTLER TH, 1968, PHYS REV, V172, P110
GREENE CH, 1981, PHYS REV A, V23, P661
GREENE CH, 1984, PHYS REV A, V30, P2161
GREENE CH, 1986, PHYS REV A, V22, P149
HAYNES JR, 1960, PHYS REV LETT, V4, P361
HOPFIELD JJ, 1964, P 7 INT C PHYS SEM P, P725
HORNOS JE, 1986, PHYS REV A, V33, P2212
JIANG TF, 1990, SOLID STATE COMMUN, V74, P899
LAMPERT MA, 1958, PHYS REV LETT, V1, P450
LIN CD, 1988, PHYS REV A, V37, P2749
LIN CD, 1995, PHYS REP, V257, P1
MACEK J, 1968, J PHYS B ATOM MOL PH, V1, P831
MASILI M, 1995, PHYS REV A, V52, P3362
MASILI M, 2000, J PHYS B-AT MOL OPT, V33, P2641
MORISHITA T, 1997, PHYS REV A, V56, P3559
MORISHITA T, 1998, J PHYS B-AT MOL OPT, V31, L209
MORISHITA T, 1998, PHYS REV A, V57, P4268
MORISHITA T, 1999, PHYS REV A, V59, P1835
PARK YS, 1966, PHYS REV, V143, P512
SHARMA RR, 1967, PHYS REV, V153, P823
SKETTRUP T, 1971, PHYS REV B-SOLID ST, V4, P512
SMIRNOV YF, 1977, SOV J PART NUCL, V8, P344
STARACE AF, 1979, PHYS REV A, V19, P1629
STEBE B, 1988, P 4 INT C SUP MICR M
SUFFCZYNSKI M, 1967, PHYS LETT A, V24, P453
SUFFCZYNSKI M, 1989, PHYS REV B, V40, P6250
TANG JZ, 1992, PHYS REV A, V46, P2437
THOMAS DG, 1960, PHYS REV LETT, V5, P505
THOMAS DG, 1962, PHYS REV, V128, P2135
WANG YD, 1993, PHYS REV A, V48, P2058
YANG XZ, 1995, PHYS REV A, V52, P2029
YANG XZ, 1996, PHYS REV LETT, V76, P3096
ZHEN Z, 1986, PHYS REV A, V34, P838
NR 49
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 15
PY 2001
VL 64
IS 19
BP art. no.
EP 195210
AR 195210
PG 9
SC Physics, Condensed Matter
GA 494WB
UT ISI:000172307900078
ER
PT J
AU Capelle, K
Vignale, G
Gyorffy, BL
TI Spin currents and spin dynamics in time-dependent density-functional
theory
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID MAGNETISM; SYSTEMS
AB We derive and analyze the equation of motion for the spin degrees of
freedom within time-dependent spin-density-functional theory (TD-SDFT).
The results are (i) a prescription for obtaining many-body corrections
to the single-particle spin currents from the Kohn-Sham equation of
TD-SDFT, (ii) the existence of an exchange-correlation (xc) torque
within TD-SDFr, (iii) a prescription for calculating, from TD-SDFT, the
torque exerted by spin currents on the spin magnetization, (iv) a novel
exact constraint on approximate. xc functionals, and (v) the discovery
of serious deficiencies of popular approximations to TD-SDFT when
applied to spin dynamics.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil.
Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA.
Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England.
RP Capelle, K, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol,
Caixa Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR ANTROPOV VP, 1995, PHYS REV LETT, V75, P729
ANTROPOV VP, 1999, J MAGN MAGN MATER, V200, P148
AWSCHALOM DD, 1999, J MAGN MAGN MATER, V200, P130
BECKE AD, 1997, J CHEM PHYS, V107, P8554
BURKE K, 1998, LECT NOTES PHYSICS, V500
CAPELLE K, 1997, PHYS REV LETT, V78, P1872
DOBSON JF, 1994, PHYS REV LETT, V73, P2244
DREIZLER RM, 1990, DENSITY FUNCTIONAL T
EDWARDS DM, 1984, J MAGN MAGN MATER, V45, P151
EGUES JC, 1998, PHYS REV LETT, V80, P4578
FIEDERLING R, 1999, NATURE, V402, P787
GEBAUER R, 2000, PHYS REV B, V61, P6459
GROSS EKU, 1996, TOPICS CURRENT CHEM, V181
HALILOV SV, 1998, PHYS REV B, V58, P293
HESSLER P, 1999, PHYS REV LETT, V82, P378
JOUBERT DP, 1998, LECT NOTES PHYSICS, V500
KATINE JA, 2000, PHYS REV LETT, V84, P3149
LIFSHITZ EM, 1980, COURSE THEORETICAL P, V9
NIU Q, 1998, PHYS REV LETT, V80, P2205
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PRINZ GA, 1998, SCIENCE, V282, P1660
RUNGE E, 1984, PHYS REV LETT, V52, P997
SANDRATSKII LM, 1998, ADV PHYS, V47, P91
SLONCZEWSKI JC, 1996, J MAGN MAGN MATER, V159, L1
STAUNTON JB, 1992, PHYS REV LETT, V69, P371
STICHT J, 1989, J PHYS-CONDENS MAT, V1, P8155
STOCKS GM, 1998, PHILOS MAG B, V78, P665
VIGNALE G, 1995, PHYS REV LETT, V74, P3233
NR 28
TC 12
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 12
PY 2001
VL 8720
IS 20
AR 206403
DI ARTN 206403
PG 4
SC Physics, Multidisciplinary
GA 492TD
UT ISI:000172182900035
ER
PT J
AU Gozzo, FC
Eberlin, MN
TI Primary and secondary kinetic isotope effects in proton (H+/D+) and
chloronium ion (35Cl(+)/37Cl(+)) affinities
SO JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
ID COLLISION-INDUCED DISSOCIATION; QUADRUPOLE MASS SPECTROMETERS;
GAS-PHASE ACIDITIES; ELECTRON-AFFINITIES; CLUSTER IONS; THERMOCHEMICAL
DETERMINATIONS; BOUND HETERODIMERS; ATTACHMENT SITES; BOND-ENERGIES;
AB-INITIO
AB The Cooks' kinetic method and tandem-in-space pentaquadrupole QqQqQ
mass spectrometry were used to measure primary and secondary kinetic
isotope effects (KIEs) in H+ and Cl+ (X+) affinity for a series of A/A'
isotopomeric pairs. Gaseous, isotopomeric, and loosely bound dimers
[A...chi (+)...A] were formed in combinations in which chi = H+, D+,
Cl-35(+) or Cl-37(+) and A/A' = acetonitrile/acetonitrile-d(3),
acetonitrile/acetonitrile-N-15, acetonitrile-d(3)/acetonitrile-N-15,
acetone/acetone-d(6), acetone/acetone-O-18, acetone-d(6)/acetone-O-18,
pyridine/pyridine-d(5), pyridine/pyridine-N-15,
pyridine-d(5)/pyridine-N-15, or 3-(Cl-35)chloropyridine/3-(Cl-37)
chloropyridine. Under nearly the same experimental conditions, the
dimers were mass-selected and then dissociated by low-energy collisions
with argon, yielding AX(+) and A'X+ as the fragment ions. KIEs were
measured from the changes in ion affinities of the neutrals (AXI) as
estimated by the AX(+)/A'X+ abundance ratios. Using [A...H+(D+)... ']
and [A...Cl-35(+)(Cl-37(+))...A'] dimers and by comparing their extent
of dissociation tinder nearly identical collision-induced dissociation
conditions, the kinetic method was also applied, for the first time, to
measure primary KIEs of the central ion as well as their influence on
secondary KIEs. Becke3LYP/6311++G(2df,2p) calculations were found to
provide Delta(Delta ZPE)s for the competitive dissociation reactions
that accurately predict the nature (normal or inverse) of the measured
KIEs. Copyright (C) 2001 John Wiley & Sons, Ltd.
C1 Univ Estadual Campinas, Inst Chem, UNICAMP, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, Univ Estadual Campinas, Inst Chem, UNICAMP, CP 6154,
BR-13083970 Campinas, SP, Brazil.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
BOAND G, 1983, J AM CHEM SOC, V105, P2203
BURINSKY DJ, 1984, J AM CHEM SOC, V106, P2770
CERDA BA, 1996, J AM CHEM SOC, V118, P11884
CERDA BA, 1998, J AM CHEM SOC, V120, P2437
CHEN G, 1996, J AM SOC MASS SPECTR, V7, P619
CHENG XH, 1993, J AM CHEM SOC, V115, P4844
COOKS RG, 1998, ACCOUNTS CHEM RES, V31, P379
COOKS RG, 1999, J MASS SPECTROM, V34, P85
DANG TT, 1993, INT J MASS SPECTROM, V123, P171
DERRICK PJ, 1983, MASS SPECTROM REV, V2, P285
DRAHOS L, 1999, J MASS SPECTROM, V34, P79
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GRESE RP, 1990, J AM SOC MASS SPECTR, V1, P172
GUO JH, 1999, ANGEW CHEM INT EDIT, V38, P1755
HANLEY L, 1988, J PHYS CHEM-US, V92, P5803
JARROLD MF, 1987, J CHEM PHYS, V86, P3876
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
MA SG, 1997, INT J MASS SPECTROM, V163, P89
MA SG, 1998, J MASS SPECTROM, V33, P943
MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
MCLUCKEY SA, 1983, INT J MASS SPECTROM, V52, P165
NORRMAN K, 1999, INT J MASS SPECTROM, V182, P381
NOURSE BD, 1991, INT J MASS SPECTROM, V106, P249
OHAIR RAJ, 1994, ORG MASS SPECTROM, V29, P151
SCHABES M, 1992, J CRUSTACEAN BIOL, V12, P1
SCHROETER K, 1998, EUR J ORG CHEM APR, P565
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SHEN WY, 1997, RAPID COMMUN MASS SP, V11, P71
STOCKIGT D, 1995, INT J MASS SPECTROM, V150, P1
TAO WA, 1999, ANAL CHEM, V71, P4427
TAO WA, 2001, ANAL CHEM, V73, P1692
TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
VEKEY K, 1997, ANAL CHEM, V69, P1700
WANG F, 1998, INT J MASS SPECTROM, V180, P195
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
WONG PSH, 1997, J ORGANOMET CHEM, V539, P131
WRIGHT LG, 1982, INT J MASS SPECTROM, V42, P115
YANG SS, 1995, J MASS SPECTROM, V30, P807
YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
ZAKETT D, 1978, J PHYS CHEM-US, V82, P2359
NR 44
TC 11
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 1076-5174
J9 J MASS SPECTROMETRY
JI J. Mass Spectrom.
PD OCT
PY 2001
VL 36
IS 10
BP 1140
EP 1148
PG 9
SC Chemistry, Organic; Biophysics; Spectroscopy
GA 488MV
UT ISI:000171941000008
ER
PT J
AU Hillebrand, S
Segala, M
Buckup, T
Correia, RRB
Horowitz, F
Stefani, V
TI First hyperpolarizability in proton-transfer benzoxazoles:
computer-aided design, synthesis and study of a new model compound
SO CHEMICAL PHYSICS
LA English
DT Article
DE nonlinear optics; QSPR; hyper-Rayleigh scattering; Stokes shift;
excited state intramolecular proton transfer; fluorescence
ID NONLINEAR-OPTICAL-PROPERTIES; MOLECULES; CHROMOPHORES; DYES;
DERIVATIVES; COPOLYMERS; DEPENDENCE; POLYMERS; ESIPT
AB With regard to second-order nonlinear optics (NLO) applications, a new
class of 2-(2'-hydroxyphenyl)benzoxazoles (HBO) was designed for a
combination of high first hyperpolarizability, fl, with good
photothermal stability, in association with a fast excited state
intramolecular proton transfer (ESIPT) mechanism. Semi-empirical
optimization of molecular structures and ab initio calculations of
dipole moments were performed. Clear evidence was found that conditions
such as conjugation efficiency and electron donor/acceptor strength
cannot be evaluated separately, due to structural changes in molecular
spatial distribution. Experimentally, a new fluorescent molecule of the
HBO family, 2(2'-hydroxy-4'-aminophenyl)-6-nitrobenzoxazole (BO6), was
synthesized, purified and characterized, including solvent environments
of distinct polarities. Hyper-Rayleigh scattering, UV-Vis absorption
and emission spectroscopy, differential scanning calorimetry and
thermogravimetric analysis of BO6 show a significant beta (213.4 +/-
25.7 x 10(-30) esu in acetone, at 1064 nm) and thermal stability up to
270 degreesC. Such results, in this first study of ESIPT dyes for
second-order NLO to our best knowledge, indicate that the HBO family
well deserves further attention towards promising application
materials. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio Grande Sul, Inst Quim, Dept Quim Organ, Lab Novos Mat Organ, BR-91501970 Porto Alegre, RS, Brazil.
Univ Fed Rio Grande Sul, Ctr Biotecnol Estado Rio Sul, BR-91501970 Porto Alegre, RS, Brazil.
Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
RP Stefani, V, Univ Fed Rio Grande Sul, Inst Quim, Dept Quim Organ, Lab
Novos Mat Organ, Av Bento Goncalves 9500,Caixa Postal 15003,
BR-91501970 Porto Alegre, RS, Brazil.
CR BHAWALKAR JD, 1996, REP PROG PHYS, V59, P1041
CAMPO LF, 2000, MACROMOL RAPID COMM, V21, P832
CENTORE R, 1999, J POLYM SCI POL CHEM, V37, P603
CLAYS K, 1991, PHYS REV LETT, V66, P2980
COSTA TMH, IN PRESS J MAT CHEM
COSTA TMH, 1997, J NON-CRYST SOLIDS, V221, P157
DELAIRE JA, 2000, CHEM REV, V100, P1817
DOMINGUES NS, 1997, J CHEM SOC PERK SEP, P1861
GARNER R, 1966, J CHEM SOC, P1980
HOROWITZ F, 2001, J NONCRYST SOLIDS, V284, P79
HUYSKENS FL, 1998, J CHEM PHYS, V108, P8161
KANIS DR, 1994, CHEM REV, V94, P195
KARNA SP, 1991, J COMPUT CHEM, V12, P487
KONIG K, 2000, SINGLE MOL, V1, P41
KURTZ HA, 1990, J COMPUT CHEM, V11, P82
MARDER SR, 1997, NATURE, V388, P845
MORDZINSKI A, 1982, CHEM PHYS LETT, V90, P122
MOURA GLC, 1996, CHEM PHYS LETT, V257, P639
PARK KH, 1998, POLYMER, V39, P7061
PRASAD PN, 1991, INTRO NONLINEAR OPTI
PREMVARDHAN L, 1998, CHEM PHYS LETT, V296, P521
SEGALA M, 1999, J CHEM SOC PERK JUN, P1123
SEKINO H, 1986, J CHEM PHYS, V85, P976
SHANG XM, 1998, J OPT SOC AM B, V15, P854
SHEAR JB, 1999, ANAL CHEM, V71, A598
STEFANI V, 1992, DYES PIGMENTS, V20, P97
STEWART JJP, 1994, MOPAC93 MANUAL REV N
TSUNEKAWA T, 1992, J PHYS CHEM-US, V96, P10268
VOGEL A, 1978, VOGELS PRACTICAL ORG
WURTHNER F, 1993, CHEM PHYS, V173, P305
NR 30
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD NOV 1
PY 2001
VL 273
IS 1
BP 1
EP 10
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 486PW
UT ISI:000171827000001
ER
PT J
AU Furtado, EA
Milas, I
Lins, JOMDA
Nascimento, MAC
TI The dehydrogenation reaction of light alkanes catalyzed by zeolites
SO PHYSICA STATUS SOLIDI A-APPLIED RESEARCH
LA English
DT Article
ID MOLECULAR-DYNAMICS; ELECTROPHILIC REACTIONS; ISOBUTANE CRACKING;
HYDROXYL-GROUPS; ACIDIC ZEOLITE; AB-INITIO; SILICALITE; METHANE;
SIMULATION; ACTIVATION
AB The several steps of the dehydrogenation reactions of ethane, propane
and isobutane were studied by theoretical methods. Molecular dynamics
simulation techniques have been used to study diffusion of the alkanes
through the zeolite HZMS-5 framework. Adsorption energies were computed
by the methods of molecular mechanics, molecular dynamics and
Monte-Carlo. Molecular dynamics was also used to determine the
preferred adsorption sites of the alkanes in silicalite and HZMS-5. The
mechanism of the chemical reactions at the zeolite's acid site was
investigated at the DFT(B3LYP) level of calculation using 6-31G** and
6-311G** basis sets, and 3 and 5 T cluster models to represent the
zeolite. GIAO/B3LYP calculations were performed on the 3 and 5 T
alkyalkoxides and the results were compared with experimental C-13 NMR
data.
C1 Univ Fed Rio de Janeiro, Dept Quim Fis, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Dept Quim Fis, Inst Quim,
Cidade Univ,CT Bloco A,Sala 412, BR-21949900 Rio De Janeiro, Brazil.
CR *SCHROD INC, 1998, JAGUAR 3 5
ALEEN MP, 1987, COMPUTER SIMULATION
ARONSON MT, 1989, J AM CHEM SOC, V111, P840
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
BLASZKOWSKI SR, 1996, J PHYS CHEM-US, V100, P3463
CARO J, 1985, J CHEM SOC FARAD T 1, V81, P2541
CORMA A, 1994, J CATAL, V145, P171
CUSUMANO JA, 1992, IUPAC CHEM 21 CENTUR
CZJZEK M, 1992, J PHYS CHEM-US, V96, P1535
DUBSKY J, 1979, J MOL CATAL, V6, P321
DUMONT D, 1995, ZEOLITES, V15, P650
ESTEVES PM, 1999, THESIS U FEDERAL DO
EVLETH EM, 1996, J PHYS CHEM-US, V100, P11368
FRISCH MJ, 1995, GAUSSIAN94 REVISION
HAW JF, 1989, J AM CHEM SOC, V111, P2052
HUFFON JR, 1995, MICROPOROUS MATER, V5, P39
JEANVOINE Y, 1998, J PHYS CHEM B, V102, P5573
JIRAK Z, 1980, J PHYS CHEM SOLIDS, V41, P1089
JOBIC H, 1992, ZEOLITES, V12, P146
JUNE RL, 1990, J PHYS CHEM-US, V94, P1508
JUNE RL, 1990, J PHYS CHEM-US, V94, P8232
JUNE RL, 1992, J PHYS CHEM-US, V96, P1051
KAZANSKY VB, 1996, APPL CATAL A-GEN, V146, P225
KERR GT, 1989, SCI AM, V261, P100
KRAMER GJ, 1993, J AM CHEM SOC, V115, P2887
LINS JOMDL, 1996, THEOCHEM-J MOL STRUC, V371, P237
MAYO SL, 1990, J PHYS CHEM-US, V94, P8897
METROPOLIS N, 1953, J CHEM PHYS, V21, P1081
MORTIER WJ, 1976, J CATAL, V45, P367
NARBESHUBER TF, 1997, J CATAL, V172, P127
NICHOLAS JB, 1993, J PHYS CHEM-US, V97, P4149
NOVAK AK, 1991, J PHYS CHEM-US, V95, P848
OLAH GA, 1971, J AM CHEM SOC, V93, P1251
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLSON DH, 1969, J CATAL, V13, P221
OLSON DH, 1981, J PHYS CHEM-US, V85, P2238
OMALLEY PJ, 1988, J PHYS CHEM-US, V92, P3005
RIBEIRO FR, 1984, ZEOLITES SCI TECHNOL
RICHARDS RE, 1987, LANGMUIR, V3, P335
SCHRODER KP, 1992, CHEM PHYS LETT, V188, P320
SMIT B, 1994, SCIENCE, V264, P1118
STACH H, 1986, ZEOLITES, V6, P74
STEFANADIS C, 1991, J MOL CATAL, V67, P363
SWOPE WC, 1994, J PHYS CHEM-US, V98, P12938
TITILOYE JO, 1991, J PHYS CHEM-US, V95, P4038
VANBEEST BWH, 1990, PHYS REV LETT, V64, P1955
VANBEKKUM H, 1991, STUDIES SURFACE SCI, V58, P12
VAUGHN DEW, 1988, CHEM ENG PROG, V84, P25
VETRIVEL R, 1989, J CHEM SOC FARAD T 2, V85, P497
VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13719
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
ZARDKOOHI M, 1987, J AM CHEM SOC, V109, P5278
ZYGMUNT SA, 2000, J PHYS CHEM B, V104, P1944
NR 54
TC 7
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA PO BOX 10 11 61, D-69451 BERLIN, GERMANY
SN 0031-8965
J9 PHYS STATUS SOLIDI A-APPL RES
JI Phys. Status Solidi A-Appl. Res.
PD SEP 16
PY 2001
VL 187
IS 1
BP 275
EP 288
PG 14
SC Physics, Condensed Matter
GA 480JJ
UT ISI:000171458000033
ER
PT J
AU Castellano, EE
Piro, OE
Caram, JA
Mirifico, MV
Aimone, SL
Vasini, EJ
Marquez-Lucero, A
Glossman-Mitnik, D
TI Crystallographic study and molecular orbital calculations of
thiadiazole derivatives. Part 3: 3,4-diphenyl-1,2,5-thiadiazoline
1,1-dioxide, 3,4-diphenyl-1,2,5-thiadiazolidine 1,1-dioxide and
4-ethoxy-5-methyl-3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE 1,2,5-thiadiazole 1,1-dioxide derivatives; ab initio MO calculations;
single-crystal X-ray diffraction; DFT; sensitivity analysis
ID DENSITY-FUNCTIONAL THEORY; SOFT ACIDS; CHEMICAL-REACTIVITY;
CRYSTAL-STRUCTURE; GAS-PHASE; HARDNESS; BASES; ELECTROREDUCTION;
ELECTROCHEMISTRY; DESCRIPTORS
AB Single-crystal X-ray diffraction studies are reported for
3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide (I),
3,4-diphenyl-1,2,5-thiadiazolidine 1,1-dioxide(II) and
4-ethoxy-5-methyl-3,4-diphenyl-1,2,5-thiadiazoline 1,1-dioxide (III).
Ab initio MO calculations on the electronic structure, conformation and
reactivity of these compounds are also reported and compared with the
X-ray results. A charge sensitivity analysis is performed on the
results applying concepts derived from density functional theory,
obtaining several sensitivity coefficients such as the molecular
energy, net atomic charges, global and local hardness, global and local
softness and Fukui functions. With these results and the analysis of
the dipole moment and the total electron density and electrostatic
potential maps, several conclusions have been inferred about the
preferred sites of chemical reaction of the studied compounds. (C) 2001
Elsevier Science B.V. All rights reserved.
C1 LAQUICOM, CIMAV, Chihuahua 31109, Chih, Mexico.
Univ Sao Paulo, Dept Fis, Inst Fis & Quim Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, RA-1900 La Plata, Argentina.
Consejo Nacl Invest Cient & Tecn, PROFIMO, RA-1900 La Plata, Argentina.
Natl Univ La Plata, INIFTA, CONICET, RA-1900 La Plata, Argentina.
RP Glossman-Mitnik, D, LAQUICOM, CIMAV, Miguel de Cervantes 120,Complejo
Ind Chihuahua, Chihuahua 31109, Chih, Mexico.
CR AIMONE SL, 2000, J PHYS ORG CHEM, V13, P277
AIMONE SL, 2000, TETRAHEDRON LETT, V41, P3531
AMATO JS, 1982, J AM CHEM SOC, V104, P1375
BACHRACH SM, 1994, REV COMPUTATIONAL CH, V5
BAETEN A, 1994, J MOL STRUCT THEOCHE, V306, P203
BAETEN A, 1995, CHEM PHYS LETT, V235, P17
BAKER RJ, 1980, J ORG CHEM, V45, P482
BUSING WR, 1957, ACTA CRYSTALLOGR, V10, P180
CALDERON CE, 1979, ACTA CRYSTALLOGR B, V35, P2795
CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P2296
CARAM JA, 1994, ELECTROCHIM ACTA, V39, P939
CASTELLANO EE, 1998, J PHYS ORG CHEM, V11, P91
CASTELLANO EE, 2001, J MOL STRUCT, V562, P157
CROMER DT, 1974, INT TABLES CRYSTALLO, V4, P71
CROMER DT, 1974, INT TABLES XRAY CRYS, V4, P149
DEPROFT F, 1994, J PHYS CHEM-US, V98, P5227
ESTEBANCALDERON C, 1982, ACTA CRYSTALLOGR B, V38, P1340
FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
FOCESFOCES C, 1975, ACTA CRYSTALLOGR B, V31, P2310
FOCESFOCES C, 1977, ACTA CRYSTALLOGR B, V33, P910
FRENZ AB, 1983, ENRAFNONIUS STRUCTUR
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
FUKUI K, 1973, THEORY ORIENTATION S
GAZQUEZ JL, 1994, J PHYS CHEM-US, V98, P4591
GAZQUEZ JL, 1998, THEORET COMPUT CHEM, V5, P135
GLOSSMAN MD, 1995, THEOCHEM-J MOL STRUC, V330, P385
GLOSSMAN MD, 1996, ATUALIDADES FISICOQU
GLOSSMAN MD, 1997, THEOCHEM-J MOL STRUC, V390, P67
JOHNSON CK, 1965, ORNL3794 ORTEP
LANGENAEKER W, 1992, J MOL STRUCT THEOCHE, V259, P317
LANGENAEKER W, 1995, J PHYS CHEM-US, V99, P6424
LIPKOWITZ KB, 1990, REV COMPUTATIONAL CH, V1
MIRIFICO MV, 1991, ELECTROCHIM ACTA, V36, P167
MIRIFICO MV, 1991, INT J CHEM KINET, V23, P197
MIRIFICO MV, 1993, J PHYS ORG CHEM, V6, P341
MIRIFICO MV, 1995, AN QUIM, V91, P557
MITNIK DG, 2001, INT J QUANTUM CHEM, V81, P105
MITNIK DG, 2001, J MOL STRUC-THEOCHEM, V535, P39
MITNIK DG, 2001, J MOL STRUC-THEOCHEM, V536, P41
MITNIK DG, 2001, J MOL STRUC-THEOCHEM, V538, P201
MULLEN K, 1998, ELECT MAT OLIGOMER A
MULLIKEN RS, 1934, J CHEM PHYS, V2, P782
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
MULLIKEN RS, 1955, J CHEM PHYS, V23, P2338
NALWA HS, 1997, HDB ORGANIC CONDUCTI
PARR RG, 1989, DENSITY FUNCTIONAL T
PARR RG, 1995, ANNU REV PHYS CHEM, V46, P701
PEARSON RG, 1963, J AM CHEM SOC, V85, P3533
PEARSON RG, 1966, SCIENCE, V151, P172
PEARSON RG, 1987, J CHEM EDUC, V64, P561
POLITZER P, 1981, CHEM APPL ATOMIC MOL
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
ROY RK, 1998, J PHYS CHEM A, V102, P3746
ROY RK, 1998, J PHYS CHEM A, V102, P7035
SALZNER U, 1997, J COMPUT CHEM, V18, P1943
SHELDRICK GM, 1976, SHELX PROGRAM CRYSTA
SHELDRICK GM, 1990, ACTA CRYSTALLOGR A, V46, P467
SHELDRICK GM, 1993, SHELXL 93 PROGRAM CR
SVARTMAN EL, 1999, CAN J CHEM, V77, P511
WEINSTOCK LM, 1984, COMPREHENSIVE HETERO, V6
YANG W, 1986, J AM CHEM SOC, V108, P5708
ZHOU Z, 1988, TETRAHEDRON LETT, V29, P4843
NR 63
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD OCT 3
PY 2001
VL 597
IS 1-3
BP 163
EP 175
PG 13
SC Chemistry, Physical
GA 478GG
UT ISI:000171335000018
ER
PT J
AU Ellena, J
Goeta, AE
Howard, JAK
Punte, G
TI Role of the hydrogen bonds in nitroanilines aggregation: Charge density
study of 2-methyl-5-nitroaniline
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID X-RAY-DIFFRACTION; INTERMOLECULAR INTERACTIONS; ELECTRON-DENSITY;
TOPOLOGICAL ANALYSIS; NEUTRON-DIFFRACTION; CRYSTAL-STRUCTURE;
DIHYDROGEN BOND; 100 K; HYPERPOLARIZABILITIES; UREA
AB The electron charge distribution of 2-Methyl-5-nitroaniline has been
studied from high-resolution singlecrystal X-ray data at 100 K, and ab
initio calculations which include X-ray structure factors computed from
a superposition of ab initio molecular electron densities. Using the
Hansen and Coppens' rigid pseudoatom multipolar model refinements were
performed on both the experimental and the theoretical X-ray data sets
from which, molecular atomic charges and dipolar moments were obtained.
To understand the nature and the magnitude of the intermolecular
interactions. the Atoms in Molecules theory was used to investigate the
topology of the electron density of the in-crystal, both experimental
interacting as well as theoretical noninteracting, and in-vacuum
molecules. A meticulous analysis of the topological properties of the
experimental charge density and of its Laplacian indicates, contrary to
expectations, a two center character of the N-(HO)-O-. . . synthons
that induce the known polar chain formation in nitroanilines and the
presence of a C-methyl-H-O interaction further strengthening the
chains. It also shows the attractive nature of the rather strong
C-(HO)-O-. . . interactions that help the head-to-tail arrangement of
the chains. They build two intermolecular six membered hydrogen bonded
rings, embracing a N-(HO)-O-. . . interaction, that originate
centrosymmetric dimers which impair the macroscopic second harmonic
generation of the title compound. The authenticity of a previously
proposed closed shell C-aryl-H(. . .)pi interaction between adjacent
chains has been confirmed. The latter has not been observed in
m-nitroaniline, 2-methyl-4-aniline or other related compounds with
chains built from similar N-(HO)-O-. . . synthons and assembled
head-to-head. Crystallization causes a molecular electric dipolar
moment higher than that of the free molecule, the latter being
coincident with the experimental value in solution, and with the one
calculated from the refinement of the theoretical X-ray data. It also
induces changes in the charge density distribution and its topology,
and an enhancement of the intramolecular conjugation that can be
related to a molecular aggregation mechanism ruled by the N-(HO)-O-. .
. synthon. These findings strongly point to the existence of
cooperative effects.
C1 Univ Durham, Dept Chem, Durham DH1 3LE, England.
Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, IFLP & LANADI, RA-1900 La Plata, Argentina.
Univ Sao Paulo, Dept Fis & Informat, Inst Fis Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
RP Goeta, AE, Univ Durham, Dept Chem, South Rd, Durham DH1 3LE, England.
CR *SIEM AN XRAY INST, 1996, SAINT DAT RED SOFTW
*SIEM AN XRAY INST, 1996, SMART DAT COLL SOFTW
AAKEROY CB, 1997, ACTA CRYSTALLOGR B 4, V53, P569
ABRAMOV YA, 2000, ACTA CRYSTALLOGR A 6, V56, P585
ABRAMOV YA, 2000, J MOL STRUC-THEOCHEM, V529, P27
ALLEN FH, 1999, NEW J CHEM, P25
BADER RFW, 1990, ATOMS MOL QUANTUM TH
BADER RFW, 1998, J PHYS CHEM A, V102, P7314
BARON M, 1997, COMMUNICATION
BERNSTEIN J, 1994, STRUCTURE CORRELATIO, V2, P432
BIRKEDAL H, 1999, ACTA CRYSTALLOGR A, V55, P117
BLESSING RH, 1987, CRYSTALLOGR REV, V1, P3
BLUDSKY O, 1996, J CHEM PHYS, V105, P11042
BOSSHHARD C, 1995, ADV NONLINEAR OPTICS, V1
BURGI H, 1994, STRUCTURAL CORRELATI
CHEN LR, 1995, ACTA CRYSTALLOGR B 6, V51, P1081
CLEMENTI E, 1974, ATOM DATA NUCL DATA, V14, P177
COPPENS P, 1982, ELECT DISTRIBUTIONS
COPPENS P, 1997, XRAY CHARGE DENSITIE, P271
COSIER J, 1986, J APPL CRYSTALLOGR, V19, P105
CREMER D, 1975, J AM CHEM SOC, V97, P1354
DANIEL C, 1990, CHEM PHYS LETT, V171, P209
DESIRAJU GR, 1997, CHEM COMMUN 0821, P1475
ELLENA J, 1996, J CHEM CRYSTALLOGR, V26, P319
ELLENA J, 1998, THESIS EXACTAS U NAC
ELLENA J, 1999, ACTA CRYSTALLOGR B 2, V55, P209
ESPINOSA E, 1999, ACTA CRYSTALLOGR B 4, V55, P563
ETTER MC, 1990, ACCOUNTS CHEM RES, V23, P120
FEIL D, 1991, APPL CHARGE DENSITY
FERRETTI V, 1993, J PHYS CHEM-US, V97, P13568
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GATTI C, 1994, J CHEM PHYS, V101, P10686
GOETA AE, 2000, CHEM MATER, V12, P3342
GOPAL R, 1980, CAN J CHEM, V58, P658
HAMADA T, 1996, J PHYS CHEM-US, V100, P8777
HANSEN NK, 1978, ACTA CRYSTALLOGR A, V34, P909
HEHRE WJ, 1969, J CHEM PHYS, V51, P2657
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HIRSHFELD FL, 1976, ACTA CRYSTALLOGR A, V32, P239
HOWARD ST, 1992, J CHEM PHYS, V97, P5616
HUYSKENS F, 1998, J PHYS CHEM-US, V108, P8
ISAACS ED, 2000, J PHYS CHEM SOLIDS, V61, P403
JEFFREY G, 1997, INTRO HYDROGEN BONDI
KIRSCHBAUM K, 1997, J APPL CRYSTALLOGR 4, V30, P514
KLOOSTER WT, 1999, J AM CHEM SOC, V121, P6337
KOCH U, 1995, J PHYS CHEM-US, V99, P9747
KORITSANSZKY T, 1997, COMPUTER PROGRAM PAC
LAIDIG KE, 1994, COMMUNICATION
LEVINE BF, 1979, J APPL PHYS, V50, P2523
LIPSCOMB GF, 1981, J CHEM PHYS, V75, P1509
MARK TCW, 1965, ACTA CRYSTALLOGR, V18, P68
MASUNOV A, 1999, J PHYS CHEM A, V103, P178
MASUNOV A, 2000, J PHYS CHEM B, V104, P806
MOTHERWELL WDS, 2000, ACTA CRYSTALLOGR B 5, V56, P857
NOVOA JJ, 2000, CHEM PHYS LETT, V318, P345
PANUNTO TW, 1987, J AM CHEM SOC, V109, P7786
PLATTS JA, 1996, J CHEM PHYS, V105, P4668
POPELIER PLA, 1998, J PHYS CHEM A, V102, P1873
ROZAS I, 1997, J PHYS CHEM A, V101, P9457
ROZAS I, 1998, J PHYS CHEM A, V102, P9925
SARMA JARP, 1995, CHEM MATER, V7, P1843
SAUNDERS VR, 1998, CRYSTAL98 USERS MANU
SCHLEGEL HB, 1982, J COMPUT CHEM, V3, P214
SHARMA CVK, 1994, J CHEM SOC P2, P2345
SHELDRICK GM, 1995, XPREP SHELXTL 5 04 V
SHELDRICK GM, 1997, SADABS EMPIRICAL ABS
SIM F, 1993, J PHYS CHEM-US, V97, P1158
SPACKMAN MA, 1999, ACTA CRYSTALLOGR A 1, V55, P30
STEWART Y, 1991, NATO ASI SERIES B, V259
SU ZW, 1992, ACTA CRYSTALLOGR A, V48, P188
TANG TH, 1996, CAN J CHEM, V74, P1162
TRUEBLOOD KN, 1961, ACTA CRYSTALLOGR, V14, P1009
TURI L, 1996, J PHYS CHEM-US, V100, P9638
VOLKOV A, 2000, ACTA CRYSTALLOGR A 3, V56, P252
VOLKOV A, 2000, ACTA CRYSTALLOGR A 4, V56, P332
VRIES RY, 2000, ACTA CRYSTALLOGR B, V56, P118
YUFIT DS, 2000, J CHEM SOC PERK T 2, P249
ZAVODNIK V, 1999, ACTA CRYSTALLOGR B 1, V55, P45
ZHANG Y, 1999, CHEM COMMUN, P2425
NR 79
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 27
PY 2001
VL 105
IS 38
BP 8696
EP 8708
PG 13
SC Chemistry, Physical
GA 476EW
UT ISI:000171214100014
ER
PT J
AU Ueno, LT
Ornellas, FR
TI Theoretical investigation of the initial steps of the adsorption of N
atoms on Si(100)-2x1
SO SURFACE SCIENCE
LA English
DT Letter
DE density functional calculations; surface chemical reaction; silicon;
nitrogen atom; silicon nitride
ID SILICON-NITRIDE FORMATION; AB-INITIO; CERAMIC MATERIALS; MICROWAVE
PLASMA; NH3; SURFACE; POWDER; FILMS; SPECTROSCOPY; DIFFRACTION
AB Structural, energetics, and mechanistics aspects of initial steps of
the reaction of a N atom with Si(1 0 0)-2 x 1 modeled by the Si9H12 + N
system are reported. Hybrid density functional B3LYP calculations
predict a barrierless first step leading to an adsorbate where N is
bound to one of the dimer Si. Two possible activated routes for
internal rearrangements were found, with that leading to the
incorporation of Si below the first layer predicted to be kinetically
dominant (98%) under the experimental conditions. This structure and
frequency calculations are consistent with the experimental finding of
a planar NSi3 moeity and with the experimental SiN asymmetric
stretching frequency of the NSi3 groups. (C) 2001 Elsevier Science B.V.
All rights reserved.
C1 Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05513970 Sao Paulo, SP, Brazil.
RP Ornellas, FR, Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, CP
26077, BR-05513970 Sao Paulo, SP, Brazil.
CR ALDINGER F, 1987, ANGEW CHEM INT EDIT, V26, P371
BAUMVOL IJR, 1995, PHYS STATUS SOLIDI B, V192, P253
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BIROT M, 1995, CHEM REV, V95, P1443
BJORKQVIST M, 1997, SURF SCI, V394, L155
BOZSO F, 1986, PHYS REV LETT, V57, P1185
ERBETTA D, 2000, J CHEM PHYS, V113, P10744
FATTAL E, 1997, J PHYS CHEM B, V101, P8658
FRANCL MM, 1982, J CHEM PHYS, V77, P3654
FRISCH MJ, 1998, GAUSSIAN 98
HAMERS RJ, 1988, J VAC SCI TECHNOL A, V6, P508
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HECKINGBOTTOM R, 1973, SURF SCI, V36, P594
HERMAN IP, 1989, CHEM REV, V89, P1323
HUBBARD CR, 1975, J APPL CRYSTALLOGR, V8, P45
KONECNY R, 1997, J PHYS CHEM B, V101, P10983
LANGE H, 1991, ANGEW CHEM INT EDIT, V30, P1579
LEE C, 1988, PHYS REV B, V37, P785
LEE WC, 1997, J MATER RES, V12, P805
LIU YC, 1997, APPL SURF SCI, V121, P233
MONTEIRO OR, 1996, J MATER SCI, V31, P6029
ORNELLAS FR, 1996, J PHYS CHEM-US, V100, P10919
ORNELLAS FR, 1996, J PHYS CHEM-US, V100, P16155
ORNELLAS FR, 1997, B CHEM SOC JPN, V70, P2057
ORNELLAS FR, 1997, J CHEM PHYS, V106, P151
PAN JS, 1996, VACUUM, V47, P1495
PARK KH, 1992, J CHEM PHYS, V97, P2742
PENG CY, 1996, J COMPUT CHEM, V17, P49
RUHONG Z, 1991, SURF SCI, V249, P129
SEGAL D, 1997, J MATER CHEM, V7, P1297
STEFANOV BB, 1997, SURF SCI, V389, L1159
TANAKA S, 1987, SURF SCI, V191, L756
UENO LT, IN PRESS
UENO LT, 2001, J BRAZIL CHEM SOC, V12, P99
WATANABE T, 1998, J ELECTROCHEM SOC, V145, P4252
NR 35
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD SEP 10
PY 2001
VL 490
IS 3
BP L637
EP L643
PG 7
SC Chemistry, Physical
GA 473XW
UT ISI:000171075300003
ER
PT J
AU Rocha, WR
De Almeida, KJ
Coutinho, K
Canuto, S
TI The electronic spectrum of N-methylacetamide in aqueous solution: a
sequential Monte Carlo/quantum mechanical study
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CIRCULAR-DICHROISM CALCULATIONS; AMIDE-I MODE; FAR-ULTRAVIOLET;
HYDROGEN-BOND; AB-INITIO; WATER; TRANSITION; LIQUID; SPECTROSCOPY;
CHROMOPHORE
AB Sequential Monte Carlo/quantum mechanical (S-MC/QM) calculations are
performed to study the solvent effects on the electronic transitions of
N-methylacetamide (NMA) in aqueous solution. Full quantum mechanical
INDO/CIS calculations are performed in the super-molecular clusters
generated by Monte Carlo (MC) simulation. The largest calculation
involves the ensemble average of 75 quantum mechanical results obtained
with the NMA solute surrounded by 150 water solvent molecules. After
extrapolation to the bulk limit we find that the n --> pi* transition
suffers a blue shift of 1755 cm(-1) upon solvation and the pi --> pi*
transition undergoes a red shift of 1180 cm(-1), in good agreement with
the experimental findings. (C) 2001 Published by Elsevier Science B.V.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Fed Juiz Fora, ICE, Dept Quim, NEQC, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Minas Gerais, Dept Quim, ICEx, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Mogi Cruzes, CCET, BR-08701970 Mogi Das Cruzes, SP, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 20516, BR-05315970 Sao Paulo,
Brazil.
CR AKIYAMA M, 1999, SPECTROCHIM ACTA A, V56, P137
ALLEN MP, 1987, COMPUTER SIMULATION
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BESLEY NA, 1998, J PHYS CHEM A, V102, P10791
BESLEY NA, 2000, J MOL STRUC-THEOCHEM, V506, P161
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
CLARK LB, 1995, J AM CHEM SOC, V117, P7974
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 1997, MONTE CARLO PROGRAM
COUTINHO K, 2000, J CHEM PHYS, V112, P9874
FILLAUX F, 1976, CHEM PHYS LETT, V39, P547
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
FURER VL, 1997, J MOL STRUCT, V435, P151
GUO H, 1994, J PHYS CHEM-US, V98, P7104
HAN WG, 1996, J PHYS CHEM-US, V100, P3942
HIRST JD, 1997, J PHYS CHEM A, V101, P4821
HIRST JD, 1998, J CHEM PHYS, V109, P782
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JORGENSEN WL, 1988, J AM CHEM SOC, V110, P4212
KAYA K, 1967, THEOR CHIM ACTA, V7, P124
KITANO M, 1973, B CHEM SOC JPN, V46, P384
LUDWIG R, 1997, J PHYS CHEM A, V101, P8861
NIELSEN EB, 1967, J PHYS CHEM-US, V71, P2297
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
ROSENHECK K, 1961, P NATL ACAD SCI USA, V47, P1775
SCHWEITZERSTENNER R, 1998, J PHYS CHEM A, V102, P118
SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P12190
SIELER G, 1997, J AM CHEM SOC, V119, P1720
TORII H, 1998, J PHYS CHEM B, V102, P309
VANHOLDE KE, 1998, PRINCIPLES PHYSICAL
WOODY RW, 1995, METHOD ENZYMOL, V246, P34
WOODY RW, 1999, J CHEM PHYS, V111, P2844
WOODY RW, 1999, J PHYS CHEM B, V103, P8984
ZERNER MC, ZINDO SEMIEMPIRICAL
NR 35
TC 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 7
PY 2001
VL 345
IS 1-2
BP 171
EP 178
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 473UK
UT ISI:000171066300027
ER
PT J
AU Carneiro, JWD
Taft, CA
Silva, CHTDE
Tostes, JGR
Seidl, PR
Pinto, PSD
Costa, VEU
Alifantes, J
TI Ab initio and density functional study of the
5-pentacyclo[6.2.1.1(3,6).0(2,7).0(4,10)]dodecyl cation. A symmetrical
mu-hydride bridged carbocation
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID HALF-CAGE PENTACYCLODODECANE; 2-NORBORNYL CATION; FREQUENCIES;
DERIVATIVES; EXCHANGE
AB MP2/6-31g(d,p) and B3LYP/6-31g(d,p) calculations for the
pentacyclo[6.2.1.1(3,6).0(2,7).0(4,10)]dodecyl cation reveal two minima
on the potential energy surface. The most stable minimum is the
g-hydride bridged cation 2. The second minimum is the two-electron
three-center bonded structure 3. At MP2/6-31g(d,p) 2 is only 0.2
kcal/mol more stable than 3, but at B3LYP/6-31g(d,p) this energy
difference increases to 3.3 kcal/mol. The energy difference between 2
and 3 is only 3.8 kcal/mol. Solvent effect does not affect these
numbers significantly. This low energy barrier may account for the
product distribution observed on solvolysis of pentacyclic derivatives.
(C) 2001 Elsevier Science B.V. All rights reserved.
C1 CBPF, Dept Mat Condensada, BR-22290180 Rio De Janeiro, Brazil.
Univ Fed Fluminense, Inst Quim, Dept Quim Geral & Inorgan, BR-24020150 Niteroi, RJ, Brazil.
Univ Estadual Norte Fluminense, Lab Ciecias Quim, Ctr Ciencias & Tecnol, BR-28015620 Sao Jose Dos Campos, RJ, Brazil.
Univ Fed Rio de Janeiro, Escola Quim, Dept Proc Organ, BR-21949900 Rio De Janeiro, Brazil.
Inst Militar Engn, Dept Engn Quim, BR-22290270 Rio De Janeiro, Brazil.
Univ Fed Rio Grande Sul, Inst Quim, Dept Quim Organ, BR-91509900 Porto Alegre, RS, Brazil.
RP Taft, CA, CBPF, Dept Mat Condensada, Rua Dr Xavier Sigaud 150,
BR-22290180 Rio De Janeiro, Brazil.
CR BATTISTE MA, 1977, J CHEM SOC CHEM COMM, P941
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BIRD CW, 1980, TETRAHEDRON, V36, P525
BRUCK P, 1960, CHEM IND-LONDON, P405
BUZEK P, 1991, J CHEM SOC CHEM COMM, P671
CHOW TJ, 1998, J PHYS ORG CHEM, V11, P871
COSTA VEU, 1998, TETRAHEDRON-ASYMMETR, V9, P2579
COSTA VEU, 2000, J MOL STRUCT, V519, P37
DEVRIES L, 1960, J AM CHEM SOC, V82, P5363
ERMER O, 1985, J AM CHEM SOC, V107, P2330
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRANCL MM, 1982, J CHEM PHYS, V77, P3654
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HARIHARAN PC, 1972, CHEM PHYS LETT, V16, P217
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HOWE RK, 1972, J ORG CHEM, V37, P1473
LEE C, 1988, PHYS REV B, V37, P785
MOLLER C, 1934, PHYS REV, V46, P618
PERERA SA, 1996, J AM CHEM SOC, V118, P7849
SCHLEYER PV, 1989, J AM CHEM SOC, V111, P5475
SCHLEYER PV, 1993, ANGEW CHEM INT EDIT, V32, P1606
SCHREINER PR, 1995, J AM CHEM SOC, V117, P2663
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SEIDL PR, 1990, J MOL STRUCT THEOCHE, V204, P183
SIEBER S, 1993, J AM CHEM SOC, V115, P259
SOLOWAY SB, 1960, J AM CHEM SOC, V82, P5377
SORENSEN TS, 1997, STABLE CARBOCATION C, CH4
TAFT CA, 1996, CHEM PHYS LETT, V248, P158
NR 29
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 7
PY 2001
VL 345
IS 1-2
BP 189
EP 194
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 473UK
UT ISI:000171066300030
ER
PT J
AU Fonseca, TL
Castro, MA
Cunha, C
Amaral, OAV
TI Ab initio polarizabilities calculations of singly charged polyacetylene
oligomers
SO SYNTHETIC METALS
LA English
DT Article
DE polarizability; polyacetylene oligomers; charged soliton
ID VARIATIONAL PERTURBATIONAL TREATMENT; STATIC FIRST HYPERPOLARIZABILITY;
NONLINEAR-OPTICAL PROPERTIES; CONJUGATED CHAINS;
LINEAR-POLARIZABILITIES; ELECTRON CORRELATION; LOCAL VIEW; POLYENES;
SOLITONS; ABINITIO
AB We present results for the static longitudinal linear polarizability
and second-order hyperpolarizability of small polyacetylene chains
bearing positively and negatively charged solitons, obtained through
the second-order Moller-Plesset perturbation theory (MP2) method.
Hartree-Fock (HF) calculations for these properties was performed only
for negatively charged chains. The standard 6-31G basis set was used in
all calculations. Our ab initio calculations showed that, regarding
singly charged structures, only the second hyperpolarizability is
affected by the ionization state. For both, positive and negative
structures, it is shown that the electron correlation effect enhances
the linear polarizability, and even more markedly the second
hyperpolarizabilities. (C) 2001 Elsevier Science B.V. All rights
reserved.
C1 Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
RP Fonseca, TL, Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
CR BOUDREAUX DS, 1983, PHYS REV B, V28, P6927
CHAMPAGNE B, 1997, J CHEM PHYS, V107, P5433
DEMELO CP, 1987, CHEM PHYS LETT, V140, P537
DEMELO CP, 1988, J CHEM PHYS, V88, P2558
DEMELO CP, 1988, J CHEM PHYS, V88, P2567
DEMELO CP, 1996, CHEM PHYS LETT, V28, P261
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GESKIN VM, 1998, J CHEM PHYS, V109, P6163
GESKIN VM, 1999, SYNTHETIC MET, V101, P488
HURST GJB, 1988, J CHEM PHYS, V89, P385
JACQUEMIN D, 1998, CHEM PHYS LETT, V284, P24
JACQUEMIN D, 1998, THEOCHEM-J MOL STRUC, V425, P69
MADER SR, 1994, SCIENCE, V265, P632
MCLEAN AD, 1967, J CHEM PHYS, V47, P1927
MEYERS F, 1994, J AM CHEM SOC, V116, P10703
PRASAD P, 1991, INTRO NONLINEAR OPTI
ROBINS KA, 1995, SYNTHETIC MET, V71, P1671
SILVA DA, 1999, SYNTHETIC MET, V102, P1584
TOTO JL, 1995, CHEM PHYS LETT, V245, P660
TOTO JL, 1995, J CHEM PHYS, V102, P8048
TOTO TT, 1995, CHEM PHYS LETT, V244, P59
VILLAR HO, 1988, J CHEM PHYS, V88, P2859
VILLAR HO, 1988, PHYS REV B, V37, P2520
VILLESUZANNE A, 1992, J CHEM PHYS, V96, P495
NR 24
TC 5
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD AUG 22
PY 2001
VL 123
IS 1
BP 11
EP 15
PG 5
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
Polymer Science
GA 472EH
UT ISI:000170970200002
ER
PT J
AU Junqueira, GMA
Rocha, WR
De Almeida, WB
Dos Santos, HF
TI Theoretical analysis of the oxocarbons: structure and spectroscopic
properties of croconate ion and its coordination compound with lithium
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID DIFFERENTIAL-OVERLAP TECHNIQUE; INTERMEDIATE NEGLECT; MONTE-CARLO;
TRANSITION; COMPLEXES; DIANIONS; FORMALDEHYDE; WATER
AB Ab initio methods were used in conjunction with Monte Carlo simulation
to analyze the structure and spectroscopic properties of the croconate
ion in the gas phase and in aqueous solution. The infrared and Raman
spectra were calculated and band assignments were made showing a good
agreement with experiment. The electronic spectrum of the croconate ion
was calculated in the gas phase and in aqueous solution, using a
sequential Monte Carlo/quantum mechanical approach, taking into account
the solvent and counter ion effects. The electronic spectrum for the
free croconate ion in aqueous solution showed two transitions at 479
and 468 nm when the first solvation shell is considered. These
transitions were not sensitive to additional solvent molecules beyond
the first solvation shell. The experimental electronic spectrum was
only reproduced when the combined effects of the solvent and counter
ion were taken into account. The calculated spectrum for the
cis-[Li-2(C5O5)(H2O)(21)] complex showed two transitions at 383 and 365
nm, in agreement with the experimental observations of 372 and 351 nm.
These results strongly suggest that in order to reproduce the
experimental electronic spectrum of the oxocarbons in solution, we must
take into account the combined effects of the solvent and the counter
ions. A new proposal for the interaction of Li+ with the croconate
anion in solution, based on the theoretical electronic spectra, is also
discussed.
C1 Univ Fed Juiz de Fora, ICR, Dept Quim, NEQC, BR-36036330 Juiz de Fora, MG, Brazil.
Univ Fed Minas Gerais, ICEx, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, ICR, Dept Quim, NEQC, Campus
Martelos, BR-36036330 Juiz de Fora, MG, Brazil.
CR 1992, HDB CHEM PHYSICS
AIHARA J, 1981, J AM CHEM SOC, V103, P1633
ALLEN MP, 1987, COMPUTER SIMULATION
BECKE AD, 1986, PHYS REV B, V33, P8822
BERENDSEN HJC, 1981, INTERMOLECULAR FORCE, P331
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CANUTO S, 2000, INT J QUANTUM CHEM, V77, P192
COUTINHO K, DICE MONTE CARLO PRO
COUTINHO K, 1997, ADV QUANTUM CHEM, V28, P89
COUTINHO K, 2000, J CHEM PHYS, V113, P9132
DEALMEIDA KJ, 2001, PHYS CHEM CHEM PHYS, V3, P1583
DORY M, 1994, J CHEM SOC FARADAY T, V90, P2319
DOSSANTOS HF, UNPUB
DUMESTRE F, 1998, J CHEM SOC DALT 1221, P4131
EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
EGGERDING D, 1975, J AM CHEM SOC, V97, P207
FABRE PL, 2000, ELECTROCHIM ACTA, V45, P2697
FARNELL L, 1981, J MOL STRUCT, V76, P1
FRISCH MJ, 1998, GAUSSIAN 98
GLICK MD, 1964, INORG CHEM, V3, P1712
GLICK MD, 1966, INORG CHEM, V5, P289
GONCALVES NS, 1996, ACTA CRYSTALLOGR C 3, V52, P622
HA TK, 1986, J MOL STRUCT, V137, P183
HEAD JD, 1986, CHEM PHYS LETT, V131, P359
ITO M, 1963, J AM CHEM SOC, V85, P2580
JORGENSEN WL, 1995, BOSS VERSION 3 5 BIO
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
PUEBLA C, 1986, J MOL STRUCT THEOCHE, V137, P171
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROCHA WR, 2001, CHEM PHYS LETT, V335, P127
SANTOS PS, 1991, J MOL STRUCT, V243, P223
SCHLEYER PV, 2000, J ORG CHEM, V65, P426
SEITZ G, 1992, CHEM REV, V92, P1227
TAKAHASHI M, 1978, CHEM PHYS, V35, P293
TORII H, 1995, J MOL STRUCT THEOCHE, V334, P15
WEST R, 1960, J AM CHEM SOC, V82, P6204
WEST R, 1963, J AM CHEM SOC, V85, P2577
WEST R, 1963, J AM CHEM SOC, V85, P2586
WEST R, 1981, J AM CHEM SOC, V103, P5073
ZERNER MC, ZINDO SEMIEMPIRICAL
ZERNER MC, 1980, J AM CHEM SOC, V102, P589
ZHAO B, 1992, CAN J CHEM, V70, P135
NR 42
TC 8
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI Phys. Chem. Chem. Phys.
PY 2001
VL 3
IS 17
BP 3499
EP 3505
PG 7
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 471BW
UT ISI:000170907800004
ER
PT J
AU Almeida, AL
Martins, JBL
Longo, E
Furtado, NC
Taft, CA
Sambrano, JR
Lester, WA
TI Theoretical study of MgO(001) surfaces: Pure, doped with Fe, Ca, and
Al, and with and without adsorbed water
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE MgO; ab initio; water adsorption; Fe; Ca; Al; theoretical study
ID TEMPERATURE-PROGRAMMED DESORPTION; LARGE CLUSTER-MODELS;
MAGNESIUM-OXIDE; MGO SURFACES; AB-INITIO; MGO(100) SURFACE; ZNO
SURFACES; DISSOCIATIVE ADSORPTION; HYDROGEN MOLECULE; PROPYLENE-OXIDE
AB Ab initio calculations of large cluster models have been performed in
order to study water adsorption at the five-fold coordinated adsorption
site on pure Mg(001) and MgO(001) surfaces doped with Fe, Ca, and Al.
The geometric parameters of the adsorbed water molecule have been
optimized preparatory to analysis of binding energies, charge transfer,
preferential sites of interaction, and bonding distances. We have used
Mulliken population analysis methods in order to analyze charge
distributions and the direction of charge transfer. We have also
investigated energy gaps, HOMO energies, and SCF orbital energies as
well as the acid-base properties of our cluster model. Numerical
results are compared, where possible, with experiment and interpreted
in the framework of various analytical models. (C) 2001 John Wiley &
Sons, Inc.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290180 Rio De Janeiro, Brazil.
Univ Estado Bahia, Dept Ciencias Exatas & Terra, BR-41195001 Salvador, BA, Brazil.
Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-3565905 Sao Carlos, SP, Brazil.
Univ Estadual Paulista, Dept Matemat, BR-17033360 Sao Paulo, Brazil.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
Estatist, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil.
CR AHDJOUDI J, 1999, CATAL TODAY, V50, P54
ALMEIDA AL, 1998, J CHEM PHYS, V109, P367
ALMEIDA AL, 1998, THEOCHEM-J MOL STRUC, V426, P199
ALMEIDA AL, 1999, INT J QUANTUM CHEM, V71, P153
ANCHELL JL, 1996, J PHYS CHEM-US, V100, P1831
CHACONTAYLOR MR, 1996, J PHYS CHEM-US, V100, P7610
COLBOURN EA, 1982, SURF SCI, V117, P571
COLBOURN EA, 1983, SURF SCI, V126, P550
COLUCCIA S, 1979, J CHEM SOC FARAD T 1, V75, P1769
COLUCCIA S, 1987, SPECTROCHIM ACTA A, V43, P1573
DELEEUW NH, 1995, J PHYS CHEM-US, V99, P17219
DERCOLE A, 1999, J CHEM PHYS, V111, P9743
DUNSKI H, 1994, J CATAL, V146, P166
DURIEZ C, 1990, SURF SCI, V230, P123
FRISCH MJ, 1995, GAUSSIAN 94
GATES BC, 1992, CATALYTIC CHEM
GERSON AR, 1999, PHYS CHEM CHEM PHYS, V1, P4889
GONIAKOWSKI J, 1995, SURF SCI, V323, P129
GONIAKOWSKI J, 1995, SURF SCI, V330, P337
GONIAKOWSKI J, 1995, SURF SCI, V340, P191
HENRICH E, 1984, SURFACE SCI METAL OX
ILLAS F, 1999, CHEM PHYS LETT, V306, P202
ITO T, 1991, J PHYS CHEM-US, V95, P4476
JONES CF, 1984, J CHEM SOC FARAD T 1, V80, P2609
KOBAYASHI H, 1990, J PHYS CHEM-US, V94, P7206
KOBAYASHI H, 1994, J PHYS CHEM-US, V98, P5487
KURODA Y, 1988, J CHEM SOC F1, V84, P2421
LANGEL W, 1994, PHYS REV LETT, V73, P504
LINTULUOTO M, 1999, SURF SCI, V429, P133
LONGO E, 1985, ADV CERAM, V10, P592
LONGO E, 1985, LANGMUIR, V1, P456
LONGO E, 1987, HIGH TECH CERAMICS, P399
MARTINS JBL, 1976, J MOL STRUCT THEOCHE, V363, P249
MARTINS JBL, 1993, INT J QUANTUM CHEM, V27, P643
MARTINS JBL, 1994, THEOCHEM-J MOL STRUC, V109, P19
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P347
MARTINS JBL, 1995, THEOCHEM-J MOL STRUC, V335, P167
MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V397, P147
MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V398, P457
MARTINS JBL, 1998, INT J QUANTUM CHEM, V70, P367
MCCARTHY MI, 1996, J PHYS CHEM-US, V100, P16989
MITAMURA T, 1998, NIPPON KAGAKU KA MAR, P174
PAVAO AC, 1994, PHYS REV B, V50, P1868
PAVAO AC, 1995, SURF SCI, V323, P340
PICAUD S, 1993, CHEM PHYS LETT, V209, P340
RODRIGUEZ JA, 1999, J CHEM PHYS, V111, P8077
ROSSI PF, 1991, LANGMUIR, V7, P2677
SCAMEHORN CA, 1993, J CHEM PHYS, V99, P2786
SCAMEHORN CA, 1994, J CHEM PHYS, V101, P1547
SHINOHARA Y, 1998, NIPPON KAGAKU KA OCT, P643
VULLIERMET N, 1998, COLLECT CZECH CHEM C, V63, P1447
WADT WR, 1985, J CHEM PHYS, V82, P284
NR 54
TC 4
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD SEP 20
PY 2001
VL 84
IS 6
BP 705
EP 713
PG 9
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 470RF
UT ISI:000170884400012
ER
PT J
AU Toma, HE
Rocha, RC
TI Linkage isomerization reactions
SO CROATICA CHEMICA ACTA
LA English
DT Review
DE linkage isomerism; reaction mechanism; kinetics
ID OXIME-IMINE LIGANDS; NORMAL-COORDINATE ANALYSIS; AROMATIC NITROGEN
HETEROCYCLES; DIMETHYL-SULFOXIDE COMPLEXES; INTERSTRAND CROSS-LINKING;
DENSITY-FUNCTIONAL THEORY; BASE-CATALYZED NITRITO; RAY
CRYSTAL-STRUCTURE; III AMMINE COMPLEXES; OXYGEN-ATOM TRANSFER
AB Linkage isomerization reactions have been reviewed from the aspect of
the kinetics and mechanisms involved, focusing on selected cases of
direct formation, as well as on electrochemical, photochemical, thermal
and pH-induced generation of linkage isomers.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Toma, HE, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
Sao Paulo, Brazil.
CR ABRUNA HD, 1981, INORG CHEM, V20, P1481
ADAMO C, 1994, CHEM PHYS LETT, V223, P54
AKHTER FM, 1994, CHEM LETT, P171
AKHTER FM, 1996, B CHEM SOC JPN, V69, P643
AKHTER FMD, 1994, CHEM LETT, P2393
ALBERT A, 1948, J CHEM SOC, P2240
ALESSIO E, 1993, INORG CHEM, V32, P5756
ALESSIO E, 1995, INORG CHEM, V34, P4716
ALLGEIER AM, 1998, ANGEW CHEM INT EDIT, V37, P894
ALY MM, 1985, POLYHEDRON, V4, P1301
ALY MM, 1993, J MOL STRUCT, V293, P75
ALY MM, 1994, POLYHEDRON, V13, P1907
ALY MM, 1994, SPECTROCHIM ACTA A, V50, P835
ALY MM, 1995, MONATSH CHEM, V126, P173
ALY MM, 1996, REV INORG CHEM, V16, P315
ALY MM, 1998, J COORD CHEM, V43, P89
ALY MM, 1998, TRANSIT METAL CHEM, V23, P361
ALY MM, 1999, J COORD CHEM, V47, P505
ANDREASEN LV, 1999, INORG CHIM ACTA, V295, P153
ANGEL RL, 1990, INORG CHEM, V29, P20
ANGUS PM, 1991, INORG CHEM, V30, P4806
ANGUS PM, 1993, INORG CHEM, V32, P450
ANGUS PM, 1993, INORG CHEM, V32, P5285
ANGUS PM, 1994, INORG CHEM, V33, P1569
ANGUS PM, 1994, INORG CHEM, V33, P477
ANGUS PM, 1996, INORG CHEM, V35, P7196
ANGUS PM, 1998, INORG CHIM ACTA, V268, P85
APPLETON TG, 1992, INORG CHEM, V31, P4410
ARPALAHTI J, 2000, EUR J INORG CHEM MAY, P1007
AUGE P, 1997, TRANSIT METAL CHEM, V22, P91
BAGHLAF AO, 1987, POLYHEDRON, V6, P205
BAI ZP, 1988, B CHEM SOC JPN, V61, P1959
BAI ZP, 1995, POLYHEDRON, V14, P2071
BAILEY RA, 1971, COORDINATION CHEM RE, V6, P407
BALAHURA RJ, 1974, CAN J CHEM, V52, P1762
BALAHURA RJ, 1976, COORDIN CHEM REV, V20, P109
BALT S, 1983, J CHEM SOC DA, P1739
BARTRAM ME, 1988, J VAC SCI TECHNOL A, V6, P782
BASOLO F, 1960, J AM CHEM SOC, V82, P1001
BASOLO F, 1962, INORG CHEM, V1, P1
BASOLO F, 1963, J AM CHEM SOC, V85, P1700
BASOLO F, 1966, J AM CHEM SOC, V88, P1576
BASOLO F, 1967, MECH INORGANIC REACT, P293
BATISTA AA, 1980, AN ACAD BRAS CIENC, V52, P703
BAUMANN F, 1997, CHEM COMMUN 0107, P35
BENNETT MA, 1998, J ORGANOMET CHEM, V571, P139
BERAN G, 1970, J CHEM SOC CHEM COMM, P1354
BERGLUND J, 1994, INORG CHEM, V33, P3346
BIGNOZZI CA, 1994, J CHEM SOC DA, P2391
BLACKMAN A, 1993, ADV HETEROCYCL CHEM, V58, P123
BLESA MA, 1976, J CHEM SOC DA, P1196
BLESA MA, 1977, J CHEM SOC DA, P845
BOLDYREVA E, 1994, BER BUNSEN PHYS CHEM, V98, P738
BOLDYREVA E, 1997, ACTA CRYSTALLOGR B 3, V53, P394
BOLDYREVA EV, 1985, THERMOCHIM ACTA, V92, P109
BOLDYREVA EV, 1993, J STRUCT CHEM, V34, P602
BOLDYREVA EV, 1998, ACTA CRYSTALLOGR 10, V54, P1378
BOLDYREVA EV, 1998, ACTA CRYSTALLOGR B 6, V54, P798
BOLDYREVA EV, 1998, J STRUCT CHEM+, V39, P343
BOLDYREVA EV, 1998, J STRUCT CHEM+, V39, P762
BOND AM, 1997, ORGANOMETALLICS, V16, P2787
BORGHI EB, 1981, J INORG NUCL CHEM, V43, P1849
BOUDVILLAIN M, 1997, BIOCHEMISTRY-US, V36, P2925
BOZOGLIAN F, 1998, POLYHEDRON, V17, P3551
BRADIC Z, 1974, J CHEM SOC DA, P344
BRADIC Z, 1975, J CHEM SOC DA, P353
BRAUNSTEIN P, 1999, J ORGANOMET CHEM, V580, P66
BROCK CP, 1984, ACTA CRYSTALLOGR B, V40, P595
BROWN DA, 1982, J ORGANOMET CHEM, V234, C52
BROWN LD, 1971, INORG CHEM, V10, P2117
BUCHANAN BE, 1990, INORG CHEM, V29, P3263
BUCKINGHAM DA, 1993, AUST J CHEM, V46, P503
BUCKINGHAM DA, 1994, COORDIN CHEM REV, V135, P587
BUCKLEY RC, 1972, INORG CHEM, V11, P1723
BURMEISTER JL, 1964, INORG CHEM, V3, P1587
BURMEISTER JL, 1966, COORDIN CHEM REV, V1, P205
BURMEISTER JL, 1968, COORDIN CHEM REV, V3, P225
BURMEISTER JL, 1971, INORG CHEM, V10, P2032
BUSCHMANN WE, 1999, CHEM-EUR J, V5, P3019
CALABRO DC, 1981, INORG CHIM ACTA, V53, L47
CALLIGARIS M, 1995, J CHEM SOC DA, P1653
CARBALLO R, 1996, J ORGANOMET CHEM, V525, P49
CARDUCCI MD, 1997, J AM CHEM SOC, V119, P2669
CHEN Y, 1997, INORG CHEM, V36, P818
CHEVALIER AA, 1991, J CHEM SOC DA, P1959
CHIN CS, 2000, ORGANOMETALLICS, V19, P638
CHOU MH, 1992, INORG CHEM, V31, P5347
CHOU MY, 1994, J BIOL CHEM, V269, P18821
CINI R, 1996, INORG CHIM ACTA, V251, P111
COLLMAN JP, 1965, INORG CHEM, V4, P1273
COLOMBIER C, 1996, NUCLEIC ACIDS RES, V24, P4519
COPPENS P, 1998, J CHEM SOC DALT 0321, P865
COSMANO RJ, 1975, THERMOCHIM ACTA, V13, P127
COYER MJ, 1994, INORG CHEM, V33, P716
CUN L, 1990, INORG CHEM, V29, P2937
CURTIS NJ, 1983, AUST J CHEM, V36, P1495
CURTIS NJ, 1983, J AM CHEM SOC, V105, P5347
CUSUMANO M, 1978, INORG CHIM ACTA, V30, P29
DACUNHA CJ, 1999, INORG CHEM, V38, P5399
DALBIES R, 1994, P NATL ACAD SCI USA, V91, P8147
DALBIES R, 1995, NUCLEIC ACIDS RES, V23, P949
DANON J, 1967, J MOL STRUCT, V1, P127
DARENSBOURG DJ, 1996, INORG CHEM, V35, P4764
DAROCHA ZN, 1997, ADV CHEM SER, V253, P297
DAS D, 1998, J CHEM SOC DALT 1207, P3987
DEACON GB, 1968, J AM CHEM SOC, V90, P493
DELMEDICO A, 1994, INORG CHEM, V33, P1583
DELMEDICO A, 1995, INORG CHEM, V34, P1507
DELMEDICO A, 1998, INORG CHIM ACTA, V281, P126
DEMADIS KD, 1998, INORG CHEM, V37, P3610
DEMADIS KD, 1998, INORG CHEM, V37, P838
DIXON NE, 1983, INORG CHEM, V22, P4038
DULEPOV VE, 1994, REACT KINET CATAL L, V53, P289
EICHELE K, 1994, INORG CHEM, V33, P2766
ELLIS WR, 1982, INORG CHEM, V21, P834
ELTABL AS, 1998, POL J CHEM, V72, P519
EPPS LA, 1972, J CHEM SOC CHEM COMM, P109
ERTEM G, 1997, J AM CHEM SOC, V119, P7197
FAIRLIE DP, 1985, INORG CHEM, V24, P3199
FAIRLIE DP, 1988, INORG CHIM ACTA, V150, P81
FAIRLIE DP, 1989, INORG CHEM, V28, P1983
FAIRLIE DP, 1990, INORG CHEM, V29, P3145
FAIRLIE DP, 1991, INORG CHEM, V30, P1564
FAIRLIE DP, 1994, INORG CHEM, V33, P6425
FAIRLIE DP, 1997, INORG CHEM, V36, P1020
FAIRLIE DP, 1997, INORG CHEM, V36, P1029
FAIRLIE DP, 1997, INORG CHEM, V36, P2242
FAIRLIE DP, 1999, INORG CHIM ACTA, V290, P133
FERRARO JR, 1978, INORG CHIM ACTA, V26, L15
FERRER S, 1992, J CHEM SOC DALT 1021, P3029
FOMITCHEV DV, 1996, INORG CHEM, V35, P7021
FOMITCHEV DV, 1999, CHEM COMMUN, P2013
FOMITCHEV DV, 1999, COMMENT INORG CHEM A, V21, P131
FRASER RTM, 1967, ADV CHEM SER, V62, P295
FROHLING CDW, 1997, J CHEM SOC DALT 1121, P4411
FULTZ WC, 1980, INORG CHIM ACTA LETT, V45, L271
FURLANI C, 1980, INORG CHIM ACTA LETT, V44, L313
GASWICK D, 1978, J INORG NUCL CHEM, V40, P437
GIBNEY SC, 1999, INORG CHEM, V38, P2898
GIRAUDPANIS MJ, 2000, PHARMACOL THERAPEUT, V85, P175
GOODGAME DM, 1968, SPECTROCHIM ACTA A, V24, P1254
GORDON CM, 1991, J PHYS CHEM-US, V95, P2889
GRENTHE I, 1979, INORG CHEM, V18, P1109
GRENTHE I, 1979, INORG CHEM, V18, P1869
GUO ZJ, 1999, ANGEW CHEM INT EDIT, V38, P1513
GUTTERMAN DF, 1969, J AM CHEM SOC, V91, P3105
GUTTMAN A, 1996, ELECTROPHORESIS, V17, P412
HAIM A, 1966, J AM CHEM SOC, V88, P434
HALL JH, 1990, INORG CHEM, V29, P3806
HARMAN WD, 1988, J AM CHEM SOC, V110, P2439
HARMAN WD, 1988, J AM CHEM SOC, V110, P5403
HARMAN WD, 1989, INORG CHEM, V28, P2411
HASSEL RL, 1974, INORG CHIM ACTA, V8, P155
HEYNS AM, 1989, SPECTROCHIM ACTA A, V45, P905
HITCHMAN MA, 1982, COORDIN CHEM REV, V42, P55
HOHMAN WH, 1974, J CHEM EDUC, V51, P553
HORROCKS WD, 1982, INORG CHEM, V21, P3270
HOUSE JE, 1993, INORG CHEM, V32, P1053
HUBBARD JL, 1993, INORG CHEM, V32, P3333
HUBBARD JL, 1993, INORG CHEM, V32, P4670
HUBINGER S, 1991, INORG CHEM, V30, P3707
HUBINGER S, 1993, INORG CHEM, V32, P2394
HUNT CT, 1982, INORG CHEM, V21, P1242
IENGO E, 1999, J CHEM SOC DALTON, P3361
ILAN Y, 1983, INORG CHEM, V22, P1655
ILAN Y, 1986, INORG CHEM, V25, P2350
IYENGAR RR, 1975, J INORG NUCL CHEM, V37, P75
JACKSON WG, 1980, INORG CHEM, V19, P904
JACKSON WG, 1980, REARRANGEMENTS GROUN, V2, P273
JACKSON WG, 1981, J CHEM EDUC, V58, P734
JACKSON WG, 1982, AUST J CHEM, V35, P1561
JACKSON WG, 1982, J CHEM SOC CHEM COMM, P70
JACKSON WG, 1991, J CHEM EDUC, V68, P903
JACKSON WG, 1993, INORG CHEM, V32, P445
JACKSON WG, 1994, INORG CHEM, V33, P1921
JACOBSON SE, 1973, INORG CHEM, V12, P717
JANIK MBL, 1999, J BIOL INORG CHEM, V4, P645
JOHNSON A, 1993, INORG CHIM ACTA, V210, P151
JOHNSON DA, 1975, INORG NUCL CHEM LETT, V11, P23
JOHNSON DA, 1979, INORG CHEM, V18, P3273
JOHNSON KA, 1973, INORG CHEM, V12, P124
JORGENSEN SM, 1893, Z ANORG ALLG CHEM, V5, P169
JURETIC R, 1979, J CHEM SOC DA, P2029
JURISSON S, 1998, INORG CHEM, V37, P1922
KAKISHITA T, 1994, KOBUNSHI RONBUNSHU, V51, P59
KAKOTI M, 1993, POLYHEDRON, V12, P783
KAMINSKAIA NV, 1997, INORG CHEM, V36, P5917
KAMINSKAIA NV, 1998, INORG CHEM, V37, P4302
KARGOL JA, 1980, INORG CHEM, V19, P1515
KASPARKOVA J, 1999, BIOCHEMISTRY-US, V38, P10997
KATZ NE, 1993, INORG CHEM, V32, P5391
KAUFFMAN GB, 1973, COORDINATION CHEM RE, V11, P161
KERN JM, 2000, INORG CHEM, V39, P1555
KHAN AR, 1995, INORG CHIM ACTA, V234, P109
KIRK AD, 1995, INORG CHEM, V34, P1536
KOB NE, 1994, TRANSIT METAL CHEM, V19, P31
KOHLE O, 1996, INORG CHEM, V35, P4779
KOJIMA M, 1994, B CHEM SOC JPN, V67, P869
KOJIMA M, 1996, B CHEM SOC JPN, V69, P2889
KOJIMA M, 1997, J CHROMATOGR A, V789, P273
KOLIS SP, 1996, ORGANOMETALLICS, V15, P245
KOLLE U, 1991, ANGEW CHEM INT EDIT, V30, P956
KRUMM M, 1993, INORG CHEM, V32, P700
KUBOTA M, 1992, ACTA CRYSTALLOGR B, V48, P627
KULASINGAM GC, 1968, J CHEM SOC A, P254
KUNZE U, 1985, CHEM BER, V118, P227
LACEY MJ, 1974, J CHEM SOC DA, P1215
LACEY MJ, 1978, AUST J CHEM, V31, P1449
LANGE I, 1997, Z ANORG ALLG CHEM, V623, P1665
LAUER JL, 1972, INORG CHEM, V11, P907
LAY PA, 1991, ADV INORG CHEM RAD, V37, P219
LEE YA, 1999, INORG CHEM, V38, P531
LEIGH GL, 1990, NOMENCLATURE INORGAN, P98
LEISING RA, 1996, INORG CHIM ACTA, V245, P167
LELJ F, 1995, THEOR CHIM ACTA, V91, P199
LIM BS, 1998, INORG CHEM, V37, P4898
LINDNER E, 1972, CHEM BER, V105, P1032
LINDNER E, 1973, CHEM BER, V106, P404
LINDNER E, 1975, CHEM BER, V108, P291
LIVOREIL A, 1997, J AM CHEM SOC, V119, P12114
MACARTNEY DH, 1981, INORG CHEM, V20, P748
MACARTNEY DH, 1981, J CHEM SOC DA, P1780
MACATANGAY AV, 1999, INORG CHEM, V38, P5091
MALIN JM, 1977, J CHEM EDUC, V54, P385
MARES M, 1978, INORG CHIM ACTA, V27, P153
MARES M, 1982, INORG CHIM A-ARTICLE, V60, P123
MASCIOCCHI N, 1994, INORG CHEM, V33, P2579
MASLAK P, 1991, J AM CHEM SOC, V113, P1062
MASSAFERRO A, 1992, AN QUIM-INT, V88, P230
MATSUBARA T, 1979, INORG CHEM, V18, P1956
MILNE C, 1996, CAN J CHEM, V74, P1889
MIYOSHI K, 1983, INORG CHEM, V22, P1839
MROZINSKI J, 1992, POLYHEDRON, V11, P2867
MURATA M, 1998, COORDIN CHEM REV, V174, P109
MURATI I, 1978, J CHEM SOC DA, P500
MURMANN RK, 1956, J AM CHEM SOC, V78, P4886
MYERS WH, 1992, J AM CHEM SOC, V114, P5684
NAKAMOTO K, 1958, J AM CHEM SOC, V80, P4817
NICHOLSON RS, 1964, ANAL CHEM, V36, P706
NORBURY AH, 1975, J INORG NUCL CHEM, V37, P2133
NORITAKE M, 1992, BER BUNSEN PHYS CHEM, V96, P857
NOVIKOV PB, 1998, J STRUCT CHEM+, V39, P333
NUNES FS, 1994, INORG CHEM, V33, P3111
NUNES FS, 1999, J COORD CHEM, V47, P251
OGINO H, 1984, CHEM LETT, P561
OKEYA S, 1978, INORG CHIM ACTA, V30, L319
ONYSZCHUK M, 1983, J ORGANOMET CHEM, V249, C9
OOYAMA D, 1995, INORG CHEM, V34, P6024
OOYAMA D, 1996, CHEM LETT, P759
OOYAMA D, 1997, B CHEM SOC JPN, V70, P2141
PALMER BJ, 1993, J PHOTOCH PHOTOBIO A, V72, P243
PALMER DA, 1978, INORG CHIM ACTA, V30, P83
PARAC TN, 1996, J AM CHEM SOC, V118, P5946
PARAC TN, 1998, INORG CHEM, V37, P2141
PARAC TN, 1999, J AM CHEM SOC, V121, P3127
PAUL P, 1992, CAN J CHEM, V70, P2461
PAVLOVIC D, 1973, J CHEM SOC DA, P602
PAVLOVIC D, 1976, J CHEM SOC DA, P2406
PAVLOVIC D, 1982, ACTA PHARM JUGOSL, V32, P153
PHILLIPS WM, 1990, J CHEM EDUC, V67, P267
PIAO LH, 1996, POLYHEDRON, V15, P3107
PIAO LH, 1997, POLYHEDRON, V16, P3033
PIKE RD, 1993, ORGANOMETALLICS, V12, P1416
PODBEREZSKAYA NV, 1991, J STRUCT CHEM, V32, P693
PREETZ W, 1995, Z ANORG ALLG CHEM, V621, P725
PURCELL WL, 1983, INORG CHEM, V22, P1205
RAEHM L, 1999, CHEM-EUR J, V5, P3310
REDDY KB, 1991, INORG CHEM, V30, P596
REGUERA E, 1998, POLYHEDRON, V17, P2353
REIN FN, 2001, J COORD CHEM, V53, P99
REN T, 1993, J AM CHEM SOC, V115, P11341
RICCIERI P, 1997, INORG CHIM ACTA, V255, P229
RIEVAJ M, 1992, B SOC CHIM BELG, V101, P671
RIEVAJ M, 1993, COLLECT CZECH CHEM C, V58, P1371
RIEVAJ M, 1993, COLLECT CZECH CHEM C, V58, P328
RIEVAJ M, 1993, COLLECT CZECH CHEM C, V58, P530
RIEVAJ M, 1994, INORG CHIM ACTA, V216, P113
RIEVAJ M, 1995, INORG CHIM ACTA, V228, P153
RINDERMANN W, 1982, INORG CHIM ACTA, V61, P173
ROCHA RC, 1998, TRANSIT METAL CHEM, V23, P13
ROHDE JU, 1997, Z ANORG ALLG CHEM, V623, P1774
ROHDE JU, 1998, Z ANORG ALLG CHEM, V624, P1319
RUILE S, 1997, INORG CHIM ACTA, V261, P129
RUILE S, 1998, NEW J CHEM, V22, P25
RUTHERFORD PE, 1980, SPECTROSC LETT, V13, P427
SADO M, 1996, POLYHEDRON, V15, P103
SAMATH SA, 1992, POLYHEDRON, V11, P33
SAMATH SA, 1994, INDIAN J CHEM A, V33, P779
SANO M, 1991, J AM CHEM SOC, V113, P2327
SANO M, 1994, INORG CHEM, V33, P705
SANO M, 1996, B CHEM SOC JPN, V69, P977
SATO Y, 2000, ANAL CHEM, V72, P1207
SAUVAGE JP, 1998, ACCOUNTS CHEM RES, V31, P611
SAWAI H, 1996, J BIOMOL STRUCT DYN, V13, P1043
SCHMIDT RR, 1980, CHEM BER, V113, P2891
SEKI H, 1997, J PHYS CHEM A, V101, P8174
SEMRAU M, 1996, Z ANORG ALLG CHEM, V622, P1953
SILVA DO, 1994, CAN J CHEM, V72, P1705
SLOAN TE, 1968, INORG CHEM, V7, P1268
SMITH MK, 2000, EUR J INORG CHEM JUN, P1365
SNOW MR, 1972, ACTA CRYSTALLOGR B, V28, P1908
SOVAGO I, 1995, J CHEM SOC DA, P489
STARK GA, 1997, ORGANOMETALLICS, V16, P2909
STOCHEL G, 1992, INORG CHEM, V31, P5480
SUH MP, 1996, J AM CHEM SOC, V118, P777
SULLIVAN TR, 1977, J CHEM SOC DA, P1460
SZECSY AP, 1982, J AM CHEM SOC, V104, P3063
TAKI T, 1997, FEBS LETT, V418, P219
TAUBE H, 1991, PURE APPL CHEM, V63, P651
THIELE G, 1980, Z ANORG ALLG CHEM, V464, P255
THOMPSON DW, 1999, J CHEM SOC DALTON, P3729
TIMONOVA IN, 1987, J STRUCT CHEM, V28, P518
TOMA HE, 1973, INORG CHEM, V12, P1039
TOMA HE, 1973, INORG CHEM, V12, P2080
TOMA HE, 1973, INORG CHEM, V12, P2084
TOMA HE, 1974, INORG CHEM, V13, P1772
TOMA HE, 1978, J CHEM SOC DA, P1610
TOMA HE, 1982, AN ACAD BRAS CIENC, V54, P315
TOMA HE, 1982, J AM CHEM SOC, V104, P7509
TOMA HE, 1982, POLYHEDRON, V1, P429
TOMA HE, 1983, CAN J CHEM, V61, P2520
TOMA HE, 1985, J CHEM SOC DA, P2469
TOMA HE, 1989, AN ACAD BRAS CIENC, V61, P131
TOMA HE, 1989, POLYHEDRON, V8, P941
TOMA HE, 1991, J COORD CHEM, V24, P1
TOMA HE, 1993, ELECTROCHIM ACTA, V38, P975
TOMA HE, 2000, AN ACAD BRAS CIENC, V72, P1
TOMITA A, 1994, INORG CHEM, V33, P5825
TREADWAY JA, 1999, INORG CHEM, V38, P2267
VAUDO AF, 1971, J AM CHEM SOC, V93, P6698
VIROVETS AV, 1994, J STRUCT CHEM, V35, P236
VOGT JU, 1995, Z ANORG ALLG CHEM, V621, P1033
WALKER R, 1980, J CHEM EDUC, V57, P789
WANG R, 1992, J AM CHEM SOC, V114, P1964
WATSON AA, 1995, INORG CHEM, V34, P3087
WEI HH, 1984, INORG CHEM, V23, P624
WERNER A, 1907, BER DTSCH CHEM GES 1, V40, P765
WIENKEN M, 1993, J CHEM SOC DA, P3349
WOON TC, 1992, INORG CHEM, V31, P4069
WOON TC, 1993, INORG CHEM, V32, P2190
YAMAGUCHI A, 1958, J AM CHEM SOC, V80, P527
YAMANARI K, 1993, J CHEM SOC DALTON, P403
YAMANARI K, 1996, J CHEM SOC DALT 0207, P305
YAMAZAKI S, 1986, POLYHEDRON, V5, P1183
YEH A, 1982, INORG CHEM, V21, P2542
ZHU NY, 1994, ANGEW CHEM INT EDIT, V33, P2090
ZHU NY, 1997, CHEM BER-RECL, V130, P1241
ZMIKIC A, 1975, CROAT CHEM ACTA, V47, P117
NR 348
TC 7
PU CROATIAN CHEMICAL SOC
PI ZAGREB
PA MARULICEV TRG 19/II, 41001 ZAGREB, CROATIA
SN 0011-1643
J9 CROAT CHEM ACTA
JI Croat. Chem. Acta
PD AUG
PY 2001
VL 74
IS 3
SI Sp. Iss. SI
BP 499
EP 528
PG 30
SC Chemistry, Multidisciplinary
GA 469JN
UT ISI:000170810900004
ER
PT J
AU Baierle, RJ
Fagan, SB
Mota, R
da Silva, AJR
Fazzio, A
TI Electronic and structural properties of silicon-doped carbon nanotubes
SO PHYSICAL REVIEW B
LA English
DT Article
ID AB-INITIO CALCULATIONS; LARGE SYSTEMS; BORON; CLUSTERS; MICROTUBULES;
CONDUCTANCE; FULLERENES; NITROGEN; DEFECTS
AB Predictions of the electronic and structural properties of silicon
substitutional doping in carbon nanotubes are presented using
first-principles calculations based on the density-functional theory. A
large outward displacement of the Si atom and its nearest-neighbor
carbon atoms is observed. For the two tubes studied [metallic (6,6) and
semiconducting ( 10,0)] the formation energies of the substitutional
defects are obtained around 3.1 eV/atom. In the doped metallic nanotube
case a resonant state appears about 0.7 eV above the Fermi level,
whereas for the semiconductor tube, the silicon introduces an empty
level at approximately 0.6 eV above the top of the valence band.
C1 Ctr Univ Franciscano, Dept Ciencias Exatas, BR-97010032 Santa Maria, RS, Brazil.
Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Baierle, RJ, Ctr Univ Franciscano, Dept Ciencias Exatas, BR-97010032
Santa Maria, RS, Brazil.
CR ARTACHO E, 1999, PHYS STATUS SOLIDI B, V215, P809
BILLAS IML, 1999, J CHEM PHYS, V111, P6787
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHARLIER JC, 1996, PHYS REV B, V53, P11108
CHICO L, 1996, PHYS REV LETT, V76, P971
CHOI HJ, 2000, PHYS REV LETT, V84, P2917
FAGAN SB, 2000, PHYS REV B, V61, P9994
FU CC, 2001, PHYS REV B, V63
FYE JL, 1997, J PHYS CHEM A, V101, P1836
GOLBERG D, 2000, CARBON, V38, P2017
HAMADA N, 1992, PHYS REV LETT, V68, P1579
IIJIMA S, 1991, NATURE, V354, P56
KIMURA T, 1996, CHEM PHYS LETT, V256, P269
MIYAMOTO Y, 1996, PHYS REV LETT, V76, P2121
ORDEJON P, 1996, PHYS REV B, V53
PELLARIN M, 1999, J CHEM PHYS, V110, P6927
PERDEW JP, 1981, PHYS REV B, V23, P5048
RAY C, 1998, PHYS REV LETT, V80, P5365
SAITO R, 1992, APPL PHYS LETT, V60, P2204
SAITO R, 1996, PHYS REV B, V53, P2044
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANKEY OF, 1989, PHYS REV B, V40, P3979
STEPHAN O, 1994, SCIENCE, V266, P1683
SUENAGA K, 1997, SCIENCE, V278, P653
TANS SJ, 1997, NATURE, V386, P474
TERRONES M, 1996, CHEM PHYS LETT, V257, P576
TROULLIER N, 1991, PHYS REV B, V43, P1993
XIE RH, 1999, CHEM PHYS LETT, V310, P379
NR 28
TC 24
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 15
PY 2001
VL 6408
IS 8
BP art. no.
EP 085413
AR 085413
PG 4
SC Physics, Condensed Matter
GA 466AW
UT ISI:000170623000096
ER
PT J
AU Dorfman, S
Liubich, V
Fuks, D
Mundim, KC
TI Simulations of decohesion and slip of the Sigma(3) < 111 > grain
boundary in tungsten with non-empirically derived interatomic
potentials: the influence of boron interstitials
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID EMBEDDED-ATOM-METHOD; ELECTRONIC-STRUCTURE; INTERGRANULAR COHESION;
MOLECULAR-DYNAMICS; TRANSITION-METALS; VACANCY-FORMATION; PAIR
POTENTIALS; ALLOYS; IMPURITIES; IRON
AB Monte Carlo atomistic simulations of the properties Of Sigma (3) < 111
> grain boundaries in W are carried out. We demonstrate the influence
of boron additive on the resistance of the grain boundary with respect
to different shifts. The interatomic potentials used in these
simulations are obtained from ab initio total-energy calculations.
These calculations are performed in the framework of density functional
theory in the coherent potential approximation. A recursion procedure
for extracting A-B-type interatomic potentials is suggested.
C1 Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel.
Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel.
Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
RP Dorfman, S, Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa,
Israel.
CR ACKLAND GJ, 1990, PHYS REV B, V41, P10324
ANDERSON PM, 1987, P 34 SAG ARM MAT RES, P619
AREAS EPG, 1995, J PHYS CHEM-US, V99, P14882
BADALYAN DA, 1970, SOV PHYS-SOLID STATE, V12, P346
BAKER I, 1998, INTERMETALLICS, V6, P177
BAZANT MZ, 1996, MAT THEORY SIMULATIO, P48
BAZANT MZ, 1996, PHYS REV LETT, V77, P4370
BROVMAN EG, 1974, SOV PHYS USP, V17, P125
CARLSSON AE, 1983, PHYS REV B, V27, P2101
CARLSSON AE, 1985, PHYS REV B, V32, P4866
CARLSSON AE, 1991, PHYS REV B, V44, P6590
CHEN NX, 1994, PHYS LETT A, V195, P135
CHISHOLM MF, 1998, PHYS REV LETT, V81, P132
CONNOLLY JWD, 1983, PHYS REV B, V27, P5169
DAVIDOV G, 1995, PHYS REV B, V51, P13059
DAW MS, 1984, PHYS REV B, V29, P6443
DEFONTAINE D, 1994, SOLID STATE PHYS, V47, P33
DEKONING M, 1998, PHYS REV B, V58, P12555
DORFMAN S, 1998, INT J QUANTUM CHEM, V70, P1067
DORFMAN S, 2000, J PHYS-CONDENS MAT, V12, P4175
ELLIS DE, 1999, PHILOS MAG B, V79, P1615
FAULKNER JS, 1982, PROG MATER SCI, V27, P1
FINNIS MW, 1984, PHILOS MAG A, V50, P45
FOILES SM, 1986, PHYS REV B, V33, P7983
FOREMAN AJE, 1992, PHILOS MAG A, V66, P655
FUKS D, 1994, PHYS REV B, V50, P16340
FUKS DL, 1977, PHYS MET METALLOGR, V43, P139
GE XJ, 1999, J APPL PHYS, V85, P3488
GIFKINS RC, 1994, MATER CHARACT, V32, P59
GRUJICIC M, 1997, INT J REFRACT MET H, V15, P341
GUTTMANN M, 1979, INTERFACIAL SEGREGAT, P261
JUSTO JF, 1998, PHYS REV B, V58, P2539
KAUFMAN L, 1970, COMPUTER CALCULATION
KHACHATURYAN AG, 1983, THEORY STRUCTURAL TR
KRASKO GL, 1990, SOLID STATE COMMUN, V76, P247
KRASKO GL, 1991, SOLID STATE COMMUN, V79, P113
KRASKO GL, 1993, SCRIPTA METALL MATER, V28, P1543
KRASKO GL, 1994, INT J REFRACT MET H, V12, P251
KRASKO GL, 1997, MAT SCI ENG A-STRUCT, V234, P1071
KRIVOGLAZ MA, 1964, THEORY ORDER DISORDE
KURTZ RJ, 1999, PHILOS MAG A, V79, P665
LIUBICH V, 1999, MATER T JIM, V40, P132
MAHAN GD, 1981, MANY PARTICLE PHYSIC
MAIER K, 1979, PHILOS MAG A, V40, P701
MESCALL JF, 1987, P 34 SAG ARM MAT RES, P287
MOLL N, 1995, PHYS REV B, V52, P2550
MOLTENI C, 1996, PHYS REV LETT, V76, P1284
MORET MA, 1998, J COMPUT CHEM, V19, P647
MUKERJEE AK, 1993, MAT SCI TECHNOL, V6, P407
MUNDIM KC, 1996, INT J QUANTUM CHEM, V58, P373
MUNDY JN, 1978, PHYS REV B, V18, P6566
PAVAROVA KB, 1987, IZV ACAD NAUK SSSR M, V1, P134
PAVAROVA KB, 1990, IZV ACAD NAUK SSSR M, V1, P76
RICE JR, 1989, MAT SCI ENG A-STRUCT, V107, P23
RUBAN AV, 1995, PHYS REV B, V51, P12958
SCHMIDT C, 1995, PHYS REV LETT, V75, P2160
SHAOJUN L, 1998, PHYS REV B, V58, P9705
TOLSTOBROV YO, 1987, FIZIKA KHIMIYA OBRAB, V21, P121
WEI X, 1994, SURF SCI, V301, P371
WU R, 1993, PHYS REV B, V47, P6885
WU RQ, 1992, J MATER RES, V7, P2403
WU RQ, 1994, PHYS REV B, V50, P75
WU RQ, 1994, SCIENCE, V265, P376
ZHANG WQ, 1997, J APPL PHYS, V82, P578
NR 64
TC 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD AUG 6
PY 2001
VL 13
IS 31
BP 6719
EP 6740
PG 22
SC Physics, Condensed Matter
GA 466UD
UT ISI:000170663800015
ER
PT J
AU Okulik, NB
Diez, RP
Jubert, AH
Esteves, PM
Mota, CJA
TI A topological study of the transition states of the hydrogen exchange
and dehydrogenation reactions of methane on a zeolite cluster
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID AB-INITIO; MECHANISM; ALKANES; PROTON; CD4
AB The transition states of the hydrogen exchange and dehydrogenation
reactions of methane on a zeolite acid site are studied within the
framework of the density functional theory and the atoms-in-molecules
theory. The transition state for the hydrogen exchange reaction is
found to be characterized by a slightly ionic interaction between a
distorted CH5+ structure and the negatively charged zeolite. No free
carbocation is found. The dehydrogenation reaction presents a
transition state in which three different fragments can be well
identified, namely, an almost planar CH3+ structure, a H-2
pseudomolecule, and the negatively charged zeolite. The interaction
between the fragments can be described as a closed-shell one, typical
of rather ionic systems.
C1 Natl Univ La Plata, Fac Ciencias Exactas, Ctr Quim Inorgan, CEQUINOR,Dept Quim, RA-1900 La Plata, Argentina.
UNNE, Fac Agroind, Dept Quim, RA-3700 Pena, Chaco, Argentina.
Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Diez, RP, Natl Univ La Plata, Fac Ciencias Exactas, Ctr Quim Inorgan,
CEQUINOR,Dept Quim, CC 962, RA-1900 La Plata, Argentina.
CR BADER RFW, 1990, ATOMS MOL QUANTUM TH
BADER RFW, 1998, J PHYS CHEM A, V102, P7314
BAKER J, 1987, J COMPUT CHEM, V8, P563
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BLASZKOWKI SR, 1994, J PHYS CHEM-US, V98, P11332
BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
BLASZKOWSKI SR, 1997, TOP CATAL, V4, P145
BLIEGERKONIG FW, 1982, J COMPUT CHEM, V3, P317
BORONAT M, 1998, J PHYS CHEM A, V102, P9863
COLLARD K, 1977, INT J QUANTUM CHEM, V12, P623
CORMA A, 1995, CHEM REV, V95, P559
CREMER D, 1983, J AM CHEM SOC, V105, P5069
ESTEVES PM, 1999, J PHYS CHEM B, V103, P10417
EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
FRISCH MJ, 1995, GAUSSIAN 94
HOHENBERG P, 1965, PHYS REV A, V140, P1133
KAZANSKY VB, 1994, CATAL LETT, V28, P211
KRAMER GJ, 1993, NATURE, V363, P529
KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
LEE C, 1988, PHYS REV B, V37, P785
LINS JOMDL, 1996, THEOCHEM-J MOL STRUC, V371, P237
PARR RG, 1989, DENSITY FUNCTIONAL T
POPELIER PLA, 1999, ATOMS MOL INTRO
RIGBY AM, 1997, J CATAL, V170, P1
VANSANTEN RA, 1995, CHEM REV, V95, P637
VANSANTEN RA, 1997, CATAL TODAY, V38, P377
WANG LS, 1993, CATAL LETT, V21, P35
NR 27
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUL 26
PY 2001
VL 105
IS 29
BP 7079
EP 7084
PG 6
SC Chemistry, Physical
GA 457TH
UT ISI:000170152600015
ER
PT J
AU Pliego, JR
Riveros, JM
TI The cluster-continuum model for the calculation of the solvation free
energy of ionic species
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID STATISTICAL PERTURBATION-THEORY; PERIODIC BOUNDARY-CONDITIONS;
SELF-CONSISTENT-FIELD; AB-INITIO; MOLECULAR-DYNAMICS; HYDROXIDE ION;
AQUEOUS SOLVATION; LIQUID WATER; THERMODYNAMIC INTEGRATION; POTENTIAL
FUNCTIONS
AB A hybrid approach using a combination of explicit solvent molecules and
the isodensity polarizable continuum model (IPCM) method is proposed
for the calculation of the solvation thermodynamic properties of ions.
This model, denominated cluster-continuum, has been applied to the
calculation of the solvation free energy of 14 univalent ions, mainly
organic species, and compared with the results obtained with the IPCM,
polarizable continuum solvation model (PCM), and SM5.42R continuum
methods. The average error in our calculated solvation free energies
with respect to experimental data is 8.7 kcal mol(-1). However, the
great merit of our model resides in the homogeneous treatment for
different ions, resulting in a standard deviation of only 2.9 kcal
mol(-1) for the average error. Our results suggest that the
cluster-continuum model must be superior to the IPCM, PCM, and SM5.42R
methods for studying chemical reactions in the liquid phase, because
these continuum methods present a standard deviation of similar to8
kcal mol(-1) for the average error for the species studied in this
work. The model can also be used to calculate the solvation entropy of
ions. Predicted solvation entropies for five ionic species are in good
agreement with available experimental data.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Pliego, JR, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05508900
Sao Paulo, Brazil.
CR ALEMAN C, 1999, CHEM PHYS LETT, V302, P461
ALLEN MP, 1989, COMPUTER SIMULATION
AQVIST J, 1990, J PHYS CHEM-US, V94, P8021
AQVIST J, 1994, J PHYS CHEM-US, V98, P8253
AQVIST J, 1996, J PHYS CHEM-US, V100, P9512
ASHBAUGH HS, 1997, J CHEM PHYS, V106, P8135
BANDYOPADHYAY P, 2000, J CHEM PHYS, V113, P1104
BENNAIM A, 1978, J PHYS CHEM-US, V82, P792
CARLSON HA, 1993, J COMPUT CHEM, V14, P1240
CHABAN GM, 1999, J CHEM PHYS, V111, P1823
CHAMBERS CC, 1996, J PHYS CHEM-US, V100, P16385
CHIPOT C, 1994, J PHYS CHEM-US, V98, P11362
CLAVERIE P, 1978, J PHYS CHEM-US, V82, P405
CONSTANCIEL R, 1984, THEOR CHIM ACTA, V65, P1
COSSI M, 1996, CHEM PHYS LETT, V255, P327
CRAMER CJ, 1992, SCIENCE, V256, P213
CRAMER CJ, 1999, CHEM REV, V99, P2161
DARDEN T, 1998, J CHEM PHYS, V109, P10921
FLORIAN J, 1997, J PHYS CHEM B, V101, P5583
FLORIS F, 1995, CHEM PHYS, V195, P207
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FREITAS LCG, 1992, J CHEM SOC FARADAY T, V88, P189
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
GRIMM AR, 1995, MOL PHYS, V86, P369
HUMMER G, 1996, J PHYS CHEM-US, V100, P1206
HUMMER G, 1997, J PHYS CHEM B, V101, P3017
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JORGENSEN WL, 1987, J PHYS CHEM-US, V91, P6083
JORGENSEN WL, 1989, CHEM PHYS, V129, P193
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
JORGENSEN WL, 1993, J COMPUT CHEM, V14, P195
KOLLMAN P, 1993, CHEM REV, V93, P2395
LANGLET J, 1988, J PHYS CHEM-US, V92, P1617
LI J, 1999, GAMESOL VERSION 2 2
LI JB, 1998, CHEM PHYS LETT, V288, P293
MARCOS ES, 1991, J PHYS CHEM-US, V95, P8928
MARCUS Y, 1986, J CHEM SOC FARAD T 1, V82, P233
MARRONE TJ, 1994, J PHYS CHEM-US, V98, P8256
MEZEI M, 1987, J CHEM PHYS, V86, P7084
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIERTUS S, 1982, CHEM PHYS, V65, P239
PLIEGO JR, 2000, CHEM PHYS LETT, V332, P597
PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
PLIEGO JR, 2000, J PHYS CHEM B, V104, P5155
RICK SW, 1994, J AM CHEM SOC, V116, P3949
SAKANE S, 1998, J PHYS CHEM B, V102, P5673
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SINGH UC, 1987, J AM CHEM SOC, V109, P1607
STEFANOVICH EV, 1995, CHEM PHYS LETT, V244, P65
STRAATSMA TP, 1986, J CHEM PHYS, V85, P6720
STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
TISSANDIER MD, 1998, J PHYS CHEM A, V102, P7787
TOMASI J, 1994, CHEM REV, V94, P2027
TOPOL IA, 1999, J CHEM PHYS, V111, P10998
TUNON I, 1993, J PHYS CHEM-US, V97, P5547
TUNON I, 1995, J PHYS CHEM-US, V99, P3798
WONG MW, 1991, J AM CHEM SOC, V113, P4776
WOOD RH, 1995, J CHEM PHYS, V103, P6177
NR 59
TC 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 2
PY 2001
VL 105
IS 30
BP 7241
EP 7247
PG 7
SC Chemistry, Physical
GA 457TJ
UT ISI:000170152700015
ER
PT J
AU Persson, C
da Silva, AF
Ahuja, R
Johansson, B
TI Effective electronic masses in wurtzite and zinc-blende GaN and AlN
SO JOURNAL OF CRYSTAL GROWTH
LA English
DT Article
DE computer simulation; crystal structure; nitrides; semiconducting III-V
materials
ID GENERALIZED GRADIENT APPROXIMATION; LOCAL-DENSITY APPROXIMATION;
OPTICAL BAND-GAP; GALLIUM NITRIDE; EPITAXIAL-GROWTH; HEXAGONAL GAN; 001
SILICON; THIN-FILMS; ENERGY; AIN
AB The effective electron and hole masses are fundamental quantities of
semiconductors, used in numerous analyses of experiments and
theoretical investigations. We present calculations of the band
structure near the band edges in intrinsic GaN and AIN, both for the
wurtzite and the zinc-blende polytypes. We have utilized a
full-potential linearized augmented plane wave method within the
density functional theory and with two different exchange-correlation
potentials. The lattice parameters have been determined by a
minimization of the total energy, whereupon the crystal-field
splitting, the spin-orbit splitting, and the effective electron and
hole masses have been calculated. The calculated effective masses are
in good agreement with available experimental values. We show the
importance of performing a fully relativistic calculation. For
instance, the hole mass in cubic AIN is a very large and negative
quantity if the spin-orbit coupling is excluded, whereas the fully
relativistic calculation gives a relatively small and positive value.
(C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Uppsala, Dept Phys, SE-75121 Uppsala, Sweden.
Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil.
RP Persson, C, Univ Uppsala, Dept Phys, Box 530, SE-75121 Uppsala, Sweden.
CR BACHELET GB, 1985, PHYS REV B, V31, P879
BECHSTEDT F, 1988, PHYS REV B, V38, P7710
BLAHA P, 1999, WIEN97 FULL POTENTIA
CUNNINGHAM RD, 1972, J LUMIN, V5, P21
DRECHSLER M, 1995, JPN J APPL PHYS, V34, P1178
HARRISON WA, 1980, ELECT STRUCTURE PROP
KHAN MA, 1993, APPL PHYS LETT, V62, P1786
KIM K, 1997, PHYS REV B, V56, P7363
KOHN W, 1965, PHYS REV, V140, A1133
KOHN W, 1986, PHYS REV B, V33, P4331
KOSICKI BB, 1970, PHYS REV LETT, V24, P1421
LAX B, 1955, PHYS REV, V100, P1650
LEI T, 1991, APPL PHYS LETT, V59, P944
LEI T, 1992, J APPL PHYS, V71, P4933
MONEMAR B, 1974, PHYS REV B, V10, P676
NAKAMURA S, 1995, JPN J APPL PHYS, V34, L1332
PAISLEY MJ, 1989, J VAC SCI TECHNOL A, V7, P701
PERDEW JP, 1992, PHYS REV B, V45, P13244
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PERRY PB, 1978, APPL PHYS LETT, V33, P319
PERSSON C, 1997, J APPL PHYS, V82, P5496
PERSSON C, 1999, J APPL PHYS, V86, P5036
PERSSON C, 1999, THESIS LINKOPING
PERSSON C, 2001, J CRYST GROWTH, V231, P407
PERSSON C, 2001, PHYS REV B, V6403
PETROV I, 1992, APPL PHYS LETT, V60, P2491
RAMIREZFLORES G, 1994, PHYS REV B, V50, P8433
SCHULZ H, 1977, SOLID STATE COMMUN, V23, P815
SHAN W, 1995, APPL PHYS LETT, V66, P985
SINGH DJ, 1994, PLANEWAVES PSEUDOPOT
STAMPFL C, 1999, PHYS REV B, V59, P5521
STEUBE M, 1997, APPL PHYS LETT, V71, P948
STRIFE S, 1992, J VAC SCI TECHNOL B, V10, P1237
SUZUKI M, 1995, PHYS REV B, V52, P8132
VOLM D, 1996, PHYS REV B, V53, P16543
WITOWSKI AM, 1999, APPL PHYS LETT, V75, P4154
YEO YC, 1998, J APPL PHYS, V83, P1429
YIM WM, 1973, J APPL PHYS, V44, P292
NR 38
TC 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-0248
J9 J CRYST GROWTH
JI J. Cryst. Growth
PD OCT
PY 2001
VL 231
IS 3
BP 397
EP 406
PG 10
SC Crystallography
GA 459GB
UT ISI:000170241700012
ER
PT J
AU Perottoni, CA
da Jornada, JAH
TI The carbon analogues of type-I silicon clathrates
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; DIAMOND-LIKE MATERIALS; VALENCE BASIS-SETS;
HIGH-PRESSURE; STRUCTURAL-PROPERTIES; AB-INITIO; THERMAL-CONDUCTIVITY;
ELASTIC PROPERTIES; HARTREE-FOCK; SI
AB In this paper we present a survey on the structure and equation of
state for some silicon clathrates and their carbon analogues, as
obtained by means of ab initio calculations within the Hartree-Fock
approximation. We restrict our consideration to type-I clathrates,
namely M-x(Si, C)(46), With M = Na, Ba. The insertion of guest species
into the carbon clathrate cages promotes a significant increase in the
host volume, thus reducing the bulk modulus for these compounds. In
spite of that, the estimated hardness for C-46, Of about 61 GPa,
constitutes an exceptionally large value for a structure with such an
open framework. The issue of electronic charge transference from the
guest species to the host framework and the stability of carbon and
silicon clathrates relative to the diamond phase are also discussed.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
INMETRO, BR-25250020 Duque De Caxias, RJ, Brazil.
RP Perottoni, CA, Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto
Alegre, RS, Brazil.
CR ADAMS GB, 1992, SCIENCE, V256, P1792
ADAMS GB, 1994, PHYS REV B, V49, P8048
ANDERSON OL, 1963, J PHYS CHEM SOLIDS, V24, P909
BENEDEK G, 1995, CHEM PHYS LETT, V244, P339
BENEDEK G, 1995, NUOVO CIMENTO D, V17, P97
BERNASCONI M, 2000, PHYS REV B, V61, P12869
BETTINGER HF, 1998, CHEM COMMUN, V7, P769
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BLAKE NP, 1999, J CHEM PHYS, V111, P3133
BRUNET F, 2000, PHYS REV B, V61, P16550
BRYAN JD, 1999, PHYS REV B, V60, P3064
BUNDY FP, 1961, J CHEM PHYS, V35, P383
CATTI M, 1999, PHYS CHEM MINER, V26, P389
CLERC DG, 1998, J MATER SCI LETT, V17, P1461
CLERC DG, 1999, J PHYS CHEM SOLIDS, V60, P103
CROS C, 1965, CR HEBD ACAD SCI, V260, P4764
CROS C, 1990, INORGANIC REACTIONS, V17, P209
DONG JJ, 1999, J PHYS-CONDENS MAT, V11, P6129
DONG JJ, 2000, J APPL PHYS, V87, P7726
DOVERSI R, 1996, CRYSTAL95 USERS MANU
GILAT G, 1966, PHYS REV, V144, P390
GILLET P, 1999, PHYS REV B, V60, P14660
GORDON MS, 1982, J AM CHEM SOC, V104, P2797
HAGAN M, 1962, CLATHRATE INCLUSION
HASHIN Z, 1962, J MECH PHYS SOLIDS, V10, P335
HASHIN Z, 1962, J MECH PHYS SOLIDS, V10, P343
HU JZ, 1984, SOLID STATE COMMUN, V51, P263
IVERSEN BB, 2000, J SOLID STATE CHEM, V149, P455
KAHN D, 1997, PHYS REV B, V56, P13898
KASPER JS, 1965, SCIENCE, V150, P1713
KAWAJI H, 1995, PHYS REV LETT, V74, P1427
MENON M, 1997, PHYS REV B, V56, P12290
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
MORIGUCHI K, 2000, PHYS REV B, V61, P9859
MULLER A, 1995, ANGEW CHEM INT EDIT, V34, P2328
MURNAGHAN FD, 1944, P NATL ACAD SCI USA, V50, P697
NESPER R, 1993, ANGEW CHEM INT EDIT, V32, P701
NOLAS GS, 1998, APPL PHYS LETT, V73, P178
NOLAS GS, 2000, PHYS REV B, V61, P3845
OKADA Y, 1984, J APPL PHYS, V56, P314
OKEEFFE M, 1998, PHIL MAG LETT, V78, P21
ORLANDO R, 1990, J PHYS-CONDENS MAT, V2, P7769
PANDEY R, 1996, J PHYS-CONDENS MAT, V8, P3993
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
POWELL HM, 1948, J CHEM SOC, V61
PRENCIPE M, 1995, PHYS REV B, V51, P3391
RAMACHANDRAN GK, 1999, PHYS REV B, V60, P12294
SAITO S, 1995, PHYS REV B, V51, P2628
SAITO S, 1997, P 1 S AT SCAL SURF I, P47
SANMIGUEL A, 1999, PHYS REV LETT, V83, P5290
SEKKAL W, 1999, MAT SCI ENG B-SOLID, V64, P123
TOWLER M, UNPUB
TSE JS, 2000, PHYS REV LETT, V85, P114
YAMANAKA S, 1995, EUR J SOL STATE INOR, V32, P799
YAMANAKA S, 1995, FULLERENE SCI TECHN, V3, P21
NR 55
TC 6
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD JUL 2
PY 2001
VL 13
IS 26
BP 5981
EP 5998
PG 18
SC Physics, Condensed Matter
GA 455EW
UT ISI:000170015400018
ER
PT J
AU da Silva, AJR
Dalpian, GM
Janotti, A
Fazzio, A
TI Two-atom structures of Ge on Si(100): Dimers versus adatom pairs
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID SI AD-DIMERS; SCANNING-TUNNELING-MICROSCOPY; HOMOEPITAXIAL GROWTH;
SI(001); DYNAMICS; SURFACE; ENERGETICS; DIFFUSION; SILICON; GE(001)
AB We present an ab initio study of the properties of structures composed
of two and four Ge atoms adsorbed on the troughs of the Si(100)
surface, and we conclude that these structures are all composed of
dimers, with a chemical bonding between the adatoms. We compare our
calculated local density of states with scanning tunneling microscope
(STM) images, and we show that these Ge dimers adsorbed on the troughs
between the substrate dimer rows can be identified with the adatom
pairs observed experimentally. We also show that the local buckling of
the substrate dimers can give rise to similar structures with very
different STM images.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Janotti, A, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BEDROSSIAN PJ, 1995, PHYS REV LETT, V74, P3648
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BOROVSKY B, 1997, PHYS REV LETT, V78, P4229
BROCKS G, 1996, PHYS REV LETT, V76, P2362
DALPIAN GM, IN PRESS SURF SCI
DALPIAN GM, 1999, PHYSICA B, V273, P589
DALPIAN GM, 2001, PHYS REV B, V63
GALEA TM, 2000, PHYS REV B, V62, P7206
KHARE SV, 1999, PHYS REV B, V60, P4458
LEIFELD O, 1999, PHYS REV LETT, V82, P972
LU ZY, 2000, PHYS REV LETT 1, V85, P5603
QIN XR, 1997, SCIENCE, V278, P1444
SWARTZENTRUBER BS, 1996, PHYS REV LETT, V76, P459
TERSOFF J, 1985, PHYS REV B, V31, P805
VANWINGERDEN J, 1997, PHYS REV B, V55, P4723
WOLKOW RA, 1995, PHYS REV LETT, V74, P4448
WULFHEKEL W, 1997, PHYS REV LETT, V79, P2494
YAMASAKI T, 1996, PHYS REV LETT, V76, P2949
ZANDVLIET HJW, 2000, PHYS REV LETT, V84, P1523
ZHANG ZY, 1995, PHYS REV LETT, V74, P3644
ZHANG ZY, 1997, ANNU REV MATER SCI, V27, P525
ZHANG ZY, 1997, SCIENCE, V276, P377
NR 22
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUL 16
PY 2001
VL 8703
IS 3
AR 036104
DI ARTN 036104
PG 4
SC Physics, Multidisciplinary
GA 454UF
UT ISI:000169989600034
ER
PT J
AU Resende, SM
Ornellas, FR
TI Radiative and predissociative lifetimes of the A (2)Sigma(+) state
(v(')=0,1) of SH and SD: A highly correlated theoretical investigation
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID CONFIGURATION-INTERACTION CALCULATIONS; GAUSSIAN-BASIS SETS; MOLECULAR
CALCULATIONS; A2-SIGMA+ STATE; ELECTRONIC-STRUCTURE; ROW ATOMS;
PHOTODISSOCIATION; SPECTROSCOPY; SPECTRUM; NM
AB Doublet and quartet states of the HS radical correlating with
H(S-2)+S(P-3,D-1,S-1) were investigated by ab initio calculations, at
the CASSCF-MRCI/aug-cc-pV5Z level of theory. Molecular parameters and
spectroscopic constants obtained for both the ground (X (2)Pi) and the
first excited (A (2)Sigma (+)) states represent the best overall
theoretical description of this system to date. Transition moments,
transition probabilities, and radiative and predissociative lifetimes
were also determined for the X (2)Pi -A (2)Sigma (+) system. The values
calculated for the radiative lifetimes of the A state show that
previous results were too large. Theoretical predissociative lifetimes,
although quite sensitive to the region of crossing of the potential
energy curves, reproduce the experimental trends. (C) 2001 American
Institute of Physics.
C1 Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05513970 Sao Paulo, Brazil.
RP Resende, SM, Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, Caixa
Postal 26077, BR-05513970 Sao Paulo, Brazil.
CR ASHWORTH SH, 1992, J MOL SPECTROSC, V153, P41
BAUSCHLICHER CW, 1987, J CHEM PHYS, V87, P4665
BECKER KH, 1972, J PHOTOCHEM, V1, P177
BECKER KH, 1974, BER BUNSEN PHYS CHEM, V78, P1157
BERNATH PF, 1983, J MOL SPECTROSC, V98, P20
BORIN AC, 1993, J CHEM PHYS, V98, P8761
BROWN JM, 1972, MOL PHYS, V23, P635
BRUNA PJ, 1987, MOL PHYS, V61, P1359
CONTINETTI RE, 1991, CHEM PHYS LETT, V182, P400
DAVIDSON ER, 1974, WORLD QUANTUM CHEM
DAVIES PB, 1978, MOL PHYS, V36, P1005
DUNNING TH, 1971, J CHEM PHYS, V55, P716
FEDOROV DG, 2000, J CHEM PHYS, V112, P5611
FINLAYSONPITTS BJ, 2000, CHEM UPPER LOWER ATM
FRIEDL RR, 1983, J CHEM PHYS, V79, P4227
FURLANI TR, 1985, J CHEM PHYS, V82, P5577
HERZBERG G, 1950, MOL SPECTRA MOL STRU, V1, P315
HIRST DM, 1982, MOL PHYS, V46, P427
JOHNS JWC, 1961, CAN J PHYS, V39, P210
KAWASAKI M, 1989, J CHEM PHYS, V91, P6758
KING HF, 1988, J COMPUT CHEM, V9, P771
KLISCH E, 1996, ASTROPHYS J 1, V473, P1118
KNOWLES PJ, 1985, CHEM PHYS LETT, V115, P259
KNOWLES PJ, 1988, CHEM PHYS LETT, V145, P514
LANGHOFF SR, 1974, INT J QUANTUM CHEM, V8, P61
LANGHOFF SR, 1982, J CHEM PHYS, V77, P1379
LEROY RJ, 1989, COMPUT PHYS COMMUN, V52, P383
LOGE GW, 1988, J CHEM PHYS, V89, P7167
MACHADO FBC, 1991, J CHEM PHYS, V94, P7237
MANAA MR, 1995, INT J QUANTUM CHEM Q, V29, P577
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
MEERTS WL, 1974, ASTROPHYS J, V187, L45
MOORE CE, 1971, ATOMIC ENERGY LEVELS, V1, P35
MORINO I, 1995, J MOL SPECTROSC, V170, P171
MORLEY GP, 1993, J CHEM SOC FARADAY T, V89, P3865
ORNELLAS FR, 1985, J CHEM PHYS, V82, P379
PATHAK CM, 1969, J MOL SPECTROSC, V32, P157
RAM RS, 1995, J MOL SPECTROSC, V172, P34
RAMSAY DA, 1952, J CHEM PHYS, V20, P1920
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHNIEDER L, 1990, J CHEM PHYS, V92, P7027
SENEKOWITSCH J, 1985, J CHEM PHYS, V83, P4661
TANIMOTO M, 1973, MOL PHYS, V25, P1193
TIEE JJ, 1983, J CHEM PHYS, V79, P130
TYNDALL GS, 1991, INT J CHEM KINET, V23, P483
UBACHS W, 1983, CHEM PHYS LETT, V101, P1
UEHARA H, 1970, J MOL SPECTROSC, V36, P158
WERNER HJ, 1985, J CHEM PHYS, V82, P5053
WERNER HJ, 1988, J CHEM PHYS, V89, P5803
WHEELER MD, 1997, J CHEM PHYS, V107, P7591
WINKEL RJ, 1984, CAN J PHYS, V62, P1420
WOON DE, 1993, J CHEM PHYS, V98, P1358
YAMAMURA I, 2000, ASTROPHYS J, V528, L33
ZEMKE WT, 1981, QCPE, V4, P79
NR 54
TC 6
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD AUG 1
PY 2001
VL 115
IS 5
BP 2178
EP 2187
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 453QQ
UT ISI:000169927700025
ER
PT J
AU Miron, C
Simon, M
Morin, P
Nanbu, S
Kosugi, N
Sorensen, SL
de Brito, AN
Piancastelli, MN
Bjorneholm, O
Feifel, R
Bassler, M
Svensson, S
TI Nuclear motion driven by the Renner-Teller effect as observed in the
resonant Auger decay to the (X)over-tilde(2)Pi electronic ground state
of N2O+
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID EXCITED-STATES; MOLECULES; DISSOCIATION; SCATTERING; SPECTRUM; CO2;
SPECTROSCOPY; EDGE
AB High-resolution Auger spectroscopy applied under resonant Auger Raman
conditions is shown to be a powerful tool for characterizing complex
potential energy surfaces in core-excited systems. Using the example of
N-t 1s(-1)pi*-->(X) over tilde (2)Pi resonant Auger transition in
nitrous oxide we emphasize the interplay between the nuclear motion and
the electronic decay. We show how the choice of excitation energy
allows selection of core-excited species of different geometries. The
nuclear dynamics of these species are mapped by measuring the resonant
Auger decay spectra. In addition to the changes in vibrational
structure observed for the resonant Auger decay spectra, a strong
influence of nuclear motion on the electronic decay is revealed,
inducing the so-called "dynamical Auger emission." The experimental
results are supported by ab initio quantum chemical calculations
restricted to a linear geometry of the core-excited state. (C) 2001
American Institute of Physics.
C1 Univ Paris Sud, LURE, F-91898 Orsay, France.
CENS, CEA, DRECAM, SPAM LFP, F-91191 Gif Sur Yvette, France.
Inst Mol Sci, Okazaki, Aichi 4448585, Japan.
Univ Lund, Dept Synchrotron Radiat Res, S-22100 Lund, Sweden.
Lab Nacl Luz Sincrotron, BR-13083970 Campinas, SP, Brazil.
Univ Roma Tor Vergata, Dept Chem Sci & Technol, I-00133 Rome, Italy.
Univ Uppsala, Dept Phys, S-75121 Uppsala, Sweden.
RP Miron, C, Univ Paris Sud, LURE, Bat 209D,BP 34, F-91898 Orsay, France.
CR ADACHI J, 1997, J CHEM PHYS, V107, P4919
ADACHI JI, 1995, J CHEM PHYS, V102, P7369
BASSLER M, IN PRESS NUCL INST B
BRAMLEY MJ, 1993, J CHEM PHYS, V99, P8519
COLBERT DT, 1992, J CHEM PHYS, V96, P1982
DEMMEL JW, 1997, APPL NUMERICAL LINEA
GELMUKHANOV F, 1996, PHYS REV A, V54, P379
GOLDFIELD EM, 1998, COMPUT PHYS COMMUN, V98, P1
GRITLI H, 1993, CHEM PHYS, V178, P223
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
KIVIMAKI A, 1993, PHYS REV LETT, V71, P4307
KOSUGI N, 1980, CHEM PHYS LETT, V74, P490
KOSUGI N, 1987, THEOR CHIM ACTA, V72, P149
KUKK E, 2000, PHYS REV A, V62
LEBRUN T, 1993, J CHEM PHYS, V98, P2534
LEHOUCQ RB, 1997, ARPACK
LILL JV, 1982, CHEM PHYS LETT, V89, P483
MA Y, 1991, PHYS REV A, V44, P1848
MIRON C, UNPUB
MIRON C, 1998, J ELECTRON SPECTROSC, V93, P95
MORIN P, 2000, PHYS REV A
PIANCASTELLI MN, 2000, J ELECTRON SPECTROSC, V107, P1
PIANCASTELLI MN, 2000, J PHYS B-AT MOL OPT, V33, P1819
SIMON M, 1997, PHYS REV LETT, V79, P3857
SORENSEN DC, 1992, SIAM J MATRIX ANAL A, V13, P357
TANAKA S, 1998, PHYS REV A, V57, P3437
TENNYSON J, 1982, J CHEM PHYS, V77, P4061
UEDA K, 1999, PHYS REV LETT, V83, P3800
UEDA K, 2000, PHYS REV LETT, V85, P3129
WIGHT GR, 1974, J ELECTRON SPECTROSC, V3, P191
YANG CY, 1997, J CHEM PHYS, V107, P7773
NR 31
TC 9
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUL 8
PY 2001
VL 115
IS 2
BP 864
EP 869
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 448ZW
UT ISI:000169660700035
ER
PT J
AU Justo, JF
Antonelli, A
Fazzio, A
TI Dislocation core properties in semiconductors
SO SOLID STATE COMMUNICATIONS
LA English
DT Article
DE semiconductor; dislocations and disclinations; electronic band
structure; electronic states (localized)
ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-DYNAMICS; SILICON; MOBILITY;
PSEUDOPOTENTIALS; VELOCITIES; CRYSTALS; GAAS; INAS
AB Using ab initio calculations, we computed the core reconstruction
energies of {111} 30 degrees partial dislocations in zinc-blende
semiconductors. Our results show a direct correlation between core
reconstruction energies and the experimental activation energies for
the velocity of 60 degrees dislocations. The electronic structure of
unreconstructed dislocation cores comprises a half-filled band, which
splits up in bonding and antibonding levels upon reconstruction. The
levels in the electronic gap come from the core of beta dislocations,
while the levels related to or dislocations lie on the valence band.
(C) 2001 Elsevier Science Ltd. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Justo, JF, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
ALEXANDER H, 1989, I PHYS C SER, V104, P281
BAZANT MZ, 1997, PHYS REV B, V56, P8542
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BULATOV VV, 1997, PHYS REV LETT, V79, P5042
CAI W, 2000, PHYS REV LETT, V84, P3346
CAR R, 1985, PHYS REV LETT, V55, P2471
CHOI SK, 1977, JPN J APPL PHYS, V16, P737
CHOI SK, 1978, JPN J APPL PHYS, V17, P329
DUESBERY MS, 1991, CRIT REV SOLID STATE, V17, P1
HIRTH JP, 1982, THEORY DISLOCAIONS
IMAI M, 1983, PHILOS MAG A, V47, P599
JUSTO JF, 1998, PHYS REV B, V58, P2539
JUSTO JF, 1999, J APPL PHYS, V86, P4249
JUSTO JF, 2000, PHYS REV LETT, V84, P2172
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
OMRI M, 1990, PHILOS MAG A, V62, P203
SUZUKI T, 1991, DISLOCATION DYNAMICS
TROULLIER N, 1991, PHYS REV B, V43, P1993
YONENAGA I, 1989, J APPL PHYS, V65, P85
YONENAGA I, 1993, J APPL PHYS, V73, P1681
YONENAGA I, 1996, APPL PHYS LETT, V69, P1264
YONENAGA I, 1998, J APPL PHYS, V84, P4209
NR 24
TC 12
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0038-1098
J9 SOLID STATE COMMUN
JI Solid State Commun.
PY 2001
VL 118
IS 12
BP 651
EP 655
PG 5
SC Physics, Condensed Matter
GA 445NL
UT ISI:000169463900011
ER
PT J
AU Lopes, KC
Pereira, FS
Ramos, MN
de Araujo, RCMU
TI An ab-initio study of the C3H6-HX, C2H4-HX and C2H2-HX hydrogen-bonded
complexes with X=F or CI
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE ab-initio study; hydrogen bond; infrared spectrum; vibrational
properties
ID QUADRUPOLE COUPLING-CONSTANTS; ROTATIONAL SPECTRUM;
MOLECULAR-STRUCTURE; INFRARED-SPECTROSCOPY; FLUORIDE DIMER; HF COMPLEX;
ACETYLENE; CYCLOPROPANE; GEOMETRY; ABINITIO
AB MP2/6-31G** ab-initio molecular orbital calculations have been
performed to obtain geometries, H-bond energies and vibrational
properties of the C3H6-HX, C2H4-HX and C2H2-HX H-bonded complexes with
X=F or Cl. The more pronounced effects on the structural parameters of
the isolated molecules due to complexation are verified to the CC and
HX bond lengths, which are directly involved in the H-bond formation.
They are increased after complexation. The calculated H-bond lengths
for the hydrogen complexes for X=F are shorter than those for x-Cl by
about 0.55 Angstrom whereas the corresponding experimental value is
0.58 Angstrom. The H-bond energies are essentially determined by the
nature of the proton donor molecule. For X-F, the AE mean value is 20
kJ/mol, whereas it is approximately 14.5 kJ/mol for X=Cl. The H-bond
energies including zero-point corrections show a good correlation with
the H-bond lengths. The more pronounced effect on the normal modes of
the isolated molecules after complexation occurs to the H-X stretching
mode. The HX stretching frequency is shifted downward, whereas its IR
intensity is much enhanced upon H-bond formation. The new vibrational
modes arising from complexation show several interesting features. (C)
2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901 Recife, PE, Brazil.
Univ Fed Paraiba, Dept Quim, BR-58036300 Joao Pessoa, Paraiba, Brazil.
RP Ramos, MN, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901
Recife, PE, Brazil.
CR ALDRICH PD, 1981, J CHEM PHYS, V75, P2126
ARAUJO RCMU, 1995, SPECTROCHIM ACTA A, V51, P821
ARAUJO RCMU, 1996, THEOCHEM-J MOL STRUC, V366, P233
ARAUJO RCMU, 1998, J BRAZIL CHEM SOC, V9, P499
BRYANT GW, 1988, J CHEM SOC F2, V84, P1443
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
BUXTON LW, 1981, J CHEM PHYS, V75, P2681
CHANDRA AK, 1995, CHEM PHYS LETT, V247, P95
CRAW JS, 1991, J CHEM SOC FARADAY T, V87, P1293
DASILVA JBP, 1997, SPECTROCHIM ACTA A, V53, P733
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
GUSSONI M, 1987, CHEM PHYS LETT, V142, P515
JUCKS KW, 1987, J CHEM PHYS, V86, P4341
KUKOLICH SG, 1983, J CHEM PHYS, V78, P4832
LEGON AC, 1981, J CHEM PHYS, V75, P625
LEGON AC, 1982, J AM CHEM SOC, V104, P1486
LEGON AC, 1986, CHEM REV, V86, P635
MCDONALD SA, 1980, J AM CHEM SOC, V102, P2892
MOOTZ D, 1992, J AM CHEM SOC, V114, P5887
READ WG, 1982, J CHEM PHYS, V76, P2238
SHEA JA, 1982, J CHEM PHYS, V76, P4857
SOPER PD, 1982, J CHEM PHYS, V76, P292
TANG TH, 1990, J MOL STRUCT THEOCHE, V207, P319
NR 23
TC 6
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUN
PY 2001
VL 57
IS 7
BP 1339
EP 1346
PG 8
SC Spectroscopy
GA 441EK
UT ISI:000169217900001
ER
PT J
AU Capelle, K
Vignale, G
TI Nonuniqueness of the potentials of spin-density-functional theory
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DERIVATIVE DISCONTINUITIES; ELECTRON-DENSITIES; ORBITAL ENERGIES; SHAM
AB It is shown that, contrary to widely held beliefs, the potentials of
spin-density-functional theory (SDFT) are not unique functionals of the
spin densities. Explicit tramples of distinct sets of potentials with
the same ground-stale densities are constructed. These findings imply
that the zero-temperature exchange-correlation energy is not always a
differentiable functional of the spin density. As a consequence,
various types of applications of SDFT must be critically reexamined.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA.
RP Capelle, K, Univ Sao Paulo, Inst Quim Sao Carlos, Caixa Postal 780,
BR-13560970 Sao Carlos, SP, Brazil.
CR ARYASETIAWAN F, 1988, PHYS REV B, V38, P2974
ESCHRIG H, 2001, SOLID STATE COMMUN, V118, P123
GORLING A, 1992, PHYS REV A, V46, P3753
GORLING A, 1994, PHYS REV A, V50, P196
GRABO T, 1998, STRONG COULOMB CORRE
HOHENBERG P, 1964, PHYS REV B, V136, P864
HOLAS A, 1991, PHYS REV A, V44, P5521
KOHN W, 1965, PHYS REV, V140, A1133
KURTH S, 1999, PHYS REV LETT, V83, P2628
LEE AM, 1999, PHYS REV A, V59, P209
LEVY M, 1990, ADV QUANTUM CHEM, V21, P69
OLIVER GL, 1979, PHYS REV A, V20, P397
PARR RG, 1989, DENSITY FUNCTIONAL T
PERDEW JP, 1982, PHYS REV LETT, V49, P1691
PERDEW JP, 1983, PHYS REV LETT, V51, P1884
RAJAGOPAL AK, 1980, ADV CHEM PHYS, V41, P59
VANLEEUWEN R, 1994, PHYS REV A, V49, P2421
VIGNALE G, UNPUB
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
WANG Y, 1993, PHYS REV A, V47, R1591
ZHAO QS, 1994, PHYS REV A, V50, P2138
NR 21
TC 23
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUN 11
PY 2001
VL 86
IS 24
BP 5546
EP 5549
PG 4
SC Physics, Multidisciplinary
GA 441PV
UT ISI:000169239500035
ER
PT J
AU Lopes, KC
Pereira, FS
de Araujo, RCMU
Ramos, MN
TI An ab initio study of the structural and vibrational properties of the
C3H6-HCN, C2H4-HCN and C2H2-HCN hydrogen-bonded complexes
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE hydrogen bond; infrared spectrum; ab initio study
ID QUADRUPOLE COUPLING-CONSTANTS; ROTATIONAL SPECTRUM;
MOLECULAR-STRUCTURE; INFRARED-SPECTRA; CYCLOPROPANE-HCN; FLUORIDE
DIMER; HF COMPLEX; ACETYLENE; GEOMETRY; SPECTROSCOPY
AB MP2/6-311+ +G(**) ab initio molecular orbital calculations have been
performed to obtain the molecular properties of the C3H6-HCN, C2H4-HCN
and C2H2-HCN H-bonded complexes. The more pronounced effects on the
structural parameters of the isolated molecules due to complexation are
verified by the CC and H-CN bond lengths which are directly involved in
the H-bond formation. They are increased after complexation. The
calculated H-bond lengths are in excellent agreement with the
experimental ones. The H-bond energies after inclusion of the
zero-point contributions are -8.7, -7.6 and -9.0 kJ mol(-1) for the
C2H2-HCN, C2H2-HCN and C3H6-HCN complexes, respectively. These values
are in very good agreement with the approximate experimental binding
energies obtained from the well depth using a Lennard-Jones 6-12
potential. The more pronounced effect on the normal modes of the
isolated molecules after complexation occurs in the H-X stretching
mode. The H-X stretching frequency is shifted downward whereas its IR
intensity is much enhanced upon H-bond formation. (C) 2001 Elsevier
Science B,V. All rights reserved.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901 Recife, PE, Brazil.
Univ Fed Paraiba, Dept Quim, BR-58036300 Joao Pessoa, Paraiba, Brazil.
RP Ramos, MN, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901
Recife, PE, Brazil.
CR ALDRICH PD, 1981, J CHEM PHYS, V75, P2126
ANDREWS L, 1982, J CHEM PHYS, V76, P5767
ARAUJO RCMU, 1995, SPECTROCHIM ACTA A, V51, P821
ARAUJO RCMU, 1996, THEOCHEM-J MOL STRUC, V366, P233
ARAUJO RCMU, 1998, J BRAZIL CHEM SOC, V9, P499
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
BUXTON LW, 1981, J CHEM PHYS, V75, P2681
CAMPBELL EJ, 1981, J CHEM PHYS, V74, P813
CHANDRA AK, 1995, CHEM PHYS LETT, V247, P95
CRAW JS, 1991, J CHEM SOC FARADAY T, V87, P1293
DAYTON DC, 1988, CHEM PHYS LETT, V153, P285
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
GUSSONI M, 1987, CHEM PHYS LETT, V142, P515
KUKOLICH SG, 1983, J CHEM PHYS, V78, P4832
LEGON AC, 1981, J CHEM PHYS, V75, P625
LEGON AC, 1982, J AM CHEM SOC, V104, P1486
LOPES KC, 2000, IN PRESS SPECTROCH A
MCDONALD SA, 1980, J AM CHEM SOC, V102, P2892
MOOTZ D, 1992, J AM CHEM SOC, V114, P5887
READ WG, 1982, J CHEM PHYS, V76, P2238
SHEA JA, 1982, J CHEM PHYS, V76, P4857
SOPER PD, 1982, J CHEM PHYS, V76, P292
NR 22
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD MAY 30
PY 2001
VL 565
SI Sp. Iss. SI
BP 417
EP 420
PG 4
SC Chemistry, Physical
GA 441NC
UT ISI:000169235600070
ER
PT J
AU Dalpian, GM
Fazzio, A
da Silva, AJR
TI Adsorption of monomers on semiconductors and the importance of surface
degrees of freedom
SO PHYSICAL REVIEW B
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; SI(100) SURFACE; AB-INITIO;
HOMOEPITAXIAL GROWTH; FILM GROWTH; SI ADATOM; DIFFUSION; SI(001); GE;
BINDING
AB We study, through first-principles calculations based on the density
functional theory, the adsorption of the Ge monomer on the Si(100)
surface. We use this particular system to draw attention to the general
fact that in semiconductors, one cannot talk about the adsorption sites
and adsorption energies for a monomer without including in the
description the local substrate configuration. As a consequence, for a
given position of the monomer on the surface, there can be many local
minima that differ basically in the substrate local configuration.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Dalpian, GM, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BROCKS G, 1991, PHYS REV LETT, V66, P1729
BROCKS G, 1992, SURF SCI, V269, P860
DALPIAN GM, 1999, PHYSICA B, V273, P589
KAXIRAS E, 1996, COMP MATER SCI, V6, P158
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KUBBY JA, 1996, SURF SCI REP, V26, P61
LIU SD, 2000, PHYS REV B, V61, P4421
MILMAN V, 1994, PHYS REV B, V50, P2663
MILMAN V, 1996, THIN SOLID FILMS, V272, P375
MO YW, 1991, PHYS REV LETT, V66, P1998
MO YW, 1991, SURF SCI, V248, P313
MO YW, 1992, SURF SCI, V268, P275
QIN XR, 1997, SCIENCE, V278, P1444
QIN XR, 1998, PHYS REV LETT, V81, P2288
RAMSTAD A, 1995, PHYS REV B, V51, P14504
SAVAGE DE, 1999, SEMICONDUCT SEMIMET, V56, P49
SMITH AP, 1995, J CHEM PHYS, V102, P1044
SWARTZENTRUBER BS, 1997, PHYS REV B, V55, P1322
TERAKURA K, 1997, SURF SCI, V386, P207
VANWINGERDEN J, 1997, PHYS REV B, V55, P4723
WOLKOW RA, 1995, PHYS REV LETT, V74, P4448
YAMASAKI T, 1996, PHYS REV LETT, V76, P2949
ZANDVLIET HJW, 2000, PHYS REV LETT, V84, P1523
ZHANG QM, 1995, PHYS REV LETT, V75, P101
ZHANG ZY, 1997, ANNU REV MATER SCI, V27, P525
ZHANG ZY, 1997, SCIENCE, V276, P377
NR 28
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2001
VL 6320
IS 20
AR 205303
DI ARTN 205303
PG 4
SC Physics, Condensed Matter
GA 436LK
UT ISI:000168937200050
ER
PT J
AU Freitas, MP
Rittner, R
Tormena, CF
Abraham, RJ
TI Conformational analysis of 2-bromocyclohexanone. A combined NMR, IR,
solvation and theoretical approach
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE 2-bromocyclohexanone; conformational analysis; NMR; IR; solvation;
density functional theory
ID COUPLING-CONSTANTS; ORGANIC-MOLECULES; ISOMERISM
AB An improved method of conformational analysis using H-1 and C-13 NMR,
IR, theoretical calculations and solvation theory is reported for
2-bromocyclohexanone, used here as a model compound. The solvent
dependence of the (3)J(HH), (1)J(CH) and (1)J(CD) NMR coupling
constants and the associated changes in the IR first overtone carbonyl
band intensities together with theoretical calculations allow the
direct determination of the conformational equilibria without recourse
to model compounds. Calculations with the Gaussian 98 program at the
HF/6-31 g(d,p) and B3LYP/6-31 + g(d,p) levels together with solvation
theory gave the conformer free energy difference (E-eq - E-ax) in
different solvents. The observed couplings, when analyzed by solvation
theory and utilizing DFT geometries, gave a value of E-eq - E-ax of
1.15 kcal mol(-1) in the vapor phase, decreasing to 0.6 kcal mol(-1) in
CCl4 and to -0.5 kcal mol(-1) in DMSO solution (1 kcal = 4.184 kJ). The
axial percentage changes from 74% (in CCl4) to 30% (in DMSO), and these
are in good agreement with infrared data (nu (C=O), first overtone),
despite the uncertainties of the latter method. The results illustrate
the advantages of the joint application of these techniques, which
represents an improved approach to the study of the conformational
equilibria of substituted cyclohexanones. Copyright (C) 2001 John Wiley
& Sons, Ltd.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
RP Rittner, R, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
BR-13083970 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1974, INT ROTATION MOL, CH13
ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
ABRAHAM RJ, 1999, J CHEM SOC PERK AUG, P1663
ALLINGER J, 1958, TETRAHEDRON, V2, P64
ALLINGER NL, 1960, J AM CHEM SOC, V82, P5876
ALLINGER NL, 1966, J AM CHEM SOC, V88, P4495
ANDERSON JE, 1997, J CHEM SOC PERK DEC, P2633
BASSO EA, 1993, J ORG CHEM, V58, P7865
BEDOUKIAN PZ, 1945, J AM CHEM SOC, V67, P1430
CHEN CY, 1965, J CHEM SOC, P3700
EISENSTEIN O, 1974, TETRAHEDRON, V30, P1717
ELIEL EL, 1968, J AM CHEM SOC, V90, P682
EPIOTIS ND, 1973, J AM CHEM SOC, V95, P3087
FORESMAN JB, 1956, EXPLORING CHEM ELECT, V78, P3369
FORESMAN JB, 1993, EXPLORING CHEM ELECT
FRASER RR, 1995, CAN J CHEM, V73, P88
FRISCH MJ, 1998, GAUSSIAN 98
GARBISCH EW, 1964, J AM CHEM SOC, V86, P1780
KUMLER WD, 1956, J AM CHEM SOC, V78, P3369
MORGON NH, 1995, QUIM NOVA, V18, P44
OLIVATO PR, 1998, J CHEM SOC PERK JAN, P109
PAN YH, 1967, CAN J CHEM, V45, P2943
RAUK A, 1994, ORBITAL INTERACTION
RITTNER R, 1988, MAGN RESON CHEM, V26, P51
WEAST RC, 1985, HDB CHEM PHYSICS
WOLFE S, 1967, J CHEM SOC CHEM COMM, P872
WOLFE S, 1990, CAN J CHEM, V68, P1051
NR 30
TC 10
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD JUN
PY 2001
VL 14
IS 6
BP 317
EP 322
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 437RZ
UT ISI:000169008500001
ER
PT J
AU Casanovas, J
Namba, AM
Leon, S
Aquino, LB
da Silva, GVJ
Aleman, C
TI Calculated and experimental NMR chemical shifts of
p-menthane-3,9-diols. A combination of molecular dynamics and quantum
mechanics to determine the structure and the solvent effects
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID SPIN COUPLING-CONSTANTS; AB-INITIO METHODS; PERTURBATION-THEORY;
SHIELDING TENSORS; BASIS-SETS; SIMULATIONS
AB NMR chemical shifts have been experimentally measured and theoretically
estimated for all the carbon atoms of (LR,3S,4S,8S)-p-menthane-3,9-diol
in chloroform solution. Theoretical estimations were performed using a
combination of molecular dynamics simulations and quantum mechanical
calculations. Molecular dynamics simulations were used to obtain the
most populated conformations of the (1R,3S:4S,8S)-p-menthane-3,9-diol
as well as the distribution of the solvent molecules around it. Quantum
mechanical calculations of NMR chemical shifts were performed on the
most relevant conformations employing the GIAO-DFT formalism. A special
emphasis was put in evaluating the effects of the surrounding solvent
molecules. For this purpose, supermolecule calculations were performed
on complexes constituted by the solute and n chloroform molecules,
where n ranges from 3 to 16. An excellent agreement with experimental
data has been obtained following this computational strategy.
C1 Univ Lleida, Escola Univ Politecn, Dept Quim, Lleida 25001, Spain.
Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Quim, BR-14040901 Ribeirao Preto, Brazil.
Univ Bologna, Dipartimento Chim G Ciamician, I-40126 Bologna, Italy.
Univ Politecn Catalunya, ETS Enginyers Ind Barcelona, Dept Engn Quim, E-08028 Barcelona, Spain.
RP Casanovas, J, Univ Lleida, Escola Univ Politecn, Dept Quim, C Jaume II
69, Lleida 25001, Spain.
CR ALEMAN C, 1999, CHEM PHYS LETT, V302, P461
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
CARMICHAEL I, 1993, J PHYS CHEM-US, V97, P1789
CASANOVAS J, 1999, MAT SCI ENG B-SOLID, V68, P16
CHEESEMAN JR, 1996, J CHEM PHYS, V104, P5497
CHESNUT DB, 1996, REV COMPUTATIONAL CH, V8, P245
DEV S, 1985, TERPENOIDS HDB
DITCHFIELD R, 1972, J CHEM PHYS, V56, P5688
DITCHFIELD R, 1974, MOL PHYS, V27, P789
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HANSEN AE, 1985, J CHEM PHYS, V82, P5035
HEHRE WJ, 1969, J CHEM PHYS, V51, P2657
HELGAKER T, 1999, CHEM REV, V99, P293
HNYK D, 1992, INORG CHEM, V31, P2464
JAMESON CJ, 1996, ANNU REV PHYS CHEM, V47, P135
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
KRISHNAN R, 1978, INT J QUANTUM CHEM, V14, P91
KUTZELNIGG W, 1980, ISRAEL J CHEM, V19, P193
KUTZELNIGG W, 1990, NMR BASIC PRINCIPLES, V23, P165
LAWS DD, 1995, J AM CHEM SOC, V117, P9542
LEE C, 1988, PHYS REV B, V37, P785
MALKIN VG, 1996, CHEM-EUR J, V2, P452
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
NAMBA AM, 2000, IN PRESS J COMPUT AI
NAMBA AM, 2000, TETRAHEDRON, V56, P6089
PEARLMAN DA, 1995, AMBER 4 1
PECUL M, 1998, CHEM PHYS, V234, P111
RYCKAERT JP, 1977, J COMPUT PHYS, V23, P327
SCHRECKENBACH G, 1998, THEOR CHEM ACC, V99, P71
STANTON JF, 1996, CHEM PHYS LETT, V262, P183
SULZBACH HM, 1994, J AM CHEM SOC, V116, P3967
TOMASI J, 1994, CHEM REV, V94, P2027
WEINER SJ, 1986, J COMPUT CHEM, V7, P230
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 36
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD JUN 1
PY 2001
VL 66
IS 11
BP 3775
EP 3782
PG 8
SC Chemistry, Organic
GA 435ZD
UT ISI:000168911300017
ER
PT J
AU Ryde, U
Olsson, MHM
Roos, BO
Borin, AC
TI A theoretical study of the copper-cysteine bond in blue copper proteins
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Article
DE density functional theory; entatic state theory; protein strain;
solvation effects; reorganisation energy
ID 2ND-ORDER PERTURBATION-THEORY; SIMPLE COMPUTATIONAL MODEL; MOLECULAR
WAVE-FUNCTIONS; ANO BASIS-SETS; ELECTRONIC-STRUCTURE; SPECTROSCOPIC
PROPERTIES; CONTINUUM APPROXIMATION; REDUCTION POTENTIALS; NITRITE
REDUCTASE; SPECTRAL FEATURES
AB The accuracy of theoretical calculations on models of the blue copper
proteins is investigated using density functional theory (DFT) Becke's
three-parameter hybrid method with the Lee-Yang-Parr correlation
functional (B3LYP) and medium-sized basis sets. Increasing the basis
set to triple-zeta quality with f-type functions on all heavy atoms and
enlarging the model [up to Cu(imidazole-CH3)(2)(SC2H5) (CH3SC2H5)(0/+)]
has only a limited influence on geometries and relative energies.
Comparative calculations with more accurate wave-function-based methods
(second-order Moller-Plesset perturbation theory, complete-active-space
second-order perturbation theory, coupled-cluster method, including
single and double replacement amplitudes and in addition triple
replacement perturbatively) and a variety of basis sets on smaller
models indicate that the DFT/B3LYP approach gives reliable results with
only a small basis set dependence, whereas the former methods strongly
depend on the size of the basis sets. The effect of performing the
geometry optimizations in a continuum solvent is quite small, except
for the flexible Cu-S-Met bond. The results of this study confirm the
earlier results that neither the oxidized nor the reduced copper site
in the blue proteins is strained to any significant degree tin energy
terms) by the protein surrounding.
C1 Univ Lund, Dept Theoret Chem, S-22100 Lund, Sweden.
Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, SP, Brazil.
RP Ryde, U, Univ Lund, Dept Theoret Chem, POB 124, S-22100 Lund, Sweden.
CR ADMAN ET, 1991, ADV PROTEIN CHEM, V42, P145
ADMAN ET, 1995, J BIOL CHEM, V270, P27458
ANDERSSON K, 1990, J PHYS CHEM-US, V94, P5483
ANDERSSON K, 1992, J CHEM PHYS, V96, P1218
ANDERSSON K, 1997, MOLCAS VERSION 4 0
BARONE V, 1997, J CHEM PHYS, V107, P3210
BARONE V, 1998, J PHYS CHEM A, V102, P1995
BAUSCHLICHER CW, 1995, CHEM PHYS LETT, V246, P40
BECKE AD, 1988, PHYS REV A, V38, P3098
DEKERPEL JOA, 1998, J PHYS CHEM B, V102, P4638
EICHKORN K, 1995, CHEM PHYS LETT, V240, P283
FLORIS F, 1989, J COMPUT CHEM, V10, P616
FLORIS FM, 1991, J COMPUT CHEM, V12, P784
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GEWIRTH AA, 1987, INORG CHEM, V26, P1133
GEWIRTH AA, 1988, J AM CHEM SOC, V110, P3811
GRAY HB, 1983, COMMENTS INORG CHEM, V2, P203
GRAY HB, 2000, J BIOL INORG CHEM, V5, P551
GUCKERT JA, 1995, J AM CHEM SOC, V117, P2817
GUSS JM, 1992, ACTA CRYSTALLOGR B, V48, P190
HEHRE WJ, 1986, AB INITIO MOL ORBITA, P133
HERTWIG RH, 1997, CHEM PHYS LETT, V268, P345
HOLM RH, 1996, CHEM REV, V96, P2239
HONIG B, 1995, SCIENCE, V268, P1144
LACROIX LB, 1996, J AM CHEM SOC, V118, P7755
LACROIX LB, 1998, J AM CHEM SOC, V120, P9621
LARSSON S, 1995, J PHYS CHEM-US, V99, P4860
MALMSTROM BG, 1965, OXIDASES RELATED RED, V1, P207
MALMSTROM BG, 1994, EUR J BIOCHEM, V223, P711
MALMSTROM BG, 1998, CURR OPIN CHEM BIOL, V2, P286
MARCUS RA, 1985, BIOCHIM BIOPHYS ACTA, V811, P265
MESSERSCHMIDT A, 1998, STRUCT BOND, V90, P37
NAR H, 1991, J MOL BIOL, V218, P427
OLSSON MHM, 1998, J BIOL INORG CHEM, V3, P109
OLSSON MHM, 1998, PROTEIN SCI, V7, P2659
OLSSON MHM, 1999, J BIOL INORG CHEM, V4, P654
PENFIELD KW, 1985, J AM CHEM SOC, V107, P4519
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERIOTTI RA, 1976, CHEM REV, P717
PIERLOOT K, 1995, THEOR CHIM ACTA, V90, P87
PIERLOOT K, 1997, J AM CHEM SOC, V119, P218
PIERLOOT K, 1998, J AM CHEM SOC, V120, P13156
RODGERS KK, 1991, J AM CHEM SOC, V113, P9419
ROOS BO, 1987, AB INITIO METHODS QU, V2, P399
ROOS BO, 1996, ADV CHEM PHYS, V93, P219
RYDE U, 1996, J MOL BIOL, V261, P586
RYDE U, 1999, BIOPHYS J, V77, P2777
RYDE U, 2000, IN PRESS INT J QUANT
RYDE U, 2000, J BIOL INORG CHEM, V5, P565
RYDE U, 2001, THEORETICAL BIOCH PR, P1
SCHAFER A, 1994, J CHEM PHYS, V100, P5829
SHARP KA, 1990, ANNU REV BIOPHYS BIO, V19, P301
SHEPARD WEB, 1990, J AM CHEM SOC, V112, P7817
SLATER JC, 1974, QUANTUM THEORY MOL S, V4
SOLOMON EI, 1996, INORG CHIM ACTA, V243, P67
SYKES AG, 1991, ADV INORG CHEM RAD, V36, P377
TOMASI J, 1994, CHEM REV, V94, P2027
TREUTLER O, 1995, J CHEM PHYS, V102, P346
VALLEE BL, 1968, P NATL ACAD SCI USA, V59, P498
VOSKO SH, 1980, CAN J PHYS, V58, P1200
WARSHEL A, 1991, COMPUTER MODELLING C
WIDMARK PO, 1990, THEOR CHIM ACTA, V77, P291
WILLIAMS RJP, 1995, EUR J BIOCHEM, V234, P363
NR 63
TC 22
PU SPRINGER-VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD MAY
PY 2001
VL 105
IS 6
BP 452
EP 462
PG 11
SC Chemistry, Physical
GA 433ZA
UT ISI:000168789600008
ER
PT J
AU Ruini, A
Rossi, F
Hohenester, U
Molinari, E
Capaz, RB
Caldas, MJ
TI Ab-initio study of Coulomb-correlated optical properties in conjugated
polymers
SO SYNTHETIC METALS
LA English
DT Article
DE density functional calculations; optical absorption;
poly(phenylenevinylene)
ID QUANTUM-WIRE STRUCTURES; EXCITATIONS; POLYTHIOPHENE
AB The spatial extension and binding energy of excitons in semiconducting
conjugated polymers are still the subject of a great debate. We address
this problem through first-principles calculations (within DFT-LDA,
plane-waves and ab-initio pseudopotentials), which allow to include
electron-hole correlation effects in a fully three-dimensional approach
through the density-matrix formalism. We show results for the
correlated optical spectrum and the exciton wavefunctions of
single-chain poly(para)phenylene-vinylene (PPV), that support the
picture of a strongly bound anisotropic exciton localized over similar
to 4-5 monomers.
C1 Univ Modena & Reggio Emilia, Dipartimento Fis, Modena, Italy.
Politecn Torino, Dipartimento Fis, Turin, Italy.
Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil.
Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil.
CR ALVARADO SF, 1998, PHYS REV LETT, V81, P1082
AXT VM, 1998, REV MOD PHYS, V70, P145
CONWELL EM, 1997, PHYS REV LETT, V78, P4301
FRIEND RH, 1999, NATURE, V397, P121
KOHLER A, 1998, NATURE, V392, P903
MARTIN SJ, 1999, PHYS REV B, V59, P15133
OSTERBACKA R, 1999, PHYS REV B, V60, P11253
ROHLFING M, 1999, PHYS REV LETT, V82, P1959
ROSSI F, 1996, PHYS REV B, V53, P16462
ROSSI F, 1996, PHYS REV LETT, V76, P3642
VANDERHORST JW, 1999, PHYS REV LETT, V83, P4413
VANDERHORST JW, 2000, PHYS REV B, V61, P15817
YAN M, 1995, PHYS REV LETT, V75, P1992
NR 13
TC 4
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD MAR 15
PY 2001
VL 119
IS 1-3
SI Sp. Iss. SI
BP 257
EP 258
PG 2
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
Polymer Science
GA 433EC
UT ISI:000168741500112
ER
PT J
AU Del Nero, J
de Melo, CP
TI Semiempirical and ab initio investigation of defects in PPV oligomers
SO SYNTHETIC METALS
LA English
DT Article
DE poly(phenylenevinylene); semiempirical methods; ab initio; absorption
spectra
AB We report a theoretical study of the excited states and other
electronic properties of para-phenylenevinylene oligomers and related
compounds which present conformational defects. Our results reveal the
existence of different electronic delocalization patterns for the
lowest singlet and triplet structures of these molecules. A similar
behavior is also observed for the corresponding bond lengths.
C1 Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil.
RP de Melo, CP, Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE,
Brazil.
CR *QCEP, 1993, MOPAC PROGR VERS 7 0, P455
BELJONNE D, 1999, J CHEM PHYS, V111, P2829
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
HEAD JD, 1985, CHEM PHYS LETT, V122, P264
HEAD JD, 1986, CHEM PHYS LETT, V131, P59
KOLLER A, 1998, NATURE, V392, P903
SARICIFLCI NS, 1997, PRIMARY PHOTOEXCITAT
NR 9
TC 8
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD MAR 15
PY 2001
VL 121
IS 1-3
SI Sp. Iss. SI
BP 1741
EP 1742
PG 2
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
Polymer Science
GA 434TD
UT ISI:000168831200303
ER
PT J
AU Esteves, PM
Ramirez-Solis, A
Mota, CJA
TI DFT calculations on the protonation of alkanes on HF/SbF5 superacids
using cluster models
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID THEORETICAL AB-INITIO; ELECTROPHILIC REACTIONS; MOLECULAR-STRUCTURES;
DEUTERIUM EXCHANGE; CH5+; DIFFRACTION; CATIONS; SYSTEM; STORY
AB Calculations at B3LYP/6-31++G** + RECP (Sb) level have been performed
for the protonation of C-H and C-C bonds of methane, ethane, propane,
and isobutane by models of the liquid superacid media HF/SbF5. The
antimony atoms were dealt with by relativistic effective core
potentials. The species H2F+. Sb2F11- was considered as the model
electrophile. The transition states for the protonation of the C-H
bonds (H/H exchange) are similar to an H-carbonium ion interacting with
the anion moiety. The enthalpies of activation for WH exchange of
alkanes were calculated in the range of 19 to 21 kcal/mol. For the
protonation of the C-C bond, the enthalpy of activation strongly
depends on the structure of the hydrocarbon being attacked, and was
always higher than the enthalpy of activation for H/H exchange. This
suggests the existence of steric demand for the C-C protonation.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
BERGNER A, 1993, MOL PHYS, V80, P1431
BOO DW, 1993, CHEM PHYS LETT, V211, P358
BOO DW, 1995, J CHEM PHYS, V103, P520
BRUNVOLL J, 1980, ACTA CHEM SCAND A, V34, P733
CARNEIRO JWM, 1994, J AM CHEM SOC, V11, P3483
ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
ESTEVES PM, 1998, TOP CATAL, V6, P163
ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
ESTEVES PM, 1999, J PHYS CHEM B, V103, P10417
ESTEVES PM, 2000, J BRAZIL CHEM SOC, V11, P345
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HELMINGER P, 1971, PHYS REV A, V3, P122
HIRAOKA K, 1991, CHEM PHYS LETT, V184, P271
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P371
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P703
KIM D, 2000, J PHYS CHEM B, V104, P10074
KONAKA S, 1970, B CHEM SOC JPN, V43, P1693
LATAJKA Z, 1994, J CHEM PHYS, V101, P9793
MINKWITZ R, 1998, INORG CHEM, V37, P4662
MOOTZ D, 1988, ANGEW CHEM INT EDIT, V27, P391
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
MULLER H, 1997, J CHEM PHYS, V106, P1863
OHLBERG SM, 1959, J AM CHEM SOC, V81, P811
OLAH GA, 1968, J AM CHEM SOC, V90, P2726
OLAH GA, 1972, J AM CHEM SOC, V94, P807
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
PENG CY, 1996, J COMPUT CHEM, V17, P49
SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
SCHREINER PR, 2000, ANGEW CHEM INT EDIT, V39, P3239
SOMMER J, 1994, J AM CHEM SOC, V116, P5491
SONDAG H, 1982, J MOL SPECTROSC, V91, P91
WAN B, 1996, INT J MASS SPECTROM, V159, P209
WHITE ET, 1999, SCIENCE, V284, P135
NR 38
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5647
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD MAY 17
PY 2001
VL 105
IS 19
BP 4331
EP 4336
PG 6
SC Chemistry, Physical
GA 434FE
UT ISI:000168803800042
ER
PT J
AU Miotto, R
Srivastava, GP
Miwa, RH
Ferraz, AC
TI A comparative study of dissociative adsorption of NH3, PH3, and AsH3 on
Si(001)-(2x1)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID SCANNING-TUNNELING-MICROSCOPY; GENERALIZED-GRADIENT APPROXIMATION;
DENSITY-FUNCTIONAL THEORY; MOLECULAR-BEAM EPITAXY; AB-INITIO; SI(100)
SURFACE; PHOTOELECTRON DIFFRACTION; FIRST-PRINCIPLES; PHOTOEMISSION;
PHOSPHINE
AB Using a first-principles pseudopotential method we have studied the
adsorption and dissociation of NH3, PH3, and AsH3 on the Si(001)-(2x1)
surface. Apart from the existence of a barrier for the adsorption of
the precursor state for arsine, we observe that the global behavior for
the chemisorption of the XH3 molecules considered in this work is as
follows: the gas phase XH3 adsorbs molecularly to the electrophilic
surface Si atom and then dissociates into XH2 and H, bonded to the
electrophilic and nucleophilic surface silicon dimer atoms,
respectively. The energy barrier, corresponding to a thermal
activation, is much smaller than the usual growth temperature,
indicating that all three molecules will be observed in their
dissociated states at room temperature. All adsorbed systems are
characterized by elongated Si-Si dimers that are (almost) symmetric in
the dissociative case but asymmetric in the molecular case. According
to our first-principles calculations, all XH3 and XH2 systems retain
the pyramidal geometry observed for the gas molecules. Our calculated
vibrational spectra further support the dissociative model for the XH3
molecules considered here. (C) 2001 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Miotto, R, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
CR BATER C, 2000, SURF INTERFACE ANAL, V29, P208
BISCHOFF JL, 1991, SURF SCI, V248, L240
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BOZSO F, 1986, PHYS REV LETT, V57, P1185
BOZSO F, 1988, PHYS REV B, V38, P3937
CAKMAK M, 1999, PHYS REV B, V60, P5497
CAKMAK M, 2000, PHYS REV B, V61, P10216
CAO PL, 1994, J PHYS-CONDENS MAT, V6, P6103
CHO JH, 2000, PHYS REV B, V62, P1607
COLAIANNI ML, 1994, J VAC SCI TECHNOL A, V12, P2995
COPEL M, 1989, PHYS REV LETT, V63, P632
DRESSER MJ, 1989, SURF SCI, V218, P75
FATTAL E, 1997, J PHYS CHEM B, V101, P8658
FIUJISAWA M, 1989, PHYS REV B, V39, P12918
FRANCO N, 1997, J PHYS-CONDENS MAT, V9, P8419
FRANCO N, 1997, PHYS REV LETT, V79, P673
HAMERS RJ, 1987, PHYS REV LETT, V59, P2071
HAMERS RJ, 1996, APPL SURF SCI, V107, P25
HARTMANN JM, 2000, SEMICOND SCI TECH, V15, P362
HIROSE R, 1999, SURF SCI, V430, L540
HLIL EK, 1987, PHYS REV B, V35, P5913
IZUMI A, 1997, APPL PHYS LETT, V71, P1371
JENKINS SJ, 1994, J PHYS-CONDENS MAT, V6, P8781
JOHNSON AL, 1988, LANGMUIR, V4, P277
KIPP L, 1994, PHYS REV B, V50, P5448
KIPP L, 1995, PHYS REV B, V52, P5843
KITTEL C, 1996, INTRO SOLID STATE PH
LARSSON CUS, 1991, SURF SCI, V241, P353
LEE SH, 1998, PHYS REV B, V58, P4903
LIDE DR, 1995, HDB CHEM PHYSICS
LIN DS, 1999, SURF SCI, V424, P7
LIN DS, 2000, PHYS REV B, V61, P2799
LOH ZH, 2000, J CHEM PHYS, V112, P2444
MAITY N, 1995, APPL PHYS LETT, V66, P1909
MIOTTO R, 1998, PHYS REV B, V58, P7944
MIOTTO R, 1999, PHYS REV B, V59, P3008
MORIARTY NW, 1992, SURF SCI, V265, P168
NACTHIGAL P, 1996, J CHEM PHYS, V104, P148
PENEV E, 1999, J CHEM PHYS, V110, P3986
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PILLING MJ, 1995, REACTION KINETICS
QIU M, 1997, J PHYS-CONDENS MAT, V9, P6543
SHAN J, 1996, J PHYS CHEM-US, V100, P4961
SRIVASTAVA GP, 1990, PHYSICS PHONONS
SRIVASTAVA GP, 1997, REP PROG PHYS, V60, P561
TAKAOKA T, 1998, SURF SCI, V412, P30
TROMP RM, 1992, PHYS REV LETT, V68, P954
TROULLIER N, 1991, PHYS REV B, V43, P1993
TSUKIDATE Y, 1999, APPL SURF SCI, V151, P148
WANG YJ, 1994, J PHYS CHEM-US, V98, P5966
WANG YJ, 1994, PHYS REV B, V50, P4534
WIDJAJA Y, 2000, J PHYS CHEM B, V104, P2527
WOODRUFF DP, 1994, REP PROG PHYS, V57, P1029
XIE MH, 1998, SURF SCI, V397, P164
YOO DS, 1995, J APPL PHYS, V78, P4988
YU ML, 1984, J VAC SCI TECHNOL A, V2, P446
YU ML, 1986, J APPL PHYS, V59, P4032
ZHOU RH, 1991, SURF SCI, V249, P129
NR 58
TC 17
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 1
PY 2001
VL 114
IS 21
BP 9549
EP 9556
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 434BF
UT ISI:000168794700041
ER
PT J
AU Serra, RM
Ramos, PB
de Almeida, NG
Jose, WD
Moussa, HY
TI Engineering arbitrary motional ionic states through realistic
intensity-fluctuating laser pulses
SO PHYSICAL REVIEW A
LA English
DT Article
ID TRAPPED ION; PROJECTION SYNTHESIS; QUANTUM STATES; RADIATION-FIELD;
DECOHERENCE; GENERATION; CAVITY; ATOM; SUPERPOSITIONS; MANIPULATION
AB We present a reliable scheme for engineering arbitrary motional ionic
states through an adaptation of the projection synthesis technique for
trapped-ion phenomena. Starting from a prepared coherent motional
state, the Wigner function of the desired state is thus sculpted from a
Gaussian distribution. The engineering process has also been developed
to take into account the errors arising from intensity fluctuations in
the exciting-laser pulses required for manipulating the electronic and
vibrational states of the trapped ion. To this end, a recently
developed phenomenological-operator approach that allows for the
influence of noise will be applied. This approach furnishes a
straightforward technique to estimate the fidelity of the prepared
state in the presence of errors, precluding the usual extensive ab
initio calculations. The results obtained here by the phenomenological
approach, to account for the effects of noise in our engineering
scheme, can be directly applied to any other process involving
trapped-ion phenomena.
C1 Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
Univ Estadual Santa Cruz, Dept Ciencias Exatas & Tecnol, BR-45650000 Bahia, Brazil.
RP Serra, RM, Univ Fed Sao Carlos, Dept Fis, POB 676, BR-13565905 Sao
Carlos, SP, Brazil.
CR BARNETT SM, 1996, PHYS REV LETT, V76, P4148
BASEIA B, 1997, PHYS LETT A, V231, P331
BROBNY G, 1998, PHYS REV A, V58, P2481
BRUNE M, 1992, PHYS REV A, V45, P5193
BRUNE M, 1996, PHYS REV LETT, V77, P4887
CHUANG IL, 1998, NATURE, V393, P143
DAKNA M, 1999, PHYS REV A, V59, P1658
DALIBARD J, 1992, PHYS REV LETT, V68, P580
DEALMEIDA NG, 2000, J OPT B-QUANTUM S O, V2, P792
DEALMEIDA NG, 2000, PHYS REV A, V62
DEMATOS RL, 1996, PHYS REV LETT, V76, P608
DIFIDIO C, 2000, PHYS REV A, V62
DUM R, 1992, PHYS REV A, V45, P4879
FEYNMAN RP, 1957, J APPL PHYS, V28, P49
FEYNMAN RP, 1996, FEYNMAN LECT COMPUTA
FREYBERGER M, 1995, PHYS REV A, V51, P3347
GARRAWAY BM, 1994, PHYS REV A, V49, P535
ITANO WM, 1997, QUANTPH9702038
JAMES DF, 1998, PHYS REV LETT, V81, P3417
JOSE WD, 2000, J OPT B-QUANTUM S O, V2, P306
KNEER B, 1996, PHYS REV A, V55, P2096
LAW CK, 1996, PHYS REV LETT, V76, P1055
LEIBFRIED D, 1996, PHYS REV LETT, V77, P4281
LEIBFRIED D, 1997, J MOD OPTIC, V44, P2485
MEEKHOF DM, 1996, PHYS REV LETT, V76, P1796
MEEKHOF DM, 1997, BRAZ J PHYS, V27, P178
MONROE C, 1995, PHYS REV LETT, V75, P4714
MONROE C, 1996, SCIENCE, V272, P1131
MOUSSA MHY, 1998, PHYS LETT A, V245, P335
MOYACESSA H, 1999, PHYS REV A, V59, P2920
MURAO M, 1998, PHYS REV A, V58, P663
MYATT CJ, 2000, NATURE, V403, P269
NIELSEN MA, 2000, QUANTUM COMPUTATION
PARKINS AS, 1993, PHYS REV LETT, V71, P3095
POYATOS JF, 1996, PHYS REV LETT, V77, P4728
PRESKILL J, UNPUB
ROOS C, 1999, PHYS REV LETT, V83, P4713
SCHNEIDER S, 1998, PHYS REV A, V57, P3748
SCHNEIDER S, 1999, PHYS REV A, V59, P3766
SERRA RM, 2000, PHYS REV A, V62
SOLANO E, 1999, PHYS REV A, V59, P2539
STEINBACH J, 1996, PHYS REV A, V54, P5113
VARCOE BTH, 2000, NATURE, V403, P743
VOGEL K, 1993, PHYS REV LETT, V71, P1816
WINELAND DJ, 1992, PHYS REV A, V46, R6797
WINELAND DJ, 1994, PHYS REV A, V50, P67
WINELAND DJ, 1998, J RES NATL INST STAN, V103, P259
ZENG HP, 1999, PHYS REV A, V59, P2174
NR 48
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD MAY
PY 2001
VL 63
IS 5
AR 053813
DI ARTN 053813
PG 15
SC Physics, Atomic, Molecular & Chemical; Optics
GA 430RJ
UT ISI:000168589100115
ER
PT J
AU Carneiro, JWD
de Oliveira, CDB
Passos, FB
Aranda, DAG
de Souza, PRN
Antunes, OAC
TI Host-guest interactions and their role in enantioselective
hydrogenation of alpha-keto esters - An analysis of model systems
SO JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL
LA English
DT Article
DE heterogeneous; enantioselective; catalysis; mechanisms; calculations
ID CINCHONA-MODIFIED PLATINUM; ETHYL PYRUVATE; HETEROGENEOUS CATALYSIS;
PI-STACKING; KETOESTERS; ADSORPTION; COMPLEXES; SOLVENTS; PT(111);
DESIGN
AB The interaction between cinchonidine and methyl pyruvate has been
proposed as the key step leading to enantiodifferentiation in the
enantioselective hydrogenation of alpha -ketoesters, In the present
work, we employ ab initio MP2/6-31G(d) and MP2/6-31G(d,p) methods to
carry out an analysis of the most relevant kind of interactions
operating in representative model systems. These interactions are
discussed in terms of orbital superposition and dipolar interaction.
When approaching H2CO to NH3 at distances lower than 3.4 Angstrom,
orbital superposition is the predominant interaction, while at
distances above 3.4 Angstrom, both orbital superposition and dipolar
interactions may contribute to stabilization, with a small prevalence
of dipolar interactions. The stabilization energy at large distances
(above 4.5 Angstrom) is very small (about 0.5 kcal mol(-1)), probably
not enough to be responsible for the enantiodifferentiation process.
Semiempirical calculations on the parent systems were also unable to
reveal any special interaction which could be attributed to the
enantiodifferentiation process. (C) 2001 Elsevier Science B.V. All
rights reserved.
C1 Univ Fed Fluminense, Inst Quim, Dept Quim Geral & Inorgan, BR-24021150 Niteroi, RJ, Brazil.
Univ Fed Fluminense, Escola Engn, Dept Engn Quim, BR-24210230 Niteroi, RJ, Brazil.
Fed Univ Rio De Janeiro, Ctr Technol, Escola Quim, Lab Termodinam & Cinet Aplicada, BR-21945970 Rio De Janeiro, Brazil.
Fed Univ Rio De Janeiro, Ctr Tecnol, Inst Quim, BR-21945970 Rio De Janeiro, Brazil.
RP Carneiro, JWD, Univ Fed Fluminense, Inst Quim, Dept Quim Geral &
Inorgan, Outeiro Sao Joao Batista S-N, BR-24021150 Niteroi, RJ, Brazil.
CR BAIKER A, 1997, J MOL CATAL A-CHEM, V115, P473
BERRY RS, 1980, PHYSICAL CHEM, CH10
BLASER HU, 1991, J MOL CATAL, V68, P215
BLASER HU, 1997, CATAL TODAY, V37, P441
BORSZEKY K, 1997, TETRAHEDRON-ASYMMETR, V8, P3745
BURGI T, 1998, J AM CHEM SOC, V120, P12920
BURGI T, 2000, CATAL LETT, V66, P109
BURGI T, 2000, J CATAL, V194, P445
BURGI T, 2000, J PHYS CHEM B, V104, P5953
CIEPLAK AS, 1994, STRUCTURE CORRELATIO, V1
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
EVANS T, 1999, SURF SCI, V436, L691
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HEHRE WJ, 1986, AB INITIO MOL ORBITA
JORGENSEN WL, 1990, J AM CHEM SOC, V112, P4768
KIM EK, 1993, J AM CHEM SOC, V115, P3091
KOZMUTZA C, 1991, J MOL STRUCT THEOCHE, V233, P139
KURITA Y, 1994, J COMPUT CHEM, V15, P1013
MADDALUNO JF, 1994, J ORG CHEM, V59, P793
MARGITFALVI JL, 1999, J MOL CATAL A-CHEM, V139, P81
MARGITFALVI JL, 2000, APPL CATAL A-GEN, V191, P177
SCHURCH M, 1998, J CATAL, V173, P187
SCHWALM O, 1994, INT J QUANTUM CHEM, V52, P191
SCHWENKE DW, 1985, J CHEM PHYS, V82, P2418
SLIPSZENKO JA, 1998, J CATAL, V179, P267
STEWART JJP, 1994, MOPAC 93 MANUAL VERS
NR 26
TC 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1381-1169
J9 J MOL CATAL A-CHEM
JI J. Mol. Catal. A-Chem.
PD MAY 14
PY 2001
VL 170
IS 1-2
BP 235
EP 243
PG 9
SC Chemistry, Physical
GA 431BY
UT ISI:000168613100026
ER
PT J
AU Beltran, A
Andres, J
Calatayud, M
Martins, JBL
TI Theoretical study of ZnO (10(1)over-bar-0) and Cu/ZnO (10(1)over-bar-0)
surfaces
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID AB-INITIO; ELECTRONIC-STRUCTURE; TOTAL ENERGIES; HARTREE-FOCK;
ADSORPTION; CLUSTER; H-2; CO; ZNO(10(1)OVER-BAR0); DISSOCIATION
AB Periodic HF/6-31G and a hybrid density functional, B3LYP/6-31G.
calculations have been carried out in order to determine the geometric
and electronic structure of bulk ZnO. The lattice parameters, bulk
modulus, charge distribution and band structure are reported. Surface
energy and charge distribution of the ZnO (10(1) over bar 0) surface
are obtained, while top site adsorption of Cu atoms on Zn or O atoms on
the ZnO (10(1) over bar 0) surface are considered. Optimized distances,
charge transfers. vibrational frequencies and binding energies
associated with both types of adsorption processes are calculated. The
theoretical results are compared with previous theoretical studies and
available experimental data. (C) 2001 Elsevier Science B.V. All rights
reserved.
C1 Univ Jaume 1, Dept Ciencies Expt, E-12071 Castello, Spain.
Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
RP Beltran, A, Univ Jaume 1, Dept Ciencies Expt, Campus Riu Sec, E-12071
Castello, Spain.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
BIRCH F, 1978, J GEOPHYS RES, V83, P1257
BORODKO Y, 1999, APPL CATAL A-GEN, V186, P355
BOYS SF, 1970, MOL PHYS, V19, P553
CALATAYUD M, UNPUB SURF SCI
CALATAYUD M, 1999, SURF SCI, V430, P213
CASARIN M, 1998, INORG CHEM, V37, P5490
CASARIN M, 1999, APPL SURF SCI, V142, P192
DUKE CB, 1989, J VAC SCI TECHNOL 2, V7, P2030
FUJITANI T, 2000, APPL CATAL A-GEN, V191, P111
GILLAN MJ, 1997, J CHEM SOC FARADAY T, V106, P135
GREENWOOD NM, 1994, CHEM ELEMENTS
HEAD JD, 1997, INT J QUANTUM CHEM, V65, P827
HILL NA, 2000, PHYS REV B, V62, P8802
HYDE BG, 1989, INORGANIC CRYSTAL ST
JACOBSEN J, 1995, PHYS REV B, V52, P14954
JAFFE JE, 1993, PHYS REV B, V48, P7903
JAFFE JE, 1994, PHYS REV B, V49, P11153
JEDRECY N, 2000, SURF SCI, V460, P136
LEE C, 1988, PHYS REV B, V37, P785
LU X, 1998, CHEM PHYS LETT, V291, P445
LU X, 1999, J PHYS CHEM B, V103, P1089
MARKOVITS A, 1996, SURF SCI, V365, P649
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V397, P147
MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V398, P457
PERSSON P, 2000, CHEM PHYS LETT, V321, P302
PISANI C, 1988, HARTREE FOCK AB INIT, V48
PISANI C, 1996, QUANTUM MECHANICAL A, V67
POWELL MJD, 1970, NUMERICAL METHODS NO
RASOLOV VA, 1998, J CHEM PHYS, V109, P1223
SAUNDERS VR, 1999, CRYSTAL98 USERS MANU
SCHROER P, 1994, PHYS REV B, V49, P17092
WANDER A, 2000, SURF SCI, V457, L342
ZAPOL P, 1999, SURF SCI, V422, P1
NR 35
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 27
PY 2001
VL 338
IS 4-6
BP 224
EP 230
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 430TN
UT ISI:000168591800002
ER
PT J
AU Ramos, LE
Teles, LK
Scolfaro, LMR
Castineira, JLP
Rosa, AL
Leite, JR
TI Structural, electronic, and effective-mass properties of silicon and
zinc-blende group-III nitride semiconductor compounds
SO PHYSICAL REVIEW B
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; GENERALIZED GRADIENT APPROXIMATION;
VALENCE-BAND SPLITTINGS; DOPING QUANTUM-WELLS; GALLIUM NITRIDE;
ZINCBLENDE GAN; V NITRIDES; CUBIC GAN; HIGH-PRESSURE; OPTICAL GAIN
AB The electronic band structures of silicon and the zinc-blende-type
III-N semiconductor compounds BN, AlN, GaN, and InN are calculated by
using the self-consistent full potential linear augmented plane wave
method within the local-density functional approximation. Lattice
constant, bulk modulus, and cohesive energy are obtained from full
relativistic total-energy calculations for Si and for the nitrides.
Band structures and total density of states (DOS) are presented. The
role played by relativistic effects on the bulk band structures and DOS
is discussed. In order to provide important band structure-derived
properties, such as effective masses and Luttinger parameters, the ab
initio band structure results are linked with effective-mass theory.
Electron, heavy-, light-, and split-off-hole effective masses, as well
as spin-orbit splitting energies an extracted from the band-structure
calculations. By using the Luttinger-Kohn 6x6 effective-mass
Hamiltonian we derive the corresponding Luttinger parameters for the
materials. A comparison with other available theoretical results and
experimental data is made.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Ramos, LE, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
CR AHN D, 1996, J APPL PHYS, V79, P7731
ALVES JLA, 1997, MAT SCI ENG B-SOLID, V50, P57
BALSLEV I, 1965, PHYS LETTERS NETHERL, V19, P6
BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
BLAHA P, 1999, WIEN97 FULL POTENTIA
CHENG TS, 1995, APPL PHYS LETT, V66, P1509
CHRISTENSEN NE, 1994, PHYS REV B, V50, P4397
DESCLAUX JP, 1969, COMPUT PHYS COMMUN, V1, P216
DESCLAUX JP, 1975, COMPUT PHYS COMMUN, V9, P31
DEXTER RN, 1954, PHYS REV, V96, P223
DEXTER RN, 1956, PHYS REV, V104, P637
DUGDALE DJ, 2000, PHYS REV B, V61, P12933
EDGAR JH, 1994, PROPERITES GROUP 3 N
ENDERLEIN R, 1997, FUNDAMENTALS SEMICON
ENDERLEIN R, 1998, PHYS STATUS SOLIDI B, V206, P623
FAN WJ, 1996, J APPL PHYS, V79, P188
FANCIULLI M, 1993, PHYS REV B, V48, P15144
FIORENTINI V, 1993, PHYS REV B, V47, P13353
GUPTA VK, 1999, J VAC SCI TECHNOL B, V17, P1246
HARBEKE G, 1982, LANDOLDTBORNSTEIN, V17
HARIMA H, 1999, APPL PHYS LETT, V74, P191
HARRISON WA, 1989, ELECT STRUCTURE PROP
KIM K, 1996, PHYS REV B, V53, P16310
KIM K, 1997, PHYS REV B, V56, P7363
KOELLING DD, 1977, J PHYS C SOLID STATE, V10, P3107
LAWAETZ P, 1971, PHYS REV B-SOLID ST, V4, P3460
LEI T, 1992, J APPL PHYS, V71, P4933
LEMOS V, 2000, PHYS REV LETT, V84, P3666
LIMA AP, 1999, J CRYST GROWTH, V201, P396
LUTTINGER JM, 1955, PHYS REV, V97, P869
MURNAGHAN FD, 1944, P NATL ACAD SCI USA, V30, P244
NAKAMURA S, 1997, BLUE LASER DIODE
NAKAMURA S, 1999, SEMICOND SCI TECH, V14, R27
NOVAK P, UNPUB DISTRIBUTED WI
OKUBO S, 1998, J CRYST GROWTH, V190, P452
ORTON JW, 1998, REP PROG PHYS, V61, P1
PAISLEY MJ, 1989, J VAC SCI TECHNOL A, V7, P701
PALUMMO M, 1994, EUROPHYS LETT, V26, P607
PANKOVE JI, 1998, SEMICOND SEMIMET, V50
PAULUS B, 1997, J PHYS-CONDENS MAT, V9, P2745
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PERSSON C, 1996, PHYS REV B, V54, P10257
PERSSON C, 1998, J PHYS-CONDENS MAT, V10, P10549
PETROV I, 1992, APPL PHYS LETT, V60, P2491
PICKETT WE, 1988, PHYS REV B, V38, P1316
PUGH SK, 1998, P 2J INT C PHYS SEM
PUGH SK, 1999, SEMICOND SCI TECH, V14, P23
RAMIREZFLORES G, 1994, PHYS REV B, V50, P8433
RODRIGUES SCP, 2000, APPL PHYS LETT, V76, P1015
ROSA AL, 1998, PHYS REV B, V58, P15675
SCHIKORA D, 1996, PHYS REV B, V54, P8381
SCHWARZ K, 1996, LECT NOTES CHEM, V67, P139
SINGH DJ, 1994, PLANE WAVES PSEUDOPO
SIPAHI GM, 1996, PHYS REV B, V53, P9930
SITAR Z, 1992, J MATER SCI LETT, V11, P261
STADELE M, 1997, PHYS REV LETT, V79, P2089
STADELE M, 1999, PHYS REV B, V59, P10031
STAMPFL C, 1999, PHYS REV B, V59, P5521
STRITE S, 1993, J CRYST GROWTH, V127, P204
SUZUKI M, 1995, PHYS REV B, V52, P8132
SUZUKI M, 1996, APPL PHYS LETT, V69, P3378
TABATA A, 1996, J APPL PHYS 1, V79, P4137
TABATA A, 1999, APPL PHYS LETT, V74, P362
TABATA A, 1999, APPL PHYS LETT, V75, P1095
TADJER A, 1999, J PHYS CHEM SOLIDS, V60, P419
UENO M, 1992, PHYS REV B, V45, P10123
UENO M, 1994, PHYS REV B, V49, P14
VANSCHILFGAARDE M, 1997, J CRYST GROWTH, V178, P8
VOGEL D, 1997, PHYS REV B, V55, P12836
WEI SH, 1996, APPL PHYS LETT, V69, P2719
WENTZCOVITCH RM, 1986, PHYS REV B, V34, P1071
WRIGHT AF, 1994, PHYS REV B, V50, P2159
WRIGHT AF, 1995, PHYS REV B, V51, P7866
XU YN, 1991, PHYS REV B, V44, P7787
YEO YC, 1998, J APPL PHYS, V83, P1429
NR 75
TC 23
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD APR 15
PY 2001
VL 63
IS 16
AR 165210
DI ARTN 165210
PG 10
SC Physics, Condensed Matter
GA 426HH
UT ISI:000168343400047
ER
PT J
AU Abraham, RJ
Tormena, CF
Rittner, R
TI Conformational analysis. Part 35. NMR, solvation and theoretical
investigation of rotational isomerism in methyl fluoroacetate and
methyl difluoroacetate
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID COUPLING-CONSTANTS
AB The solvent and temperature dependence of the C-13 NMR spectra of
methyl fluoroacetate (MFA) and methyl difluoroacetate (MDFA) are
reported and the (1)J(CF) coupling analysed in terms of the conformer
couplings and energies. Density Functional Theory (DFT) calculations
were used to obtain the conformer geometries and solvation theory gave
the solvent dependence of the conformer energies. In MFA the DFT method
at the B3LYP/6-311+G(d,p) level gave only two energy minima for the cis
(F-C-C=O 0 degrees) and trans (F-C-C=O 180 degrees) conformers of ca.
equal energy. The gauche conformer was not a minimum in the energy
surface. The FTIR spectra of MFA support this result as two resolved
carbonyl bands are observed whose relative intensity changes markedly
with solvent polarity. Assuming only these forms, the observed coupling
when analysed by solvation theory leads to the energy difference
(E-cis-epsilonE(trans)) between the cis and trans conformers of 0.90
kcal mol(-1) in the vapour phase, decreasing to 0.41 kcal mol(-1) in
CCl4 and -0.71 kcal mol(-1) in DMSO. In MDFA the DFT calculations gave
two minima for the cis (H-C-C=O 0 degrees) and gauche (H-C-C=O 141.9
degrees) conformers with an energy difference (E-cis-E-gauche) of 0.2
kcal mol(-1). The FTIR spectra of MDFA support this result as in the
non-polar solvent (CCl4) two resolved bands are observed but in
solvents of medium and high polarity the carbonyl absorption appears as
a single band. Assuming only the two forms, the observed coupling when
analysed by solvation theory leads to the energy difference
(E-cis-E-gauche) between the cis and gauche conformers of 0.0 kcal
mol(-1) in the vapour phase, increasing to 0.46 kcal mol(-1) in CCl4
and 1.12 kcal mol(-1) in DMSO.
C1 Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
Univ Estadual Campinas, Inst Quim, BR-13038970 Campinas, SP, Brazil.
RP Rittner, R, Univ Liverpool, Dept Chem, POB 147, Liverpool L69 3BX,
Merseyside, England.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
ABRAHAM RJ, 1999, J CHEM SOC PERK AUG, P1663
ABRAHAM RJ, 2000, J CHEM SOC PERK T 2, P2382
BANKS JW, 1999, J CHEM SOC PERK NOV, P2409
BOTCHER CJF, 1952, THEORY ELECT POLARIS
BROWN TL, 1962, SPECTROCHIM ACTA, V18, P1615
CHIURDOGLU G, 1971, CONFORMATION ANAL, P219
ELIEL EL, 1994, STEREOCHEMISTRY ORGA
FORESMAN JB, 1993, EXPLORING CHEM ELECT
HARRINGTON PE, 1999, J ORG CHEM, V64, P4025
HEHRE WH, 1986, AB INITIO MOL ORBITA
MEYER M, 1992, CHEM BR, V9, P785
OLIVATO PR, 1992, CAN J APPL SPECTROSC, V33, P37
PHAN HV, 1990, J MOL STRUCT THEOCHE, V209, P333
PITTMAN CU, 1980, MACROMOLECULES, V13, P1031
THIBAUDEAU C, 1998, J ORG CHEM, V63, P4967
TORMENA CF, 2000, J CHEM SOC PERK T 2, P2054
VANDERVEKEN BJ, 1993, J MOL STRUCT, V293, P55
VOGEL AI, 1962, PRACTICAL ORGANIC CH
NR 23
TC 12
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1472-779X
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2001
IS 5
BP 815
EP 820
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 428NZ
UT ISI:000168468900025
ER
PT J
AU Esteves, PM
Alberto, GGP
Ramirez-Solis, A
Mota, CJA
TI Ab initio study of the adamantonium cations: the protonated adamantane
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID HYDROGEN-DEUTERIUM EXCHANGE; POTENTIAL-ENERGY SURFACE; PROTOLYSIS
DEUTEROLYSIS; ELECTROPHILIC REACTIONS; SINGLE BONDS; SUPERACIDS;
MECHANISM; ALKANES
AB The molecular structure and energetics of the adamantonium ions were
computed at the MP2(full)/6-31G** level. Three structures were found to
represent the adamantonium cations, respectively: the 1-H-adamantonium
(1). 2-H-adamantonium (2), and C-adamantonium ions (3). This study
revealed that, upon protonation, adamantane can also produce two van
der Waals complexes: one formed by the weak interaction of the
1-adamantyl cation and H-2 (4) and the other formed by the interaction
of the 2-adamantyl cation and H-2 (5). The stability order is predicted
to be 5 > 3 > 4 > 1 > 2, Given the size and complexity of this
molecule, the quantum zero point energy (ZPE) and finite temperature
(298 K) corrections were estimated from previously calculated values
for the isobutonium (for protonation of tertiary C-H and C-C bonds) and
the proponium cations (for protonation of the secondary C-H bond). The
calculated proton affinity of adamantane was estimated as 175.7
kcal/mol.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, BR-21949900 Rio De Janeiro, Brazil.
Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Organ, Cidade
Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
ESTEVES PM, 1998, TOP CATAL, V6, P163
ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
ESTEVES PM, 2000, J BRAZIL CHEM SOC, V11, P345
ESTEVES PM, 2000, J PHYS CHEM A, V104, P6233
FRISCH MJ, 1995, GAUSSIAN 94
HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
LIDE DR, 1994, CRC HDB CHEM PHYSICS
MARCH J, 1992, ADV ORG CHEM, P172
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
OLAH GA, 1970, J AM CHEM SOC, V92, P1259
OLAH GA, 1971, J AM CHEM SOC, V93, P1251
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1985, SUPERACIDS
PRAKASH GKS, 1997, STABLE CARBOCATION C
SCHLEYER PV, 1989, J CHEM SOC CHEM COMM, P1098
SCHLEYER PV, 1997, STABLE CARBOCATION C, P47
SCHLEYER PVR, 1980, J AM CHEM SOC, V102, P683
NR 19
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAY 3
PY 2001
VL 105
IS 17
BP 4308
EP 4311
PG 4
SC Chemistry, Physical
GA 428BT
UT ISI:000168441800019
ER
PT J
AU Sensato, FR
Filho, OT
Longo, E
Sambrano, JR
Andres, J
TI Theoretical analysis of the energy levels induced by oxygen vacancies
and the doping process (Co, Cu and Zn) on SnO2 (110) surface models
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE tin oxide; clusters; surface electronic phenomena; surface defects;
B3LYP hybrid functional
ID REDUCED SNO2(110) SURFACE; ZINC-OXIDE CERAMICS; DENSITY-FUNCTIONAL
THEORY; ELECTRONIC-STRUCTURE; DIOXIDE CHEMISORPTION; CRYSTAL PHASES;
TIN DIOXIDE; TIO2; ADSORPTION; VARISTORS
AB Density functional calculation at B3LYP level was employed to study the
surface oxygen vacancies and the doping process of Co, Cu and Zn on
SnO2 (110) surface models. Large clusters, based on (SnO2)(15) models,
were selected to simulate the oxidized (Sn15O30), half-reduced
(Sn15O29) and the reduced (Sn15O28) surfaces. The doping process was
considered on the reduced surfaces: Sn13Co2O28, Sn13Cu2O28 and
Sn13Zn2O28. The results are analyzed and discussed based on a
calculation of the energy levels along the bulk band gap region,
determined by a projection of the monoelectron level structure on to
the atomic basis set and by the density of states. This procedure
enables one to distinguish the states coming from the bulk, the oxygen
vacancies and the doping process, On passing from an oxidized to a
reduced surface, missing bridge oxygen atoms generate electronic levels
along the band gap region, associated with 5s/5p of four-/five-fold Sn
and 2p of in-plane O centers located on the exposed surface, which is
in agreement with previous theoretical and experimental investigations.
The formation energy of one and two oxygen vacancies is 3.0 and 3.9 eV,
respectively. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Estadual Paulista, Dept Matemat, BR-17030360 Bauru, SP, Brazil.
Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
RP Sensato, FR, Univ Fed Sao Carlos, Dept Quim, CP 676, BR-13565905 Sao
Carlos, SP, Brazil.
CR ANTUNES SRM, 1995, THEOCHEM-J MOL STRUC, V357, P153
BAUR WH, 1956, ACTA CRYSTALLOGR, V9, P515
BECKE AD, 1993, J CHEM PHYS, V98, P1372
BUENO PR, 1996, J MATER SCI LETT, V15, P2048
CALATAYUD M, 1999, SURF SCI, V430, P213
CAMARGO AC, 1996, J ANDRES CHEM PHYS, V212, P2541
CATLOW CRA, 1990, NATURE, V347, P243
CATLOW CRA, 1993, J SOLID STATE CHEM, V106, P13
CATLOW CRA, 1994, J MATER CHEM, V4, P781
CHIANG L, 1997, PHYSICAL CERAMIC, P110
COHEN ML, 1997, INT J QUANTUM CHEM, V61, P603
COX DF, 1988, PHYS REV B, V38, P2072
DEFRESART E, 1981, SOLID STATE COMMUN, V37, P13
DEFRESART E, 1982, APPL SURF SCI, V11, P259
DOBROVOLSKII YA, 1992, SOV ELECTROCHEM, V28, P1277
DOBROVOLSKII YA, 1993, RUSS J ELECTROCHEM+, V29, P1313
DOBROVOLSKII YA, 1995, INORG CHEM, V40, P1553
EGDELL RG, 1995, J MATER CHEM, V5, P499
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GERCHER VA, 1994, SURF SCI, V312, P106
GERCHER VA, 1995, SURF SCI, V322, P177
GOBBY PL, 1976, 13 C PHYS SEM
GODIN TJ, 1993, PHYS REV B, V47, P6518
GONIAKOWSKI J, 1996, PHYS REV B, V53, P957
GONIAKOWSKI J, 1996, SURF SCI, V350, P145
HERMANSSON K, 1994, UUICB19500
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
INADA M, 1971, JPN J APPL PHYS, V10, P736
INADA M, 1978, JPN J APPL PHYS, V17, P1
INADA M, 1979, JPN J APPL PHYS, V18, P1439
IVANOV I, 1981, PHYS REV B, V24, P7275
JARZEBSKI ZM, 1976, J ELECTROCHEM SOC, V123, C199
LEE C, 1988, PHYS REV B, V37, P785
LU X, 1998, CHEM PHYS LETT, V291, P445
MANASSIDIS I, 1995, SURF SCI, V339, P258
MARTINS JBL, 1995, THEOCHEM-J MOL STRUC, V335, P167
MASUYAMA T, 1968, JPN J APPL PHYS, V7, P1294
MATSUOKA M, 1971, JPN J APPL PHYS, V10, P736
MUNNIX S, 1983, PHYS REV B, V27, P7624
MUNNIX S, 1986, PHYS REV B, V33, P4136
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
PENNEWISS J, 1990, MATER LETT, V9, P219
PIANARO SA, 1994, APPL PATENT
PIANARO SA, 1995, J MATER SCI LETT, V14, P692
PIANARO SA, 1998, J MATER SCI-MATER EL, V9, P159
RANTALA T, 1998, SENSOR ACTUAT B-CHEM, V47, P59
RANTALA TS, 1994, PHYS SCR T, V54, P152
RANTALA TS, 1994, SENSOR ACTUAT B-CHEM, V18, P716
RANTALA TS, 1996, CSC NEWS, V8, P23
RANTALA TT, 1999, SURF SCI, V420, P103
RINALDI D, 1992, J COMPUT CHEM, V13, P675
RIVAIL JL, 1976, CHEM PHYS, V18, P233
RIVAIL JL, 1985, J MOL STRUCT THEOCHE, V120, P387
ROBERTSON J, 1979, J PHYS C SOLID STATE, V12, P4767
SAMBRANO JR, 1997, INT J QUANTUM CHEM, V65, P625
SAUER J, 1989, CHEM REV, V89, P199
SENSATO FR, 1997, THEOCHEM-J MOL STRUC, V394, P259
SHERWOOD PMA, 1990, PHYS REV B, V41, P10151
SKAFIDAS PD, 1994, SENSOR ACTUAT B-CHEM, V18, P124
TAPIA O, 1975, MOL PHYS, V29, P1653
TATEWAKI H, 1980, J COMPUT CHEM, V1, P205
WONG MW, 1991, J AM CHEM SOC, V113, P4776
YAMAGUCHI Y, 1998, INT J QUANTUM CHEM, V69, P669
YAMAGUCHI Y, 2000, CHEM PHYS LETT, V316, P477
YAMAOKA N, 1983, AM CERAM SOC BULL, V62, P698
YAN MF, 1982, APPL PHYS LETT, V40, P536
YANG SL, 1995, J MATER RES, V10, P345
ZYUBINA TS, 1995, RUSS J ELECTROCHEM+, V31, P1280
NR 68
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAY 31
PY 2001
VL 541
BP 69
EP 79
PG 11
SC Chemistry, Physical
GA 427CJ
UT ISI:000168387000008
ER
PT J
AU Basso, EA
Oliveira, PR
Caetano, J
Schuquel, ITA
TI Semiempirical and ab initio calculations versus dynamic NMR on
conformational analysis of cyclohexyl-N,N-dimethylcarbamate
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE conformational analysis; theoretical calculations; cyclohexane
derivative; dynamic NMR
AB Axial-equatorial conformational proportions for cyclohexyl-N,N-dimethyl
carbamate have been measured, for the first time, by the Eliel method,
H-1 and C-13 dynamic nuclear magnetic resonance (DNMR). The results
were compared against those determined by theoretical calculations. By
the Eliel method at least five experimentally independent measureables
were used in CCl4, CDCl3 and CD3CN. The H-1 and C-13 low temperature
experiments were performed in CF2Br2/CD2Cl2. Semiempirical methods
MNDO, AM1 and PM3 and ab initio molecular orbital calculations at the
HF/STO-3G and HF/6-31G(d,p) levels have been performed on the axial and
equatorial conformers populations. All applied methods correctly
predict the equatorial conformer preference over the axial one. The
resulting equatorial preferences determined by NMR data and theoretical
calculations are in good agreement.
C1 Univ Estadual Maringa, Dept Quim, BR-87020900 Maringa, Parana, Brazil.
RP Basso, EA, Univ Estadual Maringa, Dept Quim, Av Colombo 5790,
BR-87020900 Maringa, Parana, Brazil.
CR BASSO EA, 1993, J ORG CHEM, V58, P7865
BOBRANSKII BR, 1941, J APPL CHEM-USSR, V14, P524
CAREY FA, 1996, ORGANIC CHEM, P102
COX C, 1998, J ORG CHEM, V63, P2426
DODRELL DM, 1982, J MAGN RESON, V48, P323
ELIEL EL, 1959, CHEM IND-LONDON, P568
ELIEL EL, 1965, CONFORMATIONAL ANAL
ELIEL EL, 1968, J AM CHEM SOC, V90, P682
ELIEL EL, 1994, STEREOCHEMISTRY ORGA
FRISCH MJ, 1995, GAUSSIAN 94 DEV VERS
HARRIS RK, 1986, NUCL MAGNETIC RESONA, P108
HIRSCH JA, 1967, TOP STEREOCHEM, V1, P199
JENSEN FR, 1968, J AM CHEM SOC, V90, P3251
JENSEN FR, 1971, ADVANCES ALICYCLIC C, V3, P139
JORDAN EA, 1986, TETRAHEDRON, V42, P93
KARPLUS M, 1959, J CHEM PHYS, P30
KARPLUS M, 1963, J AM CHEM SOC, V85, P2870
LEMIEUX RU, 1958, J AM CHEM SOC, V80, P6098
WAYLAND BB, 1966, J AM CHEM SOC, V88, P2455
WIBERG KB, 1999, J ORG CHEM, V64, P2085
NR 20
TC 6
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PY 2001
VL 12
IS 2
BP 215
EP 222
PG 8
SC Chemistry, Multidisciplinary
GA 424ZF
UT ISI:000168263300015
ER
PT J
AU Rodrigues, SCP
Sipahi, GM
Scolfaro, LMR
Leite, JR
TI Exchange-correlation effects on the hole miniband structure and
confinement potential in zinc-blende AlxGa1-xN/GaN superlattices
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; DOPING QUANTUM-WELLS; ALGAN/GAN
SUPERLATTICES; BAND-STRUCTURE; HETEROSTRUCTURES; SEMICONDUCTORS;
TRANSPORT
AB We present valence band-structure calculations for undoped and p-doped
cubic AlxGa1-xN/GaN superlattices (SLs), in which the coupling between
the heavy hole, light-hole, and spin-orbit-split-hole bands and strain
effects due to lattice mismatch are taken into account, The
calculations are performed within a self-consistent approach to the k.p
theory by means of a full six-band Luttinger- Kohn Hamiltonian.
Exchange-correlation effects within the two-dimensional hole gas are
included in the calculations in the local density approximation.
Results for hole minibands and potential profiles are shown as
functions of the SL period. It is shown that exchange and correlation
play an important role in the correct description of the systems.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Rodrigues, SCP, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, Brazil.
CR AS DJ, 2000, APPL PHYS LETT, V76, P13
EDGAR JH, 1994, PROPERTIES GROUP 3 N
ENDERLEIN R, 1997, PHYS REV LETT, V79, P3712
ENDERLEIN R, 1998, PHYS REV LETT, V80, P3160
FAN WJ, 1996, J APPL PHYS, V80, P3471
FREY T, 2001, IN PRESS J APPL PHYS
GOEPFERT ID, 2000, J APPL PHYS, V88, P2030
HSU L, 1999, APPL PHYS LETT, V74, P2405
KOZODOY P, 1999, APPL PHYS LETT, V74, P3681
KUMAKURA K, 1999, JPN J APPL PHYS 2, V38, L1012
KUMAKURA K, 2000, JPN J APPL PHYS 1, V39, P2428
MARQUES M, 2001, IN PRESS P 25 INT C
ORTON JW, 1998, REP PROG PHYS, V61, P1
PANKOVE JI, 1998, SEMICONDUCTORS SEMIM, V50
PARKER CA, 1999, APPL PHYS LETT, V75, P2776
RAMOS LE, 2001, IN PRESS PHYS REV B, V63
RODRIGUES SCP, 2000, APPL PHYS LETT, V76, P1015
RODRIGUES SCP, 2000, IPAP CONFERENCE SER, V1, P74
ROSA AL, 1998, PHYS REV B, V58, P15675
SAXLER A, 1999, APPL PHYS LETT, V74, P2023
SIPAHI GM, 1996, PHYS REV B, V53, P9930
VANDEWALLE CG, 1997, APPL PHYS LETT, V70, P2577
WRIGHT AF, 1997, J APPL PHYS, V82, P2833
WU J, 1999, J CRYST GROWTH, V197, P73
NR 24
TC 11
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD APR 9
PY 2001
VL 13
IS 14
BP 3381
EP 3387
PG 7
SC Physics, Condensed Matter
GA 425BV
UT ISI:000168269200012
ER
PT J
AU Dardenne, LE
Werneck, AS
Neto, MO
Bisch, PM
TI Reassociation of fragments using multicentered multipolar expansions:
Peptide junction treatments to investigate electrostatic properties of
proteins
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE multicentered multipolar expansions; reassociation of fragments;
electrostatic properties of proteins; peptide junction; ab initio
calculations
ID MOLECULAR CHARGE-DISTRIBUTION; ACID SIDE-CHAINS; ATOMIC CHARGES; POINT
CHARGES; SOLVENT; MODELS; PAPAIN; INHIBITORS; SURFACES; ENERGIES
AB We report an analysis of three schemes for fragment reassociation using
multicentered multipolar expansions derived from ab initio quantum wave
functions at the Hartree-Fock/6-31G* LCAO level, two of them involving
single-bond partitioning in the peptide bond region, and the third one
using a partially overlapping procedure based on a methodology proposed
by Vigne-Maeder(21) (OME-overlap of multipolar expansions-reassociation
method). The effects of different peptide junction treatments in the
derivation of molecular electrostatic potentials and molecular electric
fields of three peptide sequences are discussed. The results show that
the OME reassociation method gives a better and a more homogeneous
description of both the potential and the electric field than the other
two treatments. We conclude that the OME method is the most indicated
for studies involving electrostatic properties of proteins. Our results
also indicate that the use of multicentered multipolar expansions
coupled to the OME treatment is the best choice in protein studies
including solvent effects using, for example, a continuum boundary
method to solve the linearized Poisson-Boltzmann equation. (C) 2001
John Wiley & Sons, Inc.
C1 UCB, Dept Fis, BR-72030170 Taguatinga, DF, Brazil.
Univ Fed Rio de Janeiro, Inst Biofis Carlos Chagas Filho, BR-21949900 Rio De Janeiro, Brazil.
Univ Brasilia, Inst Quim, BR-70910900 Brasilia, DF, Brazil.
RP Werneck, AS, UCB, Dept Fis, EPCT Q-57,Lote 01,Aguas Claras, BR-72030170
Taguatinga, DF, Brazil.
CR ANGYAN JG, 1994, INT J QUANTUM CHEM, V52, P17
BELLIDO MN, 1989, J COMPUT CHEM, V10, P479
CHIPOT C, 1993, J PHYS CHEM-US, V97, P9788
CHIPOT C, 1993, J PHYS CHEM-US, V97, P9797
COLONNA F, 1992, J COMPUT CHEM, V13, P1234
CONNOLLY ML, 1983, SCIENCE, V221, P709
DAY PN, 1996, J CHEM PHYS, V105, P1968
FERENCZY GG, 1991, J COMPUT CHEM, V12, P913
FREITAG MA, 2000, J CHEM PHYS, V112, P7300
GOLDBLUM A, 1979, INT J QUANTUM CHEM, V15, P121
GRESH N, 1984, THEOR CHIM ACTA, V66, P1
GRESH N, 1997, BIOPOLYMERS, V41, P145
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HODGKIN EE, 1987, INT J QUANTUM CHEM, V14, P105
JEZIORSKI B, 1994, CHEM REV, V94, P1887
JUFFER AH, 1991, J COMPUT PHYS, V97, P144
LANGLET J, 1988, J PHYS CHEM-US, V92, P1617
LAVERY R, 1983, INT J QUANTUM CHEM, V24, P353
LEWIS SD, 1981, BIOCHEMISTRY-US, V20, P48
MERZ KM, 1992, J COMPUT CHEM, V13, P749
MURRAY JS, 1998, INT J QUANTUM CHEM, V70, P1137
NAKAMURA H, 1996, Q REV BIOPHYS, V29, P1
NARAYSZABO G, 1997, COMPUTATIONAL APPROA
PORT GNJ, 1973, FEBS LETT, V31, P70
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHRODER E, 1993, FEBS LETT, V315, P38
SHARP KA, 1990, ANNU REV BIOPHYS BIO, V19, P301
SINGH UC, 1984, J COMPUT CHEM, V5, P129
STONE AJ, 1981, CHEM PHYS LETT, V83, P233
STONE AJ, 1985, MOL PHYS, V56, P1047
VIGNEMAEDER F, 1987, CHEM PHYS LETT, V133, P337
VIGNEMAEDER F, 1988, J CHEM PHYS, V88, P4934
WARSHEL A, 1981, ACCOUNTS CHEM RES, V14, P284
WERNECK AS, 1998, THEOCHEM-J MOL STRUC, V427, P15
YOUNG L, 1997, J COMPUT CHEM, V18, P522
NR 35
TC 4
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD MAY
PY 2001
VL 22
IS 7
BP 689
EP 701
PG 13
SC Chemistry, Multidisciplinary
GA 424WW
UT ISI:000168257800002
ER
PT J
AU de Souza, GGB
Rocco, MLM
Boechat-Roberty, HM
Lucas, CA
Borges, I
Hollauer, E
TI Valence electronic excitation of the SiF4 molecule: generalized
oscillator strength for the 5t(2)-> 6a(1) transition and ab initio
calculation
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Article
ID SAC-CI THEORIES; CROSS-SECTIONS; EXCITED-STATES; PHOTOABSORPTION
SPECTRA; SPECTROSCOPY; PHOTOELECTRON; IONIZATION; SCATTERING; ARGON;
SICL4
AB The electronic excitation of the silicon tetrafluoride (SiF4) molecule
has been studied using the angle-resolved electron energy-loss
technique, at 1.0 keV incident electron energy, in the 0-50 eV energy
range with an angular range of 1.5 degrees -20.0 degrees. The absolute
generalized oscillator strength (GOS) for the 5t(2) --> 6a(1)
electronic transition, located at 13.0 eV, has been determined. A
minimum has been observed in the GOS for this transition at K-2 = 1.4
au. We have also determined the absolute elastic and inelastic
differential cross sections at I keV. In order to help in the
interpretation of the experimental results, ab initio calculations have
been performed for the vertical valence transitions and ionization
energies for the SiF4 molecule. Configuration-interaction calculations,
including single and double excitations (CI-SD) and the
symmetry-adapted-cluster expansion (SAC) were used. The CI-SD approach
was also employed to obtain the optical oscillator strength for the
5t(2) --> 6a(1) transition.
C1 Fed Univ Rio De Janeiro, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Fed Univ Rio De Janeiro, Observ Valongo, BR-20080090 Rio De Janeiro, Brazil.
Univ Fed Fluminense, Inst Quim, BR-24020150 Niteroi, RJ, Brazil.
RP de Souza, GGB, Fed Univ Rio De Janeiro, Inst Quim, Cidade Univ,
BR-21949900 Rio De Janeiro, Brazil.
CR BARTELL LS, 1984, J CHEM PHYS, V81, P3792
BIELSCHOWSKY CE, 1988, PHYS REV A, V38, P3405
BOECHATROBERTY HM, 1991, PHYS REV A, V44, P1694
BOECHATROBERTY HM, 1992, J PHYS B ATOM MOL PH, V25, P4641
BOECHATROBERTY HM, 1995, REV BRASIL FIS APLIC, V10, P92
BOECHATROBERTY HM, 1997, J PHYS B-AT MOL OPT, V30, P3369
BOZEK JD, 1990, CHEM PHYS, V145, P131
BOZEK JD, 1990, PHYS REV LETT, V65, P2757
CHEN ZF, 1999, PHYS REV A, V60, P5115
DEALTI G, 1978, CHEM PHYS, V35, P283
DEMIRANDA MP, 1994, PHYS REV A, V49, P2399
DESOUZA GGB, 1989, J CHEM PHYS, V90, P7071
FANTONI R, 1986, CHEM PHYS LETT, V128, P67
GUO X, 1992, CHEM PHYS, V161, P453
HOLLAUER E, 1999, J ELECTRON SPECTROSC, V104, P31
ISHIKAWA H, 1991, J CHEM PHYS, V94, P6740
KAMETA K, 1993, J CHEM PHYS, V99, P2487
KARWASZ GP, 1998, CHEM PHYS LETT, V284, P128
KING RA, 1996, J CHEM PHYS, V105, P6880
KUROKI K, 1994, J ELECTRON SPECTROSC, V70, P151
LASSETTRE EN, 1974, METHODS EXPT PHYSI B, V3, P868
MICHELS HH, 1993, CHEM PHYS LETT, V207, P389
MONIRUZZAMAN S, 1999, THIN SOLID FILMS, V337, P27
MSEZANE AZ, 1994, PHYS REV A, V49, P2405
NAKATSUJI H, 1979, CHEM PHYS LETT, V67, P334
NAKATSUJI H, 1981, J CHEM PHYS, V75, P2952
NAKATSUJI H, 1987, THEOR CHIM ACTA, V71, P201
NAKATSUJI H, 1990, J CHEM PHYS, V93, P1865
NAKATSUJI H, 1991, INT J QUANTUM CHEM, V39, P93
NAKATSUJI H, 1991, J CHEM PHYS, V95, P4296
OLNEY TN, 1997, CHEM PHYS, V223, P59
PADMA R, 1992, PHYS REV A, V46, P2513
ROBINSON EA, 1997, INORG CHEM, V36, P3022
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SUTO M, 1987, J CHEM PHYS, V86, P1152
TAKAMI M, 1990, J CHEM PHYS, V94, P2204
TOSSELL JA, 1984, J CHEM PHYS, V80, P813
YATES BW, 1985, J CHEM PHYS, V83, P4906
NR 38
TC 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS-B-AT MOL OPT PHYS
JI J. Phys. B-At. Mol. Opt. Phys.
PD MAR 28
PY 2001
VL 34
IS 6
BP 1005
EP 1017
PG 13
SC Physics, Atomic, Molecular & Chemical; Optics
GA 422VP
UT ISI:000168140200010
ER
PT J
AU Castellano, EE
Piro, OE
Caram, JA
Mirifico, MV
Aimone, SL
Vasini, EJ
Lucero, AM
Mitnik, DG
TI Crystallographic study and molecular orbital calculations of
thiadiazole derivatives. 1. Phenanthro[9,10-c]-1,2,5-thiadiazole
1,1-dioxide and acenaphtho[1,2-c]-1,2,5-thiadiazole 1,1-dioxide
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE 1,2,5-thiadiazole 1,1-dioxide derivatives; ab initio MO calculations;
single-crystal X-ray diffraction; density functional theory;
sensitivity analysis
ID DENSITY-FUNCTIONAL THEORY; 3,4-DIPHENYL-1,2,5-THIADIAZOLE 1,1-DIOXIDE;
CHEMICAL-REACTIVITY; SOFT ACIDS; CRYSTAL-STRUCTURE; GAS-PHASE;
HARDNESS; BASES; ELECTROREDUCTION; DESCRIPTORS
AB Single-crystal X-ray diffraction studies are reported for
phenanthro[9,10-c]-1,2,5-thiadiazole 1,1-dioxide (I) and
acenaphtho[1,2-c]-1,2,5-thiadiazole 1,1-dioxide (II), Ab initio
molecular orbital (MO) calculations on the electronic structure,
conformation and reactivity of I and II an also reported and compared
with the X-ray results. A charge sensitivity analysis of the studied
molecules has been performed by resorting to density functional theory
(DFT), obtaining several sensitivity coefficients such as the molecular
energy, net atomic charges, global and local hardness, global and local
softness and Fukui functions. With these results and the analysis of
the dipole moments and the total electron density maps, several
conclusions have been inferred about the preferred sites of chemical
reaction of the studied compounds. (C) 2001 Elsevier Science B.V. All
rights reserved.
C1 CIMAV, Chihuahua, Mexico.
Univ Sao Paulo, Dept Fis, Inst Fis & Quim Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, RA-1900 La Plata, Argentina.
CONICET, PROFIMO, RA-1900 La Plata, Argentina.
Univ Nacl La Plata, INIFTA, CONICET, RA-1900 La Plata, Argentina.
RP Mitnik, DG, CIMAV, Miguel de Cervantes 120, Chihuahua, Mexico.
CR AIMONE SL, 2000, J PHYS ORG CHEM, V13, P272
AIMONE SL, 2000, TETRAHEDRON LETT, V41, P3531
AMATO JS, 1982, J AM CHEM SOC, V104, P1375
BACHRACH SM, 1994, REV COMPUTATIONAL CH, V5
BAETEN A, 1994, J MOL STRUCT THEOCHE, V306, P203
BAETEN A, 1995, CHEM PHYS LETT, V235, P17
BAKER RJ, 1980, J ORG CHEM, V45, P482
CALDERON CE, 1979, ACTA CRYSTALLOGR B, V35, P2795
CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P1340
CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P2296
CARAM JA, 1994, ELECTROCHIM ACTA, V39, P939
CASTELLANO EE, 1998, J PHYS ORG CHEM, V11, P91
CROMER DT, 1974, INT TABLES CRYSTALLO, V4, P71
CROMER DT, 1974, INT TABLES XRAY CRYS, V4, P149
DEPROFT F, 1994, J PHYS CHEM-US, V98, P5227
FARRUGIA LJ, 1997, J APPL CRYSTALLOGR, V30, P565
FOCESFOCES C, 1975, ACTA CRYSTALLOGR B, V31, P2310
FOCESFOCES C, 1977, ACTA CRYSTALLOGR B, V33, P910
FRENZ AB, 1983, ENRAF NONIUS STRUCTU
FRISCH MJ, 1998, GAUSSIAN 98
FUKUI K, 1973, THEORY ORIENTATION S
GAZQUEZ JL, 1994, J PHYS CHEM-US, V98, P4591
GAZQUEZ JL, 1998, THEORET COMPUT CHEM, V5, P135
GLOSSMAN MD, 1995, THEOCHEM-J MOL STRUC, V330, P385
GLOSSMAN MD, 1996, ATUALIDADES FISICOQU
GLOSSMAN MD, 1997, THEOCHEM-J MOL STRUC, V390, P67
JOHNSON CK, 1965, ORNL3794 ORTEP
LANGENAEKER W, 1992, J MOL STRUCT THEOCHE, V259, P317
LANGENAEKER W, 1995, J PHYS CHEM-US, V99, P6424
LIPKOWITZ KB, 1990, REV COMPUTATIONAL CH, V1
MIRIFICO MV, 1991, ELECTROCHIM ACTA, V36, P167
MIRIFICO MV, 1991, INT J CHEM KINET, V23, P197
MIRIFICO MV, 1993, J PHYS ORG CHEM, V6, P341
MIRIFICO MV, 1995, AN QUIM, V91, P557
MULLEN K, 1998, ELECT MAT OLIGOMER A
MULLIKEN RS, 1934, J CHEM PHYS, V2, P782
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
MULLIKEN RS, 1955, J CHEM PHYS, V23, P2338
NALWA HS, 1997, HDB ORGANIC CONDUCTI
PARR RG, 1984, J AM CHEM SOC, V106, P4049
PARR RG, 1989, DENSITY FUNCTIONAL T
PARR RG, 1995, ANNU REV PHYS CHEM, V46, P701
PEARSON RG, 1963, J AM CHEM SOC, V85, P3533
PEARSON RG, 1966, SCIENCE, V151, P172
PEARSON RG, 1987, J CHEM EDUC, V64, P561
POLITZER P, 1981, CHEM APPL ATOMIC MOL
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
ROY RK, 1998, J PHYS CHEM A, V102, P3746
ROY RK, 1998, J PHYS CHEM A, V102, P7035
SALZNER U, 1997, J COMPUT CHEM, V18, P1943
SHELDRICK GM, 1974, SHELX PROGRAM CRYSTA
WEINSTOCK LM, 1984, COMPREHENSIVE HETERO, V6
YANG W, 1986, J AM CHEM SOC, V108, P5708
ZHOU Z, 1988, TETRAHEDRON LETT, V29, P4843
NR 55
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD MAY 2
PY 2001
VL 562
IS 1-3
BP 157
EP 166
PG 10
SC Chemistry, Physical
GA 421UA
UT ISI:000168080900017
ER
PT J
AU Milas, I
Nascimento, MAC
TI A density-functional study of the dehydrogenation reaction of isobutane
over zeolites
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID AB-INITIO; ELECTROPHILIC REACTIONS; ACIDIC ZEOLITE; CLUSTER-MODELS;
LIGHT ALKANES; EXCHANGE; CRACKING; ACTIVATION; CARBOCATIONS; TEMPERATURE
AB The dehydrogenation reaction of isobutane over zeolites was
investigated at the B3LYP/6-31G** and 6-311G** levels of calculation,
and with T3 and T5 clusters representing the zeolite. The transition
state (TS) exhibits a carbenium ion-like character, and the activation
energy, at the best level of theory, is 53.4 kcal/mol. Contrary to what
has been previously proposed, IRC calculations show that the mechanism
does not involve the formation of alkoxide, but rather the carbocation
collapses directly into isobutene while the eliminated proton, restores
the zeolite's acid site. Increasing the size of the cluster and of the
basis set does not change the mechanism. (C) 2001 Elsevier Science B.V.
All rights reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim,
Cidade Univ,CT Bloco A,Sala 412, BR-21949900 Rio De Janeiro, Brazil.
CR *SCHROD INC, 1998, JAGUAR 3 5
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
BLASZKOWSKI SR, 1996, J PHYS CHEM-US, V100, P3463
CORMA A, 1994, J CATAL, V145, P171
ESTEVES PM, 1999, J PHYS CHEM B, V103, P10417
ESTEVES PM, 2000, THESIS U FEDERAL RIO
EVELETH EM, 1996, J PHYS CHEM-US, V100, P11368
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FURTADO EA, 2000, THESIS U FEDERAL RIO
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
HAW JF, 1989, J AM CHEM SOC, V111, P2052
JEANVOINE Y, 1998, J PHYS CHEM B, V102, P5573
KAZANSKY VB, 1989, J CATAL, V119, P108
KAZANSKY VB, 1996, APPL CATAL A-GEN, V146, P225
LINS JOMDL, 1996, THEOCHEM-J MOL STRUC, V371, P237
NARBESHUBER TF, 1995, J CATAL, V157, P388
NARBESHUBER TF, 1997, J CATAL, V172, P127
NICHOLAS JB, 1996, J AM CHEM SOC, V118, P4202
OLAH GA, 1971, J AM CHEM SOC, V93, P1251
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
RESASCO DE, 1994, CATALYSIS, V11, P379
SINCLAIR PE, 1998, J CHEM SOC FARADAY T, V94, P3401
STEFANADIS C, 1991, J MOL CATAL, V67, P363
VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13719
ZARDKOOHI M, 1987, J AM CHEM SOC, V109, P5278
ZYGMUND SA, 2000, PHYS CHEM B, V104, P1944
NR 27
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 13
PY 2001
VL 338
IS 1
BP 67
EP 73
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 423QC
UT ISI:000168187400011
ER
PT J
AU De Almeida, MV
Figueiredo, RM
Dos Santos, HF
Da Silva, AD
De Almeida, WB
TI Synthesis and theoretical study of azido and amino inositol derivatives
from L-quebrachitol
SO TETRAHEDRON LETTERS
LA English
DT Article
ID D-3-AZIDO-3-DEOXY-MYO-INOSITOL; ROUTES
AB Some azido and amino inositol derivatives were synthesised from
L-quebrachitol. The reaction between the mesylated compound and sodium
azide was studied experimentally. Ab initio quantum mechanical
calculations were carried out for this process to better understand the
reaction mechanism. (C) 2001 Elsevier Science Ltd. All rights reserved.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Fed Juiz de Fora, ICE, Dept Quim, Juiz De Fora, MG, Brazil.
RP De Almeida, WB, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim
Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR ACENA JL, 1996, TETRAHEDRON LETT, V37, P105
ARJONA O, 1995, TETRAHEDRON LETT, V8, P6659
BRUNN G, 1994, CANCER CHEMOTH PHARM, V35, P71
CHIDA N, 1990, CHEM LETT, P423
COSSI M, 1996, CHEM PHYS LETT, V255, P327
DASILVA ET, 1998, TETRAHEDRON LETT, V39, P6659
DEALMEIDA WB, 1998, J PHARM SCI, V87, P1101
HAMADA M, 1974, J ANTIBIOT, V27, P81
KOZIKOWSKI AP, 1990, J AM CHEM SOC, V112, P4528
KOZIKOWSKI AP, 1992, J CHEM SOC CHEM COMM, P362
MANN RL, 1953, ANTIBIOT CHEMOTHER, V3, P1279
OGAWA S, 1991, CARBOHYD RES, V210, P105
OLESKER A, 1975, J ANTIBIOT, V28, P491
PETTIT GR, 1984, J CHEM SOC CHEM COMM, P1693
PITTENGER RC, 1953, ANTIBIOT CHEMOTHER, V3, P6659
NR 15
TC 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0040-4039
J9 TETRAHEDRON LETT
JI Tetrahedron Lett.
PD APR 9
PY 2001
VL 42
IS 15
BP 2767
EP 2769
PG 3
SC Chemistry, Organic
GA 421EF
UT ISI:000168048600004
ER
PT J
AU Verissimo-Alves, M
Capaz, RB
Koiller, B
Artacho, E
Chacham, H
TI Polarons in carbon nanotubes
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID FIRST-PRINCIPLES; LARGE SYSTEMS; EXCITATIONS; SOLITONS; C-60
AB We use ab initio total-energy calculations to predict the existence of
polarons in semiconducting carbon nanotubes (CNTs). We find that the
CNTs' band edge energies vary linearly and the elastic energy increases
quadratically with both radial and with axial distortions, leading to
the spontaneous formation of polarons. Using a continuum model
parametrized by the nb initio calculations, we estimate electron and
hole polaron lengths, energies, and effective masses and analyze their
complex dependence on CNT geometry. Implications of polaron effects on
recently observed electro- and optomechanical behavior of CNTs are
discussed.
C1 Fed Univ Rio De Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
Univ Autonoma Madrid, Inst Nicolas Cabrera, Madrid 28049, Spain.
Univ Autonoma Madrid, Dipartiment Fis Mat Condensada, Madrid 28049, Spain.
Univ Fed Minas Gerais, Dept Fis, ICEx, BR-30123970 Belo Horizonte, MG, Brazil.
RP Verissimo-Alves, M, Fed Univ Rio De Janeiro, Inst Fis, BR-21945970 Rio
De Janeiro, Brazil.
CR APPEL J, 1968, SOLID STATE PHYS, V21, P193
BAUGHMAN RH, 1999, SCIENCE, V284, P1340
BLASE X, 1994, PHYS REV LETT, V72, P1878
CHAMON C, 2000, PHYS REV B, V62, P2806
HARIGAYA K, 1992, PHYS REV B, V45, P13676
HARIGAYA K, 1993, SYNTHETIC MET, V56, P3202
HEEGER AJ, 1988, REV MOD PHYS, V60, P781
HEYD R, 1997, PHYS REV B, V55, P6820
HOLSTEIN T, 1959, ANN PHYS-NEW YORK, V8, P325
LAMMERT P, 2000, PHYS REV LETT, V841, P2453
MAZZONI MSC, 2000, APPL PHYS LETT, V76, P1561
MAZZONI MSC, 2000, PHYS REV B, V61, P7312
MINTMIRE JW, 1992, PHYS REV LETT, V68, P631
ORDEJON P, 1996, PHYS REV B, V53
PARK CJ, 1999, PHYS REV B, V60, P10656
PEIERLS RE, 1955, QUANTUM THEORY SOLID
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
SAITO R, 1992, PHYS REV B, V46, P1804
SAITO R, 1998, PHYSIAL PROPERTIES C
SANCHEZPORTAL D, 1997, INT J QUANTUM CHEM, V65, P453
SANCHEZPORTAL D, 1999, PHYS REV B, V59, P12678
TROULLIER N, 1991, PHYS REV B, V43, P2006
WANG N, 2000, NATURE, V408, P51
YANG L, 1999, PHYS REV B, V60, P13874
ZHANG Y, 1999, PHYS REV LETT, V82, P3472
NR 25
TC 29
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD APR 9
PY 2001
VL 86
IS 15
BP 3372
EP 3375
PG 4
SC Physics, Multidisciplinary
GA 421CZ
UT ISI:000168045700039
ER
PT J
AU Barbatti, M
Jalbert, G
Nascimento, MAC
TI The structure and the thermochemical properties of the H-3(+)(H-2)(n)
clusters (n=8-12)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID PROTONATED HYDROGEN CLUSTERS; CONDENSED-PHASE; MONTE-CARLO; IONS;
ABINITIO; ENERGIES; STABILITIES; ENERGETICS; N=1-9
AB Ab initio calculations were performed for the H-3(+)(H-2)(n) clusters
(n=8-12), including complete optimization of several isomers of the
n=10 cluster. Binding energies, enthalpies, and ionization potentials
are calculated. Well defined patterns of chromism are predicted for the
H-2 collective vibrations and for the H-3(+) breathing vibrations. The
calculations for the n > 10 clusters allow us to understand their shell
structure in terms of concentric spheres of H-2 molecules. The first
and second shells have occupation numbers equal to 3 and 6,
respectively, while for the third shell, this number is within the
range 12-15. (C) 2001 American Institute of Physics.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Inst Quim, BR-21945970 Rio De Janeiro, Brazil.
RP Barbatti, M, Univ Fed Rio de Janeiro, Inst Fis, CP 68528, BR-21945970
Rio De Janeiro, Brazil.
CR BARBATTI M, UNPUB J CHEM PHYS
BARBATTI M, 2000, J CHEM PHYS, V113, P4230
BARBATTI M, 2001, J CHEM PHYS, V114, P2213
BOYS SF, 1970, MOL PHYS, V19, P553
CHAN MC, 2000, J PHYS CHEM A, V104, P3775
CLAMPIT R, 1969, NATURE, V223, P815
DAVY R, 1999, MOL PHYS, V97, P1263
FARIZON B, 1999, PHYS REV B, V60, P3821
FARIZON M, 1991, CHEM PHYS LETT, V177, P451
HERZBERG G, 1950, MOL SPECTRA MOL STRU, V1
HIRAOKA K, 1987, J CHEM PHYS, V87, P4048
HOKWANG, 1994, REV MOD PHYS, V66, P671
HUBER H, 1980, CHEM PHYS LETT 2, V70, P353
IGNACIO EW, 1998, CHEM PHYS LETT, V287, P563
KACZOROWSKA M, 2000, J CHEM PHYS, V113, P3615
KEMPER PR, 1998, J PHYS CHEM A, V102, P8590
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
LOUC S, 1998, PHYS REV A, V58, P3802
MCCALL BJ, 1998, SCIENCE, V279, P1910
MULLER H, 2000, PHYS CHEM CHEM PHYS, V2, P2061
NAGASHIMA U, 1992, J PHYS CHEM-US, V96, P4294
NELLIS WJ, 2000, SCI AM MAY, P60
OKUMURA M, 1988, J CHEM PHYS, V88, P79
PANG T, 1994, CHEM PHYS LETT, V228, P555
PAUL W, 1995, INT J MASS SPECTROM, V149, P373
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SILVERA IF, 1980, REV MOD PHYS, V52, P393
STICH I, 1997, J CHEM PHYS, V107, P9482
STICH I, 1997, PHYS REV LETT, V78, P3669
VANLUMIG A, 1978, INT J MASS SPECTROM, V27, P197
WEIR ST, 1996, PHYS REV LETT, V76, P1860
WRIGHT LR, 1982, J CHEM PHYS, V77, P1938
YAMAGUCHI Y, 1983, J CHEM PHYS, V78, P4074
NR 33
TC 9
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD APR 22
PY 2001
VL 114
IS 16
BP 7066
EP 7072
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 420ZQ
UT ISI:000168036900013
ER
PT J
AU Rocha, AB
Bielschowsky, CE
TI Intensity of the n -> pi* symmetry-forbidden electronic transition in
acetone by direct vibronic coupling mechanism
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID METHYL INTERNAL-ROTATION; SUPERSONIC NOZZLE BEAM;
CONFIGURATION-INTERACTION; AB-INITIO; SPECTRA
AB Absolute absorption intensities were calculated for the symmetry dipole
forbidden n --> pi* transition in acetone. An analysis of the
distribution per normal modes is performed and the results are compared
with a recent calculation. Vibronic coupling mechanism is taken into
account in a way that is different from the traditional Herzberg-Teller
perturbation approach. In the present method the electronic transition
moment is directly expanded in power series of the vibration normal
coordinates. This approach was recently used for the equivalent n -->
pi* transition in formaldehyde presenting an excellent agreement with
the experimental results. (C) 2001 Elsevier Science B.V. All rights
reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fis Qim, BR-21949900 Rio De Janeiro, Brazil.
RP Bielschowsky, CE, Univ Fed Rio de Janeiro, Inst Quim, Dept Fis Qim,
Cidade Univ,CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR BABA M, 1983, CHEM PHYS LETT, V103, P93
BABA M, 1985, J CHEM PHYS, V82, P3938
BAUSCHLICHER CW, 1980, J CHEM PHYS, V72, P880
HERZBERG G, 1933, Z PHYS CHEM B-CHEM E, V21, P410
HERZBERG G, 1991, ELECTRO SPECTRA ELEC
JOHNSON WC, 1975, J CHEM PHYS, V63, P2144
LEY H, 1931, Z PHYS CHEM B-CHEM E, V12, P132
LIAO DW, 1999, J CHEM PHYS, V111, P205
MEBEL AM, 1997, CHEM PHYS LETT, V274, P281
MUCMURRY HL, 1941, J CHEM PHYS, V9, P231
MURRELL JN, 1956, P PHYS SOC LOND A, V69, P245
NOYES WA, 1934, J CHEM PHYS, V2, P717
PAUZAT F, 1980, MOL PHYS, V39, P375
POPLE JA, 1957, J CHEM PHYS, V27, P1270
ROCHA AB, 2000, CHEM PHYS, V253, P51
ROCHA AB, 2001, J MOL STRUC-THEOCHEM, V539, P145
ROCHE M, 1974, J CHEM PHYS, V60, P1193
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
STRICKLER SJ, 1982, J PHYS CHEM-US, V86, P448
WORDEN EF, 1966, SPECTROCHIM ACTA, V22, P21
ZIEGLER L, 1974, J CHEM PHYS, V60, P3558
NR 22
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 6
PY 2001
VL 337
IS 4-6
BP 331
EP 334
PG 4
SC Physics, Atomic, Molecular & Chemical
GA 420BP
UT ISI:000167984300016
ER
PT J
AU Gomez, JA
Guenzburger, D
TI Influence of conduction electrons on the magnetism of cobalt grains in
a copper matrix studied by density-functional theory
SO PHYSICAL REVIEW B
LA English
DT Article
ID CO GRANULAR ALLOYS; GIANT MAGNETORESISTANCE; PARTICLE-SIZE;
GROUND-STATE; CU; IMPURITIES; SYSTEMS; CLUSTERS; SPIN; MOLECULES
AB Electronic structure calculations in the local spin-density
approximation were performed for clusters of 79 atoms embedded in a Cu
matrix. The discrete variational method was employed. Cobalt grains of
up to 55 atoms surrounded by Cu were considered; the lattice parameter
of Cu was used for the calculations. Local magnetic moments and
hyperfine fields were obtained for all the clusters. The results show
that the local magnetic moments at the Co atom sites have oscillatory
behavior with a tendency to increase in the direction of the grain
boundaries. The magnitude of the contact contribution to the hyperfine
field at the Co atom sites also has oscillatory behavior but with a
tendency to decrease from the center to the surface of the grains. This
is due to a tendency of alignment of the 4s moment with the 3d moment.
Dipolar contributions to the hyperfine field were also calculated for
the cobalt atoms at the boundary of the grains. The highest magnitude
of this contribution was 4.2 T, Found for the grain with 13 Co atoms.
Charge oscillations on Co are observed from the center to the surface.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
RP Guenzburger, D, Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150,
BR-22290180 Rio De Janeiro, Brazil.
EM diana@cat.cbpf.br
CR ABRAGAM A, 1961, PRINCIPLES NUCL MAGN
ALLIA P, 1994, J APPL PHYS 2, V76, P6817
ALLIA P, 1999, J MAGN MAGN MATER, V196, P56
ALLIA P, 1999, J MAGN MAGN MATER, V203, P76
BERKOWITZ AE, 1992, PHYS REV LETT, V68, P3745
BRASPENNING PJ, 1984, PHYS REV B, V29, P703
CEPERLEY D, 1978, PHYS REV B, V18, P3126
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHUANYUN X, 1997, PHYS REV B, V55, P3677
CONROY H, 1967, J CHEM PHYS, V47, P5307
CRANGLE J, 1955, PHILOS MAG, V46, P499
DELLEY B, 1982, J CHEM PHYS, V76, P1949
DRITTLER B, 1989, PHYS REV B, V39, P6334
DUNN JH, 1995, J PHYS C SOLID STATE, V7, P1111
EASTHAM DA, 1997, J PHYS-CONDENS MAT, V9, L497
ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
ELLIS DE, 1970, PHYS REV B, V2, P2887
ELLIS DE, 1999, ADV QUANTUM CHEM, V34, P51
FUJIMA N, 1999, J PHYS SOC JPN, V68, P586
HASELGROVE CB, 1961, MATH COMPUT, V15, P323
KUZMINSKI M, 1999, IEEE T MAGN 1, V35, P2853
KUZMINSKI M, 1999, J MAGN MAGN MATER, V205, P7
LI ZQ, 1993, PHYS REV B, V47, P13611
MALINOWSKA M, 1999, J MAGN MAGN MATER, V198, P599
MIURA K, 1994, PHYS REV B, V50, P10335
MORUZZI VL, 1986, J MAGN MAGN MATER, V54, P955
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
NOGUEIRA RN, IN PRESS PHYS REV B
NOGUEIRA RN, 1996, PHYS REV B, V53, P15071
NOGUEIRA RN, 1999, HYPERFINE INTERACT, V120, P131
PARR RG, 1989, DENSITY FUNCTIONAL T
PODLOUCKY R, 1980, PHYS REV B, V22, P5777
POHORILYI AN, 1999, J MAGN MAGN MATER, V196, P43
PORTIS AM, 1960, J APPL PHYS, V31, S205
SAMANT MG, 1994, PHYS REV LETT, V72, P1112
SATO H, 1996, J MAGN MAGN MATER, V152, P109
SINNECKER EHCP, 2000, J MAGN MAGN MATER, V218, L132
SRIVASTAVA P, 1998, PHYS REV B, V58, P5701
STOHR J, 1997, J PHYS IV 1, V7, P47
STOHR J, 1999, J MAGN MAGN MATER, V200, P470
TISHER M, 1995, PHYS REV LETT, V75, P1602
TSUNODA M, 1998, J APPL PHYS 2, V83, P7004
UEDA Y, 1996, JPN J APPL PHYS 1, V35, P3414
UIMIN MA, 1998, PHYS STATUS SOLIDI A, V165, P337
VOSKO SH, 1980, CAN J PHYS, V58, P1200
XIAO JQ, 1992, PHYS REV LETT, V68, P3749
XING L, 1993, PHYS REV B, V48, P4156
XING L, 1993, PHYS REV B, V48, P6728
NR 49
TC 11
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD APR 1
PY 2001
VL 6313
IS 13
AR 134404
DI ARTN 134404
PG 10
SC Physics, Condensed Matter
GA 418MB
UT ISI:000167895000054
ER
PT J
AU Fagan, SB
Mota, R
Baierle, RJ
Paiva, G
da Silva, AJR
Fazzio, A
TI Stability investigation and thermal behavior of a hypothetical silicon
nanotube
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE nanotubes; electronic structure; silicon; ab initio; Monte Carlo
ID CARBON NANOTUBES; TUBULES; BORON
AB dEven though silicon nanotubes have never been observed, this paper
attempts to establish the theoretical similarities and differences
between Si and C structures. Through the use of two alternative
theoretical approaches, the first principles calculations and empirical
potential, the electronic and structural properties of this
hypothetical material are examined. The first principles calculations
are based on the density-functional theory and it is shown that
depending on their chiralities and diameters, the silicon nanotubes may
present metallic (armchair) or semiconductor (zigzag and mixed)
behaviors, similar to carbon structures. It is shown that the gap
decreases in inverse proportion to the diameter, thus approaching zero
for planar graphite, as was expected. In the second alternative
approach, the Monte Carlo simulations are used with the Tersoff's
empirical potential to present a systematic study on the thermal
behavior of these new structures, It is shown that similarities like
band structures and density of states are observed between the C and Si
nanotubes. Nevertheless, there are relevant discrepancies in the
thermal stabilities and energy differences between the cohesive
energies per atom for the two tubes, compared with the corresponding
bulks, implying the very improbable structure of the silicon nanotubes.
(C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
Ctr Univ Franciscano, Dept Ciencias Exatas, BR-97919032 Santa Maria, RS, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Mota, R, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BLASE X, 1994, PHYS REV LETT, V72, P1878
BLOCKSTEDT M, 1997, COMPUT PHYS COMMUN, V107, P187
CAR R, 1985, PHYS REV LETT, V55, P2471
CHOPRA NG, 1995, SCIENCE, V269, P966
DAI HJ, 1998, APPL PHYS LETT, V73, P1508
ESTEFARJANI K, 1999, APPL PHYS LETT, V74, P79
FAGAN SB, 2000, PHYS REV B, V61, P9994
HAMADA N, 1992, PHYS REV LETT, V68, P1579
HAMMERSLEY JM, 1979, MONTE CARLO METHODS
HOHENBERG P, 1964, PHYS REV B, V136, P864
IIJIMA S, 1991, NATURE, V354, P54
KLEYNMAN L, 1982, PHYS REV LETT, V48, P1425
KOHN W, 1965, PHYS REV, V140, A1133
MINTMIRE JW, 1992, PHYS REV LETT, V68, P631
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
ODUM TW, 1998, NATURE, V391, P62
PERDEW JP, 1981, PHYS REV B, V23, P5048
ROBERTSON DH, 1992, PHYS REV B, V45, P12592
ROTHLISBERGER U, 1994, PHYS REV LETT, V72, P665
STEPHAN O, 1994, SCIENCE, V266, P1683
TANS SJ, 1997, NATURE, V386, P474
TERSOFF J, 1986, PHYS REV LETT, V56, P632
TERSOFF J, 1988, PHYS REV B, V37, P6991
WENGSIEH Z, 1995, PHYS REV B, V51, P11229
WILDOER JWG, 1998, NATURE, V391, P59
YAKOBSON BI, 1997, AM SCI, V85, P324
NR 27
TC 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 101
EP 106
PG 6
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500013
ER
PT J
AU Oliveira, KMT
Trsic, M
TI Comparative theoretical study of the electronic structures and
electronic spectra of Fe2+-, Fe+3-porphyrin and free base porphyrin
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE porphyrin; Iron II; Iron III; ZINDO; electronic spectra; electronic
structure
ID DENSITY-FUNCTIONAL CALCULATIONS; DIFFERENTIAL-OVERLAP TECHNIQUE;
TRANSITION-METAL COMPLEXES; VAPOR ABSORPTION SPECTRA; SPIN FERROUS
PORPHYRIN; AB-INITIO CALCULATIONS; INTERMEDIATE NEGLECT; IRON(II)
PORPHINE; GROUND-STATE; PERTURBATION-THEORY
AB The Intermediate Neglect of Differential Overlap quantum chemical
procedure, with configuration interaction, as implemented in the ZINDO
program, was employed for a theoretical calculation of Fe2+-porphyrin,
Fe3+-porphyrin and free base porphyrin. The ground states for the first
two species were found to be, at the HF level, a triplet and a
quadruplet, respectively. The geometries, electronic charge
distribution and energy levels, as well as theoretical UV/Vis spectra,
for the three species are shown. The calculated wavelengths were good
agreement with the experimental values of the electronic spectra of
Fe2+-porphyrin, Fe3+-porphyrin and free base porphyrin. (C) 2001
Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560250 Sao Carlos, SP, Brazil.
RP Trsic, M, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol,
POB 780, BR-13560250 Sao Carlos, SP, Brazil.
CR ALMLOF J, 1974, INT J QUANT, V8, P915
ANDERSON WP, 1986, INORG CHEM, V25, P2728
ANDERSON WP, 1991, INT J QUANTUM CHEM, V39, P31
AZUMI R, 1995, LANGMUIR, V11, P4056
BACON AD, 1976, THESIS U GUELPH
BACON AD, 1979, THEOR CHIM ACTA, V53, P21
BAKER JD, 1990, CHEM PHYS LETT, V175, P192
BARALDI I, 1995, THEOCHEM-J MOL STRUC, V333, P121
BATINICHABERLE I, 1999, INORG CHEM, V38, P4011
BATTLE AM, 1993, J PHOTOCH PHOTOBIO B, V20, P5
BENHUR E, 1995, PHOTOCHEM PHOTOBIOL, V62, P383
BOCA R, 1992, COORDIN CHEM REV, V118, P246
BONNETT R, 1995, CHEM SOC REV, V24, P19
BORISSEVITCH IE, 2000, IN PRESS J PORPH PHT
BOSSA M, 1990, J MOL STRUC-THEOCHEM, V210, P267
BYRN MP, 1991, J AM CHEM SOC, V113, P6549
CHEM BML, 1972, J AM CHEM SOC, V94, P4144
CHOE YK, 1998, CHEM PHYS LETT, V295, P380
CHOE YK, 1999, J CHEM PHYS, V111, P3837
COLLMAN JP, 1975, J AM CHEM SOC, V97, P2676
COLLMAN JP, 1990, ORGANIC SUPERCONDUCT, P359
DARWENT JR, 1982, COORDIN CHEM REV, V44, P833
DELLEY B, 1991, PHYSICA B, V172, P185
DHANASEKARAN T, 1999, J PHYS CHEM A, V103, P7742
EATON W, 1981, METHODS ENZYMOLOGY, V76
EDWARDS L, 1970, J MOL SPECTROSC, V35, P90
EDWARDS L, 1971, J MOL SPECTROSC, V38, P16
EDWARDS WD, 1983, INT J QUANTUM CHEM, V23, P1407
EDWARDS WD, 1986, J AM CHEM SOC, V108, P2196
FORESMAN JB, 1992, J PHYS CHEM-US, V96, P135
GANTCHEV TG, 1993, INT J QUANTUM CHEM, V46, P191
GHOSH A, 1994, J PHYS CHEM-US, V98, P11004
GOFF H, 1977, J AM CHEM SOC, V99, P3641
GOFF H, 1980, J AM CHEM SOC, V102, P31
GOUTERMAN M, 1963, J MOL SPECTROSC, V11, P108
GOUTERMAN M, 1977, PORPHYRINS, V3, CH1
GRATZEL M, 1983, ENERGY RESOURCES THR, CH3
GRINSTAFF MW, 1995, INORG CHEM, V34, P4896
GUILLEMOT M, 1995, J CHEM SOC CHEM COMM, P2093
HANN RA, 1990, LANGMUIRBLODGETT FIL
HIRAO K, 1992, CHEM PHYS LETT, V190, P374
HIRAO K, 1992, CHEM PHYS LETT, V196, P397
HIRAO K, 1992, INT J QUANTUM CHEM S, V26, P517
HIRAO K, 1993, CHEM PHYS LETT, V201, P59
KITAGAWA T, 1979, CHEM PHYS LETT, V63, P443
KUHN H, 1949, J CHEM PHYS, V17, P1198
LI L, 1999, SPECTROSC SPECT ANAL, V19, P297
LONGUETHIGGINS HC, 1950, J CHEM PHYS, V18, P1174
MAGGIORA GM, 1973, J AM CHEM SOC, V95, P6555
MASTHAY MB, 1986, J CHEM PHYS, V84, P3901
MATSUZAWA N, 1995, J PHYS CHEM-US, V99, P7698
MERCHAN M, 1994, CHEM PHYS LETT, V226, P27
MOMICCHIOLI F, 1983, CHEM PHYS, V82, P229
MURREL NJ, 1972, SEMI EMPIRICAL SELF
NAGASHIMA U, 1986, J CHEM PHYS, V85, P4524
OBARA S, 1982, J CHEM PHYS, V77, P3155
ORTI E, 1988, J CHEM PHYS, V89, P1009
ORTI E, 1990, J CHEM PHYS, V92, P1228
PETKE JD, 1978, J MOL SPECTROSC, V71, P64
PLATT JR, 1954, J CHEM PHYS, V22, P1448
POPLE JA, 1965, J CHEM PHYS, V43, P5136
POPLE JA, 1965, J CHEM PHYS, V43, S129
POPLE JA, 1966, J CHEM PHYS, V44, P3289
POPLE JA, 1967, J CHEM PHYS, V47, P2026
POPLE JA, 1970, APPROXIMATE MOL ORBI
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROHMER MM, 1985, CHEM PHYS LETT, V116, P44
ROUSSEAU R, 1994, J MOL STRUCT, V317, P287
ROWLINGS DC, 1985, INT J QUANTUM CHEM, V28, P773
SERRANOANDRES L, 1998, CHEM PHYS LETT, V295, P195
SIMPSON WT, 1949, J CHEM PHYS, V17, P1218
SOARES LD, 1996, SPECTROCHIM ACTA A, V52, P1245
SONTUM SF, 1983, J CHEM PHYS, V79, P2881
SUTTER JR, 1974, INORG CHEM, V13, P2764
TRSIC M, 1999, J MOL STRUCT THEOCHE, V464, P289
VALENTI V, 1988, INORG CHIM ACTA, V148, P191
VANGISBERGEN SJA, 1999, J CHEM PHYS, V111, P2499
WALKER A, 1993, BIOL MAGN RESON, V12, P132
WALUK J, 1991, J AM CHEM SOC, V113, P5511
WASIELEWSKI MR, 1992, CHEM REV, V92, P435
WEISS C, 1965, J MOL SPECTROSC, V16, P415
WHITE A, 1998, PRINCIPLES BIOCH
WHITTEN DG, 1993, SPECTRUM-J STATE GOV, V6, P1
ZERNER M, 1966, THEOR CHIM ACTA, V4, P44
ZERNER MC, 1966, THESIS HARVARD U
ZERNER MC, 1980, INT J QUANTUM CHEM, V18, KI4
ZERNER MC, 1980, J AM CHEM SOC, V102, P589
ZWAANS R, 1995, THEOCHEM-J MOL STRUC, V339, P153
NR 88
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 107
EP 117
PG 11
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500014
ER
PT J
AU Seidl, PR
Tostes, JGR
Carneiro, JWD
Taft, CA
Dias, JF
TI Stereo-electronic effects on carbon-13 and hydrogen chemical shifts of
bicyclic alcohols
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE DFT/GIAO calculations; chemical shifts; hyperconjugation;
exo-2-norborneol; endo-2-norborneol; electronic effects
ID NMR; EXCHANGE
AB Since the 1990s ab initio calculations have become affordable and
accurate enough to be useful in the problem of correct assignment in
high field, multipulse NMR spectroscopy as well as in the understanding
the relationships between chemical shifts and molecular structure.
Density functional theory (DFT) methods enable accurate calculations to
be made on systems that cannot easily be treated by standard methods
beyond Hartree-Fock, such as large organic molecules. In order to probe
the effects of rotation about the C-O bond using the DFT/GIAO method,
we calculated chemical shifts for the three minima obtained by a
complete rotation of the C-O bond of exo- and endo-2-norborneol. Our
results show that conformational effects leading to chemical shift
differences of almost 4 ppm for carbon-13 and 1 ppm for hydrogen may be
observed. These are interpreted in terms of steric and electronic
effects. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 UFRJ, Escola Quim, Dept Proc Organ, BR-21949900 Rio De Janeiro, Brazil.
ENF, Lab Ciencias Quim, BR-28015620 Campos, RJ, Brazil.
IME, Dept Engn Quim, BR-22290180 Rio De Janeiro, Brazil.
Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
UFF, Dept Quim Geral & Inorgan, BR-24020150 Niteroi, RJ, Brazil.
RP Seidl, PR, UFRJ, Escola Quim, Dept Proc Organ, BR-21949900 Rio De
Janeiro, Brazil.
CR ABRAHAM RJ, 1989, MAGN RESON CHEM, V27, P1074
BARFIELD M, 1995, J AM CHEM SOC, V117, P2862
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
DITCHFIELD R, 1974, MOL PHYS, V27, P789
FRISCH MJ, 1995, GAUSSIAN 94W
HOUK KN, 1993, J AM CHEM SOC, V115, P4170
KUPKA T, 1999, MAGN RESON CHEM, V37, P421
LEE C, 1988, PHYS REV B, V37, P785
SEIDL PR, UNPUB
SEIDL PR, 1998, MAGN RESON CHEM, V36, P261
SEIDL PR, 1999, J MOL STRUC-THEOCHEM, V488, P151
TOSTES JGR, 1994, J MOL STRUCT THEOCHE, V306, P101
WHITESELL JK, 1987, STEREOCHEMICAL ANAL
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 15
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 163
EP 169
PG 7
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500021
ER
PT J
AU Mundim, KC
Malbouisson, LAC
Dorfman, S
Fuks, D
Van Humbeeck, J
Liubich, V
TI Diffusion properties of tungsten from atomistic simulations with ab
initio potentials
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE diffusion; tungsten; vacancy; interatomic potentials; non-empirical
calculations
ID VACANCY SOLID-SOLUTION; BCC TRANSITION-METALS; SELF-DIFFUSION;
ARRHENIUS PLOT; FORCES
AB The results of atomistic simulations of migration and formation
energies of mono- and di-vacancies in bulk tungsten are presented in
our paper. The interatomic potential for tungsten was extracted with
the recursive procedure from ah initio calculations of the cohesive
energy. A stochastic molecular dynamics using a generalized simulated
annealing procedure was employed in the simulations. Calculated values
of mono- and di-vacancies energy parameters are in a good agreement
with experimental data and with the results of other calculations. (C)
2001 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
Technion Israel Inst Technol, Fac Phys, IL-32000 Haifa, Israel.
Katholieke Univ Leuven, Dept Mat Engn, Louvain, Belgium.
Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel.
RP Mundim, KC, Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
CR ANDERSEN OK, 1975, PHYS REV B, V12, P3060
BAZANT MZ, 1996, MRS P 48 MAT RES SOC
BAZANT MZ, 1996, PHYS REV LETT, V77, P4370
BERNER A, 1999, APPL SURF SCI, V144, P677
BOKSHTEIN BS, 1974, THERMODYNAMICS KINET
CARLSSON AE, 1980, PHILOS MAG A, V41, P241
CARLSSON AE, 1991, PHYS REV B, V44, P6590
DAVIDOV G, 1995, PHYS REV B, V51, P13059
DORFMAN S, 1993, Z PHYS B CON MAT, V91, P225
EFTAXIAS K, 1985, PHYS REV B, V32, P5462
FUKS D, 1994, PHYS REV B, V50, P16340
FUKS D, 1994, Z PHYS B CON MAT, V95, P189
FUKS D, 1996, INT J QUANTUM CHEM, V57, P881
GILDER HM, 1975, PHYS REV B, V11, P4916
KIRKALDY JS, 1987, DIFFUSION CONDENSED
KITTEL C, 1976, INTRO SOLID STATE PH
KOEHLER U, 1987, PHYS STATUS SOLIDI B, V144, P243
KOEHLER U, 1988, PHILOS MAG A, V58, P769
MAIER K, 1979, PHILOS MAG A, V40, P701
MARINOPOULOS AG, 1995, PHILOS MAG A, V72, P1311
MEHRER H, 1969, PHYS STATUS SOLIDI, V35, P313
MEHRER H, 1970, PHYS STATUS SOLIDI, V39, P647
MEHRER H, 1978, J NUCL MATER, V69, P38
MEHRER H, 1990, DIFFUSION SOLID META, V26
MOLL N, 1995, PHYS REV B, V52, P2550
MUNDY JN, 1978, PHYS REV B, V18, P6566
NEUMANN G, 1985, P C SPONS AT TRANSP, V1
NEUMANN G, 1990, PHILOS MAG A, V61, P563
PETERSON NL, 1978, COMMENTS SOLID STATE, V8, P107
PETERSON NL, 1978, PROPERTIES ATOMIC DE, P3
SANCHEZ JM, 1975, PHYS REV LETT, V35, P227
SEEGER A, 1970, VACANCIES INTERSTIT, P1
SIMMONS G, 1971, SINGLE CRYSTAL ELAST
SKIVER HL, 1984, LMTO METHOD
VAROTSOS P, 1985, PHYS REV B, V31, P8263
VAROTSOS PA, 1986, THERMODYNAMICS POINT
WASZ ML, 1992, J PHYS CHEM SOLIDS, V53, P629
XU W, 1994, SURF SCI, V301, P371
XU W, 1994, SURF SCI, V319, P45
NR 39
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 191
EP 197
PG 7
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500024
ER
PT J
AU Bauerfeldt, GF
Arbilla, G
da Silva, EC
TI Theoretical study and rate constants for the unimolecular isomerization
of YONO (Y = F, Cl and Br)
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE halogen nitrites; trans-cis isomerization;
Rice-Ramsperger-Kassel-Marcus rate constants
ID AB-INITIO CHARACTERIZATION; NITROSYL HYPOFLUORITE; ATMOSPHERIC
CHEMISTRY; VIBRATIONAL-SPECTRA; MATRIX REACTIONS; NO2 MOLECULES;
ISOMERS; ROTATION; ATOMS
AB This work introduces the theoretical study of cis-trans isomerization
reactions of the halogenated nitrites FONO, CIONO and BrONO. The direct
dynamics methodology has been employed. Geometries have been optimized
and a saddle point located for each process. Critical energies have
been determined as 10.93, 10.17 and 9.92 kcal/mol for the trans-cis
isomerization reactions of FONO, CIONO and BrONO. respectively.
Thermodynamics of the equilibrium trans-YONO = cis-YONO has been
investigated and high-pressure unimolecular rate constants calculated
for a range of temperature of 223-323 K. A trend has been observed in
geometric parameters and thermodynamic data when comparing FONO, CIONO
and BrONO conformers. (C) 2001 Elsevier Science B.V. All rights
reserved.
C1 Univ Fed Rio de Janeiro, Ctr Tecnol, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Arbilla, G, Univ Fed Rio de Janeiro, Ctr Tecnol, Inst Quim, Dept Quim
Fis, Bloco A,Cidade Univ, BR-21949900 Rio De Janeiro, Brazil.
CR BAUERFELDT GF, UNPUB
BAUERFELDT GF, 1999, THESIS U FEDERAL RIO
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BEYER T, 1973, COMMUN ASS COMPUT MA, V16, P379
CARDENASJIRON GI, 1994, CHEM PHYS LETT, V222, P8
CARDENASJIRON GI, 1995, J PHYS CHEM-US, V99, P12730
DIBBLE TS, 1995, J PHYS CHEM-US, V99, P1919
DIXON DA, 1992, J PHYS CHEM-US, V96, P1018
FINLAYSONPITTS BJ, 1986, ATMOSPHERIC CHEM FIN
FORST W, 1973, THEORY UNIMOLECULAR
FRANCISCO JS, 1994, J PHYS CHEM-US, V98, P5644
FRANCISCO JS, 1994, J PHYS CHEM-US, V98, P5650
FRANCISCO JS, 1995, J PHYS CHEM-US, V99, P13422
FUKUI K, 1982, PURE APPL CHEM, V54, P1825
GILBERT RG, 1990, THEORY UNIMOLECULAR
GUAN YH, 1989, CHEM PHYS, V139, P147
GUHA S, 1997, J PHYS CHEM A, V101, P5347
GUHA S, 1998, J PHYS CHEM A, V102, P2072
HISATSUNE IC, 1968, J PHYS CHEM-US, V72, P269
HISATSUNE IC, 1968, J PHYS CHEM-US, V72, P269
HOHENBERG P, 1964, PHYS REV B, V136, P864
JANOWSKI B, 1977, BER BUNSEN PHYS CHEM, V81, P1262
KAWASHIMA Y, 1979, CHEM PHYS LETT, V63, P119
LEE TJ, 1994, CHEM PHYS LETT, V228, P583
LEE TJ, 1994, J PHYS CHEM-US, V98, P111
LEE TJ, 1996, J PHYS CHEM-US, V100, P51
MCGRAW GE, 1966, J CHEM PHYS, V45, P1392
MCLEAN AD, 1980, J CHEM PHYS, V72, P639
MILLER CE, 1997, J CHEM PHYS, V107, P2300
ROBINSON PJ, 1972, UNIMOLECULAR REACTIO
SMARDZEWSKI RR, 1974, J CHEM PHYS, V60, P2980
STEINFELD JI, 1998, CHEM KINETICS DYNAMI
TEVAULT DE, 1977, J CHEM PHYS, V67, P3777
TEVAULT DE, 1979, J PHYS CHEM-US, V83, P2217
TRUHLAR DG, 1995, GEN TRANSITION STATE, V4
WAYNE RP, 1991, CHEM ATMOSPHERE
NR 36
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD APR 20
PY 2001
VL 539
SI Sp. Iss. SI
BP 223
EP 232
PG 10
SC Chemistry, Physical
GA 417LB
UT ISI:000167835500027
ER
PT J
AU Longo, RL
Nunes, RL
Bieber, LW
TI On the origin of the regioselective hydrolysis of a naphthoquinone
diacetate: A molecular orbital study
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE regioselectivity; MO calculations; solvent effects
ID BASIS-SETS; 1ST-ROW ELEMENTS; ABINITIO
AB The regioselectivity found in the mild basic hydrolysis of the
2,5-dimethyl-1,4-naphthohydroquinone diacetate (Nunes, R. L.; Bieber,
L. W.; Longo, R. L. J. Nat. Prod. 1999, 62, 1600) has been studied with
ab initio and semiempirical molecular orbital methods. In the gas phase
(isolated systems), these methods were not able to provide results that
could explain the observed selectivity. However, when the solvent
effects were included in the AM1 method using the discrete solvation
model it was possible to establish that this selectivity is due to the
relative stability of the tetrahedral intermediates and their
transitions states. The origin of this relative stability and thus of
the observed selectivity is due to the repulsive interactions between
the 2-methyl substituent in the naphthalene ring and the methyl group
in the 4-acetate substituent, as well as their hindrance towards the
hydration of the ionic group in the tetrahedral intermediates.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
RP Longo, RL, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540
Recife, PE, Brazil.
CR BAKER BR, 1942, J AM CHEM SOC, V64, P1100
BENDER ML, 1960, CHEM REV, V60, P53
BENDER ML, 1967, J AM CHEM SOC, V89, P1211
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BLAKE JF, 1987, J AM CHEM SOC, V109, P3856
CAREY FA, 1987, ORGANIC CHEM, P798
CLARK T, 1983, J COMPUT CHEM, V4, P294
CLARK T, 1985, HDB COMPUTATIONAL CH
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
FREITAS LCG, 1992, J CHEM SOC FARADAY T, V88, P189
GRANT HN, 1963, HELV CHIM ACTA, V46, P415
HEHRE WJ, 1986, AB INITIO MOL ORBITA
INGOLD C, 1969, STRUCTURE MECH ORGAN
MADURA JD, 1986, J AM CHEM SOC, V108, P2517
MARCH J, 1992, ADV ORGANIC CHEM
NUNES RL, 1999, J NAT PRODUCTS, V62, P1600
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEWART JJP, 1989, J COMPUT CHEM, V10, P210
STEWART JJP, 1993, MOPAC 9300 MANUAL
WILBUR JL, 1994, J AM CHEM SOC, V116, P5839
NR 22
TC 4
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PY 2001
VL 12
IS 1
BP 52
EP 56
PG 5
SC Chemistry, Multidisciplinary
GA 401HV
UT ISI:000166922900006
ER
PT J
AU Orellana, W
Ferraz, AC
TI Ab initio study of substitutional nitrogen in GaAs
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ALLOYS; PSEUDOPOTENTIALS; IMPURITIES; ENERGETICS; DEFECT; GROWTH
AB We investigate the atomic geometry, formation energies, and electronic
structure of nitrogen occupying both arsenic and gallium sites in GaAs
(N-As and N-Ga) using first-principles total-energy calculations. We
find that both neutral defects induce impurity-like empty levels in the
band gap acting as acceptors. While N-As shows a s-like a(1) level in
the middle of the band gap, N-Ga shows a p-like t(2) level close to the
bottom of the conduction band. The gap level of N-As gives theoretical
support for the experimentally observed band-edge redshift on the GaAsN
alloy for a N concentration similar to3%. Strong inward relaxations
preserving the T-d symmetry characterize the N-As equilibrium geometry
in all the charge states investigated. In contrast, N-Ga exhibits a
structural metastability in neutral charge state and Jahn-Teller
off-center distortions in negative charge states forming a negative-U
center. Formation energies of competing N-As and N-Ga defects are also
discussed. (C) 2001 American Institute of Physics.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Orellana, W, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BELLAICHE L, 1996, PHYS REV B, V54, P17568
CALDAS MJ, 1990, PHYS REV LETT, V65, P2046
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DABROWSKI J, 1989, PHYS REV B, V40, P10391
HOHENBERG P, 1964, PHYS REV B, V136, P864
KOHN W, 1965, PHYS REV, V140, A1133
KOHN W, 1985, PHYS REV, P2471
LIU X, 1990, APPL PHYS LETT, V56, P1451
LOUIE SG, 1982, PHYS REV B, V26, P1738
MAKIMOTO T, 1995, APPL PHYS LETT, V67, P688
MATTILA T, 1998, PHYS REV B, V58, P1367
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
ORELLANA W, 1999, APPL PHYS LETT, V74, P2984
ORELLANA W, 2000, PHYS REV B, V61, P5326
PERDEW JP, 1981, PHYS REV B, V23, P5048
SHIMA T, 1999, APPL PHYS LETT, V74, P2675
TROULLIER N, 1991, PHYS REV B, V43, P1993
WEI SH, 1996, PHYS REV LETT, V76, P664
WEYERS M, 1992, JPN J APPL PHYS, V31, P853
WEYERS M, 1993, APPL PHYS LETT, V62, P1396
WOLFORD DJ, 1984, P 17 INT C PHYS SEM, P627
ZHANG SB, 1991, PHYS REV LETT, V67, P2339
NR 22
TC 8
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 26
PY 2001
VL 78
IS 9
BP 1231
EP 1233
PG 3
SC Physics, Applied
GA 405GK
UT ISI:000167151000021
ER
PT J
AU Miwa, RH
Srivastava, GP
TI Atomic geometry, electronic structure and image state for the
Si(111)-In(4 x 1) nanowire
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; many body and quasi-particle theories;
surface electronic phenomena (work function; surface potential, surface
states etc.); indium; self-assembly; single crystal surfaces
ID INVERSE-PHOTOEMISSION; POTENTIAL STATES; SURFACE-BARRIER;
METAL-SURFACES; MODEL; RECONSTRUCTION; SPECTROSCOPY; DIFFRACTION;
DISPERSION; CHAINS
AB We have performed a detailed theoretical study of the atomic geometry,
electronic structure, and dispersion of the most tightly bound (n = 1)
image state for the Si(111)-In(4 x 1) nanowire system. The calculations
were performed using ab initio pseudopotentials, based on the local
density approximation and a first-order energy correction for its
asymptotic classical-image behaviour. The calculated atomic geometry,
within the structural model proposed by Bunk et ai. [Phys. Rev. B 59
(1999) 12228], agrees well with their X-ray diffraction studies, and
the electronic band structure calculations confirm the
quasi-one-dimensional semimetallic behaviour, in agreement with
previous photoemission studies. The anisotropic dispersion of the image
state measured in a recent inverse photoemission study by Hill and
McLean [Phys. Rev. Lett. 82 (1999) 2155] is verified, and an
explanation based on the calculated surface corrugation potential is
presented. (C) 2001 Elsevier Science B.V. All rights reserved.
C1 Univ Exeter, Sch Phys, Dept Phys, Exeter EX4 4QL, Devon, England.
Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Srivastava, GP, Univ Exeter, Sch Phys, Dept Phys, Stocker Rd, Exeter
EX4 4QL, Devon, England.
CR ABUKAWA T, 1995, SURF SCI, V325, P33
BUNK O, 1999, PHYS REV B, V59, P12228
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
EGUILUZ AG, 1992, PHYS REV LETT, V68, P1359
GARCIA N, 1985, PHYS REV LETT, V54, P591
GONZE X, 1991, PHYS REV B, V44, P8503
HEDIN L, 1969, SOLID STATE PHYS, V23, P1
HILL IG, 1997, PHYS REV B, V56, P15725
HILL IG, 1999, PHYS REV LETT, V82, P2155
HIMPSEL FJ, 1992, APPL SURF SCI, V56, P160
JENNINGS PJ, 1988, PHYS REV B, V37, P6113
JONES RO, 1984, PHYS REV B, V29, P6474
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KRAFT J, 1997, PHYS REV B, V55, P5384
LANDER JJ, 1965, J APPL PHYS, V36, P1706
LANG ND, 1973, PHYS REV B, V7, P3541
MCLEAN AB, 1989, PHYS REV B, V40, P8425
NAKAMURA N, 1991, SURF SCI, V256, P129
NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
OSGOOD RM, 1998, SOLID STATE PHYS, V51, P1
PANDEY KC, 1981, PHYS REV LETT, V47, P1913
PERDEW JP, 1981, PHYS REV B, V23, P5048
SARANIN AA, 1997, PHYS REV B, V56, P1017
SILKIN VM, 1999, PHYS REV B, V60, P7820
SMITH NV, 1985, PHYS REV B, V32, P3549
SMITH NV, 1991, SURF SCI, V247, P133
STEVENS JL, 1993, PHYS REV B, V47, P1453
STRAUB D, 1986, PHYS REV B, V33, P2256
WEINERT M, 1985, PHYS REV LETT, V55, P2055
YANG S, 1991, PHYS REV B, V43, P2025
YEOM HW, 1999, PHYS REV LETT, V82, P4898
NR 31
TC 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD FEB 10
PY 2001
VL 473
IS 1-2
BP 123
EP 132
PG 10
SC Chemistry, Physical
GA 404EA
UT ISI:000167083400013
ER
PT J
AU Leitao, AA
Neto, JAC
Pinhal, NM
Bielschowsky, CE
Vugman, NV
TI Pulsed EPR and ab initio calculation on [Ni(CN)(4)](3-) in NaCl and KCl
host lattices
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID ELECTRON-SPIN-RESONANCE; F-CENTERS; CRYSTALS; IMPURITY; CLUSTER; DEFECTS
AB Paramagnetic 3d(9) [Ni(CN)(4)](3-) complexes, with the unpaired
electron in a d(x2-y2) orbital, have been generated from diamagnetic
Ni(II) 3d(8) cyanide complexes in KCl or NaCl host lattices. The
magnetic and quadrupolar hyperfine interactions with the four N-14,
hidden in the CW-EPR (continuous wave electron paramagnetic ressonance)
line width, are revealed by pulsed EPR and ENDOR (electron nuclear
double resonance) angular variation studies. Ab initio embedded UMP2
cluster calculations, which take into account short- and long-range
crystal interactions, confirm the unpaired electron orbital assignment
and are in agreement with the measured hyperfine values. The trend of
N-14 A(iso) values (7.7 MHz for NaCl and 6.8 MHz for KCI) is given by
the Ni-CN distance, modified in each host lattice. Small asymmetry
factors (about 0.04) for the N-14 quadrupolar tensor are obtained both
in experiment and in theory. The experimental lines and the
calculations indicate spin density at the cations of both lattices.
Experimental and theoretical data indicate that lattice chlorine ions
near the Ni atom, in axial positions, are not chemically coordinated to
Ni. Spin density on these ions arises only from spin polarization of
their valence orbitals and of the valence orbitals of the complex.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21910240 Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Inst Quim, BR-21910240 Rio De Janeiro, Brazil.
RP Vugman, NV, Univ Fed Rio de Janeiro, Inst Fis, BR-21910240 Rio De
Janeiro, Brazil.
CR AACHI JI, 1993, B CHEM SOC JPN, V66, P3314
ALABDALLA A, 1998, J CHEM PHYS, V108, P2005
BERRONDO M, 1995, INT J QUANTUM CHEM Q, V29, P253
CHEN W, 1994, J CHEM PHYS, V101, P5957
CHIPMAN DM, 1991, J PHYS CHEM-US, V95, P4702
EVJEN HM, 1932, PHYS REV, V39, P675
FRISCH JM, 1995, GAUSSIAN 94 REVISION
GAULD JW, 1997, J PHYS CHEM A, V101, P1352
HARRISON WA, 1989, ELECT STRUCTURE PROP, CH8
HAY PJ, 1985, J CHEM PHYS, V82, P299
JAIN SC, 1973, CHEM PHYS LETT, V21, P150
KNIGHT LB, 1996, J CHEM PHYS, V105, P5672
LEITAO AA, 2000, CHEM PHYS LETT, V321, P269
MACKEY JH, 1969, TEH FU ESR METAL COM, P33
MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
MIYOSHI E, 1998, THEOCHEM-J MOL STRUC, V451, P81
MOLLER C, 1934, PHYS REV, V46, P618
PENNER GH, 1996, CHEM PHYS LETT, V261, P665
PINHAL NM, 1985, J PHYS C SOLID STATE, V18, P6273
PUCHINA AV, 1998, SOLID STATE COMMUN, V106, P285
SCHWEIGER A, 1982, STRUCT BONDING BERLI, V51, P1
SOUSA C, 1993, J COMPUT CHEM, V14, P680
VAIL JM, 1998, PHYS REV B, V57, P764
VUGMAN NV, 1990, PHYS REV B, V42, P9837
WINTER NW, 1987, J CHEM PHYS, V86, P3549
WINTER NW, 1987, J CHEM PHYS, V87, P2945
ZANETTE SI, 1976, J CHEM PHYS, V64, P3381
NR 27
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JAN 25
PY 2001
VL 105
IS 3
BP 614
EP 619
PG 6
SC Chemistry, Physical
GA 402RE
UT ISI:000167001300014
ER
PT J
AU Laali, KK
Okazaki, T
Kumar, S
Galembeck, SE
TI Substituent effects and charge delocalization mode in chrysenium,
benzo[c]phenanthrenium, and benzo[g]chrysenium cations: A stable ion
and electrophilic substitution study
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID POLYCYCLIC AROMATIC-HYDROCARBONS; DIOL EPOXIDE METABOLITES; AM1
CALCULATIONS; CARCINOGEN BENZO<G>CHRYSENE; ANTI-DIOL; REGION;
4H-CYCLOPENTA<DEF>CHRYSENE; DERIVATIVES
AB The first series of persistent carbocations derived from mono- and
disubstituted chrysenes Ch (5-methyl- 3, 2-methoxy- 19,
2-methoxy-11-methyl- 20, 2-methoxy-5-methyl- 21, and
9-methyl-4H-cyclopenta[def] chrysene 22), monosubstituted benzo[c]
phenanthrenes BcPh (3-methoxy- 23, 3-hydroxy- 24), and monosubstituted
benzo[g]chrysenes BgCh (12-methoxy- 25; 12-hydroxy- 26) were generated
in FSO3H/SO2CIF or FSO3H-SbF5 (4:1)/SO2CIF and studied by
low-temperature NMR at 500 MHz. The methoxy and methyl substituents
direct the protonation to their respective ortho positions. Whereas
parent Ch 1 is protonated at C-6/C-12, 3 is protonated at C-6 (3aH(+))
and at C-12 (3bH(+)) with the latter being the thermodynamic cation.
The 2-methoxy-Ch 19 is protonated at C-1 to give two conformationally
distinct carboxonium ions (19aH(+)/19bH(+)). In the disubstituted Ch
derivatives 20 and 21, the 2-methoxy overrides the 5-methyl and the
predominant carbocations formed are via attack ortho to methoxy. For
the methano derivative 22 (Me at C-9), a 3:1 mixture of 22aH(+)/22bH(+)
is formed. For parent BcPh 13, nitration and benzoylation are directed
to C-5. With 3-methoxy-BcPh 23, the site of attack moves to C-4 thus
producing two conformationally distinct carboxonium ions
(23aH(+)/23bH(+)), whereas conventional nitration gave a 2:1 mixture of
23aNO(2) and 23bNO(2). In 3-hydroxy-BcPh 24, the carboxonium ion 24H(+)
is exclusively formed. For parent BgCh 16, protonation, nitration, and
benzoylation are all directed to C-10 (16H(+), 16NO(2), 16COPh), but
presence of OMe or OH substituent at C-12 changes the site of attack to
C-11. Charge delocalization mode is probed based on magnitude of Delta
delta Cs-13 and conformational aspects via NOED experiments. Complete
NMR data are also reported for several benzoylation/nitration products.
Using ab initio/GIAO (and NICS), the NMR chemical shifts (and
aromaticity) in model carbocations A-D were evaluated. This work
represents the first direct study of the carbocations derived from the
methyl-, methoxy-/hydroxy-derivatives of three important classes of
bay-region and fjord-region PAHs whose diol-epoxides extensively bind
to DNA. It also extends the available data on electrophilic chemistry
of BcPh and BgCh.
C1 Kent State Univ, Dept Chem, Kent, OH 44242 USA.
SUNY Coll Buffalo, Great Lakes Ctr Environm Res & Educ, Buffalo, NY 14222 USA.
USP, FFCLRP, Dept Quim, LAMMOL, Sao Paulo, Brazil.
RP Laali, KK, Kent State Univ, Dept Chem, Kent, OH 44242 USA.
CR AGRAWAL SK, 1987, J AM CHEM SOC, V109, P2497
BAX A, 1985, J ORG CHEM, V50, P3029
BHATT T, 1990, POLYCYCL AROMAT COMP, V1, P55
BHATT TS, 1982, CARCINOGENESIS, V3, P667
BUSHMAN DR, 1989, J ORG CHEM, V54, P3533
CATTERALL FS, 2000, MUTAT RES-GEN TOX EN, V465, P85
CHANG HF, 1999, J ORG CHEM, V64, P9051
COOMBS MM, 1987, CYCLOPENTA A PHENANT, CH6
DAI W, 1995, J ORG CHEM, V60, P4905
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
HARVEY RG, 1985, ACS S SERIES, V283, CH3
HARVEY RG, 1991, POLYCYCLIC AROMATIC, CH3
HARVEY RG, 1997, POLYCYCLIC AROMATIC, CH2
HECHT SS, 1985, ACS S SERIES, V283, CH5
HERNDON WC, 1988, ADV CHEM SERIES, V217
HOFFMAN RE, 1993, J MAGN RESON SER A, V102, P1
KISELYOV AS, 1995, J ORG CHEM, V60, P6123
KISELYOV AS, 1995, J ORG CHEM, V60, P6129
KISELYOV AS, 1995, TETRAHEDRON LETT, V36, P4005
KUMAR S, 1988, J CHEM SOC P1, P3157
KUMAR S, 1997, J ORG CHEM, V62, P8535
LAALI KK, 1994, J CHEM SOC P2, P1303
LAALI KK, 1997, J CHEM SOC PERK NOV, P2207
LAALI KK, 1997, J ORG CHEM, V62, P4023
LAALI KK, 1997, J ORG CHEM, V62, P5804
LAALI KK, 1997, J ORG CHEM, V62, P7752
LAALI KK, 1998, J ORG CHEM, V63, P7280
LAALI KK, 2000, J CHEM SOC PERK T 2, P211
LAALI KK, 2000, J ORG CHEM, V65, P7399
LAKSHMAN MK, 1994, SYNTHETIC COMMUN, V24, P2973
MIRSADEGHI S, 1989, J ORG CHEM, V54, P3091
NEWMAN MS, 1949, J ORG CHEM, V14, P375
REDDY VP, 1992, J FLUORINE CHEM, V56, P195
SAROBE M, 1997, J CHEM SOC PERK APR, P703
SCHLEYER PV, 1996, J AM CHEM SOC, V118, P6317
SZELIGA J, 1999, CHEM RES TOXICOL, V12, P347
UTERMOEHLEN CM, 1987, J ORG CHEM, V52, P5574
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
NR 38
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD FEB 9
PY 2001
VL 66
IS 3
BP 780
EP 788
PG 9
SC Chemistry, Organic
GA 401TF
UT ISI:000166943800020
ER
PT J
AU Barba, D
Jandl, S
Nekvasil, V
Marysko, M
Divis, M
Martin, AA
Lin, CT
Cardona, M
Wolf, T
TI Infrared transmission study of crystal-field excitations in
Sm1+xBa2-xCu3O6+y
SO PHYSICAL REVIEW B
LA English
DT Article
ID SINGLE-CRYSTALS; INTERMETALLIC COMPOUNDS; NDBA2CU3O7-DELTA;
SUPERCONDUCTORS; TRANSITIONS; YBA2CU3O7-X; GRADIENT; SYSTEMS; ND2CUO4;
SM
AB Absorption bands, corresponding to the crystal-field (CF) excitations
of the Sm3+ ions in SmBa2Cu3O6, have been observed by infrared
transmission spectroscopy and assigned to transitions from the lowest
energy levels of the H-6(5/2) multiplet to the excited multiplets
H-6(7/2), H-6(9/2), H-6(11/2), H-6(13/2), F-6(7/2), and F-6(9/2) Of
Sm3+ ions on the regular D-4h-symmetry sites and the C-4v-symmetry Pa
sites. A set of the CF parameters that fits the levels in the regular
sites and reproduces the magnetic susceptibility anisotropy has been
derived. The CF interaction parameters in the Sm/Ba sites have been
modeled by combining the superposition model and an ab initio method
based on the density-functional calculations.
C1 Univ Sherbrooke, Dept Phys, Ctr Rech Proprietes Elect Mat Avances, Sherbrooke, PQ J1K 2R1, Canada.
Acad Sci Czech Republ, Inst Phys, Prague 16253 6, Czech Republic.
Charles Univ, Dept Electron Syst, Prague 12116 2, Czech Republic.
Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany.
Inst Festkorperphys, D-76021 Karlsruhe, Germany.
IP&D Univap Sao Jose dos Campos, Inst Pesquisa & Desenvolvimento, BR-12244000 Sao Jose Dos Campos, Brazil.
RP Barba, D, Univ Sherbrooke, Dept Phys, Ctr Rech Proprietes Elect Mat
Avances, Sherbrooke, PQ J1K 2R1, Canada.
CR BARBA D, UNPUB
BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
COEHOORN R, 1991, J APPL PHYS 2B, V69, P5590
DIVIS M, 1998, PHYSICA C, V301, P23
FARNETH WE, 1989, PHYS REV B, V39, P6594
GUILLAUME M, 1994, J PHYS-CONDENS MAT, V6, P7963
GUILLAUME M, 1995, PHYS REV LETT, V74, P3423
HARLEY R, 1987, SPECTROSCOPY SOLIDS
HEYEN ET, 1991, PHYS REV LETT, V67, P144
JANDL S, 1996, PHYS REV B, V53, P8632
JANDL S, 1998, J LUMIN, V78, P197
JANDL S, 1999, PHYSICA C, V314, P189
LIKODIMOS V, 1996, PHYS REV B, V54, P12342
LIN CT, 1996, PHYSICA C, V272, P285
MARTIN AA, 1998, PHYS REV B, V58, P14211
MARTIN AA, 1999, PHYS REV B, V59, P6528
MESOT J, 1997, J SUPERCOND, V10, P623
MORRISON CA, 1982, HDB PHYSICS CHEM RAR
NAROZHNYI VN, 1999, PHYSICA C, V312, P233
NEKVASIL V, 1995, J ALLOY COMPD, V225, P578
NEWMAN DJ, 1989, REP PROG PHYS, V52, P699
NOVAK P, 1996, PHYS STATUS SOLIDI B, V198, P729
NUGROHO AA, IN PRESS J MAGN MAGN
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
PICKETT WE, 1989, REV MOD PHYS, V61, P433
RICHTER M, 1998, J PHYS D APPL PHYS, V31, P1017
RUF T, 1992, PHYS REV B, V46, P11792
SCHWARZ K, 1990, PHYS REV B, V42, P2051
STRACH T, 1996, PHYS REV B, V54, P4276
WALLACE WE, 1977, STRUCT BOND, V33, P1
WELLS JPR, 1999, PHYS REV B, V60, P3849
WOLF T, 1989, J CRYST GROWTH, V96, P1010
WYBOURNE BG, 1965, SPECTROSCOPIC PROPER
YANG KN, 1989, PHYS REV B, V40, P10963
NR 34
TC 11
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD FEB 1
PY 2001
VL 6305
IS 5
AR 054528
DI ARTN 054528
PG 10
SC Physics, Condensed Matter
GA 399PB
UT ISI:000166820600123
ER
PT J
AU Moraes, LAB
Eberlin, MN
TI Ketalization of gaseous acylium ions
SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
LA English
DT Article
ID DISTONIC RADICAL CATIONS; GAS-PHASE REACTIONS; MOLECULE REACTIONS;
MASS-SPECTROMETRY; DIMETHYLCHLORINIUM ION; CHARGED ELECTROPHILES;
METHOXYMETHYL CATION; CYCLIC ACETALS; SUBSTITUTION; ALCOHOLS
AB A novel reaction of gaseous acylium ions: ketalization with diols and
analogs, has been systematically studied via pentaquadrupole MS2 and
MS3 experiments and ab initio calculations. A variety of alpha,beta
-diols and their amino, thiol, ether, and thioether analogs have been
tested for reactivity, mechanism evaluation, site selectivity, and for
the effects of alpha- and beta -interfunctional separation. As for
condensed-phase ketalization of neutral carbonyl compounds followed by
hydrolysis, gaseous acylium ions are chemically deactivated in the form
of cyclic ionic ketals by ketalization, and are efficiently released
via on-line collision-induced dissociation. Ketalization of acylium
ions is shown to identify and structurally characterize alpha,beta
-diols and their analogs, and to distinguish regioisomers.
Diastereomers can also be distinguished, as illustrated for cis and
trans 1,2-diaminocyclohexane. The MS2 and MS3 data together with
O-18-labeling and ab initio calculations establish for acylium ion
ketalization a mechanism of anchimeric assistance with participation of
the neighboring acyl group. (C) 2001 American Society for Mass
Spectrometry.
C1 Univ Estadual Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Moraes, LAB, Univ Estadual Campinas, Inst Chem, CP 6154, BR-13083970
Campinas, SP, Brazil.
CR ALTALIB M, 1990, ORG PREP PROCED INT, V22, P1
ATTINA M, 1983, J AM CHEM SOC, V105, P1122
BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR
BURGERS PC, 1982, CAN J CHEM, V60, P2246
CAREY FA, 1990, ADV ORGANIC CHEM
CARVALHO M, 1998, CHEM-EUR J, V4, P1161
CARVALHO MC, 1997, J MASS SPECTROM, V32, P1137
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
CREASER CS, 1994, J CHEM SOC CHEM COMM, V1677
CREASER CS, 1998, EUR MASS SPECTROM, V4, P103
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
EICHMANN ES, 1993, J AM SOC MASS SPECTR, V4, P97
EICHMANN ES, 1993, ORG MASS SPECTROM, V28, P665
FREITAS MA, 1997, J ORG CHEM, V62, P6112
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GRANDINETTI F, 1996, CHEM-EUR J, V2, P495
HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
HECK AJR, 1993, ORG MASS SPECTROM, V28, P245
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KIM JK, 1973, J AM CHEM SOC, V95, P2184
KIM JK, 1982, J AM CHEM SOC, V104, P4624
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
MAQUESTIAU A, 1984, SPECTROSCOPY, V3, P173
MCLAFFERTY FW, 1993, INTERPRETATION MASS
MORAES LAB, UNPUB J MASS SPECTRU
MORAES LAB, 1977, J CHEM SOC P2, P2105
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J ORG CHEM, V62, P5096
MORAES LAB, 1998, J AM CHEM SOC, V120, P11136
MORAES LAB, 2000, J AM SOC MASS SPECTR, V11, P697
OHAIR RAJ, 1995, J ORG CHEM, V60, P1990
OHAIR RAJ, 1998, J AM SOC MASS SPECTR, V9, P1275
OHAIR RAJ, 1999, INT J MASS SPECTROM, V22, P1275
OHAIR RAJ, 2000, ORG LETT, V2, P2567
OLAH GA, 1964, FRIEDEL CRAFTS RELAT, V3
OLAH GA, 1976, CARBONIUM IONS
OLAH GA, 1985, SUPERACIDS
PAU JK, 1978, J AM CHEM SOC, V100, P3838
RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SHARIFI M, 1999, J MASS SPECTROM, V190, P253
SHOWLER AJ, 1967, CHEM REV, V67, P427
SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
SPARRAPAN R, 2000, J MASS SPECTROM, V35, P189
STIRK KM, 1992, CHEM REV, V92, P1649
SULZLE D, 1992, CHEM BER-RECL, V125, P279
THOMPSON RS, 1999, P 47 ASMS C MASS SPE
TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
VAIS V, 1999, J MASS SPECTROM, V34, P755
WANG F, 1999, J ORG CHEM, V64, P3213
WUTS PGM, 1991, COMPREHENSIVE ORGANI, V9
WYSOCKI VH, 1985, J ORG CHEM, V50, P1287
YAMDAGNI R, 1973, J AM CHEM SOC, V95, P3504
YANG SS, 1995, J MASS SPECTROM, V30, P807
YATES BF, 1986, TETRAHEDRON, V42, P6225
NR 60
TC 11
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 USA
SN 1044-0305
J9 J AMER SOC MASS SPECTROM
JI J. Am. Soc. Mass Spectrom.
PD FEB
PY 2001
VL 12
IS 2
BP 150
EP 162
PG 13
SC Chemistry, Analytical; Chemistry, Physical; Spectroscopy
GA 399NF
UT ISI:000166818700003
ER
PT J
AU Schmidt, TM
Justo, JF
Fazzio, A
TI Stacking fault effects in pure and n-type doped GaAs
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; DX CENTERS; AB-INITIO; SEMICONDUCTORS;
PSEUDOPOTENTIALS; DEFECTS
AB Using ab initio total-energy calculations, we investigate the effects
of stacking faults on the properties of dopants in pure and n-type
doped GaAs. We find that the Si impurity segregates towards a GaAs
stacking fault. A Si atom at a Ga site in the stacking fault, in either
a neutral or a negative charge state, is energetically favorable as
compared to a Si atom at a Ga site in a crystalline environment by as
much as 0.2 eV. We also find that a Si impurity in the stacking fault
cannot occupy metastable positions, as occurs in the formation of DX
centers. Thus, stacking faults can prevent the formation of DX-like
centers in GaAs. (C) 2001 American Institute of Physics.
C1 Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Schmidt, TM, Univ Fed Uberlandia, Dept Ciencias Fis, CP 593,
BR-38400902 Uberlandia, MG, Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
ANTONELLI A, 1999, PHYS REV B, V60, P4711
BACHELET GB, 1982, PHYS REV B, V26, P4199
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
CHADI DJ, 1988, PHYS REV LETT, V61, P873
HIRTH JP, 1982, THEORY DISLOCATIONS
JONES R, 1993, PHYS STATUS SOLIDI A, V137, P389
JUSTO JF, 1999, PHYSICA B, V273, P473
JUSTO JF, 2000, PHYS REV LETT, V84, P2172
KACKELL P, 1998, PHYS REV B, V58, P1326
KAPLAN T, 2000, PHYS REV B, V61, P1674
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
MAITI A, 1996, PHYS REV LETT, V77, P1306
MAITI A, 1997, APPL PHYS LETT, V70, P336
MALLOY KJ, 1993, SEMICONDUCT SEMIMET, V38, P235
MIWA RH, 1999, APPL PHYS LETT, V74, P1999
SCHMIDT TM, 1996, PHYS REV B, V53, P1315
STAMPFL C, 1998, PHYS REV B, V57, P15052
NR 18
TC 6
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD FEB 12
PY 2001
VL 78
IS 7
BP 907
EP 909
PG 3
SC Physics, Applied
GA 398TN
UT ISI:000166772600019
ER
PT J
AU Alves, CN
Romero, OAS
da Silva, ABF
TI A theoretical study of the intramolecular hetero Dials-Alder
cycloaddition reactions of azoalkenes
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE Hartree-Fock; density functional theory; Diels-Alder cycloaddition;
transition structures; azoalkenes
ID TRANSITION STRUCTURES; REACTIVITY; CATALYSIS
AB Ab initio Hartree-Fock and density functional theory calculations were
performed to study transition geometries in intramolecular Diels-Alder
cycloaddition reactions of azoalkene compounds. The Hartree-Fock (HF)
calculations were formed at the RHF/3-21G level and the density
functional theory (DFT) calculations were performed with the B3LYP
functional and 6-31G* basis set. The order of the reactivity of
azoalkenes with different substituents in intramolecular hetero
Diels-Alder reactions was predicted from the frontier orbital energies,
and calculations of the reaction barriers were performed. The HF and
DFT calculations generated transition geometries with a very small
degree of asynchronicity, The DFT results are in full agreement with
experimental evidence and show the capability of this level of DFT
calculation to predict the reactivity of intramolecular hetero
Diels-Alder cycloaddition correctly. (C) 2001 Elsevier Science B.V. All
rights reserved.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil.
Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, BR-66075110 Belem, Para, Brazil.
RP da Silva, ABF, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis
Mol, CP 780, BR-13560970 Sao Carlos, SP, Brazil.
CR BECKE AD, 1993, J CHEM PHYS, V98, P5648
BOGER DL, 1987, HETERO DIELSALDER ME
BROWN FK, 1985, TETRAHEDRON LETT, V26, P2297
DOMINGO LR, 1997, J ORG CHEM, V62, P1662
FUKUI K, 1982, ANGEW CHEM INT EDIT, V21, P801
GILCHRIST TL, 1987, J CHEM SOC PERK T 1, P2511
GONZALEZ J, 1992, J ORG CHEM, V57, P3031
HEHRE WJ, 1986, UNPUB AB INITIO MOL
HOUK KN, 1992, ANGEW CHEM INT EDIT, V31, P682
HOUK KN, 1995, ACCOUNTS CHEM RES, V28, P81
JURSIC BS, 1994, J MOL STRUCT THEOCHE, V315, P85
JURSIC BS, 1995, J CHEM SOC PERK T, V2, P1223
JURSIC BS, 1995, J MOL STRUCT THEOCHE, V331, P215
LEE C, 1988, PHYS REV B, V37, P785
MCCARRICK MA, 1992, J AM CHEM SOC, V114, P1499
MCCARRICK MA, 1993, J ORG CHEM, V58, P3330
POPLE JA, 1998, GAUSSIAN 98
ROUSH WR, 1981, J AM CHEM SOC, V103, P5200
NR 18
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD JAN 15
PY 2001
VL 535
BP 165
EP 169
PG 5
SC Chemistry, Physical
GA 396JR
UT ISI:000166633100018
ER
PT J
AU Barbatti, M
Jalbert, G
Nascimento, MAC
TI The effects of the presence of an alkaline atomic cation in a molecular
hydrogen environment
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID BINDING-ENERGIES; CLUSTERS; GEOMETRIES; LI
AB Ab initio calculations were performed for X+(H-2)(n) clusters [X=Li, Na
(n=1-7) and K (n=1-3)]. For n=1-6, the equilibrium geometries
correspond to spherically symmetrical distributions of H-2 units around
the X+. The binding energies and the geometric parameters indicate that
the seventh H-2 unit opens a new shell of ligands for the cluster with
X=Li but not for X=Na. (C) 2001 American Institute of Physics.
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Inst Quim, BR-21945970 Rio De Janeiro, Brazil.
RP Barbatti, M, Univ Fed Rio de Janeiro, Inst Fis, CP 68528, BR-21945970
Rio De Janeiro, Brazil.
CR BARBATTI M, 2000, J CHEM PHYS, V113, P4230
BAUSCHLICHER CW, 1992, J PHYS CHEM-US, V96, P2475
BLAUDEAU JP, 1997, J CHEM PHYS, V107, P5016
BOYS SF, 1970, MOL PHYS, V19, P553
BUSHNELL JE, 1994, J PHYS CHEM-US, V98, P2044
CURTISS LA, 1988, J PHYS CHEM-US, V92, P894
DAVY R, 1999, MOL PHYS, V97, P1263
FALCETTA MF, 1993, J PHYS CHEM-US, V97, P1011
FARIZON B, 1999, PHYS REV B, V60, P3821
GOBET F, UNPUB
GORA RW, 1999, J PHYS CHEM A, V103, P9138
HERZBERG G, 1950, MOL SPECTRA MOL STRU, V1
IGNACIO EW, 1998, CHEM PHYS LETT, V287, P563
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
PANG T, 1994, CHEM PHYS LETT, V228, P555
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
STICH I, 1997, PHYS REV LETT, V78, P3669
SWITALSKI JD, 1974, J CHEM PHYS, V60, P2252
WU CH, 1979, J CHEM PHYS, V71, P783
NR 21
TC 8
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD FEB 1
PY 2001
VL 114
IS 5
BP 2213
EP 2218
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 397CQ
UT ISI:000166676100034
ER
PT J
AU Olivato, PR
Ruiz, R
Zukerman-Schpector, J
Dal Colle, M
Distefano, G
TI Comparative spectroscopic and theoretical studies on the conformation
of some alpha-diethoxyphosphoryl carbonyl compounds and their
alpha-ethylsulfonyl analogues
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID ELECTRONIC INTERACTION; INTRAMOLECULAR INTERACTIONS;
PHOTOELECTRON-SPECTROSCOPY; IR SPECTROSCOPY; AB-INITIO; DERIVATIVES;
SULFONES; ACETOPHENONES; SPECTRA; ORBITALS
AB Comparative nu (CO) IR analysis of beta -carbonylphosphonates
[XC(O)CH2P(O)(OR)(2): X = Me 1, Ph 2, OEt 3, NEt2 4 and SEt 5; R = Et]
(series I) and beta -carbonylsulfones [XC(O)CH2SO2R: X = Me 6, Ph 7,
OEt 8, NEt2 9 and SEt 10; R = Et] (series II) along with ab initio
6-31G** calculations on 1a and 6a (R = Me) suggest the existence of
only a single gauche conformer for series I. The negative carbonyl
frequency shifts for both series follow approximately the
electron-affinities of the pi*(CO) orbital of the parent compounds
MeC(O)X 11-15. The less positive asymmetric sulfonyl frequency shifts
(Delta nu (SO2)) for II in relation to the phosphoryl frequency shifts
(Delta nu (PO)) for I and the larger negative carbonyl frequency shifts
for II with respect to the corresponding values for I are in line with
the upfield C-13 NMR chemical shifts of the carbonyl carbon for II
compared to I. These trends agree with the shorter O-(SO2)...C-(CO)
contact in comparison with the O-(PO)...C-(CO) one and are discussed in
terms of O-1p--> pi*(CO) charge transfer and electrostatic
interactions, which are stronger for series II than for I, indicating
that the sulfonyl oxygen atom is a better electron donor than the
phosphoryl oxygen atom. Intrinsic geometrical parameters of O=S CH2 and
O=P-CH2 moieties seem to be responsible for this behaviour as indicated
by X-ray study and ab initio calculations of dialkyl
(methylsulfonyl)methylphosphonate MeSO2CH2P(O)(OR)(2) (R = Et 18, Me
18a).
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13560 Sao Carlos, SP, Brazil.
Univ Ferrara, Dipartmento Chim, I-44100 Ferrara, Italy.
RP Olivato, PR, Univ Sao Paulo, Inst Quim, CP 26077, BR-05513970 Sao
Paulo, Brazil.
CR 1998, 18 INT S ORG CHEM SU
ALTOMARE A, 1993, J APPL CRYSTALLOGR, V26, P343
BALSIGER RW, 1959, J ORG CHEM, V24, P434
BOROWITZ IJ, 1967, J ORG CHEM, V32, P1723
CHARDIN A, 1996, J CHEM SOC PERK JUN, P1047
CHATTOPADHYAY S, 1981, J ELECTRON SPECTR RE, V24, P27
DALCOLLE M, 1995, J PHYS CHEM-US, V99, P15011
DISTEFANO G, UNPUB
DISTEFANO G, 1991, J CHEM SOC P2, P1195
DISTEFANO G, 1996, J CHEM SOC PERK AUG, P1661
FARRUGIA LJ, 2000, WINGX WINDOWS PROGRA
FRISCH MJ, 1998, GAUSSIAN 98
GIORDAN JC, 1985, J AM CHEM SOC, V107, P5600
HANSH C, 1995, EXPLORING QSAR HYDRO
JONES D, 1994, J CHEM SOC P2, P1651
LIU HJ, 1991, CAN J CHEM, V69, P934
MARTIN HD, 1986, J ELECTRON SPECTROSC, V41, P385
MULLER C, 1973, TETRAHEDRON, V29, P3973
NARDELLI M, 1995, J APPL CRYSTALLOGR, V28, P659
OLIVATO PR, UNPUB
OLIVATO PR, 1985, PHOSPHORUS SULFUR, V24, P225
OLIVATO PR, 1987, PHOSPHORUS SULFUR, V33, P135
OLIVATO PR, 1989, PHOSPHORUS SULFUR, V44, P9
OLIVATO PR, 1990, PHOSPHORUS SULFUR, V47, P391
OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
OLIVATO PR, 1992, MAGN RESON CHEM, V30, P81
OLIVATO PR, 1996, REV HETEROATOM CHEM, V15, P115
OLIVATO PR, 1997, PHOSPHORUS SULFUR, V130, P155
OLIVATO PR, 1998, 18 INT S ORG CHEM SU, P214
OLIVATO PR, 1998, J CHEM SOC PERK JAN, P109
OLIVATO PR, 1999, PHOSPHORUS SULFUR, V153, P353
OLIVATO PR, 2000, ACTA CRYSTALLOGR B 1, V56, P112
OLIVATO PR, 2000, PHOSPHORUS SULFUR, V156, P255
OLIVEIRA JE, 1980, THESIS U SAO PAULO B
POSNER GH, 1972, J ORG CHEM, V37, P3547
PUDOVIK AN, 1956, ZH OBSHCH KHIM, V26, P1431
SCHMIDT H, 1975, TETRAHEDRON, V31, P1287
SHELDRICK GM, 1997, SHELXL97 PROGRAM REF
SOLOUKI B, 1975, CHEM BER, V108, P897
SPEZIALE AJ, 1958, J ORG CHEM, V23, P1883
TOSSELL JA, 1985, INORG CHEM, V24, P1100
ZSONAI L, 1995, ZORTEP MOL GRAPHICS
NR 42
TC 7
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1472-779X
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD JAN
PY 2001
IS 1
BP 97
EP 102
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 395VF
UT ISI:000166601400015
ER
PT J
AU Pliego, JR
Riveros, JM
TI The gas-phase reaction between hydroxide ion and methyl formate: A
theoretical analysis of the energy surface and product distribution
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE ab initio calculations; gas-phase reactions; hydrolysis
ID S(N)2 NUCLEOPHILIC-SUBSTITUTION; BASE-CATALYZED-HYDROLYSIS;
DISPLACEMENT-REACTIONS; ESTER HYDROLYSIS; AB-INITIO; MECHANISM;
KINETICS; RESONANCE; ABINITIO; CLUSTERS
AB The potential energy surface for the prototype solvent-free ester
hydrolysis reaction: OH-+HCOOCH3-> products has been characterized by
high level ab initio calculations of MP4/6311 + G(2df,2p)//MP2/6-31 +
G(d) quality. These calculations reveal that the approach of an OH- ion
leads to the formation of two distinct ion-molecule complexes: 1) the
MS1 species with the hydroxide ion hydrogen bonded to the methyl group
of the ester, and 2) the MS4 moiety resulting from proton abstraction
of the formyl hydrogen by the hydroxide ion and formation of a
three-body complex of water, methoxide ion and carbon monoxide. The
first complex reacts to generate formate anion and methanol products
through the well known B(AC)2 and S(N)2 mechanisms. RRKM calculations
predict that these pathways will occur with a relative contribution of
85% and 15% at 298.15 K, in excellent agreement with experimentally
measured Values of 87 % and 13 %, respectively. The second complex
reacts by loss of carbon monoxide to yield the water-methoxide complex
through a single minimum potential surface and is the preferred pathway
in the gas-phase. This water-methoxide adduct can further dissociate if
the reactants have excess energy. These results provide clear evidence
that the preferred pathways for ester hydrolysis in solution are
dictated by solvation of the hydroxide ion.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, Brazil.
RP Pliego, JR, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
Sao Paulo, Brazil.
CR *GAUSS INC, 1995, GAUSS 94 REV D 2
ASUBIOJO OI, 1979, J AM CHEM SOC, V101, P3715
BAER T, 1996, UNIMOLECULAR REACTIO
BAKOWIES D, 1999, J AM CHEM SOC, V121, P5712
BARTMESS JE, 1981, J AM CHEM SOC, V103, P1338
BENDER ML, 1960, CHEM REV, V60, P53
BICKELHAUPT FM, 1996, CHEM-EUR J, V2, P196
BLAIR LK, 1973, J AM CHEM SOC, V95, P1057
COMISAROW M, 1977, CAN J CHEM, V55, P171
CORDES EH, 1974, CHEM REV, V74, P581
DEJAEGERE A, 1994, J CHEM SOC FARADAY T, V90, P1763
DEPUY CH, 1983, J AM CHEM SOC, V105, P2480
DEPUY CH, 1985, J AM CHEM SOC, V107, P1093
EWIG CS, 1986, J AM CHEM SOC, V108, P4774
FERNANDO J, 1976, J AM CHEM SOC, V98, P2049
FINK BT, 1999, J CHEM SOC P2, P2397
GRAUL ST, 1994, J AM CHEM SOC, V116, P3875
HAEFFNER F, 1999, J MOL STRUC-THEOCHEM, V459, P85
HASE WL, 1994, SCIENCE, V266, P998
HUMPHREYS HM, 1956, J AM CHEM SOC, V78, P521
ISOLANI PC, 1975, CHEM PHYS LETT, V33, P362
JENCKS WP, 1964, PROGR PHYS ORG CHEM, V2, P63
JENCKS WP, 1980, ACCOUNTS CHEM RES, V13, P161
JOHLMAN CL, 1985, J AM CHEM SOC, V107, P327
JORGENSEN WL, 1987, ACS SYM SER, V353, P200
MADURA JD, 1986, J AM CHEM SOC, V108, P2517
MEOTNER M, 1986, J AM CHEM SOC, V108, P6189
OLMSTEAD WN, 1977, J AM CHEM SOC, V99, P4219
PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
PLIEGO JR, 1999, PCCP PHYS CHEM CH PH, V1, P1031
PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
PRANATA J, 1994, J PHYS CHEM-US, V98, P1180
TAKASHIMA K, 1978, J AM CHEM SOC, V100, P6128
TAKASHIMA K, 1983, J CHEM SOC CHEM COMM, P1255
VANDERWEL H, 1988, RECL TRAV CHIM PAY B, V107, P479
WANG HB, 1994, J AM CHEM SOC, V116, P9644
WANG HB, 1997, J AM CHEM SOC, V119, P3093
WIBERG KB, 1987, J AM CHEM SOC, V109, P5935
XANTHEAS SS, 1995, J AM CHEM SOC, V117, P10373
ZHAN CG, 2000, J AM CHEM SOC, V122, P1522
ZHAN CG, 2000, J AM CHEM SOC, V122, P2621
ZHU L, 1993, GEN RRKM PROGRAM
NR 43
TC 11
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA PO BOX 10 11 61, D-69451 BERLIN, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD JAN 5
PY 2001
VL 7
IS 1
BP 169
EP 175
PG 7
SC Chemistry, Multidisciplinary
GA 392PH
UT ISI:000166419500017
ER
PT J
AU de Almeida, NG
Ramos, PB
Serra, RM
Moussa, MY
TI Phenomenological-operator approach to introduce damping effects on
radiation field states
SO JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS
LA English
DT Article
DE radiation field states; damping effects; cavity field
ID ARBITRARY QUANTUM STATES; PODOLSKY-ROSEN CHANNELS; EXPERIMENTAL
REALIZATION; PROJECTION SYNTHESIS; TELEPORTATION; ENTANGLEMENT;
GENERATION; ATOM; SUPERPOSITIONS; PHOTONS
AB In this paper we propose an approach to deal with radiation field
states which incorporates damping effects at zero temperature. By using
some well known results on dissipation of a cavity-field state,
obtained by standard ab initio methods, it was possible to infer,
through a phenomenological way, the explicit form for the evolution of
the state vector for the whole system: the cavity field plus reservoir.
This proposal turns out to be extremely convenient for accounting for
the influence of the reservoir over the cavity field. To illustrate the
universal applicability of our approach we consider the attenuation
effects on cavity-field states engineering. The main concern of the
present phenomenological approach consists in furnishing a
straightforward technique to estimate the fidelity resulting from
processes in cavity QED phenomena. A proposal to maximize the fidelity
of the process is presented.
C1 Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil.
RP de Almeida, NG, Univ Fed Sao Carlos, Dept Fis, CP 676, BR-13565905 Sao
Carlos, SP, Brazil.
CR BELL JS, 1964, PHYSICS, V1, P195
BENNETT CH, 1993, PHYS REV LETT, V70, P1895
BOSCHI D, 1998, PHYS REV LETT, V80, P1121
BOSE S, 1997, PHYS REV A, V56, P4175
BOUWMEESTER D, 1997, NATURE, V390, P575
BRANNING D, 1999, PHYS REV LETT, V83, P955
BRUNE M, 1992, PHYS REV A, V45, P5193
BRUNE M, 1996, PHYS REV LETT, V77, P4887
CHUANG IL, 1998, NATURE, V393, P143
CIRAC JI, 1997, PHYS REV LETT, V78, P3221
DAKNA M, 1999, PHYS REV A, V59, P1658
DALIBARD J, 1992, PHYS REV LETT, V68, P580
DUM R, 1992, PHYS REV A, V45, P4879
EINSTEIN A, 1935, PHYS REV, V47, P777
FURUSAWA A, 1998, SCIENCE, V282, P706
GHERI KM, 1998, PHYS REV A, V58, P2627
JANSZKY J, 1995, PHYS REV A, V51, P4191
KRAUSE J, 1987, PHYS REV A, V36, P4547
LO HK, 1997, PHYS REV LETT, V78, P3410
MANDEL L, 1995, OPTICAL COHERENCE QU
MAYES D, 1996, QUANTPH9603015
MOUSSA MHY, 1996, PHYS REV A, V54, P4661
MOUSSA MHY, 1997, PHYS REV A, V55, P3287
MOUSSA MHY, 1998, PHYS LETT A, V238, P223
NUSSENZVEIG P, COMMUNICATION
PARKINS AS, 1993, PHYS REV LETT, V71, P3095
PEGG DT, 1998, PHYS REV LETT, V81, P1604
PELLIZZARI T, 1997, PHYS REV LETT, V79, P5242
SCULLY MO, 1997, QUANTUM OPTICS
SHOR PW, 1994, P 35 ANN S FDN COMP, P124
VIDIELLABARRANCO A, 1998, PHYS REV A, V58, P3349
VILLASBOAS CJ, 1999, PHYS REV A, V60, P2759
VOGEL K, 1993, PHYS REV LETT, V71, P1816
WEINDINGER M, 1999, PHYS REV LETT, V82, P3795
ZHENG SB, 1998, OPT COMMUN, V154, P290
NR 35
TC 7
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 1464-4266
J9 J OPT B-QUANTUM SEMICL OPT
JI J. Opt. B-Quantum Semicl. Opt.
PD DEC
PY 2000
VL 2
IS 6
BP 792
EP 798
PG 7
SC Physics, Applied; Optics
GA 389LL
UT ISI:000166239300015
ER
PT J
AU Pliego, JR
Riveros, JM
TI New values for the absolute solvation free energy of univalent ions in
aqueous solution
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID GIBBS FREE-ENERGY; AB-INITIO; PROTON AFFINITIES; CONTINUUM MODEL;
GAS-PHASE; THERMODYNAMICS; PHOTOIONIZATION; MOLECULES; HYDRATION;
SOLVENTS
AB The absolute solvation free energy of 30 univalent ions, mainly organic
species, has been calculated from experimental and theoretical data on
proton affinities, aqueous acidity constants, solvation free energy of
neutral species, and the new value for the absolute solvation free
energy of the proton determined by Tissandier et al. [J. Phys. Chem. A
102 (1998) 7787]. Our new values reveal considerable differences with
previous compilations, and should be taken into consideration for
comparison with liquid simulation results and in the development of
implicit solvation models. (C) 2000 Elsevier Science B.V. All rights
reserved.
C1 Univ Sao Paulo, Inst Quim, BR-05513970 Sao Paulo, SP, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Caixa Postal 26077, BR-05513970
Sao Paulo, SP, Brazil.
CR ALBERT A, 1984, DETERMINATION IONIZA
AUE DH, 1976, J AM CHEM SOC, V98, P318
BARTMESS JE, 1979, J AM CHEM SOC, V101, P6046
BENNAIM A, 1978, J PHYS CHEM-US, V82, P792
BENNAIM A, 1984, J CHEM PHYS, V81, P2016
BERKOWITZ J, 1994, J PHYS CHEM-US, V98, P2744
COE JV, 1994, CHEM PHYS LETT, V229, P161
COSSI M, 1996, CHEM PHYS LETT, V255, P327
CRAMER CJ, 1992, SCIENCE, V256, P213
CRAMER CJ, 1999, CHEM REV, V99, P2161
FLORIAN J, 1997, J PHYS CHEM B, V101, P5583
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
GIESEN DJ, 1997, THEOR CHEM ACC, V98, P85
HILLEBRAND C, 1996, J PHYS CHEM-US, V100, P9698
HINE J, 1975, J ORG CHEM, V40, P292
LANGLET J, 1988, J PHYS CHEM-US, V92, P1617
LITORJA M, 1998, J ELECTRON SPECTROSC, V97, P131
MARCUS Y, 1985, ION SOLVATION
MARCUS Y, 1991, J CHEM SOC FARADAY T, V87, P2995
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIERTUS S, 1982, CHEM PHYS, V65, P239
NG CY, 1977, J CHEM PHYS, V67, P4235
PLIEGO JR, 1997, J CHEM SOC FARADAY T, V93, P1881
PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
PLIEGO JR, 2000, J PHYS CHEM B, V104, P5155
STEFANOVICH EV, 1995, CHEM PHYS LETT, V244, P65
SZULEJKO JE, 1993, J AM CHEM SOC, V115, P7839
TAWA GJ, 1998, J CHEM PHYS, V109, P4852
TISSANDIER MD, 1998, J PHYS CHEM A, V102, P7787
WONG MW, 1991, J AM CHEM SOC, V113, P4776
NR 30
TC 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD DEC 29
PY 2000
VL 332
IS 5-6
BP 597
EP 602
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 389JY
UT ISI:000166235900027
ER
PT J
AU Nunes, RW
Vanderbilt, D
TI Models of core reconstruction for the 90 degrees partial dislocation in
semiconductors
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID ELECTRONIC-STRUCTURE; SILICON; KINKS; MOTION
AB We compare the models that have been proposed in the literature for the
atomic structure of the 90 degrees partial dislocation in the homopolar
semiconductors, silicon, diamond, and germanium. In particular, we
examine the traditional single-period and our recently proposed
double-period core structures. Ab initio and tight-binding results on
the core energies are discussed, and the geometries are compared in the
light of the available experimental information about dislocations in
these systems. The double-period geometry is found to be the
ground-state structure for all three materials. We address
boundary-condition issues that have been recently raised concerning
these results. The structures of point excitations (kinks, solitons,
and kink-soliton complexes) in the two geometries are also reviewed.
C1 Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil.
Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA.
RP Nunes, RW, Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte,
MG, Brazil.
CR ALEXANDER H, 1991, MATERIALS SCI TECHNO, V4, P249
BATSON PE, 1999, PHYS REV LETT, V83, P4409
BENNETTO J, 1997, PHYS REV LETT, V79, P245
BIGGER JRK, 1992, PHYS REV LETT, V69, P2224
BLASE X, 2000, PHYS REV LETT, V84, P5780
BULATOV VV, 1997, PHYS REV LETT, V79, P5042
CHELIKOWSKY JR, 1984, PHYS REV B, V30, P694
DUESBERY MS, 1991, CRIT REV SOLID STATE, V17, P1
HANSEN LB, 1995, PHYS REV LETT, V75, P4444
HEGGIE M, 1983, PHILOS MAG B, V48, P365
HEGGIE M, 1983, PHILOS MAG B, V48, P379
HEGGIE M, 1987, I PHYS C SER, V87, P367
HEGGIE MI, 1993, PHYS STATUS SOLIDI A, V138, P383
HIRSCH PB, 1985, MATER SCI TECH SER, V1, P666
JONES R, 1979, J PHYS-PARIS S6, V40, P33
JONES R, 1980, PHILOS MAG B, V42, P213
JONES R, 1993, PHYS STATUS SOLIDI A, V138, P369
KOLAR HR, 1996, PHYS REV LETT, V77, P4031
LEHTO N, 1998, PHYS REV LETT, V80, P5568
LODGE KW, 1989, PHILOS MAG A, V60, P643
MARKLUND S, 1979, PHYS STATUS SOLIDI B, V92, P83
MARKLUND S, 1983, J PHYS-PARIS, V44, P25
NUNES RW, 1996, PHYS REV LETT, V77, P15417
NUNES RW, 1996, THESIS RUTGERS U NJ
NUNES RW, 1998, PHYS REV B, V57, P10388
NUNES RW, 1998, PHYS REV B, V58, P12563
NUNES RW, 2000, PHYS REV LETT, V85, P3540
OBERG S, 1995, PHYS REV B, V51, P13138
NR 28
TC 4
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD DEC 11
PY 2000
VL 12
IS 49
BP 10021
EP 10027
PG 7
SC Physics, Condensed Matter
GA 386BC
UT ISI:000166039400002
ER
PT J
AU Justo, JF
Fazzio, A
Antonelli, A
TI Dislocation core reconstruction in zinc-blende semiconductors
SO JOURNAL OF PHYSICS-CONDENSED MATTER
LA English
DT Article
ID 90-DEGREES PARTIAL DISLOCATION; DENSITY-FUNCTIONAL THEORY;
MOLECULAR-DYNAMICS; SILICON; MOBILITY; GAAS; PSEUDOPOTENTIALS;
VELOCITIES; CRYSTALS; INAS
AB Using ab initio total-energy calculations, we computed core
reconstruction energies of partial dislocations in zinc-blende
semiconductors. The reconstruction energy of 30 degrees partials was
found to scale almost linearly with the experimental activation energy
of 60 degrees dislocations. The electronic structure of a dislocation
shows that in an unreconstructed core, the gap states comprise a
half-filled one-dimensional band, which splits up into bonding and
antibonding states upon reconstruction. The energy states which lie in
the electronic gap come from the core of beta -partials, while those
related to alpha -partials remain resonant in the valence band.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
RP Justo, JF, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
SP, Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
ALEXANDER H, 1989, I PHYS C SER, V104, P281
BAZANT MZ, 1997, PHYS REV B, V56, P8542
BENNETTO J, 1997, PHYS REV LETT, V79, P245
BIGGER JRK, 1992, PHYS REV LETT, V69, P2224
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BULATOV VV, 1995, PHILOS MAG A, V72, P453
CAR R, 1985, PHYS REV LETT, V55, P2471
CHOI SK, 1977, JPN J APPL PHYS, V16, P737
CHOI SK, 1978, JPN J APPL PHYS, V17, P329
DUESBERY MS, 1991, CRIT REV SOLID STATE, V17, P1
HIRTH JP, 1982, THEORY DISLOCATIONS
IMAI M, 1983, PHILOS MAG A, V47, P599
JUSTO JF, 1998, PHYS REV B, V58, P2539
JUSTO JF, 1999, J APPL PHYS, V86, P4249
JUSTO JF, 2000, PHYS REV LETT, V84, P2172
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
OMRI M, 1990, PHILOS MAG A, V62, P203
SITCH P, 1994, PHYS REV B, V50, P17717
SUZUKI T, 1991, DISLOCATION DYNAMICS
TROULLIER N, 1991, PHYS REV B, V43, P1993
YONENAGA I, 1989, J APPL PHYS, V65, P85
YONENAGA I, 1993, J APPL PHYS, V73, P1681
YONENAGA I, 1996, APPL PHYS LETT, V69, P1264
YONENAGA I, 1998, J APPL PHYS, V84, P4209
NR 26
TC 9
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-8984
J9 J PHYS-CONDENS MATTER
JI J. Phys.-Condes. Matter
PD DEC 11
PY 2000
VL 12
IS 49
BP 10039
EP 10044
PG 6
SC Physics, Condensed Matter
GA 386BC
UT ISI:000166039400004
ER
PT J
AU Prudente, FV
Costa, LS
Acioli, PH
TI Correlation function quantum Monte Carlo studies of rovibrational
excited states in molecules
SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS
LA English
DT Review
ID POTENTIAL-ENERGY SURFACES; CONSISTENT-FIELD APPROACH; QUASI-ADIABATIC
CHANNELS; ELECTRONIC GROUND-STATE; AB-INITIO CALCULATIONS;
VIBRATIONAL-STATES; VARIATIONAL CALCULATIONS; WAVE-FUNCTIONS;
TRIATOMIC-MOLECULES; HYDROGEN-PEROXIDE
AB In this paper we review the correlation function quantum Monte Carlo
(CFQMC) method. We describe the functional forms and the optimization
of trial basis functions used to treat the vibrational and rotational
motions. We discuss selected applications to di-, tri- and tetra-atomic
molecules. Our main goal is to discuss the potentiality of the CFQMC
method in the study of rovibrational excited states of polyatomic
molecules. In particular, we focus our discussion on the generation of
the trial basis functions for ground and excited states, and the
guiding function used to perform the multidimensional integral sampling
required by the method.
C1 Univ Coimbra, Dept Quim, P-3049 Coimbra, Portugal.
Univ Brasilia, Inst Fis, BR-70919970 Brasilia, DF, Brazil.
RP Prudente, FV, Univ Coimbra, Dept Quim, P-3049 Coimbra, Portugal.
CR ACIOLI PH, 1999, J CHEM PHYS, V111, P6311
ACIOLI PH, 1999, J MOL STRUC-THEOCHEM, V464, P145
ACIOLI PH, 2000, CHEM PHYS LETT, V321, P121
ALEXANDER SA, 1991, J CHEM PHYS, V95, P6622
ANDERSON JB, 1975, J CHEM PHYS, V63, P1499
ANDERSON JB, 1995, INT REV PHYS CHEM, V14, P85
ANTIKAINEN J, 1995, J CHEM PHYS, V102, P1270
ASSARAF R, 2000, PHYS REV E B, V61, P4566
BACIC Z, 1989, ANNU REV PHYS CHEM, V40, P469
BENTLEY JA, 1992, J CHEM PHYS, V97, P4255
BERNU B, 1990, J CHEM PHYS, V93, P552
BIANCHI R, 1991, CHEM PHYS LETT, V184, P343
BLUME D, 1996, J CHEM PHYS, V105, P8666
BLUME D, 1997, J CHEM PHYS, V107, P9067
BLUME D, 1997, PHYS REV E B, V55, P3664
BLUME D, 1998, MATH COMPUT SIMULAT, V47, P133
BLUME D, 1999, J CHEM PHYS, V110, P5789
BLUME D, 2000, J CHEM PHYS, V112, P2218
BLUME D, 2000, J CHEM PHYS, V112, P8053
BOWMAN JM, 1986, ACCOUNTS CHEM RES, V19, P202
BRAMLEY MJ, 1993, J CHEM PHYS, V99, P8519
BRESSANINI D, 1999, ADV CHEM PHYS, V105, P37
BROUDE S, 1999, CHEM PHYS LETT, V299, P437
BROWN WR, 1995, J CHEM PHYS, V103, P9721
BUCH V, 1992, J CHEM PHYS, V97, P726
CAFFAREL M, 1988, J CHEM PHYS, V88, P1100
CAFFAREL M, 1989, J CHEM PHYS, V90, P990
CARNEY GD, 1976, J MOL SPECTROSC, V61, P371
CARNEY GD, 1986, J CHEM PHYS, V84, P3921
CARTER S, 1998, J CHEM PHYS, V108, P4397
CARTER S, 1998, THEOR CHEM ACC, V100, P191
CARTER S, 1999, J CHEM PHYS, V110, P8417
CEPERLEY DM, MONTE CARLO METHODS
CEPERLEY DM, 1988, J CHEM PHYS, V89, P6316
CEPERLEY DM, 1996, ADV CHEM PHYS, V93, P1
CHOI SE, 1992, J CHEM PHYS, V97, P7031
COKER DF, 1986, MOL PHYS, V58, P1113
COKER DF, 1987, J PHYS CHEM-US, V91, P2513
COSTA LS, 2000, PHYS REV A, V61
DYKSTRA CE, 1979, J CHEM PHYS, V70, P1
DYKSTRA CE, 1997, J COMPUT CHEM, V18, P702
FEMLEY JA, 1991, J MOL SPECTROSC, V150, P597
GOMEZ MA, 1998, J CHEM PHYS, V109, P8783
GREGORY JK, 1995, J CHEM PHYS, V102, P7817
GREGORY JK, 1996, J CHEM PHYS, V105, P6626
GRIMES RM, 1986, J CHEM PHYS, V85, P4749
HALONEN L, 1982, MOL PHYS, V47, P1097
HAMMOND BL, 1994, MONTE CARLO METHODS
HANDY NC, 1981, CHEM PHYS LETT, V79, P118
IOSUE JL, 1999, CHEM PHYS LETT, V301, P275
JAQUET R, 1998, J CHEM PHYS, V108, P2837
JENSEN P, 1989, J MOL SPECTROSC, V133, P438
JONES MD, 1997, PHYS REV E B, V55, P6202
KONNIN SE, 1990, COMPUTATIONAL PHYSIC
KOPUT J, 1999, CHEM PHYS LETT, V301, P1
KUHN B, 1999, J CHEM PHYS, V111, P2565
KUPPERMANN A, 1994, ADV MOL VIBRATIONS B, V2, P117
KWON Y, 1996, PHYS REV B, V53, P7377
KWON YK, 1994, PHYS REV B, V50, P1684
LEHOUCQ RB, 1998, COMPUT PHYS COMMUN, V109, P15
LEWERENZ M, 1994, MOL PHYS, V81, P1075
LIU K, 1996, NATURE, V381, P501
MACDONALD JKL, 1933, PHYS REV, V43, P830
MAESSEN B, 1984, J PHYS CHEM-US, V88, P6420
MARTIN JML, 1998, J PHYS CHEM A, V102, P1394
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
MURRELL JN, 1984, MOL POTENTIAL ENERGY
MUSSA HY, 1998, J CHEM PHYS, V109, P10885
NETO JJS, 1994, THEOR CHIM ACTA, V89, P415
NETO JJS, 1998, BRAZ J PHYS, V28, P1
NIGHTINGALE MP, 1996, PHYS REV B, V54, P1001
NIGHTINGALE MP, 1998, PHYS REV LETT, V80, P1007
NIGHTINGALE MP, 1998, PHYSICA A, V251, P211
NIGHTINGALE MP, 1999, ADV CHEM PHYS, V105, P65
PAPOUSEK D, 2000, MOL VIBRATIONAL ROTA
PARTRIDGE H, 1997, J CHEM PHYS, V106, P4618
POLYANSKY OL, 1997, SCIENCE, V277, P346
POLYANSKY OL, 2000, MOL PHYS, V98, P261
PRESS WH, 1986, NUMERICAL RECIPES
PRUDENTE FV, 1998, CHEM PHYS LETT, V287, P585
PRUDENTE FV, 1998, J CHEM PHYS, V109, P8801
PRUDENTE FV, 1999, CHEM PHYS LETT, V302, P249
PRUDENTE FV, 1999, CHEM PHYS LETT, V302, P43
QUACK M, 1991, CHEM PHYS LETT, V183, P187
QUACK M, 1991, J CHEM PHYS, V95, P28
RAMAKRISHNA MV, 1990, J CHEM PHYS, V93, P6738
RAMALHO JPP, 1991, CHEM PHYS LETT, V184, P53
RATNER MA, 1986, J PHYS CHEM-US, V90, P20
REINER DE, 1984, J CHEM PHYS, V80, P5968
REYNOLDS PJ, 1982, J CHEM PHYS, V77, P5593
SANDLER P, 1996, J CHEM PHYS, V105, P10387
SANDLER P, 1997, J CHEM PHYS, V107, P5022
SCHMIDT KE, MONTE CARLO METHODS
SCHMIDT KE, 1992, MONTE CARLO METHODS, V3
SCHWENKE DW, 1996, J PHYS CHEM-US, V100, P2867
SEVERSON MW, 1999, J CHEM PHYS, V111, P10866
SILVA WB, UNPUB
SILVA WB, 2000, THESIS U BRASILIA
SUHM MA, 1991, PHYS REP, V204, P293
SUN H, 1990, J CHEM PHYS, V92, P603
TENNYSON J, 1995, COMPUT PHYS COMMUN, V86, P175
TENNYSON J, 2000, THEORETICAL HIGH RES
THIRUMALAI D, 1983, J CHEM PHYS, V79, P5063
TOPPER RQ, 1999, ADV CHEM PHYS, V105, P117
UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719
UMRIGAR CJ, 1993, J CHEM PHYS, V99, P2865
WATSON JKG, 1968, MOL PHYS, V15, P479
WITHNALL R, 1985, J PHYS CHEM-US, V89, P3261
ZARE RN, ANGULAR MOMENTUM
NR 109
TC 8
PU IOP PUBLISHING LTD
PI BRISTOL
PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND
SN 0953-4075
J9 J PHYS-B-AT MOL OPT PHYS
JI J. Phys. B-At. Mol. Opt. Phys.
PD NOV 28
PY 2000
VL 33
IS 22
BP R285
EP R313
PG 29
SC Physics, Atomic, Molecular & Chemical; Optics
GA 387CE
UT ISI:000166101900003
ER
PT J
AU Amalvy, JI
Asua, JM
Leite, CAP
Galembeck, F
TI Elemental mapping by ESI-TEM, during styrene emulsion polymerization
SO POLYMER
LA English
DT Article
DE latex particles; seeded emulsion polymerization; styrene
ID PARTICLE MORPHOLOGY; LATEX-PARTICLES; CLUSTER DYNAMICS; SYSTEMS
AB The elemental distribution in latex particles during the ab-initio and
seeded emulsion polymerization of styrene was studied by electron
spectroscopy imaging, in an analytical transmission electron
microscope. Surface anchoring effect, chain migration and the extent of
burying of the sulfate groups from the initiator were investigated by
comparing the distributions of the different elements. (C) 2000
Elsevier Science Ltd. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, Dept Chem, BR-13083970 Campinas, SP, Brazil.
Ctr Invest & Desarrollo Tecnol Pinturas, CIDEPINT, Buenos Aires, DF, Argentina.
Univ Pais Vasco, Fac Ciencias Quim, Dept Quim Aplicada, Grp Ingn Quim, E-20080 San Sebastian, Spain.
Univ Pais Vasco, Inst Polymer Mat, POLYMAT, E-20080 San Sebastian, Spain.
RP Galembeck, F, Univ Estadual Campinas, Inst Quim, Dept Chem, Caixa
Postal 6154, BR-13083970 Campinas, SP, Brazil.
CR AHMED SM, 1980, ORG COAT PLAST CHEM, V43, P120
CARDOSO AH, 1998, LANGMUIR, V14, P3187
CHANG HS, 1988, J POLYM SCI POL CHEM, V26, P1207
CHERN CS, 1987, J POLYM SCI POL CHEM, V25, P617
GONZALEZORTIZ LJ, 1995, MACROMOLECULES, V28, P3135
GONZALEZORTIZ LJ, 1996, MACROMOLECULES, V29, P383
GONZALEZORTIZ LJ, 1996, MACROMOLECULES, V29, P4520
GRANCIO MR, 1970, J POLYM SCI POL CHEM, V8, P2617
KAMEL AA, 1981, J DISPER SCI TECHNOL, V2, P315
KEUSCH P, 1973, J POLYM SCI POL CHEM, V11, P143
LAU W, 1987, MACROMOLECULES, V20, P457
LINNE MA, 1988, J MACROMOL SCI PHY B, V27, P181
NEWBURY DE, 1986, PRINCIPLES ANALYTICA
OKUBO M, 1990, MAKROMOL CHEM-M SYMP, V35, P307
PALIT SR, 1962, J POLYM SCI, V58, P1225
SMITHAM JB, 1973, J COLLOID INTERF SCI, V45, P211
STONEMASUI JH, 1980, POLYM COLLOIDS, V2, P331
SU LS, 1995, COLLOID POLYM
VANDENHUL HJ, 1970, BR POLYM J, V2, P121
VANDERHOFF JM, 1977, CHARACTERIZATION MET, P365
NR 20
TC 6
PU ELSEVIER SCI LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND
SN 0032-3861
J9 POLYMER
JI Polymer
PD MAR
PY 2001
VL 42
IS 6
BP 2479
EP 2489
PG 11
SC Polymer Science
GA 384GJ
UT ISI:000165934200022
ER
PT J
AU Gonzalez, L
Hoki, K
Kroner, D
Leal, AS
Manz, J
Ohtsuki, Y
TI Selective preparation of enantiomers by laser pulses: From optimal
control to specific pump and dump transitions
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID VIBRATIONAL-EXCITATION; MOLECULES; SUPERPOSITIONS; DYNAMICS; STATES;
FIELDS
AB Starting from optimal control, various series of infrared, ultrashort
laser pulses with analytical shapes are designed in order to drive a
preoriented molecule from its ground torsional state, which represents
the coherent superposition of left and right atropisomers, towards a
single enantiomer. Close analysis of the population dynamics, together
with the underlying symmetry selection rules for the laser induced
transitions, yields the mechanism. Namely, the molecule is driven from
its ground vibrational state towards the coherent superposition of the
lowest doublet of states via a doublet of excited torsional states with
opposite symmetries. This pump-and-dump mechanism can be achieved by
simpler series of analytical laser pulses. This decomposition of the
optimal pulse into analytical subpulses allows us to design different
scenarios for the selective preparation of left or right enantiomers.
Exemplary this is demonstrated by quantum simulations of representative
wave packets for the torsional motions of the model system, H2POSH, in
the electronic ground state, based on the ab initio potential energy
surface, and with ab initio dipole couplings. (C) 2000 American
Institute of Physics. [S0021-9606(00)00940-5].
C1 Free Univ Berlin, Inst Chem Phys & Theoret Chem, D-14195 Berlin, Germany.
Tohoku Univ, Grad Sch Sci, Dept Chem, Sendai, Miyagi 9808578, Japan.
UFMG, ICEX, Dept Quim, BR-31270901 Belo Horizonte, MG, Brazil.
RP Gonzalez, L, Free Univ Berlin, Inst Chem Phys & Theoret Chem, Takustr
3, D-14195 Berlin, Germany.
CR BRUMER P, 1992, ANNU REV PHYS CHEM, V43, P257
CINA JA, 1994, J CHEM PHYS, V100, P2531
CINA JA, 1995, SCIENCE, V267, P832
DOSLIC N, IN PRESS FEMTOCHEMIS
DOSLIC N, 1998, J PHYS CHEM A, V102, P9645
FUJIMURA Y, IN PRESS ANGEW CHEM
FUJIMURA Y, 1999, CHEM PHYS LETT, V306, P1
FUJIMURA Y, 1999, CHEM PHYS LETT, V310, P578
HANGGI P, 1999, COMMUNICATION MAR
HUND F, 1927, Z PHYS, V43, P805
KALUZA M, 1994, J CHEM PHYS, V100, P4211
KOSLOFF R, 1989, CHEM PHYS, V139, P201
KRAUSE JL, 1995, FEMTOSECOND CHEM, P743
MAIERLE CS, 1998, J CHEM PHYS, V109, P3713
MANZ J, 1998, CHEM PHYS LETT, V290, P415
MARQUARDT R, 1996, Z PHYS D ATOM MOL CL, V36, P229
OHTSUKI Y, 1998, J CHEM PHYS, V109, P9318
PARAMONOV GK, 1983, PHYS LETT A, V97, P340
QUACK M, 1995, FEMTOSECOND CHEM, P781
RING H, 1998, EUR PHYS J D, V4, P73
SHAO J, 1997, PHYS REV A, V56, P4397
SHAO JS, 1997, J CHEM PHYS, V107, P9935
SHAPIRO M, 1991, J CHEM PHYS, V95, P8658
SHAPIRO M, 2000, PHYS REV LETT, V84, P1669
SHI S, 1988, J CHEM PHYS, V88, P6870
SHI SH, 1990, J CHEM PHYS, V92, P2927
SOLA IR, 1998, J PHYS CHEM A, V102, P4301
SUGAWARA M, 1994, J CHEM PHYS, V100, P5646
WATANABE Y, 1997, CHEM PHYS, V217, P317
NR 29
TC 14
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD DEC 22
PY 2000
VL 113
IS 24
BP 11134
EP 11142
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 382TZ
UT ISI:000165841300032
ER
PT J
AU Denault, JW
Wang, F
Cooks, RG
Gozzo, FC
Eberlin, MN
TI Structural characterization of clusters formed from alkyl nitriles and
the methyl cation
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID NUCLEOPHILIC DISPLACEMENT-REACTIONS; ION-MOLECULE REACTIONS; GAS-PHASE;
KINETIC METHOD; THERMOCHEMICAL DETERMINATIONS; MASS-SPECTROMETRY;
PROTON AFFINITIES; SN2 REACTIONS; TRANSITION; ETHYLATION
AB Cluster ions composed of the alkyl nitriles, acetonitrile (CH3CN) and
butyronitrile (C3H7CN), and the methyl cation (CH3+) have been examined
in an effort to study methyl cation affinities and the intrinsic
nucleophilicity of these bases. Structural characterization of the
sas-phase dimeric adduct ions was achieved via multiple stage mass
spectrometry (MSn) experiments and by quantum mechanical calculations.
The kinetic method was used as a diagnostic tool in determining the
structure of the dimeric adduct: the results of tandem mass
spectrometry (MS2) experiments' are found to provide ratios which
exclude loosely bonded dimers based on the thermochemistry of the
constituent monomers, and which are consistent with a mixture of
noninterconverting covalently bonded structures predicted by ab initio
calculations. These clusters are bound such that one nitrile is
N-methylated and the second nitrile is bound covalently to the carbon
of the methylated cyano group. Collision-induced dissociation of this
cluster ion results in the loss of a single neutral nitrile whereas
both N-methylated nitriles should be formed upon dissociation of a
loosely bound dimer with the greater fragment ion abundance
corresponding to the nitrile having the higher CH3+ affinity. Ab initio
calculations show a large barrier between the two isomeric forms of the
dimeric cluster and this precludes intramolecular methyl cation
transfer between the nitriles. The effects of fluorine substitution at
the methyl cation, i.e., CH2F+ and CF3+, on the adducts of the nitriles
greatly affects the stability order of the methylated nitrile monomers
and dimeric adducts, and thus the abundance ratios of the MS/MS
fragments. As the number of fluorine atoms in the cation is increased,
the methylated nitrile becomes less stable relative to the dimeric
cluster ion.
C1 Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
Triangle Pharmaceut, Durham, NC 27707 USA.
State Univ Campinas, Inst Chem, Campinas, SP, Brazil.
RP Cooks, RG, Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
CR ALVEREZ J, IN PRESS J MASS SPEC
ARMENTROUT PB, 1999, J MASS SPECTROM, V34, P74
ATTINA M, 1991, ANGEW CHEM INT EDIT, V30, P1457
BEAUCHAMP JL, 1974, J AM CHEM SOC, V96, P6243
BOHME DK, 1981, J AM CHEM SOC, V103, P978
BRAUMAN JI, 1974, J AM CHEM SOC, V96, P4030
BRAUMAN JI, 1988, J AM CHEM SOC, V110, P5611
BURINSKY DJ, 1984, ORG MASS SPECTROM, V19, P539
BURINSKY DJ, 1988, ORG MASS SPECTROM, V23, P613
CACACE F, 1997, P NATL ACAD SCI USA, V94, P3507
CALDWELL G, 1984, J AM CHEM SOC, V106, P959
CHAMOTROOKE J, 2000, INT J MASS SPECTROM, V195, P385
CHOWDHURY S, 1988, ORG MASS SPECTROM, V23, P79
COOKS RG, 1977, J AM CHEM SOC, V99, P1279
COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
COOKS RG, 1994, MASS SPECTROM REV, V13, P287
COOKS RG, 1998, ACCOUNTS CHEM RES, V31, P379
COOKS RG, 1999, J MASS SPECTROM, V34, P85
CRAIG SL, 1997, SCIENCE, V276, P1536
DEAKYNE CA, 1990, J PHYS CHEM-US, V94, P232
DELIJSER HJP, 1998, J PHYS CHEM A, V102, P5592
DEPUY CH, 1990, J AM CHEM SOC, V112, P8650
DERRICK PJ, 1983, MASS SPECTROM REV, V2, P285
DRAHOS L, 1999, J MASS SPECTROM, V34, P79
ERVIN KM, 2000, INT J MASS SPECTROM, V195, P271
FORD GP, 1983, J AM CHEM SOC, V105, P349
FRISCH MJ, 1995, GAUSSIAN 94
GLUKHOVTSEV MN, 1994, J PHYS CHEM-US, V98, P13099
GRAUL ST, 1994, J AM CHEM SOC, V116, P3675
HALL DG, 1981, J AM CHEM SOC, V103, P2416
HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
HOLTZ D, 1970, J AM CHEM SOC, V92, P7484
HOLTZ D, 1971, NATURE, V231, P204
HOURIET R, 1987, ORG MASS SPECTROM, V22, P770
KAYE JA, 1992, ISOTOPE EFFECTS GAS
KEATING JT, 1970, CARBONIUM IONS
LEVSEN K, 1978, FUNDAMENTAL ASPECTS
MA SG, 1997, INT J MASS SPECTROM, V163, P89
MARZILLI LA, 1999, J MASS SPECTROM, V34, P276
MCDONALD RN, 1985, J AM CHEM SOC, V107, P4123
MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
MCMAHON TB, 1988, J AM CHEM SOC, V110, P7591
OLAH GA, 1975, HALONIUM IONS
OLMSTEAD WN, 1977, J AM CHEM SOC, V99, P4219
PADDONROW MN, 1980, J AM CHEM SOC, V102, P6561
RAGHAVACHARI K, 1984, J AM CHEM SOC, V106, P3124
RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V1, P101
SHAIK S, 1994, J AM CHEM SOC, V116, P262
SMITH D, 1980, INTERSTELLAR MOL
SMITH SC, 1993, J CHEM PHYS, V98, P1944
SPERANZA M, 1980, J AM CHEM SOC, V102, P3115
WENTHOLD PG, 1996, J AM CHEM SOC, V118, P11865
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
WOOD KV, 1983, J ORG CHEM, V48, P5236
YANG SS, 1995, J MASS SPECTROM, V30, P807
YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
NR 57
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 7
PY 2000
VL 104
IS 48
BP 11290
EP 11296
PG 7
SC Chemistry, Physical
GA 380WB
UT ISI:000165725500007
ER
PT J
AU Borin, AC
Serrano-Andres, L
TI A theoretical study of the absorption spectra of indole and its
analogs: indene, benzimidazole, and 7-azaindole
SO CHEMICAL PHYSICS
LA English
DT Article
DE indole; indene; benzimidazole; 7-azaindole; absorption spectra; CASPT2
ID EXCITED-STATE PROPERTIES; MOLECULAR WAVE-FUNCTIONS; BAND CONTOUR
ANALYSIS; ANO BASIS-SETS; ELECTRONIC-SPECTRA; AB-INITIO;
MICROWAVE-SPECTRUM; PROTEIN-STRUCTURE; SPECTROSCOPY; FLUORESCENCE
AB The complete active space (CAS) SCF method and multiconfigurational
second-order perturbation theory (CASPT2) have been used to study the
electronic spectra of indole, indene, benzimidazole, and 7-azaindole.
Singlet and triplet excited states and transition properties in the
absorption spectra, such as oscillator strengths and transition moment
directions, have been computed and the experimental data interpreted in
order to gain insight into the rich spectroscopy of these compounds,
which are alternative candidates to indole as biochemical probes in the
characterization of protein properties. (C) 2000 Elsevier Science B.V.
All rights reserved.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
Univ Valencia, Dept Quim Fis, E-46100 Valencia, Spain.
RP Borin, AC, Univ Sao Paulo, Inst Quim, Av Prof Lineu Prestes 748,
BR-05508900 Sao Paulo, Brazil.
CR ALBINSSON B, 1992, J PHYS CHEM-US, V96, P6204
ANDERSON BE, 1986, CHEM PHYS LETT, V125, P106
ANDERSSON K, 1997, MOLCAS VERSION 4 0
BERDEN G, 1995, J CHEM PHYS, V103, P9596
BORIN AC, 1999, J MOL STRUC-THEOCHEM, V464, P121
BORIN AC, 1999, J PHYS CHEM A, V103, P1838
BULSKA H, 1984, J LUMIN, V29, P65
CAMINATI W, 1990, J MOL STRUCT, V223, P415
CANE E, 1991, J MOL SPECTROSC, V148, P123
CHANG CT, 1974, PHOTOCHEM PHOTOBIOL, V19, P347
CHEN Y, 1994, J PHYS CHEM-US, V98, P2203
DEMCHENKO AP, 1986, ULTRAVIOLET SPECTROS
EVELETH EM, 1970, THEOR CHIM ACTA, V16, P22
FENDER BJ, 1995, CHEM PHYS LETT, V239, P31
FUKE K, 1984, J PHYS CHEM-US, V88, P5840
FUKE K, 1989, J PHYS CHEM-US, V93, P614
FULSCHER MP, 1997, J AM CHEM SOC, V119, P6168
HAHN DK, 1997, J PHYS CHEM A, V101, P2686
HARTFORD A, 1970, J MOL SPECTROSC, V34, P257
HASSAN KH, 1989, J MOL SPECTROSC, V138, P398
HUANG YH, 1996, J PHYS CHEM-US, V100, P4734
ILICH P, 1995, J MOL STRUCT, V354, P37
JALVISTE E, 1993, CHEM PHYS, V172, P325
LI YS, 1979, J MOL STRUCT, V51, P171
MAKI I, 1981, B CHEM SOC JPN, V54, P8
MALMQVIST PA, 1989, CHEM PHYS LETT, V155, P189
NEGRERIE M, 1990, J AM CHEM SOC, V112, P7419
NI T, 1989, J AM CHEM SOC, V111, P457
PERKAMPUS HH, 1992, UV VIS ATLAS ORGANIC
PIERLOOT K, 1995, THEOR CHIM ACTA, V90, P87
PLATT JR, 1949, J CHEM PHYS, V17, P489
RICE JE, 1994, MULLIKEN VERSION 1 1
ROOS BO, 1995, QUANTUM MECH ELECT S, V357
ROOS BO, 1996, ADV CHEM PHYS, V93, P219
ROOS BO, 1996, J MOL STRUC-THEOCHEM, V388, P257
RUBIO M, 1994, CHEM PHYS, V179, P395
SAVIOTTI ML, 1974, P NATL ACAD SCI USA, V71, P4154
SERRANOANDRES L, 1995, J AM CHEM SOC, V117, P3189
SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P12190
SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P12200
SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P185
SERRANOANDRES L, 1996, J PHYS CHEM-US, V100, P6484
SHUKLA MK, 1998, CHEM PHYS, V230, P187
SLATER LS, 1995, J PHYS CHEM-US, V99, P8572
SMIRNOV AV, 1997, J PHYS CHEM B, V101, P2758
SOBOLEWSKI AL, 1999, CHEM PHYS LETT, V315, P293
STRAMBINI GB, 1995, J AM CHEM SOC, V117, P7646
TAKEUCHI S, 1998, J PHYS CHEM A, V102, P7740
TAKIGAWA T, 1966, B CHEM SOC JPN, V39, P2369
VELINO B, 1992, J MOL SPECTROSC, V152, P434
WIDMARK PO, 1990, THEOR CHIM ACTA, V77, P291
NR 51
TC 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD DEC 15
PY 2000
VL 262
IS 2-3
BP 253
EP 265
PG 13
SC Physics, Atomic, Molecular & Chemical
GA 380UN
UT ISI:000165722000005
ER
PT J
AU Serrano-Andres, L
Borin, AC
TI A theoretical study of the emission spectra of indole and its analogs:
indene, benzimidazole, and 7-azaindole
SO CHEMICAL PHYSICS
LA English
DT Article
DE indole; indene; benzimidazole; 7-azaindole; emission spectra; CASPT2
ID MOLECULAR WAVE-FUNCTIONS; DOUBLE-PROTON-TRANSFER; ANO BASIS-SETS;
EXCITED-STATE; AB-INITIO; ELECTRONIC-SPECTRA; TRIPLET-STATES;
GAS-PHASE; SPECTROSCOPY; PHOTOPHYSICS
AB The complete active space (CAS) SCF method and multiconfigurational
second-order perturbation theory (CASPT2) have been used to study the
electronic spectra of indole, indene, benzimidazole, and 7-azaindole.
The paper is focused on the study of the low-lying valence triplet and
singlet electronic states at the optimized geometries of the excited
states. The geometries have been optimized by using analytic CASSCF
derivatives. CASPT2 point calculations have been performed in order to
obtain band origins and relaxed emission energies. The results are
analyzed in the context of the complex emission processes, both
fluorescence and phosphorescence, displayed by the title compounds,
which can be used as biochemical probes in the characterization of
protein properties and activity. (C) 2000 Elsevier Science B.V. All
rights reserved.
C1 Univ Valencia, Dept Quim Fis, E-46100 Valencia, Spain.
Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Serrano-Andres, L, Univ Valencia, Dept Quim Fis, Av Dr Moliner 50,
E-46100 Valencia, Spain.
CR ANDERSON BE, 1986, CHEM PHYS LETT, V125, P106
ANDERSSON K, 1997, MOLCAS VERSION 4 0
AVOURIS P, 1976, PHOTOCHEM PHOTOBIOL, V24, P211
BEARPARK MJ, 1997, J PHYS CHEM A, V101, P8395
BERDEN G, 1995, J CHEM PHYS, V103, P9596
BICKEL GA, 1989, J CHEM PHYS, V91, P6013
BORIN AC, 1999, J MOL STRUC-THEOCHEM, V464, P121
BROCKLEHURST B, 1974, SPECTROCHIM ACTA A, V30, P1807
BULSKA H, 1980, J AM CHEM SOC, V102, P3259
BULSKA H, 1984, J LUMIN, V29, P65
BYRNE JP, 1971, AUST J CHEM, V24, P1107
CALLIS PR, 1995, CHEM PHYS LETT, V244, P53
CHAPMAN CF, 1992, J PHYS CHEM-US, V96, P8430
CHOU PT, 1992, J PHYS CHEM-US, V96, P5203
DEMCHENKO AP, 1986, ULTRAVIOLET SPECTROS
EFTINK MR, 1991, FLUORESCENCE TECHNIQ
FENDER BJ, 1995, CHEM PHYS LETT, V239, P31
FENDER BJ, 1999, INT J QUANTUM CHEM, V72, P347
FUKE K, 1984, J PHYS CHEM-US, V88, P5840
FUKE K, 1989, J PHYS CHEM-US, V93, P614
FULSCHER MP, 1997, J AM CHEM SOC, V119, P6168
HAHN DK, 1997, J PHYS CHEM A, V101, P2686
HARRIGAN ET, 1973, CHEM PHYS LETT, V22, P29
HASSAN KH, 1989, J MOL SPECTROSC, V138, P398
HECKMAN RC, 1958, J MOL SPECTROSC, V2, P27
HUANG YH, 1996, J PHYS CHEM-US, V100, P4734
ILICH P, 1987, CAN J SPECTROSC, V32, P19
ILICH P, 1995, J MOL STRUCT, V354, P37
INGHAM KC, 1971, J AM CHEM SOC, V93, P5023
JALVISTE E, 1993, CHEM PHYS, V172, P325
KENDLER S, 1995, CHEM PHYS LETT, V242, P139
KIM SK, 1990, J PHYS CHEM-US, V94, P3531
LOUSTAUNEAU P, 1971, J CHIM PHYS PCB, V68, P1675
LYONS AL, 1978, J AM CHEM SOC, V100, P3177
MAKI I, 1981, B CHEM SOC JPN, V54, P8
MALMQVIST PA, 1989, CHEM PHYS LETT, V155, P189
MERCHAN M, 1999, RECENT ADV MULTIREFE, V4, P161
NEGRERIE M, 1990, J AM CHEM SOC, V112, P7419
NEGRERIE M, 1991, J PHYS CHEM-US, V95, P8663
NEGRERIE M, 1993, J PHYS CHEM-US, V97, P5046
NI T, 1989, J AM CHEM SOC, V111, P457
NODA M, 1984, B CHEM SOC JPN, V57, P2376
PERKAMPUS HH, 1992, UV VIS ATLAS ORGANIC
PIERLOOT K, 1995, THEOR CHIM ACTA, V90, P87
RICE JE, 1994, MULLIKEN VERSION 1 1
ROBEY MJ, 1975, PHOTOCHEM PHOTOBIOL, V21, P363
ROOS BO, 1995, QUANTUM MECH ELECT S, V357
ROOS BO, 1996, ADV CHEM PHYS, V93, P219
ROOS BO, 1996, J MOL STRUC-THEOCHEM, V388, P257
RUBIO M, 1999, MOL PHYS, V96, P603
SERRANOANDRES L, 1993, J PHYS CHEM-US, V97, P9360
SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P185
SERRANOANDRES L, 1996, J PHYS CHEM-US, V100, P6484
SERRANOANDRES L, 1998, J CHEM PHYS, V108, P7202
SHUKLA MK, 1998, CHEM PHYS, V230, P187
SOBOLEWSKI AL, 1999, CHEM PHYS LETT, V315, P293
SONG PS, 1969, J AM CHEM SOC, V91, P4892
STRICKLAND EH, 1970, BIOCHEMISTRY-US, V9, P4914
SUAREZ ML, 1989, J AM CHEM SOC, V111, P6384
SWIDEREK P, 1994, J CHEM PHYS, V100, P70
TAYLOR CA, 1969, P NATL ACAD SCI USA, V63, P253
VELINO B, 1992, J MOL SPECTROSC, V152, P434
WERNER HJ, 1998, MOLPRO
WIDMARK PO, 1990, THEOR CHIM ACTA, V77, P291
WILKINSON F, 1977, J CHEM SOC FARAD T 2, V73, P222
WU JQ, 1996, J PHYS CHEM-US, V100, P11496
ZILBERG S, 1996, J PHYS CHEM-US, V100, P10869
ZUCLICH J, 1974, J AM CHEM SOC, V96, P710
NR 68
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD DEC 15
PY 2000
VL 262
IS 2-3
BP 267
EP 283
PG 17
SC Physics, Atomic, Molecular & Chemical
GA 380UN
UT ISI:000165722000006
ER
PT J
AU Takahata, Y
Chong, DP
TI Accurate density-functional calculation of core-electron binding
energies of some substituted benzenes
SO BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN
LA English
DT Article
ID ZETA BASIS-SET; RAY PHOTOELECTRON-SPECTROSCOPY; GAS; APPROXIMATION;
DERIVATIVES; PARAMETERS; SPECTRA; BORON
AB The core electron binding energies (CEBE's) of benzene, seven
monosubstituted benzenes (Ph-X) and one disubstituted benzene
(p-NH2-C6H4-NO2) were calculated using density-functional theory (DFT).
The unrestricted generalized transition-state (uGTS) model was
employed. The DeMon DFT program with a combined functional of Becke's
exchange (B88) with Perdew's correlation (P86) was used. The average
absolute deviation of the calculated CEBE's of the title compounds was
0.3 eV when the cc-pVDZ basis set was used. The "CEBE shift" of the
ring carbon in Ph-X was calculated while taking the CEBE on the ring
carbon in Ph-H as a reference. The thus-calculated CEBE shifts agree
with experiment within the value of the average absolute deviation, 0.1
eV. The signs and quantitative numerical values of the CEBE shifts are
very close to the corresponding Hammett sigma constants.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada.
RP Takahata, Y, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
BR-13083970 Campinas, SP, Brazil.
CR BECKE AD, 1988, PHYS REV A, V38, P3098
BROWN RS, 1980, CAN J CHEM, V58, P694
CAVIGLIASSO G, 1999, CAN J CHEM, V77, P24
CHAERTON M, 1987, PROG PHYS ORG CHEM, V16, P287
CHEN PC, 1995, J PHYS CHEM-US, V99, P15023
CHONG DP, 1995, CHEM PHYS LETT, V232, P486
CHONG DP, 1995, J CHEM PHYS, V103, P1842
CHONG DP, 1996, CHEM PHYS LETT, V249, P491
CLEMENTI E, 1963, J CHEM PHYS, V38, P2686
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
HAMMETT LP, 1937, J AM CHEM SOC, V59, P96
JANAK JF, 1978, PHYS REV B, V18, P7165
JOLLY WL, 1984, ATOMIC DATA NUCL DAT, V31, P434
KENDALL RA, 1992, J CHEM PHYS, V96, P6796
LINDBERG B, 1975, UUIP910
LINDBERG B, 1976, CHEM PHYS LETT, V40, P175
LISTER DG, 1974, J MOL STRUCT, V23, P253
MADELUNG O, 1987, LANDOLTBORNSTEIN NUM, V15
OHTA T, 1975, B CHEM SOC JPN, V48, P2017
PERDEW JP, 1986, PHYS REV B, V33, P8822
PULFER M, 1997, CHEM PHYS, V216, P91
SADOVA NI, 1976, RUSS J STRUCT CHEM, V17, P954
SAETHRE LJ, 1991, J PHYS ORG CHEM, V4, P629
SHISHKOV IF, 1984, RUSS J STRUCT CHEM, V25, P260
SIEGBAHN K, 1969, ESCA APPL FREE MOL, P104
SLATER JC, 1972, ADVANCES QUANTUM CHE, V6, P1
SLAUGHTER AR, 1983, CHEM PHYS LETT, V98, P531
SOHAR P, 1983, NUCL MAGNETIC RESONA, V2, P187
SPIESECKE H, 1961, J CHEM PHYS, V35, P731
STAMANT A, 1990, CHEM PHYS LETT, V169, P387
TAFT RW, 1987, PROG PHYS ORG CHEM, V16, P1
WILLIAMS AR, 1975, J CHEM PHYS, V63, P628
NR 32
TC 5
PU CHEMICAL SOC JAPAN
PI TOKYO
PA 1-5 KANDA-SURUGADAI CHIYODA-KU, TOKYO, 101, JAPAN
SN 0009-2673
J9 BULL CHEM SOC JPN
JI Bull. Chem. Soc. Jpn.
PD NOV
PY 2000
VL 73
IS 11
BP 2453
EP 2460
PG 8
SC Chemistry, Multidisciplinary
GA 380KR
UT ISI:000165701500004
ER
PT J
AU da Silva, RS
Gorelsky, SI
Dodsworth, ES
Tfouni, E
Lever, ABP
TI Synthesis, spectral and redox properties of tetraammine dioxolene
ruthenium complexes
SO JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
LA English
DT Review
ID TRANSITION-METAL COMPLEXES; QUINONE-RELATED LIGANDS; COMPACT EFFECTIVE
POTENTIALS; INDUCED VALENCE TAUTOMERISM; EFFECTIVE CORE POTENTIALS;
CHARGE-TRANSFER SPECTRA; EXPONENT BASIS-SETS; ELECTRON-TRANSFER;
DINUCLEAR COMPLEXES; CRYSTAL-STRUCTURES
AB A series of species [Ru-III(NH3)(4)(Cat-R)](n+) have been synthesized
where Cat-R is a catecholate dianion having the substituent R=CO2-,
CO2H, OMe or H. These so-called parent species were characterized by
their electronic spectra, FTIR, mass spectrum, cyclic voltammetry and
EPR. Controlled potential reduction yields
[Ru-II(NH3)(4)(Cat-R)]((n-1)+) while controlled potential oxidation
yields [Ru-II(NH3)(4)(Q-R)]((n+1)+) (Q-R=substituted quinone). Density
Functional Theory (DFT) was primarily used to explore the electronic
structures of these complexes. Application of the INDO semi-empirical
model proved less useful. Time dependent density functional response
theory was used to calculate the electronic spectra of the species with
R=H. The electronic spectra of the closed shell species are well
reproduced by the calculations. The physical properties of these
complexes indicate a charge delocalized system reminiscent of a
delocalized organic molecule. The simple valence descriptions noted
above are convenient to use but do not reflect the actual electronic
structure. The electronic spectra of the parent species are temperature
dependent. The visible region charge transfer band shifts by about 1500
cm(-1) to higher energy in acidic media at liquid nitrogen temperature.
This is interpreted in terms of solvent effects rather than valence
tautomerism. The electrochemical properties of [Ru-III(NH3)(4)(Cat-R)],
in aqueous solution, reveal the first example of a reversible and
stable Ru-quinone species in that medium. The pK(a) values for several
dioxolene species, with R=CO2-, are derived from a Pourbaix diagram.
C1 York Univ, Dept Chem, N York, ON M3J 1P3, Canada.
Univ Sao Paulo, Fac Ciencias Farmaceut Ribeirao Preto, BR-14040901 Ribeirao Preto, SP, Brazil.
Univ Sao Paulo, Dept Quim, Fac Filosofia Ciencias & Letras Ribeirao Pret, BR-14040901 Ribeirao Preto, SP, Brazil.
RP Lever, ABP, York Univ, Dept Chem, 4700 Keele St, N York, ON M3J 1P3,
Canada.
CR ADAMS DM, 1993, ANGEW CHEM INT EDIT, V32, P880
ADAMS DM, 1993, ANGEW CHEM, V105, P954
ADAMS DM, 1993, J AM CHEM SOC, V115, P8221
ADAMS DM, 1995, ANGEW CHEM INT EDIT, V34, P1481
ADAMS DM, 1996, J AM CHEM SOC, V118, P11515
ADAMS DM, 1997, INORG CHEM, V36, P3966
ALLEN AD, 1967, J AM CHEM SOC, V89, P5595
ALLEN AD, 1968, CAN J CHEM, V46, P469
ATTIA AS, 1994, INORG CHIM ACTA, V226, P91
ATTIA AS, 1995, INORG CHEM, V34, P1172
ATTIA AS, 1997, INORG CHEM, V36, P6184
ATTIA AS, 1998, INORG CHEM, V37, P3051
AUBURN PR, 1990, INORG CHEM, V29, P2551
AUBURN PR, 1991, INORG CHEM, V30, P3502
BACHRACH SM, 1994, REV COMPUTATIONAL CH, V5, P177
BAG N, 1990, J CHEM SOC DA, P1557
BARTHRAM AM, 1998, CHEM COMMUN 1221, P2695
BARTHRAM AM, 1998, INORG CHIM ACTA, V267, P1
BEATTIE JK, 1977, J CHEM SOC DA, P1121
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENELLI C, 1989, INORG CHIM ACTA, V163, P99
BERATAN DN, 1989, MOL ELECTRONICS BIOS, P353
BHATTACHARYA S, 1991, INORG CHEM, V30, P1511
BIANCHINI C, 1987, INORG CHEM, V26, P3683
BODINI ME, 1983, INORG CHEM, V22, P126
BOTTOMLEY F, 1972, J CHEM SOC DA, P2148
BOTTOMLEY F, 1974, J CHEM SOC DA, P1600
BRADBURY JR, 1986, INORG CHEM, V25, P4416
BROO A, 1996, INT J QUANTUM CHEM, P1331
BROWN DG, 1976, INORG NUCL CHEM LETT, V12, P399
BROWN DG, 1979, Z NATURFORSCH B, V34, P712
BUCHANAN RM, 1978, J AM CHEM SOC, V100, P7894
BUCHANAN RM, 1983, INORG CHEM, V22, P2552
CANESCHI A, 1998, ANGEW CHEM INT EDIT, V37, P3005
CARUGO O, 1992, J CHEM SOC DA, P837
CASIDA ME, 1995, RECENT ADV DENSITY 1, P155
CASIDA ME, 1996, RECENT DEV APPL MODE, V4
CASIDA ME, 1998, J CHEM PHYS, V108, P4439
CASS ME, 1986, INORG CHEM, V25, P3962
CHAKRAVARTY AR, 1981, INORG CHEM, V20, P3138
CHENG CP, 1988, J ORGANOMET CHEM, V249, P375
CHOU MH, 1994, INORG CHEM, V33, P1674
CHRISTENSEN PA, 1993, TECHNIQUES MECH ELEC, P27
COHEN AJ, 2000, CHEM PHYS LETT, V316, P160
CRUTCHLEY RJ, 1990, INORG CHEM, V29, P2576
CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
DACUNHA CJ, 1996, INORG CHIM ACTA, V242, P293
DACUNHA CJ, 1999, INORG CHEM, V38, P5399
DEI A, 1993, INORG CHEM, V32, P5730
DODSWORTH ES, 1990, CHEM PHYS LETT, V172, P151
DUNNING TH, 1977, METHODS ELECT STRUCT, V2
EBADI M, 1999, INORG CHEM, V38, P467
FLETCHER NC, 1999, J CHEM SOC DALT 0907, P2999
FORD PC, 1970, COORDIN CHEM REV, V5, P75
FRISCH GW, 1998, GAUSSIAN 98
FUENTEALBA P, 1982, CHEM PHYS LETT, V89, P418
FUENTEALBA P, 1983, J PHYS B ATOM MOL PH, V16, P1323
FUENTEALBA P, 1985, J PHYS B ATOM MOL PH, V18, P1287
FUJITA J, 1956, J CHEM SOC, P3295
GLEU K, 1935, Z ANORG ALLG CHEM, V237, P335
GODBOUT N, 1992, CAN J CHEM, V70, P560
GORELSKY SI, 1998, COORDIN CHEM REV, V174, P469
GORELSKY SI, 2000, MOMIX PROGRAM
GRANIFO J, 1996, J CHEM SOC DALT 1207, P4369
GRESS ME, 1981, INORG CHEM, V20, P1522
GRIFFITH WP, 1966, J CHEM SOC A, P899
GRIFFITH WP, 1986, J CHEM SOC DA, P1125
GUPTA HK, 1987, POLYHEDRON, V6, P1009
HAGA M, 1986, INORG CHEM, V25, P447
HAGA M, 1986, J AM CHEM SOC, V108, P7413
HAMBLEY TW, 1986, INORG CHEM, V25, P4553
HANSCH C, 1991, CHEM REV, V91, P165
HARTL F, 1990, INORG CHEM, V29, P1073
HARTL F, 1991, INORG CHEM, V30, P2402
HAY PJ, 1985, J CHEM PHYS, V82, P270
HAY PJ, 1985, J CHEM PHYS, V82, P299
HILL PL, 1997, INORG CHEM, V36, P5655
HUSH NS, 1980, CHEM PHYS LETT, V69, P128
JORGENSON AL, 1998, J ORGANOMET CHEM, V563, P1
KABACHNIK MI, 1984, RUSS CHEM REV, V5, P37
KAIM W, 1987, COORDIN CHEM REV, V76, P187
KESSEL SL, 1980, INORG CHEM, V19, P1170
KEYES TE, 1998, INORG CHEM, V37, P5925
KIRKWOOD JG, 1934, J CHEM PHYS, V2, P351
KONDO M, 1998, J AM CHEM SOC, V120, P455
KROGHJESPERSEN K, 1987, J AM CHEM SOC, V109, P7025
KURIHARA M, 1998, B CHEM SOC JPN, V71, P867
KURIHARA M, 1998, B CHEM SOC JPN, V71, C867
LAHIRI GK, 1987, INORG CHEM, V26, P3359
LAHIRI GK, 1987, INORG CHEM, V26, P4324
LEE C, 1988, PHYS REV B, V37, P785
LEVER ABP, 1984, INORGANIC ELECT SPEC, P205
LEVER ABP, 1988, J AM CHEM SOC, V110, P8076
LEVER ABP, 1993, COORDIN CHEM REV, V125, P317
LYNCH MW, 1981, J AM CHEM SOC, V103, P3961
LYNCH MW, 1982, J AM CHEM SOC, V104, P6982
LYNCH MW, 1984, J AM CHEM SOC, V106, P2041
MAGERS KD, 1980, INORG CHEM, V19, P492
MARCH FC, 1971, CAN J CHEM, V49, P3590
MASUI H, 1991, INORG CHEM, V30, P2402
MASUI H, 1993, INORG CHEM, V32, P258
MASUI H, 2000, INORG CHEM, V39, P141
MATSUBARA T, 1976, INORG CHEM, V15, P1107
MATSUMOTO K, 1996, J AM CHEM SOC, V118, P3597
METCALFE RA, 1996, INORG CHEM, V35, P7741
METCALFE RA, 1997, INORG CHEM, V36, P4762
METCALFE RA, 1999, J CHEM SOC DALTON, P2653
MITRA KN, 1998, CHEM COMMUN 0821, P1685
MITRA KN, 1998, J CHEM SOC DALT 0907, P2901
MURAKAMI Y, 1963, B CHEM SOC JPN, V36, P669
NAKAMOTO K, 1986, INFRARED RAMAN SPECT, P191
NICHOLSON RS, 1964, ANAL CHEM, V36, P706
OHYOSHI A, 1979, B CHEM SOC JPN, V52, P3105
PAVANIN LA, 1985, INORG CHEM, V24, P4444
PEARL GM, 1999, J AM CHEM SOC, V121, P399
PELL SD, 1984, INORG CHEM, V23, P385
PIERPONT CG, 1981, COORDIN CHEM REV, V38, P45
PIERPONT CG, 1988, PURE APPL CHEM, V60, P1331
PIERPONT CG, 1995, INORG CHEM, V34, P4281
RAMADAN RM, 1999, TRANSIT METAL CHEM, V24, P193
RICHARDSON DE, 1979, INORG CHEM, V18, P2216
RIEGER PH, 1994, COORDIN CHEM REV, V135, P203
ROBINSON EA, 1999, INORG CHEM, V38, P4128
ROUX C, 1996, INORG CHEM, V35, P2846
RUIZ D, 1998, CHEM COMMUN, P208
RYBA O, 1965, COLLECT CZECH CHEM C, V30, P2157
RYBA O, 1968, COLLECT CZECH CHEM C, V33, P26
SHIMANOUCHI T, 1964, INORG CHEM, V3, P1805
SHIN YK, 1996, J PHYS CHEM-US, V100, P8157
SHIN YK, 1997, INORG CHEM, V36, P3190
SHUKLA AD, 1999, INORG CHIM ACTA, V285, P89
SILVA RS, 1995, INORG CHIM ACTA, V235, P427
SOFEN SR, 1979, INORG CHEM, V18, P234
STALLINGS MD, 1981, INORG CHEM, V20, P2655
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEVENS WJ, 1992, CAN J CHEM, V70, P612
STOLL H, 1984, J CHEM PHYS, V81, P2732
STORRIER GD, 1998, J CHEM SOC DALT 0421, P1351
STORRIER GD, 1999, INORG CHEM, V38, P559
STRATMANN RE, 1998, J CHEM PHYS, V109, P8218
STUFKENS DJ, 1988, INORG CHEM, V27, P953
STYNES HC, 1971, INORG CHEM, V10, P2304
SZABO A, 1996, MODERN QUANTUM CHEM, P85
SZYMANSKI HA, 1967, INTERPRETED INFRARED, V3, P23
THOMPSON JS, 1985, INORG CHEM, V24, P3167
TREITEL IM, 1969, J AM CHEM SOC, V91, P6512
VETTER KJ, 1967, ELECTROCHEMICAL KINE, P483
VONSZENTPALY L, 1982, CHEM PHYS LETT, V93, P555
WADT WR, 1985, J CHEM PHYS, V82, P284
WILSON HW, 1974, SPECTROCHIM ACTA A, V30, P2141
WISHART JF, 1986, INORG CHEM, V25, P3318
WONG MW, 1991, J AM CHEM SOC, V113, P4776
WONG MW, 1991, J CHEM PHYS, V95, P8991
WONG MW, 1992, J AM CHEM SOC, V114, P1645
WONG MW, 1992, J AM CHEM SOC, V114, P523
ZENG J, 1995, J PHYS CHEM-US, V99, P10459
ZENG J, 1996, J AM CHEM SOC, V118, P2059
ZENG J, 1996, J PHYS CHEM-US, V100, P19292
ZERNER MC, 1998, ZINDO PROGRAM VERSIO
NR 159
TC 12
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1470-479X
J9 J CHEM SOC DALTON TRANS
JI J. Chem. Soc.-Dalton Trans.
PY 2000
IS 22
BP 4078
EP 4088
PG 11
SC Chemistry, Inorganic & Nuclear
GA 374EC
UT ISI:000165330600019
ER
PT J
AU Levin, Y
TI Crystallization of hard spheres under gravity
SO PHYSICA A
LA English
DT Article
ID DENSITY FUNCTIONAL THEORY
AB We present a simple argument to account for crystallization of hard
spheres under the action of a gravitational field. The paper attempts
to bridge the gap between two communities of scientists, one working on
granular materials and the other on inhomogeneous liquid state theory.
(C) 2000 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
RP Levin, Y, Univ Fed Rio Grande Sul, Inst Fis, Caixa Postal 15051,
BR-91501970 Porto Alegre, RS, Brazil.
CR ALDER BJ, 1957, J CHEM PHYS, V27, P1208
BAUS M, 1985, MOL PHYS, V55, P653
BIBEN T, 1993, EUROPHYS LETT, V71, P665
CARNAHAN NF, 1969, J CHEM PHYS, V51, P635
CHANDLER D, UNPUB
CLEMENT E, 1991, EUROPHYS LETT, V16, P133
ENSKOG D, 1922, VETENSKAPSAKED HANDL, V63, P5
HAYAKAWA H, 1997, PHYS REV LETT, V78, P2764
HONG DC, 1999, PHYSICA A, V271, P192
NORDHOLM S, 1980, AUST J CHEM, V33, P2139
PERRIN J, 1910, J PHYSIQUE, V9, P5
QUINN PV, CONDMAT0005196
RAMAKRISHNAN TV, 1979, PHYS REV B, V19, P2775
SELLITTO M, UNPUB
TARAZONA P, 1984, MOL PHYS, V52, P81
TARAZONA P, 1985, PHYS REV A, V31, P2672
WOLF P, 1997, FRICTION ARCHING CON
NR 17
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD NOV 15
PY 2000
VL 287
IS 1-2
BP 100
EP 104
PG 5
SC Physics, Multidisciplinary
GA 372HE
UT ISI:000165227600007
ER
PT J
AU Dos Santos, HF
De Oliveira, LFC
Dantas, SO
Santos, PS
De Almeida, WB
TI Quantum mechanical investigation of the tautomerism in the azo dye
Sudan III
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE tautomerism; Sudan III bis-azo; ab initio (HF and MP2)
ID RAMAN EXCITATION PROFILES; MOLECULAR-ORBITAL METHODS;
DIFFERENTIAL-OVERLAP TECHNIQUE; GAUSSIAN-TYPE BASIS; TRANS-AZOBENZENE;
BASIS-SETS; AB-INITIO; CONFORMATIONAL-ANALYSIS; INTERMEDIATE NEGLECT;
ELECTRON CORRELATION
AB The tautomerism in Sudan ill bis-azo dye has been analyzed using ab
initio Hartee-Fock [HF] and second-order Moller-Plesset perturbatim
theory [MP2] and density functional (B3LYP) methods. Gas-phase and
solution calculations were performed to investigate the solvent effect
on the azo (OH) --> hydrazone (NH) tautomeric equilibrium. The azo (OH)
tautomer was found to be preferred in gas phase at the HF level of
theory. The inclusion of the electronic correlation (MP2) shifted the
equilibrium toward the hydrazone (NH) form. The NH isomer was also
found to be more favorable in the gas phase according to the B3LYP
results. In solution the equilibrium is shifted toward the NH tautomer
as the dielectric constant of the medium increases. The energy barrier
for the intramolecular proton transference was calculated and the value
found suggested a strong hydrogen bond. The B3LYP and MP2 activation
Gibbs free energies were very close and much lower than the HF value.
The ultraviolet/visible electronic spectra for the minima and
transition state (TS) structures were calculated and compared with the
experimental data. The theoretical band positions obtained considering
the TS geometry were found to best agree with the experimental data.
(C) 2000 John Wiley & Sons, Inc.
C1 Univ Fed Juiz de Fora, NEQC, Dept Quim, Inst Ciencias Exatas, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Juiz de Fora, NEEM, Dept Quim, Inst Ciencias Exatas, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Juiz de Fora, Inst Ciencias Exatas, Dept Fis, Juiz De Fora, MG, Brazil.
Univ Sao Paulo, Inst Quim, Lab Expectroscopia Mol, BR-05508 Sao Paulo, Brazil.
Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Quim, Belo Horizonte, MG, Brazil.
RP Dos Santos, HF, Univ Fed Juiz de Fora, NEQC, Dept Quim, Inst Ciencias
Exatas, BR-36036330 Juiz De Fora, MG, Brazil.
CR ARMSTRONG DR, 1995, J PHYS CHEM-US, V99, P17825
BARNES AJ, 1985, SPECTROCHIM ACTA A, V41, P629
BASTIANSEN O, 1949, ACTA CHEM SCAND, V3, P408
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BELL S, 1998, J RAMAN SPECTROSC, V29, P447
BERSHTEIN IY, 1972, RUSS CHEM REV, V41, P97
BERTOLASI V, 1991, J AM CHEM SOC, V113, P4917
BERTOLASI V, 1993, J CHEM SOC P2, V2, P2223
BERTOLASI V, 1994, ACTA CRYSTALLOGR B 5, V50, P617
BERTOLASI V, 1994, NEW J CHEM, V18, P251
BERTOLASI V, 1995, ACTA CRYSTALLOGR B 6, V51, P1004
BIANCALANA A, 1992, J RAMAN SPECTROSC, V23, P155
BIANCALANA A, 1993, J RAMAN SPECTROSC, V24, P43
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BIRCH EJ, 1998, J AGR FOOD CHEM, V46, P5332
BISWAS N, 1995, CHEM PHYS LETT, V236, P24
BISWAS N, 1997, J PHYS CHEM A, V101, P5555
BOUWSTRA JA, 1983, ACTA CRYSTALLOGR C, V39, P1121
CATALIOTTI RS, 1985, J RAMAN SPECTROSC, V16, P251
CATALIOTTI RS, 1985, J RAMAN SPECTROSC, V16, P258
CLARK RJH, 1991, ADV MAT SCI SPECTROS
DEALMEIDA WB, 1998, J CHEM SOC DA, V15, P2531
DEALMEIDA WB, 1998, J PHARM SCI, V87, P1101
DEOLIVEIRA LFC, UNPUB
DEOLIVEIRA LFC, 1997, J RAMAN SPECTROSC, V28, P53
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DOBBS KD, 1987, J COMPUT CHEM, V8, P880
DOSSANTOS HF, IN PRESS THEOCHEM
DOSSANTOS HF, UNPUB QUIM NOVA
DOSSANTOS HF, 1998, J PHARM SCI, V87, P190
DOSSANTOS HF, 1998, THEOR CHEM ACC, V99, P301
EDWARDS WD, 1987, THEOR CHIM ACTA, V72, P347
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FUJITA S, 1988, CANCER RES, V48, P254
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GRANGER CT, 1969, ACTA CRYSTALLOGR B, V25, P1962
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HARIHARAN PC, 1974, MOL PHYS, V27, P209
HEAD JD, 1986, CHEM PHYS LETT, V131, P359
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOUBEN JL, 1982, J RAMAN SPECTROSC, V13, P15
KIM Y, 1999, J PHYS CHEM A, V103, P6632
KOLLMAN P, 1993, CHEM REV, V93, P2395
KUDER JE, 1972, TETRAHEDRON, V28, P1973
LORRIAUX JL, 1979, J RAMAN SPECTROSC, V8, P81
LUNAK S, 1994, CHEM PHYS, V184, P255
MOLLER C, 1934, PHYS REV, V46, P618
MONAHAN AR, 1972, CHEM PHYS LETT, V17, P510
OLIVIERI AC, 1989, J AM CHEM SOC, V111, P5525
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
PAVA RP, 1987, J CHEM PHYS, V87, P3758
POULAIN N, 1998, J POLYM SCI POL CHEM, V36, P3035
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
SAEBO S, 1989, CHEM PHYS LETT, V154, P83
SOURISSEAU C, 1994, J RAMAN SPECTROSC, V25, P477
SOUZA JD, UNPUB
SUZUKI H, 1967, ELECT ABSORPTION SPE, CH23
TECKLENBURG MMJ, 1997, J RAMAN SPECTROSC, V28, P755
TOMASI J, 1994, CHEM REV, V94, P2027
TRAETTEBERG M, 1977, J MOL STRUCT, V39, P231
VARGA Z, 1998, PATHOL INT, V48, P912
ZERNER MC, 1980, J AM CHEM SOC, V102, P589
NR 63
TC 7
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD NOV-DEC
PY 2000
VL 80
IS 4-5
BP 1076
EP 1086
PG 11
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 370DP
UT ISI:000165108300056
ER
PT J
AU de Moraes, PRP
Linnert, HV
Aschi, M
Riveros, JM
TI Experimental and theoretical characterization of long-lived triplet
state CH3CH2S+ cations
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID ION-MOLECULE REACTIONS; POTENTIAL-ENERGY SURFACES; GAS-PHASE REACTIONS;
G2 AB-INITIO; NEUTRALIZATION-REIONIZATION; METHOXYMETHYL CATION;
FRAGMENTATION PROCESSES; IONIZATION ENERGIES; UNIMOLECULAR DECAY;
PROTON AFFINITIES
AB Gas-phase [C2H5S](+) ions obtained by electron impact ionization from
CH3SC2H5 at 13 eV undergo three distinct low-pressure ion/molecule
reactions with the parent neutral: proton transfer, charge transfer,
and hydride abstraction. The kinetics of these reactions studied by
FT-ICR techniques clearly suggests the [C2H5S](+) species to be a
mixture of isomeric ions. While proton transfer and hydride abstraction
are consistent with CH3CHSH+ and CH3SCH2+ reagent ions, the observed
charge transfer strongly argues for the presence of thioethoxy cation,
CH3CH2S+, predicted to be stable only in the triplet state. Charge
transfer reactions only occur with substrates having an IE below 8.8 eV
and thus yield an upper limit for he recombination energy of the
CH3CH2S+ ions. Studies using CD3SC2H5 show that charge-transfer
reactions are promoted by cations originating from a sulfur-methyl
carbon bond cleavage. Ab initio calculations at several levels of
theory predict that CH3CH2S+ ions are only stable in the triplet state.
Calculations along the fragmentation pathway of the molecular ion
reveal the tendency to generate triplet CH3CH2S+ ions upon cleavage of
the sulfur-methyl carbon bond. Calculations were also carried out to
determine the lifetime of triplet CH3CH2S+ using nonadiabatic RRKM
theory. The exothermic or near thermoneutral spin-forbidden
unimolecular isomerizations and dissociations were first characterized
at different levels of theory, and the minimum energy crossing points
(MECPs) for all the channels were identified at the CCSD(T) level. The
probability for surface hopping was then estimated from the spin-orbit
matrix elements. The calculated unimolecular dissociation rate
constants predict that triplet CH3CH2S+ ions with less than 10 kcal
mol(-1) of internal energy and at any level of rotational excitation
should be long-lived, and strongly support the experimental
observations.
C1 Univ Sao Paulo, Inst Chem, BR-05513970 Sao Paulo, Brazil.
Univ Rome La Sapienza, Dipartimento Chim, I-00185 Rome, Italy.
RP Riveros, JM, Univ Sao Paulo, Inst Chem, Caisa Postal 26077, BR-05513970
Sao Paulo, Brazil.
CR APELOIG Y, 1988, J CHEM SOC P2, P625
ASCHI M, 1998, CHEM COMMUN 0307, P531
ASCHI M, 1999, J CHEM PHYS, V111, P6759
AUDIER HE, 1994, ORG MASS SPECTROM, V29, P176
AUDIER HE, 1997, J MASS SPECTROM, V32, P201
AUE DH, 1980, J AM CHEM SOC, V102, P5151
BAKER J, 1993, CHEM PHYS LETT, V213, P257
BARRIENTOS C, 1999, CHEM PHYS LETT, V306, P168
BORTOLINI O, 1999, TETRAHEDRON LETT, P6073
BRODBELT J, 1991, ANAL CHEM, V63, P1205
BROER WJ, 1979, ORG MASS SPECTROM, V14, P543
BRONSTRUP M, 1998, EUR J INORG CHEM OCT, P1529
BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR, P276
BUTKOVSKAYA NI, 1999, J PHYS CHEM A, V103, P6921
BUTLER JJ, 1983, J AM CHEM SOC, V105, P3451
CACACE F, 1999, SCIENCE, V285, P81
CASERIO MC, 1982, J ORG CHEM, V47, P2940
CHEUNG YS, 1998, J ELECTRON SPECTROSC, V97, P115
CHIU SW, 1997, THEOCHEM-J MOL STRUC, V397, P87
CHIU SW, 1998, THEOCHEM-J MOL STRUC, V452, P97
CHIU SW, 1999, J MOL STRUC-THEOCHEM, V490, P109
CURTISS LA, 1992, J CHEM PHYS, V97, P6766
CURTISS LA, 1995, J CHEM PHYS, V102, P3292
DARGEL TK, 1999, INT J MASS SPECTROM, V187, P925
DEMARE GR, 1983, B SOC CHIM BELG, V92, P553
DUNBAR RC, 1973, J AM CHEM SOC, V95, P7200
FILSAK G, 1999, J MASS SPECTROM, V34, P601
FLAMMANG R, 1994, J AM CHEM SOC, V116, P2005
FLAMMANG R, 1999, CHEM PHYS LETT, V300, P183
FREITAS MA, 1998, INT J MASS SPECTROM, V175, P107
FRISCH MJ, 1995, GAUSSIAN 94
GAUMANN T, 1990, HELV CHIM ACTA, V73, P2218
GAUMANN T, 1991, J AM SOC MASS SPECTR, V2, P372
GRIFFITHS WJ, 1989, ORG MASS SPECTROM, V24, P849
HARVEY JN, 1998, THEOR CHEM ACC, V99, P95
HASE W, 1996, UNIMOLECULAR REACTIO
HUNTER EPL, 1998, J PHYS CHEM REF DATA, V27, P413
INGEMANN S, COMMUNICATION
IRIKURA KK, 1999, J AM CHEM SOC, V121, P7689
KENDALL RA, 1992, J CHEM PHYS, V96, P6796
KEYES BG, 1968, J AM CHEM SOC, V90, P5671
KINTER MT, 1986, J AM CHEM SOC, V108, P1797
KOGA N, 1985, CHEM PHYS LETT, V119, P371
KOGA N, 1994, CHEM PHYS LETT, V223, P269
KOSEKI S, 1995, J PHYS CHEM-US, V99, P12764
KUHNS DW, 1994, J PHYS CHEM-US, V98, P4845
LORQUET JC, 1988, J PHYS CHEM-US, V92, P4778
MA ZX, 1993, CHEM PHYS LETT, V213, P250
MORGON NH, 1996, J PHYS CHEM-US, V100, P18048
MORGON NH, 1997, J AM CHEM SOC, V119, P1708
NAKAMURA H, 1997, ANNU REV PHYS CHEM, V48, P299
NIBBERING NMM, 1993, CHEM SULFUR CONTAINI, P293
NIKITIN EE, 1996, ATOMIC MOL OPTICAL P, P561
NOBES RH, 1984, J AM CHEM SOC, V106, P2774
OKADA S, 1987, J AM CHEM SOC, V109, P295
PAU JK, 1978, J AM CHEM SOC, V100, P3838
POLCE MJ, 1995, J AM SOC MASS SPECTR, V6, P1030
RIVEROS JM, 1991, RAPID COMMUN MASS SP, V5, P387
SADILEK M, 1999, INT J MASS SPECTROM, V185, P639
SADILEK M, 1999, INT J MASS SPECTROM, V187, P639
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1910
SENA M, 1997, J PHYS CHEM A, V101, P4384
SHIU SW, 1999, J MOL STRUCT THEOCHE, V468, P21
SMITH D, 1992, CHEM REV, V92, P1473
STALEY RH, 1974, J AM CHEM SOC, V96, P1260
SUMATHI R, 1999, J PHYS CHEM A, V103, P772
TOMER KB, 1973, J AM CHEM SOC, V95, P5335
VANAMSTERDAM MW, 1993, ORG MASS SPECTROM, V28, P30
VANDEGRAAF B, 1977, J AM CHEM SOC, V99, P6806
VANDEGRAAF B, 1977, J AM CHEM SOC, V99, P6810
VANDEGRAAF B, 1980, ADV MASS SPECTROM A, V8, P678
WILSON PF, 1994, INT J MASS SPECTROM, V132, P149
YARKONY DR, 1995, MODERN ELECT STRUCTU, P642
YARKONY DR, 1996, ATOMIC MOL OPTICAL P, P357
ZAPPEY HW, 1992, INT J MASS SPECTROM, V115, P193
ZAPPEY HW, 1992, J AM SOC MASS SPECTR, V3, P515
NR 76
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AM CHEM SOC
JI J. Am. Chem. Soc.
PD OCT 18
PY 2000
VL 122
IS 41
BP 10133
EP 10142
PG 10
SC Chemistry, Multidisciplinary
GA 368FT
UT ISI:000090107600031
ER
PT J
AU De Oliveira, MA
Duarte, HA
Pernaut, JM
De Almeida, WB
TI Energy gaps of alpha,alpha '-substituted oligothiophenes from
semiempirical, ab initio, and density functional methods
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR-ORBITAL THEORY; EXTENDED BASIS-SETS; ORGANOMETALLIC
COMPOUNDS; ELECTRONIC-STRUCTURE; THIOPHENE OLIGOMERS;
VIBRATIONAL-SPECTRA; BIPOLARONIC DEFECT; TRANSITION-METALS;
2,2'-BITHIOPHENE; POLYTHIOPHENE
AB Energy gaps have been estimated for -OMe and -NO2
alpha,alpha'-substituted oligothiophenes up to six monomers using
semiempirical, Hartree-Fock and density functional methods. Scaled
values calculated using noncorrelated methods are in good agreement
with the experimental values, and so were nonscaled estimates predicted
by density functional methods. Error bars are ca. 0.2 eV for all II
oligothiophenes studied. The influence of the quality of the basis set
on the energy estimates is discussed. The discrepancy observed for the
-OMe- and -NO2-substituted sexithiophene result with respect to the
experimental value is discussed and has been attributed to a charge
transfer in the molecule. The Delta SCF approach has been found to be
an alternative way to estimate energy gaps for molecular systems where
Koopmans' theorem may not provide good results. Implications for
predictions of HOMO-LUMO gaps of pi-conjugated systems are discussed
and analyzed in terms of designing new materials with controlled
properties.
C1 Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol, BR-31270 Belo Horizonte, MG, Brazil.
Univ Fed Minas Gerais, ICEx, Lab Novos Mat, Dept Quim, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, UFJF, ICE, Dept Quim, Campus Univ, Juiz de Fora, MG,
Brazil.
CR BECKE AD, 1993, J CHEM PHYS, V98, P1372
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BECKER RS, 1995, PURE APPL CHEM, V67, P9
BINNING RC, 1990, J COMPUT CHEM, V11, P1206
BOLIVARMARINEZ LE, 1996, J PHYS CHEM-US, V100, P11029
BREAS J, 1985, J CHEM PHYS, V82, P3811
BREDAS JL, 1984, PHYS REV B, V29, P6761
BREDAS JL, 1985, J CHEM PHYS, V82, P3808
BREDAS JL, 1991, CONJUGATED POLYM NOV
CASIDA ME, 1996, DEMON SOFTWARE DEMON
DEOLIVEIRA MA, 2000, PHYS CHEM CHEM PHYS, V2, P3373
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DIRAC PAM, 1930, P CAMB PHILOS SOC, V26, P376
DOBBS KD, 1986, J COMPUT CHEM, V7, P359
DOBBS KD, 1987, J COMPUT CHEM, V8, P861
DOBBS KD, 1987, J COMPUT CHEM, V8, P880
DUARTE HA, IN PRESS J CHEM PHYS
EHRENDORFER C, 1994, J PHYS CHEM-US, V98, P7492
EHRENDORFER C, 1995, J MOL STRUCT, V349, P417
EHRENDORFER C, 1995, J PHYS CHEM-US, V99, P5341
EHRENDORFER C, 1995, VIB SPECTROSC, V8, P293
FICHOU D, 1990, SYNTHETIC MET, V39, P243
FORNI A, 1997, J PHYS CHEM A, V101, P4437
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GARCIA P, 1993, J PHYS CHEM-US, V97, P513
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GUNNARSSON O, 1976, PHYS REV B, V13, P4274
IRLE S, 1995, J CHEM PHYS, V98, P7492
JANAK JF, 1978, PHYS REV B, V18, P7165
KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
KOFRANEK M, 1992, J MOL STRUCT THEOCHE, V259, P181
LAHTI PM, 1987, MACROMOLECULES, V20, P2023
LEE C, 1988, PHYS REV B, V37, P785
LEVY M, 1999, PHYS REV A, V59, P1687
MULLEN K, 1999, ELECT MAT OLIGOMER A
NALWA HS, 1997, ORGANIC CONDUCTIVE M
ORTI E, 1995, J PHYS CHEM-US, V99, P4955
PERNAUT JM, 1994, J CHIM PHYS PCB, V91, P433
QUATTROCCHI C, 1993, CHEM PHYS LETT, V208, P120
RONCALI J, 1992, CHEM REV, V92, P711
SAMDAL S, 1993, SYNTHETIC MET, V59, P259
SCOTHEIM TA, 1998, HDB CONDUCTING POLYM
SLATER JC, 1951, PHYS REV, V81, P385
SLATER JC, 1974, QUANTUM THEORY MOL S, V4
STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
STEWART JJP, MOPAC 93 MANUAL
VIRUELA PM, 1998, INT J QUANTUM CHEM, V70, P303
VOSKO SH, 1980, CAN J PHYS, V58, P1200
NR 48
TC 26
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 7
PY 2000
VL 104
IS 35
BP 8256
EP 8262
PG 7
SC Chemistry, Physical
GA 359HC
UT ISI:000089604600013
ER
PT J
AU Tormena, CF
Rittner, R
Abraham, RJ
Basso, EA
Pontes, RM
TI Conformational analysis. Part 33. An NMR, solvation and theoretical
investigation of conformational isomerism in
N,N-dimethylfluoroacetamide and N,N-dimethyl-alpha-fluoropropionamide
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID INTERNAL-ROTATION; VIBRATIONAL ASSIGNMENT; ABINITIO CALCULATIONS;
BARRIERS; STABILITY; CHLORIDE; FLUOROACETONE; SPECTRA; RAMAN
AB The solvent and temperature dependence of the H-1 and C-13 NMR spectra
of N,N-dimethylfluoroacetamide (DMFA) and
N,N-dimethyl-alpha-fluoropropionamide (DMFP) are reported and the
(5)J(CF), (1)J(CF) and (4)J(CF) couplings analysed by solvation theory.
Density function theory (DFT) at the B3LYP/6-311+G(d,p) level with ZPE
(zero point energy) corrections was used to obtain the conformer
geometries. In DMFA, the DFT method gave only two minima for the cis
(F-C-C=O, 0 degrees) and gauche (F-C-C=O, 140.6 degrees) rotamers. The
trans rotamer was not a minimum in the energy surface. Assuming only
the cis and gauche forms, the observed couplings when analysed by
solvation theory gave the energy difference (E-cis - E-g) of 2.5 kcal
mol(-1) in the vapour phase, (cf. the ab initio value of 2.3 kcal
mol(-1)) decreasing to 0.87 kcal mol(-1) in CCl4 and to -1.29 kcal
mol(-1) in DMSO. In DMFP the ab initio calculations gave three minima;
the cis (F-C-C=O, 30.4 degrees), gauche-1 (F-C-C=O, 144.7 degrees) and
gauche-2 (F-C-C=O, -124.1 degrees) rotamers with (E-cis - E-g2) equal
to 2.5 kcal mol(-1) and (E-g1 - E-g2) equal to 0.3 kcal mol(-1). The
observed couplings were analysed by solvation theory assuming one
"average" gauche conformer to give (E-cis - E-g(AV)) equal to 2.1 kcal
mol(-1) in the vapour phase, decreasing to 0.83 kcal mol(-1) in CCl4
and to -1.11 kcal mol(-1) in DMSO.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
Univ Estadual Maringa, Dept Quim, BR-87020900 Maringa, Parana, Brazil.
RP Rittner, R, Univ Estadual Campinas, Inst Quim, Caixa Postal 6154,
BR-13083970 Campinas, SP, Brazil.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
ABRAMSON KH, 1966, CAN J CHEM, V44, P1685
BANKS JW, 1999, J CHEM SOC PERK NOV, P2409
DURIG JR, 1989, J CHEM PHYS, V90, P6840
DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
DURIG JR, 1991, J MOL STRUCT, V242, P179
DURIG JR, 1991, J RAMAN SPECTROSC, V22, P141
EWING DF, 1972, J CHEM SOC P2, P701
FORESMAN JB, 1993, EXPLORING CHEM ELECT
KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P3572
KLAPSTEIN D, 1988, CAN J SPECTROSC, V33, P161
PHAN HV, 1993, SPECTROCHIM ACTA A, V49, P1967
PITTMAN CU, 1980, MACROMOLECULES, V13, P1031
ROSS BD, 1985, J PHYS CHEM-US, V89, P836
SAEGEBARTH E, 1967, J CHEM PHYS, V46, P3088
SAEGEBARTH E, 1970, J CHEM PHYS, V52, P3555
SAUNDERS BC, 1948, J CHEM SOC, P1773
TAKEUCHI Y, 1991, J CHEM SOC PERK JAN, P49
TORMENA CF, 2000, THESIS U ESTADUAL CA
VANEIJCK BP, 1972, J MOL STRUCT, V11, P67
WAYLAND BB, 1966, J AM CHEM SOC, V88, P2455
NR 25
TC 18
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1470-1820
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2000
IS 10
BP 2054
EP 2059
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA 358HU
UT ISI:000089553200009
ER
PT J
AU Cuccovia, IM
da Silva, MA
Ferraz, HMC
Pliego, JR
Riveros, JM
Chaimovich, H
TI Revisiting the reactions of nucleophiles with arenediazonium ions:
dediazoniation of arenediazonium salts in aqueous and micellar
solutions containing alkyl sulfates and alkanesulfonates and an ab
initio analysis of the reaction pathway
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID COUNTERION SELECTIVITY; ARYL CATIONS; TETRAFLUOROBORATE;
2-METHYLBENZENEDIAZONIUM; 3-METHYLBENZENEDIAZONIUM; DECOMPOSITION;
MECHANISM; RATES; WATER; MODEL
AB Dediazoniation of 2,4,6-trimethylbenzenediazonium tetrafluoroborate,
1-ArN2BF4 (for the z-Ar compounds described in this paper, z refers to
the length of the carbon chain of the substituent at C4 of the benzene
ring), in aqueous solutions containing sodium methyl sulfate, NaMeSO4,
or sodium methanesulfonate, NaMeSO3, yields 2,4,6-trimethylphenol,
1-ArOH, 2,4,6-trimethylphenyl methyl sulfate, 1-ArOSO3Me and
2,4,6-trimethylphenyl methanesulfonate, 1-ArO3SMe, respectively. The
relative yields of 1-ArO3SMe or 1-ArOSO3Me and 1-ArOH depend on the
NaMeSO4 or NaMeSO3 concentrations.
4-n-Hexadecyl-2,6-dimethylbenzenediazonium tetrafluoroborate,
16-ArN2BF4, was used to determine the local head group concentration in
sodium dodecyl sulfate and sodium dodecanesulfonate micelles by
chemical trapping comparing the relative product yields with those
obtained in water using the short chain analogs.
Ab initio calculations of the spontaneous dediazoniation of
phenyldiazonium ion in the gas phase, as well as in aqueous solution
with, or without, added MeSO3-, yield potential energy surfaces for the
reaction. For this model the calculated and experimental values of the
spontaneous dediazoniation rate constants in aqueous solution, as well
as the product composition, were similar to those obtained with
1-ArN2+. These results suggest that in aqueous solution nucleophiles
can only compete with water if a diazonium ion . nucleophile complex is
formed prior to N-2 loss. Calculations show that the addition of
nucleophiles to the arenediazonium ion occurs without a saddle point in
the potential energy surface, suggesting that the free phenyl cation is
not an obligatory intermediate in aqueous solutions.
C1 Univ Sao Paulo, Inst Quim, Dept Bioquim, BR-05508900 Sao Paulo, Brazil.
Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, BR-05508900 Sao Paulo, Brazil.
RP Cuccovia, IM, Univ Sao Paulo, Inst Quim, Dept Bioquim, Av Prof Lineu
Prestes 748, BR-05508900 Sao Paulo, Brazil.
CR AMBROZ HB, 1979, CHEM SOC REV, V8, P353
BERGSTROM RG, 1976, J AM CHEM SOC, V98, P3301
BRAVODIAZ C, 1998, LANGMUIR, V14, P5098
BRAVODIAZ C, 1999, LANGMUIR, V15, P282
BUNCEL E, 1978, BIOORG CHEM, V7, P1
BUNTON CA, 1951, J CHEM SOC, P1872
CANNING PSJ, 1999, J CHEM SOC PERK T 2, P2735
CHALKLEY GR, 1970, J CHEM SOC C, P682
CHAUDHURI A, 1993, J AM CHEM SOC, V115, P8362
CORREIA VR, 1992, J AM CHEM SOC, V114, P2144
CROSSLEY ML, 1940, J AM CHEM SOC, V62, P1400
CUCCOVIA IM, 1997, LANGMUIR, V13, P5032
CUCCOVIA IM, 1997, LANGMUIR, V13, P647
DAS PK, 1999, LANGMUIR, V15, P981
EDWARDS JO, 1962, J AM CHEM SOC, V84, P16
FENDLER JH, 1975, CATALYSIS MICELLAR M
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 1995, GAUSSIAN 94
GARCIAMEIJIDE MC, 1998, INT J CHEM KINET, V30, P31
GLASER R, 1995, J ORG CHEM, V60, P7518
GUTHRIE JP, 1973, CAN J CHEM, V51, P3494
HEGARTY AF, 1978, CHEM DIAZONIUM DIA 2
KICE JL, 1966, J AM CHEM SOC, V88, P5242
KURZ JL, 1962, J PHYS CHEM-US, V66, P2239
LEWIS ES, 1962, J AM CHEM SOC, V84, P3847
LEWIS ES, 1969, J AM CHEM SOC, V91, P419
LOUGHLIN JA, 1990, COLLOID SURFACE, V48, P123
LOWRY TH, 1987, MECH THEORY ORGANIC, P367
NESMEYANOV AN, 1957, TETRAHEDRON, V1, P145
PAZOLLORENTE R, 1999, INT J CHEM KINET, V31, P73
PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
PLIEGO JR, 1999, PCCP PHYS CHEM CH PH, V1, P1031
ROMSTED LS, 1998, J AM CHEM SOC, V120, P10046
SAUNDERS KH, 1985, AROMATIC DIAZO COMPO
SCAIANO JC, 1983, J PHOTOCHEM, V23, P269
SCHALES O, 1941, J BIOL CHEM, V140, P879
SOLDI V, 2000, LANGMUIR, V16, P59
SWAIN CG, 1975, J AM CHEM SOC, V97, P783
SWAIN CG, 1975, J AM CHEM SOC, V97, P796
ZOLLINGER H, 1994, DIAZO CHEM, V1
NR 40
TC 13
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1470-1820
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2000
IS 9
BP 1896
EP 1907
PG 12
SC Chemistry, Organic; Chemistry, Physical
GA 356CM
UT ISI:000089426800021
ER
PT J
AU Martins, JBL
Taft, CA
Lie, SK
Longo, E
TI Lateral interaction of CO and H-2 molecules on ZnO surfaces: an AM1
study
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE ZnO surface; (ZnO)(60) clusters; CO and H-2 adsorption; AM1
semi-empirical model
ID LARGE CLUSTER-MODELS; ROOM-TEMPERATURE; ZINC-OXIDE; AB-INITIO;
POTENTIAL DEPENDENCE; METHANOL SYNTHESIS; BASIS-SET; ADSORPTION;
HYDROGEN; PHOTOELECTRON
AB We have studied the effects of lateral interactions for CO and H-2
adsorbed on large (ZnO)(60) cluster models. The calculations were
performed with the AM1 semi-empirical method. The geometric parameters
of the adsorbed molecules were fully optimized. CO interacts with the
zinc cation located at the site having the lowest coordination at the
edge sites between the (0001) and (10 (1) over bar 0) surfaces, The
binding energy is increased as we increase the number of adsorbed CO
molecules on the ZnO surface. For H-2 molecular interaction, the
calculated energy gaps and ionization potentials are modified relative
to the bare cluster. We have analyzed the optimized geometric
parameters, charge transfer as well as the density of states and
compared our results with available experimental data such as density
of states, vibrational frequencies, adsorption energies and surface
charge. (C) 2000 Elsevier Science B.V. All rights reserved.
C1 Univ Brasilia, Inst Quim, BR-70919970 Brasilia, DF, Brazil.
Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290180 Rio De Janeiro, Brazil.
Univ Fed Fluminense, Inst Fis, BR-24020 Niteroi, RJ, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13560905 Sao Carlos, SP, Brazil.
RP Martins, JBL, Univ Brasilia, Inst Quim, Caixa Postal 04478, BR-70919970
Brasilia, DF, Brazil.
CR ABRAHAMS SC, 1969, ACTA CRYSTALLOGR B, V25, P1233
ALMEIDA AL, 1998, J CHEM PHYS, V109, P3671
ALMEIDA AL, 1998, THEOCHEM-J MOL STRUC, V426, P199
ANDERSON AB, 1986, J AM CHEM SOC, V108, P1385
BOCCUZZI F, 1978, J CATAL, V51, P150
BOCCUZZI F, 1978, J CATAL, V51, P160
BOCCUZZI F, 1996, J PHYS CHEM-US, V100, P3617
BOLIS V, 1989, J CHEM SOC FARAD T 1, V85, P855
CHANG CC, 1973, J PHYS CHEM-US, V77, P2634
DAMICO KL, 1983, J AM CHEM SOC, V105, P6380
DENT AL, 1969, J PHYS CHEM-US, V73, P3772
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
FUBINI B, 1982, J CHEM SOC F1, V78, P153
GAY RR, 1980, J AM CHEM SOC, V102, P6752
GHIOTTI G, 1993, SURF SCI A, V287, P228
GRIFFIN GL, 1982, J CHEM PHYS, V77, P3751
HUSSAIN G, 1987, SPECTROCHIM ACTA A, V43, P1631
HUSSAIN G, 1990, J CHEM SOC FARADAY T, V86, P1615
KLIER K, 1982, ADV CATAL, V31, P243
LAI WJ, 1992, J MOL STRUCT THEOCHE, V257, P217
LAVALLEY JC, 1994, SURF SCI, V315, P112
LIN JY, 1991, J AM CHEM SOC, V113, P8312
MARTINS JBL, 1994, J MOL STRUCT, V303, P19
MARTINS JBL, 1995, THEOCHEM, V330, P301
MARTINS JBL, 1995, THEOCHEM, V330, P347
MARTINS JBL, 1995, THEOCHEM-J MOL STRUC, V335, P167
MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
MARTINS JBL, 1996, THEOCHEM-J MOL STRUC, V363, P249
MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V397, P147
MARTINS JBL, 1997, THEOCHEM-J MOL STRUC, V398, P457
MARTINS JBL, 1998, INT J QUANTUM CHEM, V70, P367
MAVRIDIS A, 1989, J AM CHEM SOC, V111, P2482
MINOT C, 1996, SURF SCI, V346, P283
MINOT C, 1998, THEOCHEM-J MOL STRUC, V424, P119
MOLLER PJ, 1995, SURF SCI, V323, P102
PELTIER F, 1996, J CHIM PHYS PCB, V93, P1376
SCARANO D, 1992, SURF SCI, V276, P281
SENSATO FR, 1997, THEOCHEM-J MOL STRUC, V394, P259
SHANNO DF, 1985, J OPTIMIZ THEORY APP, V46, P87
SOLOMON EI, 1993, CHEM REV, V93, P2623
STEWART JP, 1983, QCPE B, V3, P43
ZHANPEISOV NU, 1994, J STRUCT CHEM, V35, P9
NR 42
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD AUG 25
PY 2000
VL 528
BP 161
EP 170
PG 10
SC Chemistry, Physical
GA 355DN
UT ISI:000089370600017
ER
PT J
AU de Almeida, NG
Napolitano, R
Moussa, MHY
TI Phenomenological-operator approach to dissipation in cavity quantum
electrodynamics
SO PHYSICAL REVIEW A
LA English
DT Article
ID PODOLSKY-ROSEN CHANNELS; EXPERIMENTAL REALIZATION; TELEPORTATION;
STATE; DECOHERENCE; METER
AB We present a phenomenological-operator approach to describe energy
dissipation in cavity QED phenomena. This approach, developed for an
absolute-zero and a thermal environment, considerably simplifies the
introduction of the inevitable errors due to the environmental degrees
of freedom when describing processes involving dispersive atom-field
interactions. The main result in the present work consists in
furnishing a straightforward technique to estimate the fidelity
resulting from dispersive atom-field interactions, precluding the
necessity of performing the usually extensive ab initio calculations.
Furthermore, we expect that the present work can help us account for
dissipation in resonant atom-field interactions and even help us
achieve a general phenomenological approach to estimate the effects of
dissipation in whichever system. To illustrate the universal
applicability of the present technique, we calculate the fidelity of a
mesoscopic quantum superposition state engineered in a lossy cavity,
considering also the excited-state spontaneous decay of the required
atom. For the case of a stable atomic excited state, the fidelity
computed here is in agreement with a recently announced exact
calculation.
C1 Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Paulo, Brazil.
Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Paulo, Brazil.
RP de Almeida, NG, Univ Fed Sao Carlos, Dept Fis, Via Washington Luis,Km
235, BR-13565905 Sao Paulo, Brazil.
CR ALMEIDA NG, UNPUB
BENNETT CH, 1993, PHYS REV LETT, V70, P1895
BOSCHI D, 1998, PHYS REV LETT, V80, P1121
BOUWMEESTER D, 1997, NATURE, V390, P575
BRIEGEL HJ, QUANTPH9712027
BRIEGEL HJ, 1998, PHYS REV LETT, V81, P5932
BRUNE M, 1992, PHYS REV A, V45, P5193
BRUNE M, 1996, PHYS REV LETT, V76, P1800
BRUNE M, 1996, PHYS REV LETT, V77, P4887
CALDEIRA AO, 1983, ANN PHYS-NEW YORK, V149, P374
CALDEIRA AO, 1983, PHYSICA A, V121, P587
CHUANG IL, 1998, NATURE, V393, P143
CIRAC JI, 1997, PHYS REV LETT, V78, P3221
DEALMEIDA NG, IN PRESS PHYS REV A
DEOLIBEIRA MC, IN PRESS PHYS REV A
FURUSAWA A, 1998, SCIENCE, V282, P706
HOLLAND MJ, 1991, PHYS REV LETT, V67, P1716
MAITRE X, 1997, PHYS REV LETT, V79, P769
MOLLOW BR, 1967, PHYS REV, V160, P1076
MOLLOW BR, 1967, PHYS REV, V160, P1097
MOUSSA MHY, 1996, PHYS REV A, V54, P4661
MOUSSA MHY, 1997, PHYS REV A, V55, P3287
PELLIZZARI T, 1997, PHYS REV LETT, V79, P5242
SCULLY MO, 1997, QUANTUM OPTICS
SHOR PW, 1994, P 35 ANN S FDN COMP, P124
VANENK SJ, 1997, PHYS REV LETT, V79, P5178
VITALI D, 1997, PHYS REV LETT, V79, P2442
VITALI D, 1999, PHYS REV A, V59, P4178
VONNEUMANN J, 1995, MATH FDN QUANTUM MEC
NR 29
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD SEP
PY 2000
VL 62
IS 3
AR 033815
DI ARTN 033815
PG 9
SC Physics, Atomic, Molecular & Chemical; Optics
GA 353CD
UT ISI:000089255400094
ER
PT J
AU Miotto, R
Srivastava, GP
Ferraz, AC
TI Effects of gradient and non-linear core corrections on structural and
electronic properties of GaN bulk and (001) surfaces
SO PHYSICA B-CONDENSED MATTER
LA English
DT Article
DE density functional calculations; pseudopotential; surface relaxation;
surface states
ID MOLECULAR-BEAM EPITAXY; DENSITY-FUNCTIONAL CALCULATIONS; GROUP-III
NITRIDES; GALLIUM NITRIDE; VALENCE-BAND; 3D STATES; AB-INITIO;
BETA-GAN; GAAS; SEMICONDUCTORS
AB We have investigated the effects of density gradient and non-linear
core corrections, within the first-principles pseudopotential method,
on structural and electronic properties of GaN bulk and (0 0 1)
surfaces. We find that the combined use of the generalized gradient
approximation and non-linear core correction for exchange and
correlation (NGGA) produces important changes in structural properties.
The calculated bulk valence band electronic structure shows much better
agreement with experiment when the NGGA scheme is used than when the Ga
3d electrons are considered explicitly as a part of the valence shell.
We have discussed the atomic structure and chemical bonding on the
gallium terminated (1 x 1), (2 x 2), c(2 x 2) and (1 x 4) cubic-GaN(0 0
1) surface reconstructions, and find that the most stable of these,
viz. the (1 x 4) structure, is characterised by a linear Ga tetramer
with an energy gain of 0.29 eV per (1 x 1) cell over the
unreconstructed (1 x 1) structure in agreement with previous results by
Neugebauer and coworkers. (C) 2000 Elsevier Science B.V. All rights
reserved.
C1 Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Miotto, R, Univ Exeter, Sch Phys, Stocker Rd, Exeter EX4 4QL, Devon,
England.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
BRANDT O, 1995, PHYS REV B, V52, R2253
BRANDT O, 1996, PHYS REV B, V54, P4432
BYKHOVSKI AD, 1996, APPL PHYS LETT, V69, P2397
DERKELLEN SB, 1996, PHYS REV B, V54, P11187
DING SA, 1996, J VAC SCI TECHNOL 1, V14, P819
EDGAR JH, 1994, EMIS DATAREVIEW SERI
ENGLEL GE, 1990, PHYS REV B, V41, P7876
FEUILLET G, 1997, APPL PHYS LETT, V70, P1025
FIORENTINI V, 1993, PHYS REV B, V47, P13353
GARCIA A, 1993, PHYS REV B, V47, P6751
GROSSNER U, 1998, PHYS REV B, V58, R1722
HUNT RW, 1993, PHYSICA B, V185, P415
JENKINS SJ, 1994, J PHYS-CONDENS MAT, V6, P8781
KARCH K, 1998, PHYS REV B, V57, P7043
LAMBRECHT WRL, 1994, PHYS REV B, V50, P14155
LEE GD, 1995, PHYS REV B, V52, P1459
LIU H, 1993, J APPL PHYS, V74, P6124
LOUIE SG, 1982, PHYS REV B, V26, P1738
LU WC, 1993, J PHYS-CONDENS MAT, V5, P875
MIN BJ, 1992, PHYS REV B, V45, P1159
MIOTTO R, 1998, PHYS REV B, V58, P7944
MIOTTO R, 1999, PHYS REV B, V59, P3008
NAKAMURA S, 1994, APPL PHYS LETT, V64, P1687
NEUGEBAUER J, 1994, PHYS REV B, V50, P8067
NEUGEBAUER J, 1998, PHYS REV LETT, V80, P3092
NORTHRUP JE, 1996, PHYS REV B, V53, P10477
ORTON JW, 1998, REP PROG PHYS, V61, P1
PAISLEY MJ, 1989, J VAC SCI TECHNOL A, V7, P701
PERDEW JP, 1981, PHYS REV B, V23, P5048
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
QTEISH A, 1991, PHYS REV B, V43, P4229
RAMIREZFLORES G, 1994, PHYS REV B, V50, P8433
SHIRLEY EL, 1997, PHYS REV B, V56, P6648
STADELE M, 1999, PHYS REV B, V59, P10031
STAGARESCU CB, 1996, PHYS REV B, V54, P17335
STAMPFL C, 1999, PHYS REV B, V59, P5521
STRASSER T, 1997, PHYS REV B, V56, P13326
TROULLIER N, 1991, PHYS REV B, V43, P1993
VOGEL D, 1997, PHYS REV B, V55, P12836
WANG Y, 1991, PHYS REV B, V43, P8911
WEAST RC, 1978, HDB CHEM PHYSICS
YANG H, 1996, PHYS STATUS SOLIDI B, V194, P109
NR 44
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0921-4526
J9 PHYSICA B
JI Physica B
PD OCT
PY 2000
VL 292
IS 1-2
BP 97
EP 108
PG 12
SC Physics, Condensed Matter
GA 353YX
UT ISI:000089304000012
ER
PT J
AU Esteves, PM
Ramirez-Solis, A
Mota, CJA
TI A theoretical study of alkane protonation in HF/SbF5 superacid system
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE superacid; carbonium ions; alkane; DFT
ID AB-INITIO; ELECTROSTATIC POTENTIALS; ELECTROPHILIC REACTIONS; DEUTERIUM
EXCHANGE; CARBONIUM-IONS; CH5+; CARBOCATIONS; CHEMISTRY; DENSITY; ENERGY
AB Ab initio calculations for the protonation of the C-H and C-C bonds of
methane, ethane, propane and isobutane by a superacid moiety was
carried out. For the C-H protonation (H/H exchange) the transition
state resembles an H-carbonium ion coordinated with the superacid. The
activation energy for the H/H exchange was about 16 kcal.mol(-1), at
B3LYP/6-31++G"* + RECP (Sb) level, regardless the type of C-H bond
being protonated. For the C-C protonation the activation energy depends
on the structure of the hydrocarbon and was always higher than the
activation energy for C-H protonation, indicating a higher steric
demand.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Esteves, PM, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim,
Cidade Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
BERGNER A, 1993, MOL PHYS, V80, P1431
BERKESSEL A, 1995, ANGEW CHEM INT EDIT, V34, P2247
BISCHOF PK, 1975, J AM CHEM SOC, V97, P2278
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
COLLINS SJ, 1994, CHEM PHYS LETT, V228, P246
COLLINS SJ, 1996, J CHEM SOC FARADAY T, V92, P4347
DYCZMONS V, 1970, CHEM PHYS LETT, V5, P361
ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
ESTEVES PM, 1998, TOP CATAL, V6, P163
ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
ESTEVES PM, 1999, J PHYS CHEM B, V103, P10417
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HIRAO K, 1984, CHEM PHYS, V89, P237
HOGEVEEN H, 1967, RECL TRAV CHIM PAY B, V86, P1313
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P371
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P703
KIM SJ, 1993, J PHYS CHEM-US, V97, P12232
KOHLER HJ, 1978, CHEM PHYS LETT, V58, P175
KOLBUSZEWSKI M, 1996, J CHEM PHYS, V105, P3649
MARX D, 1995, NATURE, V375, P216
MOTA CJA, 1992, J AM CHEM SOC, V114, P1121
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
MULLER H, 1997, J CHEM PHYS, V106, P1863
OLAH GA, 1968, J AM CHEM SOC, V90, P2726
OLAH GA, 1972, J AM CHEM SOC, V94, P807
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
POIRIER RA, 1982, J MOL STRUCT THEOCHE, V88, P343
RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
SCUSERIA GE, 1993, NATURE, V366, P512
SOMMER J, 1994, J AM CHEM SOC, V116, P5491
NR 37
TC 8
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD JUL-AUG
PY 2000
VL 11
IS 4
BP 345
EP 348
PG 4
SC Chemistry, Multidisciplinary
GA 354NY
UT ISI:000089337600003
ER
PT J
AU Duarte, HA
Dos Santos, HF
Rocha, WR
De Almeida, WB
TI Improved quantum mechanical study of the potential energy surface for
the bithiophene molecule
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID GAUSSIAN-BASIS SETS; AB-INITIO; ORBITAL METHODS; CONDUCTING POLYMERS;
ORGANIC-MOLECULES; EXCHANGE-ENERGY; POLYTHIOPHENE; ATOMS;
2,2'-BITHIOPHENE; APPROXIMATION
AB The potential energy surface (PES) for the 2,2'-bithiophene molecule
was investigated using Hartree-Fock, correlated MP2, MP4(SDQ), CCSD,
and density functional theory levels. Distinct basis sets ranging from
double-zeta to triple-zeta quality, with polarization functions added
on all atoms, were employed as well as the Dunning correlated
consistent polarized valence double-zeta (cc-pVDZ) basis set. Single
point configuration interaction CISD calculations were also performed
using the cc-pVDZ basis set. Harmonic frequency calculations were
performed for the unambiguous characterization of the stationary points
located on the PES and also to calculate thermal Gibbs free energy
corrections. Regarding the structural predictions we found that the
B3LYP/6-311G** and MP2/cc-pVDZ fully optimized geometries exhibit the
best agreement with the gas phase electron diffraction data. The
calculated B3LYP/6-311G**, MP2/cc-pVDZ and experimental torsional angle
for the syn-gauche structure are, respectively, 37.4 degrees (B3LYP),
39.9 degrees (MP2), and 36 degrees +/- 5 degrees (expt.) with the
corresponding values for the anti-gauche form being, respectively,
150.3 degrees (B3LYP), 146.0 degrees (MP2), and 148 degrees +/- 3
degrees (expt.). The relative energy between the two minima and
torsional barriers are sensitive both to the size of the basis set and
the level of the quantum mechanical method used. Therefore, larger
basis sets are needed to assess the ability of the DFT approach for
describing torsional barriers. The MP4(SDQ) and CCSD relative energy
results, reported in this work, can be considered as the most reliable
torsional potential data available for the 2,2'-bithiophene molecule.
Our results indicate that the experimentally estimated relative energy
value for the two equilibrium structures present on the PES for the
bithiophene molecule, and consequently the relative abundance of the
anti-gauche species, is somewhat underestimated. By comparison with
MP4(SDQ) and CCSD results we have shown that single point DFT/6-311G**
calculations using HF/6-31G* geometries is the most computationally
efficient procedure to study bithiophene like systems, with energy
barriers agreeing within 2 kJ/mol. (C) 2000 American Institute of
Physics. [S0021-9606(00)31634-8].
C1 Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Fed Minas Gerais, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Fed Juiz de Fora, Lab Quim Coumputac & Modelagem Mol, BR-36036330 Juiz De Fora, MG, Brazil.
Univ Fed Juiz de Fora, Dept Quim, ICE, BR-36036330 Juiz De Fora, MG, Brazil.
RP Duarte, HA, Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol,
BR-31270901 Belo Horizonte, MG, Brazil.
CR ALMLOF J, 1987, J CHEM PHYS, V86, P4070
ALMLOF J, 1988, J PHYS CHEM-US, V92, P3029
BAUERLE P, 1993, ANGEW CHEM INT EDIT, V32, P76
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P1372
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BRUCKNER S, 1988, MAKROMOL CHEM, V189, P961
CHADWICK JE, 1994, J PHYS CHEM-US, V98, P3631
CLARK T, 1983, J COMPUT CHEM, V4, P294
DEALMEIDA WB, 2000, QUIMICA NOVA
DEOLIVEIRA MA, 2000, PHYS CHEM CHEM PHYS, V2, P3373
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DUNNING TH, 1976, MODERN THEORETICAL C, V3, P1
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
EHRENDORFER C, 1994, J PHYS CHEM-US, V98, P7492
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN 94
GARNIER F, 1989, ANGEW CHEM INT EDIT, V28, P513
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HARIHARAN PC, 1974, MOL PHYS, V27, P209
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOROWITZ G, 1994, SYNTHETIC MET, V62, P245
HOTTA S, 1993, ADV MATER, V5, P896
KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
LEE C, 1988, PHYS REV B, V37, P785
LEVINE IN, 1991, QUANTUM CHEM
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
MO Z, 1985, MACROMOLECULES, V18, P1972
MOLLER C, 1934, PHYS REV, V46, P618
ORTI E, 1995, J PHYS CHEM-US, V99, P4955
PARR RG, 1989, DENSITY FUNCTIONAL T
PATIL AO, 1988, CHEM REV, V88, P183
PERDEW JP, 1986, PHYS REV B, V33, P8800
PERDEW JP, 1986, PHYS REV B, V33, P8822
PROYNOV EI, 1995, INT J QUANTUM CHEM S, V29, P61
RADOM L, 1970, J AM CHEM SOC, V92, P4786
RONCALI J, 1992, CHEM REV, V92, P711
SAEBO S, 1989, CHEM PHYS LETT, V154, P83
SAMDAL S, 1993, SYNTHETIC MET, V59, P259
STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
SZABO A, 1996, MODERN QUANTUM CHEM
VIRUELA PM, 1998, INT J QUANTUM CHEM, V70, P303
WESSLING B, 1991, ADV MATER, V3, P507
WOON DE, 1993, J CHEM PHYS, V98, P1358
YAMAMOTO T, 1992, MACROMOLECULES, V25, P1214
NR 47
TC 23
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD SEP 8
PY 2000
VL 113
IS 10
BP 4206
EP 4215
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 349GC
UT ISI:000089034900034
ER
PT J
AU Barbatti, M
Jalbert, G
Nascimento, MAC
TI Isomeric structures and energies of H-n(+) clusters (n=13, 15, and 17)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID HYDROGEN CLUSTERS; VIBRATIONAL FREQUENCIES; ENERGETICS; ABINITIO; IONS;
STABILITIES
AB Ab initio calculations have been performed for the H-n(+) clusters
(n=3-17; odd) at Moller-Plesset second order (MP2)/6-311G(mp),
Moller-Plesset complete fourth order (MP4)/6-311G(mp), and
coupled-cluster single-double-triple [CCSD(T)/6-311G(1p)] levels of
calculations. Such hydrogen clusters are constituted by an H-3(+) core
in which H-2 units are bound. In order to understand the features of
these bindings, enthalpy and entropy variations upon cluster formation,
binding energies, and charge distributions have been computed, and a
molecular orbital analysis, based on localized orbital, was performed.
Our results show that the way the first three H-2 units bind to the
H-3(+) core is fundamentally different from the others, providing an
explanation for the binding energies observed for these molecules. For
the H-13(+), H-15(+), and H-17(+) clusters, the way in which the
external H-2 units are distributed around the H-3(+) plane leads to the
formation of different isomers with very close energies, but with a
rotational barrier large enough to inhibit the interconversions. (C)
2000 American Institute of Physics. [S0021-9606(00)31434-9].
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Inst Quim, BR-21945970 Rio De Janeiro, Brazil.
RP Barbatti, M, Univ Fed Rio de Janeiro, Inst Fis, CP 68528, BR-21945970
Rio De Janeiro, Brazil.
CR BOYS SF, 1970, MOL PHYS, V19, P553
CENCEK W, 1998, J CHEM PHYS, V108, P2831
EDMISTON C, 1963, REV MOD PHYS, V35, P457
FARIZON B, 1999, PHYS REV B, V60, P3821
FARIZON M, 1991, CHEM PHYS LETT, V177, P451
FARIZON M, 1992, J CHEM PHYS, V96, P1325
FRISCH MJ, 1998, GAUSSIAN 98
HERZBERG G, 1950, MOL SPECTRA MOL STRU, V1
HIRAOKA K, 1989, CHEM PHYS LETT, V157, P467
HUBER H, 1980, CHEM PHYS LETT 2, V70, P353
IGNACIO EW, 1998, CHEM PHYS LETT, V287, P563
KOLOS W, 1975, J MOL SPECTROSC, V54, P303
LOUC S, 1998, PHYS REV A, V58, P3802
NAGASHIMA U, 1992, J PHYS CHEM-US, V96, P11
OKUMURA M, 1988, J CHEM PHYS, V88, P79
PANG T, 1994, CHEM PHYS LETT, V228, P555
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
STICH I, 1997, PHYS REV LETT, V78, P3669
VANLUMIG A, 1978, INT J MASS SPECTROM, V27, P197
WRIGHT LR, 1982, J CHEM PHYS, V77, P1938
YAMABE S, 1978, CHEM PHYS LETT, V56, P546
YAMAGUCHI Y, 1983, J CHEM PHYS, V78, P4074
NR 23
TC 21
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD SEP 8
PY 2000
VL 113
IS 10
BP 4230
EP 4237
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 349GC
UT ISI:000089034900036
ER
PT J
AU Ribeiro, MCC
Almeida, LCJ
TI Validating a polarizable model for the glass-forming liquid
Ca0.4K0.6(NO3)(1.4) by ab initio calculations
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID ORBITAL ELECTRONEGATIVITY METHOD; MOLECULAR-DYNAMICS SIMULATIONS;
MODIFIED PARTIAL EQUALIZATION; DENSITY-FUNCTIONAL THEORY; IONIC
SYSTEMS; FLUCTUATING CHARGE; ATOMIC CHARGES; NEUTRON-DIFFRACTION;
QUANTUM-CHEMISTRY; FORCE-FIELDS
AB Ab initio calculations have been performed in order to investigate a
recently proposed polarizable model [M. C. C. Ribeiro, Phys. Rev. B 61,
3297 (2000)] for molecular dynamics (MD) simulation of the molten salt
Ca0.4K0.6(NO3)(1.4). On the basis of the electronegativity equalization
method, polarization effects in the MD simulations have been introduced
by a fluctuating charge (FC) model for the nitrate ion. Partial charges
in the nitrate ion are obtained by ab initio calculations at several
levels of theory, and compared with previously proposed models for MD
simulations of nitrate melts. Charge fluctuation is achieved in the ab
initio calculations by using positive probe charges placed around a
nitrate ion. The parameters of the FC model are corroborated by
comparison of the ab initio partial charges with the ones obtained
directly by the electronegativity equalization method. Simulated
annealing of a cluster including two double-charged cations and two
nitrate ions shows that very different structures are obtained
depending on whether the FC model or its nonpolarizable counterpart is
considered. Ab initio calculations show that the structure of this
cluster is strongly dependent on polarization effects in the nitrate
ions. (C) 2000 American Institute of Physics. [S0021- 9606(00)52235-1].
C1 Univ Sao Paulo, Inst Quim, Lab Espectroscopia Mol, BR-05513970 Sao Paulo, Brazil.
RP Ribeiro, MCC, Univ Sao Paulo, Inst Quim, Lab Espectroscopia Mol, CP
26077, BR-05513970 Sao Paulo, Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
ALMLOF J, 1979, CHEM PHYS LETT, V61, P79
ANGELL CA, 1993, J PHYS CONDENS MATT, V11, A75
BALAWENDER R, 1997, INT J QUANTUM CHEM, V61, P499
BANKS JL, 1999, J CHEM PHYS, V110, P741
BOLDYREV AI, 1993, J CHEM PHYS, V98, P4745
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
CIOSLOWSKI J, 1993, J AM CHEM SOC, V115, P1084
CIOSLOWSKI J, 1993, J CHEM PHYS, V99, P5151
DEOLIVEIRA AE, 1999, J PHYS CHEM A, V103, P4918
FRISCH MJ, 1998, GAUSSIAN 98
GAPINSKI J, 1999, J CHEM PHYS, V110, P2312
GOTZE W, 1999, J PHYS CONDENS MATT, V11, A1
GRIMSDITCH M, 1989, PHYS REV LETT, V62, P2616
HUTCHINSON F, 1999, J CHEM PHYS, V111, P2028
ITSKOWITZ P, 1997, J PHYS CHEM A, V101, P5687
JEMMER P, 1999, J CHEM PHYS, V111, P2038
KARTINI E, 1995, CAN J PHYS, V73, P748
KARTINI E, 1996, PHYS REV B, V54, P6292
KATO T, 1988, J CHEM PHYS, V89, P3211
KATO T, 1988, J CHEM PHYS, V89, P7471
KATO T, 1990, J CHEM PHYS, V92, P5506
KATO T, 1993, J CHEM PHYS, V99, P3966
LEBON MJ, 1997, Z PHYS B CON MAT, V103, P433
LI JB, 1998, J PHYS CHEM A, V102, P1820
LIU YP, 1998, J CHEM PHYS, V108, P4739
MADDEN PA, 1996, CHEM SOC REV, V25, P339
MEZEI F, 1999, J PHYS-CONDENS MAT, V11, A341
MITCHELL PJ, 1993, J PHYS-CONDENS MAT, V5, P1031
MORTIER WJ, 1985, J AM CHEM SOC, V107, P829
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
NALEWAJSKI RF, 1985, J PHYS CHEM-US, V89, P2831
NO KT, 1990, J PHYS CHEM-US, V94, P4732
NO KT, 1990, J PHYS CHEM-US, V94, P4740
PARR RG, 1978, J CHEM PHYS, V68, P3801
PERDEW JP, 1982, PHYS REV LETT, V49, P1691
PROBST M, 1995, INT J QUANTUM CHEM, V29, P559
RAPPE AK, 1991, J PHYS CHEM-US, V95, P3358
RIBEIRO MCC, UNPUB
RIBEIRO MCC, 1998, J CHEM PHYS, V109, P9859
RIBEIRO MCC, 1999, J CHEM PHYS, V110, P11445
RIBEIRO MCC, 2000, PHYS REV B, V61, P3297
RICCI M, 1993, J CHEM PHYS, V98, P4892
RICK SW, 1994, J CHEM PHYS, V101, P6141
SANGSTER MJL, 1976, ADV PHYS, V25, P247
SEN S, 1998, PHYS REV B, V58, P8379
SIGNORINI GF, 1990, J CHEM PHYS, V92, P1294
SPRIK M, 1991, J PHYS CHEM-US, V95, P2283
STERN HA, 1999, J PHYS CHEM B, V103, P4730
STONE AJ, 1996, THEORY INTERMOLECULA
STORER JW, 1995, J COMPUT AID MOL DES, V9, P87
SZABO A, 1982, MODERN QUANTUM CHEM
TANG KT, 1984, J CHEM PHYS, V80, P3726
TOUFAR H, 1995, J PHYS CHEM-US, V99, P13876
TOUFAR H, 1996, J PHYS CHEM-US, V100, P15383
VANGENECHTEN KA, 1987, J CHEM PHYS, V86, P5063
VELDERS GJM, 1992, THEOR CHIM ACTA, V84, P195
VELIYULIN E, 1999, J PHYS-CONDENS MAT, V11, P8773
WANG YB, 1996, J NONCRYST SOLIDS, V205, P221
WIBERG KB, 1992, J PHYS CHEM-US, V96, P671
WILSON M, 1993, J PHYS-CONDENS MAT, V5, P2687
WILSON M, 1996, PHYS REV LETT, V77, P4023
WILSON M, 1999, MOL PHYS, V96, P867
WINKLER R, 1997, J CHEM PHYS, V106, P7714
YAMAGUCHI T, 1986, MOL PHYS, V58, P349
YORK DM, 1996, J CHEM PHYS, V104, P159
NR 67
TC 11
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD SEP 15
PY 2000
VL 113
IS 11
BP 4722
EP 4731
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 351DC
UT ISI:000089139900028
ER
PT J
AU Batista, H
Carpenter, GB
Srivastava, RM
TI Synthesis and molecular structure of
N-[3-(p-bromophenyl)-1,2,4-oxadiazol-5-yl]methylphthalimide. III.
SO JOURNAL OF CHEMICAL CRYSTALLOGRAPHY
LA English
DT Article
DE 1,2,4-oxadiazole; crystal structure; phthalimide derivative; AM1
method; STO-3G basis set
AB The synthesis, spectroscopic studies and crystal structure of the title
compound is described. The crystallographic studies showed that the
p-bromophenyl group is very nearly coplanar with the 1,2,4-oxadiazole
ring. The nearly planar phthalimide group makes an angle of about 98
degrees with the bromophenyloxadiazole plane. Semi-empirical (AM1) and
ab initio (STO-3G, 6-31G) molecular orbital calculations have been
carried out for this compound and a comparison of bond angles, bond
lengths and torsion angles has been made with the experimental values,
which are remarkably close to each other. This compound crystallizes in
the monoclinic space group P2(1)/c with a = 13.6299(2), b = 13.9836(2),
c = 8.4817(2) Angstrom, beta = 101.9070(10)degrees, V = 1581.79(5)
Angstrom(3), and Z = 4.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
Brown Univ, Dept Chem, Providence, RI 02912 USA.
RP Srivastava, RM, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540
Recife, PE, Brazil.
CR ANTUNES R, 1996, HETEROCYCL COMMUN, V2, P247
ANTUNES R, 1998, BIOORG MED CHEM LETT, V8, P3071
LOBANOV V, 1996, MOPAC 6 0 32 BIT MIC
MORI K, 1994, ACTA CRYSTALLOGR C, V50, P807
SHELDRICK GM, 1996, SADABS EMPIRICAL ABS
STEWART JJP, 1990, MOPAC MANUAL
NR 6
TC 5
PU KLUWER ACADEMIC/PLENUM PUBL
PI NEW YORK
PA 233 SPRING ST, NEW YORK, NY 10013 USA
SN 1074-1542
J9 J CHEM CRYSTALLOGRAPHY
JI J. Chem. Crystallogr.
PD FEB
PY 2000
VL 30
IS 2
BP 131
EP 134
PG 4
SC Crystallography; Spectroscopy
GA 351PW
UT ISI:000089168200010
ER
PT J
AU Iglesias, RS
Goncalves, PFB
Livotto, PR
TI Semi-empirical study of a set of 2-(2 '-hydroxyphenyl)benzazoles using
the polarizable continuum model
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID INTRAMOLECULAR PROTON-TRANSFER; EXCITED-STATE PROTON; TRIPLET-STATES;
AB-INITIO; 2-(2-HYDROXYPHENYL)BENZOTHIAZOLE; BENZOTHIAZOLE;
SPECTROSCOPY; FEMTOSECOND; ROTAMERISM; SOLVENT
AB A set of molecules (2-(2'-hydroxyphenyl)benzoxazol (HBO),
2-(2'-hydroxyphenyl benzothiazole (HBT) and
2-(2'-hydroxyphenyl)benzimidazole (HBI)) exhibiting excited-state
intramolecular proton transfer was studied using the polarizable
continuum model in low-polar, non-protic solvents (chloroform and
carbon tetrachloride), combined with the AM1 semi-empirical molecular
orbital method in both gaseous and condensed phase. The heats of
formations (Delta H-f) are lowered by the solvent effect, especially in
chloroform. The increase in the solvent polarity causes an enlargement
of the Stokes shift between absorption and emission. (C) 2000 Published
by Elsevier Science B.V.
C1 Univ Fed Rio Grande Sul, Inst Quim, Grp Quim, BR-91509900 Porto Alegre, RS, Brazil.
RP Livotto, PR, Univ Fed Rio Grande Sul, Inst Quim, Grp Quim, Av Bento
Goncalves 9500, BR-91509900 Porto Alegre, RS, Brazil.
CR ALSOUFI W, 1990, CHEM PHYS LETT, V174, P609
BARBARA PF, 1980, J AM CHEM SOC, V102, P5631
BARBARA PF, 1989, J PHYS CHEM-US, V29, P93
BREWER WE, 1990, J PHYS CHEM-US, V94, P1915
CHOU PT, 1992, CHEM PHYS LETT, V195, P586
DAS K, 1992, CHEM PHYS LETT, V198, P443
DAS K, 1994, J PHYS CHEM-US, V98, P9126
DEWAR MJS, 1985, J AM CHEM SOC, P389
ELSAESSER T, 1986, CHEM PHYS LETT, V128, P231
ELSAESSER T, 1987, CHEM PHYS LETT, V140, P293
ENCHEV V, 1994, INDIAN J CHEM B, V33, P336
ENGELAND TA, 1992, CHEM PHYS, V163, P43
FREY W, 1991, J PHYS CHEM-US, V95, P10391
GRELLMANN KH, 1989, CHEM PHYS, V136, P201
IGLESIAS RS, 2000, THESIS UFRGS PORTO A
ITOH M, 1985, J AM CHEM SOC, V107, P1561
LAERMER F, 1988, CHEM PHYS LETT, V148, P119
LAVTCHIEVA L, 1993, J PHYS CHEM-US, V97, P306
MIERTUS S, 1981, CHEM PHYS, V55, P117
MORDZINSKI A, 1982, CHEM PHYS LETT, V90, P122
MORDZINSKI A, 1986, J PHYS CHEM-US, V90, P5503
NEGRE M, 1992, CHEM PHYS LETT, V196, P27
POTTER CAS, 1988, CHEM PHYS LETT, V153, P7
POTTER CAS, 1994, J CHEM SOC FARADAY T, V90, P59
RIOS MA, 1995, J PHYS CHEM-US, V99, P12456
RIOS MA, 1998, J PHYS CHEM A, V102, P1560
STEWART JJP, 1993, MOPAC 93 00 MANUAL R
TOMASI J, 1994, CHEM REV, V94, P2027
WILLIAMS DL, 1970, J PHYS CHEM-US, V74, P4473
WOOLFE GJ, 1983, CHEM PHYS, V77, P213
NR 30
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 1
PY 2000
VL 327
IS 1-2
BP 23
EP 28
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 349QC
UT ISI:000089056300005
ER
PT J
AU Olivato, PR
Guerrero, SA
Rittner, R
TI Conformational and electronic interaction studies of alpha-substituted
carbonyl compounds. XV. alpha-(arylsulfinyl)-p-substituted acetophenones
SO PHOSPHORUS SULFUR AND SILICON AND THE RELATED ELEMENTS
LA English
DT Article
DE conformational studies; electronic interactions; IR and C-13 NMR
spectroscopies; alpha-(p-phenylsulfinyl)-p-substituted acetophenones
ID ULTRAVIOLET PHOTOELECTRON-SPECTROSCOPY; KETONES
AB The V-CO IR analysis of alpha-(p-phenylsulfinyl)-p-substituted
acetophenones X-phi C(O)CH2S(O) phi-Y 1-8, being X and Y = NO2, H and
OMe substituents, supported by ab initio calculations of the
alpha-methylsulfinyl/acetophenone (model compound) along with the X-ray
geometrical data for 1, 7 and 8, indicates the existence of the cis(2)
and gauche rotamers for compounds 1-4 and 6. Compounds 5, 7 and 8
present another less stable and more polar cis(1) rotamer. The cis(2)
rotamer concentration for 4 (ca. 97% in CCl4) is reduced to ca. 50% for
2, 3, 5-7 and to ca. 20% for 1 and 8. This behavior is discussed in
terms of O-(CO)(delta-)-S-(SO)(delta+) charge transfer and Coulombic
interactions, which stabilize the cis(1) rotamer, and the
pi(CO)/sigma*(C-S), pi*(CO)/n(s) and pi*(CO)/sigma(C-S) orbital
interactions, which stabilize the gauche rotamers. The progressive more
negative carbonyl cis(2) shifts (Delta v(c)), when X varies from NO2 to
H and to OMe for the same Y, along with the unexpected NAE values of
the alpha-methylene carbon chemical shifts for compounds 1-8 give
further support for the existence of a strong intramolecular complex
between C=O and S=O dipoles which stabilizes the cis(2) rotamer. The
progressive more negative carbonyl gauche shifts (Delta v(g)), when X
varies from NO2 to H and to OMe for the same Y, is in line with the
higher contribution of the interaction pi(CO)/sigma*(C-S), which
stabilizes the gauche rotamer of the title compounds.
C1 Univ Sao Paulo, Inst Quim, BR-05599970 Sao Paulo, Brazil.
Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Olivato, PR, Univ Sao Paulo, Inst Quim, Caixa Postal 26-077,
BR-05599970 Sao Paulo, Brazil.
CR 1976, SADTLER STANDARD NMR
1996, 17 INT S ORG CHEM SU
BELLAMY LJ, 1975, ADV INFRARED GROUP F, P141
BELLAMY LJ, 1975, ADV INFRARED GROUP F, P143
BONFADA E, 1989, THESIS U SAO PAULO B
BUENO E, 1996, THESIS U SAO PAULO B
DALCOLLE M, 1995, J PHYS CHEM-US, V99, P1511
DEWAR MJS, 1962, HYPERCONJUGATION
DISTEFANO G, 1987, J CHEM SOC P2, P1459
DISTEFANO G, 1991, J CHEM SOC P2, P1195
DISTEFANO G, 1996, J CHEM SOC PERK AUG, P1661
DUDDECK H, 1980, TETRAHEDRON, V36, P3009
GASET A, 1968, B SOC CHIM FR, P4108
GHERSETTI S, 1963, GAZZ CHIM ITAL, V89, P1001
HANSCH C, 1979, SUBSTITUENTS CONSTAN
KENNEY WJ, 1961, J AM CHEM SOC, V83, P4019
LAMM B, 1970, ACTA CHEM SCAND, V24, P561
LUMBROSO H, 1989, J MOL STRUCT, V212, P113
MCALDUFF EJ, 1980, CAN J CHEM, V58, P622
MONDINO MG, 1996, THESIS U SAO PAULO B
OLIVATO PR, IN PRESS ACTA CRYSTA
OLIVATO PR, 1987, PHOSPHORUS SULFUR, V33, P135
OLIVATO PR, 1988, SPECTROCHIM ACTA A, V44, P677
OLIVATO PR, 1989, PHOSPHORUS SULFUR, V44, P9
OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
OLIVATO PR, 1992, PHOSPHORUS SULFUR, V66, P207
OLIVATO PR, 1997, PHOSPHORUS SULFUR, V130, P155
OLIVATO PR, 1998, J CHEM SOC PERK JAN, P109
RITTNER R, 1985, QUIM NOVA, V8, P170
STOTHERS JB, 1972, CARBON 13 NMR SPECTR, P286
NR 30
TC 4
PU GORDON BREACH SCI PUBL LTD
PI READING
PA C/O STBS LTD, PO BOX 90, READING RG1 8JL, BERKS, ENGLAND
SN 1042-6507
J9 PHOSPHOR SULFUR SILICON
JI Phosphorus Sulfur Silicon Relat. Elem.
PY 2000
VL 156
BP 255
EP 277
PG 23
SC Chemistry, Inorganic & Nuclear
GA 344YL
UT ISI:000088788600020
ER
PT J
AU Okulik, N
Peruchena, N
Esteves, PM
Mota, C
Jubert, AH
TI Ab initio topological analysis of the electronic density in proponium
cations
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR CHARGE-DISTRIBUTIONS; QUANTUM TOPOLOGY; CARBONIUM-IONS; CH5+;
CARBOCATIONS; CHEMISTRY; ENERGIES; TERMS
AB Studies performed on proponium cations at the ab initio level show that
six different stable structures can be characterized: four proponium
cations and two van der Waals complexes. Among the proponium cations,
the most stable structure corresponds to the C-proponium ion. Between
the van der Waals complexes, the most stable one corresponds to the
structure that results from the interaction between the isopropyl ion
and the hydrogen molecule. The topology of the electronic density
charge of the different structures is studied, at ab initio level,
using the theory of atoms in molecules (AIM) developed by Bader.
C1 UNNE, Fac Agroind, RA-3700 Pcia R Saenz Pena, Chaco, Argentina.
UNNE, Fac Ciencias Exactas & Nat & Agrimensura, Dept Quim, RA-3400 Corrientes, Argentina.
Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Natl Univ La Plata, Fac Ciencias Exactas, Dept Quim, RA-1900 La Plata, Argentina.
RP Jubert, AH, UNNE, Fac Agroind, Cte Fernandez 755, RA-3700 Pcia R Saenz
Pena, Chaco, Argentina.
CR BADER RFW, 1979, J AM CHEM SOC, V101, P1389
BADER RFW, 1979, J CHEM PHYS, V70, P6316
BADER RFW, 1980, J CHEM PHYS, V73, P2871
BADER RFW, 1981, ADV QUANTUM CHEM, V14, P6310
BADER RFW, 1983, J AM CHEM SOC, V105, P5061
BADER RFW, 1990, ATOMS MOL
BISCHOF PK, 1975, J AM CHEM SOC, V97, P2278
CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
CREMER D, 1983, J AM CHEM SOC, V105, P5069
DYCZMONS V, 1970, CHEM PHYS LETT, V5, P361
ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GIANNETTO G, 1986, J CHEM SOC CHEM COMM, P1302
GILLESPIE RJ, 1972, MOL GEOMETRY
HAAG WO, 1984, P 8 INT C CAT, P305
HIRAO K, 1984, CHEM PHYS, V89, P237
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P371
KIM SJ, 1993, J PHYS CHEM-US, V97, P12232
KLIEGERKONIG W, 1982, J COMPUT CHEM, V3, P317
KOLBUSZEWSKI M, 1996, J CHEM PHYS, V105, P3649
MOTA CJA, 1992, J AM CHEM SOC, V114, P1121
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
OKULIK N, 1999, J PHYS CHEM A, V103, P8491
OLAH GA, 1968, J AM CHEM SOC, V90, P2726
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
OLAH GA, 1973, CARBOCATIONS ELECTRO
OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
POIRIER RA, 1982, J MOL STRUCT THEOCHE, V88, P343
RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
SCUSERIA GE, 1993, NATURE, V366, P512
NR 33
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 17
PY 2000
VL 104
IS 32
BP 7586
EP 7592
PG 7
SC Chemistry, Physical
GA 345RK
UT ISI:000088828800022
ER
PT J
AU Bettega, MHF
TI Low-energy electron scattering by boron trihalides
SO PHYSICAL REVIEW A
LA English
DT Article
ID SCHWINGER MULTICHANNEL; PLASMA CHEMISTRIES; CROSS-SECTIONS; AB-INITIO;
BCL3; COLLISIONS; PSEUDOPOTENTIALS; SPECTROSCOPY; EXCITATION; SPECTRA
AB We report the integral elastic cross section for low-energy electron
scattering by the boron trihalides BCl3, BBr3, and BI3. To perform our
calculations, we employed the Schwinger multichannel method with
pseudopotentials. We have focused our attention only in the B-2
irreducible representation, where we found shape resonances for the
three molecules in a previous static-exchange calculation, at energies
below 5 eV. We included polarization effects to improve the description
of the resonances and found that only the resonance for BCl3 remains.
For BBr3 and BI3, the resonances become bound states.
C1 Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil.
RP Bettega, MHF, Univ Fed Parana, Dept Fis, Caixa Postal 19081,
BR-81531990 Curitiba, Parana, Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BAECK KK, 1997, J CHEM PHYS, V106, P4604
BAUSCHLICHER CW, 1980, J CHEM PHYS, V72, P880
BETTEGA MHF, 1993, PHYS REV A, V47, P1111
BETTEGA MHF, 2000, J CHEM PHYS, V112, P8806
BETTEGA MHF, 2000, PHYS REV A, V61
BIEHL H, 1996, MOL PHYS, V87, P1199
CHO H, 1998, MRS INTERNET J N S R, V3
CHO H, 1999, J VAC SCI TECHNOL 2, V17, P2202
DACOSTA SMS, 1998, EUR PHYS J D, V3, P67
GULLEY RJ, 1998, J PHYS B-AT MOL OPT, V31, P2735
HEBNER GA, 1999, J VAC SCI TECHNOL A, V17, P3172
HONG J, 1998, J VAC SCI TECHNOL B, V16, P2690
HONG J, 1998, J VAC SCI TECHNOL B, V16, P3349
HONG J, 1999, J VAC SCI TECHNOL 1, V17, P1326
HOWARD BJ, 1994, J VAC SCI TECHNOL 1, V12, P1259
HUO WM, 1987, PHYS REV A, V36, P1632
HUO WM, 1987, PHYS REV A, V36, P1642
ISAACS WA, 1998, PHYS REV A, V58, P2881
KEIR RI, 1998, CHEM PHYS LETT, V290, P409
LEE CH, 1999, J CHEM PHYS, V111, P5056
LIDE DR, 1998, CRC HDB CHEM PHYSICS
LIMA MAP, 1990, PHYS REV A, V41, P327
NATALENSE APP, 1998, PHYS REV LETT, V81, P3832
PROOST J, 1999, J ELECTROCHEM SOC, V146, P4230
RESCIGNO TN, 1999, PHYS REV A, V60, P2186
ROTHE EW, 1980, INORG CHEM, V19, P829
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SHPINKOVA LG, 1999, MOL PHYS, V96, P323
STOCKDALE JA, 1972, J CHEM PHYS, V56, P3336
SZMYTKOWSKI C, 1984, CHEM PHYS LETT, V107, P481
TAKATSUKA K, 1981, PHYS REV A, V24, P2473
TOSSELL JA, 1986, INT J QUANTUM CHEM, V29, P1117
VARELLA MTD, 1999, J CHEM PHYS, V111, P6396
VARELLA MTD, 1999, J PHYS B ATOM MOL PH, V32, P5523
VARELLA MTD, 1999, PHYS REV A, V60, P3684
WANG JJ, 1999, PLASMA CHEM PLASMA P, V19, P229
WINSTEAD C, 1998, PHYS REV A, V57, P3589
NR 38
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD AUG
PY 2000
VL 6202
IS 2
AR 024701
DI ARTN 024701
PG 3
SC Physics, Atomic, Molecular & Chemical; Optics
GA 343CD
UT ISI:000088683400118
ER
PT J
AU De Oliveira, MA
Dos Santos, HF
De Almeida, WB
TI Structure and torsional potential of p-phenylthiophene: a theoretical
comparative study
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; VALENCE BASIS-SETS; GAUSSIAN-TYPE BASIS;
AB-INITIO; ELECTRONIC-PROPERTIES; CONJUGATED SYSTEMS;
ORGANIC-MOLECULES; 2ND-ROW ELEMENTS; 2,2'-BITHIOPHENE; POLYTHIOPHENE
AB Quantum chemical calculations employing Hartree-Fock, MP2 and density
functional (using distinct functionals) approaches were carried out for
the p-phenylthiophene dimer. The fully optimized stationary points
located on the potential energy surface were characterized as minima or
transition state (TS) structures according to harmonic frequency
analysis. A mixture of syn-gauche and anti-gauche conformers was
predicted with a relative percentage of ca. 60% and 40%, respectively.
A TS structure connecting the syn-gauche and anti-gauche minima was
also determined, with the MP2 energy barrier being ca. 10 kJ mol(-1). A
six-term truncated Fourier series representation of the potential
energy for internal rotation was obtained using a fitting procedure to
the calculated HF/6-31G* and B3LYP/6-31G* partially optimized points.
Additional fittings were performed with the MP2/6-31G*//HF/6-31G*,
MP2/6-31G*//B3LYP/6-31G*, B3LYP/6-31G*//HF/6-31G*,
BLYP/6-31G*//HF/6-31G*, B3P86/6-31G*//HF/6-31G* and
SVWN/6-31G*//HF/6-31G* single energy points. The energy barriers
obtained from the fitted curve were compared to the ones calculated
from the energy differences between fully optimized minima and TS
structures. The fitted Fourier potential is found to be adequate for
the description of the internal rotation in the p-phenylthiophene
dimer. The B3LYP/6-31G*//HF/6-31G* level of calculation seems
sufficient for studying this class of compounds. The inclusion of the
phenyl substituent group in the bithiophene, which makes it more easily
processable, does not alter significantly the energy gap. Therefore,
the p-phenylthiophene would be expected to exhibit similar conductivity
to the parent non-substituted bithiophene compound.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Fed Juiz de Fora, ICE, Dept Quim, BR-36036330 Juiz De Fora, MG, Brazil.
RP De Oliveira, MA, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim
Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR 1998, GAUSSIAN DFT SUPPLEM
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P1372
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BREDAS JL, 1983, J AM CHEM SOC, V105, P6555
BREDAS JL, 1983, J CHEM PHYS, V78, P5656
BREDAS JL, 1985, J CHEM PHYS, V83, P1323
DEOLIVEIRA MA, UNPUB J CHEM PHYS
DICESARE N, 1999, J MOL STRUC-THEOCHEM, V467, P259
DIRAC PAM, 1930, P CAMB PHILOS SOC, V26, P376
DISTEFANO G, 1993, J PHYS CHEM-US, V97, P3504
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DORO PC, 1969, TETRAHEDRON LETT, V10, P4179
DOSSANTOS HF, 1995, ANN 3 BRAZ C POL RIO, P1199
DUARTE HA, 2000, IN PRESS J CHEM PHYS
FORREST SR, 1997, CHEM REV, V97, P1736
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GORDON MS, 1982, J AM CHEM SOC, V104, P2797
GUERRERO DJ, 1994, CHEM MATER, V6, P1437
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HARIHARAN PC, 1974, MOL PHYS, V27, P209
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HERNANDEZ V, 1994, J CHEM PHYS, V101, P1369
HOHENBERG P, 1964, PHYS REV B, V136, P864
JURIMAE T, 1995, INT J QUANTUM CHEM, V54, P369
KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
KOHN W, 1965, PHYS REV, V140, A1133
LEE C, 1988, PHYS REV B, V37, P785
MOLLER C, 1934, PHYS REV, V46, P618
NALWA HS, 1997, HDB ORGANIC CONDUCTI
ORT E, 1995, J PHYS CHEM-US, V99, P4955
PADILLACAMPOS L, 1995, THEOCHEM-J MOL STRUC, V330, P223
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERNAUT JM, 1994, J CHIM PHYS PCB, V91, P433
PIETRO WJ, 1982, J AM CHEM SOC, V104, P5039
QUATTROCCHI C, 1993, CHEM PHYS LETT, V208, P120
RONCALI J, 1992, CHEM REV, V92, P711
SAEBO S, 1989, CHEM PHYS LETT, V154, P83
SAMDAL S, 1993, SYNTHETIC MET, V59, P259
SATO M, 1987, J CHEM SOC CHEM COMM, P1725
SATO M, 1989, MAKROMOL CHEM, V190, P1233
SCOTHEIM TA, 1996, HDB CONDUCTING POLYM
SHIRAKAWA H, 1977, J CHEM SOC CHEM COMM, P578
SLATER JC, 1974, SELF CONSISTING FIEL, V4
STEPHENS PJ, 1994, J PHYS CHEM-US, V98, P11623
STEWART JJP, 1990, J COMPUT AID MOL DES, V5, P1
VIRUELA PM, 1997, J AM CHEM SOC, V119, P1360
VIRUELA PM, 1998, INT J QUANTUM CHEM, V70, P303
VOSKO SH, 1980, CAN J PHYS, V58, P1200
ZOPPI RA, 1993, QUIM NOVA, V16, P560
NR 52
TC 5
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI PCCP Phys. Chem. Chem. Phys.
PY 2000
VL 2
IS 15
BP 3373
EP 3380
PG 8
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 338FP
UT ISI:000088407700003
ER
PT J
AU Esteves, PM
Alberto, GGP
Ramirez-Solis, A
Mota, CJA
TI The n-butonium cation (n-C4H11+): The potential energy surface of
protonated n-butane
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID THEORETICAL AB-INITIO; CARBONIUM-IONS; ELECTRONIC-STRUCTURE;
ELECTROPHILIC REACTIONS; INFRARED-SPECTROSCOPY; MOLECULAR-HYDROGEN;
SINGLE BONDS; CH5+; C2H7+; REARRANGEMENT
AB The structure and energetics of the n-butonium ion, the protonated form
of n-butane, were computed at the
MP4SDTQ(fc)/6-311++G**//MP2(full)/6-31G** level. Eleven stable
structures were found for the n-butonium ion, following the stability
order 2-C-n-butonium > 1-C-n-butonium > 2-H-n-butonium >
1-H-n-butonium. The transition states for intramolecular bond-to-bond
rearrangement and for decomposition of the carbonium ions into the van
der Waals complexes were also calculated. The H-n-butonium and the
1-C-n-butonium ions are higher in energy than the van der Waals
complexes 13, 14, and 15. The van der Waals complexes between the
isopropyl cation plus CH4 and the tert-butyl cation plus H-2 are the
most stable C4H11+ species. It was concluded that the 1-H-n-butonium
ion prefers to undergo intramolecular rearrangement to the
1-C-n-butonium ion, whereas the 2-H-n-butonium ion prefers to decompose
into the van der Waals complex of the sec-butyl cation plus H-2. The
calculated proton affinity of n-butane (156.7 kcal/mol) agrees well
with the experimental value of 153.7 kcal/mol. The C4H11+ (b) species,
formed upon the gas-phase reaction between C2H5+ and ethane, was
confirmed to be the 2-C-n-butonium cation, and the C4H11+ (a) species
was confirmed to be the 2-H-n-butonium cation, as proposed by Hiraoka
and Kebarle (Can. J. Chem. 1980, 58, 2262-2270). The experimental
activation energy of 9.6 kcal/mol was compared with the value of 12.8
kcal/mol, computed for the reaction 11 --> 5 through the transition
state 21.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
Univ CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
BOO DW, 1993, CHEM PHYS LETT, V211, P358
BOO DW, 1995, J CHEM PHYS, V103, P520
BOO DW, 1995, SCIENCE, V269, P57
BOO DW, 1996, INT J MASS SPECTROM, V159, P209
BUNKER PR, 1996, J MOL SPECTROSC, V176, P297
CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
COLLINS SJ, 1996, J CHEM SOC FARADAY T, V92, P4347
COLLINS SJ, 1998, TOP CATAL, V6, P151
ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
ESTEVES PM, 1998, TOP CATAL, V6, P163
ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
FIELD FH, 1965, J AM CHEM SOC, V87, P3289
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FUTRELL JH, 1970, J CHEM PHYS, V52, P3655
HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
HIRAOKA K, 1980, CAN J CHEM, V58, P2262
HIRAOKA K, 1993, CHEM PHYS LETT, V207, P178
HOUT RF, 1982, J COMPUT CHEM, V3, P234
KOCK W, 1989, J AM CHEM SOC, V111, P3479
LIDE DR, 1994, CRC HDB CHEM PHYSICS
MARX D, 1995, NATURE, V375, P216
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
MULLER H, 1997, J CHEM PHYS, V106, P1863
OBATA S, 1993, B CHEM SOC JPN, V66, P3271
OLAH GA, 1971, J AM CHEM SOC, V93, P1259
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1997, ACCOUNTS CHEM RES, V30, P245
RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
SAUNDERS M, 1968, J AM CHEM SOC, V90, P6882
SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
SCHLOSBERG RH, 1976, J AM CHEM SOC, V98, P7723
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
SIEBER S, 1993, J AM CHEM SOC, V115, P259
SISKIN M, 1976, J AM CHEM SOC, V98, P5413
SOMMER J, 1996, RES CHEM INTERMEDIAT, V22, P753
TALROZE VL, 1952, DOKL AKAD NAUK SSSR, V86, P909
YEH LI, 1989, J AM CHEM SOC, V111, P5597
NR 39
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUL 6
PY 2000
VL 104
IS 26
BP 6233
EP 6240
PG 8
SC Chemistry, Physical
GA 332CY
UT ISI:000088057000016
ER
PT J
AU Capelle, K
Oliveira, LN
TI Density-functional theory for spin-density waves and antiferromagnetic
systems
SO PHYSICAL REVIEW B
LA English
DT Article
ID GENERALIZED-GRADIENT-APPROXIMATION; HIGH-TEMPERATURE SUPERCONDUCTORS;
BAND-STRUCTURE CALCULATIONS; STRONG MAGNETIC-FIELDS;
ELECTRONIC-STRUCTURE; GROUND-STATE; GAMMA-FE; EXCHANGE; MOLECULES;
CHROMIUM
AB An extension of density-functional theory, designed to treat
spin-density waves and antiferromagnetic systems, is presented. The
nonlocal nature of the antiferromagnetic correlations and possible
noncollinearity in spin space are incorporated via an additional
fundamental variable, the staggered density, which supplements the spin
densities of conventional density-functional theory. Inclusion of this
variable is justified by both physical and methodological
considerations. We prove the corresponding Hohenberg-Kohn theorem,
derive the pertinent Kohn-Sham equations, and present several
approximate functionals depending explicitly on the staggered density.
As a first test the formalism is applied to two simple model systems, a
one-dimensional electron gas with a short-range interaction, and the
three-dimensional electron gas with Coulomb interactions. These
calculations serve to test the developed formalism, bur also already
allow us to draw a number of conclusions regarding the stability and
nature of possible spin-density wave states in homogeneous electron
systems.
C1 Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol, BR-13560970 Sao Carlos, SP, Brazil.
Univ Sao Paulo, Inst Fis Sao Carlos, Dept Fis & Informat, BR-13560970 Sao Carlos, SP, Brazil.
RP Capelle, K, Univ Sao Paulo, Inst Quim Sao Carlos, Dept Quim & Fis Mol,
Caixa Postal 780, BR-13560970 Sao Carlos, SP, Brazil.
CR BONEV SA, 1999, B AM PHYS SOC, V44, P105
BYLANDER DM, 1998, PHYS REV B, V58, P9207
BYLANDER DM, 1999, PHYS REV B, V59, P6278
CALAIS JL, 1982, J PHYS C SOLID STATE, V15, P3093
CAPELLE K, 1999, EUR PHYS J B, V12, P225
CAPELLE K, 2000, EUROPHYS LETT, V49, P376
CEPERLEY D, 1978, PHYS REV B, V18, P3126
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CEPERLEY DM, 1984, MONTE CARLO METHODS
COEY JMD, 1987, CAN J PHYS, V65, P1210
DEGENNES PG, 1966, SUPERCONDUCTIVITY ME
DREIZLER RM, 1990, DENSITY FUNCTIONAL T
FAWCETT E, 1988, REV MOD PHYS, V60, P209
FAWCETT E, 1994, REV MOD PHYS, V66, P25
FEDDERS PA, 1966, PHYS REV, V143, P245
FUKUTOME H, 1981, INT J QUANTUM CHEM, V20, P955
GOERLING A, 1996, PHYS REV B, V53, P7024
GRABO T, 1998, STRONG COULOMB CORRE
GRUNER G, 1994, REV MOD PHYS, V66, P1
GUNNARSSON O, 1976, PHYS REV B, V13, P4274
GYGI F, 1991, PHYS REV B, V43, P7609
GYORFFY BL, 1985, J PHYS F MET PHYS, V15, P1337
GYORFFY BL, 1998, PHYS REV B, V58, P1025
HELLWEGE KH, 1994, LANDOLTBORNSTEIN NEW, V13
HERRING C, 1966, MAGNETISM, V4
HOHENBERG P, 1964, PHYS REV B, V136, P864
ISHIGURO T, 1990, SPRINGER SERIES SOLI, V88
JONES W, 1973, THEORETICAL SOLID ST, V1
KLEINMAN L, 1999, PHYS REV B, V59, P3314
KOHN W, 1965, PHYS REV, V140, A1133
KOHN W, 1989, J PHYS-PARIS, V50, P2601
KOSKINEN M, 1997, PHYS REV LETT, V79, P1389
KOTANI T, 1995, PHYS REV B, V52, P17153
KOTANI T, 1995, PHYS REV LETT, V74, P2989
KURTH S, 1999, ELECT CORRELATIONS M
KURTH S, 1999, PHYS REV LETT, V83, P2628
LEVY M, 1979, P NATL ACAD SCI USA, V76, P6062
LEVY M, 1982, PHYS REV A, V26, P1200
MCWEENY R, 1989, METHODS MOL QUANTUM
NORDSTROM L, 1996, PHYS REV LETT, V76, P4420
OLIVEIRA LN, 1988, PHYS REV LETT, V60, P2430
ORTIZ G, 1999, B AM PHYS SOC, V44, P105
ORTIZ G, 1999, PHYS REV LETT, V82, P5317
OVERHAUSER AW, 1960, PHYS REV LETT, V4, P462
OVERHAUSER AW, 1962, PHYS REV, V128, P1437
PARR RG, 1989, DENSITY FUNCTIONAL T
PERDEW JP, 1995, PHYS REV A, V51, P4531
PERDEW JP, 1997, INT J QUANTUM CHEM, V61, P197
PERDEW JP, 1998, LECT NOTES PHYSICS, V500
PERDEW JP, 1999, PHYS REV LETT, V82, P2544
PLEHN H, 1994, PHYS REV B, V49, P12140
SANDRATSKII LM, 1998, ADV PHYS, V47, P91
SHAM LJ, 1985, PHYS REV B, V32, P3876
SINGH DJ, 1992, PHYS REV B, V46, P11570
STADELE M, 1997, PHYS REV LETT, V79, P2089
STICHT J, 1989, J PHYS-CONDENS MAT, V1, P8155
SUVASINI MB, 1993, PHYS REV B, V48, P1202
SYKJA B, 1982, J PHYS C SOLID STATE, V15, P3079
TEMMERMAN WM, 1996, PHYS REV LETT, V76, P307
TEMMERMAN WM, 1998, ELECT DENSITY FUNCTI, P327
TSUNODA Y, 1989, J PHYS-CONDENS MAT, V1, P10427
VIGNALE G, 1987, PHYS REV LETT, V59, P2360
VIGNALE G, 1988, PHYS REV B, V37, P10685
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
WEINER B, 1998, INT J QUANTUM CHEM, V69, P451
ZIESCHE P, 1998, COMP MATER SCI, V11, P122
NR 66
TC 9
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD JUN 1
PY 2000
VL 61
IS 22
BP 15228
EP 15240
PG 13
SC Physics, Condensed Matter
GA 325AL
UT ISI:000087654100049
ER
PT J
AU Pliego, JR
Riveros, JM
TI On the calculation of the absolute solvation free energy of ionic
species: Application of the extrapolation method to the hydroxide ion
in aqueous solution
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID MONTE-CARLO SIMULATION; PERIODIC BOUNDARY-CONDITIONS; AB-INITIO;
CONTINUUM ELECTROSTATICS; POTENTIAL FUNCTIONS; LIQUID WATER; GAS-PHASE;
HYDRATION; CLUSTERS; MODEL
AB The absolute solvation free energy of the hydroxide ion in aqueous
solution was calculated by Monte Carlo simulation and free energy
perturbation. We have used the TIP3P model for water and the
solute-solvent interaction was modeled as an effective two-body
potential of charge-charge plus Lennard-Jones terms fitted to reproduce
the interaction energy in the OH-(H2O)(3) and OH-(H2O)(4) ionic
clusters. The electrostatic contribution to the solvation free energy
was determined by using solvent boxes having 120, 160, 216, 350, and
512 water molecules, and the limit for N approaching infinity was
obtained by an extrapolation procedure. The final solvation free energy
obtained by considering the Lennard-Jones potential contribution,
correcting for the cutoff surface potential, and including the surface
potential of water cluster amounts to -108.0 kcal mol(-1): in very good
agreement with the experimental value of -105.0 kcal mol(-1). This
result shows that the extrapolation method coupled with the use of an
effective two-body potential is a viable and accurate procedure for
calculating the absolute solvation free energy of ionic species.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, SP, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, SP,
Brazil.
CR ALLEN MP, 1989, COMPUTER SIMULATION
AQVIST J, 1990, J PHYS CHEM-US, V94, P8021
AQVIST J, 1994, J PHYS CHEM-US, V98, P8253
BENNAIM A, 1978, J PHYS CHEM-US, V82, P792
BENNAIM A, 1984, J CHEM PHYS, V81, P2016
CARLSON HA, 1993, J COMPUT CHEM, V14, P1240
CHIPOT C, 1994, J PHYS CHEM-US, V98, P11362
CONWAY BE, 1981, IONIC HYDRATION CHEM
DARDEN T, 1998, J CHEM PHYS, V109, P10921
DELVALLE CP, 1997, CHEM PHYS LETT, V269, P401
GAO J, 1986, J AM CHEM SOC, V108, P4784
GRIMM AR, 1995, MOL PHYS, V86, P369
HUMMER G, 1996, J PHYS CHEM-US, V100, P1206
HUMMER G, 1997, J PHYS CHEM B, V101, P3017
HUNENBERGER PH, 1999, J CHEM PHYS, V110, P1856
JORGENSEN WL, 1983, J CHEM PHYS, V79, P926
JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
JORGENSEN WL, 1988, MOL PHYS, V63, P547
JORGENSEN WL, 1989, CHEM PHYS, V129, P193
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
JORGENSEN WL, 1993, J COMPUT CHEM, V14, P195
JORGENSEN WL, 1993, J COMPUT CHEM, V14, P206
JORGENSEN WL, 1995, BOSS VERSION 3 5 YAL
KING G, 1989, J CHEM PHYS, V91, P3647
MARCUS Y, 1985, ION SOLVATION
MARRONE TJ, 1994, J PHYS CHEM-US, V98, P8256
MEOTNER M, 1986, J PHYS CHEM-US, V90, P6616
PAPPALARDO RR, 1996, J PHYS CHEM-US, V100, P11748
PAUL GJC, 1990, J PHYS CHEM-US, V94, P5148
PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
PLIEGO JR, 1999, PCCP PHYS CHEM CH PH, V1, P1031
PLIEGO JR, 2000, J CHEM PHYS, V112, P4045
PRATT LR, 1992, J PHYS CHEM-US, V96, P25
SAKANE S, 1998, J PHYS CHEM B, V102, P5673
SOKHAN VP, 1997, MOL PHYS, V92, P625
STRAATSMA TP, 1988, J CHEM PHYS, V89, P5876
TISSANDIER MD, 1998, J PHYS CHEM A, V102, P7787
TUNON I, 1995, J PHYS CHEM-US, V99, P3798
TURKI N, 1998, J CHEM PHYS, V109, P7157
WOOD RH, 1995, J CHEM PHYS, V103, P6177
XANTHEAS SS, 1995, J AM CHEM SOC, V117, P10373
NR 42
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5647
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD JUN 1
PY 2000
VL 104
IS 21
BP 5155
EP 5160
PG 6
SC Chemistry, Physical
GA 320WU
UT ISI:000087424500019
ER
PT J
AU Gorelsky, SI
da Silva, SC
Lever, ABP
Franco, DW
TI Electronic spectra of trans-[Ru(NH3)(4)(L)NO](3+/2+) complexes
SO INORGANICA CHIMICA ACTA
LA English
DT Article
DE electronic spectra; ruthenium complexes; nitrosyl-metal complexes; DFT;
TD-DFT
ID DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL THEORY; EXTENDED
BASIS-SETS; COMPACT EFFECTIVE POTENTIALS; EFFECTIVE CORE POTENTIALS;
EXPONENT BASIS-SETS; ORGANOMETALLIC COMPOUNDS; TRANSITION-METALS;
EXCITATION-ENERGIES; 1ST-ROW ELEMENTS
AB Density functional theory (DFT) with local, non-local and hybrid
functionals has been used to obtain the geometry of a series of
nitrosyl-metal complexes [Ru(NH3)(4)(L)NO](n+), where L = NH3, H2O,
pyrazine and pyridine (n = 3), Cl- and OH- (n = 2). Based on the
molecular orbital analysis and the time dependent DFT (TD-DFT)
calculations, we discuss the electronic structure and the assignment of
the bands in the electronic spectra of these complexes. (C) 2000
Elsevier Science S.A. All rights reserved.
C1 York Univ, Dept Chem, Toronto, ON M3J 1P3, Canada.
Univ Sao Paulo, Inst Quim, BR-13560970 Sao Carlos, SP, Brazil.
RP Lever, ABP, York Univ, Dept Chem, Toronto, ON M3J 1P3, Canada.
CR *HYP INC, 1997, HYPERCHEM WIND REL 5
BAUERNSCHMITT R, 1996, CHEM PHYS LETT, V256, P454
BAUERNSCHMITT R, 1998, J AM CHEM SOC, V120, P5052
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BEZERRA CWB, 1999, INORG CHEM, V38, P5660
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BLAUDEAU JP, 1997, J CHEM PHYS, V107, P5016
BOTTOMLEY F, 1974, J CHEM SOC DA, V15, P1600
BRAY MR, 1996, INT J QUANTUM CHEM, V61, P85
CASIDA ME, 1995, RECENT ADV DENSITY F, V1
CASIDA ME, 1996, RECENT DEV APPL MODE, V4
CASIDA ME, 1997, MON KS MODULE RELEAS
CASIDA ME, 1998, J CHEM PHYS, V108, P4439
CLARK T, 1983, J COMPUT CHEM, V4, P294
CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
DA S, 1998, INORG CHEM, V37, P2670
DAUL C, 1993, J CHEM PHYS, V98, P4023
DOBBS KD, 1986, J COMPUT CHEM, V7, P359
DOBBS KD, 1987, J COMPUT CHEM, V8, P861
DOBBS KD, 1987, J COMPUT CHEM, V8, P880
DUNNING TH, 1977, METHODS ELECT STRUCT, V2
ESTRIN DA, 1996, INORG CHEM, V35, P3897
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
FUENTEALBA P, 1982, CHEM PHYS LETT, V89, P418
FUENTEALBA P, 1983, J PHYS B ATOM MOL PH, V16, P1323
FUENTEALBA P, 1985, J PHYS B ATOM MOL PH, V18, P1287
GODBOUT N, 1992, CAN J CHEM, V70, P560
GOMES MG, 1998, J CHEM SOC DALT 0221, P601
GORDON MS, 1982, J AM CHEM SOC, V104, P2797
GORELSKY SI, 1998, COORDIN CHEM REV, V174, P469
GORELSKY SI, 1998, RUSS J COORD CHEM, V24, P491
HAMRA OY, 1998, INORG CHEM, V37, P2033
HAY PJ, 1985, J CHEM PHYS, V82, P270
HAY PJ, 1985, J CHEM PHYS, V82, P299
HOLLAUER E, 1997, J BRAZIL CHEM SOC, V8, P495
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
KROGHJESPERSEN K, 1987, J AM CHEM SOC, V109, P7025
LEE C, 1988, PHYS REV B, V37, P785
LEVER ABP, 1990, INORG CHEM, V29, P1271
LEVER ABP, 1999, INORGANIC ELECT STRU, V2, P227
LOPES LGF, 1998, AUST J CHEM, V51, P865
MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
PERDEW JP, 1986, PHYS REV B, V33, P8800
PERDEW JP, 1986, PHYS REV B, V33, P8822
PROYNOV EI, 1994, CHEM PHYS LETT, V230, P419
PROYNOV EI, 1994, PHYS REV A, V50, P3766
PROYNOV EI, 1994, PHYS REV B, V49, P7874
PROYNOV EI, 1995, CHEM PHYS LETT, V234, P462
PROYNOV EI, 1995, INT J QUANTUM CHEM S, V29, P61
PROYNOV EI, 1997, INT J QUANTUM CHEM, V64, P427
PROYNOV EI, 1998, PHYS REV B, P12616
SCHREINER AF, 1972, INORG CHEM, V11, P880
SILVA SC, 1999, SPECTROSC ACTA A, V55, P1515
STAMANT A, 1992, THESIS U MONTREAL
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEVENS WJ, 1992, CAN J CHEM, V70, P612
STOLL H, 1984, J CHEM PHYS, V81, P2732
STRATMANN RE, 1998, J CHEM PHYS, V109, P8218
SZENTPALY L, 1982, CHEM PHYS LETT, V93, P555
VOSKO SH, 1980, CAN J PHYS, V58, P1200
WADT WR, 1985, J CHEM PHYS, V82, P284
WESTCOTT BL, 1999, INORGANIC ELECT STRU, V2, P403
WONG MW, 1991, J AM CHEM SOC, V113, P4776
WONG MW, 1991, J CHEM PHYS, V95, P8991
WONG MW, 1992, J AM CHEM SOC, V114, P1645
WONG MW, 1992, J AM CHEM SOC, V114, P523
ZERNER MC, ZINDO PROGRAM VERSIO
NR 68
TC 41
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0020-1693
J9 INORG CHIM ACTA
JI Inorg. Chim. Acta
PD APR 30
PY 2000
VL 300
BP 698
EP 708
PG 11
SC Chemistry, Inorganic & Nuclear
GA 320WA
UT ISI:000087422800083
ER
PT J
AU de Oliveira, AE
Haiduke, RLA
Bruns, RE
TI The infrared fundamental intensities and polar tensor of CF4
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE infrared intensities; atomic polar tensors; electronegativity; G sum
rule; simple potential model
ID DIPOLE-MOMENT DERIVATIVES; PRINCIPAL COMPONENT ANALYSIS; CORIOLIS
INTERACTIONS; METHANE; CHLOROFLUOROCARBONS; ENERGIES; FLUORIDE;
CHARGES; SIGNS
AB Atomic polar tensors of carbon tetrafluoride are calculated from
experimental fundamental infrared intensities measured by several
research groups. Quantum chemical calculations using a 6-311 + + G(3d,
3p) basis set at the Hartree-Fock, Moller-Plesset 2 and Density
Functional Theory (B3LYP) levels are used to resolve the sign
ambiguities of the dipole moment derivatives. The resulting carbon mean
dipole moment derivative, (p) over bar(C) = 2.051 e, is in excellent
agreement with values estimated by a MP2/6-311 + + G(3d, 3p)
theoretical calculation, 2.040 e, and by an empirical electronegativity
model. 2.016 e. The (p) over bar(C) value determined here is also in
excellent agreement with the one obtained from the CF4 Is carbon
ionization energy using a simple potential model, 2.059 e. Crawford's G
intensity sum rule applied to the fundamental intensities of CH4, CH3F,
CH2F2 and CHF3 results in a prediction of a 1249 km mol(-1) intensity
sum for CF4 in good agreement with the experimental values of 1328 +/-
37.9, 1208.0 +/- 54.4 and 1194.8 +/- 7.4 km mol(-1) reported in the
literature. (C) 2000 Elsevier Science B.V. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP de Oliveira, AE, Univ Estadual Campinas, Inst Quim, CP 6154,
BR-13083970 Campinas, SP, Brazil.
CR BARROW GM, 1952, P ROY SOC LOND A MAT, V213, P27
BIARGE JF, 1961, ANALES REAL SOC ES A, V57, P81
BODE JHG, 1980, J PHYS CHEM-US, V84, P198
BRUNS RE, 1996, J BRAZIL CHEM SOC, V7, P497
CIOSLOWSKI J, 1989, J AM CHEM SOC, V111, P8333
CRAWFORD BL, 1952, J CHEM PHYS, V20, P977
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GOLDEN WG, 1978, J CHEM PHYS, V68, P2081
GUADAGNINI PH, 1997, J AM CHEM SOC, V119, P4224
HANNAH RW, 1959, THESIS PURDUE U
HEICKLEN J, 1961, SPECTROCHIM ACTA, V17, P201
HUHEEY JE, 1965, J PHYS CHEM-US, V69, P3284
KIM K, 1980, J CHEM PHYS, V73, P5591
KIM K, 1987, J QUANT SPECTROSC RA, V37, P107
KING WT, 1972, J CHEM PHYS, V56, P4440
KONDO S, 1980, J CHEM PHYS, V73, P5409
KONDO S, 1981, J CHEM PHYS, V74, P6603
KONDO S, 1982, J CHEM PHYS, V76, P809
LEVIN IW, 1970, J CHEM PHYS, V52, P1608
MCDANIEL AH, 1991, J ATMOS CHEM, V12, P211
MIZUNO M, 1976, SPECTROCHIM ACTA A, V32, P1077
NETO BB, 1988, J CHEM PHYS, V89, P1887
NETO BB, 1989, J PHYS CHEM-US, V83, P1728
OVEREND J, 1963, INFRARED SPECTROSCOP, P345
OVEREND J, 1982, VIBRATIONAL INTENSIT, P14
PERSON WB, 1974, J CHEM PHYS, V61, P1040
PERSON WB, 1975, J PHYS CHEM-US, V79, P2525
ROEHL CM, 1995, GEOPHYS RES LETT, V22, P815
RUSSELL JW, 1966, J CHEM PHYS, V45, P3383
SAEKI S, 1976, SPECTROCHIM ACTA PT, V32, P403
SCHATZ PN, 1953, J CHEM PHYS, V21, P1516
SCHURIN B, 1959, J CHEM PHYS, V30, P1
SIEGBAHN K, 1971, ESCA APPL FREE MOL
SUTO E, 1991, J COMPUT CHEM, V12, P885
SUTO E, 1991, J PHYS CHEM-US, V95, P9716
VARANASI P, 1988, J GEOPHYS RES, V93, P1666
NR 36
TC 8
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUN
PY 2000
VL 56
IS 7
BP 1329
EP 1335
PG 7
SC Spectroscopy
GA 319YW
UT ISI:000087374900011
ER
PT J
AU Rivelino, R
Canuto, S
TI An ab initio study of the hydrogen-bonded H2O : HCN and HCN : H2O
isomers
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID QUANTUM-CHEMISTRY; CYANIDE; WATER; COMPLEXES; SPECTROSCOPY; MOLECULES;
SPECTRA
AB Ab initio calculations an performed on the hydrogen bond interaction
between HCN and water to analyze the structure, binding energy and
change in vibrational frequencies of the HCN:H2O isomer. After geometry
optimization, single-point calculations are made with many-body
perturbation/coupled-cluster theories with different basis sets. At the
highest level, CCSD(T), we find that the binding energy between HCN and
water is 3.4 kcal/mol, after correcting for the basis-set-super
position error. Changes in intra-molecular vibrational frequencies are
analyzed. (C) 2000 Elsevier Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Canuto, S, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENTWOOD RM, 1980, J MOL SPECTROSC, V84, P391
BERNSTEIN ER, 1990, ATOMIC MOL CLUSTERS
BOYS SF, 1970, MOL PHYS, V19, P553
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
FILLERYTRAVIS AJ, 1984, P ROY SOC LOND A MAT, V396, P405
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GUTOWSKY HS, 1992, J CHEM PHYS, V96, P5808
HARRIS DC, 1989, SYMMETRY SPECTROSCOP
HEHRE WJ, 1986, AB INITIO MOL ORBITA
IRVINE WM, 1996, NATURE, V383, P418
LEE C, 1988, PHYS REV B, V37, P785
LIEBMAN SA, 1994, ADV SPACE RES, V15, P71
MATHEWS CN, 1992, ORIGIN LIFE EVOL B, V21, P421
MEOTNER M, 1989, J PHYS CHEM-US, V93, P3663
MICHAEL DW, 1984, J CHEM PHYS, V81, P1360
NOTESCO G, 1997, ICARUS, V126, P336
PAULING L, 1928, P NATL ACAD SCI USA, V14, P349
RAGHAVACHARI K, 1991, ANNU REV PHYS CHEM, V42, P615
SCHEINER S, 1997, HYDROGEN BONDING THE
SCOLES G, 1990, CHEM PHYSICS ATOMIC
SMITH DA, 1994, ACS S SERIES, V569
SMITH DMA, 1998, CHEM PHYS LETT, V288, P609
STONE AJ, 1996, THEORY INTERMOLECULA
SZCZESNIAK MM, 1984, J CHEM PHYS, V81, P5024
SZCZESNIAK MM, 1986, J MOL STRUCT THEOCHE, V135, P179
TSHEHLA TM, 1994, B POL ACAD SCI-CHEM, V42, P397
TURI L, 1993, J PHYS CHEM-US, V97, P7899
VANDUIJNEVELDT FB, 1994, CHEM REV, V94, P1873
NR 30
TC 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 19
PY 2000
VL 322
IS 3-4
BP 207
EP 212
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 318EX
UT ISI:000087271900009
ER
PT J
AU Bezerra, EF
Freire, VN
Teixeira, AMR
Silva, MAA
Freire, PTC
Mendes, J
Lemos, V
TI Smooth interface effects on the Raman scattering in zinc-blende AlN/GaN
superlattices
SO PHYSICAL REVIEW B
LA English
DT Article
ID III NITRIDE SEMICONDUCTORS; QUANTUM-WELLS; CUBIC GAN; LATTICE-DYNAMICS;
EPITAXIAL LAYERS; OPTICAL PHONONS; AB-INITIO; MODES; SPECTROSCOPY;
SPECTRA
AB Raman spectra of
(AlN)(8-delta)/(AlxGa1-xN)(delta)/(GaN)(8-delta)/(AlxGa1-xN)(delta)
superlattices with interface thickness varying between delta = 0 and
delta = 3 are calculated. The influence of the nonabrupt interface
related broadening is described in the complete range of scattering,
with special attention to the modes giving stronger contribution to the
Raman intensity. It is shown that the dispersion of folded acoustic
phonons does not change appreciably with the interface smoothing. For
delta = 0 the Raman spectra display new peaks due to the enhancement of
some confined optic modes.
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, UNICAMP, BR-13083970 Campinas, SP, Brazil.
RP Lemos, V, Univ Fed Ceara, Dept Fis, Ctr Ciencias, Caixa Postal
6030,Campus do Pici, BR-60455760 Fortaleza, Ceara, Brazil.
CR AKASAKI I, 1997, JPN J APPL PHYS 1, V36, P5393
BEHR D, 1997, APPL PHYS LETT, V70, P363
BELITSKY VI, 1994, PHYS REV B, V49, P8263
CINGOLANI R, 1997, PHYS REV B, V56, P1491
DHARMAWARDANA MWC, 1990, PHYS REV B, V41, P5319
GIEHLER M, 1995, APPL PHYS LETT, V67, P733
GRILLE H, 1996, J RAMAN SPECTROSC, V27, P201
HARIMA H, 1999, APPL PHYS LETT, V74, P191
HOLST J, 1998, APPL PHYS LETT, V72, P1439
JUSSERAND B, 1989, TOP APPL PHYS, V66, P49
KARCH K, 1997, PHYS REV B, V56, P7404
KARCH K, 1998, PHYS REV B, V57, P7043
LEMOS V, 1995, SUPERLATTICE MICROST, V17, P51
LEMOS V, 1999, J RAMAN SPECTROSC, V30, P379
LIU XH, 1996, PHYS REV B, V53, P4699
MACMILLAN MF, 1996, J APPL PHYS, V80, P2372
MOHAMMAD SN, 1996, PROG QUANT ELECTRON, V20, P361
NAKAMURA S, 1997, BLUE LASER DIODE
PILLA O, 1994, PHYS REV B, V50, P11845
PLOOG KH, 1997, THIN SOLID FILMS, V306, P231
RAMIREZFLORES G, 1994, PHYS REV B, V50, P8433
SAMSON B, 1992, PHYS REV B, V46, P2375
SIEGLE H, 1995, SOLID STATE COMMUN, V96, P943
SILVA MAA, 1996, PHYS REV B, V53, P15871
SMITH M, 1996, APPL PHYS LETT, V69, P2453
STRIFE S, 1992, J VAC SCI TECHNOL B, V10, P1237
SUN XL, 1999, APPL PHYS LETT, V74, P2827
TABATA A, 1999, APPL PHYS LETT, V74, P362
TABATA A, 1999, APPL PHYS LETT, V75, P1095
TABATA A, 1999, SEMICOND SCI TECH, V14, P1
TSEN KT, 1996, J RAMAN SPECTROSC, V27, P277
WEI GH, 1997, J APPL PHYS, V82, P622
ZI JA, 1996, J PHYS-CONDENS MAT, V8, P6329
NR 33
TC 11
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 15
PY 2000
VL 61
IS 19
BP 13060
EP 13063
PG 4
SC Physics, Condensed Matter
GA 316GK
UT ISI:000087159100092
ER
PT J
AU Bettega, MHF
Winstead, C
McKoy, V
TI Elastic scattering of low-energy electrons by benzene
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID TEMPORARY NEGATIVE-IONS; SELECTION-RULES; VIBRATIONAL-EXCITATION;
MOLECULE COLLISIONS; RESONANCES; IMPACT
AB We present elastic cross sections obtained from ab initio calculations
for low-energy electron scattering by benzene, C6H6. The calculations
employed the Schwinger multichannel method as implemented for parallel
computers within both the static-exchange and
static-exchange-polarization approximations. We compare our results
with other theoretical calculations and with available experimental
data. In general, agreement is good. (C) 2000 American Institute of
Physics. [S0021-9606(00)01120-X].
C1 CALTECH, Arthur Amos Noyes Lab Chem Phys, Pasadena, CA 91125 USA.
Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil.
RP Bettega, MHF, CALTECH, Arthur Amos Noyes Lab Chem Phys, Pasadena, CA
91125 USA.
CR AFLATOONI K, 1998, J PHYS CHEM A, V102, P6205
ALLAN M, 1982, HELV CHIM ACTA, V65, P2009
ALTMANN SL, 1957, P CAMB PHILOS SOC, V53, P343
AZRIA R, 1975, J CHEM PHYS, V62, P573
BATTAGLIA MR, 1981, CHEM PHYS LETT, V78, P421
BAUSCHLICHER CW, 1980, J CHEM PHYS, V72, P880
BENARFA M, 1990, J ELECTRON SPECTRY R, V50, P117
BETTEGA MHF, 1993, PHYS REV A, V47, P1111
CHAO JSY, 1987, J PHYS CHEM-US, V91, P5578
GALLUP GA, 1986, PHYS REV A, V34, P2746
GALLUP GA, 1993, J CHEM PHYS, V99, P827
GERJUOY E, 1955, PHYS REV, V97, P1671
GIANTURCO FA, 1998, J CHEM PHYS, V108, P6144
GULLEY RJ, 1998, J PHYS B-AT MOL OPT, V31, P2735
GULLEY RJ, 1999, COMMUNICATION
GULLEY RJ, 1999, J PHYS B-AT MOL OPT, V32, L405
HERZBERG G, 1966, MOL SPECTRA MOL STRU, V3, P999
JORDAN KD, 1987, CHEM REV, V87, P557
LEE CH, 1999, J CHEM PHYS, V111, P5056
LIMA MAP, 1990, PHYS REV A, V41, P327
MCKOY V, 1998, J VAC SCI TECHNOL A, V16, P324
MORRISON MA, 1977, PHYS REV A, V15, P2186
MOZEJKO P, 1996, CHEM PHYS LETT, V257, P309
NATALENSE APP, 1998, PHYS REV LETT, V81, P3832
NENNER I, 1975, J CHEM PHYS, V62, P1747
RESCIGNO TN, MODERN ELECT STRUC 1, V501, P95
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SUEOKA O, 1988, J PHYS B ATOM MOL PH, V21, L631
TAKATSUKA K, 1981, PHYS REV A, V24, P2473
TAKATSUKA K, 1984, PHYS REV A, V30, P1734
VARELLA MTD, 1999, J CHEM PHYS, V111, P6396
VARELLA MTD, 1999, PHYS REV A, V60, P3684
WIGNER EP, 1948, PHYS REV, V73, P1002
WIJNBERG L, 1966, J CHEM PHYS, V44, P3864
WINSTEAD C, 1996, ADV ATOM MOL OPT PHY, V36, P183
WINSTEAD C, 1998, PHYS REV A, V57, P3589
WONG SF, 1975, PHYS REV LETT, V35, P1429
NR 37
TC 17
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAY 22
PY 2000
VL 112
IS 20
BP 8806
EP 8812
PG 7
SC Physics, Atomic, Molecular & Chemical
GA 310WC
UT ISI:000086851200010
ER
PT J
AU Rocha, WR
De Almeida, WB
TI Carbonyl insertion reaction into the Pt-C bond in heterobimetallic
Pt(SnCl3)(PH3)(2)(CO)(CH3) compound: Theoretical study
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE Pt(SnCl3)(PH3)(2)(CO)(CH3); heterobimetallic; catalytic species;
carbonyl insertion reaction; quantum mechanical
ID OLEFIN HYDROFORMYLATION; ABINITIO MO; ASYMMETRIC HYDROFORMYLATION;
ALKYL MIGRATION; REACTION-PATH; BASIS-SETS; AB-INITIO; COMPLEXES; PD;
MECHANISM
AB Quantum-mechanical calculations were carried out at the MP4(SDQ)//MP2
level of theory to determine the energies and reaction mechanism for
the carbonyl insertion reaction (second step in the olefin
hydroformylation catalytic cycle), using a heterobimetallic
Pt(SnCl3)(PH3)(2)(CO)(CH3) compound as a model catalytic species. The
results show that this reaction proceeds through a three-center
transition state, with an activation energy of 26.4 kcal/mol, followed
by an intramolecular rearrangement to the square-planar
cis-Pt(SnC4)(PH3)(2)(MeCO) metal-acyl product. Analysis of the nature
of the bonds shows that there is a negligible participation of Be tin
d-orbitals in the formation of the Pt-Sn bond. (C) 2000 John Wiley &
Sons, Inc.
C1 UFMG, ICEX, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, UFMG, ICEX, Dept Quim, LQCMM, BR-31270901 Belo
Horizonte, MG, Brazil.
CR ALBINATI A, 1985, J ORGANOMET CHEM, V295, P239
ANDERSON GK, 1984, ACCOUNTS CHEM RES, V17, P67
AUGUSTI R, 1995, P 8 SEM BRAS CAT, V1, P360
BOTTEGHI C, 1992, QUIM NOVA, V15, P21
BOTTEGHI C, 1997, QUIM NOVA, V20, P30
DAROCHA LL, 1998, J MOL CATAL A-CHEM, V132, P213
DIAS AD, 1997, TETRAHEDRON LETT, V38, P41
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
GATES BC, 1992, CATALYTIC CHEM
GOMEZ M, 1991, ORGANOMETALLICS, V10, P4036
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
GUSEVSKAYA E, 1997, J MOL CATAL A-CHEM, V121, P131
HAY PJ, 1985, J CHEM PHYS, V82, P270
HEHRE WJ, 1969, J CHEM PHYS, V51, P2657
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOLLWARTH A, 1993, CHEM PHYS LETT, V208, P237
KOGA N, 1985, J AM CHEM SOC, V107, P7230
KOGA N, 1986, J AM CHEM SOC, V108, P6136
KOGA N, 1991, NEW J CHEM, V15, P749
KOLLAR L, 1987, J ORGANOMET CHEM, V330, P305
MATSUBARA T, 1997, ORGANOMETALLICS, V16, P1065
MOLLER C, 1934, PHYS REV, V46, P618
NOACK K, 1967, J ORGANOMET CHEM, V10, P101
OZAWA F, 1981, CHEM LETT, P289
PARRINELLO G, 1987, J AM CHEM SOC, V109, P7122
PENG CY, 1993, ISRAEL J CHEM, V33, P449
PETTIT LD, 1972, Q REV, V56, P2257
REED AE, 1988, CHEM REV, V88, P899
ROCHA WR, 1997, INT J QUANTUM CHEM, V65, P643
ROCHA WR, 1998, ORGANOMETALLICS, V17, P1961
SAKAKI S, 1983, J AM CHEM SOC, V105, P2280
SCRIVANTI A, 1986, J ORGANOMET CHEM, V314, P369
VERSLUIS L, 1989, J AM CHEM SOC, V111, P2018
YAMAMOTO A, 1986, ORGANOTRANSITION MET
ZIEGLER T, 1986, J AM CHEM SOC, V108, P612
NR 36
TC 4
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD JUN
PY 2000
VL 21
IS 8
BP 668
EP 674
PG 7
SC Chemistry, Multidisciplinary
GA 310MC
UT ISI:000086831100005
ER
PT J
AU Fagan, SB
Baierle, RJ
Mota, R
da Silva, AJR
Fazzio, A
TI Ab initio calculations for a hypothetical material: Silicon nanotubes
SO PHYSICAL REVIEW B
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; CARBON NANOTUBES; ELECTRONIC-STRUCTURE;
MOLECULAR-DYNAMICS; SYSTEMS; TUBULES; BORON
AB Electronic and structural properties of a hypothetical material,
silicon nanotubes, are examined through first-principles calculations
based on density functional theory. Even considering that Si nanotubes
have never been observed, this paper attempts to establish the
theoretical similarities between Si and C, like band structures and
density of states, as well as the main differences, especially
associated with cohesive energies. The band-structure calculations for
silicon nanotubes show that, similar to carbon structures, depending on
their chiralities, they may present metallic (armchair) or
semiconductor (zigzag and mixed) behaviors.
C1 Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Fagan, SB, Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS,
Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BETHUNE DS, 1993, NATURE, V363, P605
BLASE X, 1994, PHYS REV LETT, V72, P1878
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
CAR R, 1985, PHYS REV LETT, V55, P2471
CHOPRA NG, 1995, SCIENCE, V269, P966
DRESSELHAUS MS, 1992, SOLID STATE COMMUN, V84, P201
HAMADA N, 1992, PHYS REV LETT, V68, P1579
HOHENBERG P, 1964, PHYS REV, V136, B864
IIJIMA S, 1991, NATURE, V354, P54
IIJIMA S, 1993, NATURE, V363, P603
KLEYNMAN L, 1982, PHYS REV LETT, V48, P1425
KOHN W, 1965, PHYS REV, V140, A1133
MINTMIRE JW, 1992, PHYS REV LETT, V68, P631
MIYAMOTO Y, 1996, PHYS REV LETT, V76, P2120
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
ODOM TW, 1998, NATURE, V391, P62
PERDEW JP, 1981, PHYS REV B, V23, P5048
ROTHLISBERGER U, 1994, PHYS REV LETT, V72, P665
STEPHAN O, 1994, SCIENCE, V266, P1683
WENGSIEH Z, 1995, PHYS REV B, V51, P11229
WILDOER JWG, 1998, NATURE, V391, P59
YAKOBSON BI, 1997, AM SCI, V85, P324
NR 23
TC 43
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD APR 15
PY 2000
VL 61
IS 15
BP 9994
EP 9996
PG 3
SC Physics, Condensed Matter
GA 306PZ
UT ISI:000086606200039
ER
PT J
AU Pinheiro, JC
Jorge, FE
De Castro, EVR
TI An improved generator coordinate Hartree-Fock method applied to the
choice of contracted Gaussian basis sets for first-row diatomic
molecules
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE improved generator coordinate Hartree-Fock method; contracted Gaussian
basis sets; first-row diatomic molecules
ID UNIVERSAL BASIS-SET; CORRELATION-ENERGY; 2ND-ROW ATOMS; MP2 ENERGY;
EXCHANGE; HYDROGEN
AB Accurate Gaussian basis sets (18s for Li and Be and 20s11p for the
atoms from B to Ne) for the first-row atoms, generated with an improved
generator coordinate Hartree-Fock method, were contracted and enriched
with polarization functions. These basis sets were tested for B-2, C-2,
BeO, CN-, LiF, N-2, CO, BF, NO+, O-2, and F-2. At the Hartree-Fock
(HP), second-order Moller-Plesset (MP2), fourth-order Moller-Plesset
(MP4), and density functional theory (DFT) levels, the dipole moments,
bond lengths, and harmonic vibrational frequencies were studied, and at
the MP2, MP4, and DFT levels, the dissociation energies were evaluated
and compared with the corresponding experimental values and with values
obtained using other contracted Gaussian basis sets and numerical HF
calculations. For all diatomic molecules studied, the differences
between our total energies, obtained with the largest contracted basis
set [6s5p3d1f], and those calculated with the numerical HF methods were
always less than 3.2 mhartree. (C) 2000 John Wiley & Sons, Inc.
C1 Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES, Brazil.
Univ Fed Espirito Santo, Dept Quim, BR-29060900 Vitoria, ES, Brazil.
Fed Univ Para, Fac Ciencias Exactas & Nat, Dept Quim, BR-66075110 Belem, Para, Brazil.
Ctr Estudos Panamazonico, BR-66060000 Belem, Para, Brazil.
RP Jorge, FE, Univ Fed Espirito Santo, Dept Fis, BR-29060900 Vitoria, ES,
Brazil.
CR BECKE AD, 1982, J CHEM PHYS, V76, P6037
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BUNGE CF, 1992, PHYS REV A, V46, P3691
CHAKRAVORTY SJ, 1989, MODERN TECHNIQUES CO, CH3
DACOSTA HFM, 1991, CHEM PHYS, V154, P379
DECASTRO EVR, 1998, J CHEM PHYS, V108, P5225
DECASTRO EVR, 1999, J C CHEM PHYS, V243, P1
DINGLE TW, 1989, J COMPUT CHEM, V10, P753
DUNNING TH, 1997, METHODS ELECT STRUCT
FRISCH MJ, 1990, CHEM PHYS LETT, V166, P281
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HEADGORDON M, 1988, CHEM PHYS LETT, V153, P503
HEADGORDON M, 1994, CHEM PHYS LETT, V220, P122
HOUK RF, 1982, J COMPUT CHEM, V3, P234
HUBER KP, 1972, AM I PHYSICS HDB
HUBER KP, 1979, MOL SPECTRA MOL STRU, V4
JORGE FE, 1997, CHEM PHYS, V216, P317
JORGE FE, 1998, CHEM PHYS, V233, P1
JORGE FE, 1998, J COMPUT CHEM, V19, P858
JORGE FE, 1999, CHEM PHYS LETT, V302, P454
KRISHNAN R, 1978, INT J QUANTUM CHEM, V14, P91
LEE C, 1988, PHYS REV B, V37, P785
MOHALLEM JR, 1986, INT J QUANTUM CH S20, P45
MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
MONCRIEFF D, 1995, J PHYS B ATOM MOL PH, V28, P4555
NELSON RD, 1967, NATL STANDARDS REFER, V10
PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
PYYKKO P, 1987, MOL PHYS, V60, P597
RADZIG AA, 1985, REFERENCE DATA ATOMS
RAFFENETTI RC, 1973, J CHEM PHYS, V58, P4452
ROBLES J, 1987, CHEM PHYS LETT, V134, P27
SADLEJ J, 1985, SEMIEMPIRICAL METHOD
SEMINARIO JM, 1991, INT J QUANTUM CHEM S, V25, P249
NR 34
TC 12
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD MAY 15
PY 2000
VL 78
IS 1
BP 15
EP 23
PG 9
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 306TW
UT ISI:000086613600003
ER
PT J
AU Rocha, WR
De Almeida, WB
TI Insertion reaction of propane into Rh-H bond in HRh(CO)(PH3)(2)(C3H6)
compound: A density functional study
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE propene; insertion reaction; hydroformylation; regioselectivity;
density functional
ID RHODIUM-CATALYZED HYDROFORMYLATION; TRANSITION-METAL ATOMS; AB-INITIO;
PROPENE HYDROFORMYLATION; REACTION-PATH; COMPLEXES; LIGANDS;
TRIPHENYLPHOSPHINE; APPROXIMATION; CHEMISTRY
AB Quantum mechanical calculations at the MP4 (SDQ) level using the
BP86-optimized geometries were carried out to investigate the energies
and reaction mechanism for the propene (CH3-(CH)-H-1=CH22) insertion
reaction into the Rh-H bond, using the cis-HRh(CO)(PH3)(2) compound as
a model catalytic species. Since the reaction may occur on the branched
carbon 1 or in the normal carbon 2, which leads to branched and normal
Rh(alkyl) compounds, respectively, we investigated these two
mechanisms. The results show that the insertion in the branched carbon
has an activation energy of 16.2 kcal/mol, and the activation energy
for the reaction to take place at the normal carbon is 14.3 kcal/mol.
These activation energies, together with the calculated relative energy
of the metal-alkyl compounds formed after the insertion considering
these two pathways, were used to access the regioselectivity on this
reaction. We found a ratio of normal- and iso-products, n:iso, of
(96:4), which is in excellent agreement with the experimental
regioselectity of (95:5). (C) 2000 John Wiley & Sons, Inc.
C1 UFMG, ICEX, Dept Quim, LQCMM, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, UFMG, ICEX, Dept Quim, LQCMM, BR-31270901 Belo
Horizonte, MG, Brazil.
CR BECKE AD, 1988, PHYS REV A, V38, P3098
BOTTEGHI C, 1992, QUIM NOVA, V15, P21
BOTTEGHI C, 1997, QUIM NOVA, V20, P30
BROWN JM, 1987, J CHEM SOC P2, P1597
CORNILS B, 1994, ANGEW CHEM INT EDIT, V33, P2144
DORO PC, 1980, CHIM IND-MILAN, V62, P572
EVANS D, 1968, J CHEM SOC A, P3133
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
GLADIALI S, 1995, J ORGANOMET CHEM, V491, P91
GLEICH D, 1998, ORGANOMETALLICS, V17, P4828
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
GONZALEZBLANCO O, 1997, ORGANOMETALLICS, V16, P5556
GORDON MS, 1996, COORDIN CHEM REV, V147, P87
GREGORIO G, 1980, CHIMICA IND, V62, P389
HAY PJ, 1985, J CHEM PHYS, V82, P270
HEHRE WJ, 1969, J CHEM PHYS, V51, P2657
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HERRMANN WA, 1993, ANGEW CHEM INT EDIT, V32, P1524
HERRMANN WA, 1997, ANGEW CHEM INT EDIT, V36, P1047
KOGA N, 1991, CHEM REV, V91, P823
MATSUBARA T, 1997, ORGANOMETALLICS, V16, P1065
OSBORN JA, 1966, J CHEM SOC A, P1711
PENG CY, 1993, ISRAEL J CHEM, V33, P449
PERDEW JP, 1986, PHYS REV B, V33, P8822
PIDUN U, 1998, CHEM-EUR J, V4, P522
PIGNOLET LH, 1983, HOMOGENEOUS CATALYSI
PRUETT RL, 1977, ANN NY ACAD SCI, V295, P239
ROCHA WR, 1997, INT J QUANTUM CHEM, V65, P643
SALAHUB DR, 1989, ACS S SERIES, V394
SCHMID R, 1997, ORGANOMETALLICS, V16, P701
SIEGBAHN PEM, 1993, J AM CHEM SOC, V115, P5803
SIEGBAHN PEM, 1996, ADV CHEM PHYS, V93, P333
STEGMANN R, 1998, ORGANOMETALLICS, V17, P2089
THATCHENKO I, 1982, COMPREHENSIVE ORGANO, V8
VEILARD A, 1985, QUANTUM CHEM CHALLEN
YAGUPSKY G, 1970, J CHEM SOC A, P1392
ZIEGLER T, 1991, CHEM REV, V91, P649
NR 38
TC 13
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD MAY 15
PY 2000
VL 78
IS 1
BP 42
EP 51
PG 10
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 306TW
UT ISI:000086613600006
ER
PT J
AU Leitao, AA
Vugman, NV
Bielschowsky, CE
TI On the origin of C-13 and N-14 hyperfine interactions in
[Co(CN)(6)](4-) and [Rh(CN)(6)](4-) complexes in KC1 host lattice
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID EFFECTIVE CORE POTENTIALS; MOLECULAR CALCULATIONS; COUPLING-CONSTANTS;
BASIS-SETS; AB-INITIO; ABINITIO; MODEL
AB Ab-initio ROHF, PUHF and PUHF-MP2 calculations of C-13 and N-14
hyperfine interactions for the [Co(CN)(6)](4-) and [Rh(CN)(6)](4-)
complexes in the KCl host lattice were performed and compared to
experimental results. The host lattice was represented by a set of 80
potentials located at the ion positions, leading to a consistent
picture of the complex electronic structure. A detailed analysis of
each molecular orbital contribution shows that collective effects are
very important and must be considered to achieve a realistic
description of this property. (C) 2000 Elsevier Science B.V. All rights
reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, BR-21949900 Rio De Janeiro, Brazil.
Univ Fed Rio de Janeiro, Inst Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Bielschowsky, CE, Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim,
Cidade Univ,CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR BERRONDO M, 1996, INT J QUANTUM CHEM, V57, P1115
CARMICHAEL I, 1997, J PHYS CHEM A, V101, P4633
CHIPMAN DM, 1992, THEOR CHIM ACTA, V82, P93
EVJEN HM, 1932, PHYS REV, V39, P675
GAULD JW, 1997, J PHYS CHEM A, V101, P1359
GUENZBURGER D, 1996, J APPL PHYS 2B, V79, P6429
HA TK, 1996, J CHEM PHYS, V105, P6385
HAY PJ, 1985, J CHEM PHYS, V82, P270
HAY PJ, 1985, J CHEM PHYS, V82, P299
JEAD JD, 1996, J CHEM PHYS, V104, P3244
PERERA SA, 1994, J CHEM PHYS, V100, P1425
PUCHINA AV, 1998, SOLID STATE COMMUN, V106, P285
RIVASSILVA JF, 1996, J PHYS CHEM SOLIDS, V57, P1705
SAUER J, 1989, CHEM REV, V89, P199
SEIJO L, 1996, INT J QUANTUM CHEM, V60, P617
SHOCK JR, 1975, J MAGN RESON, V18, P157
SOUSA C, 1993, J COMPUT CHEM, V14, P680
TEUNISSEN EH, 1995, INT J QUANTUM CHEM, V54, P73
VUGMAN NV, 1997, J MAGN RESON, V124, P352
WADT WR, 1985, J CHEM PHYS, V82, P284
WINTER NW, 1987, J CHEM PHYS, V87, P2945
NR 21
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD APR 28
PY 2000
VL 321
IS 3-4
BP 269
EP 274
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 308FW
UT ISI:000086700700012
ER
PT J
AU Eustatiu, IG
Tyliszczak, T
Hitchcock, AP
Turci, CC
Rocha, AB
Bielschowsky, CE
TI Experimental and theoretical study of generalized oscillator strengths
for C 1s and O 1s excitations in CO2
SO PHYSICAL REVIEW A
LA English
DT Article
ID ELECTRON-ENERGY-LOSS; INTRAMOLECULAR BOND LENGTHS; ABSORPTION
FINE-STRUCTURE; IMPACT CORE EXCITATION; SHELL SHAPE RESONANCES; FAST
CHARGED-PARTICLES; INELASTIC-COLLISIONS; MOMENTUM-TRANSFER; LEVEL
EXCITATION; LOSS SPECTRA
AB Electron-energy-loss spectra of CO2 in the region of C 1 s and O 1 s
excitations have been recorded over a wide range of momentum transfer
(K), (2 a.u.(-2)<K-2<70a.u.(-2)). The dipole-forbidden transition to
the (C 1 s sigma(g)(-1),sigma(g)(*)) (1)Sigma (+)(g) state in CO2 is
detected for the first time, to our knowledge. A detailed analysis,
with careful consideration of minimization of systematic experimental
errors, has been used to convert the measured relative cross sections
to absolute, momentum-transfer-dependent, generalized oscillator
strength (GOS) profiles for all resolved C 1 s and O 1 s transitions of
CO2. Theoretical results for the GOS, computed within the first Born
approximation, were obtained with ab initio configuration interaction
wave functions for the C 1 s transitions and with ab initio generalized
multistructural wave functions for the O 1 s transitions. These wave
functions include relaxation, correlation, and hole localization
effects. Theory predicts large quadrupole contributions to the GOS for
O 1 s excitations. In addition the computed GOS for O 1 s-->ns sigma
and np sigma Rydberg states clearly show oscillations arising from
interference between localized core excitations. Overall there is good
agreement between the experimental and theoretical results, indicating
that the first Born approximation holds to a surprisingly large
momentum transfer for the core excitations studied.
C1 McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada.
Univ Fed Rio de Janeiro, Inst Quim, BR-21910 Rio De Janeiro, Brazil.
RP Eustatiu, IG, McMaster Univ, Dept Chem, 1280 Main St W, Hamilton, ON
L8S 4M1, Canada.
CR AEBI P, 1992, PHYS REV B, V45, P13579
BARBIERI RS, 1992, PHYS REV A, V45, P7929
BARTH A, 1985, J PHYS B ATOM MOL PH, V18, P867
BETHE H, 1930, ANN PHYS-BERLIN, V5, P325
BIELSCHOWSKY CE, 1988, PHYS REV A, V38, P3405
BIELSCHOWSKY CE, 1992, PHYS REV A, V45, P7942
BONHAM RA, 1974, J ELECT SPECTROSC RE, V3, P85
BONHAM RA, 1993, J PHYS B ATOM MOL PH, V26, P3363
BOZEK JD, 1995, PHYS REV A, V51, P4563
CAMILLONI R, 1983, EXAFS NEAR EDGE STRU, P174
CAMILLONI R, 1984, LECTURE NOTES CHEM, V35, P172
CAMILLONI R, 1987, J PHYS B ATOM MOL PH, V20, P1839
CHUNG S, 1975, PHYS REV A, V12, P1340
DAASCH WR, 1982, J CHEM PHYS, V76, P6031
DAROCHA AB, 1998, PHYS REV A, V57, P4394
DEMIRANDA MP, 1993, J MOL STRUCT, V282, P71
DEMIRANDA MP, 1994, PHYS REV A, V49, P2399
DEMIRANDA MP, 1995, J PHYS B-AT MOL OPT, V28, L15
DILLON MA, 1975, J CHEM PHYS, V62, P2373
EUSTATIU IG, IN PRESS CHEM PHYS
EUSTATIU IG, 1999, CHEM PHYS LETT, V300, P676
FOCK JH, 1984, CHEM PHYS, V83, P377
FRANCIS JT, 1995, PHYS REV A, V52, P4665
GIANTURCO FA, 1972, J CHEM PHYS, V57, P840
GUNNELIN K, 1998, PHYS REV A, V57, P864
HARRISON I, 1987, J ELECTRON SPECTROSC, V43, P155
HITCHCOCK AP, UNPUB
HITCHCOCK AP, 1987, J CHEM PHYS, V87, P3253
HITCHCOCK AP, 1990, PHYSICA SCRIPTA T, V31, P159
INOKUTI M, 1971, REV MOD PHYS, V43, P297
INOKUTI M, 1978, REV MOD PHYS, V50, P23
JOLLY WL, 1984, ATOM DATA NUCL DATA, V31, P7
KARLE J, 1961, J CHEM PHYS, V35, P963
KIM YK, 1968, PHYS REV, V175, P176
KOSUGI N, 1996, J ELECTRON SPECTROSC, V79, P351
LASSETTRE EN, 1964, J CHEM PHYS, V40, P1242
LASSETTRE EN, 1965, J CHEM PHYS, V43, P4479
LASSETTRE EN, 1970, J CHEM PHYS, V52, P2797
LEE JS, 1975, J CHEM PHYS, V4, P1609
LUCHESE RR, 1982, PHYS REV A, V26, P1406
MA Y, 1991, PHYS REV A, V44, P1848
MASSEY HSW, 1932, P R SOC LOND A-CONTA, V135, P258
MATSUZAWA M, 1969, J CHEM PHYS, V51, P4705
MCLAREN R, 1987, PHYS REV A, V36, P1683
NATOLI CR, 1983, EXAFS NEAR EDGE STRU, P43
PADIAL N, 1981, PHYS REV A, V23, P218
PIANCASTELLI MN, 1987, J CHEM PHYS, V87, P3255
READ FH, 1965, P PHYS SOC LOND, V85, P71
RESCIGNO TN, 1979, J CHEM PHYS, V70, P3390
RESCIGNO TN, 1985, LECT NOTES CHEM, V35, P215
ROBERTY HMB, 1991, PHYS REV A, V44, P1694
ROCHA AB, IN PRESS CHEM PHYS
ROCHA AB, 1999, CHEM PHYS, V243, P9
SCHMIDBAUER M, 1995, PHYS REV A, V52, P2095
SCHNEERSON VL, 1997, SURF SCI, V375, P340
SETTE F, 1984, J CHEM PHYS, V81, P4906
SHAM TK, 1989, PHYS REV A, V40, P652
SHAW DA, 1982, J PHYS B ATOM MOL PH, V15, P1785
SHAW DA, 1983, P 13 ICPEAC BERL, P278
SHEEHY JA, 1989, J CHEM PHYS, V91, P1796
SILVERMAN SM, 1964, J CHEM PHYS, V40, P1265
SIVKOV VN, 1984, OPT SPEKTROSK, V57, P160
SODHI RNS, 1984, J ELECTRON SPECTROSC, V34, P363
SWICK DA, 1960, REV SCI INSTRUM, V31, P525
SWICK DA, 1961, J CHEM PHYS, V35, P2257
TRONC M, 1979, J PHYS-PARIS, V40, L323
TURCI CC, 1995, PHYS REV A, V52, P4678
WATANABE N, 1997, PHYS REV LETT, V78, P4910
WIGHT GR, 1974, J ELECTRON SPECTROSC, V3, P191
YING JF, 1993, PHYS REV A, V47, P5
YING JF, 1994, J CHEM PHYS, V101, P7311
NR 71
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD APR
PY 2000
VL 6104
IS 4
AR 042505
DI ARTN 042505
PG 14
SC Physics, Atomic, Molecular & Chemical; Optics
GA 301ME
UT ISI:000086313300041
ER
PT J
AU Bettega, MHF
TI Elastic scattering of low-energy electrons by boron trihalides
SO PHYSICAL REVIEW A
LA English
DT Article
ID AB-INITIO; PLASMA; EXCITATION; BCL3; PSEUDOPOTENTIALS; SPECTROSCOPY;
GENERATION; IMPACT; BBR3
AB We used the Schwinger multichannel method with pseudopotentials
[Bettega et nl., Phys. Rev. A 47, 1111 (1993)] to study elastic
scattering of low-energy electrons by the boron trihalides BCl3, BBr3,
and BI3, at the static-exchange approximation. We calculated elastic
integral, differential, and momentum transfer cross section from 5 to
50 eV. In particular, our integral cross section fur BCl3 agrees in
shape with results of previous calculations by Isaacs et al. [Phys.
Rev. A 58, 2881 (1998)]. The symmetry decomposition of the integral
cross section in the C-2v group is also presented. We discuss the
existence of shape resonances for energies above 5 eV at the A(1), B-1,
B-2, and A(2) symmetries. We also investigated the low-energy cross
section for the B-2 symmetry for these three molecules. For BCl3 our
B-2 cross section shows good agreement with the results of Isaacs et al.
C1 Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil.
RP Bettega, MHF, Univ Fed Parana, Dept Fis, Caixa Postal 19081,
BR-81531990 Curitiba, Parana, Brazil.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BAECK KK, 1997, J CHEM PHYS, V106, P4604
BETTEGA MHF, 1993, PHYS REV A, V47, P1111
BETTEGA MHF, 1996, INT J QUANTUM CHEM, V60, P821
BETTEGA MHF, 1998, J PHYS B-AT MOL OPT, V31, P2091
BETTEGA MHF, 1998, J PHYS B-AT MOL OPT, V31, P4419
BETTEGA MHF, 1998, PHYS REV A, V57, P4987
BIEHL H, 1996, MOL PHYS, V87, P1199
CHO H, 1998, MRS INTERNET J N S R, V3
DACOSTA SMS, 1998, EUR PHYS J D, V3, P67
GULLEY RJ, 1998, J PHYS B-AT MOL OPT, V31, P2735
HONG J, 1998, J VAC SCI TECHNOL B, V16, P2690
HONG J, 1998, J VAC SCI TECHNOL B, V16, P3349
ISAACS WA, 1998, PHYS REV A, V58, P2881
KEIR RI, 1998, CHEM PHYS LETT, V290, P409
LIDE DR, 1998, CRC HDB CHEM PHYSICS
LIMA MAP, 1990, PHYS REV A, V41, P327
MCKOY V, 1998, J VAC SCI TECHNOL A, V16, P324
NATALENSE APP, 1998, PHYS REV LETT, V81, P3832
NATALENSE APP, 1999, PHYS REV A, V59, P879
SHPINKOVA LG, 1999, MOL PHYS, V96, P323
STOCKDALE JA, 1972, J CHEM PHYS, V56, P3336
TAKATSUKA K, 1981, PHYS REV A, V24, P2473
TOSSELL JA, 1986, INT J QUANTUM CHEM, V29, P1117
VARELLA MTD, 1999, J CHEM PHYS, V110, P2452
WANG JJ, 1999, PLASMA CHEM PLASMA P, V19, P229
NR 26
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD APR
PY 2000
VL 6104
IS 4
AR 042703
DI ARTN 042703
PG 6
SC Physics, Atomic, Molecular & Chemical; Optics
GA 301ME
UT ISI:000086313300044
ER
PT J
AU Fuks, D
Mundim, K
Liubich, V
Dorfman, S
TI Nonempirical simulations of Sigma(3)< 111 > tungsten grain boundary
with boron atoms
SO SURFACE REVIEW AND LETTERS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; MAGNETIC-PROPERTIES; ALLOYS; APPROXIMATION;
OPTIMIZATION; IMPURITIES; ALUMINUM; FEAL
AB We perform the atomistic simulations of the properties of the
Sigma(3)[111] grain boundary in W and demonstrate the influence of
boron additive on the resistance of the grain boundary with respect to
different shifts. The interatomic potentials used in these simulations
are obtained from ab initio total energy calculations. These
calculations are carried out in the framework of density functional
theory in the coherent potential approximation. The recursion procedure
to extract A-B type interatomic potentials is suggested.
C1 Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
Ben Gurion Univ Negev, Dept Mat Engn, IL-84105 Beer Sheva, Israel.
Technion Israel Inst Technol, Fac Phys, IL-32000 Haifa, Israel.
RP Fuks, D, Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
CR ABRIKOSOV IA, 1998, PHYS REV B, V57, P14164
ANDERSEN OK, 1975, PHYS REV B, V12, P3060
ANTONOV VN, 1996, PHYS REV B, V53, P15631
AREAS EPG, 1995, J PHYS CHEM-US, V99, P14882
BAKER I, 1998, INTERMETALLICS, V6, P177
BAZANT MZ, 1996, MRS P, V48
BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
CARLSSON AE, 1980, PHILOS MAG A, V41, P241
CHRISTENSEN A, 1997, PHYS REV B, V56, P5822
CHUANG TH, 1991, MAT SCI ENG A-STRUCT, V141, P169
CONNOLLY JWD, 1983, PHYS REV B, V27, P5169
DAVIDOV G, 1995, PHYS REV B, V51, P13059
ELLIS DE, 1995, ELECT DENSITY FUNCTI
ELLIS DE, 1998, INT J QUANTUM CHEM, V70, P1085
ERIKSSON O, 1989, PHYS REV B, V40, P9519
FAULKNER JS, 1982, PROG MATER SCI, V27, P1
FELSER C, 1998, PHYS REV B, V57, P1510
FRANCZKIEWICZ A, 1998, MAT SCI ENG A-STRUCT, V258, P108
FUKS D, 1994, PHYS REV B, V50, P16340
GRUJICIC M, 1997, INT J REFRACT MET H, V15, P341
KAUFMAN L, 1970, COMPUTER CALCULATION
KITTEL C, 1976, INTRO SOLID STATE PH
KRASKO GL, 1993, INT J REFRACTORY HAR, V12, P251
KRASKO GL, 1997, MAT SCI ENG A-STRUCT, V234, P1071
LANDA AI, 1997, MATER RES SOC S P, V440, P467
LIU CT, 1989, SCRIPTA METALL, V23, P875
MAIER K, 1979, PHILOS MAG A, V40, P701
MIRBT S, 1997, PHYS REV B, V55, P67
MORET MA, 1998, J COMPUT CHEM, V19, P647
MUNDIM KC, 1996, INT J QUANTUM CHEM, V58, P373
MUNDY JN, 1978, PHYS REV B, V18, P6566
POVAROVA KB, 1990, RUSSIAN METALLURGY M, V1, P74
RUBAN AV, 1995, PHYS REV B, V51, P12958
RUBAN AV, 1997, PHYS REV B, V55, P8801
SIMMONS G, 1971, SINGLE CRYSTAL ELAST
SOB M, 1997, MAT SCI ENG A-STRUCT, V234, P1075
TOLSTOBROV YO, 1987, FIZIKA KHIMIYA OBRAB, V21, P121
NR 37
TC 5
PU WORLD SCIENTIFIC PUBL CO PTE LTD
PI SINGAPORE
PA JOURNAL DEPT PO BOX 128 FARRER ROAD, SINGAPORE 912805, SINGAPORE
SN 0218-625X
J9 SURF REV LETTERS
JI Surf. Rev. Lett.
PD OCT
PY 1999
VL 6
IS 5
BP 705
EP 718
PG 14
SC Materials Science, Multidisciplinary; Physics, Atomic, Molecular &
Chemical; Physics, Condensed Matter
GA 300LQ
UT ISI:000086254800019
ER
PT J
AU Fink, RF
Sorensen, SL
de Brito, AN
Ausmees, A
Svensson, S
TI The resonant Auger electron spectrum of C 1s(-1)pi(*) excited ethene: A
combined theoretical and experimental investigation
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID TIME-DEPENDENT FORMULATION; VIBRATIONAL FINE-STRUCTURE; CORE-LEVEL
PHOTOEMISSION; AB-INITIO CALCULATION; NUCLEAR-DYNAMICS;
SYMMETRY-BREAKING; HOLE LOCALIZATION; TRANSITION RATES; X-RAY; ETHYLENE
AB The resonant Auger electron spectrum for ethene has been calculated
with an ab initio approach using configuration-interaction energies and
wave functions for the intermediate core-excited and final states. The
transition rates were determined by the "one-center approximation." The
role of vibrational relaxation on the line shapes was described by a
moment method which considers the case of symmetric core holes and
their localization due to the vibrational relaxation of the
core-excited state. The core hole localization is investigated in some
detail and is found to be extremely efficient in the C 1s(-1)pi*
excited state of ethene. Another property of the core-excited state is
found to be the polarization of the valence electron density toward the
core hole. We demonstrate this by using three different symmetric
configuration interaction representations and one nonsymmetric
Hartree-Fock representation for this state. A modified improved virtual
orbitals method is described and employed to obtain virtual orbitals
which give a compact description of this effect. The theoretical
spectra obtained in this way are compared with a measured spectrum and
assignment of the structures in the spectrum to electronic
configurations is made. We find strong configuration mixing in the
higher excited final states which is evidence for the breakdown of the
one-particle picture. (C) 2000 American Institute of Physics.
[S0021-9606(00)31213-2].
C1 Univ Lund, Inst Phys, Dept Synchrotron Radiat Res, S-22100 Lund, Sweden.
Ruhr Univ Bochum, Chair Theoret Chem, D-44780 Bochum, Germany.
Univ Brasilia, Dept Phys, BR-70910900 Brasilia, DF, Brazil.
Univ Uppsala, Dept Phys, S-75121 Uppsala, Sweden.
Lab Nacl Luz Sincrotron, BR-13083360 Campinas, SP, Brazil.
Univ Tartu, Inst Phys, EE-51014 Tartu, Estonia.
RP Sorensen, SL, Univ Lund, Inst Phys, Dept Synchrotron Radiat Res, Box
118, S-22100 Lund, Sweden.
CR AGREN H, 1981, J CHEM PHYS, V75, P1267
AGREN H, 1992, ADV QUANTUM CHEM, V23, P1
AHLRICHS R, 1989, CHEM PHYS LETT, V162, P165
AKSELA S, 1992, REV SCI INSTRUM 2B, V63, P1252
AKSELA S, 1994, REV SCI INSTRUM, V65, P831
AKSELA S, 1995, REV SCI INSTRUM, V66, P1
ANDERSEN JN, 1997, CHEM PHYS LETT, V269, P371
BOTTING SK, 1997, PHYS REV A, V56, P3666
BOZEK J, 1998, PHYS REV A, V57, P157
CEDERBAUM LS, 1993, J CHEM PHYS, V98, P9691
CEDERBAUM LS, 1993, J CHEM PHYS, V99, P5871
CEDERBAUM LS, 1995, J CHEM PHYS, V103, P562
DEBRITO AN, 1992, EUROPHYS LETT, V20, P205
DEMIRANDA MP, 1994, J CHEM PHYS, V101, P5500
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FINK R, 1995, J ELECTRON SPECTROSC, V76, P295
FINK R, 1997, J CHEM PHYS, V106, P4038
FINK RF, 1998, PHYS REV A, V58, P1988
GADEA FX, 1991, PHYS REV LETT, V66, P883
GELMUKHANOV FK, 1977, CHEM PHYS LETT, V46, P133
GREEN TA, 1987, PHYS REV B, V36, P6112
GUNNELIN K, 1999, PHYS REV LETT, V83, P1315
HASER M, 1989, J COMPUT CHEM, V10, P104
HEINZMANN R, 1976, THEOR CHIM ACTA, V42, P33
HOLLAND DMP, 1997, CHEM PHYS, V219, P91
JUG K, 1993, MATH CHEM
KELLER C, 1998, PHYS REV LETT, V80, P1774
KEMPGENS B, 1995, CHEM PHYS LETT, V246, P347
KOPPE HM, 1995, J CHIN CHEM SOC-TAIP, V42, P255
KOPPEL H, 1984, ADV CHEM PHYS, V57, P59
KOPPEL H, 1997, J CHEM PHYS, V106, P4415
LARKINS FP, 1994, NUCL INSTRUM METH B, V87, P215
LIEGENER CM, 1985, CHEM PHYS, V92, P97
MA Y, 1989, PHYS REV LETT, V63, P2044
MARTENSSON N, 1995, APPL SYNCHROTRON RAD
MARTIN JML, 1996, CHEM PHYS LETT, V248, P336
MATTHEW JAD, 1975, SURF SCI, V53, P716
MCGUIRE EJ, 1969, PHYS REV, V185, P1
OHRENDORF E, 1989, J CHEM PHYS, V91, P1734
OSBORNE SJ, 1994, SYNCH RAD NEWS, V7, P25
PAHL E, 1996, Z PHYS D ATOM MOL CL, V38, P215
PIANCASTELLI MN, 1997, J PHYS B-AT MOL OPT, V30, P5677
RYE RR, 1978, J CHEM PHYS, V69, P1504
SCHIMMELPFENNIG B, 1995, J ELECTRON SPECTROSC, V74, P173
SCHINKE R, 1993, PHOTODISSOCIATION DY
SIEGBAHN H, 1975, CHEM PHYS LETT, V35, P330
SORENSEN SL, 1998, PHYS REV A, V58, P1879
THOMAS TD, 1998, J CHEM PHYS, V109, P1041
THOMPSON M, 1976, ANAL CHEM, V48, P1336
WASILEWSKI J, 1989, INT J QUANTUM CHEM, V36, P503
WASILEWSKI J, 1991, INT J QUANTUM CHEM, V39, P649
WURTH W, 1995, APPL SYNCHROTRON RAD
WURTH W, 1997, APPL PHYS A-MATER, V65, P597
WURTH W, 1998, J ELECT SPECTROSC RE, V93, P135
ZAHRINGER K, 1992, PHYS REV A, V45, P318
ZAHRINGER K, 1992, PHYS REV A, V46, P5643
NR 56
TC 10
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD APR 15
PY 2000
VL 112
IS 15
BP 6666
EP 6677
PG 12
SC Physics, Atomic, Molecular & Chemical
GA 301EV
UT ISI:000086297000020
ER
PT J
AU Goncalves, CP
Mohallem, JR
TI Ab initio isotope simulated dynamics in the adiabatic approximation
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; EXCESS PROTON; WATER; D2O
AB We present, for the first time, ab initio simulated molecular dynamics
within the adiabatic approximation. The tests are made for H-2(+) and
its isotopomers. We show that the farces on the nuclei can be
calculated with sufficient accuracy to distinguish among the
isotopomers. We also show that there are two regions where these forces
are non-negligible, compared to those of Born-Oppenheimer: at large
nuclear distances and near the equilibrium positions. (C) 2000 Elsevier
Science B.V. All rights reserved.
C1 Univ Fed Minas Gerais, ICEX, Dept Fis, Lab Atomos & Mol Especiais, BR-31270123 Belo Horizonte, MG, Brazil.
RP Mohallem, JR, Univ Fed Minas Gerais, ICEX, Dept Fis, Lab Atomos & Mol
Especiais, POB 702, BR-31270123 Belo Horizonte, MG, Brazil.
CR BORN M, 1927, ANN PHYS-BERLIN, V84, P457
CAR R, 1985, PHYS REV LETT, V55, P2471
CHACHAM H, 1990, MOL PHYS, V70, P391
FOIS ES, 1994, CHEM PHYS LETT, V223, P411
KOLOS W, 1969, ACTA PHYS ACAD SCI H, V27, P241
LOBAUGH J, 1996, J CHEM PHYS, V104, P2056
MOHALLEM JR, 1999, J PHYS B-AT MOL OPT, V32, P3805
PAULING L, 1935, INTRO QUANTUM MECH
PAVESE M, 1997, J CHEM PHYS, V107, P7428
SCHWARTZ BJ, 1996, J CHEM PHYS, V105, P6997
SHIGETA Y, 1998, INT J QUANTUM CHEM, V70, P659
SVISHCHEV IM, 1994, J PHYS CHEM-US, V98, P728
TACHIKAWA M, 1999, MOL PHYS, V96, P1207
VANGUNSTEREN WF, 1990, ANGEW CHEM INT EDIT, V29, P992
NR 14
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAR 31
PY 2000
VL 320
IS 1-2
BP 118
EP 122
PG 5
SC Physics, Atomic, Molecular & Chemical
GA 299RG
UT ISI:000086211200020
ER
PT J
AU Miwa, RH
Ferraz, AC
TI Adsorption process, atomic geometry, electronic structure and stability
of Si(001)/Te surface
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; growth; silicon; surface relaxation
and reconstruction
ID DENSITY-FUNCTIONAL THEORY; SI(100) SURFACE; GROUND-STATE; GROWTH; TE;
TELLURIUM; RESTORATION; INTERFACE; CDTE; GE
AB The adsorption process, atomic geometry, electronic structure and
energetics of a Si(001) surface covered by Te atoms have been studied
using first-principles total-energy calculations. Our findings indicate
that the Te atoms adsorb in the 'bridge' site on the surface Si dimer
bond, in agreement with recent experimental results. We have also
verified that the Si dimers (underneath adsorbed Te atoms) do not
dissociate, The subsequent atomic exchange between the adsorbed Te atom
and the surface Si atom, giving rise to an interdiffusion process of Te
atoms towards Si substrate, is not an exothermic process. We have
considered a number of possible coverages of Te atoms on Si(001)
surface and our results indicate that for a coverage of one monolayer
(1 ML). the Si(001)/Te-(1 x 1) surface represents the energetically
more stable configuration. For a coverage of 2/3 hit, we have verified
the formation of Te-Si-Te mixed trimers, in a (3 x 1) reconstructed
surface. At 1/3 ML coverage, we have obtained the formation of Si
dimers with a single Te atom at the surface, in a (3 x 1)
reconstruction. Finally, for a coverage of 1/2 ML, we have obtained the
formation of Si-Te mixed dimers, in a (2 x 1) reconstructed surface,
but the calculated formation energy indicates that this atomic
configuration is not energetically favourable. (C) 2000 Elsevier
Science B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, SP, Brazil.
Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Ferraz, AC, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
SP, Brazil.
CR BENNETT MR, 1996, SURF SCI, V360, P187
BENNETT MR, 1997, SURF SCI, V380, P178
BRINGANS RD, 1989, PHYS REV B, V39, P12985
BURGESS SR, 1996, APPL SURF SCI, V104, P152
CAR R, 1985, PHYS REV LETT, V55, P2471
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHADI DJ, 1973, PHYS REV B, V8, P5747
DINARDO S, 1995, SURF SCI, V331, P569
GONZE X, 1991, PHYS REV B, V44, P8503
HIGUCHI S, 1992, J APPL PHYS, V71, P4277
HOHENBERG P, 1964, PHYS REV, V136, B864
KAXIRAS E, 1991, PHYS REV B, V43, P6824
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KOHN W, 1965, PHYS REV, V140, A1133
KRUGER P, 1993, PHYS REV B, V47, P1898
MIWA RH, UNPUB
MIWA RH, 1998, J PHYS-CONDENS MAT, V10, P5739
MIWA RH, 1998, SURF SCI, V415, P20
NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
PAPAGEORGOPOULOS A, 1997, PHYS REV B, V55, P4435
PERDEW JP, 1981, PHYS REV B, V23, P5048
SANTUCCI S, 1996, SURF SCI, V352, P1027
SPORKEN R, 1992, J VAC SCI TECHNOL B, V10, P1405
SPORKEN R, 1998, APPL SURF SCI, V123, P462
STUMPF R, 1994, COMPUT PHYS COMMUN, V79, P447
TAMIYA K, 1998, SURF SCI, V408, P268
WIANE F, 1999, APPL SURF SCI, V260, P475
YOSHIKAWA SA, 1994, SURF SCI, V321, L183
NR 28
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD MAR 20
PY 2000
VL 449
IS 1-3
BP 180
EP 190
PG 11
SC Chemistry, Physical
GA 296ZN
UT ISI:000086056800023
ER
PT J
AU Silva, CO
da Silva, EC
Nascimento, MAC
TI Ab initio calculations of absolute pK(a) values in aqueous solution II.
Aliphatic alcohols, thiols, and halogenated carboxylic acids
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; DENSITY-FUNCTIONAL THEORY; MOLLER-PLESSET;
FREE-ENERGIES; SOLVATION; IMPLEMENTATION; ACIDITIES
AB A thermodynamical cycle is proposed to calculate absolute pK(a) values
for Bronsted acids in aqueous solution. The polarizable continuum model
(PCM) was used to describe the solvent, and absolute pK(a) values were
computed for different classes of organic compounds: aliphatic
alcohols, thiols, and halogenated derivatives of carboxylic aliphatic
acids. The model furnishes pK(a) values in good agreement with the
experimental results for some classes of compounds. For the cases where
appreciable deviations are, observed, we have tried to establish a
correlation among the neglected components of Delta G(solv) resulting
from the model adopted, the level of calculation employed, and the
pK(a) deviations relative to the experimental results.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis,
CT,Bloco A,Sala 412,Cidade Univ Ilha Fundao, BR-21949900 Rio De
Janeiro, Brazil.
CR ADAMO C, 1997, J COMPUT CHEM, V18, P1993
AMOVILLI C, 1998, ADV QUANTUM CHEM, V32, P227
ANDZELM J, 1995, J CHEM PHYS, V103, P9312
BALLINGER P, 1959, J AM CHEM SOC, V81, P1050
BALLINGER P, 1960, J AM CHEM SOC, V82, P795
BARONE V, 1997, J CHEM PHYS, V107, P3210
BARTMESS JE, 1997, J AM CHEM SOC, V99, P4163
BAUSCHLICHER CW, 1995, J CHEM PHYS, V103, P1788
BENNAIM A, 1984, J CHEM PHYS, V81, P2016
BENNAIM A, 1987, SOLVATION THERMODYNA, CH1
BORDWELL FG, 1988, ACCOUNTS CHEM RES, V21, P456
CABANI S, 1981, J SOLUTION CHEM, V10, P563
CAMMI R, 1995, J COMPUT CHEM, V16, P1449
CHEN JL, 1994, J PHYS CHEM-US, V98, P11059
COOKSON RF, 1974, CHEM REV, V74, P5
COSSI M, 1996, CHEM PHYS LETT, V255, P327
CRAMER CJ, 1992, SCIENCE, V256, P213
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
JORGENSEN WL, 1989, J AM CHEM SOC, V111, P4190
LIM C, 1991, J PHYS CHEM-US, V95, P5610
MARCH J, 1992, ADV ORGANIC CHEM REA
MCEWEN WK, 1936, J AM CHEM SOC, V58, P1124
MENNUCCI B, 1997, J PHYS CHEM B, V101, P10506
MURTO J, 1964, ACTA CHEM SCAND, V18, P1043
NETTO JDM, 1996, J PHYS CHEM-US, V100, P15105
REEVE W, 1979, CAN J CHEM, V57, P2747
SCHUURMANN G, 1996, QUANT STRUCT-ACT REL, V15, P121
SCHUURMANN G, 1997, QUANTITATIVE STRUCTU, V7, P225
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SILVA CO, IN PRESS J PHYS CH A
STEWART R, 1985, PROTON APPL ORGANIC, V46
NR 32
TC 48
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAR 23
PY 2000
VL 104
IS 11
BP 2402
EP 2409
PG 8
SC Chemistry, Physical
GA 296LF
UT ISI:000086025300033
ER
PT J
AU Olivato, PR
Guerrero, SA
Zukerman-Schpector, J
TI Preferred conformation in the solid state of some
alpha-(p-phenylsulfinyl)-p-substituted acetophenones
SO ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE
LA English
DT Article
ID SUBSTITUTED CARBONYL-COMPOUNDS; ELECTRONIC INTERACTION
AB Information on the geometrical structures of
alpha-(p-phenylsulfinyl)-p-substituted acetophenones
X-PhC(O)CH2S(O)Ph-Y [X = OMe, Y = H (1); X = NO2, Y = OMe (2); X = OMe,
Y = NO2 (3); IUPAC names: (1) 4-methoxyphenyl phenylsulfinylmethyl
ketone; (2) 4 - nitrophenyl 4-methoxyphenylsulfinyl-methyl ketone; (3)
4-methoxyphenyl 4-nitrophenyl-sulfinylmethyl ketone] have been obtained
from X-ray diffraction analyses. A comparison of these results with
those previously obtained from X-ray diffraction and ab initio
computations of alpha-methylsulfinylacetophenone, PhC(O)CH2S(O)Me,
indicated that (1) and (2) adopt in the crystal a cis(1) conformation
and (3) assumes a quasi-gauche geometry. The stabilization of these
conformations in the crystal is discussed in terms of the dipole moment
coupling Coulombic and intramolecular charge transfer interactions
between the oppositely charged atoms of the C=O and S=O dipoles. The
p-substituted benzene ring is quasi-coplanar with the sulfinyl group
for (1) and (3), but is quasi-perpendicular for (2), Conjugation and
repulsion between the sulfinyl sulfur lone pair and the pi-benzene ring
seem to be responsible for the observed geometries.
C1 Univ Sao Paulo, Inst Quim, BR-05599970 Sao Paulo, Brazil.
UFSCar, DQ, Lab Cristalog Estereodinam & Modelagem Mol, BR-13565905 Sao Carlos, SP, Brazil.
RP Olivato, PR, Univ Sao Paulo, Inst Quim, CP 26077, BR-05599970 Sao
Paulo, Brazil.
CR 1989, CAD 4 SOFTWARE VERSI
BELLAMY LJ, 1978, ADV INFRARED GROUP F
DISTEFANO G, 1996, J CHEM SOC PERK AUG, P1661
FAIR CK, 1990, MOIEN INTERACTIVE IN
KATRITZKY AR, 1989, CHEM REV, P639
LAMM B, 1970, ACTA CHEM SCAND, V24, P561
NARDELLI M, 1995, J APPL CRYSTALLOGR, V28, P659
OLIVATO PR, J CHEM SOC P2, V109, P98
OLIVATO PR, 1992, PHOSPHORUS SULFUR, V66, P207
OLIVATO PR, 1997, PHOSPHORUS SULFUR, V130, P155
SHELDRICK GM, 1990, ACTA CRYSTALLOGR A, V46, P467
SHELDRICK GM, 1997, SHELXL 97 PROGRAM RE
ZSOLNAI L, 1995, ZORTOP
NR 13
TC 7
PU MUNKSGAARD INT PUBL LTD
PI COPENHAGEN
PA 35 NORRE SOGADE, PO BOX 2148, DK-1016 COPENHAGEN, DENMARK
SN 0108-7681
J9 ACTA CRYSTALLOGR B-STRUCT SCI
JI Acta Crystallogr. Sect. B-Struct. Sci.
PD FEB
PY 2000
VL 56
PN Part 1
BP 112
EP 117
PG 6
SC Crystallography
GA 295CV
UT ISI:000085949900012
ER
PT J
AU Moraes, LAB
Eberlin, MN
TI The gas-phase Meerwein reaction
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE epoxides; thioepoxides; acylium ions; thioacylium ions; ion-molecule
reactions; mass spectroscopy
ID ION-MOLECULE REACTIONS; ACYLIUM IONS; MASS-SPECTROMETRY; CYCLIC
ACETALS; CATIONS; TRANSACETALIZATION; SUBSTITUTION; KETALS; 3D
AB A systematic investigation of a novel epoxide and thioepoxide ring
expansion reaction promoted by gaseous acylium and thioacylium ions is
reported. As ab initio calculations predict, and O-18-labeling and MS3
pentaquadrupole experiments demonstrate, the reaction proceeds by
initial O(S)-acylation of the (thio)epoxides followed by rapid
intramolecular nucleophilic attack that results in
three-to-five-membered ring expansion, and forms cyclic
1,3-dioxolanylium, 1,3-oxathiolanylium, or 1,3-dithiolanylium ions.
This gas-phase reaction is analogous to a condensed-phase reaction long
since described by H. Meerwein (Chem. Ber. 1955, 67, 374), and is
termed as "the gas-phase Meerwein reaction"; it occurs often to great
extents or even exclusively, but in some cases, particularly for the
most basic (thio)epoxides and the most acidic (thio)acylium ions,
proton transfer (eventually hydride abstraction) competes efficiently,
or even dominates. When (thio)epoxides react with (thio)acylium ions,
the reaction promotes O(S)-scrambling; when epoxides react with
thioacylium ions and the adducts are dissociated, it promotes S/O
replacement. An analogous four-to-six-membered ring expansion also
occurs predominantly in reactions of trimethylene oxide with acylium
and thioacylium ions.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, UNICAMP, Inst Chem, CP6154, BR-13083970 Campinas, SP,
Brazil.
CR ATTINA M, 1983, J AM CHEM SOC, V105, P1122
BARDILI B, 1985, LIEBIGS ANN CHEM, P275
BERSIN T, 1937, CHEM BER, V70, P2167
BOGERT MT, 1933, J AM CHEM SOC, V55, P3741
CAREY FA, 1983, ADV ORGANIC CHEM
CARVALHO M, 1998, CHEM-EUR J, V4, P1161
CARVALHO MC, 1997, J CHEM SOC PERK NOV, P2347
CARVALHO MC, 1997, J MASS SPECTROM, V32, P1137
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KIM JK, 1982, J AM CHEM SOC, V104, P4624
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
KUMAKURA M, 1978, J PHYS CHEM-US, V82, P639
MACCONNELL WV, 1965, J ORG CHEM, V28, P822
MEERWEIN H, 1925, LIEBIGS ANN CHEM, V444, P221
MEERWEIN H, 1937, J PRAKTISCHE CHEMIE, V147, P257
MEERWEIN H, 1955, ANGEW CHEM, V67, P374
MEERWEIN H, 1965, METHODEN ORGANISCHEN, V6, P329
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J CHEM SOC PERK OCT, P2105
MORAES LAB, 1997, J ORG CHEM, V62, P5096
MORAES LAB, 1998, J AM CHEM SOC, V120, P11136
OLAH GA, 1976, CARBONIUM IONS, V5
OLAH GA, 1998, ONIUM IONS
OLIN JF, 1930, J AM CHEM SOC, V52, P3322
RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
RICKBORN B, 1991, COMPREHENSIVE ORGANI, V3
SANDER M, 1966, CHEM REV, V66, P297
SCHRODER D, 1990, ANGEW CHEM INT EDIT, V29, P910
SCHRODER D, 1990, ANGEW CHEM, V102, P925
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
STALEY RH, 1977, J AM CHEM SOC, V99, P5964
TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
VANDERPLAS HC, 1973, RING TRANSFORMATIONS, V1
WANG F, 1999, ANGEW CHEM INT EDIT, V38, P386
WANG F, 1999, ANGEW CHEM, V111, P399
WILLIAMSON BL, 1998, EUR MASS SPECTROM, V4, P103
WILLIAMSON KL, 1961, J ORG CHEM, V26, P4563
NR 44
TC 12
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA MUHLENSTRASSE 33-34, D-13187 BERLIN, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD MAR 3
PY 2000
VL 6
IS 5
BP 897
EP 905
PG 9
SC Chemistry, Multidisciplinary
GA 292VF
UT ISI:000085815200017
ER
PT J
AU Pliego, JR
Riveros, JM
TI Ab initio study of the hydroxide ion-water clusters: An accurate
determination of the thermodynamic properties for the processes
nH(2)O+OH--> HO-(H2O)(n) (n=1-4)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID GAS-PHASE; VIBRATIONAL SPECTROSCOPY; MOLECULAR-ENERGIES; GAUSSIAN-2
THEORY; OH; SOLVATION; ABINITIO; ADDITIVITY; HYDRATION; COMPLEXES
AB Clusters of hydroxide ion, HO-(H2O)(n=1-4), have been studied by high
level ab initio calculations in order to better understand the first
coordination shell of OH- ions. Geometry optimizations were performed
at Hartree-Fock, density functional theory and second order
Moller-Plesset perturbation theory levels using the 6-31+G(d,p) basis
set. Single point energy calculations were carried out on the optimized
geometries using the more extended 6-311+G(2df,2p) basis set and a
higher level of electron correlation, namely fourth-order
Moller-Plesset perturbation theory. For the n=1-3 clusters, only
structures with the hydroxide ion hydrogen bonded to all waters
molecules were considered. For the n=4 cluster, three minima were
found; the most stable species has all four waters directly bound to
the hydroxide ion, while the other two clusters have only three waters
in the first coordination shell. In addition, the transition state
connecting the cluster containing four waters in the first coordination
shell to the species having three waters in the coordination shell was
characterized. The barrier for this rearrangement is very low (1.82
kcal/mol), and we predict this process to occur on the picosecond time
scale. The thermodynamic properties (enthalpy, entropy and Gibbs free
energy) for the formation of the clusters have been calculated for all
the species (including the fully deuterated clusters). Comparison of
our calculations with experimental data reveals good agreement in the
free energy. Nevertheless, our ab initio results suggest that for the n
> 1 clusters, both -Delta H-0 and -Delta S-0 are larger than those
reported from experiment and new experiments may be necessary to obtain
accurate experimental values. (C) 2000 American Institute of Physics.
[S0021-9606(00)30909-6].
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
RP Pliego, JR, Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
CR ARSHADI M, 1970, J PHYS CHEM-US, V74, P1483
AYOTTE P, 1998, J PHYS CHEM A, V102, P3067
BRYCE RA, 1999, J PHYS CHEM A, V103, P4094
CHOI JH, 1998, J PHYS CHEM A, V102, P503
CURTISS LA, 1991, J CHEM PHYS, V94, P7221
CURTISS LA, 1992, J CHEM PHYS, V96, P9030
DELBENE JE, 1988, J PHYS CHEM-US, V92, P2874
DELVALLE CP, 1997, CHEM PHYS LETT, V269, P401
FELLER D, 1992, J CHEM PHYS, V96, P6104
FRISCH MJ, 1995, GAUSSIAN 94
GAO J, 1986, J AM CHEM SOC, V108, P4784
GRIMM AR, 1995, MOL PHYS, V86, P369
KEBARLE P, 1977, ANNU REV PHYS CHEM, V28, P445
MEOTNER M, 1986, J PHYS CHEM-US, V90, P6616
NEWTON MD, 1971, J AM CHEM SOC, V93, P4271
NOBES RH, 1982, CHEM PHYS LETT, V89, P497
PAUL GJC, 1990, J PHYS CHEM-US, V94, P5184
PAYZANT JD, 1971, CAN J CHEM, V49, P3308
PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
PLIEGO JR, 1999, J PHYS CHEM A, V103, P3904
PLIEGO JR, 1999, PCCP PHYS CHEM CH PH, V1, P1031
POPLE JA, 1989, J CHEM PHYS, V90, P5622
ROHLFING CM, 1983, J CHEM PHYS, V78, P2498
ROOS BO, 1976, THEOR CHIM ACTA, V42, P77
SAPSE AM, 1984, INT J QUANTUM CHEM, V26, P223
SZCZESNIAK MM, 1982, J CHEM PHYS, V77, P4586
TAKASHIMA K, 1998, MASS SPECTROM REV, V17, P409
TUCKERMAN M, 1995, J CHEM PHYS, V103, P150
TUNON I, 1995, J PHYS CHEM-US, V99, P3798
TURKI N, 1998, J CHEM PHYS, V109, P7157
XANTHEAS SS, 1995, J AM CHEM SOC, V117, P10373
YANG X, 1990, J PHYS CHEM-US, V94, P8500
NR 32
TC 28
PU AMER INST PHYSICS
PI MELVILLE
PA 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD MAR 1
PY 2000
VL 112
IS 9
BP 4045
EP 4052
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 286QA
UT ISI:000085455600017
ER
PT J
AU Gomez, JA
Guenzburger, D
TI Density functional study of electronic, magnetic and hyperfine
properties of [M(CN)(5)NO](2-) (M = Fe, Ru) and reduction products
SO CHEMICAL PHYSICS
LA English
DT Article
ID METAL-NITROSYL COMPLEXES; SODIUM-NITROPRUSSIDE; SPECTROSCOPIC
PROPERTIES; NEUTRON-DIFFRACTION; MOLECULAR-STRUCTURE; SINGLE-CRYSTALS;
SPECTRA; REACTIVITY; DIHYDRATE; ENERGY
AB The discrete variational method (DVM) in density functional theory
(DFT) was employed to investigate the electronic structure of the
complexes: [Fe(CN)(5)NO](2-) (nitroprusside), [Fe(CN)(5)NO](3-),
[Fe(CN)(4)NO](2-), [Ru(CN)(5)NO](2-) and [Ru(CN)(5)NO](3-). Total
energy calculations revealed that in pentacyanonitrosylferrate(I) and
pentacyanonitrosylruthenate(I), which are paramagnetic ions containing
one unpaired electron, the M-N-O bond angle is bent. From
self-consistent spin-polarized calculations, the distribution of the
unpaired electron in the paramagnetic complexes [Fe(CN)(5)NO](3-),
[Fe(CN)(4)NO](2-) and [Ru(CN)(5)NO](3-) was obtained, as well as
spin-density maps. A long-standing controversy regarding the
configuration of [Fe(CN)(5)NO](3-) was elucidated, and it was found
that the unpaired electron in this complex is in an orbital primarily
localized on pi* (NO). Mossbauer quadrupole splittings on Fe and Ru
were derived from calculations of the electric-field gradients.
Magnetic hyperfine coupling constants on N of the NO ligand were also
obtained for the paramagnetic complexes. (C) 2000 Elsevier Science B.V.
All rights reserved.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
RP Guenzburger, D, Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150,
BR-22290180 Rio De Janeiro, Brazil.
CR ABRAGAM A, 1951, P ROY SOC LOND A MAT, V205, P135
ABRAGAM A, 1961, PRINCIPLES NUCL MAGN
BARALDO LM, 1994, INORG CHEM, V33, P5890
BECKE AD, 1988, PHYS REV A, V38, P3098
BELANZONI P, 1995, J PHYS CHEM-US, V99, P13094
BLOOM MBD, 1971, J CHEM SOC A, P3843
BOTTOMLEY F, 1979, ACTA CRYSTALLOGR B, V35, P2193
CARDUCCI MD, 1997, J AM CHEM SOC, V119, P2669
CLARKE MJ, 1993, STRUCT BOND, V81, P147
CLAUSE CA, 1970, J AM CHEM SOC, V92, P7482
DANON J, 1964, J CHEM PHYS, V41, P3651
DANON J, 1967, J CHEM PHYS, V47, P382
DELLEY B, 1982, J CHEM PHYS, V76, P1949
DELLEY B, 1983, PHYS REV B, V27, P2132
DUFEK P, 1995, PHYS REV LETT, V75, P3545
ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
ELLIS DE, 1970, PHYS REV B, V2, P2887
ELLIS DE, 1999, ADV QUANTUM CHEM, V34, P51
ENEMARK JH, 1974, COORDIN CHEM REV, V13, P339
ERIKSSON LA, 1994, J CHEM PHYS, V100, P5066
ESTRIN DA, 1996, INORG CHEM, V35, P3897
FAN LY, 1991, J CHEM PHYS, V94, P6057
GLIDEWELL C, 1987, INORG CHIM ACTA, V132, P145
GREATEX R, 1971, J CHEM SOC A, P1873
GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
GUENZBURGER D, 1977, INORG CHIM ACTA, V21, P119
GUIDA JA, 1988, SOLID STATE COMMUN, V66, P1007
GUTLICH P, 1978, MOSSBAUER SPECTROSCO
JOSS S, 1989, INORG CHEM, V28, P1815
KURAMOCHI H, 1997, J AM CHEM SOC, V119, P11442
MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
MCNEIL DAC, 1965, J CHEM SOC, P410
MINGOS DMP, 1973, INORG CHEM, V12, P1209
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
MUNDT WA, 1969, J CHEM PHYS, V50, P3127
NAVAZA A, 1989, ACTA CRYSTALLOGR C, V45, P839
NAVAZA A, 1996, J SOLID STATE CHEM, V123, P48
NEFEDOV VI, 1977, J ELECTRON SPECTROSC, V10, P121
NOGUEIRA SR, 1992, CHEM PHYS, V164, P229
NOGUEIRA SR, 1995, INT J QUANTUM CHEM, V54, P381
OLABE JA, 1984, INORG CHEM, V23, P4297
OOSTERHUIS WT, 1969, J CHEM PHYS, V50, P4381
PARR RG, 1989, DENSITY FUNCTIONAL T
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1986, PHYS REV B, V34, P7406
RAYNOR JB, 1970, J CHEMSOC A, P339
RAYNOR JB, 1971, J INORG NUCL CHEM, V33, P735
SCHMIDT J, 1974, INORG NUCL CHEM LETT, V10, P55
STROUD AH, 1971, APPROXIMATE CALCULAT
SWANN J, 1997, INORG CHEM, V36, P5348
SYMONS JCR, 1982, J CHEM SOC DA, P2041
SYMONS MCR, 1976, INORG CHEM, V15, P1022
TERRA J, 1995, J PHYS CHEM-US, V99, P4935
TRITTGOC J, 1997, CHEM PHYS LETT, V268, P471
UMRIGAR C, 1980, PHYS REV B, V21, P852
VANVOORST JDW, 1966, J CHEM PHYS, V45, P3914
VOSKO SH, 1980, CAN J PHYS, V58, P1200
VUGMAN NV, COMMUNICATION
WOIKE T, 1984, PHYS REV LETT, V53, P1767
WOIKE T, 1998, PHYS REV B, V58, P8411
ZENG Z, 1997, PHYS REV B, V55, P12522
ZENG Z, 1999, PHYS REV B, V59, P6927
NR 63
TC 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD FEB 15
PY 2000
VL 253
IS 1
BP 73
EP 89
PG 17
SC Physics, Atomic, Molecular & Chemical
GA 286KM
UT ISI:000085445200008
ER
PT J
AU Fazzio, A
Janotti, A
da Silva, AJR
Mota, R
TI Microscopic picture of the single vacancy in germanium
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRONIC-STRUCTURE; POINT-DEFECTS; AB-INITIO; SILICON;
PSEUDOPOTENTIALS; SEMICONDUCTORS; DENSITY; MODEL
AB A complete microscopic picture of the germanium vacancy is presented,
and our results are compared with recent measurements. We analyze,
through first principles calculations, the structural relaxations,
Jahn-Teller distortions, and orbitals for the charge states (+ +, +, 0,
-, - -). The formation energies for the different charge states are
presented, as well as the positions of the (+ +/+), (+/0), (0/-), and
(-/- -) levels, and we obtain that the vacancy in Ge is not an Anderson
negative-U system, as opposed to the silicon vacancy. We propose as an
explanation a much smaller electron-lattice coupling for the E mode in
germanium than in silicon.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Fed Santa Maria, Dept Fis, BR-97105900 Santa Maria, RS, Brazil.
RP Fazzio, A, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ANDERSON PW, 1975, PHYS REV LETT, V34, P953
BACHELET GB, 1982, PHYS REV B, V26, P4199
BARAFF GA, 1979, PHYS REV LETT, V43, P956
BOCKSTEDTE M, 1997, COMPUT PHYS COMMUN, V107, P187
FRANK W, 1987, MATER SCI FORUM, V15, P369
FUCHS HD, 1995, PHYS REV B, V51, P16817
GARCIA A, 1995, PHYS REV LETT, V74, P1131
HASSLEIN H, 1997, MATER SCI FORUM 1-3, V258, P59
HASSLEIN H, 1998, PHYS REV LETT, V80, P2626
HWANG CJ, 1968, PHYS REV, V171, P958
JANOTTI A, 1999, PHYSICA B, V273, P575
KIM JH, 1997, J NEUROPATH EXP NEUR, V56, P11
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
LANNOO M, 1968, J PHYS CHEM SOLIDS, V29, P1987
LARKINS FP, 1971, J PHYS C SOLID STATE, V4, P143
MATTILA T, 1998, PHYS REV B, V58, P1367
POYKKO S, 1996, PHYS REV B, V53, P3813
PUSKA MJ, 1998, PHYS REV B, V58, P1318
REMEDIAKIS IN, 1999, PHYS REV B, V59, P5536
WATKINS GD, 1976, DEFECTS THEIR STRUCT, P203
WATKINS GD, 1980, PHYS REV LETT, V44, P593
WATKINS GD, 1986, DEEP CTR SEMICONDUCT, P147
ZISTL C, 1997, MATER SCI FORUM 1-3, V258, P53
NR 23
TC 14
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JAN 15
PY 2000
VL 61
IS 4
BP R2401
EP R2404
PG 4
SC Physics, Condensed Matter
GA 284TJ
UT ISI:000085348300004
ER
PT J
AU Laali, KK
Hollenstein, S
Galembeck, SE
Coombs, MM
TI Stable ion study of protonated cyclopenta[a]phenanthrenes.
Structure-reactivity relationships and charge delocalization in the
carbocations
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; AM1 CALCULATIONS;
ORGANIC-MOLECULES; CARCINOGEN; CATIONS; SUBSTITUENT; METABOLITES;
OXIDATION; ARENES
AB Protonation studies are reported for a series of
cyclopenta[a]phenanthrenes C-p[a]P in superacid media. Hydrocarbons 1,
4, 7, are ring protonated in FSO3H-SO2ClF to form monoarenium ions. The
Delta(16,17) compounds 3, 6 are protonated at the D-ring double-bond to
form stable alpha-phenanthrene-substituted carbocations.
The 17-keto derivatives 2, 5, 8, 9, 19, 20 are CO-protonated in
FSO3H-SO2ClF to form carboxonium ions. Carboxonium ions derived from 8
and 20 undergo ring fluorosulfonation in the biologically important
A-ring under thermodynamic control (higher temperatures and prolonged
reaction times). Low temperature protonation of 8 and 9 with FSO3H .
SbF5 (4 : 1)-SO2ClF gives their corresponding carboxonium-arenium
dications (protonation of 2 with FSO3H . SbF5 (1 : 1)-SO2ClF gave a
mixture of mono- and dications), where ring protonation sites are
controlled by the position of the methyl group and occur in the A-ring
for the A-ring methylated derivatives (8, 9).
Whereas the 11-methoxy derivative (16) forms a carboxonium ion in
FSO3H-SO2ClF analogous to the 11-Me derivative (5), the 11-phenol
derivative (15), the ethoxy (17) and propoxy (18) derivatives are more
reactive, forming a mixture of mono- and dication (with 15 and 17) or
give mostly a carboxonium-arenium dication (with 18).
Substituent effects observed under stable ion conditions emphasize
relative carbocation stability and relief of peri-strain. Under
thermodynamic control, carboxonium ions undergo fluorosulfonation in
the biologically important A-ring. Charge delocalizations in the
resulting mono- and dications (deduced primarily based on magnitude of
Delta delta(13)C) are discussed and compared. In an effort to further
enhance the NMR assignments and for comparison, mono-arenium ions
1H(+), 4H(+), 6H(+), 7H(+) and their neutral precursors were calculated
at the B3LYP/6-31G(d,p) level of ab initio theory; their H-1 and C-13
NMR chemical shifts were computed by the GIAO method and their overall
charge delocalization paths were deduced via differences in the NPA
charges (cation minus neutral). The results are compared and discussed.
Stable ion studies of C-P[a]P provide useful insights into the
contrasting regioselectivities observed in chemical and biological
activiation.
C1 Kent State Univ, Dept Chem, Kent, OH 44242 USA.
USP, FFCLRP, Dept Quim, LAMMOL, Ribeirao Preto, SP, Brazil.
Univ Surrey, Dept Chem, Guildford GU2 5XH, Surrey, England.
RP Laali, KK, Kent State Univ, Dept Chem, Kent, OH 44242 USA.
CR BECKE AD, 1996, J CHEM PHYS, V104, P1040
BHATT T, 1990, POLYCYCL AROMAT COMP, V1, P55
BHATT TS, 1982, CARCINOGENESIS, V3, P667
BOYD GW, 1993, CARCINOGENESIS, V14, P1697
BOYD GW, 1995, CARCINOGENESIS, V16, P2351
BOYD GW, 1995, CARCINOGENESIS, V16, P2543
COOMBS MM, 1966, J CHEM SOC C, P963
COOMBS MM, 1987, CYCLOPENTA A PHENANT
COOMBS MM, 1996, COMMUNICATION
COOMBS MM, 1998, J CHEM RES-S NOV, P692
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DITCHFIELD R, 1974, MOL PHYS, V27, P789
DODDS JL, 1980, J MOL PHYS, V41, P1419
FRISCH MJ, 1998, GAUSSIAN 98 REVISION
GLEDINING ED, NBO VERSION 3 1
HADFIELD ST, 1984, CARCINOGENESIS, V5, P1395
HADFIELD ST, 1984, CARCINOGENESIS, V5, P1485
HARDEN GJ, 1995, J CHEM SOC P1, P3037
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HARVEY RG, 1993, J ORG CHEM, V58, P361
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
LAALI KK, 1991, J ORG CHEM, V56, P1867
LAALI KK, 1993, J ORG CHEM, V58, P1385
LAALI KK, 1996, CHEM REV, V96, P1873
LAALI KK, 1997, J CHEM SOC PERK NOV, P2207
LAALI KK, 1997, J ORG CHEM, V62, P4023
LAALI KK, 1997, J ORG CHEM, V62, P5804
LAALI KK, 1997, J ORG CHEM, V62, P7752
LAALI KK, 1998, J CHEM SOC PERK APR, P897
LAALI KK, 1998, J ORG CHEM, V63, P7280
REDDY VP, 1992, J FLUORINE CHEM, V56, P195
REED AE, 1983, J CHEM PHYS, V78, P4066
REED AE, 1985, J CHEM PHYS, V83, P735
WOLINSKI K, 1990, J AM CHEM SOC, V112, P8251
YOUNG RJ, 1993, J ORG CHEM, V58, P356
NR 35
TC 6
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PY 2000
IS 2
BP 211
EP 220
PG 10
SC Chemistry, Organic; Chemistry, Physical
GA 279PN
UT ISI:000085054500008
ER
PT J
AU Sparrapan, R
Mendes, MA
Carvalho, M
Eberlin, MN
TI Formal fusion of a pyrrole ring onto 2-pyridyl and 2-pyrimidyl cations:
One-step gas-phase synthesis of indolizine and its derivatives
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE cycloadditions; heterocycles; ion-molecules reactions; mass spectroscopy
ID DIELS-ALDER CYCLOADDITION; EVEN-ELECTRON RULE; MASS-SPECTROMETRY;
ACYLIUM IONS; IMMONIUM IONS; TRANSACETALIZATION; 3D
AB Two ortho-hetarynium ions, the 2-pyridyl and 2-pyrimidyl cations, react
promptly with 1,3-dienes in the gas phase by annulation, formally by
fusion, onto the ions of a pyrrole ring. This novel reaction proceeds
through an initial polar [4 + 2(+)] cycloaddition across the C=N+ bond,
followed by fast ring opening, a [1,4-H] shift, and finally a
recyclization that results in a contraction of a six- to a
five-membered ring and dissociation by the loss of a methyl radical.
For the 2-pyridyl cation. this reaction yields ionized indolizines
(pyrrolo[1,2-a]pyridines), while for the 2-pyrimidyl cation, it gives
ionized pyrrolo[1,2-a]pyrimidines. The annulation reaction, performed
in the rf-only collision quadrupole of a pentaquadrupole (QqQqQ) mass
spectrometer, occurs readily with both 1,3-butadiene and isoprene, and
is thermodynamically and kinetically favored as predicted by ab initio
calculations. Ortho-hetarynium ions and 1,3-dienes provide, therefore,
the two building blocks for the efficient one-step gas-phase synthesis
of ionized bicyclic pyrrolo[1,2-a]pyridine (indolizine) and
pyrrolo[1,2-a] pyrimidine, as well as their analogues and derivatives.
C1 Univ Estadual Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, Univ Estadual Campinas, Inst Chem, CP 6154, BR-13083970
Campinas, SP, Brazil.
CR BORDEN WT, 1982, DIRADICALS
BOWEN RD, 1981, ORG MASS SPECTROM, V16, P180
BUNNETT JF, 1981, J ORG CHEM, V46, P4567
BUSCH KL, 1988, MASS SPECTROMETRY MA
CARVALHO M, 1998, CHEM-EUR J, V4, P1161
CUMMINGS CS, 1940, PHYS REV, V58, P787
DENHERTOG HJ, 1965, HETEROCYCL CHEM, V4, P121
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FRIEDMAN L, 1953, J AM CHEM SOC, V75, P2832
GOZZO FC, 1999, J ORG CHEM, V64, P2188
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOFFMAN RW, 1967, DEHYDROBENZYNE CYCLO
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KARNI M, 1980, ORG MASS SPECTROM, V15, P53
KAUFFMANN T, 1963, CHEM BER, V96, P2519
KAUFFMANN T, 1965, ANGEW CHEM INT EDIT, V4, P543
KAUFFMANN T, 1965, ANGEW CHEM, V77, P557
KAUFFMANN T, 1971, ANGEW CHEM INT EDIT, V10, P20
KAUFFMANN T, 1971, ANGEW CHEM, V83, P21
LU L, 1995, J MASS SPECTROM, V30, P581
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, 1997, J CHEM SOC PERK OCT, P2105
MORAES LAB, 1997, J ORG CHEM, V62, P5096
MORAES LAB, 1998, J AM CHEM SOC, V120, P11136
OHKURA K, 1989, TETRAHEDRON LETT, V30, P3433
PROSTAKOV NS, 1975, RUSS CHEM REV, V44, P748
SCHOLZ M, 1912, CHEM BER, V45, P734
TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
TURECEK F, 1998, EUR J MASS SPECTROM, V4, P1998
UCHIDA T, 1976, SYNTHESIS-STUTTGART, P209
WANG F, 1999, J ORG CHEM, V64, P3213
NR 35
TC 12
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA MUHLENSTRASSE 33-34, D-13187 BERLIN, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD JAN
PY 2000
VL 6
IS 2
BP 321
EP 326
PG 6
SC Chemistry, Multidisciplinary
GA 277JV
UT ISI:000084931200013
ER
PT J
AU Morgon, NH
Xavier, LA
Riveros, JM
TI Gas-phase nucleophilic reactions of Ge(OCH3)(4): experimental and
computational characterization of pentacoordinated Ge anions
SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
DE germanium methoxide; gas-phase nucleophilic reactions; pentacoordinated
Ge anions; fluoride affinity; germyl anions; computational Ge chemistry
ID ION-MOLECULE REACTIONS; TRAP MASS-SPECTROMETRY; CYCLOTRON RESONANCE;
THEORETICAL CHARACTERIZATION; GLASS POWDERS; NEGATIVE-IONS; SILICON;
AFFINITIES; CHEMISTRY; FLUORIDE
AB The gas-phase ion/molecule reactions of F- and CH3O- with Ge(OCH3)(4)
have been investigated by Fourier transform ion cyclotron mass
spectrometry. Both nucleophiles react preferentially by an addition
mechanism to yield XGe(OCH3)(4)(-) (X = F, OCH3) complexes that are
identified as typical pentacoordinated Ge species, Pentacoordinated Ge
adducts formed with excess internal energy can undergo elimination of
formaldehyde to yield HGe(OCH3)(4)(-) or further elimination processes
that result in the formation of germyl anions like Ge(OCH3)(3)(-).
Other minor product ions are also observed which can be attributed to
the intermediacy of a pentacoordinated adduct. Dissociation of the
XGe(OCH3)(4)(-) anions induced by infrared multiphoton excitation leads
to sequential losses of formaldehyde and gives rise to different germyl
anions like Ge(OCH3)(3)(-) HGe(OCH3)(2)(-), and H2GeOCH3-. The
XGe(OCH3)(4)(-) and germyl anions react readily with BF3 through
successive methoxide-fluoride exchange and this reaction provides a
gas-phase synthetic pathway for multiply fluorinated Ge anions. Ab
initio calculations performed on model pentacoordinated species
Fn+1Ge(OH)(4-n)(-) (n = 0-4) reveal that addition of a fluoride ion on
hydroxygermanes occurs preferentially in the apical position of a
trigonal bipyramid. The fluoride affinity of the prototype molecule
Ge(OH)(4) is calculated to be 60.9 kcal mol(-1), and fluoride affinity
increases monotonically with increasing fluorine substitution, The
fluoride affinity of GeF4 is calculated to be 79 kcal mol(-1). Similar
calculations also predict an unusually high hydride affinity (60 kcal
mol(-1)) for Ge(OH)(4) with the hydride occupying an equatorial
position. (C) 2000 Elsevier Science B.V.
C1 Univ Sao Paulo, Inst Quim, BR-05508900 Sao Paulo, Brazil.
Univ Estadual Campinas, UNICAMP, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Riveros, JM, Univ Sao Paulo, Inst Quim, Av Lineu Prestes 748,Cidade
Univ, BR-05508900 Sao Paulo, Brazil.
EM jmrnigra@quim.iq.usp.br
CR ANDERSON WE, 1951, PHYS REV, V81, P819
ANGELINI G, 1991, INT J MASS SPECTROM, V109, P1
ARONNE A, 1993, MATER CHEM PHYS, V34, P86
ARONNE A, 1994, PHYS CHEM GLASSES, V35, P160
BENZI P, 1988, J ORGANOMET CHEM, V354, P39
BENZI P, 1989, J ORGANOMET CHEM, V373, P289
BENZI P, 1990, INT J MASS SPECTROM, V100, P646
BERNARDS TNM, 1992, J NON-CRYST SOLIDS, V142, P215
CAMPOSTRINI R, 1989, J NON-CRYST SOLIDS, V108, P143
CASCALES C, 1998, ANGEW CHEM INT EDIT, V37, P129
CIOSLOWSKI J, 1998, J AM CHEM SOC, V120, P2612
CRAMER CJ, 1995, J AM CHEM SOC, V117, P9285
DAMRAUER R, 1988, J AM CHEM SOC, V110, P6601
DAMRAUER R, 1993, J AM CHEM SOC, V115, P5218
DAMRAUER R, 1995, CHEM REV, V95, P1137
DASILVA MLP, 1995, J MASS SPECTROM, V30, P733
DASILVA MLP, 1997, INT J MASS SPECTROM, V165, P83
DEPUY CH, 1987, ACCOUNTS CHEM RES, V20, P127
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GOLDBERG N, 1998, CHEM FUNCT 1-3, V2, P1105
GORDON MS, 1992, ADV GAS PHASE ION CH, P203
HAJDASZ DJ, 1994, J AM CHEM SOC, V116, P10751
HARLAND PW, 1972, INT J MASS SPECTROM, V10, P169
HARLAND PW, 1974, J CHEM PHYS, V61, P1621
HIBINO T, 1989, J CHEM SOC FARAD T 1, V85, P2327
HUHEEY JE, 1993, INORG CHEM, A30
KAMIYA K, 1998, PHYS CHEM GLASSES, V39, P9
KLASS G, 1981, AUST J CHEM, V34, P519
KUDIN KK, 1988, J PHYS CHEM A, V102, P744
LARSON JW, 1985, J AM CHEM SOC, V107, P766
LARSON JW, 1987, INORG CHEM, V26, P4018
LI H, 1998, J AM CHEM SOC, V120, P8567
LI HL, 1998, J AM CHEM SOC, V120, P10569
MALLOUK TE, 1984, INORG CHEM, V23, P3160
MALLOUK TE, 1984, INORG CHEM, V23, P3167
MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
MORGON NH, 1997, CHEM PHYS LETT, V275, P457
MORGON NH, 1997, J AM CHEM SOC, V119, P1708
MORGON NH, 1998, J PHYS CHEM A, V102, P10399
MORGON NH, 1998, J PHYS CHEM A, V102, P2050
MURPHY MK, 1977, INORG CHEM, V16, P2437
MURPHY MK, 1977, J AM CHEM SOC, V99, P4992
NOWEK A, 1998, J PHYS CHEM A, V102, P2189
OKADA Y, 1990, SPECTROCHIM ACTA A, V46, P643
OPERTI L, 1992, J ORGANOMET CHEM, V433, P35
OPERTI L, 1993, ORGANOMETALLICS, V12, P4509
OPERTI L, 1993, ORGANOMETALLICS, V12, P4516
POLA J, 1992, J MATER CHEM, V2, P961
REED AE, 1990, J AM CHEM SOC, V112, P1434
SHELDON JC, 1987, J CHEM SOC PERK T 2, P275
SOBOTT F, 1998, CHEM-EUR J, V4, P2353
STANIC V, 1997, J MATER CHEM, V7, P105
TANABE FKJ, 1996, J PHYS CHEM-US, V100, P2862
TOLTL NP, 1998, J AM CHEM SOC, V120, P1172
VANBOMMEL MJ, 1992, J NON-CRYST SOLIDS, V147, P80
VONWEL H, 1987, J AM CHEM SOC, V109, P5823
WENTHOLD PG, 1995, J PHYS CHEM-US, V99, P2002
XAVIER LA, 1998, INT J MASS SPECTROM, V179, P223
ZAITSEVA GS, 1997, CHEM BER-RECL, V130, P739
NR 59
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1387-3806
J9 INT J MASS SPECTROM
JI Int. J. Mass Spectrom.
PD JAN 21
PY 2000
VL 196
SI Sp. Iss. SI
BP 363
EP 375
PG 13
SC Physics, Atomic, Molecular & Chemical; Spectroscopy
GA 277HR
UT ISI:000084927100032
ER
PT J
AU Coelho, LAF
Marchut, A
de Oliveira, JV
Balbuena, PB
TI Theoretical studies of energetics and diffusion of aromatic compounds
in supercritical carbon dioxide
SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
LA English
DT Article
ID MOLECULAR-DYNAMICS; LENNARD-JONES; AB-INITIO; BENZENE DIMER;
FORCE-FIELD; HARD-SPHERE; CO2 DIMER; COEFFICIENTS; MODEL; PHASE
AB Atomic and molecular interactions of aromatic compounds in carbon
dioxide are studied with ab initio and molecular dynamics techniques.
Ab initio calculations are used to determine the nature of the CO2-CO2,
CO2-benzene, and benzene-benzene interactions. We select an explicit
all-atom force field without partial atomic charges to describe the
intermolecular and intramolecular pair interactions of CO2 with benzene
and toluene. Molecular dynamics simulations are used to calculate
diffusion coefficients for benzene and toluene at infinite dilution in
CO2 along isotherms at 313.15, 323.15, and 333.15 K, in the density
range from 1.35 rho(c) to 2.10 rho(c) (rho(c) = critical CO2 density).
Diffusion coefficients are also calculated with a model based on
perturbation theory of simple liquids. The calculated diffusion
coefficients agree fairly well with the experimental results of Suarez
et al. (Chem. Eng. Sci. 1993, 48, 2419).
C1 Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA.
Univ Fed Rio de Janeiro, Chem Engn Program, Rio De Janeiro, Brazil.
RP Balbuena, PB, Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA.
CR ALLEN MP, COMPUTER SIMULATION
BALBUENA PB, 1999, MOL DYNAMICS CLASSIC, V7, P431
BELBUENA PB, 1999, MOL DYNAMICS CLASSIC, V7
BRENNECKE JF, 1999, CHEM REV, V99, P433
BROOKS BR, 1983, J COMPUT CHEM, V4, P187
BUCKINGHAM AD, 1963, P ROY SOC LOND A MAT, V273, P275
CASEWIT CJ, 1992, J AM CHEM SOC, V114, P10035
CHIALVO AA, 1992, IND ENG CHEM RES, V31, P1391
CHIPOT C, 1996, J AM CHEM SOC, V118, P11217
DARIVA C, 1999, BRAZ J CHEM ENG
DARIVA C, 1999, IN PRESS FLUID PHASE
EGGENBERGER R, 1991, MOL PHYS, V72, P433
EINSTEIN A, 1926, INVESTIGATIONS THEOR
ENGKVIST O, 1999, J CHEM PHYS, V110, P5758
FORESMAN JB, 1996, EXPLORING CHEM ELECT
FRENKEL D, 1996, UNDERSTANDING MOL SI
FRISCH MJ, 1997, GAUSSIAN 94 REVISION
HAILE JM, 1992, MOL DYNAMICS SIMULAT
HARMONY MD, 1979, J PHYS CHEM REF DATA, V8, P619
HARRIS JG, 1995, J PHYS CHEM-US, V99, P12021
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HOBZA P, 1996, J PHYS CHEM-US, V100, P18790
HOOVER WG, 1985, PHYS REV A, V31, P1695
ILLIES AJ, 1987, J PHYS CHEM-US, V91, P3489
ISRAELACHVILII J, 1992, INTERMOLECULAR SURFA
IWAI Y, 1997, FLUID PHASE EQUILIBR, V127, P251
JENSEN F, 1999, INTRO COMPUTATIONAL
JUCKS KW, 1988, J CHEM PHYS, V88, P2125
LIDE DR, 1997, HDB CHEM PHYSICS
LIU HQ, 1998, CHEM ENG SCI, V53, P2403
MCRURY TB, 1976, J PHYS CHEM-US, V64, P1288
MURTHY CS, 1981, MOL PHYS, V44, P135
POWLES JG, 1984, PHYSICA A, V126, P289
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024
REID RC, 1987, PROPERTIES GASES LIQ
SEMINARIO JM, 1996, RECENT DEV APPL MODE, V4
SEMINARIO JM, 1998, J AM CHEM SOC, V120, P3970
SIMONS J, 1997, QUANTUM MECH CHEM
SMITH GD, 1996, J PHYS CHEM-US, V100, P9624
SOUZA LES, 1993, MOL PHYS, V78, P137
SPEEDY RJ, 1987, MOL PHYS, V62, P509
SUAREZ JJ, 1993, CHEM ENG SCI, V48, P2419
TOM JW, 1993, IND ENG CHEM RES, V32, P2118
WALSH MA, 1987, CHEM PHYS LETT, V142, P265
WONG MW, 1996, CHEM PHYS LETT, V256, P391
YIN DX, 1998, J COMPUT CHEM, V19, P334
NR 46
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0888-5885
J9 IND ENG CHEM RES
JI Ind. Eng. Chem. Res.
PD JAN
PY 2000
VL 39
IS 1
BP 227
EP 235
PG 9
SC Engineering, Chemical
GA 272JD
UT ISI:000084646000029
ER
PT J
AU Diehl, A
Tamashiro, MN
Barbosa, MC
Levin, Y
TI Density-functional theory for attraction between like-charged plates
SO PHYSICA A
LA English
DT Article
ID ELECTRICAL DOUBLE-LAYER; ELECTROSTATIC CORRELATION; LIQUIDS; FORCES;
SURFACES; FLUIDS
AB We study the interactions between two negatively charged macroscopic
surfaces confining positive counterions. A density-functional approach
is introduced which, besides the usual mean-field interactions, takes
into account the correlations in the positions of counterions. The
excess free energy is derived in the framework of the Debye-Huckel
theory of the one-component plasma, with the homogeneous density
replaced by a weighted density. The minimization of the total free
energy yields the density profile of the microions. The pressure is
calculated and compared with the simulations and the results derived
from integral equations theories. We find that the interaction between
the two plates becomes attractive when their separation distance is
sufficiently small and the surface charge density is larger than a
threshold value. (C) 1999 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil.
Univ Fed Ceara, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil.
Univ Calif Santa Barbara, Mat Res Lab, Santa Barbara, CA 93106 USA.
RP Barbosa, MC, Univ Fed Rio Grande Sul, Inst Fis, Caixa Postal 15051,
BR-91501970 Porto Alegre, RS, Brazil.
CR ARENZON JJ, 1999, EUR PHYS J B, V12, P79
BRAMI B, 1979, PHYSICA A, V95, P505
CARBAJALTINOCO MD, 1996, PHYS REV E B, V53, P3745
CHAPMAN DL, 1913, PHILOS MAG, V25, P475
CROCKER JC, 1996, PHYS REV LETT, V77, P1897
CURTIN WA, 1985, PHYS REV A, V32, P2909
DENTON AR, 1989, PHYS REV A, V39, P4701
DERJAGUIN BV, 1941, ACTA PHYSICOCHIM URS, V14, P633
GOUY G, 1910, J PHYS-PARIS, V9, P457
GROOT RD, 1991, J CHEM PHYS, V95, P9191
GULDBRAND L, 1984, J CHEM PHYS, V80, P2221
ISE N, 1986, ANGEW CHEM INT EDIT, V25, P323
ISRAELACHVILI JN, 1986, PHYSICA A, V140, P278
ISRAELACHVILI JN, 1992, INTERMOLECULAR SURFA
KJELLANDER R, 1984, CHEM PHYS LETT, V112, P49
KJELLANDER R, 1986, J PHYS CHEM-US, V90, P1230
LEVIN Y, 1999, PHYSICA A, V265, P432
LOZADACASSOU M, 1990, J CHEM PHYS, V93, P1386
LOZADACASSOU M, 1996, PHYS REV E A, V53, P522
MIERYTERAN L, 1990, J CHEM PHYS, V92, P5087
NARAYANAN T, 1994, PHYS REV LETT, V73, P3002
NORDHOLM S, 1984, CHEM PHYS LETT, V105, P302
PENFOLD R, 1990, J CHEM PHYS, V92, P1915
PINCUS PA, 1998, EUROPHYS LETT, V42, P103
PODGORNIK R, 1989, J CHEM PHYS, V91, P5840
ROBBINS MO, COMMUNICATION
ROUZINA I, 1996, J PHYS CHEM-US, V100, P9977
SAFRAN SA, 1994, STAT THERMODYNAMICS
SHKLOVSKII BI, 1999, PHYS REV LETT, V82, P3268
STEVENS MJ, 1990, EUROPHYS LETT, V12, P81
STEVENS MJ, 1996, J CHEM PHYS, V104, P5209
TAMASHIRO MN, 1999, PHYSICA A, V268, P24
TARAZONA P, 1985, PHYS REV A, V31, P2672
VERWEY EJW, 1948, THEORY STABILITY LYO
NR 34
TC 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-4371
J9 PHYSICA A
JI Physica A
PD DEC 15
PY 1999
VL 274
IS 3-4
BP 433
EP 445
PG 13
SC Physics, Multidisciplinary
GA 268BG
UT ISI:000084394000005
ER
PT J
AU da Silva, CO
da Silva, EC
Nascimento, MAC
TI Ab initio calculations of absolute pK(a) values in aqueous solution I.
Carboxylic acids
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID POLARIZABLE CONTINUUM MODEL; DENSITY-FUNCTIONAL THEORY; SOLVATION
MODEL; FREE-ENERGIES; ACIDITIES; SOLVENT; ABINITIO; DERIVATIVES;
POTENTIALS; CHARGES
AB A thermodynamical cycle is proposed to calculate absolute pK(a) values
for a Bronsted acid in aqueous solution. The solvent (water) was
represented by a dielectric using the polarizable continuum model
(PCM), and the absolute pK(a) values of some aliphatic carboxylic acids
were computed. The results indicate that the proposed methodology seems
to be capable of predicting reasonably good absolute pK(a) values,
although in some cases appreciable deviations are observed, which can
be related to neglecting the molecular motion contributions (Delta
G(Mm)) to the solvation energy (Delta G(solv)).
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Nascimento, MAC, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis,
Bloco A,Sala 412,Cidade Univ, BR-21949900 Rio De Janeiro, Brazil.
CR *GEOM CTR SOFTW DE, MOL CAV FIG 3 WER OB
ADAMO C, 1997, J COMPUT CHEM, V18, P1993
AMOVILLI C, 1997, J PHYS CHEM B, V101, P1051
ANDZELM J, 1995, J CHEM PHYS, V103, P9312
BARONE V, 1997, J CHEM PHYS, V106, P8727
BARONE V, 1997, J CHEM PHYS, V107, P3210
BARONE V, 1998, J COMPUT CHEM, V19, P404
BAUSCHLICHER CW, 1995, J CHEM PHYS, V103, P1788
BENNAIM A, 1984, J CHEM PHYS, V81, P2016
BENNAIM A, 1987, SOLVATION THERMODYNA, CH1
BORDWELL FG, 1988, ACCOUNTS CHEM RES, V21, P456
CABANI S, 1981, J SOLUTION CHEM, V10, P563
CAMMI R, 1994, J CHEM PHYS, V101, P3888
CAMMI R, 1995, J COMPUT CHEM, V16, P1449
CANCES E, 1997, J CHEM PHYS, V107, P3032
CHRISTEN HR, 1988, ORG CHEM GRUNDLAGEN, V1, P419
COOKSON RF, 1974, CHEM REV, V74, P5
COSSI M, 1996, CHEM PHYS LETT, V255, P327
COSSI M, 1996, J COMPUT CHEM, V17, P57
COSSI M, 1998, J COMPUT CHEM, V19, P833
CRAMER CJ, 1992, SCIENCE, V256, P213
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
FRISCH MJ, 1995, GAUSSIAN 9J REVISION
GAO J, 1986, J AM CHEM SOC, V108, P4784
GUILMAN AG, 1990, PHARM BASIS THERAPEU
JORGENSEN WL, 1989, J AM CHEM SOC, V111, P4190
LI GS, 1997, J PHYS CHEM A, V101, P7885
LIM C, 1991, J PHYS CHEM-US, V95, P5610
MARCH J, 1992, ADV ORGANIC CHEM REA, CH8
MENNUCCI B, COMMUNICATION
MIERTUS S, 1981, CHEM PHYS, V55, P117
NETTO JDM, 1996, J PHYS CHEM-US, V100, P15105
NEWTON MD, 1971, J AM CHEM SOC, V93, P4971
PEARSON RG, 1986, J AM CHEM SOC, V108, P6109
REEVE W, 1979, CAN J CHEM, V57, P2747
RICHARDSON WH, 1997, INT J QUANTUM CHEM, V61, P207
SCHUURMANN G, 1996, QUANT STRUCT-ACT REL, V15, P121
SCHUURMANN G, 1997, QUANTITATIVE STRUCTU, V7, P225
SCHUURMANN G, 1998, J PHYS CHEM A, V102, P6706
SIGGEL MRF, 1988, J AM CHEM SOC, V110, P91
TOMASI J, 1994, CHEM REV, V94, P2027
NR 41
TC 40
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 16
PY 1999
VL 103
IS 50
BP 11194
EP 11199
PG 6
SC Chemistry, Physical
GA 268PP
UT ISI:000084425000069
ER
PT J
AU Costa, MF
Fonseca, TL
Amaral, OAV
Castro, MA
TI Calculations of the polarizability and hyperpolarizability of the NaH
molecule including vibrational corrections
SO PHYSICS LETTERS A
LA English
DT Article
DE polarizability; vibrational correction; NaH
ID QUADRATIC CONFIGURATION-INTERACTION; ELECTRON CORRELATION THEORIES;
BODY-PERTURBATION-THEORY; AB-INITIO; TRIPLE EXCITATIONS; NUCLEAR;
MODEL; HF
AB In this work we present results for the dipole moment, polarizability
and first hyperpolarizability of the NaH molecule obtained through the
many-body perturbation-theory, coupled cluster and quadratic
configuration interaction methods, including vibrational corrections.
It is shown that the nuclear relaxation contribution is of fundamental
importance for both polarizability and first hyperpolarizability of
this system. Besides, inclusion of electron correlation effects changes
appreciably the size of this contribution. In addition, our results
show that the curvature contribution does not alter significantly the
values obtained for the polarizability. (C) 1999 Published by Elsevier
Science B.V. All rights reserved.
C1 Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
RP Costa, MF, Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil.
CR ARCHIBONG EF, 1991, PHYS REV A, V44, P5478
BARTLETT RJ, 1981, ANNU REV PHYS CHEM, V32, P359
BISHOP DM, 1990, REV MOD PHYS, V62, P343
BISHOP DM, 1992, J CHEM PHYS, V97, P5255
BISHOP DM, 1994, ADV QUANTUM CHEM, V25, P1
BISHOP DM, 1994, J CHEM PHYS, V101, P2180
BISHOP DM, 1998, ADV CHEM PHYS, V104, P1
BUCKINGHAM AD, 1967, ADV CHEM PHYS, V12, P107
CASTRO MA, 1996, PHYS REV A, V53, P3664
DAGDIGIAN PJ, 1979, J CHEM PHYS, V71, P2823
DYKSTRA CE, 1988, AB INITIO CALCULATIO
FRISCH MJ, 1995, GAUSSIAN 94
GUERREIRO M, 1997, CHEM PHYS LETT, V274, P315
KIRTMAN B, 1990, CHEM PHYS LETT, V175, P601
LEE TJ, 1990, J PHYS CHEM-US, V94, P5463
LEE YS, 1984, J CHEM PHYS, V81, P5906
LUIS JM, 1997, J CHEM PHYS, V107, P1501
LUIS JM, 1999, J CHEM PHYS, V111, P875
MARTI J, 1993, J CHEM PHYS, V99, P3860
MARTI J, 1993, MOL PHYS, V80, P625
MCLEAN AD, 1967, J CHEM PHYS, V47, P1927
MILLER TM, 1977, ADV ATOM MOL PHYS, V13, P1
PAPADOPOULOS MG, 1996, MOL PHYS, V88, P1063
POPLE JA, 1978, INT J QUANTUM CHEM, V14, P545
POPLE JA, 1987, J CHEM PHYS, V87, P5968
PURVIS GD, 1982, J CHEM PHYS, V76, P1910
PYYKKO P, 1987, MOL PHYS, V60, P597
RAGHAVACHARI K, 1985, J CHEM PHYS, V82, P4607
RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P479
RUSSELL AJ, 1997, MOL PHYS, V90, P251
SADLEJ AJ, 1988, COLLECT CZECH CHEM C, V53, P1995
SADLEJ AJ, 1991, J MOL STRUCT THEOCHE, V234, P147
URBAN M, 1985, J CHEM PHYS, V83, P4041
NR 33
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0375-9601
J9 PHYS LETT A
JI Phys. Lett. A
PD NOV 29
PY 1999
VL 263
IS 3
BP 186
EP 192
PG 7
SC Physics, Multidisciplinary
GA 265RX
UT ISI:000084258100007
ER
PT J
AU Teles, LK
Scolfaro, LMR
Leite, JR
Ramos, LE
Tabata, A
Castineira, JLP
As, DJ
TI Relaxation effects on the negatively charged Mg impurity in zincblende
GaN
SO PHYSICA STATUS SOLIDI B-BASIC RESEARCH
LA English
DT Article
ID NITRIDE
AB The electronic structure of Mg impurity in zincblende (c-)GaN is
investigated by using the ab initio full potential linear-augmented
plane-wave method and the local density-functional approximation. Fun
geometry optimization calculations, including nearest and next-nearest
neighbor displacements, are performed far the impurity in the neutral
and negatively charged states. A value of 190 +/- 10 meV was obtained
for the Franck-Condon shift to the thermal energy, which is in good
agreement with that observed in recent low temperature
photoluminescence and Hall-effect measurements. We conclude that the
nearest and next-nearest neighbors of the Mg impurity replacing Ga in
c-GaN undergo outward relaxations which play an important role in the
determination of the center acceptor energies.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Estadual Paulista, Fac Ciencias Bauru, BR-17033360 Bauru, SP, Brazil.
Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
Univ Gesamthsch Paderborn, FB Phys 6, D-33098 Paderborn, Germany.
RP Scolfaro, LMR, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, Brazil.
CR AS DJ, 1998, PHYS STATUS SOLIDI B, V210, P445
AS DJ, 1999, J NITRIDE SEMICON S1, V4
BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
CASTINEIRA JLP, 1998, MAT SCI ENG B-SOLID, V51, P53
FIORENTINI V, 1996, P 23 ICPS, V4, P28777
GOTZ W, 1996, APPL PHYS LETT, V68, P667
ORTON JW, 1998, REP PROG PHYS, V61, P1
PANKOVE JI, 1998, SEMICONDUCTORS SEMIM, V50
PERDEW JP, 1996, PHYS REV LETT, V77, P3865
SCHWARZ K, 1996, LECT NOTES CHEM, V67, P139
NR 10
TC 6
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA MUHLENSTRASSE 33-34, D-13187 BERLIN, GERMANY
SN 0370-1972
J9 PHYS STATUS SOLIDI B-BASIC RE
JI Phys. Status Solidi B-Basic Res.
PD NOV
PY 1999
VL 216
IS 1
BP 541
EP 545
PG 5
SC Physics, Condensed Matter
GA 264QX
UT ISI:000084193900104
ER
PT J
AU Takahata, Y
Chong, DP
TI Density-functional calculations of molecular electron affinities
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE molecular electron affinities; density functional theory
ID BASIS-SETS; THERMOCHEMISTRY; APPROXIMATION; EXCHANGE; ENERGY; ATOMS;
SF4; GAS
AB Electron affinities of twelve small molecules were calculated by
density functional theory using two different functionals(B88-P86 and
B3LYP) combined with three different basis sets 6-31++G**:; 6-311++G**;
aug-cc-pVTZ. Outer valence Green's function method is also employed for
calculation of electron affinities of the molecules. The two most
efficient approaches were found to be the combination of (1)B88-P86
with 6-31++G**;: basis set and (2)B3LYP with 6-31++G**:;: The two
approaches were employed to calculate electron affinities of some
medium size molecules.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada.
RP Takahata, Y, Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas,
SP, Brazil.
CR BABCOCK LM, 1981, J CHEM PHYS, V75, P3864
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BOESCH SE, 1996, J PHYS CHEM-US, V100, P10083
CHONG DP, 1995, CAN J CHEM, V73, P79
CHOWDHURY S, 1986, J AM CHEM SOC, V108, P5453
FARRAGHER AL, 1967, T FARADAY SOC, V63, P2369
FRISH MJ, 1995, GAUSSIAN 94
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HELLWEGE KL, 1976, LANDOLTBORNSTEIN NUM, V7
JURSIC BS, 1997, J MOL STRUCT THEOCHE, V394, P19
KENDALL RA, 1992, J CHEM PHYS, V96, P6796
KING RA, 1996, J PHYS CHEM-US, V100, P6061
KLOBUKOWSKI M, 1997, ADV QUANTUM CHEM, V28, P189
LEE C, 1988, PHYS REV B, V37, P785
LIDE DR, 1995, CRC HDB CHEM PHYSICS
MADELUNG O, 1992, LANDOLTBORNSTEIN NUM, V21
ORTIZ JV, 1988, J CHEM PHYS, V89, P6348
PARR RG, 1989, DENSITY FUNCTIONAL T, P95
PERDEW JP, 1986, PHYS REV B, V33, P8822
RIENSTRAKIRACOF., 1998, COMMUNICATION
TSHUMPER GS, 1997, J CHEM PHYS, V107, P2529
VIGGIANO AA, 1991, INT J MASS SPECTROM, V109, P327
ZIEGLER T, 1992, J CHEM PHYS, V96, P7623
ZIEGLER T, 1992, J COMPUT CHEM, V13, P70
NR 25
TC 4
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD SEP-OCT
PY 1999
VL 10
IS 5
BP 354
EP 358
PG 5
SC Chemistry, Multidisciplinary
GA 261MC
UT ISI:000084012100003
ER
PT J
AU Esteves, PM
Nascimento, MAC
Mota, CJA
TI Reactivity of alkanes on zeolites: A theoretical ab initio study of the
H/H exchange
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID H-D EXCHANGE; PENTACOORDINATED CARBONIUM-IONS; HYDROGEN-DEUTERIUM
EXCHANGE; HARTREE-FOCK CALCULATIONS; DIMETHYL ETHER FORMATION; C-C
BONDS; SOLID ACIDS; ELECTROSTATIC POTENTIALS; ELECTROPHILIC REACTIONS;
SURFACE METHOXY
AB Ab initio calculations were performed to study the H/H exchange between
light alkanes (methane, ethane, propane, and isobutane) in protonated
zeolites. The Bronsted acid site of the zeolite was represented by a T3
cluster (T = Si, Al). The results of the calculations, at the
B3LYP/6-31G** and MP2/6-31G**//HF/6-31G** levels, indicated that the
transition state resembles a pentacoordinated carbonium ion. The
enthalpy of activation was similar, regardless of the alkane and the
type of hydrogen being exchanged. The Delta H-double dagger values, at
room temperature, ranged from 32.2 kcal/mol for methane to 36.2
kcal/mol for the exchange of the tertiary hydrogen of isobutane, both
at the B3LYP/6-31G** level. These results are not in complete agreement
with experiments, as it has been shown that for isobutane only the
primary hydrogens exchange at temperatures near ambient. This
disagreement may be attributed to the fact that the cluster model
employed in the calculations neither includes the electrostatic effects
of the zeolite cavity nor takes into account steric repulsion
associated with the framework.
C1 Univ Fed Rio de Janeiro, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
RP Mota, CJA, Univ Fed Rio de Janeiro, Inst Quim, Cidade Univ,CT Bloco A,
BR-21949900 Rio De Janeiro, Brazil.
CR BECK LW, 1995, J AM CHEM SOC, V117, P11594
BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
BLASZKOWSKI SR, 1996, J AM CHEM SOC, V118, P5152
BLASZKOWSKI SR, 1996, J PHYS CHEM-US, V100, P3463
BLASZKOWSKI SR, 1997, J AM CHEM SOC, V119, P5152
BLASZKOWSKI SR, 1997, J PHYS CHEM B, V101, P2292
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BRUNDLE M, 1998, J AM CHEM SOC, V120, P1556
CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
COLLINS SJ, 1995, CHEM PHYS LETT, V246, P555
COLLINS SJ, 1995, J CATAL, V153, P94
CORMA A, 1995, CHEM REV, V95, P559
ESTEVES PM, 1998, TOP CATAL, V6, P163
ESTEVES PM, 1999, J AM CHEM SOC, V121, P7345
EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
EVLETH EM, 1996, J PHYS CHEM-US, V100, P11368
FRASH MV, 1997, J PHYS CHEM B, V101, P5346
FRASH MV, 1998, J PHYS CHEM B, V102, P2232
FRISCH MJ, 1995, GAUSSIAN 94
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P703
JOBIC H, 1996, J PHYS CHEM-US, V100, P19545
KAZANSKY VB, 1991, ACCOUNTS CHEM RES, V24, P379
KAZANSKY VB, 1992, J MOL CATAL, V74, P257
KAZANSKY VB, 1994, CATAL LETT, V28, P211
KRAMER GJ, 1993, NATURE, V363, P529
KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
KROTLA J, 1998, J PHYS CHEM B, V102, P2454
LINS JOMDL, 1996, THEOCHEM-J MOL STRUC, V371, P237
MOTA CJA, UNPUB
MOTA CJA, 1991, J CHEM SOC CHEM COMM, P171
MOTA CJA, 1992, J AM CHEM SOC, V114, P1121
MOTA CJA, 1993, STUD SURF SCI CATAL, V75, P463
MOTA CJA, 1994, J CHEM SOC FARADAY T, V90, P2297
MOTA CJA, 1996, APPL CATAL A-GEN, V146, P181
MOTA CJA, 1996, J PHYS CHEM-US, V100, P12418
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
MOTA CJA, 1997, J CATAL, V172, P194
NASCIMENTO MAC, 1999, J MOL STRUC-THEOCHEM, V464, P239
OLAH GA, 1968, J AM CHEM SOC, V90, P2726
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
ORTIZ W, 1999, ORG LETT, V1, P531
RIGBY AM, 1997, J CATAL, V170, P1
SINCLAIR PE, 1997, J PHYS CHEM B, V101, P295
SOMMER J, 1992, J AM CHEM SOC, V114, P5884
SOMMER J, 1994, J AM CHEM SOC, V116, P5491
SOMMER J, 1995, J AM CHEM SOC, V117, P1135
STEVENSON DP, 1952, J AM CHEM SOC, V74, P3269
VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13713
ZICOVICHWILSON C, COMMUNICATION
ZICOVICHWILSON CM, 1995, J PHYS CHEM-US, V99, P13224
ZYGMUNT SA, 1994, J MOL STRUCT THEOCHE, V314, P113
ZYGMUNT SA, 1996, J PHYS CHEM-US, V100, P6663
NR 53
TC 25
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5647
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD NOV 25
PY 1999
VL 103
IS 47
BP 10417
EP 10420
PG 4
SC Chemistry, Physical
GA 261LF
UT ISI:000084010100015
ER
PT J
AU Goeppert, A
Sassi, A
Sommer, J
Esteves, PM
Mota, CJA
Karlsson, A
Ahlberg, P
TI Protonation of small alkanes in liquid superacids: Absence of
intramolecular C-13 and H-2 scrambling in propane and isobutane
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID THEORETICAL AB-INITIO; ACTIVATION; DEUTERIUM; CRACKING; ZEOLITE; CATIONS
C1 Univ Strasbourg 1, Inst Chim, F-67070 Strasbourg, France.
Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Univ Gothenburg, Dept Organ Chem, S-41296 Gothenburg, Sweden.
RP Sommer, J, Univ Strasbourg 1, Inst Chim, 4 Rue Blaise Pascal, F-67070
Strasbourg, France.
CR BROUWER DM, 1968, RECL TRAV CHIM PAY B, V87, P1435
CORMA A, 1985, J CATAL, V93, P30
CORMA A, 1994, J CATAL, V145, P171
ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
ESTEVES PM, 1998, TOP CATAL, V6, P163
HAAG WO, 1984, 8TH P INT C CAT BERL, V2, P305
IVANOVA II, 1998, TOP CATAL, V6, P49
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
OLAH G, 1985, SUPERACIDS
OLAH GA, 1972, J AM CHEM SOC, V94, P808
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLAH GA, 1995, HYDROCARBON CHEM
PINES H, 1981, CHEM CATALYTIC HYDRO
SAUNDERS M, 1992, CROAT CHEM ACTA, V65, P673
SOMMER J, 1992, J AM CHEM SOC, V114, P5884
SOMMER J, 1993, ACCOUNTS CHEM RES, V26, P370
SOMMER J, 1997, J AM CHEM SOC, V119, P3274
NR 17
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 17
PY 1999
VL 121
IS 45
BP 10628
EP 10629
PG 2
SC Chemistry, Multidisciplinary
GA 258UP
UT ISI:000083857800022
ER
PT J
AU Okulik, N
Peruchena, NM
Esteves, PM
Mota, CJA
Jubert, A
TI Ab initio topological analysis of the electronic density in isobutonium
cations
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR CHARGE-DISTRIBUTIONS; ELECTROPHILIC REACTIONS; QUANTUM
TOPOLOGY; TERMS
AB Studies performed on isobutonium cations at the ab initio level show
that five different stable structures can be characterized. The two
structures most energetically favored correspond to van der Waals
complexes, one of them between CH4 and i-C3H7+ and one of smaller
energy between H-2 and the C4H9+ cation. Among the isobutonium cations,
the most stable structure corresponds to the C-isobutonium cation where
a three-center two-electron bond is formed. The isobutonium cations on
the H are significantly higher in energy. The topology of the
electronic density charge of the isobutonium cations is studied, at ab
initio level, using the theory of atoms in molecules (AIM) developed by
Bader. The electronic delocalization that operates through the sigma
bonds in saturated molecules and specifically in protonated alkanes can
be studied by means of the analysis of the charge density and of the
Laplacian of the electronic charge density at the bond critical points.
C1 Natl Univ La Plata, Fac Ciencias Exactas, Dept Quim, CONICET,Ctr Quim Inorgan,CEQUINOR,UNLP, RA-1900 La Plata, Argentina.
UNNE, Fac Ciencias Exactas & Nat & Agrimensura, Dept Quim, RA-3400 Corrientes, Argentina.
Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Fac Agroind, RA-3700 Pcia R Saenz Pena, Chaco, Argentina.
RP Okulik, N, Natl Univ La Plata, Fac Ciencias Exactas, Dept Quim,
CONICET,Ctr Quim Inorgan,CEQUINOR,UNLP, CC 962, RA-1900 La Plata,
Argentina.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
BADER RFW, 1979, J AM CHEM SOC, V101, P1389
BADER RFW, 1979, J CHEM PHYS, V70, P6316
BADER RFW, 1980, J CHEM PHYS, V73, P2871
BADER RFW, 1981, ADV QUANTUM CHEM, V14, P63
BADER RFW, 1981, REP PROG PHYS, V44, P893
BADER RFW, 1983, J AM CHEM SOC, V105, P5061
BADER RFW, 1990, ATOMS MOL QUANTUM TH
CREMER D, 1983, J AM CHEM SOC, V105, P5069
ESTEVES PM, 1998, TOP CATAL, V6, P163
FRISCH MJ, 1995, GAUSSIAN 94
KLIEGERKONIG W, 1982, J COMPUT CHEM, V3, P317
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
NR 16
TC 6
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 21
PY 1999
VL 103
IS 42
BP 8491
EP 8495
PG 5
SC Chemistry, Physical
GA 251DT
UT ISI:000083429900019
ER
PT J
AU de Oliveira, AE
Bruns, RE
TI CCl4: mean dipole moment derivatives and core electron binding energies
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE atomic polar tensor; density functional theory; CCl4
ID POLAR TENSORS; VIBRATIONAL INTENSITIES; INFRARED INTENSITIES;
SUBSTITUTED METHANES
AB Atomic polar tensors for the carbon tetrachloride molecule are
calculated from experimental fundamental infrared intensities, a normal
coordinate transformation determined from observed fundamental
frequency values and experimentally determined CCl bond lengths. Dipole
moment derivative sign ambiguities were eliminated by comparing the
alternative mathematical solutions obtained from the experimental data
with results of Hartree-Fock, Moller-Plesset 2 and Density Functional
Theory calculations using a 6 -31 + + G(d,p) basis set. Carbon and
chlorine mean dipole moment derivatives of 1.043 +/- 0.022e and - 0.261
+/- 0.006e, respectively, are determined from the preferred atomic
polar tensors. These values are in excellent agreement with those
obtained from the CCl4 Is carbon atom ionization energy using a simple
potential model (1.081e and - 0.270e), from an electronegativity model
proposed earlier (1.008e and - 0.252e) and from an electronegativity
equalization model (1.066e and - 0.266e). (C) 1999 Elsevier Science
B.V. AU rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13081970 Campinas, SP, Brazil.
RP Bruns, RE, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13081970
Campinas, SP, Brazil.
CR BAGUS PS, 1965, PHYS REV A, V139, P619
BASSI ABM, 1975, THESIS U ESTADUAL CA
BRUNS RE, 1996, J BRAZIL CHEM SOC, V7, P497
CIOSLOWSKI J, 1989, J AM CHEM SOC, V111, P8333
DEOLIVEIRA AE, 1998, J PHYS CHEM A, V102, P4615
FRISCH MJ, 1995, GAUSSIAN 94
GUADAGNINI PH, 1997, J AM CHEM SOC, V119, P4224
HUHEEY JE, 1965, J PHYS CHEM-US, V69, P3284
JOLLY WL, 1984, ATOM DATA NUCL DATA, V31, P433
MORCILLO J, 1961, ANN R SOC ESP FIS A, V57, P81
NETO BB, 1988, J CHEM PHYS, V89, P1887
NETO BB, 1990, J PHYS CHEM-US, V94, P1764
PERSON WB, 1974, J CHEM PHYS, V61, P1040
PERSON WB, 1976, J CHEM PHYS A, V64, P3036
SIEGBAHN K, 1971, ESCA APPL FREE MOL
SUTO E, 1991, J PHYS CHEM-US, V95, P9716
TANABE K, 1970, SPECTROCHIM ACTA A, V26, P1469
NR 17
TC 5
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD SEP 20
PY 1999
VL 55
IS 11
BP 2215
EP 2219
PG 5
SC Spectroscopy
GA 240GD
UT ISI:000082816800007
ER
PT J
AU Ramos, JCS
Hollauer, E
Cardoso, SP
TI The vibration frequencies predicted by the AM1 model.
SO QUIMICA NOVA
LA Portuguese
DT Review
DE AM1; frequencies; CH; NH; OW; CO; CC frequencies
ID DENSITY-FUNCTIONAL THEORY; GROUND-STATES; MOLECULES; SPECTRA; MNDO
AB We analyse vibrational frequencies of 168 compounds with the AMI model
concerning its experimentally observed gaseous frequencies. Stretching
of CH, NH, OH and CO bonds, its related bending frequencies, and the CC
frame movements ape the studied vibrations. The results show problems
with the AMI vibrational splittings, Often symmetric stretching
frequencies, like in CH3, CH2 and NN3, appear switched with the
corresponding antisymmetrical ones. among the studied vibrations many
stretchings are overestimated, while bendings oscillate around
experimental values. Fluorine stretchings, NN, OO, CH, double and
triples CG bonds and cyclic hydrocarbon breathing modes are always
overestimated while torsions, umbrella modes and OH/SH stretching are,
in average, underestimated. Graphical analysis shaw that compounds with
the lowest molecular masses are the ones with the largest difference to
the experimental values. From our results it is not possible to fit
confortably the calculated frequencies by a simple linear relationship
of the type, v(obs)=a*v(AM1). Better aggreement is obtained when
different curves are adjusted for the stretching and bending modes, and
when a complete linear function is used. Among our studies the best
obtained statistical results are for CH, NN and OH. The conclusions
obtained in this work will improve the AMI calculated frequencies
leading to accurate results for these properties.
C1 Univ Fed Fluminense, Inst Quim, Dept Quim Fis, BR-24210150 Niteroi, RJ, Brazil.
UnED, Escola Tecn Fed Quim, Secao Quim, BR-26530060 Nilopolis, RJ, Brazil.
RP Ramos, JCS, Univ Fed Fluminense, Inst Quim, Dept Quim Fis, Morro do
Valonguinho S-N, BR-24210150 Niteroi, RJ, Brazil.
CR BRAND JCD, 1970, MATH COMPUT, V24, P647
BRIGHT EW, 1955, MOL VIBRATIONS
CASTELLAVENTURA M, 1994, SPECTROCHIM ACTA A, V50, P69
COOLIDGE MB, 1991, J COMPUT CHEM, V12, P948
DEFREES DJ, 1985, J CHEM PHYS, V82, P333
DEWAR MJS, 1977, J AM CHEM SOC, V99, P1685
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DUNCAN JL, 1964, SPECTROCHIM ACTA, V20, P523
DUNCAN JL, 1991, SPECTROCHIM ACTA A, V47, P1
FABIAN WMF, 1988, J COMPUT CHEM, V9, P369
FAUSTO R, 1994, J MOL STRUCT, V323, P267
HARMONY MD, 1979, J PHYS CHEM REF DATA, V8, P619
HEALY EF, 1993, J MOL STRUCT THEOCHE, V281, P141
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HERZBERG G, 1950, SPECTRA DIATOMIC MOL
HOLLAUER E, 1993, THESIS CAMPINAS SP
HOUT RF, 1982, J COMPUT CHEM, V3, P234
KLIMO V, 1962, COLLECT CZECH CHEM C, V49, P1731
LEVINE IN, 1975, MOL SPECTROSCOPY
MORSE PM, 1929, PHYS REV, V34, P57
NIELSON JR, 1949, J CHEM PHYS, V17, P659
OHNO K, 1995, J MOL STRUCT, V352, P475
SALA O, 1984, ESPECTROSCOPIA RAMAN
SANTOS HF, 1995, J MOL STRUCT, V335, P129
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SHIMANOUCHI T, 1977, J PHYS CHEM REF DATA, V6, P993
STEWART JJP, 1993, MANUAL MOPAC 93 REVI
STREY G, 1967, J MOL SPECTROSC, V24, P87
SWALEN JD, 1962, J CHEM PHYS, V36, P1914
WALL FT, 1937, J CHEM PHYS, V5, P314
ZHOU XF, 1996, VIB SPECTROSC, V12, P73
NR 32
TC 4
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0100-4042
J9 QUIM NOVA
JI Quim. Nova
PD SEP-OCT
PY 1999
VL 22
IS 5
BP 684
EP 692
PG 9
SC Chemistry, Multidisciplinary
GA 237BB
UT ISI:000082632800012
ER
PT J
AU Pliego, JR
De Almeida, WB
Celebi, S
Zhu, ZD
Platz, MS
TI Singlet-triplet gap, and the electronic and vibrational spectra of
chlorophenylcarbene: A combined theoretical and experimental study
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID LASER FLASH-PHOTOLYSIS; O-H BOND; AB-INITIO; YLIDE FORMATION;
PERTURBATION-THEORY; CARBENE FORMATION; EXCITED-STATES; SPIN STATES;
KINETICS; CCL2
AB Minimum energy structures of singlet and triplet chlorophenylcarbene, a
prototypical carbene, were computed. The singlet-triplet energy
separation was predicted to be 7.84 and 7.70 kcal/mol at the
UCCSD(T)/6-31+G* and QCISD(T)/6-31+G** levels of theory, respectively,
after zero-point correction. This is slightly larger than that
predicted by the CAS(6,6) (4.5 kcal/mol), local spin density
approximation (5.6 kcal/mol), and the BLYP (7.3 kcal/mol) methods with
the 6-31G* basis set reported by Trindle et al. The UV-vis and IR
spectra of chlorophenylcarbene were analyzed with the aid of the
CASPT2/CASSCF(10,10) and the B3LYP/6-31G* levels of theory,
respectively. The UV-vis and IR spectra of chlorophenylcarbene were
assigned on the basis of these calculations. The ab initio calculations
predicted the existence of strong absorption bands in the UV and a weak
band in the visible in good agreement with published spectra. The long
(750 nm) wavelength band corresponds to electron promotion from the
lone pair sigma (HOMO) to the pi* (LUMO). On the basis of the
calculated harmonic frequencies, we cannot assign the 1244 and 1600
cm(-1) IR bands observed in an argon matrix to chlorophenyl carbene.
The most intense IR band (1225 cm(-1)) corresponds to the symmetric C-C
stretch of the carbene and aromatic carbon. The asymmetric and
symmetric C-C-Cl stretches are assigned to the bands observed at 847
and 739 cm(-1), respectively.
C1 Univ Fed Minas Gerais, Dept Quim, Lab Quim Computac & Modelagem Mol, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
Ohio State Univ, Newman & Wolfrom Lab Chem, Columbus, OH 43210 USA.
RP Platz, MS, Univ Fed Minas Gerais, Dept Quim, Lab Quim Computac &
Modelagem Mol, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
CR ADMASU A, 1997, J PHYS CHEM A, V101, P3832
ADMASU A, 1998, J CHEM SOC PERK MAY, P1093
AMOS RD, 1991, CHEM PHYS LETT, V185, P256
ANDERSSON K, 1998, MOLCAS PROGRAM VERSI
BALLY T, 1994, ANGEW CHEM INT EDIT, V33, P1964
BARON WJ, 1973, CARBENES, V1, P1
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1993, J CHEM PHYS, V98, P5648
BENT HA, 1960, J CHEM EDUC, V37, P616
BERNARDI F, 1997, J ORG CHEM, V62, P2018
BONDYBEY VE, 1977, J MOL SPECTROSC, V64, P180
BONNEAU R, 1990, J AM CHEM SOC, V112, P744
CAI ZL, 1993, CHEM PHYS LETT, V210, P481
CHATEAUNEUF JE, 1990, J AM CHEM SOC, V112, P3217
CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
CRAMER CJ, 1994, J AM CHEM SOC, V116, P9787
EISENTHAL KB, 1985, TETRAHEDRON, V41, P1543
FRISCH MJ, 1995, GAUSSIAN 94
GANZER GA, 1986, J AM CHEM SOC, V108, P1517
GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
GOULD IR, 1985, TETRAHEDRON, V41, P1587
GRILLER D, 1982, J AM CHEM SOC, V104, P5549
GRILLER D, 1984, ACCOUNTS CHEM RES, V17, P283
GRILLER D, 1985, TETRAHEDRON, V41, P1525
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HIRAO K, 1992, CHEM PHYS LETT, V190, P374
HOUK KN, 1985, TETRAHEDRON, V41, P1555
JACKSON JE, 1988, J AM CHEM SOC, V110, P5595
JONES MB, 1992, J AM CHEM SOC, V114, P2163
KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
KIRMSE W, 1993, J AM CHEM SOC, V115, P8918
LEE C, 1988, PHYS REV B, V37, P785
LEOPOLD DG, 1985, J CHEM PHYS, V83, P4849
MATZINGER S, 1996, J AM CHEM SOC, V118, P1535
MCMAHON RJ, 1987, J AM CHEM SOC, V109, P2456
MILLIGAN DE, 1967, J CHEM PHYS, V47, P703
MODARELLI DA, 1992, J AM CHEM SOC, V114, P7034
MOSS RA, 1988, TETRAHEDRON LETT, V29, P6417
NAKANO H, 1993, J CHEM PHYS, V99, P7983
PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
PLIEGO JR, 1997, J CHEM PHYS, V106, P3582
PLIEGO JR, 1997, J CHEM SOC FARADAY T, V93, P1881
PLIEGO JR, 1997, J CHEM SOC PERK NOV, P2365
PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
PLIEGO JR, 1998, J BRAZIL CHEM SOC, V9, P181
POPLE JA, 1983, J AM CHEM SOC, V105, P6389
ROBERT M, 1996, J PHYS CHEM-US, V100, P18426
ROBERT M, 1998, J PHYS CHEM A, V102, P1507
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SHIN SK, 1990, J PHYS CHEM-US, V94, P6963
SOUNDARARAJAN N, 1988, J AM CHEM SOC, V110, P7143
TOSCANO JP, 1994, J AM CHEM SOC, V116, P8146
TRINDLE C, 1997, J AM CHEM SOC, V119, P12947
TURRO NJ, 1980, J AM CHEM SOC, V102, P7578
WANG JL, 1995, J AM CHEM SOC, V117, P5477
WONG C, 1993, J CHEM RES S, P32
YAMAMOTO N, 1994, J AM CHEM SOC, V116, P2064
ZUEV PS, 1994, J ORG CHEM, V59, P2267
ZUPANCIC JJ, 1985, TETRAHEDRON, V41, P1471
NR 60
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD SEP 16
PY 1999
VL 103
IS 37
BP 7481
EP 7486
PG 6
SC Chemistry, Physical
GA 238JH
UT ISI:000082706800014
ER
PT J
AU Taft, CA
Guimaraes, TC
Pavao, AC
Lester, WA
TI Adsorption and dissociation of diatomic molecules on transition-metal
surfaces
SO INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY
LA English
DT Review
ID ANGLE-RESOLVED PHOTOEMISSION; ELECTRON-ENERGY LOSS; TEMPERATURE
PROGRAMMED DESORPTION; RAY PHOTOELECTRON DIFFRACTION;
DENSITY-FUNCTIONAL THEORY; MORSE-POTENTIAL ANALYSIS; SULFUR MODIFIED
FE(100); SINGLE-CRYSTAL SURFACE; SMALL NICKEL CLUSTERS; QUANTUM
MONTE-CARLO
AB The interaction between transition-metal surfaces and simple diatomic
molecules (CO, NO, H-2, N, and O-2) may lead to the breaking and making
of chemical bonds and trigger important surface-catalysed reactions. We
discuss the most common surface interaction and orientation models and
consider the electronic structure of the transition metal, and the
influence of structure, bonding and coordination of the diatomic
molecule. We emphasize the importance of the tilted precursor in the
dissociation of diatomic molecules on transition-metal surfaces.
C1 Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
Univ Fed Pernambuco, Dept Quim Fundamental, BR-50960450 Recife, PE, Brazil.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Rua Dr Xavier Sigaud 150,Urca,
BR-22290180 Rio De Janeiro, Brazil.
CR AHLRICHS R, 1985, J CHEM PHYS, V82, P890
AIZAWA H, 1998, SURF SCI, V399, L364
ALBRIGHT TA, 1985, ORBITAL INTERACTIONS
ALLISON JN, 1982, SURF SCI, V115, P553
ALMEIDA AL, 1998, J CHEM PHYS, V109, P3671
ALMEIDA AL, 1999, INT J QUANTUM CHEM, V71, P153
ANDERSON AB, 1974, J CHEM PHYS, V60, P4271
ANDERSON AB, 1976, INORG CHEM, V15, P2598
ANDERSON AB, 1984, SURF SCI, V146, P80
ANDERSON AB, 1986, J AM CHEM SOC, V108, P1385
ANDERSON AB, 1987, J PHYS CHEM-US, V91, P4245
ANDERSON AB, 1988, J PHYS CHEM-US, V92, P809
ANDERSON JB, 1995, INT REV PHYS CHEM, V14, P85
ANDERSSON S, 1977, SOLID STATE COMMUN, V21, P75
ANDERSSON S, 1980, J PHYS C SOLID STATE, V13, P3547
ANDREONI W, 1981, PHYS REV B, V23, P4379
ANGEVAARE PAJ, 1988, J CATAL, V110, P11
ARABCZYK W, 1997, SURF SCI, V377, P578
ARUMAINAYAGAM CR, 1996, SURF SCI, V360, P121
ASENSIO MC, 1992, CHEM PHYS LETT, V192, P259
AUGUSTINE RL, 1996, HETEROGENEOUS CATALY
BACKX C, 1981, SURF SCI, V104, P300
BACON AD, 1979, THEOR CHIM ACTA, V53, P21
BAERENDS EJ, 1992, NATO ADV STUDY I S B, V283
BAETZOLD RC, 1982, SOLID STATE COMMUN, V44, P781
BAGUS PS, 1983, PHYS REV B, V28, P5423
BAGUS PS, 1990, PHYS REV B, V42, P10852
BAGUS PS, 1990, SURF SCI, V236, P233
BAGUS PS, 1994, CHEM PHYS LETT, V224, P576
BAHRIM B, 1996, J CHEM PHYS, V104, P10014
BAIRD RJ, 1980, SURF SCI, V97, P356
BALASUBRAMANIAN K, 1987, J CHEM PHYS, V87, P3981
BALKENENDE AR, 1989, APPL SURF SCI, V37, P189
BALKENENDE AR, 1991, APPL SURF SCI, V47, P351
BATRA IP, 1976, SURF SCI, V57, P12
BAUSCHLICHER CW, 1985, COMP AB INITIO QUANT
BAUSCHLICHER CW, 1986, J CHEM PHYS, V85, P354
BAUSCHLICHER CW, 1994, J CHEM PHYS, V101, P3250
BEHM RJ, 1984, J VAC SCI TECHNOL A, V2, P1040
BEHM RJ, 1997, ACTA PHYS POL A, V93, P260
BENNICH P, 1998, PHYS REV B, V57, P9274
BENZIGER J, 1980, SURF SCI, V94, P119
BENZIGER J, 1980, SURF SCI, V94, P199
BERGER HF, 1992, SURF SCI, V275, L627
BERNASEK SL, 1993, ANNU REV PHYS CHEM, V44, P265
BERTINO M, 1996, APPL PHYS A-MATER, V62, P95
BERTINO MF, 1997, SURF SCI, V385, L984
BERTOLINI JC, 1981, SURF SCI, V102, P12
BERTOLINI JC, 1981, SURF SCI, V102, P131
BESENBACHER F, 1993, PROG SURF SCI, V44, P1
BEUTL M, 1997, SURF SCI, V385, P1106
BEUTLER A, 1997, SURF SCI, V371, P381
BIBERIAN JP, 1982, SURF SCI, V118, P443
BIEMOLT W, 1992, CHEM PHYS LETT, V188, P477
BIRD DM, 1993, CHEM PHYS LETT, V212, P518
BLANSE B, 1989, J CATAL, V119, P238
BLASTER HU, 1996, P 4 INT S HET CAT FI
BLOMBERG MRA, 1991, J AM CHEM SOC, V113, P424
BLYHOLDER G, 1964, J PHYS CHEM-US, V68, P2772
BLYHOLDER G, 1975, J CHEM PHYS, V62, P3193
BOETTGER JC, 1993, INT J QUANTUM CHEM S, V27, P147
BOLAND JJ, 1991, PHYS REV LETT, V67, P1539
BONICKE IA, 1998, SURF SCI, V395, P138
BONZEL HP, 1975, SURF SCI, V51, P213
BONZEL HP, 1977, SURF SCI, V62, P45
BONZEL HP, 1987, SURFACE SCI REPT, V8, P43
BORG A, 1994, SURF SCI, V306, P10
BORG HJ, 1994, J CHEM PHYS, V101, P10052
BORUP RL, 1997, SURF SCI, V374, P152
BORUSIK OS, 1997, SURF SCI LETT, V486, L1016
BOTZO F, 1983, CHEM PHYS LETT, V94, P243
BOUDART M, 1969, ADV CATAL, V20, P153
BOWMAN R, 1973, SURF SCI, V35, P8
BOZSO F, 1977, J CATAL, V49, P18
BOZSO F, 1977, J CATAL, V49, P189
BOZSO F, 1984, SURF SCI, V141, P591
BRADLEY JM, 1996, J CHEM PHYS, V104, P4283
BREITSCHAFTER MJ, 1981, SURF SCI, V109, P493
BRODEN G, 1976, SURF SCI, V59, P593
BRUNDLE CR, 1975, FARADAY DISCUSS, V60, P51
BUTLER DA, 1994, CHEM PHYS LETT, V217, P423
CAMPBELL CT, 1984, SURF SCI, V139, P396
CAPUTI LS, 1993, SURF SCI, V282, P62
CAPUTI LS, 1993, SURF SCI, V289, L591
CEPERLEY DM, 1996, ADV CHEM PHYS, V93, P1
CHACONTAYLOR MR, 1996, J PHYS CHEM-US, V100, P7610
CHANG S, 1974, PHYS REV LETT, V52, P648
CHONG DP, 1986, J CHEM PHYS, V84, P5606
COLONELL JI, 1996, J CHEM PHYS, V104, P6822
CONRAD H, 1975, SURF SCI, V50, P296
CONRAD H, 1977, SURF SCI, V65, P235
CONRAD H, 1984, SURF SCI, V145, P1
COOK JC, 1997, SURF SCI, V371, P213
COTTON FA, 1962, J AM CHEM SOC, V84, P4432
COX DM, 1987, NATO ADV STUDY I SER, V158, P741
COX DM, 1990, ACS SYM SER, V437, P172
CULOTTA E, 1992, SCIENCE, V258, P1862
DAVIS MF, 1993, SELECTIVITY CATALYSI
DELBECQ F, 1998, SURF SCI, V396, P156
DEMONGEOT FB, 1997, J CHEM PHYS, V106, P711
DEPAOLA RA, 1987, PHYS REV B, V35, P4236
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DOVESI R, 1983, PHYS REV B, V28, P5781
DOVESI R, 1987, J CHEM PHYS, V86, P6967
DOWBEN PA, 1988, SURF SCI, V193, P336
DOWBEN PA, 1991, SURF SCI, V254, L482
DRAKOVA D, 1990, SURF SCI, V226, P285
DUARTE HA, 1997, J PHYS CHEM B, V101, P7474
DUBOIS LH, 1987, J CHEM PHYS, V87, P1367
DUCROS R, 1980, SURF SCI, V94, P154
DUMESIC JA, 1993, MICROKINETICS HETERO
EASTMAN DE, 1974, JPN J APPL PHYS PT 2, V2, P827
EBERHARDT W, 1985, PHYS REV LETT, V54, P1856
EDAMOTO K, 1988, SURF SCI, V204, L739
ERLEY W, 1981, J VAC SCI TECHNOL, V18, P472
ERTL G, 1982, CRIT REV SOLID STATE, P349
ERTL G, 1982, SURF SCI, V114, P527
ERTL G, 1994, TOP CATAL, V1, P305
ERTL G, 1997, HDB HETEROGENEOUS CA
ESTIU GL, 1994, J PHYS CHEM-US, V98, P9972
FEIBELMAN PJ, 1991, PHYS REV LETT, V67, P461
FERMI E, 1926, Z PHYS, V48, P542
FICHTNERENDRUSCHAT S, 1998, J CHEM PHYS, V108, P774
FINK T, 1991, SURF SCI, V245, P96
FINLAY RJ, 1997, CHEM PHYS LETT, V274, P499
FRAGA F, 1992, COMPUTATIONAL CHEM S
FRANCHY R, 1995, SURF SCI, V322, P95
FREUND HJ, 1987, SURF SCI, V185, P187
FROMENT GC, 1997, P INT S DYN SURF REA
FUKUDA Y, 1980, SURF SCI, V99, P289
FUKUDA Y, 1981, SURF SCI, V104, L234
FUKUDA Y, 1988, SURF SCI, V203, L651
GHIOTTI G, 1993, SURF SCI A, V287, P228
GLAND JL, 1980, SURF SCI, V94, P355
GODOWSKI PJ, 1996, ACTA PHYS POL A, V89, P657
GONZALEZ L, 1982, SURF SCI, V119, P61
GORDON MH, 1993, CHEM PHYS, V175, P37
GORLING A, 1993, SURF SCI, V286, P26
GROSS A, 1998, PHYS REV B, V57, P2493
GRUNZE M, 1979, SURF SCI, V89, P381
GRUNZE M, 1984, P 8 C CAT, V4, P133
GRUNZE M, 1984, PHYS REV LETT, V53, P850
GRUNZE M, 1987, APPL PHYS A-SOLID, V44, P19
GUEST RJ, 1992, SURF SCI, V278, P239
GUIMARAES TC, 1997, PHYS REV B, V56, P7001
GUIMARAES TC, 1999, IN PRESS PHYS REV B
GUO XC, 1994, SURF SCI, V310, P163
HAMMER B, 1992, PHYS REV LETT, V69, P1971
HAMMER B, 1996, PHYS REV LETT, V76, P2141
HAMMER B, 1997, CATAL LETT, V46, P31
HAMMER B, 1997, NATO ADV STUDY I S E, V331
HAMMOND BL, 1994, MONTE CARLO METHODS
HANEMAN D, 1997, SURF SCI, V375, P71
HARDER R, 1994, SURF SCI, V316, P478
HARLE H, 1997, CHEM PHYS LETT, V279, P275
HARRIS J, 1985, PHYS REV LETT, V55, P1583
HARRIS S, 1982, CHEM PHYS, V67, P229
HARRIS S, 1984, J CATAL, V86, P400
HASHIZUME T, 1991, JPN J APPL PHYS, V30, L1529
HASSE G, 1987, SURF SCI, V191, P75
HAYDEN BE, 1991, SURF SCI, V243, P31
HEINZ K, 1979, SURF SCI, V87, P5959
HEINZMANN U, 1996, J PHYS-CONDENS MAT, V8, P3245
HEITZINGER JM, 1992, SURF SCI, V260, P151
HERMANN K, 1987, PHYS REV B, V35, P9467
HESKETT D, 1984, SURF SCI, V139, P558
HINES MA, 1993, J CHEM PHYS, V98, P9134
HO W, 1980, SURF SCI, V95, P171
HOFFMAN RH, 1988, SOLIDS SURFACES
HOFFMANN R, 1962, J CHEM PHYS, V36, P2179
HOFFMANN R, 1962, J CHEM PHYS, V37, P2872
HOFFMANN R, 1963, J CHEM PHYS, V39, P1397
HOFFMANN R, 1977, INORG CHEM, V16, P503
HOFFMANN R, 1987, ANGEW CHEM INT EDIT, V26, P846
HOFFMANN R, 1988, REV MOD PHYS, V60, P101
HOFFMANN R, 1988, SOLIDS SURFACES
HOHENBERG P, 1964, PHYS REV, V136, B864
HOLLOWAY S, 1984, J ELECTROANAL CH INF, V161, P193
HOOPER CW, 1991, CATALYTIC AMMONIA SY, P253
HUBER R, 1970, J MOL BIOL, V52, P349
IBBOTSON DE, 1981, SURF SCI, V110, P313
IBOTTSON DE, 1981, SURF SCI, V110, P294
ILLAS F, 1996, THEOCHEM-J MOL STRUC, V371, P257
ILLAS F, 1997, SURF SCI, V376, P279
ITOH H, 1976, JPN J APPL PHYS, V15, P2311
JACKSON SD, 1998, J CHEM SOC FARADAY T, V94, P955
JAFFE JE, 1993, PHYS REV B, V48, P7903
JAKOB P, 1997, SURF SCI, V370, L185
JENSEN ES, 1983, PHYS REV B, V27, P3338
JOHNSON DW, 1979, J CHEM SOC FARAD T 1, V75, P2143
JOHNSON KH, 1973, ADV QUANTUM CHEM, V7, P143
JOHNSON KH, 1976, INT J QUANT CHEM S, V10, P47
JOYNER RW, 1993, ELEMENTARY REACTION
KALDOR A, 1990, PURE APPL CHEM, V62, P79
KAMATH PV, 1984, J PHYS CHEM-US, V88, P464
KANG DB, 1985, J AM CHEM SOC, V107, P7858
KANSKI J, 1977, SURF SCI, V65, P63
KARIKORPI M, 1987, SURF SCI, V179, L41
KATSUKI S, 1989, SURF SCI, V220, P181
KAWAI M, 1996, SURF SCI, V368, P239
KEVAN SD, 1981, PHYS REV LETT, V46, P1629
KINNERSLEY AD, 1997, SURF SCI, V377, P567
KIRCHNER EJJ, 1992, J CHEM PHYS, V97, P3821
KISHI K, 1975, J CHEM SOC F1, V71, P1715
KISHI K, 1976, P ROY SOC LOND A MAT, V352, P289
KISKINOVA M, 1981, SURF SCI, V108, P64
KLAUSER R, 1986, J ELECTRON SPECTROSC, V38, P187
KO EI, 1981, SURF SCI, V109, P221
KOHN W, 1965, PHYS REV, V140, A1133
KORZENIEWSKI C, 1986, J CHEM PHYS, V85, P4153
KROES GJ, 1997, J CHEM PHYS, V107, P3309
KUNDROTAS PJ, 1997, SURF SCI, V377, P7
KUNIMORI K, 1993, SURF SCI, V283, P58
KUNZ AB, 1973, SOLID STATE COMMUN, V13, P35
KUWAHARA Y, 1988, SURF SCI, V207, P17
LABANOWSKI J, 1991, DENSITY FUNCTIONAL M
LADAS S, 1981, SURF SCI, V102, P151
LAMBERT DK, 1988, J CHEM PHYS, V89, P3847
LANGHOFF SR, 1986, CHEM PHYS LETT, V124, P251
LAUTERBACH J, 1992, SURF SCI, V279, P287
LAWLEY P, 1987, AB INITIO METHODS QU
LEIBSLE FM, 1993, PHYS REV B, V47, P15865
LEIBSLE FM, 1994, SURF SCI, V317, P309
LESTER WA, 1997, RECENT ADV QUANTUM M, V2
LIPKOWITZ KB, 1992, REV COMPUTATIONAL CH
LOFFREDA D, 1998, J CHEM PHYS, V108, P6447
LOFFREDA D, 1998, J CHEM PHYS, V108, P6447
LU SH, 1992, PHYS REV B, V45, P6142
LUDVIKSSON A, 1993, SURF SCI, V284, P328
LUFTMAN HS, 1984, SURF SCI, V139, P369
LUNTZ AC, 1988, J CHEM PHYS, V89, P4381
MADLOWEN P, 1982, J CHEM PHYS, V77, P2673
MANNSTADT W, 1995, PHYS REV B, V51, P14616
MANNSTADT W, 1995, PHYS REV B, V51, P14616
MARUCA R, 1990, SURF SCI, V236, P210
MASEL RI, 1979, SURF SCI, V79, P26
MATOLIN V, 1986, SURF SCI, V166, L115
MATOLIN V, 1998, SURF SCI, V398, P117
MATSUMOTO Y, 1980, J CHEM SOC F1, V76, P1116
MATSUSHIMA T, 1997, SURF SCI, V386, P24
MEHANDRU SP, 1986, SURF SCI, V169, L281
MELE F, 1994, SURF SCI A, V307, P113
MILLER JB, 1987, J CHEM PHYS, V87, P6725
MINOT C, 1998, THEOCHEM-J MOL STRUC, V424, P119
MIYOSHI E, 1991, SURF SCI, V242, P531
MOFFAT JR, 1994, THEORETICAL ASPECTS
MOLER EJ, 1997, CHEM PHYS LETT, V264, P502
MOON DW, 1985, J AM CHEM SOC, V107, P4363
MOON DW, 1985, SURF SCI, V163, P215
MOON DW, 1987, SURF SCI, V180, L123
MOON DW, 1987, SURF SCI, V184, P90
MORIKAWA Y, 1997, SURF SCI, V386, P67
MORIN M, 1992, J CHEM PHYS, V96, P3950
MORTENSEN JJ, 1997, Z PHYS CHEM 1-2, V198, P113
MOULIJN JA, 1993, INTEGRATED APPROACH
MULLER H, 1992, SURF SCI, V269, P207
MULLER JE, 1992, SURF SCI, V272, P45
MUSCAT JP, 1980, SURF SCI, V99, P609
MUSCAT JP, 1981, SURF SCI, V110, P389
MUSCHIOL U, 1998, SURF SCI, V395, P182
NAHM TU, 1997, SURF SCI, V375, P281
NETZER FP, 1981, SURF SCI, V110, P251
NEYMAN KM, 1993, SURF SCI A, V287, P64
NEYMAN KM, 1994, SURF SCI B, V307, P1193
NIEWENHUYS BE, 1983, SURF SCI, V126, P307
NILSSON A, 1997, APPL PHYS A-MATER, V65, P147
NIU J, 1992, PHYS REV LETT, V68, P2277
NORDLANDER P, 1984, SURF SCI, V136, P59
NORSKOV JK, 1980, PHYS REV B, V21, P2136
NORSKOV JK, 1981, PHYS REV LETT, V46, P257
NORSKOV JK, 1982, PHYS REV B, V26, P2875
NORSKOV JK, 1984, SURF SCI, V137, P65
NORSKOV JK, 1991, PROG SURF SCI, V38, P103
NORVELL JC, 1975, SCIENCE, V190, P568
OH SH, 1986, J CATAL, V100, P360
OHNISHI S, 1994, PHYS REV B, V49, P14619
OHNO Y, 1994, J CHEM PHYS, V101, P5319
ONSGAARD J, 1998, SURF SCI, V398, P318
OSOSVSKII VD, 1997, SURF SCI, V377, P32
PACCHIONI G, 1989, PHYS REV B, V40, P6003
PACCHIONI G, 1990, J CHEM PHYS, V93, P1209
PACCHIONI G, 1992, NATO SERIES, V283
PACCHIONI G, 1993, CHEM PHYS, V177, P373
PACCHIONI G, 1993, NATO ADV STUDY I C
PANAS I, 1988, CHEM PHYS LETT, V149, P265
PANAS I, 1989, J CHEM PHYS, V90, P6791
PANGHER N, 1996, CHEM PHYS LETT, V255, P378
PARKS EK, 1995, J CHEM PHYS, V102, P7377
PARKS EK, 1995, Z PHYS D ATOM MOL CL, V33, P59
PARKS EK, 1997, J CHEM PHYS, V107, P1861
PARKS EK, 1997, J CHEM PHYS, V107, P1861
PARKS EK, 1998, J CHEM PHYS, V108, P3731
PARR RG, 1989, DENSITY FUNCTIONAL T
PASSLER M, 1979, PHYS REV LETT, V43, P360
PAUL J, 1986, NATURE, V323, P1701
PAULING L, 1984, J SOLID STATE CHEM, V54, P297
PAVAO AC, 1991, PHYS REV B, V43, P6962
PAVAO AC, 1991, PHYS REV B, V44, P1910
PAVAO AC, 1994, PHYS REV B, V50, P1868
PAVAO AC, 1994, TRENDS CHEM PHYS, V3, P109
PAVAO AC, 1995, SURF SCI, V323, P340
PAVAO AC, 1999, THEOCHEM-J MOL STRUC, V458, P99
PETERSSON LG, 1979, PHYS REV LETT, V42, P1545
PICK S, 1996, SURF SCI, V352, P300
PICK S, 1998, PHYS REV B, V57, P1942
PIET WNM, 1995, THEORETICAL ASPECTS
PRICE GL, 1980, SURF SCI, V91, P571
PRINCE KC, 1986, SURF SCI, V175, P101
RAATZ F, 1985, SURF SCI, V156, P982
RAMSEY MG, 1997, SURF SCI, V385, P207
RAO CNR, 1982, CHEM PHYS LETT, V88
RAO CNR, 1991, SURF SCI REP, V13, P221
RAY AK, 1988, PHYS REV B, V37, P9943
REIFSNYDER SN, 1997, J PHYS CHEM B, V101, P4972
RESCH C, 1993, CHEM PHYS, V177, P421
RETTNER CT, 1986, J CHEM PHYS, V85, P1131
RHODIN TN, 1977, SOLID STATE COMMUN, V23, P275
RHODIN TN, 1979, NATURE SURFACE CHEM
RIDDLEY J, 1973, THEOR CHIM ACTA, V32, P111
ROCHEFORT A, 1993, SURF SCI, V294, P43
RODRIGUEZ JA, 1987, J PHYS CHEM-US, V91, P2161
RODRIGUEZ JA, 1992, SCIENCE, V257, P897
ROMEO M, 1990, SURF SCI, V238, P163
ROOT TW, 1983, SURF SCI, V134, P30
ROOT TW, 1986, J CHEM PHYS, V85, P4679
ROSCH N, 1990, VACUUM, V41, P150
ROSEN A, 1979, SURF SCI, V82, P139
ROY D, 1986, CHEM PHYS LETT, V139, P501
RUBAN A, 1997, J MOL CATAL A-CHEM, V115, P421
RUCKMAN MW, 1994, ACCOUNTS CHEM RES, V27, P250
RUETTE F, 1992, QUANTUM CHEM APPROAC
RUMPF F, 1988, LANGMUIR, V4, P722
RUSSIER V, 1992, J PHYS CHEM-US, V96, P7579
SAILLARD JY, 1984, J AM CHEM SOC, V106, P2006
SAKAKINI BH, 1997, J CHEM SOC FARADAY T, V93, P1637
SANDELL A, 1997, PHYS REV B, V55, P7233
SCHENNACH R, 1996, SURF SCI, V369, P277
SCHICHL A, 1984, SURF SCI, V137, P261
SCHLATHOLTER T, 1996, SURF SCI, V352, P195
SCHROTER L, 1992, SURF SCI, V261, P243
SCHULTZ PA, 1990, J VAC SCI TECHNOL A, V8, P2525
SEETS DC, 1996, CHEM PHYS LETT, V257, P280
SEIP U, 1984, SURF SCI, V139, P29
SELLERS H, 1994, SURF SCI, V310, P281
SELLERS H, 1994, THEORETICAL COMPUTAT
SELLIDJ A, 1994, PHYS REV B, V49, P8367
SELMANI A, 1986, INT J QUANTUM CHEM, V29, P829
SEXTON BA, 1980, CHEM PHYS LETT, V76, P294
SHELEF M, 1994, CATAL REV, V36, P433
SHINN ND, 1985, J CHEM PHYS, V83, P52928
SHINN ND, 1985, J CHEM PHYS, V83, P5928
SHINN ND, 1986, PHYS REV B, V33, P1464
SHINN ND, 1988, PHYS REV B, V38, P12248
SHINN ND, 1990, PHYS REV B, V41, P9771
SHUSTOROVICH E, 1986, SURFACE SCI REPT, V6, P1
SHUSTOROVICH E, 1990, ADV CATAL, V37, P101
SHUSTOROVICH E, 1991, METAL SURFACE REACTI
SHUSTOROVICH E, 1992, SURF SCI, V268, P397
SHUSTOROVICH E, 1993, SURF SCI, V289, P127
SHUSTOROVICH EM, 1991, METAL SURFACE REACTI
SIEGBAHN PEM, 1992, INT J QUANTUM CHEM, V42, P1149
SITZ GO, 1988, J CHEM PHYS, V89, P2573
SKELTON DC, 1997, SURF SCI, V370, P64
SLATER JC, 1951, PHYS REV, V81, P385
SLATER JC, 1972, ADVANCES QUANTUM CHE, V6, P1
SLATER JC, 1974, SELF CONSISTENT FIEL
SMIRNOV KS, 1997, SURF SCI, V384, L975
SMITH GW, 1991, J PHYS CHEM-US, V95, P2327
SNABL M, 1997, SURF SCI, V385, P1016
SO SK, 1989, J CHEM PHYS, V91, P5701
SOMORJAI GA, 1994, INTRO SURFACE CHEM C
SOTTO M, 1997, SURF SCI, V371, P36
SPENCER ND, 1982, J CATAL, V74, P129
SPITZER A, 1982, SURF SCI, V118, P121
STEINRUCK HP, 1985, SURF SCI, V152, P323
STEINRUCK HP, 1989, SURF SCI, V208, P136
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STOHR J, 1982, PHYS REV B, V26, P4111
STOHR J, 1982, PHYS REV B, V26, P4111
SUNG SS, 1985, J AM CHEM SOC, V107, P578
SUNG SS, 1986, J PHYS CHEM-US, V90, P1380
SURNEV L, 1988, SURF SCI, V201, P1
SUTCU LF, 1991, SURF SCI LETT, V249, L343
SZABO A, 1992, MODERN QUANTUM CHEM
SZYMERSKA I, 1976, J CATAL, V41, P197
TAFT CA, 1998, J MOL STRUCT, V426, P199
TAKASU Y, 1973, J CATAL, V29, P479
TANAKA K, 1996, SURF SCI, V357, P721
TANG SL, 1986, J CHEM PHYS, V84, P6488
TATARENKO S, 1985, SURF SCI, V163, P249
THOMAS JLC, 1997, J PHYS CHEM A, V101, P8530
THOMAS JM, 1994, PRINCIPLES PRACTICE
THOMAS JM, 1997, PRINCIPLES PRACTICE
THOMAS LH, 1989, P CAMB PHILOS SOC, V26, P376
THOMAS S, 1974, APPL PHYS LETT, V24, P1
THOMPSON MR, 1994, NEW DEV SELECTIVE OX, V2, P167
TOMANEK D, 1988, PHYS REV B, V31, P2488
TONG SY, 1980, SURF SCI, V94, P73
TSAI MC, 1985, SURF SCI, V155, P387
TSANG YW, 1976, J PHYS C SOLID STATE, V9, P71
TULLY JC, 1993, J VAC SCI TECHNOL 2, V11, P1914
UMBACH E, 1979, SURF SCI, V88, P65
UPTON TH, 1981, CRC CRIT R SOLID ST, V10, P261
UPTON TH, 1988, J CHEM PHYS, V88, P3988
VANDAELEN MA, 1996, J PHYS CHEM-US, V100, P2279
VANSANTEN RA, 1974, J CATAL, V33, P202
VANSANTEN RA, 1991, THEORETICAL HETEROGE
VANSANTEN RA, 1995, CATAL REV, V37, P557
VANSANTEN RA, 1995, CHEM KINETICS CATALY
VARMA CM, 1980, PHYS REV, V22, P3795
VARMA S, 1990, J VAC SCI TECHNOL 2, V8, P2605
VELDE GT, 1993, CHEM PHYS, V177, P399
VONGLAN RE, 1997, SURF SCI, V375, P353
WANG C, 1979, SURF SCI, V84, P329
WANG C, 1997, SURF SCI, V327, P267
WANG H, 1997, SURF SCI, V372, P267
WATANABE K, 1996, SURF SCI, V368, P366
WEI DH, 1997, SURF SCI, V381, P49
WEIMER JJ, 1985, SURF SCI, V155, P133
WESNER DA, 1989, PHYS REV B, V39, P10770
WHELLER MC, 1996, J CHEM PHYS, V105, P1572
WHITE JA, 1996, PHYS REV B, V53, P1667
WHITE MG, 1990, HETEROGENEOUS CATALY
WHITMAN LJ, 1986, J CHEM PHYS, V85, P3688
WHITMAN LJ, 1986, PHYS REV LETT, V56, P1984
WILKE S, 1996, PHYS REV B, V53, P4926
WILLIAMS AK, 1977, SURF SCI, V68, P136
WILLIAMS FL, 1973, J CATAL, V30, P438
WILLIAMS FL, 1974, SURF SCI, V45, P377
WONG YT, 1991, J PHYS CHEM-US, V95, P859
WU Y, 1987, SURF SCI, V179, P26
XU C, 1995, SURF SCI, V327, P38
YANAGITA H, 1997, PHYS REV B, V56, P14952
YANG H, 1997, SURF SCI, V375, P268
YING SC, 1975, PHYS REV B, V11, P1483
YOSHIDA K, 1978, SURF SCI, V75, P46
YOSHIDA S, 1994, ELECT PROCESSES CATA
YOSHIMI K, 1996, SURF SCI, V368, P389
YOSHINOBU J, 1991, J CHEM PHYS, V95, P9393
ZAERA F, 1997, J CHEM PHYS, V106, P41204
ZASADA I, 1997, SURF SCI, V383, P241
ZENG HC, 1987, SURF SCI, V188, P599
ZERNER M, 1989, AM CHEM SOC S SERIES, V394
ZERNER MC, 1980, J AM CHEM SOC, V102, P589
ZHAO YB, 1990, SURF SCI, V239, P189
ZHOU RH, 1992, J PHYS-CONDENS MAT, V4, P2429
ZIEGLER T, 1991, CHEM REV, V91, P651
ZONNEVYLLE MC, 1994, J CATAL, V148, P417
NR 449
TC 8
PU TAYLOR & FRANCIS LTD
PI LONDON
PA ONE GUNPOWDER SQUARE, LONDON EC4A 3DE, ENGLAND
SN 0144-235X
J9 INT REV PHYS CHEM
JI Int. Rev. Phys. Chem.
PD APR-JUN
PY 1999
VL 18
IS 2
BP 163
EP 233
PG 71
SC Chemistry, Physical
GA 232ER
UT ISI:000082357600001
ER
PT J
AU Antonelli, A
Justo, JF
Fazzio, A
TI Point defect interactions with extended defects in semiconductors
SO PHYSICAL REVIEW B
LA English
DT Article
ID STACKING-FAULTS; PARTIAL DISLOCATIONS; MOLECULAR-DYNAMICS; AB-INITIO;
SILICON; DIFFUSION; PSEUDOPOTENTIALS; MOBILITY; STATES; MODEL
AB We performed a theoretical investigation of the interaction of point
defects (vacancy and self-interstitials) with an intrinsic stacking
fault in silicon using ab initio total-energy calculations. Defects at
the fault and in the crystalline environment display a different
behavior, which is evidenced by changes in formation energy and
electronic structure. The formation energies for the vacancy and the
[110]-split interstitial are lower at the intrinsic stacking fault than
those in the crystal, indicating that in nonequilibrium conditions,
intrinsic stacking faults can act, together with other extended
defects, as a sink for point defects, and also that in equilibrium
conditions, there can be a higher concentration of such defects at the
fault than that in bulk silicon. [S0163-1829(99)03631-0].
C1 Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
RP Antonelli, A, Univ Estadual Campinas, Inst Fis Gleb Wataghin,
BR-13083970 Campinas, SP, Brazil.
CR ALEXANDER H, 1986, DISLOCATIONS SOLIDS, V7, P115
BACHELET GB, 1982, PHYS REV B, V26, P4199
BLOCHL PE, 1993, PHYS REV LETT, V70, P2435
BOURGOIN J, 1983, POINT DEFECTS SEMI 2, V35
BULATOV VV, 1995, PHILOS MAG A, V72, P453
BULATOV VV, 1997, PHYS REV LETT, V79, P5042
CAR R, 1985, PHYS REV LETT, V55, P2471
CHOU MY, 1985, PHYS REV B, V32, P7979
CSANYI G, 1998, PHYS REV LETT, V80, P3984
HIRTH JP, 1982, THEORY DISLOCATIONS
HOHENBERG P, 1964, PHYS REV, V136, B864
HU SM, 1974, J APPL PHYS, V45, P1567
HUANG J, 1989, PHYS REV LETT, V63, P628
KACKELL P, 1998, PHYS REV B, V58, P1326
KAPLAN T, 1998, PHYS REV B, V58, P12865
KIM JN, 1997, PHYS REV B, V55, P16186
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KOHN W, 1965, PHYS REV, V140, A1133
LEHTO N, 1997, PHYS REV B, V55, P15601
LEHTO N, 1997, PHYS REV B, V56, P12706
MAITI A, 1996, PHYS REV LETT, V77, P1306
MATTHEISS LF, 1981, PHYS REV B, V23, P5384
SENKADER S, 1995, J APPL PHYS, V78, P6469
STAMPFL C, 1998, PHYS REV B, V57, P15052
SUZUKI H, 1962, J PHYS SOC JPN, V17, P322
WEBER J, 1994, SOLID STATE PHENOM, V37, P13
WESSEL K, 1977, PHILOS MAG A, V35, P1523
ZHU J, 1996, PHYS REV B, V54, P4741
NR 28
TC 14
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 15
PY 1999
VL 60
IS 7
BP 4711
EP 4714
PG 4
SC Physics, Condensed Matter
GA 230FQ
UT ISI:000082241500061
ER
PT J
AU Esteves, PM
Alberto, GGP
Ramirez-Solis, A
Mota, CJA
TI The alkane sigma-bond basicity scale revisited
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID THEORETICAL AB-INITIO; ELECTROSTATIC POTENTIALS; VIBRATIONAL
FREQUENCIES; REVERSIBLE PROTONATION; ACTIVATION; SUPERACIDS; ISOBUTANE;
DENSITY; CATIONS
AB The energy of the n-butonium and isobutonium cations was calculated. At
the MP4/6-311++G**//MP2(fu)/6-31G** level, the C-carbonium ions were
more stable than the H-carbonium ions. The results are in agreement
with gas-phase data of n-butane and isobutane protonation but disagree
with results in liquid superacid, where protonation of the tertiary C-H
of isobutane is preferred over C-C protonation. Additional
calculations, including the superacid moiety, revealed that the
activation energy for C-C protonation is higher than the energy for
attack at the tertiary C-H. This suggests that the sigma bond
reactivity in the liquid superacid system is controlled by the
activation energy for proton transfer, rather than by the intrinsic
basisity of the bond. The higher stability of the C-carbonium relative
to the H-carbonium ions was ascribed to a better charge distribution
among the atoms and groups of the three center bond.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-2194990 Rio De Janeiro, Brazil.
Univ Autonoma Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
Univ CT Bloco A, BR-2194990 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
BERGNER A, 1993, MOL PHYS, V80, P1431
BOO DW, 1993, CHEM PHYS LETT, V211, P358
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
ESTEVES PM, 1998, J AM CHEM SOC, V120, P3213
ESTEVES PM, 1998, TOP CATAL, V6, P163
FIELD FH, 1968, ACCOUNTS CHEM RES, V1, P42
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HEHRE WJ, 1986, AB INITIO MOL ORBITA, CH7
HIRAOKA K, 1975, CAN J CHEM, V53, P970
HIRAOKA K, 1975, J CHEM PHYS, V63, P394
HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
HIRAOKA K, 1978, INT J MASS SPEC ION, V27, P139
HOGEVEEN H, 1967, RECL TRAV CHIM PAY B, V86, P1313
HOUT RF, 1982, J COMPUT CHEM, V3, P234
MOTA CJA, UNPUB
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
OLAH GA, 1969, J AM CHEM SOC, V91, P3261
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
OLAH GA, 1973, J AM CHEM SOC, V95, P4939
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1987, HYPERCARBON CHEM
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCOTT AP, 1996, J PHYS CHEM-US, V100, P16502
SOMMER J, 1996, RES CHEM INTERMEDIAT, V22, P753
SOMMER J, 1997, J AM CHEM SOC, V119, P3274
TALROZE VL, 1952, DOKL AKAD NAUK SSSR, V86, P909
THOMPSON RC, 1965, INORG CHEM, V4, P1641
YEH LI, 1989, J AM CHEM SOC, V111, P5597
NR 30
TC 19
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 18
PY 1999
VL 121
IS 32
BP 7345
EP 7348
PG 4
SC Chemistry, Multidisciplinary
GA 230KH
UT ISI:000082250000010
ER
PT J
AU Duarte, HA
Salahub, DR
Haslett, T
Moskovits, M
TI Fe(N-2)(n) (n=1-5): Structure, bonding, and vibrations from density
functional theory
SO INORGANIC CHEMISTRY
LA English
DT Article
ID GENERALIZED GRADIENT APPROXIMATION; TRANSITION-METAL ATOMS;
EXCHANGE-ENERGY; OPTIMIZATION; MOLECULES; FE(CO)5; BINDING; STATES
AB The Fe(N-2)(n) (n = 1-5) complexes have been studied with the
LCGTO-KS-DF method. The structures containing end-on and side-on N2
ligands have been fully optimized and the dissociation energies
estimated. The ground states are predicted to be end-on complexes with
the exception of n = 2. The vibrational analysis of all predicted
ground states is reported. The effect of N-15 isotopic substitution on
the vibrational frequencies has been estimated. Comparisons are made
with the isoelectronic species Fe(CO)(n). The Fe-N-2 bonding has been
discussed in terms of sigma donation and pi back-donation and the
Mulliken population analysis. The predicted harmonic frequencies show
that the infrared spectra of Fe(N-2)(4) and Fe(N-2)(5) are similar, and
the two complexes could not be distinguished in nitrogen matrix
experiments using infrared spectroscopy.
C1 Univ Montreal, Dept Chim, Montreal, PQ H3C 3J7, Canada.
Univ Toronto, Dept Chem, Toronto, ON M5S 1A1, Canada.
Univ Fed Minas Gerais, Dept Quim, BR-31270901 Belo Horizonte, MG, Brazil.
RP Duarte, HA, Natl Res Council Canada, Steacie Inst Mol Sci, 100 Sussex
Dr, Ottawa, ON K1A 0R6, Canada.
CR BAERENDS EJ, 1997, CHEM PHYS LETT, V265, P481
BARNES LA, 1991, J CHEM PHYS, V94, P2031
BARRETT PH, 1977, J CHEM SOC F2, V73, P378
BARTON TJ, 1977, J CHEM SOC CHEM COMM, P841
BAUSCHLICHER CW, 1987, J CHEM PHYS, V87, P2129
BECKE AD, 1988, PHYS REV A, V38, P3098
BECKE AD, 1995, THEOR CHIM ACTA, V91, P147
BLANCHET C, 1997, J CHEM PHYS, V106, P8778
BRATERMAN PS, 1975, METAL CARBONYL SPECT
CASIDA ME, 1996, DEMON SOFTWARE DEMON
CHERTIHIN GV, 1996, J PHYS CHEM-US, V100, P14609
CULOTTA E, 1992, SCIENCE, V258, P1862
DANIEL C, 1984, J PHYS CHEM-US, V88, P4805
DAUL C, 1994, INT J QUANTUM CHEM, V52, P867
DELLEY B, 1994, J CHEM PHYS, V100, P5785
ERTL G, 1983, J VAC SCI TECHNOL A, V1, P1247
FOURNIER R, 1993, J CHEM PHYS, V99, P1801
FRENKING G, 1996, NATO ADV SCI I C-MAT, V474, P185
GODBOUT N, 1992, CAN J CHEM, V70, P560
GODBOUT N, 1996, THESIS U MONTREAL
HASLETT T, UNPUB
HUBER KP, 1979, MOL SPECTRA MOL STRU, V4
JONES RO, 1989, REV MOD PHYS, V61, P689
LEE C, 1988, PHYS REV B, V37, P785
PERDEW JP, 1986, PHYS REV B, V33, P8800
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1986, PHYS REV B, V34, P7406
PERDEW JP, 1991, PHYSICA B, V172, P1
PERDEW JP, 1992, PHYS REV B, V46, P6671
POLIAKOFF M, 1977, J CHEM SOC DA, P2276
RAO CNR, 1991, SURF SCI REP, V13, P223
RUSSO N, 1996, NATO ASI SER C, P474
RUSSO TV, 1994, J CHEM PHYS, V101, P7729
SCHLEGEL HB, 1987, AB INITIO METHODS QU, V1
SIEGBAHN PEM, 1991, J CHEM PHYS, V95, P364
STAMANT A, 1990, CHEM PHYS LETT, V169, P387
YATES JT, 1994, SURF SCI, V299, P731
ZACARIAS A, 1996, INT J QUANTUM CHEM, V60, P1419
ZACARIAS A, 1997, INT J QUANTUM CHEM, V61, P467
ZIEGLER T, 1977, THEOR CHIM ACTA, V43, P261
ZIEGLER T, 1987, J AM CHEM SOC, V109, P4825
NR 41
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0020-1669
J9 INORG CHEM
JI Inorg. Chem.
PD AUG 23
PY 1999
VL 38
IS 17
BP 3895
EP 3903
PG 9
SC Chemistry, Inorganic & Nuclear
GA 230FF
UT ISI:000082240600022
ER
PT J
AU Klautau, AB
Legoas, SB
Muniz, RB
Frota-Pessoa, S
TI Magnetic behavior of thin Cr layers sandwiched by Fe
SO PHYSICAL REVIEW B
LA English
DT Article
ID DENSITY-WAVE CHROMIUM; REAL-SPACE; FE/CR(001) SUPERLATTICES; FE/PD(001)
SUPERLATTICES; AB-INITIO; MULTILAYERS; IMPURITIES; MAGNETORESISTANCE;
POLARIZATION; INTERFACES
AB The magnetic behavior of thin layers of Cr in Fe/Cr/Fe(001) trilayers
and superlattices is studied using the first principles self-consistent
RS-LMTO-ASA (real space - linear muffin-tin orbital - atomic sphere
approximation) method. The effects of lattice compression and interface
mixing are investigated, and it is shown that they can cause large
reductions of the Cr magnetic moments. [S0163-1829(99)12625-0].
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Fed Fluminense, Dept Fis, BR-24210340 Niteroi, RJ, Brazil.
RP Klautau, AB, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
CR ANDERSEN OK, 1975, PHYS REV B, V12, P3060
ANDERSEN OK, 1984, PHYS REV LETT, V53, P2571
ANDERSEN OK, 1985, HIGHLIGHTS CONDENSED
BAIBICH MN, 1988, PHYS REV LETT, V61, P2472
BEER N, 1984, ELECT STRUCTURE COMP
COEHOORN R, 1995, J MAGN MAGN MATER, V151, P341
DAVIES A, 1996, PHYS REV LETT, V76, P4175
FAWCETT E, 1988, REV MOD PHYS, V60, P209
FERREIRA S, 1990, PHYS REV B, V41, P5627
FERREIRA S, 1995, PHYS REV B, V51, P2045
FISHMAN RS, 1998, PHYS REV B, V57, P10284
FROTAPESSOA S, 1992, PHYS REV B, V46, P14570
FROTAPESSOA S, 1993, PHYS REV LETT, V71, P4206
FULLERTON EE, 1995, PHYS REV B, V51, P6364
FULLERTON EE, 1995, PHYS REV LETT, V75, P330
HAYDOCK R, 1980, SOLID STATE PHYS, V35, P216
HEINRICH B, 1996, J APPL PHYS 2A, V79, P4518
HERMAN F, 1991, J APPL PHYS, V69, P4783
HIRAI K, 1997, J PHYS SOC JPN, V66, P560
HIRAI K, 1998, J PHYS SOC JPN, V67, P1776
KLAUTAU AB, 1998, J MAGN MAGN MATER, V186, P223
KOELLING DD, 1994, PHYS REV B, V50, P273
LEVY PM, 1990, J APPL PHYS 2B, V67, P5914
MEERSSCHAUT J, 1995, PHYS REV LETT, V75, P1638
MORUZZI VL, 1990, PHYS REV B B, V42, P8361
PARKIN SSP, 1990, PHYS REV LETT, V64, P2304
PEDUTO PR, 1991, PHYS REV B, V44, P13283
PEDUTO PR, 1997, BRAZ J PHYS, V27, P574
PETRILLI HM, 1993, PHYS REV B, V48, P7148
PURCELL ST, 1991, PHYS REV LETT, V67, P903
SCHREYER A, 1995, EUROPHYS LETT, V32, P595
SHIRANE G, 1962, J PHYS SOC JAPAN SB3, V17, P35
SKRIVER HL, 1981, J PHYS F MET PHYS, V11, P97
SKRIVER HL, 1991, PHYS REV B, V43, P9538
SLONCZEWSKI JC, 1991, PHYS REV LETT, V67, P3172
STOEFFLER D, 1991, PHYS REV B, V44, P10389
STOEFFLER D, 1994, J APPL PHYS 2B, V75, P6467
STOEFFLER D, 1994, PHYS REV B, V49, P299
STOEFFLER D, 1995, J MAGN MAGN MATER, V140, P557
STOEFFLER D, 1995, J MAGN MAGN MATER, V147, P260
TOMAZ MA, 1997, PHYS REV B, V55, P3716
UNGURIS J, 1991, PHYS REV LETT, V67, P140
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
ZABEL H, 1994, APPL PHYS A, V58, P159
ZABEL H, 1994, PHYSICA B, V198, P156
NR 45
TC 13
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 1
PY 1999
VL 60
IS 5
BP 3421
EP 3427
PG 7
SC Physics, Condensed Matter
GA 225VH
UT ISI:000081986300075
ER
PT J
AU Abraham, RJ
Tormena, CF
Rittner, R
TI Conformational analysis, Part 32. NMR, solvation and theoretical
investigation of conformational isomerism in 3-fluorobutan-2-one and
3,3-difluorobutan-2-one
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID VIBRATIONAL ASSIGNMENT; INTERNAL-ROTATION; ABINITIO CALCULATIONS;
BARRIERS; STABILITY; CHLORIDE; SPECTRA; RAMAN
AB The solvent and temperature dependence of the H-1 and C-13 NMR spectra
of 3-fluorobutan-2-one (FB) and 3,3-difluorobutan-2-one (DFB) are
reported and the (4)J(HF), (1)J(CF) and (2)J(CF) couplings analysed
using ab initio calculations and solvation theory. The solvent
dependence of the IR spectra (carbonyl band) was also measured. In FB,
ab initio theory at the 6-31G**/MP2 level gives only two energy minima
for the cis (F-C-C=O 22 degrees) and trans (F-C-C=O 178 degrees)
rotamers. The gauche rotamer was not a minimum in the energy surface.
Assuming only the cis and trans forms, the observed couplings when
analysed by solvation theory lead to the energy difference (E-cis -
E-trans) between the cis and trans rotamers of 3.7 kcal mol(-1) in the
vapour phase, decreasing to 2.5 kcal mol(-1) in CCl4 and to 0.1 kcal
mol(-1) in DMSO. In all solvents used the trans rotamer is more stable
than the cis. The vapour state energy difference compares very well
with that calculated [3.67 kcal mol(-1) including a zero-point energy
correction (ZPE)]. In DFB ab initio calculations at this level and also
at (6-311G**/MP2 and ZPE) gave only one minimum in the potential energy
surface corresponding to the cis rotamer (C-C-C=O 0 degrees). The H-1
and C-13 NMR data, (4)J(HF), (1)J(CF) and (2)J(CF) couplings do not
change with solvent confirming that there is only one rotamer in
solution for DFB, in agreement with the ab initio calculations.
C1 Univ Liverpool, Dept Chem, Liverpool L69 3BX, Merseyside, England.
Univ Estadual Campinas, Inst Quim, BR-13083970 Sao Paulo, Brazil.
RP Abraham, RJ, Univ Liverpool, Dept Chem, POB 147, Liverpool L69 3BX,
Merseyside, England.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1996, J CHEM SOC PERK APR, P533
ABRAHAM RJ, 1996, MAGN RESON CHEM, V34, P71
ABRAHAM RJ, 1999, J CHEM SOC PERK JAN, P99
BURMAKOV AI, 1982, J ORG CHEM USSR, P1009
DURIG JR, 1989, J CHEM PHYS, V90, P6840
DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
DURIG JR, 1991, J MOL STRUCT, V242, P179
DURIG JR, 1991, J RAMAN SPECTROSC, V22, P141
EWING DF, 1972, J CHEM SOC P2, P701
FORESMAN JB, 1993, EXPLORING CHEM ELECT
FRISCH MJ, 1995, GAUSSIAN94 REVISION
KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P3572
OLIVATO PR, 1996, REV HETEROATOM CHEM, V15, P115
PHAN HV, 1993, SPECTROCHIM ACTA A, V49, P1967
SAEGEBARTH E, 1967, J CHEM PHYS, V46, P3088
SHAPIRO BL, 1973, J MAGN RESON, V9, P305
VANEIJCK BP, 1972, J MOL STRUCT, V11, P67
WYMAN DP, 1964, J ORG CHEM, V29, P1956
NR 21
TC 15
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD AUG
PY 1999
IS 8
BP 1663
EP 1667
PG 5
SC Chemistry, Organic; Chemistry, Physical
GA 224UR
UT ISI:000081918800016
ER
PT J
AU Nasar, RS
Cerqueira, M
Longo, E
Leite, ER
Varela, AJ
Beltran, A
Andres, J
TI Experimental and theoretical study on the piezoelectric behavior of
barium doped PZT
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID MORPHOTROPIC PHASE-BOUNDARY; PERTURBED-ION; CRYSTALS; SEPARABILITY;
SIMULATION; CERAMICS; MODEL; FILMS
AB An experimental and theoretical study of the ferroelectric and
piezoelectric behavior of PZT doped with barium is presented. Ab initio
perturbed ion calculations was carried out. The properties, such as
remnant polarization, coercive field and the coupling factor of the PZT
at constant sintering temperature was compared with the Zr4+/Ti4+ ions
dislocation energy and the lattice interaction energy. An agreement
between the experimental and theoretical results, with a decrease of
the interaction energy and an inversion of the energy stability from
tetragonal to rhombohedral phase was observed. (C) 1999 Kluwer Academic
Publishers.
C1 Univ Fed Rio Grande Norte, Dept Quim, BR-59072970 Natal, RN, Brazil.
UFSCar, Dept Quim, Lab Interdisciplinar Electroquim & Ceram, BR-13565 Sao Carlos, SP, Brazil.
UNESP, Inst Quim, BR-14800900 Araraquara, SP, Brazil.
Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
RP Nasar, RS, Univ Fed Rio Grande Norte, Dept Quim, Caixa Postal 1662,
BR-59072970 Natal, RN, Brazil.
CR ANDRES J, 1993, INT J QUANTUM CHEM S, V27, P175
ANDRES J, 1994, CHEM PHYS LETT, V221, P249
BELTRAN A, 1993, J PHYS CHEM-US, V97, P2555
BERNARD J, 1971, PIEZOELECTRIC CERAMI
CERQUEIRA M, 1997, J MATER SCI, V32, P2381
CHAKRAVORTY SJ, 1989, PHYS REV A, V39, P2290
CLEMENTI E, 1974, ATOM DATA NUCL DATA, V14, P177
COMES R, 1970, ACTA CRYSTALLOGR A, V26, P244
EYRAUD L, 1981, FERROELECTRICS, V31, P113
FLOREZ M, 1992, CLUSTER MODELS SURFA, P605
HANKEY DL, 1980, THESIS PENNSYLVANIA
HIMERATH BV, 1983, J AM CERAM SOC, V66, P790
HSUEH CC, 1993, INTEGR FERROELECTR, V3, P21
HUZINAGA S, 1971, J CHEM PHYS, V55, P5543
JAFFE B, 1971, PIEZOELECTRIC CERAMI
KAKEGAWA K, 1977, SOLID STATE COMMUN, V24, P769
KAWAGUCHI T, 1984, APPL OPTICS, V23, P2187
KULCSAR F, 1959, J AM CERAM SOC, V42, P49
KUMADA A, 1985, JPN J APPL PHYS S, V24, P739
LAL R, 1988, BRIT CERAM TRANS J, V87, P99
LINES EM, 1977, PRINCIPLES APPL FERR
LUANA V, 1988, J MOL STRUCT THEOCHE, V166, P215
LUANA V, 1989, PHYS REV B, V39, P11093
LUANA V, 1990, PHYS REV B, V41, P3800
LUANA V, 1990, PHYS REV B, V42, P1791
LUANA V, 1992, CLUSTER MODELS SURFA, P619
MATSUO Y, 1965, J AM CERAM SOC, V48, P289
MCLEAN AD, 1981, ATOM DATA NUCL DATA, V26, P197
NOMURA S, 1955, J PHYS SOC JPN, V10, P108
OHMO T, 1973, J JPN SOC POWDER MET, V20, P154
PAIVASANTOS CP, 1990, THESIS IFQSC USP
PETROVSKY VI, 1993, INTEGR FERROELECTR, V3, P59
PRESTON KD, 1992, APPL PHYS LETT, V60, P2831
SAHA SK, 1992, AM CERAM SOC BULL, V71, P1424
SHIRANE G, 1953, J PHYS SOC JPN, V8, P615
STOTZ S, 1987, FERROELECTRICS, V76, P123
TURIK AV, 1980, SOV PHYS-TECH PHYS, V25, P1251
UCHINO K, 1986, AM CERAM SOC BULL, V65, P647
VASILIU F, 1983, PHYS STATUS SOLIDI A, V80, P637
VENKATARAMANI S, 1980, AM CERAM SOC B, V59, P462
WOOD VE, 1992, J APPL PHYS, V71, P4557
YAMAGUCHI O, 1989, J AM CERAM SOC, V72, P1065
YAMAGUCHI T, 1976, CERAM INT, V2, P76
YAMAMOTO T, 1992, AM CERAM SOC BULL, V71, P978
NR 44
TC 5
PU KLUWER ACADEMIC PUBL
PI DORDRECHT
PA SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS
SN 0022-2461
J9 J MATER SCI
JI J. Mater. Sci.
PD AUG
PY 1999
VL 34
IS 15
BP 3659
EP 3667
PG 9
SC Materials Science, Multidisciplinary
GA 222UZ
UT ISI:000081804900014
ER
PT J
AU Mota, FD
Justo, JF
Fazzio, A
TI Hydrogen role on the properties of amorphous silicon nitride
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; MOLECULAR-DYNAMICS; SI; BETA-SI3N4; CHEMISTRY;
DISILANE; SYSTEMS; FILMS; MODEL; BOND
AB We have developed an interatomic potential to investigate structural
properties of hydrogenated amorphous silicon nitride. The interatomic
potential used the Tersoff functional form to describe the Si-Si, Si-N,
Si-H, N-H, and H-H interactions. The fitting parameters for all these
interactions were found with a set of ab initio and experimental
results of the silicon nitride crystalline phase, and of molecules
involving hydrogen. We investigated the structural properties of
unhydrogenated and hydrogenated amorphous silicon nitride through Monte
Carlo simulations. The results show that depending on the nitrogen
content, hydrogen has a different chemical preference to bind to either
nitrogen or silicon, which is corroborated by experimental findings.
Besides, hydrogen incorporation reduced considerably the concentration
of undercoordinated atoms in the material, and consequently the
concentration of dangling bonds. (C) 1999 American Institute of
Physics. [S0021-8979(99)00616-7].
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
UFBa, Inst Fis, BR-40210340 Salvador, BA, Brazil.
RP Mota, FD, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR 1985, JANAF THERMOCHEMICAL
*CRC, 1991, HDB CHEM PHYS
ALLEN MP, 1987, COMPUTER SIMULATION
BEAGLEY B, 1972, J STRUCT CHEM, V11, P371
BRENNER DW, 1990, PHYS REV B, V42, P9458
CUNHA C, 1993, PHYS REV B, V48, P17806
DEBRITOMOTA F, 1998, PHYS REV B, V58, P8323
DURIG JR, 1980, J CHEM PHYS, V73, P4784
DYSON AJ, 1996, SURF SCI, V355, P140
FLETCHER R, 1963, COMPUT J, V6, P163
GORDON MS, 1986, J AM CHEM SOC, V108, P1421
GRUN R, 1979, ACTA CRYSTALLOGR B, V35, P800
GURAYA MM, 1990, PHYS REV B, V42, P5677
HABRAKEN FHPM, 1994, MAT SCI ENG R, V12, P123
HARDIE D, 1957, NATURE, V180, P331
KATZ RN, 1980, SCIENCE, V208, P841
LIU AY, 1990, PHYS REV B, V41, P10727
MARTINMORENO L, 1987, PHYS REV B, V35, P9683
MCDONALD IR, 1972, MOL PHYS, V23, P41
MISAWA M, 1979, J NONCRYSTALLINE SOL, V34, P313
MOTA FD, 1998, INT J QUANTUM CHEM, V70, P973
MURTY MVR, 1995, PHYS REV B, V51, P4889
ROBERTSON J, 1991, PHILOS MAG B, V63, P47
ROBERTSON J, 1994, PHILOS MAG B, V69, P307
ROBERTSON J, 1995, J NON-CRYST SOLIDS, V187, P297
SANFABIAN E, 1989, PHYS REV B, V39, P1844
SMITH FW, 1991, J NON-CRYST SOLIDS, V137, P871
TERSOFF J, 1986, PHYS REV LETT, V56, P632
TERSOFF J, 1989, PHYS REV B, V39, P5566
TERSOFF J, 1991, PHYS REV B, V44, P12039
UMESAKI N, 1992, J NON-CRYST SOLIDS, V150, P120
VASHISHTA P, 1990, PHYS REV B, V41, P12197
VASSILOU B, 1957, NATURE, V179, P435
NR 33
TC 12
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD AUG 15
PY 1999
VL 86
IS 4
BP 1843
EP 1847
PG 5
SC Physics, Applied
GA 221HD
UT ISI:000081720600010
ER
PT J
AU Hollauer, E
Rocco, MLM
Lopes, MCA
de Souza, GGB
TI An ab initio study of the valence excitation of methyl methacrylate as
observed by EELS
SO JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA
LA English
DT Article
DE methyl methacrylate; ab initio calculations; electron energy loss
spectroscopy; valence-shell
ID SAC-CI THEORIES; EXCITED-STATES; ELECTRON; SPECTROSCOPY; MOLECULE; ACID
AB Ab initio calculations have been carried out in order to assign the
main bands observed in a recent electron energy-loss study of the
methyl methacrylate molecule. We employed the Dunning-Huzinaga
double-zeta basis set for the early steps of geometry optimization but
for the excited states Rydberg p functions were added to the conjugated
heavy atoms. Both isomers, the s-cis and s-trans, had its vertical
spectrum calculated in order to evaluate possible conformation effects
on the VUV spectrum. SAC (Symmetry Adapted Cluster)-CI calculations
pointed to the ethylenic pi orbital (8.99 eV) as the HOMO for s-cis
while the n sigma orbital is predicted around 1 eV more stable. For the
n pi orbital, although it was not possible to obtain a SAC-CI
estimative, Koopmans' ionization potentials place it 1.68 eV more
stable than the pi orbital. The lowest observable transitions have been
assigned by SAC-CI calculations as to ethylenic pi-pi* (7.10 eV) and n
pi-pi* (7.97 eV) for the cis isomer. For the trans isomer similar
values were obtained (7.37 eV and 7.93 eV, respectively). Oscillator
strengths have been calculated showing acceptable agreement with the
experimental results. Previous assignments have been revised. (C) 1999
Elsevier Science B.V. All rights reserved.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, BR-21949900 Rio De Janeiro, Brazil.
Univ Fed Fluminense, Inst Quim, Dept Fisicoquim, BR-24020150 Niteroi, RJ, Brazil.
Univ Fed Juiz de Fora, Dept Fis ICE, BR-36036330 Juiz de Fora, MG, Brazil.
RP Rocco, MLM, Univ Fed Rio de Janeiro, Inst Quim, Dept Fisicoquim, Cidade
Univ,Ilha Fundao, BR-21949900 Rio De Janeiro, Brazil.
CR BAKER BL, 1995, J MOL STRUCT, V356, P95
DUNNING TH, 1977, METHODS ELECT STRUCT
HALLER I, 1979, J ELECTROCHEM SOC, V126, P154
HOLLAUER E, 1991, CHEM PHYS LETT, V181, P401
IWATA S, 1977, THEORET CHEM ACTA BE, V44, P323
NAKATSUJI H, 1979, CHEM PHYS LETT, V67, P334
NAKATSUJI H, 1981, J CHEM PHYS, V75, P2952
NAKATSUJI H, 1987, THEOR CHIM ACTA, V71, P201
NAKATSUJI H, 1990, J CHEM PHYS, V93, P1865
NAKATSUJI H, 1991, INT J QUANTUM CHEM, V39, P93
NAKATSUJI H, 1991, J CHEM PHYS, V95, P4296
RAO CNR, 1975, UV VISIBLE SPECTROSC
RITSKO JJ, 1978, J CHEM PHYS, V69, P3931
ROCCO MLM, 1997, CHEM PHYS, V223, P15
SJOGREN B, 1992, J ELECTRON SPECTROSC, V59, P161
UENO N, 1992, J APPL PHYS, V72, P5423
NR 16
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0368-2048
J9 J ELECTRON SPECTROSC RELAT PH
JI J. Electron Spectrosc. Relat. Phenom.
PD JUL
PY 1999
VL 104
IS 1-3
BP 31
EP 39
PG 9
SC Spectroscopy
GA 213ZP
UT ISI:000081303400002
ER
PT J
AU Bechepeche, AP
Treu, O
Longo, E
Paiva-Santos, CO
Varela, JA
TI Experimental and theoretical aspects of the stabilization of zirconia.
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID NEUTRON POWDER DIFFRACTION; X-RAY-ABSORPTION; ELECTRONIC-STRUCTURE;
DEFECT STRUCTURE; 3 PHASES; ZRO2; SIMULATION; POLYMORPHS; CRYSTALS;
DOPANTS
AB Using the Rietveld method, phases of ceria-doped zirconia, calcined at
temperatures of 600 and 900 degrees C, were quantitatively analysed for
different concentrations of ceria. The results show that the
stabilization of zirconia depends on the dopant concentration and
calcination temperature. Moreover, the theoretical calculation using
the ab initio Hartree-Fock-Roothaan method indicates that the most
stable phases for ceria-stabilized zirconia are cubic or tetragonal, in
accordance with experimental results. (C) 1999 Kluwer Academic
Publishers.
C1 UFSCAR, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
UNESP, Inst Quim, BR-14800900 Araraquara, SP, Brazil.
RP Bechepeche, AP, UFSCAR, Dept Quim, POB 676, BR-13565905 Sao Carlos, SP,
Brazil.
CR AITA CR, 1990, J AM CERAM SOC, V73, P3209
ANDRES J, 1995, J MATER SCI, V30, P4852
CAGLIOTI G, 1958, NUCL INSTRUM, V3, P223
CHING WY, 1987, MATER RES SOC S P, V8, P181
COHEN RE, 1988, PHYSICA B, V1, P150
CORMACK AN, 1990, J AM CERAM SOC, V73, P3220
DUPUIS M, 1980, QG01 U CAL BERK
DWIVEDI A, 1990, PHILOS MAG A, V61, P1
FRENCH RH, 1994, PHYS REV B, V49, P5133
GARVIE RC, 1975, NATURE, V258, P703
GARVIE RC, 1978, J PHYS CHEM-US, V82, P218
HEUER AH, 1981, ADM CERAMICS, V3
HILL RJ, 1987, J APPL CRYSTALLOGR, V20, P467
HILLERT M, 1991, ACTA METALL MATER, V39, P1111
HILLERT M, 1991, J AM CERAM SOC, V74, P2005
HOWARD CJ, 1988, ACTA CRYSTALLOGR B, V44, P116
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
JANSEN HJF, 1988, PHYSICA B, V150, P10
LI P, 1993, PHYS REV B, V48, P10063
LI P, 1994, J AM CERAM SOC, V77, P1281
MORINAGA M, 1983, J PHYS CHEM SOLIDS, V44, P301
ORLANDO R, 1992, PHYS REV B, V45, P592
PROFFEN T, 1993, ACTA CRYSTALLOGR B, V49, P599
ROTH WL, 1975, CRYSTAL STRUCTURE CH, P85
SAKAI Y, 1982, J COMPUT CHEM, V3, P6
SMITH DK, 1965, ACTA CRYSTALLOGR, V18, P963
STEFANOVICH EV, 1994, PHYS REV B, V49, P11560
SUBBARAO EC, 1975, PHYS STATUS SOLIDI A, P21
YOUNG RA, 1995, J APPL CRYSTALLOGR, V28, P366
ZANDIEHNADEM F, 1988, PHYSICA B, V150, P19
NR 30
TC 5
PU KLUWER ACADEMIC PUBL
PI DORDRECHT
PA SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS
SN 0022-2461
J9 J MATER SCI
JI J. Mater. Sci.
PD JUN 1
PY 1999
VL 34
IS 11
BP 2751
EP 2756
PG 6
SC Materials Science, Multidisciplinary
GA 211VD
UT ISI:000081181800036
ER
PT S
AU Ellis, DE
Guenzburger, D
TI The discrete variational method in density functional theory and its
applications to large molecules and solid-state systems
SO ADVANCES IN QUANTUM CHEMISTRY, VOL 34
SE ADVANCES IN QUANTUM CHEMISTRY
LA English
DT Review
DE density functional; electronic structure; molecules; solids
ID CHARGE-TRANSPORT-PROPERTIES; TRANSITION-METAL COMPLEXES; EFFECTIVE CORE
POTENTIALS; EMBEDDED-ATOM-METHOD; ELECTRONIC-STRUCTURE;
MOSSBAUER-SPECTROSCOPY; OPTICAL-PROPERTIES; SPIN-DENSITY; GAMMA-FE;
CORRELATION ENERGIES
C1 Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
Northwestern Univ, Ctr Mat Res, Evanston, IL 60208 USA.
Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
RP Ellis, DE, Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL
60208 USA.
CR *GROMOS, GRON MOL SIM DAT BAS
ALEXANDER S, 1995, SCIENCE, V268, P1163
ANSON FC, 1986, J AM CHEM SOC, V108, P6593
AREAS EPG, 1995, J PHYS CHEM-US, V99, P14882
AWSCHALOM DD, 1992, PHYS REV LETT, V68, P3092
AWSCHALOM DD, 1992, SCIENCE, V258, P414
AWSCHALOM DD, 1995, PHYS TODAY, V48, P43
BAERENDS EJ, 1973, CHEM PHYS, V2, P41
BAIN R, UNPUB
BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BECKE AD, 1988, J CHEM PHYS, V88, P2547
BECKE AD, 1988, PHYS REV A, V38, P3098
BENESH GA, 1996, PHYS REV B, V54, P5940
BERCES A, 1996, TOP CURR CHEM, V182, P41
BETHE HA, 1968, INTERMEDIATE QUANTUM
BORING M, 1979, J CHEM PHYS, V71, P32
BORING M, 1979, J CHEM PHYS, V71, P392
BOUMAN TD, 1972, J CHEM PHYS, V56, P2478
BRAND HV, 1992, J PHYS CHEM-US, V96, P7725
CALLAWAY J, 1964, PURE APPL PHYSICS MO, V16
CALLAWAY J, 1984, SOLID STATE PHYSICS
CAR R, 1989, SIMPLE MOL SYSTEMS V
CARR R, 1985, PHYS REV LETT, V55, P247
CATLOW CRA, 1976, J PHYS C SOLID STATE, V9, P419
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHACHAM H, 1987, PHYS REV B, V35, P1602
CHO BK, 1995, PHYS REV B, V52, P3676
CHO BK, 1995, PHYS REV B, V52, P3684
CIZEK J, 1966, J CHEM PHYS, V45, P4256
CONROY H, 1967, J CHEM PHYS, V47, P5307
COWAN RD, 1976, J OPT SOC AM, V66, P1010
DAW MS, 1984, PHYS REV B, V29, P6443
DELLEY B, 1982, J CHEM PHYS, V76, P1949
DELLEY B, 1983, PHYS REV B, V27, P2132
DESCLAUX JP, 1974, CHEM PHYS LETT, V29, P534
DOVESI R, 1987, J CHEM PHYS, V86, P6967
DUFEK P, 1995, PHYS REV LETT, V75, P3545
DUNNING TH, 1977, METHODS ELECT STRUCT, CH1
ELLIS DE, UNPUB
ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
ELLIS DE, 1970, PHYS REV B, V2, P2887
ELLIS DE, 1974, J CHEM PHYS, V60, P2856
ELLIS DE, 1977, INT J QUANT CHEM S, V11, P201
ELLIS DE, 1977, J PHYS B ATOM MOL PH, V10, P1
ELLIS DE, 1982, ACTINIDES PERSPECTIV, P123
ELLIS DE, 1984, INT J QUANTUM CHEM, V25, P185
ELLIS DE, 1985, HDB PHYSICS CHEM ACT, P1
ELLIS DE, 1992, ACTINIDES PERSPECTIV, P123
ELLIS DE, 1995, DENSITY FUNCTIONAL T
ELLIS DE, 1995, ELECT DENSITY FUNCTI, P263
EZAWA T, 1989, PHYSICA B, V161, P281
FACKLER NLP, 1996, J AM CHEM SOC, V118, P481
FERRARO JR, 1982, COORDIN CHEM REV, V43, P205
FOILES SM, 1986, PHYS REV B, V33, P7983
GASPAR R, 1954, ACTA PHYS ACAD SCI H, V3, P263
GATTESCHI D, 1996, INORG CHEM, V35, P1926
GIBBS GV, 1982, AM MINERAL, V67, P421
GILL PE, 1981, PRACTICAL OPTIMIZATI
GOLDMAN AI, 1994, PHYS REV B, V50, P9668
GRANT IP, 1961, P ROY SOC LOND A MAT, V262, P555
GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
GRIMES RW, 1992, QUANTUM MECH CALCULA
GU H, 1995, ULTRAMICROSCOPY, V59, P215
GUENZBURGER D, 1980, PHYS REV B, V22, P4203
GUENZBURGER D, 1987, PHYS REV B, V36, P6971
GUENZBURGER D, 1991, PHYS REV LETT, V67, P3832
GUENZBURGER D, 1992, PHYS REV B, V45, P285
GUENZBURGER D, 1995, PHYS REV B, V51, P12519
GUENZBURGER D, 1995, PHYS REV B, V52, P13390
GUO GY, 1990, PHYS REV B, V41, P6372
GUO L, UNPUB
GUO LQ, 1996, INORG CHEM, V35, P5304
HASELGROVE CB, 1961, MATH COMPUT, V15, P323
HAY PJ, 1978, J CHEM PHYS, V69, P984
HAY PJ, 1985, J CHEM PHYS, V82, P229
HAY PJ, 1985, J CHEM PHYS, V82, P270
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HESS AC, 1992, J PHYS CHEM-US, V96, P4367
HIRSHFELD FL, 1977, THEOR CHIM ACTA, V44, P129
HOHENBERG P, 1964, PHYS REV, V136, B847
HOLM RH, 1987, CHEM REV, V87, P1401
HUZINAGA S, 1984, J PHYS CHEM-US, V88, P4880
JACKSON JD, 1975, CLASSICAL ELECTRODYN
JOHNSTONHALPERIN E, 1995, PHYS REV B, V51, P12852
KELLY PJ, 1992, PHYS REV B, V45, P6543
KEUNE W, 1989, PHYSICA B, V161, P269
KIRKPATRICK S, 1983, SCIENCE, V220, P671
KIRKPATRICK S, 1984, J STAT PHYS, V34, P975
KITTEL C, 1996, INTRO SOLID STATE PH
KOELLING DD, 1983, RELATIVISTIC EFFECTS, P227
KOHN W, 1965, PHYS REV, V137, P1697
KOHN W, 1965, PHYS REV, V140, A1133
KOWASH PK, 1989, PHYS REV B, V39, P1908
KRYACHKO ES, 1990, DENSITY FUNCTIONAL T
KUBLER J, 1981, PHYS LETT A, V81, P81
LABANOWSKI JK, 1991, DENSITY FUNCTIONAL M
LASAGA AC, 1990, REV MINERAL, V23, P17
LIBERMAN D, 1965, PHYS REV A, V27, P137
LUTSKO JF, 1988, PHYS REV B, V38, P2887
MACLAREN JM, 1991, COMPUT PHYS COMMUN, V66, P383
MARTINSEN J, 1983, J AM CHEM SOC, V105, P677
MATTHEISS LF, 1994, PHYS REV B, V49
MCGIBBON MM, 1994, SCIENCE, V266, P102
MICHAEL RD, 1992, J MAGN MAGN MATER, V111, P29
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
NEWCOMB TP, 1990, INORG CHEM, V29, P223
NOGUEIRA SR, 1996, INT J QUANTUM CHEM, V57, P471
OGAWA MY, 1987, J AM CHEM SOC, V109, P1115
OGAWA MY, 1989, PHYS REV B, V39, P10682
PACE LJ, 1983, J AM CHEM SOC, V105, P2612
PAINTER GS, 1970, PHYS REV B, V1, P4747
PAINTER GS, 1971, COMPUTATIONAL METHOD, P271
PAPAEFTHYMIOU GC, 1992, PHYS REV B, V46, P10366
PARR RG, 1989, DENSITY FUNCTIONAL T
PEPPER M, 1991, CHEM REV, V91, P719
PERDEW JP, 1986, PHYS REV B, V33, P8822
PICKETT WE, 1994, PHYS REV LETT, V72, P3702
PYYKKO P, 1979, ACCOUNTS CHEM RES, V12, P276
RANCOURT DG, IN PRESS PHYS CHEM M
RANCOURT DG, 1994, AM MINERAL, V79, P51
RANCOURT DG, 1994, J MAGN MAGN MATER, V138, P31
RANCOURT DG, 1994, PHYS CHEM MINER, V21, P250
RANCOURT DG, 1994, PHYS CHEM MINER, V21, P258
RAVIKUMAR V, UNPUB
RAVIKUMAR V, 1993, ULTRAMICROSCOPY, V52, P557
REDHAMMER GJ, 1993, PHYS CHEM MINER, V20, P382
REDHAMMER GJ, 1995, PHYS CHEM MINER, V22, P282
RINCON L, 1995, ORGANOMETALLICS, V14, P1292
ROBINSON LM, 1995, INORG CHEM, V34, P5588
RODRIGUES RP, UNPUB
RODRIGUES RP, 1997, THESIS NW U
ROSA A, 1992, INORG CHEM, V31, P4717
ROSA A, 1993, INORG CHEM, V32, P5637
ROSA A, 1994, INORG CHEM, V33, P584
ROSE ME, 1983, RELATIVISTIC EFFECTS
ROSEN A, 1975, J CHEM PHYS, V62, P3039
ROSEN A, 1976, J CHEM PHYS, V65, P3629
SANCHEZDELGADO RA, 1994, J MOL CATAL, V86, P287
SANER J, 1989, CHEM REV, V89, P199
SESSOLI R, 1993, NATURE, V365, P141
SEXTON BA, 1985, SURF SCI, V163, P99
SHELDON RA, 1981, METAL CATALYZED OXID
SHERMAN DM, 1987, PHYS CHEM MINER, V14, P355
SHIM I, 1987, PHYSICS CHEM SMALL C, P523
SLATER JC, 1974, SELF CONSISTENT FIEL, V4
STROUD AH, 1971, APPROXIMATE CALCULAT
TAFT KL, 1994, J AM CHEM SOC, V116, P823
TEPPEN BJ, 1994, J PHYS CHEM-US, V98, P12545
TERRA J, 1991, PHYS REV B, V44, P8584
TERRA J, 1995, J PHYS CHEM-US, V99, P4935
TERRA J, 1996, IN PRESS P LAT AM C
TINKHAM M, 1964, GROUP THEORY QUANTUM
TOSSELL JA, 1977, PHYS CHEM MINER, V2, P21
UMRIGAR C, 1980, PHYS REV B, V21, P852
VIJAYAKUMAR M, 1989, PHYS REV A, V40, P6834
VOSKO SH, 1980, CAN J PHYS, V58, P1200
VUGMAN NV, 1972, J CHEM PHYS, V57, P1297
WANG CS, 1985, PHYS REV LETT, V54, P1852
WASSERMANN EF, 1989, PHYS SCR T, V25, P209
WIEGAND BC, 1992, CHEM REV, V92, P491
WILKINSON H, 1965, ALGEBRAIC EIGENVALUE
WINKLER FK, 1971, J MOL BIOL, V59, P169
WYCKOFF RWG, 1968, CRYSTAL STRUCTURES, V4
XU BX, 1984, J PHYS C SOLID STATE, V17, P1339
XU YN, 1991, PHYS REV B, V44, P11048
YANG CY, 1978, J CHEM PHYS, V68, P2626
YONEZAWA F, 1992, MOL DYNAMICS SIMULAT
ZARESTKY J, 1995, PHYS REV B, V51, P678
ZENG Z, IN PRESS PHYS REV B
ZENG Z, 1996, PHYS REV B, V53, P6613
ZENG Z, 1996, PHYS REV B, V54, P13020
ZENG Z, 1996, PHYSICA C, V271, P23
ZENG Z, 1997, PHYS REV B, V55, R40
ZIEGLER T, 1981, J CHEM PHYS, V74, P1271
ZIETLOW TC, 1985, J SOLID STATE CHEM, V57, P112
ZIETLOW TC, 1986, INORG CHEM, V25, P1351
ZIETLOW TC, 1986, INORG CHEM, V25, P2195
NR 177
TC 31
PU ACADEMIC PRESS INC
PI SAN DIEGO
PA 525 B STREET, SUITE 1900, SAN DIEGO, CA 92101-4495 USA
SN 0065-3276
J9 ADVAN QUANTUM CHEM
PY 1999
VL 34
BP 51
EP 141
PG 91
GA BN22K
UT ISI:000081150800002
ER
PT J
AU Da Silva, SC
Franco, DW
TI Metastable excited state and electronic structure of [Ru(NH3)(5)NO](3+)
and [Ru(NH3)(4)(-)(OH)NO](2+)
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE nitrosyl; ruthenium; DFT; metastable state; electronic structure
ID INFRARED-ABSORPTION SPECTRA; LIGHT; NITROPRUSSIDE; COMPLEXES
AB Light-induced metastable excited states of complexes
[RuO(NH3)(5)NO](3+) and [Ru(NH3)(4)(OH)NO](2+) were investigated by
FTIR spectroscopy. Both systems showed only one metastable excited
state (MSI), with decay temperatures higher than 200 K. MSI formation
occurs upon irradiation in the visible band (450-500 nm). According to
ab initio density functional theory (DFT) molecular orbital analysis
and ZINDO semi empirical C.I. calculation, MSI originates from the
charge transfer transition 2b(2)(dxy) --> 7e(pi*NO). Since irradiation
in regions other than the charge transfer transition causes fast
depopulation of the metastable excited state, this light-induced decay
is tentatively assigned to light absorption by the systems in the
excited state. (C) 1999 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
RP Franco, DW, Univ Fed Sao Paulo, Inst Quim Sao Carlos, Caixa Postal 780,
BR-13560970 Sao Carlos, SP, Brazil.
CR *HYP INC, 1996, HYP 4 5
ARMOR JN, 1968, J AM CHEM SOC, V90, P5928
BECKE AD, 1988, PHYS REV A, V38, P3098
BOTTOMLEY F, 1974, J CHEM SOC DA, V15, P1600
ENEMARK JH, 1974, COORDIN CHEM REV, V13, P339
FOMITCHEV DV, 1996, INORG CHEM, V35, P7021
FOMITCHEV DV, 1996, INORG CHEM, V35, P7021
FRISCH MJ, 1995, GAUSSIAN 94
GADEKE W, 1988, CHEM PHYS, V124, P113
GUIDA JA, 1986, SOLID STATE COMMUN, V57, P175
GUIDA JA, 1995, INORG CHEM, V34, P4113
HAUSER U, 1977, Z PHYS A, V280, P17
LEE C, 1988, PHYS REV B, V37, P785
MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
OOKUBO K, 1996, J MOL STRUCT, V379, P241
PRESSPRICH MR, 1994, J AM CHEM SOC, V116, P5233
SCHREINER AF, 1972, INORG CHEM, V11, P880
SILVA SC, UNPUB
TERRILE C, 1990, SOLID STATE COMMUN, V73, P481
WOIKE T, 1990, SOLID STATE COMMUN, V73, P149
WOLKE T, 1984, PHYS REV LETT, V53, P1767
ZOLLNER H, 1989, CHEM PHYS LETT, V161, P497
NR 22
TC 24
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUL
PY 1999
VL 55
IS 7-8
BP 1515
EP 1525
PG 11
SC Spectroscopy
GA 209AY
UT ISI:000081025900021
ER
PT J
AU Segala, M
Domingues, NS
Livotto, PR
Stefani, V
TI Heterocyclic dyes displaying excited-state intramolecular
proton-transfer reactions (ESIPT): computational study of the
substitution effect on the electronic absorption spectra of 2-(2
'-hydroxyphenyl)-1,3-benzoxazole derivatives
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID AB-INITIO; PHOTOELECTRON-SPECTRA; TRANSIENT ABSORPTION; TRANSFER LASER;
2-(2'-HYDROXYPHENYL)BENZOXAZOLE; SPECTROSCOPY; MODEL; MOLECULES
AB Semi-empirical molecular-orbital methods were used to simulate the
electronic absorption spectra of a series of
2-(2'-hydroxyphenyl)-1,3-benzoxazole derivatives, namely AMI and
MNDO-PM3 for geometry optimization and INDO/S-CI and HAM/3 for
spectroscopic features. Wavelengths of maximum absorption that agree
better with experimental data were found when INDO/S-CI was applied to
PM3-generated inputs. Chemical substitution redshifted the absorption
spectrum of all the model compounds, a feature discussed based on the
calculated energy levels of frontier orbitals and charge redistribution
upon electronic excitation.
C1 Univ Fed Rio Grande Sul, Inst Quim, BR-91501970 Porto Alegre, RS, Brazil.
RP Stefani, V, Univ Fed Rio Grande Sul, Inst Quim, Av Bento Goncalves
9500, BR-91501970 Porto Alegre, RS, Brazil.
CR ACUNA AU, 1986, J PHYS CHEM-US, V90, P2807
ACUNA AU, 1991, CHEM PHYS LETT, V187, P98
ALANSARI IAZ, 1997, J LUMIN, V71, P83
ARTHENENGELAND T, 1992, CHEM PHYS, V163, P43
ASBRINK L, 1977, CHEM PHYS LETT, V52, P63
ATKINS PW, 1983, MOL QUANTUM MECH
BRINN IM, 1991, J PHYS CHEM-US, V95, P6540
CATALAN J, 1997, J PHYS CHEM A, V101, P7914
CORREA DS, 1999, THESIS U FEDERAL RIO
COSTELA A, 1987, OPT COMMUN, V64, P457
DAS K, 1994, J PHYS CHEM-US, V98, P9126
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DOMINGUES NS, 1997, J CHEM SOC PERK SEP, P1861
DOUHAL A, 1994, J PHOTOCH PHOTOBIO A, V78, P127
ENDO K, 1995, J PHYS CHEM SOLIDS, V56, P1131
ERNSTING NP, 1992, J CHEM PHYS, V97, P3914
FERRER ML, 1994, APPL OPTICS, V33, P2266
FRANCIS JT, 1994, J PHYS CHEM-US, V98, P3650
GRABOWSKA A, 1994, J LUMIN, V60, P886
HASS KC, 1996, CHEM PHYS LETT, V263, P414
HOLLER MG, 1997, THESIS U FEDERAL RIO
KLOPFFER W, 1977, ADV PHOTOCHEM, V10, P311
LAVTCHIEVA L, 1993, J PHYS CHEM-US, V97, P306
LINDDHONLM E, 1985, MOL ORBITALS THEIR E, P142
MARZINZIK AL, 1996, J MOL STRUCT, V375, P117
MORDZINSKI A, 1982, CHEM PHYS LETT, V90, P122
NAGAOKA S, 1993, J PHYS CHEM-US, V97, P11385
NOVOA JJ, 1991, J AM CHEM SOC, V113, P9017
OBUKHOV AE, 1996, LASER PHYS, V6, P890
OCONNOR DB, 1985, CHEM PHYS LETT, V121, P417
OTTERSTEDT JEA, 1973, J CHEM PHYS, V58, P5716
PLADALMAU A, 1995, J ORG CHEM, V60, P5468
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
RIOS MA, 1995, J PHYS CHEM-US, V99, P12456
RIOS MA, 1998, J PHYS CHEM A, V102, P1560
SASTRE R, 1995, ADV MATER, V7, P198
SHANG XM, 1998, J OPT SOC AM B, V15, P854
STEFANI V, 1992, DYES PIGMENTS, V20, P97
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1990, J COMPUT AID MOL DES, V4, P1
SYTNIK A, 1994, P NATL ACAD SCI USA, V91, P8627
TAKAHATA Y, 1993, J MOL STRUCT THEOCHE, V283, P289
TAKAHATA Y, 1995, THEOCHEM-J MOL STRUC, V335, P229
THIEL W, 1994, MNDO94
WOOLFE GJ, 1983, CHEM PHYS, V77, P213
NR 45
TC 6
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD JUN
PY 1999
IS 6
BP 1123
EP 1127
PG 5
SC Chemistry, Organic; Chemistry, Physical
GA 208GD
UT ISI:000080981900012
ER
PT J
AU Mundim, KC
Ellis, DE
TI Stochastic classical molecular dynamics coupled to functional density
theory: Applications to large molecular systems
SO BRAZILIAN JOURNAL OF PHYSICS
LA English
DT Article
ID OPTIMIZATION
AB A hybrid approach is described, which combines stochastic classical
molecular dynamics and first principles Density Functional theory to
model the atomic and electronic structure of large molecular and
solid-state systems. The stochastic molecular dynamics using
Generalized Simulated Annealing (GSA) is based on the nonextensive
statistical mechanics and thermodynamics. Examples are given of
applications in linear-chain polymers, structural ceramics, impurities
in metals, and pharmacological molecule-protein interactions.
C1 Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
Northwestern Univ, Dept Chem, Evanston, IL 60208 USA.
Northwestern Univ, Mat Res Ctr, Evanston, IL 60208 USA.
RP Mundim, KC, Univ Fed Bahia, Inst Phys, Salvador, BA, Brazil.
CR ALDER BJ, 1957, J CHEM PHYS, V27, P1208
ALDER BJ, 1970, PHYS REV A, V1, P18
ALLINGER NL, 1982, ACS MONOGRAPH, V177
AREAS EPG, 1994, BRAZ J MED BIOL RES, V27, P527
AREAS EPG, 1995, J PHYS CHEM-US, V99, P14882
CEPERLEY D, 1986, SCIENCE, V231, P555
CURADO EMF, 1991, J PHYS A, V24, P3187
CURADO EMF, 1991, J PHYS A, V24, L69
DELLANAY F, 1987, J MATER SCI, V22, P1
DORFMAN S, 1996, COMPOS PART A-APPL S, V27, P697
DORFMAN S, 1996, COMPOSITE INTERFACES, V3, P431
ELLIS DE, 1995, ELECT DENSITY FUNCTI, P263
ELLIS DE, 1998, IN PRESS P 9 CIMTEC
ELLIS DE, 1998, MATER RES SOC SYMP P, V527, P69
GANGOPADHYAY U, 1995, J MATER SCI, V30, P94
GUO CK, UNPUB
GUO L, 1998, J PORPHYR PHTHALOCYA, V2, P1
KIRKPATRICK S, 1983, SCIENCE, V220, P671
KIRKPATRICK S, 1984, J STAT PHYS, V34, P975
KLUG A, 1958, ACTA CRYSTALLOGR, V11, P199
MORET MA, 1996, THESIS
MORET MA, 1998, J COMPUT CHEM, V19, P647
MUNDIM KC, 1996, INT J QUANTUM CHEM, V58, P373
MUNDIM KC, 1998, PHYSICA A, V252, P405
PASCUTTI PG, 1999, IN PRESS J COMP CHEM
SZU H, 1987, PHYS LETT A, V122, P157
TSALLIS C, 1988, J STAT PHYS, V52, P479
TSALLIS C, 1996, PHYSICA A, V233, P395
NR 28
TC 6
PU SOCIEDADE BRASILEIRA FISICA
PI SAO PAULO
PA CAIXA POSTAL 66328, 05315-970 SAO PAULO, BRAZIL
SN 0103-9733
J9 BRAZ J PHYS
JI Braz. J. Phys.
PD MAR
PY 1999
VL 29
IS 1
BP 199
EP 214
PG 16
SC Physics, Multidisciplinary
GA 205RY
UT ISI:000080835400018
ER
PT J
AU Rodrigues, JAR
de Oliveira, AP
Moran, PJS
Custodio, R
TI Regioselectivity of the nitration of phenol by acetyl nitrate adsorbed
on silica gel
SO TETRAHEDRON
LA English
DT Article
DE nitration; nitric acid and derivatives; phenols; regioselection
ID NITROGEN-DIOXIDE; SUBSTITUTION; DERIVATIVES; CATALYSTS; AROMATICS;
ESTERS; ACID
AB The reaction of phenol with acetyl nitrate in chloroform gives
nitrophenol with an ortho/para ratio of 1.8. This ratio increase to
13.3 when the reaction was carried out with acetyl nitrate pre-adsorbed
on dry silica gel. Silica may be acting as a template to bring phenol
close to acetyl nitrate by hydrogen bonds forming a ternary complex,
which undergoes a six-center rearrangement to o-nitrophenol. The
formation of this ternary complex is evaluated by ab initio molecular
orbital calculation, (C) 1999 Elsevier Science Ltd. All rights reserved.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Rodrigues, JAR, Univ Estadual Campinas, Inst Quim, BR-13083970
Campinas, SP, Brazil.
CR CLARK JH, 1992, SUPPORTED REAGENTS P
CONLON DA, 1996, J ORG CHEM, V61, P6425
DELAMARE PBD, 1959, AROMATIC SUBSTITUTIO, P76
DELAUDE L, 1993, ACCOUNTS CHEM RES, V26, P607
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GIGANTE B, 1995, J ORG CHEM, V60, P3445
GROTTA HM, 1967, J HETEROCYCLIC CHEM, V4, P611
HALVARSON K, 1957, ARK KEMI, V11, P77
KIMURA M, 1990, J ORG CHEM, V55, P4887
KURZ ME, 1973, J ORG CHEM, V38, P2271
MALYSHEVA LV, 1995, CATAL REV, V37, P179
MARCH J, 1992, ADV ORG CHEM, P511
NORMAN ROC, 1965, ELECTROPHILIC SUBSTI, P301
OLAH GA, 1989, ORGANIC NITRO CHEM S, P13
OLAH GA, 1996, CHEM BR AUG, P21
PERVEZ H, 1988, TETRAHEDRON, V44, P4555
RIEGO JM, 1996, TETRAHEDRON LETT, V37, P513
RODRIGUES JAR, IN PRESS SYNTH COMMU
SAARI WS, 1991, J MED CHEM, V34, P2922
SCHOFIELD K, 1980, AROMATIC NITRATION, P236
SMITH K, 1992, SOLID SUPPORTS CATAL
STRAZZOLINI P, 1995, B CHEM SOC JPN, V68, P1155
STRAZZOLINI P, 1998, J ORG CHEM, V63, P952
SUZUKI H, 1995, J CHEM SOC PERK 0221, P339
SUZUKI H, 1996, J CHEM SOC PERK APR, P677
SUZUKI H, 1996, J ORG CHEM, V61, P5944
TAYLOR R, 1990, ELECTROPHILIC AROMAT
VOGEL A, 1978, TXB PRACTICAL ORGANI
NR 28
TC 16
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND
SN 0040-4020
J9 TETRAHEDRON
JI Tetrahedron
PD MAY 28
PY 1999
VL 55
IS 22
BP 6733
EP 6738
PG 6
SC Chemistry, Organic
GA 201DK
UT ISI:000080579600002
ER
PT J
AU Alves, HWL
Alves, JLA
Castineira, JLP
Leite, JR
TI Lattice dynamics of boron nitride
SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
TECHNOLOGY
LA English
DT Article
DE boron nitride; LAPW method; lattice dynamics; frozen phonons; shell
model
ID BN; SEMICONDUCTORS; BP
AB Using the density-functional theory within the full potential linear
augmented plane-wave (FP-LAPW) method, we have calculated ab initio the
equation of state and the principal phonon modes in cubic boron nitride
(c-BN), including their pressure dependence and the amplitude of the
eigendisplacements. A good agreement with the experiments is obtained,
whenever a comparison is possible: in fact, most of the results are
predictions. A ten-parameter valence overlap shell model (VOSM) was
constructed and we obtained the phonon dispersion curves, elastic
constants and effective charges. Our results were compared with
calculated theoretical data for c-BN and for other III-V materials and
we found that the lattice dynamics properties for cubic boron nitride
is very close to those of diamond. (C) 1999 Elsevier Science S.A. All
rights reserved.
C1 FUNREI, Dept Ciencias Nat, BR-36300000 Sao Koao Del Rei, MG, Brazil.
Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
Univ Sao Paulo, Inst Fis, Dept Fis Mat & Mecan, LNMS, BR-05389970 Sao Paulo, Brazil.
RP Alves, HWL, FUNREI, Dept Ciencias Nat, Praca D Helvecio 74, BR-36300000
Sao Koao Del Rei, MG, Brazil.
CR ALVES HWL, 1992, J PHYS-CONDENS MAT, V4, P6603
BILZ H, 1979, PHONON DISPERSION RE, P101
BLAHA P, 1995, COMPUTER CODE WIEN95
CASTINEIRA JLP, 1998, MAT SCI ENG B-SOLID, V51, P53
CEPERLEY DM, 1981, PHYS REV B, V23, P5048
COHEN ML, 1998, ELECT STRUCTURE OPTI
EDGAR JH, 1994, PROPERTIES GROUP 3 N
KARCH K, 1997, PHYS REV B, V56, P7404
KIM K, 1996, PHYS REV B, V53, P16310
KUNC K, 1976, SOLID STATE COMMUN, V19, P1027
KUNC K, 1983, AB INITIO CALCULATIO, P65
KUNC K, 1985, ELECT STRUCTURE DYNA, P227
MADELUNG O, 1982, LANDOLTBORNSTEIN N A, V17
MADELUNG O, 1989, LANDOLTBORNSTEIN N A, V22
PAINE RT, 1990, CHEM REV, V90, P73
SANJURJO JA, 1983, PHYS REV B, V28, P4579
WENTZCOVITCH RM, 1986, PHYS REV B, V34, P1071
WENTZCOVITCH RM, 1987, PHYS REV B, V36, P6058
NR 18
TC 5
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5107
J9 MATER SCI ENG B-SOLID STATE M
JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
PD MAY 6
PY 1999
VL 59
IS 1-3
BP 264
EP 267
PG 4
SC Materials Science, Multidisciplinary; Physics, Condensed Matter
GA 203CB
UT ISI:000080689000057
ER
PT J
AU Pliego, JR
De Almeida, WB
TI A new mechanism for the reaction of carbenes with OH groups
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID LASER-FLASH-PHOTOLYSIS; CORRELATED MOLECULAR CALCULATIONS;
GAUSSIAN-BASIS SETS; SPECTROSCOPIC DETECTION; YLIDE FORMATION;
ETHYL-ACETATE; AB-INITIO; H BOND; FLUORENYLIDENE; INSERTION
AB The reaction pathway for the 2H(2)O + CCl2 reaction through a cyclic
five-atom transition structure was studied using ab initio molecular
orbital theory. The MP2 method in conjunction with the DZP basis set
was used for geometry optimizations, and single point energy
calculations were performed at MP2 and MP4 levels with the cc-pVDZ and
cc-pVTZ basis sets. The solvent effect on the activation free energy
was evaluated by Monte Carlo statistical mechanics calculations. The
new mechanism has a high rate constant, and we predict a lifetime of
seven nanoseconds for dichlorocarbene in aqueous solution. We have
proposed that this mechanism occurs for the reaction of dichlorocarbene
with water, and possibly may be involved in many reactions of carbenes
with alcohols. We have also shown that it can explain the following
experimental facts: (a) alteration of the product isotopic effect on
addition of a second alcohol, (b) difference between product and
kinetic isotopic effects, and (c) no linear dependence of the observed
rate constant for carbene decay on alcohol concentration.
C1 Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Fed Minas Gerais, Dept Quim, ICEx, BR-31270901 Belo Horizonte, MG, Brazil.
RP Pliego, JR, Univ Fed Minas Gerais, Lab Quim Computac & Modelagem Mol,
BR-31270901 Belo Horizonte, MG, Brazil.
CR ADMASU A, 1997, J PHYS CHEM A, V101, P3832
BELT ST, 1993, J AM CHEM SOC, V115, P2200
BETHELL D, 1971, J CHEM SOC B, P23
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CHATEAUNEUF JE, 1991, J AM CHEM SOC, V113, P6585
CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
CURTISS LA, 1991, J CHEM PHYS, V94, P7221
CURTISS LA, 1992, J CHEM PHYS, V96, P9030
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
DUNNING TH, 1997, METHODS ELECT STRUCT
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
GRILLER D, 1982, J AM CHEM SOC, V104, P5549
JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
JORGENSEN WL, 1988, J AM CHEM SOC, V110, P1657
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
JORGENSEN WL, 1995, BOSS VERSION 3 5
KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
KIRMSE W, 1993, J AM CHEM SOC, V115, P8918
MOSS RA, 1988, TETRAHEDRON LETT, V29, P6417
MOSS RA, 1989, ACCOUNTS CHEM RES, V22, P15
NOBES RH, 1982, CHEM PHYS LETT, V89, P497
OLSON DR, 1996, J PHYS ORG CHEM, V9, P759
PLATZ MS, 1996, J PHYS ORG CHEM, V9, P689
PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
PLIEGO JR, 1997, J CHEM PHYS, V106, P3582
PLIEGO JR, 1997, J CHEM SOC FARADAY T, V93, P1881
PLIEGO JR, 1997, J CHEM SOC PERK NOV, P2365
PLIEGO JR, 1998, CHEM PHYS LETT, V285, P121
PLIEGO JR, 1998, J BRAZIL CHEM SOC, V9, P181
SOUNDARARAJAN N, 1988, TETRAHEDRON LETT, V29, P3419
VOLATRON F, 1983, J AM CHEM SOC, V105, P2359
WANG JL, 1995, J AM CHEM SOC, V117, P5477
WOON DE, 1993, J CHEM PHYS, V98, P1358
YAMAGUCHI Y, 1993, J AM CHEM SOC, V115, P5790
ZUPANCIC JJ, 1985, TETRAHEDRON, V41, P1471
NR 38
TC 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAY 20
PY 1999
VL 103
IS 20
BP 3904
EP 3909
PG 6
SC Chemistry, Physical
GA 200XK
UT ISI:000080565300015
ER
PT J
AU Ribeiro, MCC
Almeida, LCJ
TI Fluctuating charge model for polyatomic ionic systems: A test case with
diatomic anions
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; SOLID ALKALI CYANIDES; FORCE-FIELDS;
POLARIZABILITY; DENSITY; POTENTIALS; CRYSTALS; WATER
AB The fluctuating charge (FQ) model proposed by Rick et al. [(J. Chem.
Phys. 101, 6141 (1994)] for molecular dynamics (MD) simulation of water
is applied to a test case for polyatomic ionic systems. A system
resembling alkali cyanide crystals, with two partial charges on the
atomic sites of the polarizable anions, is considered. The need for
charge fluctuation considerations in such a simple system is
demonstrated by ab initio calculations of the partial charges in the
cyanide ion with different orientations within a fixed octahedral
environment of sodium ions. It is shown that the charge distributions
in the crystal obtained with the FQ model are sensitive to changes in
the environment in such a way that the anions become more polarizable
as the lattice parameter increases. Conversely, the charge
distributions shrink with increasing repulsive short-range
interactions. Furthermore, a well-known polarization effect, that is,
the reduction in the frequencies of longitudinal optic modes of the
crystal, is also obtained with the FQ model. (C) 1999 American
Institute of Physics. [S0021-9606(99)50423-6].
C1 Univ Sao Paulo, Inst Quim, Lab Espectroscopia Mol, BR-05599970 Sao Paulo, Brazil.
RP Ribeiro, MCC, Univ Sao Paulo, Inst Quim, Lab Espectroscopia Mol, CP
26077, BR-05599970 Sao Paulo, Brazil.
CR ALLEN MP, 1987, COMPUTER SIMULATION
ASTRAND PO, 1998, J PHYS CHEM A, V102, P7686
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BULJAN A, 1997, J PHYS CHEM A, V101, P1393
CHELLI R, 1997, J CHEM PHYS, V107, P8041
FERRARIO M, 1986, J CHEM PHYS, V84, P3975
FRISCH MJ, 1995, GAUSSIAN 94
FUMI FG, 1964, J PHYS CHEM SOLIDS, V25, P31
GREADY JE, 1978, CHEM PHYS, V31, P467
JACUCCI G, 1976, PHYS REV A, V13, P1581
JEMMER P, 1998, J PHYS CHEM A, V102, P8377
KATO T, 1993, J CHEM PHYS, V99, P3966
KLEIN ML, 1983, J CHEM PHYS, V79, P2333
LADD MFC, 1977, J CHEM SOC DA, V3, P220
LESAR R, 1982, J CHEM PHYS, V77, P3682
LIU YP, 1998, J CHEM PHYS, V108, P4739
LYNDENBELL RM, 1983, MOL PHYS, V48, P1093
MADDEN PA, 1991, J CHEM PHYS, V95, P1980
MADDEN PA, 1993, J PHYS CONDENS MATT, V5, P2687
MADDEN PA, 1996, CHEM SOC REV, V25, P339
MATSUI M, 1998, J CHEM PHYS, V108, P3304
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
RAPPE AK, 1991, J PHYS CHEM-US, V95, P3358
RIBEIRO MCC, 1998, J CHEM PHYS, V108, P9027
RICK SW, 1994, J CHEM PHYS, V101, P6141
RICK SW, 1997, J PHYS CHEM B, V101, P10488
SANGSTER MJL, 1976, ADV PHYS, V25, P247
TISSEN JTWM, 1990, MOL PHYS, V71, P413
WIBERG KB, 1992, J PHYS CHEM-US, V96, P671
NR 29
TC 11
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD JUN 15
PY 1999
VL 110
IS 23
BP 11445
EP 11448
PG 4
SC Physics, Atomic, Molecular & Chemical
GA 200CH
UT ISI:000080521200039
ER
PT J
AU Wilson, M
Madden, PA
Jemmer, P
Fowler, PW
Batana, A
Bruno, J
Munn, RW
Monard, MC
TI Models of environmental effects on anion polarizability
SO MOLECULAR PHYSICS
LA English
DT Article
ID REFRACTIVE-INDEX; ALKALI-HALIDES; DIPOLE POLARIZABILITY; FLUORIDE-ION;
CRYSTALS; PRESSURE; DERIVATIVES; PARAMETERS; SIMULATION; NABR
AB This paper deals with three different approaches to the representation
of environmental effects on anion polarizability in cubic crystals of
the stoichiometry MX, where M is an alkali metal and X is a halogen. Ab
initio embedded cluster calculations of the variation in anion
polarizability with pressure in a fixed crystal type are presented and
compared with experiment. The results are then used in a scaled nb
initio model used to predict further values for the pressure dependence
of the in-crystal anion polarizability. This scaled model is compared
with a fully empirical 'universal' model due to Batana el nl. based on
polarizability change with ionic radius [1997, Molec. Phys., 92, 1029].
The assumptions of the two models differ substantially and the central
purpose of this paper is to contrast these differences and highlight
their consequences for prediction. Although the empirical model
typically overestimates the experimental pressure derivatives, and the
nb initio calculations Somewhat underestimate them, it is shown that
the assumption of incompressible cations in the scaled ab
initio-derived model has a firmer physical basis than the empirical
picture in which all ions are compressible.
C1 Univ Oxford, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England.
Univ Exeter, Dept Chem, Exeter EX4 4QD, Devon, England.
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Inorgan Analit & Quim Fis, RA-1428 Buenos Aires, DF, Argentina.
UMIST, Dept Chem, Manchester M60 1QD, Lancs, England.
Univ Sao Paulo, Dept Ciencias Comp & Estatist, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, Brazil.
RP Wilson, M, Univ Oxford, Phys & Theoret Chem Lab, S Parks Rd, Oxford OX1
3QZ, England.
CR AMOS RD, 1995, CADPAC CAMBRIDGE ANA
BATANA A, 1997, MOL PHYS, V92, P1029
BENDOW B, 1974, APPL OPTICS, V13, P2382
DIERCKSEN GHF, 1981, CHEM PHYS LETT, V84, P390
DIERCKSEN GHF, 1982, MOL PHYS, V47, P33
FONTANELLA J, 1972, PHYS REV B, V6, P582
FOWLER PW, 1983, MOL PHYS, V49, P913
FOWLER PW, 1984, MOL PHYS, V53, P865
FOWLER PW, 1984, PHYS REV B, V29, P1035
FOWLER PW, 1984, PHYS REV B, V30, P6131
FOWLER PW, 1985, MOL PHYS, V54, P129
FOWLER PW, 1985, P ROY SOC LOND A MAT, V398, P377
FOWLER PW, 1985, PHYS REV B, V31, P5443
FOWLER PW, 1990, J CHEM SOC FARADAY T, V86, P1019
HARDING JH, 1995, PHIL MAG LETT, V71, P113
JEMMER P, 1998, J PHYS CHEM A, V102, P8377
JOHANNSEN PG, 1997, PHYS REV B, V55, P6856
JOHANNSEN PG, 1997, PHYS REV B, V55, P6865
LAZZERETTI P, 1991, 167 CNR
MADDEN PA, 1991, J CHEM PHYS, V94, P918
MAHAN GD, 1980, SOLID STATE IONICS, V1, P29
MAHAN GD, 1990, LOCAL DENSITY THEORY
MULLER U, 1993, INORGANIC STRUCTURE
PYPER NC, 1991, ADV SOLID STATE CHEM, V2, P223
PYPER NC, 1997, J PHYS-CONDENS MAT, V9, P471
SHANKER J, 1979, PHILOS MAG B, V39, P405
SINGH AV, 1978, PHYSICA B, V94, P331
SRINIVASAN R, 1973, PHYS STATUS SOLIDI B, V57, P757
TESSMAN JR, 1983, PHYS REV, V49, P913
VANVECHTEN JA, 1969, PHYS REV, V182, P891
WERNER HJ, 1980, J CHEM PHYS, V73, P2319
NR 31
TC 6
PU TAYLOR & FRANCIS LTD
PI LONDON
PA ONE GUNPOWDER SQUARE, LONDON EC4A 3DE, ENGLAND
SN 0026-8976
J9 MOL PHYS
JI Mol. Phys.
PD MAY 20
PY 1999
VL 96
IS 10
BP 1457
EP 1467
PG 11
SC Physics, Atomic, Molecular & Chemical
GA 198LW
UT ISI:000080426500003
ER
PT J
AU Wang, F
Tao, WA
Gozzo, FC
Eberlin, MN
Cooks, RG
TI Synthesis of B- and P-heterocycles by reaction of cyclic acetals and
ketals with borinium and phosphonium ions
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID RESONANCE MASS-SPECTROMETER; DICOORDINATED BORON CATIONS; GAS-PHASE;
EFFICIENT DEPROTECTION; TRIMETHYL BORATE; ACYLIUM IONS; CHEMISTRY;
AFFINITIES; REAGENT; BONDS
AB Tricoordinated cyclic boron cations result from gas-phase ion/molecule
reactions of dicoordinated borinium ions with neutral acetals and
ketals and thiazolidine. The reaction, which proceeds via initial
cationic binding to a heteroatom followed by a consecutive ring-opening
and ring-reclosing process, resembles the Eberlin transacetalization of
acylium ions (Eberlin, M. N.; Cooks, R. G. Org. Mass Spectrom. 1993,
28, 679). The cyclic structure of the tricoordinated boron cation is
demonstrated by tandem mass spectrometry and further confirmed by
comparison with authentic cyclic tricoordinated boron cations.; The
five-membered cyclic boron cations dissociate by ethylene oxide loss to
thus reform the reactant-dicoordinated borinium ion; the six-membered
boron cations fragment instead by ethylene loss. Consistent with the
proposed mechanism, the ion/molecule reaction efficiency falls in the
order CH3OB+C2H5 > CH3OB+OCH3 much greater than CH3B+CH3; i.e., the
higher the nucleophilicity of the borinium ion, the higher the reaction
efficiency. A potential energy surface is calculated for the reaction
of CH3OB+OCH3 with 2-methyl-1,3-dioxolane, and the reaction is found to
be 43.3 kcal/mol exothermic due to initial formation of a strong B-O
bond. The analogous reactivity displayed by phosphonium ions is also
investigated by both experiment and ab initio calculations. In contrast
to the borinium ions, the phosphonium ions exhibit higher
regioselectivity for sulfur compared to nitrogen and oxygen. Finally,
the present findings indicate that the reaction exothermicity and the
regioselectivity are controlled by both the Lewis acidity of the
reactant cations and the leaving ability of the released neutrals in
the rate-limiting nucleophilic-induced recyclization step.
C1 Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
State Univ Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Cooks, RG, Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
CR CARVALHO M, 1998, CHEM-EUR J, V4, P1161
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
COLORADO A, 1996, J MASS SPECTROM, V31, P403
COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
CORBRIDGE DEC, 1995, PHOSPHORUS OUTLINE I
CRAGG RH, 1972, J CHEM SOC DA, P1373
DENIS JN, 1980, ANGEW CHEM INT EDIT, V19, P1006
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FALLON PJ, 1968, INT J MASS SPECTROM, V1, P133
FORTE L, 1990, CAN J CHEM, V68, P1629
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GOZZO FC, 1996, J CHEM SOC PERK APR, P587
GREENE TW, 1991, PROTECTING GROUPS OR
GROS P, 1995, J CHEM RES S, P196
HALL BJ, 1996, INT J MASS SPECTROM, V155, P123
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HETTICH RL, 1987, INT J MASS SPECTROM, V81, P203
HIGASHI J, 1982, INORG CHEM, V21, P716
HUA SM, 1985, ORG MASS SPECTROM, V20, P719
IMRIE C, 1995, J PHYS ORG CHEM, V8, P41
ISBELL JJ, 1996, RAPID COMMUN MASS SP, V10, P1418
JOHNSTONE C, 1996, CHEM COMMUN 0207, P341
KAPPES MM, 1982, ORGANOMETALLICS, V1, P1303
KAUR G, 1998, J ORG CHEM, V63, P2365
KEMPEN EC, 1997, J MASS SPECTROM, V32, P846
KOBAYASHI S, 1993, TETRAHEDRON LETT, V34, P4047
KOLLE P, 1985, CHEM REV, V85, P399
KUIVALAINEN T, 1996, J AM SOC MASS SPECTR, V7, P189
LAW RW, 1956, J CHEM PHYS, V25, P1086
LEECK DT, 1995, INT J MASS SPECTROM, V141, P229
MA SG, 1997, J MASS SPECTROM, V32, P159
MA SM, 1993, TETRAHEDRON LETT, V34, P8071
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, 1997, J CHEM SOC PERK OCT, P2105
MORAES LAB, 1997, J ORG CHEM, V62, P5096
MURPHY MK, 1976, J AM CHEM SOC, V98, P1433
NAKAYAKKARA VK, 1994, P 42 ASMS C MASS SPE, P737
NGUYEN V, 1997, J AM CHEM SOC, V119, P8342
NISHIGUCHI T, 1995, J CHEM SOC CHEM COMM, P1121
NOTH H, 1982, INORG CHEM, V21, P706
NOTH H, 1983, PURE APPL CHEM, V55, P1453
PAU JK, 1978, J AM CHEM SOC, V100, P3838
PEARSON RG, 1963, J AM CHEM SOC, V85, P3533
PEARSON RG, 1988, J AM CHEM SOC, V110, P7684
RANATUNGA TD, 1992, J AM CHEM SOC, V114, P8600
RANATUNGA TD, 1993, INT J MASS SPECTROM, V128, L1
RANATUNGA TD, 1995, INORG CHEM, V34, P18
RANATUNGA TD, 1995, THESIS PURDUE U
RANATUNGA TD, 1997, J AM CHEM SOC, V119, P5200
SCHMIDT MW, 1985, J AM CHEM SOC, V107, P1922
SCHNEIDER WF, 1991, INORG CHEM, V30, P3919
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
SWAMY KCK, 1990, PHOSPHORUS SULFUR, V53, P437
THOEN KK, 1996, J AM SOC MASS SPECTR, V7, P1138
WADA Y, 1964, J PHYS CHEM-US, V68, P1588
WANG F, 1999, ANGEW CHEM INT EDIT, V38, P386
NR 58
TC 29
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD APR 30
PY 1999
VL 64
IS 9
BP 3213
EP 3223
PG 11
SC Chemistry, Organic
GA 194BA
UT ISI:000080171200043
ER
PT J
AU Jardim, IN
Treu, O
Martines, MAU
Davolos, MR
Jafelicci, M
Pinheiro, JC
TI Ab initio study of high tridymite by the formalism generator coordinate
Hartree-Fock
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE electronic properties of high tridymite; IR Spectrum of high tridymite;
generator coordinate HF method
ID CONTRACTED GAUSSIAN-BASIS; SLATER-TYPE BASES; BASIS-SETS;
DIATOMIC-MOLECULES; ATOMS H; EQUATIONS; VERSION; SYSTEMS; CHOICE
AB The Generator Coordinate Hartree-Fock (GCHF) Method is applied to
generate extended 14s 8p and 17s 11p Gaussian basis sets for the atoms
O and Si, respectively. The role of the weight functions in the
assessment of the numerical integration range of the GCHF is shown. The
Gaussian basis sets are contracted to [6s4p] O atom and [8s5p] Si atom
by the Dunning's segmented contraction scheme. To evaluate the quality
of our contracted [6s4p] and [8s5p] bases in molecular calculations we
accomplish calculations of total and orbital energies in the
Hartree-Fock-Roothaan method for O-2 and SiO molecules. We compare the
results obtained with the our (14s 8p) and (17s 11p) bases sets with
the of 6-311G basis and with values from the literature. The addition
of one d polarization function in the silicon basis and its utilization
with the basis for oxygen leads to the calculation of electronic
properties and IR Spectrum of high tridymite in space group D-3d. (C)
1999 Elsevier Science B.V. All rights reserved.
C1 Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, BR-66075110 Belem, Para, Brazil.
UNESP, Inst Quim, BR-14801970 Araraquara, SP, Brazil.
RP Jardim, IN, Fed Univ Para, Ctr Ciencias Exatas & Nat, Dept Quim, CP
11101, BR-66075110 Belem, Para, Brazil.
CR CUSTODIO R, 1992, CAN J CHEM, V70, P580
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
DACOSTA HFM, 1987, MOL PHYS, V62, P91
DACOSTA HFM, 1991, CHEM PHYS, V154, P379
DACOSTA HFM, 1992, CHEM PHYS LETT, V192, P195
DASILVA ABF, 1989, MOL PHYS, V68, P433
DASILVA ABF, 1993, CHEM PHYS LETT, V203, P201
DASILVA ABF, 1993, MOL PHYS, V78, P1301
DAVOLOS MR, 1998, 9 WORLD CER C CIMTEC
DINGLE TW, 1989, J COMPUT CHEM, V10, P753
DOLLASE WA, 1967, ACTA CRYSTALLOGR, V23, P617
ETCHEPARE J, 1978, J CHEM PHYS, V68, P1531
FERRACIN LC, 1997, J LUMIN, V72, P185
FISCHER FC, 1972, ATOM DATA, V4, P341
FRISCH MJ, 1995, GAUSSIAN 94
GOODSON DZ, 1982, J PHYS CHEM-US, V86, P659
GRIFFEN DT, 1992, INORGANIC STRUCTURAL
HEHRE J, 1986, AB INITIO MOL THEORY
JORGE FE, 1996, J CHEM PHYS, V104, P6278
MALLI GL, 1993, PHYS REV A, V47, P143
MOHALLEM JR, 1986, INT J QUANTUM CH S20, P45
MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
MOHALLEM JR, 1987, J CHEM PHYS, V86, P5043
MONCORGE R, 1994, OPT MATER, V4, P139
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
PAVANI R, 518 RJ IBM
PINHEIRO JC, 1997, INT J QUANTUM CHEM, V63, P927
PINHEIRO JC, 1997, THEOCHEM-J MOL STRUC, V394, P107
POPLE JA, 1981, INT J QUANTUM CHEM S, V15, P269
POPLE JA, 1993, ISRAEL J CHEM, V33, P345
PYKKO P, 1987, CHEM PHYS LETT, V134, P575
REINEN D, 1997, J ALLOY COMPD, V246, P193
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
NR 33
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 J MOL STRUC-THEOCHEM
JI Theochem-J. Mol. Struct.
PD MAY 18
PY 1999
VL 464
IS 1-3
BP 15
EP 21
PG 7
SC Chemistry, Physical
GA 192KC
UT ISI:000080076700004
ER
PT J
AU Bolivar-Marinez, LE
Galvao, DS
Caldas, MJ
TI Geometric and spectroscopic study of some molecules related to
eumelanins. 1. Monomers
SO JOURNAL OF PHYSICAL CHEMISTRY B
LA English
DT Article
ID INTERMEDIATE NEGLECT; DIFFERENTIAL OVERLAP; MODEL POLYMERS; MELANINS;
POLYMERIZATION; PARAMETERS; MECHANISM; STATES
AB We have carried out ab initio and semiempirical PM3 (parametric method
3) and ZINDO (Zerner's intermediate neglect of differential overlap)
calculations on neutral and charged 5,6-indolequinone and its reduced
forms semiquinone and hydroquinone. These molecules are believed to
compose the major part of the active material of eumelanin, a
biological pigment present in illuminated and nonilluminated areas in
living organisms. Our results show that these molecules can behave as
electron accepters and that their electronic behavior is consistent
with that of the semiconductor models proposed for melanins. The
relationship between electronic behavior and biological functions is
also addressed.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Estadual Campinas, UNICAMP, Inst Fis, BR-13081970 Campinas, SP, Brazil.
RP Caldas, MJ, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR BLOIS MS, 1964, BIOPHYS J, V4, P471
BLOIS MS, 1969, SOLID STATE BIOPHYSI, P243
BUCCI P, 1974, J AM CHEM SOC, V96, P1305
CHEDEKEL MR, 1982, PHOTOCHEM PHOTOBIOL, V35, P881
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DISCHIA M, 1996, GAZZ CHIM ITAL, V126, P783
DOSSANTOS DA, 1991, CHEM PHYS LETT, V184, P579
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GALVAO DS, 1988, J CHEM PHYS, V88, P4088
GALVAO DS, 1989, PHYS REV LETT, V63, P786
GALVAO DS, 1990, J CHEM PHYS, V92, P2630
GALVAO DS, 1990, J CHEM PHYS, V93, P2848
GIACOMONI PU, 1995, J PHOTOCH PHOTOBIO B, V29, P87
JELLINGER K, 1971, ACTA NEUROPATHOL, V17, P553
LONGUETHIGGINS HC, 1960, ARCH BIOCHEM BIOPHYS, V86, P231
MASON HS, 1967, ADV BIOL SKIN, V3, P293
MCGINNESS JE, 1973, J THEOR BIOL, V48, P19
MCGINNESS JE, 1973, SCIENCE, V177, P896
MCGINNESS JE, 1974, SCIENCE NY, V183, P853
NAPOLITANO A, 1996, J MED CHEM, V39, P5192
NICOLAUS RA, 1968, MELANINS
PROCTOR P, 1974, J THEOR BIOL, V183, P853
PROTA G, 1992, MELANINS MELANOGENES
PULLMAN A, 1961, BIOCHIM BIOPHYS ACTA, V54, P384
PULLMAN B, 1963, QUANTUM BIOCH
RIDLEY J, 1973, THEOR CHIM ACTA, V32, P111
RIDLEY J, 1987, THEOR CHEM ACTA, V72, P347
RIDLEY JE, 1976, THEOR CHIM ACTA, V42, P223
ROSEI MA, 1996, SYNTHETIC MET, V76, P331
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1990, J COMPUT CHEM, V11, P221
STRZELECKA T, 1982, PHYSIOL CHEM PHYS M, V14, P223
SWAN GA, 1963, ANN NY ACAD SCI, V100, P1005
SWAN GA, 1974, FORTSCHR CHEM ORG NA, V31, P522
NR 34
TC 18
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5647
J9 J PHYS CHEM B
JI J. Phys. Chem. B
PD APR 15
PY 1999
VL 103
IS 15
BP 2993
EP 3000
PG 8
SC Chemistry, Physical
GA 189YN
UT ISI:000079934100025
ER
PT J
AU Quintao, AD
Vianna, RO
Mohallem, JR
TI Resonating Valence Bond calculations on small anionic lithium clusters
SO EUROPEAN PHYSICAL JOURNAL D
LA English
DT Article
ID METALS
AB We recast the Resonating Valence Bond theory, first introduced bq Linus
Pauling, in a nonorthogonal ab initio Valence Bond formalism and apply
the method to study some properties of the anionic clusters Li-n(-) (2
less than or equal to n less than or equal to 5). We show how to choose
appropriate structures and orbitals, and also how to use the so-called
metallic orbitals. The problem of interpreting the role of a specific
Valence Bond structure looking up its weight in the general wave
function is elucidated. Information about the excited states of the
systems is obtained. The theory can make good qualitative predictions
on the electronic behaviour of the clusters by using a wave function
that is a linear combination of a small set of structures. Pauling's
theory is shown to be quite appropriate for describing anionic systems.
specially the small ones, where the loosely bounded electron largely
influences the properties of the systems. We verify the preference of
some clusters for linear geometries.
C1 UFMG, Inst Ciencias Exatas, Dept Fis, BR-30161970 Belo Horizonte, MG, Brazil.
RP Quintao, AD, UFMG, Inst Ciencias Exatas, Dept Fis, CP 702, BR-30161970
Belo Horizonte, MG, Brazil.
CR BOUSTANI I, 1988, J CHEM PHYS, V88, P5657
FRISCH MJ, 1993, GAUSSIAN 92 DFT REVI
GUTOWSKI M, 1994, J CHEM PHYS, V101, P6
KNIGHT WD, 1984, PHYS REV LETT, V55, P2563
LEVY B, 1968, INT J QUANTUM CHEM, V2, P307
MCWEENY R, 1990, INT J QUANTUM CHEM S, V24, P733
MCWEENY R, 1990, INT J QUANTUM CHEM S, V24, P733
MCWEENY R, 1992, METHODS MOL QUANTUM
MOHALLEM JR, 1997, Z PHYS D ATOM MOL CL, V42, P135
PAULING L, 1949, P ROY SOC LOND A MAT, V196, P343
PAULING L, 1960, NATURE CHEM BOND
PAULING L, 1984, J SOLID STATE CHEM, V54, P297
PRESS WH, 1992, NUMERICAL RECIPES
PULAY P, 1980, CHEM PHYS LETT, V73, P393
QUINTAO AD, UNPUB EUR PHYS J D
VIANNA RO, 1998, J CHEM PHYS, V109, P23
WU W, 1994, J CHEM PHYS, V101, P4826
NR 17
TC 5
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6060
J9 EUR PHYS J D
JI Eur. Phys. J. D
PD APR
PY 1999
VL 6
IS 1
BP 89
EP 97
PG 9
SC Physics, Atomic, Molecular & Chemical
GA 188UA
UT ISI:000079865800011
ER
PT J
AU Gozzo, FC
Eberlin, MN
TI 2-pyridyl and 2-pyrimidyl cations: Stable o-hetarynium ions in the gas
phase
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID MASS-SPECTROMETRY; ACYLIUM IONS; CHEMISTRY; BENZYNE
AB As indicated by high-level CBS-Q ab initio calculations, extensive
overlap occurs in the 2-pyridyl and 2-pyrimidyl cations between the
fully occupied sp(2) orbital of nitrogen and the adjacent, coplanar,
and empty spl orbital of the C2-carbon. Such effective orbital overlap
results in o-aryne-like structures with substantially shorter N-C+ bond
lengths and N-C+ bond orders of 1.9-2.1. Therefore. the 2-pyridyl and
2-pyrimidyl cations are best represented, and can be regarded as,
o-hetarynium ions, being more stable than their positional,
nonconjugated isomers by as much as 18-28 kcal/mol. The 4-pyrimidyl
cation also displays characteristic o-hetarynium ion structure with
substantial orbital overlap. However, the ion easily isomerizes by
charge-induced ring opening, as indicated by both the calculations and
the ion's lack of o-hetarynium-like reactivity. A high energy barrier
of 62.8 kcal/mol hampers isomerization by H-ring walking of the
3-pyridyl cation to the far more stable 2-pyridyl cation. For the
related 2-furanyl, 2-thiophenyl, and 2-pyrrolyl cations, little or none
of the extra orbital overlap occurs; hence, they display energies
close, and structures similar, to those of their 3-isomers.
Collision-induced dissociation of collisionally quenched precursor ions
performed via triple-stage QqQqQ mass spectrometric (MSS) experiments
confirms the greater stability of the 2-pyridyl and 2-pyrimidyl cations.
C1 State Univ Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, State Univ Campinas, Inst Chem, CP 6154, BR-13083970
Campinas, SP, Brazil.
CR BORDEN WT, 1982, DIRADICALS
BUNNETT JF, 1981, J ORG CHEM, V46, P4567
CARVALHO M, 1998, CHEM-EUR J, V4, P1161
DENHERTOG HJ, 1965, HETEROCYCL CHEM, V4, P121
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FORESMAN JB, 1993, EXPLORING CHEM ELECT
FRIEDMAN L, 1969, J ORG CHEM, V34, P3089
FRISCH MJ, 1995, GAUSSIAN94 REVISION
GALLUP GA, 1976, INT J MASS SPECTROM, V22, P185
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
HEANEY H, 1962, CHEM REV, V62, P81
HEHRE WJ, 1997, GUIDE MOL MECH MOL O
HOFFMAN RW, 1967, DEHYDROBENZYNE CYCLO
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KAUFFMANN T, 1962, CHEM BER, V95, P949
KAUFFMANN T, 1963, CHEM BER, V96, P2519
KAUFFMANN T, 1965, ANGEW CHEM INT EDIT, V4, P543
KAUFFMANN T, 1971, ANGEW CHEM INT EDIT, V10, P20
LAING JW, 1976, J AM CHEM SOC, V98, P660
LEWIS ES, 1962, J AM CHEM SOC, V84, P3847
MCLAFFERTY FW, 1989, WILEY NBS REGISTRY M
MENDES MA, 1998, J AM CHEM SOC, V120, P7869
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J ORG CHEM, V62, P5096
NASH JJ, 1996, J AM CHEM SOC, V118, P11872
OCHTERSKI JW, 1996, J CHEM PHYS, V104, P2598
OHKURA K, 1989, TETRAHEDRON LETT, V30, P3433
ROBERTS JD, 1956, J AM CHEM SOC, V78, P601
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
SPARRAPAN R, UNPUB
SPARRAPAN R, 1998, J PHYS CHEM A, V102, P5189
WITTIG G, 1955, ANGEW CHEM, V67, P348
NR 34
TC 13
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD APR 2
PY 1999
VL 64
IS 7
BP 2188
EP 2193
PG 6
SC Chemistry, Organic
GA 185UW
UT ISI:000079690100013
ER
PT J
AU Pliego, JR
De Almeida, WB
TI A theoretical ab initio and Monte Carlo simulation study of the
pyridine plus CCl2 reaction kinetics in the gas phase and in carbon
tetrachloride solution using canonical flexible transition state theory
SO PHYSICAL CHEMISTRY CHEMICAL PHYSICS
LA English
DT Article
ID LASER FLASH-PHOTOLYSIS; POTENTIAL-ENERGY SURFACES; RATE CONSTANTS;
CHEMICAL-REACTIONS; THERMAL-DECOMPOSITION; YLIDE FORMATION; PATH;
DYNAMICS; ENERGETICS; HYDRATION
AB The potential energy surface for the pyridine + CCl2 reaction was
studied at the ab initio MP4/6-311G(2df,p) //MP2/6-31G((*)) level of
theory. The MP4/6-311G(2df,p) energies were evaluated by the additivity
approximation E[MP4/6-311G(2df,p)] approximate to E[MP4/6-31G((*))] +
E[MP2/6-311G(2df,p)] - E[MP2/6-31G((*))]. The first step proceeds by
the addition of CCl2 to pyridine forming a dipolar ylide structure
without an activation barrier. Then this species rearranges to a more
stable biradical like ylide on a picosecond time scale. The generalized
transition state for dipolar ylide formation occurs at a large center
of mass distance between the species, and to calculate the reaction
rate constant we have used canonical flexible transition state theory.
The configurational integral was solved by Monte Carlo simulation and
statistical perturbation theory, and the potential of mean force in the
gas phase was obtained. This procedure was extended to the liquid phase
by including the solvent coordinates in the configurational integral.
The activation free energy in the gas phase and in carbon tetrachloride
solution was calculated as 1.44 and 2.62 kcal mol(-1), respectively.
The corresponding rate constants are 5.5 x 10(11) and 7.5 x 10(10) l
mol(-1) s(-1). The last value is in reasonable agreement with the
experimental result of 7 x 10(9) l mol(-1) s(-1) determined in
isooctane solution.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim
Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR ADMASU A, 1997, J PHYS CHEM A, V101, P3832
ADMASU A, 1998, J CHEM SOC PERK MAY, P1093
BUCKNER JK, 1989, J AM CHEM SOC, V111, P2507
CHATEAUNEUF JE, 1990, J AM CHEM SOC, V112, P3217
COLLINS MA, 1996, ADV CHEM PHYS, V93, P389
DUAN XF, 1995, J CHEM PHYS, V102, P6121
DUNNING TH, 1988, SCIENCE, V240, P453
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FUKUI K, 1981, ACCOUNTS CHEM RES, V14, P363
GARRETT BC, 1979, J PHYS CHEM-US, V83, P1052
GLASSTONE S, 1941, THEORY RATE PROCESSE
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
GROTE RF, 1980, J CHEM PHYS, V73, P2715
GROTE RF, 1981, J CHEM PHYS, V74, P4465
HILL TL, 1987, STAT MECH
JACKSON JE, 1988, J AM CHEM SOC, V110, P5595
JORGENSEN BL, 1995, BOSS VERSION 3 5
JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
JORGENSEN WL, 1988, ADV CHEM PHYS 2, V70, P469
JORGENSEN WL, 1989, ACCOUNTS CHEM RES, V22, P184
JORGENSEN WL, 1989, J AM CHEM SOC, V111, P3770
JORGENSEN WL, 1990, J AM CHEM SOC, V112, P4768
JORGENSEN WL, 1994, J CHEM SOC FARADAY T, V90, P1727
KLIPPENSTEIN SJ, 1987, J CHEM PHYS, V87, P3410
KUMARAN SS, 1997, J PHYS CHEM A, V101, P8653
LADANYI BM, 1986, J AM CHEM SOC, V108, P585
MEBEL AM, 1996, J PHYS CHEM-US, V100, P7517
MERZ KM, 1990, J AM CHEM SOC, V112, P7973
MILLER WH, 1980, J CHEM PHYS, V72, P99
NGUYEN MT, 1995, J PHYS CHEM-US, V99, P11883
NORTHRUP SH, 1980, J CHEM PHYS, V73, P2700
PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
PLIEGO JR, 1997, J CHEM PHYS, V106, P3582
PLIEGO JR, 1997, J CHEM SOC PERK NOV, P2365
PLIEGO JR, 1998, CHEM PHYS LETT, V285, P11
PLIEGO JR, 1999, IN PRESS J PHYS CH A
ROBERT M, 1996, J PHYS CHEM-US, V100, P18426
ROBERT M, 1998, J PHYS CHEM A, V102, P1507
ROBERTSON SH, 1995, FARADAY DISCUSS, V102, P65
ROBERTSON SH, 1995, J CHEM PHYS, V103, P2917
SMITH SC, 1991, J CHEM PHYS, V95, P3404
SMITH SC, 1993, J PHYS CHEM-US, V97, P7034
STEINFELD JI, 1989, CHEM KINETICS DYNAMI
TRUHLAR DG, 1980, ACCOUNTS CHEM RES, V13, P440
TRUHLAR DG, 1983, J PHYS CHEM-US, V87, P2664
TRUHLAR DG, 1996, J PHYS CHEM-US, V100, P12771
VILLA J, 1997, THEOR CHEM ACC, V97, P317
VOTH GA, 1996, J PHYS CHEM-US, V100, P13034
WARDLAW DM, 1984, CHEM PHYS LETT, V110, P230
WARDLAW DM, 1985, J CHEM PHYS, V83, P3462
NR 51
TC 7
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD,, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 1463-9076
J9 PHYS CHEM CHEM PHYS
JI PCCP Phys. Chem. Chem. Phys.
PD MAR 15
PY 1999
VL 1
IS 6
BP 1031
EP 1036
PG 6
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 182PX
UT ISI:000079508300013
ER
PT J
AU Borin, AC
Serrano-Andres, L
Fulscher, MP
Roos, BO
TI A theoretical study of the electronic spectra of N-9 and N-7 purine
tautomers
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MOLECULAR-ORBITAL THEORY; AB-INITIO MP2; MATRIX-ISOLATION;
EXCITED-STATES; GAS-PHASE; ADENINE; 2-CHLOROADENINE; SPECTROSCOPY;
ABSORPTION
AB The complete active space (CAS) SCF method and multiconfigurational
second-order perturbation theory (CASPT2) have been used to study
electronic spectra of the N(9)H and N(7)H tautomers of purine. The
calculations include vertical excitation energies, oscillator
strengths, dipole moments, and transition moment directions in gas
phase. In accord with experiment in nonpolar solvents, the two lowest
pi --> pi* excited singlet valence states are predicted to be located
at 4.7 and 5.1 eV. The latter is expected to shift to the red in
aqueous solutions. A satisfactory interpretation of the electronic
spectra above 5.5 eV is obtained if the experimental data are assumed
to consist of the superposition of the spectra of the N(9)H and N(7)H
tautomers, Two bands reported at 6.2 and 6.6 eV in nonpolar solvents
match the corresponding B-1(b) and B-1(a) states of the N(9)H purine,
respectively. The absence of the 6.2 eV-band in water can be explained
by the predominance in aqueous solution of the N(7)H form, which has a
weak B-1(b) transition at 6.4 eV overlapped by a strong B-1(a)
transition at 6.6 eV.
C1 Chem Ctr Lund, Dept Theoret Chem, S-22100 Lund, Sweden.
Univ Sao Paulo, Inst Quim, BR-05599970 Sao Paulo, Brazil.
Univ Valencia, Dept Quim Fis, E-46100 Burjassot, Spain.
RP Fulscher, MP, Chem Ctr Lund, Dept Theoret Chem, POB 124, S-22100 Lund,
Sweden.
CR AARON JJ, 1987, J MOL STRUCT, V156, P119
ALBINSSON B, 1993, J AM CHEM SOC, V115, P223
ANDERSSON K, 1994, MOLCAS VERSION 3
BROO A, 1996, CHEM PHYS, V211, P147
BROO A, 1997, J PHYS CHEM A, V101, P3589
CALLIS PR, 1983, ANNU REV PHYS CHEM, V34, P329
CAMINATI W, 1996, CHEM PHYS LETT, V251, P189
CHEN HH, 1969, J CHEM PHYS, V51, P1862
CLARK LB, 1965, J AM CHEM SOC, V87, P11
DEVOE H, 1962, J MOL BIOL, V4, P500
DROBNIK J, 1966, PHOTOCHEM PHOTOBIOL, V5, P13
FULSCHER MP, 1992, J PHYS CHEM-US, V96, P9204
FULSCHER MP, 1995, J AM CHEM SOC, V117, P2089
FULSCHER MP, 1997, J AM CHEM SOC, V119, P6168
GONELLA NC, 1982, J AM CHEM SOC, V104, P3162
HA TK, 1996, J MOL STRUC THEOCHEM, V164, P161
KWIATKOWSKI JS, 1990, J MOL STRUCT THEOCHE, V208, P35
LIN J, 1980, J AM CHEM SOC, V102, P4627
LISTER JH, 1971, CHEM HETEROCYCLIC CO
LORENTZON J, 1995, J AM CHEM SOC, V117, P9265
MAJOUBE M, 1995, J MOL STRUCT, V355, P147
MALMQVIST PA, 1989, CHEM PHYS LETT, V155, P189
MASON SF, 1954, J CHEM SOC, P2071
NOWAK MJ, 1994, J PHYS CHEM-US, V98, P2813
NOWAK MJ, 1994, SPECTROCHIM ACTA A, V50, P1081
PLATT JR, 1949, J CHEM PHYS, V17, P489
RICE JE, 1995, MULLIKENTM VERSION 2
ROOS BO, 1992, CHEM PHYS LETT, V192, P5
ROOS BO, 1995, QUANTUM MECH ELECT S, P357
ROOS BO, 1996, ADV CHEM PHYS, V93, P219
ROOS BO, 1996, J MOL STRUC-THEOCHEM, V388, P257
RUBIO M, 1994, CHEM PHYS, V179, P395
SCHUMACHER M, 1982, J AM CHEM SOC, V104, P4167
SCHUMACHER M, 1983, CHEM BER, V116, P2001
SERRANOANDRES L, 1996, J AM CHEM SOC, V118, P185
SERRANOANDRES L, 1996, J PHYS CHEM-US, V100, P6484
VASAK M, 1982, TETRAHEDRON, V38, P1571
VOET D, 1963, BIOPOLYMERS, V1, P193
WALLACE SL, 1980, TETRAHEDRON, V36, P1531
WATSON DG, 1965, ACTA CRYSTALLOGR, V19, P573
WIDMARK PO, 1990, THEOR CHIM ACTA, V77, P291
NR 41
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAR 25
PY 1999
VL 103
IS 12
BP 1838
EP 1845
PG 8
SC Chemistry, Physical
GA 182JV
UT ISI:000079496600021
ER
PT J
AU Dias, LC
Custodio, R
Pessine, FBT
TI Theoretical studies of Nile Red by ab initio and semiempirical methods
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CHARGE-TRANSFER; MO THEORY; FLUORESCENCE; STATES; SOLVENTS; HAM-3; AM1
AB Ab initio and semiempirical calculations were carried out for the Nile
Red (NR) molecule to study the possible occurrence of the twisted
intramolecular charge transfer process. The results showed that NR is
planar in the ground state (using the CEP-31g basis set) with a high
barrier to rotation of the diethylamine group by 90 degrees (0.334 and
0.381 eV with AM1 and CEP-31g, respectively). CIS calculations showed
that the charge transfer decreases after the twisting, in contrast to
the TICT prediction. The solvatochromic effect was justified through
the dipole moments calculated for the first excited state. (C) 1999
Elsevier Science B.V. All rights reserved.
C1 Univ Fed Parana, Dept Quim, BR-81531970 Curitiba, Parana, Brazil.
Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Pessine, FBT, Univ Fed Parana, Dept Quim, BR-81531970 Curitiba, Parana,
Brazil.
CR ASBRINK L, 1977, CHEM PHYS LETT, V52, P63
ASBRINK L, 1977, CHEM PHYS LETT, V52, P72
ASBRINK L, 1980, QCPE, V12, P292
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DEYE JF, 1990, ANAL CHEM, V62, P615
DUTTA AK, 1996, CHEM PHYS LETT, V258, P369
DUTTA AK, 1996, J PHOTOCH PHOTOBIO A, V93, P57
FRISCH MJ, 1995, GAUSSIAN 94
LIPPERT E, 1961, ANGEW CHEM, V73, P695
LIPPERT E, 1962, ADV MOL SPECTROSC, P443
RETTIG W, 1979, CHEM PHYS LETT, V62, P115
RETTIG W, 1994, TOP CURR CHEM, V169, P253
ROTKIEWICZ K, 1973, CHEM PHYS LETT, V19, P315
ROTKIEWICZ K, 1973, CHEM PHYS LETT, V21, P212
SARKAR N, 1994, LANGMUIR, V10, P326
SCHOLES GD, 1997, CHEM PHYS LETT, V266, P521
SERRANOANDRES L, 1995, J AM CHEM SOC, V117, P3189
SIEMIARCZUK A, 1977, CHEM PHYS LETT, V51, P315
SOUJANYA T, 1995, CHEM PHYS LETT, V236, P503
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
NR 20
TC 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAR 26
PY 1999
VL 302
IS 5-6
BP 505
EP 510
PG 6
SC Physics, Atomic, Molecular & Chemical
GA 180CM
UT ISI:000079367600021
ER
PT J
AU Miwa, RH
Schmidt, TM
TI DX centers in GaAs/Si-delta/AlAs heterostructure
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID DOPED GAAS; ELECTRONIC-STRUCTURE; ALXGA1-XAS ALLOYS; NEGATIVE-U; SI
AB Microscopic mechanisms of impurity spreading in GaAs/Si-delta/AlAs
heterostructure have been investigated using an ab initio
pseudopotential total energy calculation. Our results showed that
silicon atoms can move from the delta-doped plane occupying
interstitial positions, favored by the high doped concentration,
forming DX centers. The silicon impurity position, out of the delta
plane in the AlAs layers, presents an energetically stable
configuration, and in the GaAs layers, presents a metastable
configuration. As a consequence a silicon doping limit is reached due
to the presence of localized deep states inside the band gap, when
silicon atoms are in interstitial positions. (C) 1999 American
Institute of Physics. [S0003-6951(99)01214-0].
C1 Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Miwa, RH, Univ Fed Uberlandia, Dept Ciencias Fis, CP 593, BR-38400902
Uberlandia, MG, Brazil.
CR ASHWIN MJ, 1993, J APPL PHYS, V73, P633
BRANDT O, 1991, APPL PHYS LETT, V59, P2730
CHADI DJ, 1973, PHYS REV B, V8, P5747
CHADI DJ, 1988, PHYS REV LETT, V61, P873
GHOSH S, 1992, PHYS REV B, V46, P7533
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
MAGUIRE J, 1987, APPL PHYS LETT, V50, P516
MOONEY PM, 1990, J APPL PHYS, V67, P1
MORGAN TN, 1986, PHYS REV B, V34, P2664
MOSSER V, 1991, PHYS REV LETT, V66, P1737
MURRAY R, 1989, J APPL PHYS, V66, P2588
SCHMIDT TM, 1995, MATER SCI FORUM, V196, P273
SCHMIDT TM, 1995, PHYS REV B, V51, P7898
SCHMIDT TM, 1996, P 23 INT C PHYS SEM, P2745
SCHUBERT EF, 1990, J VAC SCI TECHNOL 2, V8, P2980
SHI JM, 1996, PHYS REV B, V54, P7996
SHI JM, 1997, PHYS REV B, V55, P13093
THEIS TN, 1991, J ELECTRON MATER, V20, P35
WOLK JA, 1991, PHYS REV LETT, V66, P774
YAMAGUCHI E, 1991, J PHYS SOC JPN, V60, P3093
NR 20
TC 6
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD APR 5
PY 1999
VL 74
IS 14
BP 1999
EP 2001
PG 3
SC Physics, Applied
GA 182DM
UT ISI:000079483300023
ER
PT J
AU Zeng, Z
Guenzburger, D
Ellis, DE
TI Electronic structure, spin couplings, and hyperfine properties of
nanoscale molecular magnets
SO PHYSICAL REVIEW B
LA English
DT Article
ID WATER OXIDATION CENTER; FERRITIN CORES; MAGNETIZATION; CLUSTERS;
TRANSITION; COMPLEXES; MODELS; STATE; NANOMAGNET; EXCHANGE
AB First-principles self-consistent spin-polarized electronic structure
calculations were performed for the nanoscale magnetic molecules
Mn12O12(CH3COO)(16)(H2O)(4) and Fe11O6(OH)(6)(O2CPh)(15). The numerical
discrete variational method was employed, within density-functional
theory. Charges and magnetic moments were obtained for the atoms, as
well as density of states diagrams, and charge- and spin-density maps.
For Mn12O12(CH3COO)(16)(H2O)(4), values of the Heisenberg exchange
parameters J were derived from the calculations; Mossbauer hyperfine
parameters were calculated for Fe11O6(OH)(6)(O2CPh)(15) and compared to
reported experimental values. [S0163-1829(99)05709-4].
C1 Acad Sinica, Inst Solid State Phys, Hefei 230031, Peoples R China.
Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil.
Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA.
Northwestern Univ, Ctr Mat Res, Evanston, IL 60208 USA.
RP Zeng, Z, Acad Sinica, Inst Solid State Phys, Hefei 230031, Peoples R
China.
CR AWSCHALOM DD, 1992, SCIENCE, V258, P414
AWSCHALOM DD, 1995, PHYS TODAY, V48, P43
BARRA AL, 1997, PHYS REV B, V56, P8192
BATTOCLETTI M, 1996, PHYS REV B, V53, P9776
BLONDIN G, 1990, CHEM REV, V90, P1359
CANESCHI A, 1991, J AM CHEM SOC, V113, P5873
CANESCHI A, 1997, J CHEM SOC DALT 1107, P3963
CAO PL, 1982, PHYS REV B, V25, P2124
CHEESMAN MR, 1997, CHEM COMMUN 0907, P1677
DELLEY B, 1982, J CHEM PHYS, V76, P1949
DUFEK P, 1995, PHYS REV LETT, V75, P3545
ELLIS DE, IN PRESS ADV QUANT C
ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
FRIEDMAN JR, 1996, PHYS REV LETT, V76, P3830
GATTESCHI D, 1994, SCIENCE, V265, P1054
GOODENOUGH JB, 1955, PHYS REV, V100, P564
GORUN SM, 1987, J AM CHEM SOC, V109, P3337
GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
GUBANOV VA, 1980, PHYS REV LETT, V44, P1633
HENDRICKSON DN, 1992, J AM CHEM SOC, V114, P2455
HENNION M, 1997, PHYS REV B, V56, P8819
LASCIALFARI A, 1998, PHYS REV B, V57, P514
LIONTI F, 1997, J APPL PHYS 2A, V81, P4608
LIS T, 1980, ACTA CRYSTALLOGR B, V36, P2042
MANN S, 1986, J MOL BIOL, V188, P225
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
PAINTER GS, 1970, PHYS REV B, V1, P4747
PAPAEFTHYMIOU GC, 1992, PHYS REV B, V46, P10366
PARR RG, 1989, DENSITY FUNCTIONAL T
PARR RG, 1995, DENSITY FUNCTIONAL T
POWELL AK, 1995, J AM CHEM SOC, V117, P2491
REYNOLDS PA, 1996, INORG CHEM, V35, P545
ROSEN A, 1976, J CHEM PHYS, V65, P3629
SCHMITT EA, 1992, J AM CHEM SOC, V114, P6109
SESSOLI R, 1993, J AM CHEM SOC, V115, P1804
SESSOLI R, 1993, NATURE, V365, P141
SLATER JC, 1974, SELF CONSISTENT FIEL, V4
SMITH JMA, 1985, INORG CHIM A-BIOINOR, V106, P193
STPIERRE TG, 1996, COORDIN CHEM REV, V151, P125
STROUD AH, 1971, APPROXIMATE CALCULAT
TERRA J, 1995, J PHYS CHEM-US, V99, P4935
VOSKO SH, 1980, CAN J PHYS, V58, P1200
ZENG Z, 1997, PHYS REV B, V55, P12522
ZHAO XG, 1997, INORG CHEM, V36, P1198
NR 45
TC 19
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 1
PY 1999
VL 59
IS 10
BP 6927
EP 6937
PG 11
SC Physics, Condensed Matter
GA 177WG
UT ISI:000079233600048
ER
PT J
AU Mathon, J
Umerski, A
Villeret, M
Muniz, RB
TI Quantum oscillations of the spin density in magnetic multilayers
SO PHYSICAL REVIEW B
LA English
DT Article
ID NONMAGNETIC METALLIC LAYER; AB-INITIO CALCULATIONS; WELL STATES; FE/CU
MULTILAYERS; EXCHANGE; CU; POLARIZATION; SPACER; CO/CU/CO(001); COPPER
AB An asymptotic stationary phase formula is derived for the oscillatory
spin density induced in a nonmagnetic spacer sandwiched between two
semi-infinite ferromagnets. It gives an explicit dependence for the
polarization on the spacer layer thickness and on the distance from the
ferromagnet-spacer interface. Both dependences are shown to oscillate
with thr same periods as the exchange coupling between the
ferromagnetic layers. The magnitude of the polarization is governed by
the degree of confinement of carriers in the spacer quantum well and by
the curvature of the spacer Fermi surface. The formula is applied to a
Co/Cu/Co (001) trilayer described by tight-binding bands fitted to an
ab initio band structure. Its validity is tested against a fully
numerical calculation using the same band structure. As in the case of
the oscillatory exchange coupling, the induced polarization is
dominated by the contribution of the Cu Fermi surface neck extrema
leading to a short period oscillation of 2.6 atomic planes. An
interesting non-Ruderman-Kittel-Kasuya-Yosida initial decay of the
induced polarization is discussed. [S0163-1829 (99)06309-2].
C1 City Univ London, Dept Math, London EC1V 0HB, England.
Univ Fed Fluminense, Dept Fis, Niteroi, RJ, Brazil.
RP Mathon, J, City Univ London, Dept Math, London EC1V 0HB, England.
CR BLANC JAC, 1994, INTRO ELECT MAGNETIC, V1
BRUNO P, 1991, PHYS REV LETT, V67, P1602
BRUNO P, 1992, PHYS REV B, V46, P261
COSTA AT, 1997, PHYS REV B, V55, P3724
DRCHAL V, 1996, PHYS REV B, V53, P15036
EDWARDS DM, 1991, J MAGN MAGN MATER, V93, P85
EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941
JIN QY, 1994, PHYS REV LETT, V72, P768
KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105
KUDRNOVSKY J, 1996, PHYS REV B, V53, P5125
LANG P, 1993, PHYS REV LETT, V71, P1927
LANG P, 1996, PHYS REV B, V53, P9092
MATHON J, 1992, J PHYS-CONDENS MAT, V4, P9873
MATHON J, 1995, PHYS REV LETT, V74, P3696
MATHON J, 1997, PHYS REV B, V56, P11797
MORUZZI VL, 1978, CALCULATED ELECT PRO
NIKLASSON AMN, 1996, PHYS REV B, V53, P8509
NORDSTROM L, 1994, PHYS REV B, V50, P13058
NORDSTROM L, 1996, J APPL PHYS 2A, V79, P4515
ORTEGA JE, 1992, PHYS REV LETT, V69, P844
ORTEGA JE, 1993, PHYS REV B, V47, P1540
PAPACONSTANTOPO.DA, 1986, HDB BAND STRUCTURE E
PARKIN SSP, 1990, PHYS REV LETT, V64, P2304
PIZZINI S, 1995, PHYS REV LETT, V74, P1470
SAMANT MG, 1994, PHYS REV LETT, V72, P1112
SEGOVIA P, 1996, PHYS REV LETT, V77, P3455
UMERSKI A, UNPUB
UMERSKI A, 1997, PHYS REV B, V55, P5266
NR 28
TC 9
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAR 1
PY 1999
VL 59
IS 9
BP 6344
EP 6350
PG 7
SC Physics, Condensed Matter
GA 178EX
UT ISI:000079254300054
ER
PT J
AU Schiavon, RP
Barbuy, B
TI The temperature scale of metal-rich M giants based on TiO bands:
Population synthesis in the near-infrared
SO ASTROPHYSICAL JOURNAL
LA English
DT Article
DE infrared : stars; molecular data; stars : atmospheres; stars :
fundamental parameters; stars : late-type
ID OLD STELLAR POPULATIONS; GLOBULAR-CLUSTERS; OSCILLATOR-STRENGTHS; MODEL
ATMOSPHERES; STARS; SPECTRA; SPECTROSCOPY; GALAXIES; SYSTEMS; LIBRARY
AB We have computed a grid of high-resolution synthetic spectra for cool
stars (2500 < T-eff < 6000K) in the wavelength range 6000-10200
Angstrom by employing an updated line list of atomic and molecular
lines together with state-of-the-art model atmospheres. As a
by-product, by fitting TiO band heads in spectra of well-known M
giants, we have derived the electronic oscillator strengths of the TiO
gamma', delta, epsilon, and phi systems. The derived oscillator
strengths for the gamma' epsilon and phi systems differ from the
laboratory and ab initio values found in the literature, but they are
consistent with the model atmospheres and line lists employed,
resulting in a good match to the observed spectra of M giants of known
parameters. The behavior of TiO bands as a function of the stellar
parameters T-eff log g and [Fe/H] is presented,and the use of TiO
spectral indices in stellar population studies is discussed.
C1 Univ Sao Paulo, Inst Astron & Geofis, Dept Astron, BR-01060970 Sao Paulo, Brazil.
RP Schiavon, RP, CNPq, Observ Nacl, Dept Astron, Rua Gen Jose Cristino 77,
BR-20921400 Rio De Janeiro, Brazil.
CR ALLARD F, 1995, ASTROPHYS J 1, V445, P433
ALVAREZ R, 1998, ASTRON ASTROPHYS, V330, P1109
BARAFFE I, 1995, APJ, V446, L35
BARBUY B, 1982, THESIS U PARIS 7
BARBUY B, 1985, ASTRON ASTROPHYS, V151, P189
BARBUY B, 1991, ASTRON ASTROPHYS, V247, P15
BARBUY B, 1994, ASTROPHYS J, V430, P218
BARBUY B, 1997, IAU S FUND STELL PAR, V189, P203
BARBUY B, 1998, UNPUB
BARBUY B, 1999, UNPUJB
BARNBAUM C, 1996, ASTRON ASTROPHYS, V310, P259
BELL RA, 1979, ASTROPHYS J S, V41, P593
BESSELL MS, 1998, ASTRON ASTROPHYS, V333, P231
BICA E, 1986, ASTRON ASTROPHYS, V162, P21
BRETT JM, 1990, ASTRON ASTROPHYS, V231, P440
BRUZUAL G, 1997, ASTRON J, V114, P1531
BRUZUAL G, 1998, UNPUB
BURSTEIN D, 1984, ASTROPHYS J, V287, P586
DAVIS SP, 1986, ASTROPHYS J, V309, P449
DELBOUILLE L, 1973, PHOTOMETRIC ATLAS SO
DESOUZA RE, 1993, ASTRON J, V105, P1737
ERDELYIMENDES M, 1989, ASTRON ASTROPHYS SUP, V80, P229
FLUKS MA, 1994, ASTRON ASTROPHYS SUP, V105, P311
GREVESSE N, 1996, ASTR SOC P, V99, P117
GUARNIERI MD, 1998, ASTRON ASTROPHYS, V331, P70
HAMUY M, 1994, PUBL ASTRON SOC PAC, V106, P566
HEDGECOCK IM, 1995, ASTRON ASTROPHYS, V304, P667
HOFFLEIT D, 1991, PRELIMINARY VERSION
HUBER KP, 1979, CONSTANTS DIATOMIC M
JACOBY GH, 1984, ASTROPHYS J SUPPL S, V56, P257
JORGENSEN UG, 1994, ASTRON ASTROPHYS, V284, P179
KOVACS I, 1969, ROTATIONAL STRUCTURE
KURUCZ RL, 1992, IAU S, V149, P225
LANGHOFF SR, 1997, ASTROPHYS J 1, V481, P1007
LEJEUNE T, 1998, ASTRON ASTROPHYS SUP, V130, P65
LUNDEVALL C, 1998, IN PRESS J MOL SPECT
MILONE A, 1994, ASTRON ASTROPHYS SUP, V108, P449
MILONE A, 1995, ASTRON ASTROPHYS SUP, V113, P547
ORTOLANI S, 1990, ASTRON ASTROPHYS, V236, P362
ORTOLANI S, 1995, NATURE, V377, P701
PHILLIPS JG, 1973, APJS, V26, P313
PLEZ B, 1992, ASTRON ASTROPHYS, V256, P551
RIDGWAY ST, 1980, ASTROPHYS J, V235, P126
RIEKE GH, 1985, ASTROPHYS J, V288, P618
SANTOS JFC, 1995, ASTRON ASTROPHYS, V303, P753
SCHALLER G, 1992, ASTRON ASTROPHYS SUP, V96, P269
SCHIAVON RP, 1997, ASTROPHYS J 1, V484, P499
SIMARD B, 1991, J MOL SPECTROSC, V148, P128
SPITE M, 1967, ANN ASTROPHYS, V30, P211
WORTHEY G, 1994, ASTROPHYS J SUPPL S, V94, P687
NR 50
TC 16
PU UNIV CHICAGO PRESS
PI CHICAGO
PA 5720 SOUTH WOODLAWN AVE, CHICAGO, IL 60637-1603 USA
SN 0004-637X
J9 ASTROPHYS J
JI Astrophys. J.
PD JAN 10
PY 1999
VL 510
IS 2
PN Part 1
BP 934
EP 943
PG 10
SC Astronomy & Astrophysics
GA 176NJ
UT ISI:000079157600039
ER
PT J
AU Tabata, A
Lima, AP
Teles, LK
Scolfaro, LMR
Leite, JR
Lemos, V
Schottker, B
Frey, T
Schikora, D
Lischka, K
TI Structural properties and Raman modes of zinc blende InN epitaxial
layers
SO APPLIED PHYSICS LETTERS
LA English
DT Article
ID ELECTRON-MICROSCOPY; ELASTIC-CONSTANTS; GAN; NITRIDE; FILMS; PHASE;
ALN; SPECTROSCOPY
AB We report on x-ray diffraction and micro-Raman scattering studies on
zinc blende InN epitaxial films. The samples were grown by molecular
beam epitaxy on GaAs(001) substrates using a InAs layer as a buffer.
The transverse-optical (TO) and longitudinal-optical phonon frequencies
at Gamma of c-InN are determined and compared to the corresponding
values for c-GaN. Ab initio self-consistent calculations are carried
out for the c-InN c-GaN lattice parameters and TO phonon frequencies. A
good agreement between theory and experiment is found. (C) 1999
American Institute of Physics. [S0005-6951(99)00503-3].
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil.
Univ Gesamthsch Paderborn, FB Phys 6, D-33098 Paderborn, Germany.
RP Tabata, A, Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05315970
Sao Paulo, Brazil.
CR BLAHA P, 1990, COMPUT PHYS COMMUN, V59, P399
CARLES R, 1980, PHYS REV B, V22, P4804
CHANDRASEKHAR D, 1995, J CRYST GROWTH, V152, P135
HARBEKE G, 1982, LANDOLTBNROSNTEIN, V17
INUSHIMA T, 1996, INST PHYS CONF SER, V142, P971
JENKINS LC, 1995, J VAC SCI TECHNOL B, V13, P1585
KIM K, 1996, PHYS REV B, V53, P16310
KWON HJ, 1996, APPL PHYS LETT, V69, P937
LEI T, 1992, J APPL PHYS, V71, P4933
ORTON JW, 1998, REP PROG PHYS, V61, P1
PETROV I, 1992, APPL PHYS LETT, V60, P2491
SCHWARZ K, 1996, LECT NOTES CHEM, V67, P139
SHERWIN ME, 1991, J APPL PHYS, V69, P8423
SIEGLE H, 1995, SOLID STATE COMMUN, V96, P943
STRITE S, 1993, J CRYST GROWTH, V127, P204
TABATA A, 1996, J APPL PHYS 1, V79, P4137
VANCAMP PE, 1990, PHYS REV B, V41, P1598
WEINSTEIN BA, 1998, SOLID STATE COMMUN, V106, P567
WRIGHT AF, 1994, PHYS REV B, V50, P2159
WRIGHT AF, 1995, PHYS REV B, V51, P7866
YAMAMOTO A, 1997, J CRYST GROWTH, V174, P641
NR 21
TC 52
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0003-6951
J9 APPL PHYS LETT
JI Appl. Phys. Lett.
PD JAN 18
PY 1999
VL 74
IS 3
BP 362
EP 364
PG 3
SC Physics, Applied
GA 158TW
UT ISI:000078133800012
ER
PT J
AU Martins, LMMD
Arbilla, G
da Silva, EC
TI Unimolecular decomposition of formaldehyde: H2CO -> H-2+CO. Part I: Ab
initio reaction path and variational transition state rate constants
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PHOTOFRAGMENTATION DYNAMICS; PHOTO-DISSOCIATION; ENERGY; DISTRIBUTIONS;
SURFACE; H2CO; PHOTODISSOCIATION; PHOTOCHEMISTRY; FEATURES; PRODUCT
AB Features of the ground-state potential energy surface of formaldehyde
relevant to its dissociation to H-2 and CO were analyzed by means of ab
initio calculations. The multiconfigurational self-consistent field
(MCSCF) calculation gave a critical energy of 83.22 kcal/mol. Accurate
structures are presented for H2CO(X(1)A(1)) and the saddle point. The
reaction path was determined and the coupling between reaction
coordinate and normal modes was analyzed along it, with two different
levels of calculation (Hartree-Fock and MCSCF). Using these data, the
transition state was located and the rate constants were calculated for
the temperature range 200-4500 K using the generalized transition state
theory.
C1 Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis, BR-21949900 Rio De Janeiro, Brazil.
RP Arbilla, G, Univ Fed Rio de Janeiro, Inst Quim, Dept Quim Fis,
BR-21949900 Rio De Janeiro, Brazil.
CR BAKER J, 1986, J COMPUT CHEM, V7, P385
BALDRIDGE KK, 1989, J PHYS CHEM-US, V93, P5107
BAMFORD DJ, 1985, J CHEM PHYS, V82, P3032
BUTENHOFF TJ, 1990, J CHEM PHYS, V92, P377
CERJAN CJ, 1981, J CHEM PHYS, V75, P2800
CHANG YT, 1992, J CHEM PHYS, V96, P4341
CHUANG YY, 1996, POLYRATE VERSION 7 0
DEBARRE D, 1985, J CHEM PHYS, V83, P4476
DUPUIS M, 1980, NATL RESOUR COMPUT C
DUPUIS M, 1983, J CHEM PHYS, V79, P6167
FRISCH MJ, 1981, J PHYS CHEM-US, V85, P1467
FRISCH MJ, 1984, J CHEM PHYS, V81, P1882
FROST W, 1983, J PHYS CHEM-US, V87, P4489
GARRETT BC, 1980, J PHYS CHEM-US, V84, P1730
GILBERT RG, 1990, THEORY UNIMOLECULAR
GODDARD JD, 1979, J CHEM PHYS, V70, P5117
GODDARD JD, 1981, J CHEM PHYS, V75, P3459
GREEN WH, 1990, CHEM PHYS LETT, V169, P127
HOUSTON PL, 1976, J CHEM PHYS, V65, P757
HUZINAGA S, 1965, J CHEM PHYS, V42, P1293
LIU YP, 1993, J AM CHEM SOC, V115, P2408
LIU YP, 1993, J AM CHEM SOC, V115, P2408
LU DH, 1992, COMPUT PHYS COMMUN, V71, P235
MARTINS LMM, IN PRESS
MILLER WH, 1979, J AM CHEM SOC, V101, P6810
MILLER WH, 1980, J CHEM PHYS, V72, P99
MILLER WH, 1987, CHEM REV, V87, P19
MOORE CB, 1983, ANNU REV PHYS CHEM, V34, P525
PESLHERBE GH, 1996, J CHEM PHYS, V104, P7882
SCUSERIA GE, 1989, J CHEM PHYS, V90, P3629
SKODJE RT, 1981, J PHYS CHEM-US, V85, P3019
STECKER R, 1994, POLYRATE VERSION 6 2
TERENTIS AC, 1996, CHEM PHYS LETT, V258, P626
TROE J, 1984, J PHYS CHEM-US, V88, P4375
TRUHLAR DG, 1970, J CHEM PHYS, V52, P3842
TRUHLAR DG, 1971, J AM CHEM SOC, V93, P1840
TRUHLAR DG, 1985, THEORY CHEM REACTION, V4, P65
YAMADA K, 1971, J MOL SPECTROSC, V38, P70
YOUNG ES, 1973, J CHEM PHYS, V58, P3988
NR 39
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 24
PY 1998
VL 102
IS 52
BP 10805
EP 10812
PG 8
SC Chemistry, Physical
GA 153MT
UT ISI:000077837400030
ER
PT J
AU Miwa, RH
TI Theoretical study of Si-Ge mixed dimers on Si(001) surfaces
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculation; growth process; pseudopotential; Si and
Ge
ID DENSITY-FUNCTIONAL THEORY; ATOMIC-STRUCTURE; GROUND-STATE; GROWTH
AB We have studied the atomic geometry of mixed Si-Ge dimers on Si(001)
surface, using first-principle total energy calculations. Our results
indicate that the formation of mixed Si-Ge dimers, with the Si atoms in
a "down" position and the Ge atoms in an "up" position, is an
energetically more favourable surface topology with respect to the
switching between Si and Ge atoms, where the Si atoms occupy an "up"
position and the Ge atoms occupy a "down" position. The formation of
pure Si-Si and Ge-Ge buckled dimers was also considered, and our
results indicate that this structure is not energetically favourable
against formation of mixed Si-Ge buckled dimers. For a 2 x 4 surface
covered by mixed Si-Ge buckled dimers in an antiphase topology, our
total energy calculations indicate that this configuration is
energetically equivalent to the 2 x 4 surface in a semi-antiphase
topology. (C) 1998 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Uberlandia, Dept Ciencias Fis, BR-38400902 Uberlandia, MG, Brazil.
RP Miwa, RH, Univ Fed Uberlandia, Dept Ciencias Fis, CR 593, BR-38400902
Uberlandia, MG, Brazil.
EM hiroki@inga.ufu.br
CR CAR R, 1985, PHYS REV LETT, V55, P2471
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHEN X, 1997, PHYS REV B, V55, R7319
CHO JH, 1994, PHYS REV B, V49, P13670
CHO JH, 1994, PHYS REV B, V50, P17139
DABROWSKI J, 1992, APPL SURF SCI, V56, P15
FONTES E, 1993, PHYS REV LETT, V70, P2790
GONZE X, 1991, PHYS REV B, V44, P8503
HOHENBERG P, 1964, PHYS REV B, V864, P136
JENKINS SJ, 1997, SURF SCI, V377, P887
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
LIN DS, 1991, PHYS REV LETT, V67, P2187
NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
OYANAGI H, 1995, PHYS REV B, V52, P5824
PATTHEY L, 1995, PHYS REV LETT, V75, P2538
SASAKI M, 1994, APPL SURF SCI, V82, P387
STUMPF R, 1994, COMPUT PHYS COMMUN, V79, P447
YEON HW, 1997, SURF SCI, V381, L533
NR 18
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD NOV 27
PY 1998
VL 418
IS 1
BP 55
EP 63
PG 9
SC Chemistry, Physical
GA 148VM
UT ISI:000077554300014
ER
PT J
AU Morgon, NH
Riveros, JM
TI Calculation of the proton and electron affinity of simple Ge-containing
species using density functional theory
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID ION-MOLECULE REACTIONS; GAS-PHASE ACIDITIES; DISSOCIATION-ENERGY;
ATOMS; BOND; TETRAMETHYLGERMANE; APPROXIMATION; METHYLGERMANE; ANIONS;
GEH5+
AB Basis sets developed using the generator coordinate method and a
pseudopotential have been adapted to density functional theory to
calculate the proton affinity of GeH4, GeH3-, GeF3-, CH3GeH2-, and
Ge(OH)(3)(-) and the electron affinity of .GeH3 and .GeF3. The proton
affinity of GeH4 is calculated to be 673.9 kJ mol(-1) at 298 K, while
values for GeH3- (1505.0 kJ mol(-1)) and CH3GeH2- (1529.0 kJ mol(-1))
are in excellent agreement with experimental values. The electron
affinity of .GeF3 is predicted to be in the range of 3.5-3.7 eV by
calculations using different functionals and ab initio methods. The
present calculations reveal that the B3P86 method can yield proton
affinities comparable to those obtained with other high-quality methods
but consistently overestimates electron affinities of simple Ge
radicals.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
Univ Sao Paulo, Inst Chem, BR-05599970 Sao Paulo, Brazil.
RP Riveros, JM, UNICAMP, Inst Chem, Caixa Postal 6154, BR-13083970
Campinas, SP, Brazil.
EM jmrnigra@quim.iq.usp.br
CR ARCHIBONG EF, 1994, J PHYS CHEM-US, V98, P10084
BECKE AD, 1988, PHYS REV A, V38, P3098
BENZI P, 1989, J ORGANOMET CHEM, V373, P289
BINNING RC, 1990, J CHEM PHYS, V92, P1860
CALLOMON JH, 1976, LANDOLTBORNSTEIN, V7
CURTISS LA, 1995, J CHEM PHYS, V103, P6104
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
DECOUZON M, 1993, J AM SOC MASS SPECTR, V4, P54
EICHHOLTZ M, 1997, Z PHYS CHEM 2, V199, P267
FRANKLIN JL, 1974, ADV MASS SPECTROM, V6, P319
FRENKING G, 1997, J AM CHEM SOC, V119, P6648
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GIORDAN M, 1997, CHEM PHYS LETT, V279, P396
HARLAND PW, 1972, INT J MASS SPECTROM, V10, P169
HITCHMAN ML, 1993, CHEM VAPOR DEPOSITIO
HU CH, 1992, CHEM PHYS LETT, V190, P543
HUNTER EP, COMMUNICATION
HUNTER EPL, 1998, J PHYS CHEM REF DATA, V27, P413
KHABASHESKU VN, 1998, J AM CHEM SOC, V120, P5005
KOHDASUDOH S, 1983, J PHYS B ATOM MOL PH, V16, L529
KUDIN KN, 1998, J PHYS CHEM A, V102, P744
MAYER PM, 1997, INT J MASS SPECTROM, V167, P689
MERRILL GN, 1996, J PHYS CHEM-US, V100, P17465
MOC J, 1990, CHEM PHYS LETT, V173, P557
MORGON NH, 1997, CHEM PHYS LETT, V275, P457
MORGON NH, 1998, J PHYS CHEM A, V102, P2050
NEGISHI Y, 1997, CHEM PHYS LETT, V269, P199
OPERTI L, 1993, ORGANOMETALLICS, V12, P4509
ORTIZ JV, 1987, J AM CHEM SOC, V109, P5072
PERDEW JP, 1986, PHYS REV B, V33, P8822
POLA J, 1992, J ORGANOMET CHEM, V437, P271
REDFERN PC, 1997, J PHYS CHEM A, V101, P8701
REED KJ, 1974, J CHEM PHYS, V61, P4830
SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
SCHREINER PR, 1994, J CHEM PHYS, V101, P2141
SEGOVIA M, 1997, CHEM PHYS LETT, V277, P490
SEMINARIO JM, 1995, THEORETICAL COMPUTAT, V2
SENZER SN, 1980, J PHYS CHEM-US, V84, P3066
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
TANABE FKJ, 1996, J PHYS CHEM-US, V100, P2862
WANG JLF, 1974, J CHEM PHYS, V60, P2158
XAVIER LA, INT J MASS SPECTROM
NR 42
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD DEC 10
PY 1998
VL 102
IS 50
BP 10399
EP 10403
PG 5
SC Chemistry, Physical
GA 148QP
UT ISI:000077543700028
ER
PT J
AU Araujo, RCMU
Ramos, MN
TI An ab initio MP2 study of HCN-HX hydrogen bonded complexes
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE ab initio MP2; binding energy; infrared parameters; hydrogen bond
ID INFRARED-SPECTROSCOPY; MOLECULAR-PROPERTIES; ROTATIONAL SPECTRUM;
PERTURBATION-THEORY; GAS-PHASE; ACETYLENE; INTENSITIES; ENERGIES;
ABINITIO; DIMER
AB An ab initio MP2/6-311++G* * study has been performed to obtain
geometries, binding energies and vibrational properties of HCN-HX
H-bonded complexes with X = F, Cl, NC, CN and CCH. These MP2/6-311++G**
results have revealed that: (i) the calculated H-bond lengths are in
very good agreement with the experimental ones; (ii) the H-bond
strength is associated with the intermolecular charge transfer and
follows the order: HCN-HNC approximate to HCN-HF > HCN-HCl approximate
to HCN-HCN > HCN-HCCH; (iii) BSSE correction introduces an average
reduction of 2.4 kJ/mol on the MP2/6-311++G** binding energies, i.e.
11% of the uncorrected binding energy; (iv) the calculated zero-point
energies reduce the stability of these complexes and show a good
agreement with the available experimental values; (v) the H-X
stretching frequency is shifted downward upon H-bond formation. This
displacement is associated with the H-bond length; (vi) The more
pronounced effect on the infrared intensities occurs with the H-X
stretching intensity. It is much enhanced after complexation due to the
charge-flux term; (vii) the calculated intermolecular stretching
frequencies are in very good agreement with the experimental ones; and,
finally, (viii) the results obtained for the HCN-HX complexes follow
the same profile as those found for the acetylene-HX series but, in the
latter case, the effects on the properties of the free molecules due to
complexation are less pronounced than those in KCN-HX.
C1 Univ Fed Paraiba, Dept Quim, BR-58036300 Joao Pessoa, Paraiba, Brazil.
Univ Fed Pernambuco, Dept Quim Fundamental, BR-50739901 Recife, PE, Brazil.
RP Araujo, RCMU, Univ Fed Paraiba, Dept Quim, BR-58036300 Joao Pessoa,
Paraiba, Brazil.
CR ARAUJO RCM, UNPUB J CHEM SOC F2
ARAUJO RCMU, 1995, SPECTROCHIM ACTA A, V51, P821
ARAUJO RCMU, 1996, THEOCHEM-J MOL STRUC, V366, P233
BARNES AJ, 1983, J MOL STRUCT, V100, P259
BARTLETT RJ, 1975, J CHEM PHYS, V62, P3258
BISHOP DM, 1982, J PHYS CHEM REF DATA, V11, P119
BOX GEP, 1978, STAT EXPT
BOYS SF, 1970, MOL PHYS, V19, P553
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
BUXTON LW, 1981, CHEM PHYS, V56, P399
CRAW JS, 1991, SPECTROCHIM ACTA A, V47, P69
CURTISS LA, 1973, J MOL SPECTROSC, V48, P413
DELBENE JE, 1992, INT J QUANTUM CHEM Q, V26, P527
DELBENE JE, 1995, J PHYS CHEM-US, V99, P10705
DINUR U, 1990, CHEM PHYS LETT, V166, P211
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
GUSSONI M, 1984, J MOL STRUCT, V113, P323
GUSSONI M, 1989, CHEM PHYS LETT, V160, P200
HOWARD NW, 1986, J CHEM PHYS, V85, P6898
KESTNER NR, 1968, J CHEM PHYS, V48, P252
KING WT, 1976, J PHYS CHEM-US, V80, P2521
KRISHNAN R, 1978, INT J QUANTUM CHEM, V14, P91
LEGON AC, 1980, P ROY SOC LOND A MAT, V370, P213
LEGON AC, 1982, J CHEM PHYS, V76, P2267
LEGON AC, 1986, CHEM REV, V86, P635
LEGON AC, 1988, P ROY SOC LOND A MAT, V417, P21
MARDIA KV, 1979, MULTIVARIATE ANAL
MCDONALD SA, 1980, J AM CHEM SOC, V102, P2892
METTEE HD, COMMUNICATION
METTEE HD, 1973, J PHYS CHEM-US, V77, P1762
MILLEN DJ, 1978, J MOL STRUCT, V45, P1
NESBITT DJ, 1988, CHEM REV, V88, P843
POPLE JA, 1976, INT J QUANTUM CHEM S, V10, P1
SUZUKI I, 1966, J CHEM PHYS, V44, P3561
TOSTES JGR, 1987, J PHYS CHEM-US, V91, P3157
WOFFORD BA, 1986, CHEM PHYS LETT, V124, P579
WOFFORD BA, 1986, J CHEM PHYS, V85, P105
WOFFORD BA, 1987, J CHEM PHYS, V87, P4478
WOFFORD BA, 1987, J CHEM PHYS, V87, P5674
NR 39
TC 10
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD SEP-OCT
PY 1998
VL 9
IS 5
BP 499
EP 505
PG 7
SC Chemistry, Multidisciplinary
GA 148FR
UT ISI:000077494800015
ER
PT J
AU Duarte, HA
Paniago, EB
Carvalho, S
De Almeida, WB
TI Interaction of N-hydroxyacetamide with vanadate: A density functional
study
SO JOURNAL OF INORGANIC BIOCHEMISTRY
LA English
DT Article
DE vanadate; N-hydroxyacetamide; density functional; metal-ligand
interaction
ID HYDROXAMIC ACIDS; AB-INITIO; APPROXIMATION; OPTIMIZATION; ENERGY; BOND;
MO
AB The interaction between N-hydroxyacetamide (HL) and vanadate (VO3-) has
been theoretically studied using density functional theory. All
possible tautomers and conformations of two complexes formed have been
fully optimized and vibrational analysis performed. From reported
experimental results these two complexes have been shown to be in
equilibrium in acidic aqueous solution: VO2LH2O and VO2(HL)L. The
pentacoordinated VO2LH2O species having an intramolecular proton
transferred from the coordinating H2O ligand to the oxo group, is the
most stable. Seemingly, the most stable hexacoordinated VO2(HL)L
species also has an oxo group protonated. Based on the analysis of the
dipole moments of the species, the solvent effects within the continuum
model are unlikely to change the relative stabilities of the different
tautomers and conformers. The experimental infra-red spectrum of the
VO2LH2O species has been measured and compared directly to the
calculated frequencies. The most important peaks have been assigned to
the corresponding normal modes. From the Mulliken population analysis,
it is shown that the net charge on the vanadium atom and the oxygens
surrounding the metal center are similar in the two species. The
different coordination numbers may explain the differences of the
reported V-51 NMR chemical shifts exhibited by these two species. (C)
1998 Elsevier Science Inc. All rights reserved.
C1 Lab Quim Computac & Modelagem Mol, Belo Horizonte, MG, Brazil.
Univ Fed Minas Gerais, ICEx, Dept Quim, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Fed Ouro Preto, ICEB, Dept Quim, Ouro Preto, MG, Brazil.
RP Duarte, HA, Lab Quim Computac & Modelagem Mol, Belo Horizonte, MG,
Brazil.
CR BAUER L, 1974, ANGEW CHEM, V13, P376
BECKE AD, 1988, PHYS REV A, V38, P3098
CASIDA ME, 1996, DEMON SOFTWAREDEMONK
COUTTS RT, 1967, CAN J PHARM SCI, V2, P1
COUTTS RT, 1967, CAN J PHARM SCI, V2, P27
CRICH D, 1989, CHEM REV, V89, P1563
DEALMEIDA WB, 1997, 6 C CURR TRENDS COMP
DEALMEIDA WB, 1998, J CHEM SOC DA, V15, P2531
DUARTE HA, 1997, J PHYS CHEM B, V101, P7464
FITZPATRICK NJ, 1989, POLYHEDRON, V8, P2255
FOURNIER R, 1993, J CHEM PHYS, V99, P1801
GODBOUT N, 1992, CAN J CHEM, V70, P560
HADZI D, 1957, SPECTROCHIM ACTA, V10, P38
HUBER KP, 1979, 4 CONSTANTS DIATOMIC
KEHL H, 1982, CHEM BIOL HYDROXAMIC
KURZAK B, 1992, COORDIN CHEM REV, V114, P162
LIPCZYNSKAKOCHA.E, 1991, CHEM REV, V91, P477
MILLER MJ, 1989, CHEM REV, V89, P1563
PERDEW JP, 1986, PHYS REV B, V33, P8822
PERDEW JP, 1986, PHYS REV B, V34, P7406
PETTERSSON L, 1983, CHEM SCRIPTA, V22, P254
ROCHA WR, 1997, INT J QUANTUM CHEM, V65, P643
ROCHA WR, 1998, ORGANOMETALLICS, V17, P1961
SALAHUB DR, 1987, ADV CHEM PHYS, V69, P447
SCHLEGEL HB, 1987, AB INITIO METHODS QU, V1
SIGEL H, 1996, METAL IONS BIOL SYST, V31
STAMANT A, 1990, CHEM PHYS LETT, V169, P387
TURI L, 1992, J PHYS CHEM-US, V96, P3709
YAMAKI RT, 1997, J CHEM SOC DALT 1221, P4817
YAMIN LJ, 1996, THEOCHEM-J MOL STRUC, V360, P109
ZIEGLER T, 1987, J AM CHEM SOC, V109, P4825
NR 31
TC 9
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010 USA
SN 0162-0134
J9 J INORG BIOCHEM
JI J. Inorg. Biochem.
PD OCT
PY 1998
VL 72
IS 1-2
BP 71
EP 77
PG 7
SC Chemistry, Inorganic & Nuclear; Biochemistry & Molecular Biology
GA 147RA
UT ISI:000077578800009
ER
PT J
AU Marquardt, R
Quack, M
TI Global analytical potential hypersurfaces for large amplitude nuclear
motion and reactions in methane. I. Formulation of the potentials and
adjustment of parameters to ab initio data and experimental constraints
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID MONTE-CARLO CALCULATIONS; TRANSITION-STATE THEORY; DIPOLE-MOMENT
FUNCTION; ADIABATIC CHANNEL MODEL; VIBRATION ENERGY-LEVELS; THERMAL
RATE-CONSTANT; QUARTIC FORCE-FIELD; CH CHROMOPHORE; H+CH3->CH4
RECOMBINATION; CORRELATED WAVEFUNCTIONS
AB Analytical representations of the global potential energy surface of
XYn molecules are developed and applied to model the potential surface
of methane in the electronic ground state. The generic analytical
representation allows for a compact, robust, and flexible description
of potentials fur XYn systems irrespective of the specific nature of
the atomic interactions. The functions are global in that structures
near several minima of the potential hypersurface as well as saddle
points and dissociation limits are well described. Clusters of atoms
Y-n can be represented as well by this type of function. Care is taken
to implement conditions resulting from the symmetric group S-n and to
construct positive definite bilinear forms of special functional forms
of certain coordinates (such as bond lengths and bond angles), in order
to avoid artifacts in exceptional ranges of the potential hypersurface.
These special functional forms include intrinsic, symmetry allowed
couplings between coordinates such as bending and stretching. We
include linear potential terms in bond angle coordinates, which result
in effectively quadratic potential terms for highly symmetric
structures. True logical multidimensional 01-switching functions
S-sw(r) of bond lengths r are used to interpolate between limiting
ranges in the hypersurface. The particular form S-sw(r) similar to
exp(-(r(sw)/r)(nsw)) allows us to describe the potential as a multipole
expansion representation in the lirlit of large r(ix). In the
application to methane, first the representations are fitted to data
from high level ab initio calculations using multireference
configuration interaction techniques. Additional conditions which help
to improve the description of experimental data are considered during
the fit. Typically, these conditions involve some parameters or
parameter groups and refer to the equilibrium geometry and harmonic
force field. Other constraints apply to the energies of dissociation
channels. We describe the model potentials METPOT 1 to METPOT 4 in the
present work. (C) 1998 American Institute of Physics.
[S0021-9606(98)01045-9].
C1 ETH Zentrum, Chem Phys Lab, CH-8092 Zurich, Switzerland.
RP Marquardt, R, Univ Fed Rio Grande Sul, Inst Fis, BR-91501970 Porto
Alegre, RS, Brazil.
CR *AIP, JCPSA6109010845 AIP
*U WAT, 1981, MAPLE V REL 3 ETH
ABOUMAJD A, 1984, THESIS DIJON
BAKASOV A, 1998, J CHEM PHYS, V109, P7263
BEIL A, 1994, J CHEM SOC CHEM COMM, V99, P49
BEIL A, 1996, BER BUNSEN PHYS CHEM, V100, P1853
BERKOWITZ J, 1994, J PHYS CHEM-US, V98, P2744
BJERRUM N, 1914, VERHANDL DEUT PHYSIK, V16, P737
BOTSCHWINA P, 1982, CHEM PHYS, V68, P41
BOTSCHWINA P, 1988, J CHEM SOC F2, V84, P1263
BRODERSEN S, 1987, J MOL SPECTROSC, V126, P405
BROWN FB, 1985, CHEM PHYS LETT, V113, P441
BUENKER RJ, 1975, THEOR CHIM ACTA, V39, P217
BUNKER PR, 1983, J MOL SPECTROSC, V101, P180
BUNKER PR, 1986, J CHEM PHYS, V85, P3724
CHASE MW, JANAF THERMOCHEMI S1, V14
COBOS CJ, 1985, CHEM PHYS LETT, V113, P419
COMEAU DC, 1989, J CHEM PHYS, V90, P6491
DENNISON DM, 1925, ASTROPHYS J, V62, P84
DUBAL HR, 1989, J CHEM PHYS, V91, P6698
DUCHOVIC R, 1982, CHEM PHYS LETT, V89, P120
DUCHOVIC RJ, 1984, J PHYS CHEM-US, V88, P1339
DUCHOVIC RJ, 1985, J CHEM PHYS, V82, P3599
DUNCAN JL, 1964, SPECTROCHIM ACTA, V20, P523
DUNNING TH, 1970, J CHEM PHYS, V53, P2823
EYRING H, 1931, Z PHYS CHEM B-CHEM E, V12, P279
FURUE H, 1991, CHEM PHYS, V154, P425
GORDON MS, 1979, J CHEM PHYS, V70, P5503
GORDON MS, 1993, J AM CHEM SOC, V115, P7486
GRAY DL, 1979, MOL PHYS, V37, P1901
GREV RS, 1991, J CHEM PHYS, V95, P5128
GREV RS, 1992, J CHEM PHYS, V97, P8389
HALONEN L, 1997, J CHEM PHYS, V106, P831
HASE WL, 1985, J CHEM PHYS, V83, P3448
HASE WL, 1987, J AM CHEM SOC, V109, P2916
HIROTA E, 1982, J MOL SPECTROSC, V96, P175
HIRST DM, 1985, CHEM PHYS LETT, V122, P225
HOLLENSTEIN H, 1994, J CHEM PHYS, V101, P3588
HOLLENSTEIN H, 1995, BER BUNSEN PHYS CHEM, V99, P275
HU XC, 1991, J CHEM PHYS, V95, P8073
HUTSON JM, 1990, ANNU REV PHYS CHEM, V41, P123
ISAACSON AD, 1992, J PHYS CHEM-US, V96, P531
IUNG C, 1989, J CHEM PHYS, V90, P3198
IUNG C, 1992, J CHEM PHYS, V97, P2481
IUNG C, 1995, J CHEM PHYS, V102, P8453
JENSEN P, 1989, J MOL SPECTROSC, V133, P438
JOHNSTON HS, 1966, GAS PHASE REACTION R
KELLY PB, 1988, CHEM PHYS LETT, V151, P253
KLOPPER W, 1998, J CHEM PHYS, V108, P10096
LANGHOFF SR, 1974, INT J QUANTUM CHEM, V8, P61
LEE TJ, 1995, J CHEM PHYS, V102, P254
LEWERENZ M, 1983, THESIS U BONN
LEWERENZ M, 1987, TEHSIS ETH ZURICH
LEWERENZ M, 1988, J CHEM PHYS, V88, P5408
LEWERENZ M, 1988, J CHEM SOC F2, V84, P1580
LIAS SG, 1988, GAS PHASE ION NEU S1, V17
LUCKHAUS D, 1992, CHEM PHYS LETT, V190, P581
MARQUARDT DW, 1963, J SOC IND APPL MATH, V11, P431
MARQUARDT R, UNPUB
MARTIN JML, 1992, J CHEM PHYS, V97, P8361
MARTIN JML, 1993, CHEM PHYS LETT, V205, P535
MILLER JT, 1989, CHEM PHYS LETT, V158, P179
MILLS IM, 1958, MOL PHYS, V1, P107
MORSE PM, 1929, PHYS REV, V34, P57
MURRELL JN, 1984, POTENTIAL ENERGY FUN
NEFEDOV OM, 1992, PURE APPL CHEM, V64, P265
PARTRIDGE H, 1995, J CHEM PHYS, V103, P10589
PEPPER MJM, 1995, J COMPUT CHEM, V16, P207
PEYERIMHOFF S, UNPUB
PEYERIMHOFF S, 1984, CHEM PHYS LETT, V109, P563
POPLE JA, 1975, MOL PHYS, V29, P599
PULAY P, 1978, J CHEM PHYS, V68, P5077
PULAY P, 1979, J AM CHEM SOC, V101, P2550
QUACK M, 1974, BER BUNSEN PHYS CHEM, V78, P240
QUACK M, 1975, BER BUNSEN PHYS CHEM, V79, P170
QUACK M, 1979, J PHYS CHEM-US, V83, P150
QUACK M, 1991, J CHEM PHYS, V95, P28
QUACK M, 1993, J MOL STRUCT, V292, P171
QUACK M, 1993, J MOL STRUCT, V294, P33
QUACK M, 1995, FEMTOSECOND CHEM, P781
QUACK M, 1995, J MOL STRUCT, V347, P245
QUACK M, 1997, CONCEPTUAL TRENDS QU, V3, P417
RAFF LM, 1984, J CHEM PHYS, V80, P6141
RAYNES WT, 1987, MOL PHYS, V60, P509
RIVEROS JM, 1969, J CHEM PHYS, V51, P1269
RUSSELL JJ, 1988, INT J CHEM KINET, V20, P759
SCHATZ GC, 1990, ADV MOL ELECTRONIC S, V1, P85
SCHLEGEL HB, 1986, J CHEM PHYS, V84, P4530
SIGNORELL R, 1996, MOL PHYS, V89, P297
SOSA C, 1988, CHEM PHYS LETT, V153, P139
SPIRKO V, 1982, J MOL SPECTROSC, V95, P381
SPIRKO V, 1989, J MOL SPECTROSC, V133, P331
SUHM MA, 1995, CHEM SOC REV, V24, P45
WILSON EB, 1980, MOL VIBRATIONS THEOR
WOLF RJ, 1986, CHEM PHYS LETT, V132, P493
WU W, 1994, J CHEM PHYS, V101, P4826
YAMADA C, 1981, J CHEM PHYS, V75, P5256
NR 97
TC 20
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD DEC 22
PY 1998
VL 109
IS 24
BP 10628
EP 10643
PG 16
SC Physics, Atomic, Molecular & Chemical
GA 148QB
UT ISI:000077542400011
ER
PT J
AU Almeida, AL
Martins, JBL
Taft, CA
Longo, E
Lester, WA
TI Theoretical study of water coverage on MgO surfaces
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE water coverage; MgO; ab initio; adsorption; surface
ID TEMPERATURE-PROGRAMMED DESORPTION; CORE POTENTIAL DEPENDENCE; LARGE
CLUSTER-MODELS; 0001 ZNO SURFACES; MAGNESIUM-OXIDE; MOLECULAR CLUSTER;
MGO(100) SURFACE; BASIS-SET; ADSORPTION; METHANE
AB Ab initio and semiempirical calculations have been performed on an
(MgO)(16) cluster model in order to study the effects of water coverage
on pure MgO (100) surfaces. The geometries of various adsorbed water
molecules have been optimized and the binding energies, charge
transfer, and preferential sites of interaction analyzed. We have used
Mulliken and natural bond population analysis methods in order to
analyze charge distributions and the direction of charge transfer
processes. We have also investigated the effects of low and high
coverage on energy gaps, density of states, self-consistent field (SCF)
orbital energies, and stretching frequencies. (C) 1999 John Wiley &
Sons, Inc.
C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290180 Rio De Janeiro, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Lester, WA, Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci,
Berkeley, CA 94720 USA.
CR ALMEIDA AL, 1996, 23 QTEL QUIM TEOR EX
ALMEIDA AL, 1996, 4 WORLD C THEOR OR C
ALMEIDA AL, 1997, 9 INT C QUANT CHEM J
ANCHELL JL, 1996, J PHYS CHEM-US, V100, P18317
BERUTO D, 1993, J PHYS CHEM-US, V97, P9201
BOUDART M, 1972, J AM CHEM SOC, V94, P6622
CHACONTAYLOR MR, 1996, J PHYS CHEM-US, V100, P7610
COLBOURN EA, 1982, SURF SCI, V117, P571
COLBOURN EA, 1983, SURF SCI, V126, P350
COLBOURN EA, 1992, SURF SCI REP, V15, P281
COLLUCIA S, 1979, J CHEM SOC F1, V75, P1769
COLUCCIA S, 1987, SPECTROCHIM ACTA A, V43, P1573
DELEEUW NH, 1996, J CHEM SOC FARADAY T, V92, P2081
DUNSKI H, 1994, J CATAL, V146, P166
DURIEZ C, 1990, SURF SCI, V230, P123
ECHTERHOFF R, 1988, J MOL STRUCT, V174, P343
FERRY D, 1996, J CHEM PHYS, V105, P1697
FOYT DC, 1977, J CATAL, V47, P260
FRISCH MJ, 1995, GAUSSIAN 94
GREENLAND DJ, 1978, CHEM SOIL CONSTITUEN
HAY PJ, 1985, J CHEM PHYS, V82, P270
ITO T, 1985, J AM CHEM SOC, V107, P5062
ITO T, 1985, NATURE, V314, P721
ITO T, 1991, J PHYS CHEM-US, V95, P4476
JONES CF, 1984, J CHEM SOC FARAD T 1, V80, P2609
JUJIOKA HH, 1985, SURF SCI LETT, V149, L53
KNOZINGER E, 1993, SURF SCI, V290, P388
KOBAYASHI H, 1990, J PHYS CHEM-US, V94, P7206
KURODA Y, 1988, J CHEM SOC F1, V84, P2421
LEMBERTON JL, 1984, J CATAL, V89, P69
LONGO E, 1985, ADV CERAM, V10, P592
LONGO E, 1985, LANGMUIR, V1, P456
LONGO E, 1987, HIGH TECH CERAMICS, P399
MARTINS JBL, 1994, J MOL STRUCT, V303, P19
MARTINS JBL, 1995, THEOCHEM, V330, P301
MARTINS JBL, 1995, THEOCHEM, V330, P347
MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
MARTINS JBL, 1996, THEOCHEM-J MOL STRUC, V363, P249
MCCARTHY MI, 1996, J PHYS CHEM-US, V100, P16990
ONISHI H, 1987, SURF SCI, V191, P479
PAVAO AC, 1994, PHYS REV B, V50, P1868
PAVAO AC, 1995, SURF SCI, V323, P40
SCAMEHORN CA, 1993, J CHEM PHYS, V99, P2786
SCAMEHORN CA, 1994, J CHEM PHYS, V101, P1547
SHIDO T, 1990, J CATAL, V122, P55
SPOSITO G, 1984, SURFACE CHEM SOILS
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STUMM W, 1992, CHEM SOLID WATER INT
NR 48
TC 10
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD JAN 15
PY 1999
VL 71
IS 2
BP 153
EP 165
PG 13
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA 147MW
UT ISI:000077572100004
ER
PT J
AU Prudente, FV
Acioli, PH
Neto, JJS
TI The fitting of potential energy surfaces using neural networks:
Application to the study of vibrational levels of H-3(+)
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID QUANTUM MONTE-CARLO; DIATOMIC-MOLECULES; MOMENT SURFACES; H-3+
AB A back-propagation neural network is utilized to fit the potential
energy surfaces of the H-3(+) ion, using the ab initio data points of
Dykstra and Swope, and the Meyer, Botschwina, and Burton ab initio data
points. We used the standard back-propagation formulation and have also
proposed a symmetric formulation to account for the symmetry of the
H-3(+) molecule. To test the quality of the fits we computed the
vibrational levels using the correlation function quantum Monte Carlo
method. We have compared our results with the available experimental
results and with results obtained using other potential energy
surfaces. The vibrational levels are in very good agreement with the
experiment and the back-propagation fitting is of the same quality of
the available potential energy surfaces. (C) 1998 American Institute of
Physics. [S0021-9606(98)30644-3].
C1 Univ Brasilia, Inst Fis, BR-70910900 Brasilia, DF, Brazil.
RP Prudente, FV, Univ Brasilia, Inst Fis, CP 04455, BR-70910900 Brasilia,
DF, Brazil.
EM fred@fis.unb.br
CR ACIOLI PH, IN PRESS J MOL STRUC
BISHOP CM, 1982, REV SCI INSTRUM, V63, P4450
BLANK TB, 1994, J CHEMOMETR, V8, P391
BRAGA AP, 1997, J CHEM PHYS, V107, P9954
BRENT RP, 1991, IEEE T NEURAL NETWOR, V2, P346
BROWN DFR, 1996, J CHEM PHYS, V105, P7597
CARNEY GD, 1986, J CHEM PHYS, V84, P3921
CENCEK W, 1998, J CHEM PHYS, V108, P2831
CEPERLEY DM, 1988, J CHEM PHYS, V89, P6316
DARSEY JA, 1991, CHEM PHYS LETT, V177, P189
DYKSTRA CE, 1979, J CHEM PHYS, V70, P1
FRYE D, 1990, J CHEM PHYS, V92, P4948
GARCIA E, 1985, MOL PHYS, V56, P621
GARCIA E, 1985, MOL PHYS, V56, P629
JAQUET R, 1998, J CHEM PHYS, V108, P2837
KEDZIORA GS, 1997, J CHEM PHYS, V106, P8733
LAGARIS IE, 1997, COMPUT PHYS COMMUN, V104, P1
MACKAY DJC, 1992, NEURAL COMPUT, V4, P415
MACKAY DJC, 1995, NETWORK-COMP NEURAL, V6, P469
MAKAROV DE, 1998, J CHEM PHYS, V108, P590
MEYER W, 1986, J CHEM PHYS, V84, P891
MOLLER MF, 1993, NEURAL NETWORKS, V6, P525
OKA T, 1980, PHYS REV LETT, V45, P531
PRUDENTE FV, 1998, CHEM PHYS LETT, V287, P585
REYNOLDS PJ, 1982, J CHEM PHYS, V77, P5593
SILVA GME, 1997, J COMPUT CHEM, V18, P1407
SIMONS G, 1973, J CHEM PHYS, V59, P3229
SONTAG ED, 1989, NEURAL COMPUT, V1, P470
SUMPTER BG, 1994, ANNU REV PHYS CHEM, V45, P439
THOMPSON KC, 1998, J CHEM PHYS, V108, P564
ZUPAN J, 1993, NEURAL NETWORK CHEM
NR 31
TC 14
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD NOV 22
PY 1998
VL 109
IS 20
BP 8801
EP 8808
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 139QE
UT ISI:000077039900010
ER
PT J
AU Wang, F
Ma, S
Wong, P
Cooks, RG
Gozzo, FC
Eberlin, MN
TI Gas phase agostic bonding in pyridine SiFn+ (n = 1, 3) cluster ions
investigated by the kinetic method
SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY
LA English
DT Article
DE kinetic method; agostic bonding; cluster ions; SiF3+; SiF+; Lewis
acidity
ID MOLECULAR-ORBITAL METHODS; CHARGE-TRANSFER REACTIONS; MS(3)
MASS-SPECTROMETRY; TRANSITION-METAL BONDS; BASIS SETS; AFFINITIES;
THERMOCHEMISTRY; SILICON; DISSOCIATION; CATION
AB Loosely bonded cluster ions, Py1SiF3+Py2 and Py1SiF+Py2, where Py-1 and
Py-2 represent substituted pyridines, are formed by ion/molecule
reactions between mass-selected SiF3+ or SiF+ and a mixture of
pyridines. The clusters are hown to have loosely bound symmetric
structures by MS3 experiments and ab initio calculations. The
SiF3+/pyridine dimer is shown to have a trigonal bipyrimidal structure.
Relative SiF3+ and SiF+ affinities of the constituent pyridines are
measured by the kinetic method, and excellent linear correlations with
the proton affinity of meta- and para-substituted pyridines are
observed. Gas-phase stereoelectronic parameters (S-k) for SiF3+ SiF+
are also experimentally measured and show that the binding of the
ortho-substituted pyridines is governed by two opposing effects, steric
hindrance and agostic bonding. Agostic bonding of the form C-H --- Si+,
is evident in the SiF+ system, just as it is in the corresponding
SiCl+/pyridine dimers. On the other hand, steric hindrance plays a key
role in weakening the strength of the interaction of the central SiF3+
ion and the ortho-substituted pyridines compared with that in
SiF+-bound cluster ions. The relatively larger Lewis acidity of
fluorinated siliconium ions compared with the corresponding chlorinated
species shortens the Si-N bond and makes overall steric effects larger
in the SiFn+ (n = 1, 3) systems than in the SiCln+ (n = 1, 3) systems.
The potential application of the kinetic method in recognizing agostic
bonding in transition metal systems in the gas phase is also
demonstrated in this study. (Int J Mass Spectrom 179/180 (1998)
195-205). (C) 1998 Elsevier Science B.V.
C1 Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
State Univ Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Cooks, RG, Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA.
CR ABBOUD JLM, 1996, J AM CHEM SOC, V118, P1126
BONDI A, 1964, J PHYS CHEM-US, V68, P441
BOWERS MT, 1979, GAS PHASE ION CHEM, V1
BROOKHART M, 1983, J ORGANOMET CHEM, V250, P395
BROOKHART M, 1988, PROG INORG CHEM, V36, P1
CACACE F, 1995, P NATL ACAD SCI USA, V92, P8635
CACACE F, 1997, P NATL ACAD SCI USA, V94, P3507
CACACE F, 1997, PURE APPL CHEM, V69, P227
CAMPBELL S, 1995, J AM CHEM SOC, V117, P12840
CECCHI P, 1996, ANGEW CHEM INT EDIT, V35, P2522
CERDA BA, 1996, J AM CHEM SOC, V118, P11884
CIPOLLINI R, 1995, J CHEM SOC CHEM COMM, P773
COBURN JW, 1982, AM VACUUM SOC MONOGR
COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
COOKS RG, 1994, MASS SPECTROM REV, V13, P287
COOKS RG, 1998, ACCOUNTS CHEM RES, V31, P379
CRAIG SL, 1997, J PHYS CHEM A, V101, P19
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
FISHER ER, 1991, J PHYS CHEM-US, V95, P4765
FISHER ER, 1993, J PHYS CHEM-US, V97, P10204
FRENKING G, 1997, J AM CHEM SOC, V119, P6648
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GRANDINETTI F, 1993, INT J MASS SPECTROM, V124, P21
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
IGNACIO EW, 1990, J PHYS CHEM-US, V94, P7439
KETVIRTIS AE, 1996, INT J MASS SPECTROM, V153, P161
KETVIRTIS AE, 1997, J PHYS CHEM A, V101, P7258
KETVIRTIS AE, 1998, J PHYS CHEM A, V102, P1162
KICKEL BL, 1993, J PHYS CHEM-US, V97, P10198
MA SG, 1997, INT J MASS SPECTROM, V163, P89
MCGRADY GS, 1997, CHEM COMMUN 0821, P1547
MOLLER C, 1934, PHYS REV, V46, P618
MURPHY MK, 1976, J AM CHEM SOC, V98, P5781
PETRMICHL RH, 1988, J CHEM PHYS, V89, P5454
REENTS WD, 1984, INT J MASS SPECTROM, V59, P65
RICCA A, 1998, J PHYS CHEM A, V102, P876
RODRIQUEZ CF, 1992, CAN J CHEM, V70, P2234
SCHNIER PD, 1996, J AM CHEM SOC, V118, P7178
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
SENZER SN, 1983, J APPL PHYS, V54, P3524
SURESH BS, 1987, J CHEM SOC DA, P1123
WALSH R, 1981, ACCOUNTS CHEM RES, V14, P246
WALSH R, 1983, J CHEM SOC FARAD T 1, V79, P2233
WANG KH, 1992, J CHEM PHYS, V97, P5489
WENTHOLD PG, 1996, J AM CHEM SOC, V118, P11865
WINTERS HF, 1992, SURF SCI REP, V14, P161
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
WONG PSH, 1997, J ORGANOMET CHEM, V539, P131
WU ZC, 1994, RAPID COMMUN MASS SP, V8, P777
YAMAMOTO H, 1996, APPL SURF SCI, V101, P333
YANG SS, 1995, J MASS SPECTROM, V30, P807
YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
NR 55
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 1387-3806
J9 INT J MASS SPECTROM
JI Int. J. Mass Spectrom.
PD NOV 23
PY 1998
VL 180
BP 195
EP 205
PG 11
SC Physics, Atomic, Molecular & Chemical; Spectroscopy
GA 140RD
UT ISI:000077101400021
ER
PT J
AU Lino, JLS
Germano, JSE
da Silva, EP
Lima, MAP
TI Elastic cross sections and annihilation parameter for e(+)-H-2
scattering using the Schwinger multichannel method
SO PHYSICAL REVIEW A
LA English
DT Article
ID POSITRONS; COLLISIONS
AB We report detailed results for positron-H-2 collisions obtained with
the Schwinger multichannel method. Our calculations include
annihilation parameter, differential, integral, and momentum transfer
cross sections for energies below the positronium formation threshold.
The calculations were carried out in the static-plus-polarization
approximation with symmetry-resolved cross sections. Energy
(temperature) dependence and symmetry-resolved contributions for the
annihilation parameter Z(eff) are also reported. Our ab initio integral
cross sections are found to be in good agreement with the experimental
data. [S1050-2947(98)04409-6].
C1 Ctr Tecn Aeronautica, Inst Tecnol Aeronaut, Dept Fis, BR-12228900 Sao Jose Dos Campos, Brazil.
Univ Fed Ceara, Dept Fis, BR-60455760 Fortaleza, Ceara, Brazil.
UNICAMP, Inst Fis, BR-13083970 Campinas, SP, Brazil.
RP Lino, JLS, Ctr Tecn Aeronautica, Inst Tecnol Aeronaut, Dept Fis,
BR-12228900 Sao Jose Dos Campos, Brazil.
CR ARMOUR EAG, 1990, J PHYS B ATOM MOL PH, V23, P3057
CHARLTON M, 1983, J PHYS B-AT MOL OPT, V16, P323
DANBY G, 1990, J PHYS B ATOM MOL PH, V23, P1005
DASILVA EP, 1994, PHYS REV A, V49, R1527
DASILVA EP, 1996, PHYS REV LETT, V77, P1028
DASILVA EP, 1998, NUCL INSTRUM METH B, V143, P140
DAY DJ, 1992, HYPERFINE INTERACT, V73, P2017
GERMANO JSE, 1993, PHYS REV A, V47, P3976
GIBSON TL, 1992, J PHYS B ATOM MOL PH, V25, P1321
KOLOS W, 1965, J CHEM PHYS, V43, P2429
LARICCHIA G, 1995, AIP C P, V360, P385
LINO JLS, 1994, J PHYS B-AT MOL OPT, V27, P1881
MCCURDY CW, 1987, PHYS REV A, V36, P2061
MURPHY TJ, 1991, PHYS REV LETT, V67, P2954
PRZYBYLA DA, 1997, PHYS REV A, V55, P4244
STEIN TS, UNPUB
TAKATSUKA K, 1981, PHYS REV A, V24, P2473
NR 17
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD NOV
PY 1998
VL 58
IS 5
BP 3502
EP 3506
PG 5
SC Physics, Atomic, Molecular & Chemical; Optics
GA 138FT
UT ISI:000076961300022
ER
PT J
AU Moraes, LAB
Eberlin, MN
TI Dehydrobenzoyl cations: Distonic ions with dual free radical and
acylium ion reactivity
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID CHARGED PHENYL RADICALS; GAS-PHASE; MASS-SPECTROMETRY; MOLECULE
REACTIONS; BIMOLECULAR REACTIONS; CYCLOTRON RESONANCE; SUBSTITUTION;
TRANSACETALIZATION; CHEMISTRY; ANILINE
AB In the gas phase, m- and p-dehydrobenzoyl cations display strong
duality of chemical behavior. The ions react selectively as either free
radicals or acylium ions, depending on the choice of the neutral
reaction partner. Transacetalization with 2-methyl-1,3-dioxolane,
ketalization with 2-methoxyethanol, and epoxide ring expansion with
epichlorohydrin demonstrate their acylium ion reactivity, whereas
(SCH3)-S-. abstraction with dimethyl disulfide demonstrates their free
radical reactivity. In one-pot reactions with gaseous mixtures of
epichlorohydrin and dimethyl disulfide, the m- and p-dehydrobenzoyl
cations react selectively at either site to form the two
monoderivatized ions in variable but controlled yields; further
reaction at either the remaining radical or the acylium charge site
forms a single biderivatized ion as the final product. The
o-dehydrobenzoyl cation also displays the expected radical and acylium
ion reactivities. But for the ortho isomer, binding of the nucleophilic
neutral to the free or derivatized C+=O group facilitates reactions at
the radical site. Hence, the ortho isomer displays a unique behavior;
its acylium ion reactions either occur simultaneously with, or are
followed by, H-abstraction radical reactions. As shown by ab initio
calculations, the three isomers display sigma-localized odd-spin and
pi-delocalized charge densities, which characterize distonic structures
with molecular orbital-separated radical and charge sites. The
dehydrobenzoyl cations are also, according to the calculations, the
most stable among 19 of the most feasible C7H4O+. isomers.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, UNICAMP, Inst Chem, CP 6154, BR-13083970 Campinas, SP,
Brazil.
CR ATTINA M, 1983, J AM CHEM SOC, V105, P1122
AVILA DV, 1994, J AM CHEM SOC, V116, P99
BEASLEY BJ, 1995, J MASS SPECTROM, V30, P384
BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P203
BOUMA WJ, 1980, ADV MASS SPECTROM A, V8, P178
CARVALHO M, 1998, CHEM-EUR J, V4, P1161
CARVALHO MC, 1997, J CHEM SOC PERK NOV, P2347
CARVALHO MC, 1997, J MASS SPECTROM, V32, P4437
CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
CHYALL LJ, 1994, J AM CHEM SOC, V116, P3135
CREASER CS, 1996, J CHEM SOC PERK MAR, P427
DEKOSTER CG, 1995, INT J MASS SPECTROM, V141, P1
DOUGLAS DJ, 1998, J AM SOC MASS SPECTR, V9, P101
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FLAMMANG R, 1992, RAPID COMMUN MASS SP, V6, P135
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN94 REVISION
GALLUP GA, 1976, INT J MASS SPECTROM, V22, P185
GOZZO FC, IN PRESS J ORG CHEM
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
GOZZO FC, 1996, J CHEM SOC PERK APR, P587
HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KIM JK, 1982, J AM CHEM SOC, V104, P4624
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
KUNZ H, 1991, COMPREHENSIVE ORGANI, V59, P659
LI R, 1996, INT J MASS SPECTROM, V157, P293
MILLER DL, 1983, ORG MASS SPECTROM, V18, P239
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, UNPUB J ORG CHEM
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J CHEM SOC PERK OCT, P2105
MORAES LAB, 1997, J ORG CHEM, V62, P5096
MOURGUES P, 1993, ORG MASS SPECTROM, V28, P1098
OLAH GA, 1976, CARBONIUM IONS, V5, CH35
PARADISI C, 1988, ORG MASS SPECTROM, V23, P521
RUSLI RD, 1990, CHEM BER, V123, P535
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SMITH RL, 1993, ORG MASS SPECTROM, V28, P1623
SMITH RL, 1995, J AM CHEM SOC, V117, P1393
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
STALEY RH, 1977, J AM CHEM SOC, V99, P5964
STIRK KG, 1991, J AM CHEM SOC, V113, P5880
STIRK KM, 1992, CHEM REV, V92, P1649
STIRK KM, 1992, J AM CHEM SOC, V114, P8604
STIRK KM, 1993, RAPID COMMUN MASS SP, V7, P392
THOEN KK, 1996, J AM CHEM SOC, V118, P8669
TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
VANAMSTERDAM MW, 1993, ORG MASS SPECTROM, V28, P919
YATES BF, 1984, J AM CHEM SOC, V106, P5805
YU SJ, 1993, J AM CHEM SOC, V115, P9676
NR 55
TC 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD NOV 4
PY 1998
VL 120
IS 43
BP 11136
EP 11143
PG 8
SC Chemistry, Multidisciplinary
GA 136JE
UT ISI:000076855000015
ER
PT J
AU Dal Colle, M
Distefano, G
Modelli, A
Jones, D
Guerra, M
Olivato, PR
Ribeiro, DD
TI UV-photoelectron, electron transmission, and dissociative electron
attachment spectroscopies of acetone oximes
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PI-STAR ORBITALS; ULTRAVIOLET PHOTOELECTRON; INTRAMOLECULAR
INTERACTIONS; THIO GROUPS; TERT-BUTYL; AB-INITIO; X-ALPHA; DERIVATIVES;
AFFINITIES; BENZENE
AB The conformation and the electronic structure of several
alpha-heterosubstituted acetone oximes XCH2(CH3)C= NOH (X = H (1), F
(2), Cl (3), CH3O (4), C2H5S (5), and (CH3)(2)N (6)) have been
determined by means of a multidisciplinary approach based on
ultraviolet photoelectron (UP), electron transmission (ET), and
dissociative electron attachment (DEA) spectroscopies and fully
optimized ab initio 6-31G** and MP2/6-31G** calculations. The vertical
ionization energy (IE) and electron affinity (EA) values related to the
HOMO (pi(C=N)) and LUMO (pi*(C=N)) have been determined by the Delta
SCF and Delta MP2 (IE only) procedures. The compounds studied prefer an
anti (E) configuration between the OH and the CH2X group and a gauche
conformation of the C-X bond with respect to the double bond, except 2
and 4 for which a syn (Z) planar structure is nearly degenerate with
the E one. The spectral data, coupled with the results of the
calculations, indicate that the properties of the acetone oximes are
mainly governed by the mixing between the orbitals localized at the X
and C=N fragments and by electrostatic interactions between hydrogen
and the electronegative atoms. When X has poor donor and poor mesomeric
acceptor properties (X = F and OMe), the prevailing interaction is the
strong charge-transfer mixing of the hydroxyl oxygen lone pair with the
pi*(C=N) orbital and the X group moves in the main molecular plane.
C1 Univ Ferrara, Dipartimento Chim, I-44100 Ferrara, Italy.
Univ Bologna, Dipartimento Chim G Ciamician, I-40127 Bologna, Italy.
CNR, ICoCEA, I-40126 Bologna, Italy.
Univ Sao Paulo, Inst Quim, Sao Paulo, Brazil.
RP Distefano, G, Univ Ferrara, Dipartimento Chim, Via Borsari 46, I-44100
Ferrara, Italy.
CR BIERLEIN TK, 1951, ACTA CRYSTALLOGR, V4, P450
BONDI A, 1964, J PHYS CHEM-US, V68, P441
DALCOLLE M, 1995, J PHYS CHEM-US, V99, P15011
DANNENBERG JJ, 1994, J PHYS CHEM-US, V98, P6714
DARGELOS A, 1977, J CHEM PHYS, V67, P3011
DISTEFANO G, 1985, J CHEM SOC P2, P2037
DISTEFANO G, 1987, J CHEM SOC P2, P1459
DISTEFANO G, 1989, J ELECTRON SPECTROSC, V49, P281
DISTEFANO G, 1996, J CHEM SOC PERK AUG, P1661
DISTEFANO G, 1997, J MOL STRUCT THEOCHE, V418, P99
FRISCH MJ, 1995, GAUSSIAN 94
GUERRA M, 1984, CHEM PHYS, V91, P383
GUERRA M, 1990, CHEM PHYS LETT, V167, P315
JOHNSTON AR, 1982, J ELECTRON SPECTROSC, V25, P119
JONES D, 1994, J CHEM SOC P2, P1651
KOOPMANS T, 1933, PHYSICA, V1, P104
KULESHOVA LN, 1981, ACTA CRYSTALLOGR B, V37, P1363
MODELLI A, 1982, CHEM PHYS LETT, V86, P434
MODELLI A, 1983, CHEM PHYS, V77, P153
MODELLI A, 1983, J ELECTRON SPECTROSC, V31, P63
MODELLI A, 1984, TETRAHEDRON, V40, P3257
MODELLI A, 1986, CHEM PHYS LETT, V132, P448
MODELLI A, 1989, CHEM PHYS LETT, V163, P269
MODELLI A, 1990, CHEM PHYS, V145, P89
MODELLI A, 1992, J CHEM PHYS, V96, P2061
OLIVATO PR, 1984, J CHEM SOC P2, P1505
OLIVATO PR, 1995, SPECTROCHIM ACTA A, V51, P1479
OLIVATO PR, 1998, J CHEM SOC PERK JAN, P109
SANCHE L, 1972, PHYS REV A, V5, P1672
WAGNER G, 1974, CHEM BER, V107, P6877
NR 30
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD OCT 8
PY 1998
VL 102
IS 41
BP 8037
EP 8043
PG 7
SC Chemistry, Physical
GA 132EF
UT ISI:000076616800022
ER
PT J
AU Resende, SM
Wagner, B
TI Analysis of the reaction paths to dissociation of dichloro-ethylenes
into Cl-2 and C2H2
SO CHEMICAL PHYSICS
LA English
DT Article
ID AB-INITIO; PHOTOCHEMISTRY
AB The reaction paths to dissociation of dichloro-ethylenes (DCE) into
Cl-2 and acetylene (C2H2) in the gas phase were studied, at the
CCSD(T)/6-311G(d,p)//CASSCF(6,6)/6-31G(d) level of theory, including
zero point energy correction. The structures and energies of reactants,
transition states and products were determined through ab initio
calculations. There are two principal paths to dissociation. One of
them involves a number of transition states and intermediates where
internal rotations, H and Cl migrations are involved until the
dissociation into Cl and C2H2Cl radicals. The activation energy to this
path is about 97 kcal/mol. On the other hand, C2H2Cl radicals were also
predicted to be formed directly from cis- and trans-DCE. In addition,
we have determined several paths to isomerization among the trans-,
cis- and 1,1-dichloro-ethylene. We have concluded that these
isomerization paths have activation energies below to the dissociation
reaction. Therefore, the dissociation process can proceed from every
dichloro-ethylene. (C) 1998 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
RP Wagner, B, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac &
Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR BALDRIDGE KK, 1989, J PHYS CHEM-US, V93, P5107
FRISCH MJ, 1995, GAUSSIAN 94
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
HE GX, 1993, J PHYS CHEM-US, V97, P2186
LAURSEN SL, 1989, J PHYS CHEM-US, V93, P2328
LAURSEN SL, 1990, J PHYS CHEM-US, V94, P8175
LEE TJ, 1989, INT J QUANTUM CHEM S, V23, P199
LIDE DR, 1993, CRC HDB CHEM PHYSICS
RESENDE SM, 1997, MOL PHYS, V91, P635
RESENDE SM, 1998, J CHEM SOC FARADAY T, V94, P2895
RIEHL JF, 1994, J CHEM PHYS, V101, P5942
SCHMIDT M, 1993, J COMPUT CHEM, V14, P1346
NR 12
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD NOV 1
PY 1998
VL 238
IS 1
BP 11
EP 20
PG 10
SC Physics, Atomic, Molecular & Chemical
GA 132AW
UT ISI:000076608400002
ER
PT J
AU Capaz, RB
Dal Pino, A
Joannopoulos, JD
TI Theory of carbon-carbon pairs in silicon.
SO PHYSICAL REVIEW B
LA English
DT Article
ID INTERSTITIAL-CARBON; IRRADIATED SILICON; DEFECTS
AB Interstitial-substitutional carbon pairs (CiCs) in silicon display
interesting metastable behavior associated with two different
structural configurations. In this work, we perform extensive ab initio
calculations on this system. Our results show the following. (i) The
metastable configuration for the neutral charge state displays C-1h
symmetry and it is reminiscent of the isolated interstitial carbon
configuration, i.e., a split interstitial C-Si pair with the
substitutional carbon bonded to the silicon interstitial. (ii) The
ground-state configuration also has C-1h symmetry, but it consists;of a
single silicon interstitial twofold coordinated in an unusual bridge
configuration between two substitutional carbon atoms. With an
activation energy of 0.07 eV, this configuration becomes a
motional-averaged state with C-3v symmetry. (iii) The ground state is
lower in; energy by 0.11 eV with respect to the metastable state. The
jump from one configuration to the other corresponds to a simple
''bond-switching'' mechanism with a calculated energy barrier of 0.13
eV. (iv) Both configurations have two electronic-states in the gap,
with gap-state wave functions consistent with the local bonding of the
defect complex in each case. (v) Analysis of local-mode vibrations on
the ground-state configuration indicates a stronger component in one of
the carbon atoms, which explains the experimentally observed isotope
splittings. Vibrational frequencies for the metastable configuration
are also predicted. All of these results are in satisfactory agreement
with experiments. [S0163-1829(98)07236-1].
C1 Univ Fed Rio de Janeiro, Inst Fis, BR-21945970 Rio De Janeiro, Brazil.
Inst Tecnol Aeronaut, BR-12225 Sao Jose Dos Campos, Brazil.
MIT, Dept Phys, Cambridge, MA 02139 USA.
RP Capaz, RB, Univ Fed Rio de Janeiro, Inst Fis, Caixa Postal 68528,
BR-21945970 Rio De Janeiro, Brazil.
CR BEAN AR, 1970, SOLID STATE COMMUN, V8, P175
BURNARD MJ, 1993, PHYS REV B, V47, P10217
CAPAZ RB, 1994, PHYS REV B, V50, P7439
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
DALPINO A, 1992, PHYS REV B, V45, P3304
DALPINO A, 1993, PHYS REV B, V47, P12554
DAVIES G, 1983, J PHYS C SOLID STATE, V16, P5503
DAVIES G, 1994, HDB SEMICONDUCTORS, V3, P1557
HOHENBERG P, 1964, PHYS REV, V136, B864
JONES R, 1995, MATER SCI FORUM, V196, P785
KEATING PN, 1966, PHYS REV, V145, P637
KOHN W, 1965, PHYS REV, V140, A1133
LEARY P, 1997, PHYS REV B, V55, P2188
MIKKELSEN JC, 1986, MRS S P, V59
NEEDELS M, 1991, MATER RES SOC S P, V209, P102
NEWMAN RC, 1969, J PHYS CHEM SOLIDS, V30, P1492
ODONNELL KP, 1983, PHYSICA B & C, V116, P258
PAULING L, 1960, NATURE CHEM BOND, P85
PAYNE MC, 1992, REV MOD PHYS, V64, P1045
PERDEW J, 1984, PHYS REV B, V23, P5048
RAPPE AM, 1990, PHYS REV B, V41, P1227
SONG LW, 1990, PHYS REV B, V42, P5765
TERSOFF J, 1990, PHYS REV LETT, V64, P1757
WATKINS GD, 1976, PHYS REV LETT, V36, P1329
ZHENG JF, 1994, 2I INT C PHYS SEM, P2363
NR 25
TC 8
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD OCT 15
PY 1998
VL 58
IS 15
BP 9845
EP 9850
PG 6
SC Physics, Condensed Matter
GA 129WJ
UT ISI:000076486800050
ER
PT J
AU Dos Santos, HF
O'Malley, PJ
De Almeida, WB
TI Gas phase and water solution conformational analysis of the herbicide
diuron (DCMU): an ab initio study
SO THEORETICAL CHEMISTRY ACCOUNTS
LA English
DT Article
DE DCMU; diuron; conformational analysis; solvent effect; ab initio
calculation
ID PHOTOSYNTHETIC REACTION CENTER; PHOTOSYSTEM-II; AQUEOUS-SOLUTION; D1
PROTEIN; INHIBITORS; ENERGIES; BINDING
AB In the present work, the conformational equilibrium for the herbicide
diuron (DCMU) has been investigated using high level ab initio
calculations. The solvent effect was included through two different
continuum models: (1) the real cavity IPCM method and (2) the standard
dipole Onsager model SCRF. The effect due to solute-solvent
hydrogen-bond interactions was analyzed considering a hybrid
discreet-continuum model. At the Hartree-Fock level, the gas phase
results showed that only the trans forms (A and B) are present in the
equilibrium mixture, with the relative concentrations found to be 33%
(A) and 67% (B) (HF/6-311+G**//6-31G**). When the electronic
correlation effect is included (MP2/6-31G*//HF/6-31G*), a relative
stabilization of the cis forms was observed, with the conformational
distribution calculated as 38% (A), 50% (B), 6% (C) and 6% (D). The
trans conformations were found to be completely planar, which has been
considered to be a prerequisite for the herbicide binding. In water
solution, the ri ans conformation A should be the most abundant
conformer, the IPCM and SCRF values being ca. 100% and ca. 85%
respectively. The IPCM calculations with the isodensity level set to
0.0005 present a conformational distribution close to that obtained
from the hybrid model [92% (A) and 8% (B)], which has been considered
our best solvent approach. Regarding the biological action of urea-type
herbicides, the results presented here are important, because some QSAR
studies have suggested that the partition coefficient is related to the
herbicide activity, so the conformational equilibrium may play a role
in the biological action.
C1 Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Manchester, Inst Sci & Technol, Dept Chem, Manchester M60 1QD, Lancs, England.
RP Dos Santos, HF, Univ Fed Minas Gerais, ICEx, Dept Quim, Lab Quim
Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR BOWYER J, 1990, Z NATURFORSCH C, V45, P379
CRAMER CJ, 1992, J COMPUT AID MOL DES, V6, P629
CREUZET S, 1989, Z NATURFORSCH C, V44, P435
DEALMEIDA WB, 1992, THEOCHEM, V253, P349
DEALMEIDA WB, 1995, STRUCT CHEM, V6, P383
DEISENHOFER J, 1985, NATURE, V318, P618
DOSSANTOS HF, 1998, J PHARM SCI, V87, P190
DRABER W, 1991, ANGEW CHEM INT EDIT, V30, P1621
FORESMAN JB, 1996, J PHYS CHEM-US, V100, P16098
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HANSCH C, 1995, CHEM BIOL ACS PROFES, P459
KARELSON M, 1996, CHEM REV, V96, P1027
KUBINYI H, 1993, QSAR HANSCH ANAL REL
LI GS, 1997, J PHYS CHEM A, V101, P7885
MICHEL H, 1988, BIOCHEMISTRY-US, V27, P1
ONSAGER L, 1936, J AM CHEM SOC, V58, P1486
PFEFER G, 1996, ACTA CRYSTALLOGR B 4, V52, P662
POPLE JA, 1993, ISRAEL J CHEM, V33, P345
SILVA THA, 1997, BIOORGAN MED CHEM, V5, P353
SILVA THA, 1997, STRUCT CHEM, V8, P95
SINNING I, 1992, TRENDS BIOCHEM SCI, V17, P150
SZAFRAN M, 1993, J COMPUT CHEM, V14, P371
TREBST A, 1984, Z NATURFORSCH C, V39, P405
TREBST A, 1993, PHYTOCHEMISTRY, V33, P969
VOET D, 1995, BIOCHEMISTRY
WIBERG KB, 1995, J AM CHEM SOC, V117, P4261
WIBERG KB, 1995, J PHYS CHEM-US, V99, P9072
WIBERG KB, 1996, J COMPUT CHEM, V17, P185
NR 28
TC 7
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1432-881X
J9 THEOR CHEM ACC
JI Theor. Chem. Acc.
PD SEP
PY 1998
VL 99
IS 5
BP 301
EP 311
PG 11
SC Chemistry, Physical
GA 125RC
UT ISI:000076250000004
ER
PT J
AU de Brito Mota, F
Justo, JF
Fazzio, A
TI Structural properties of amorphous silicon nitride
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRONIC-STRUCTURE; INTERATOMIC POTENTIALS; MOLECULAR-DYNAMICS;
BETA-SI3N4; CHEMISTRY; SYSTEMS; BOND
AB We developed an empirical potential for interactions between Si and N
to describe silicon nitride systems using the Tersoff functional form.
The fitting parameters were found using a set of ab initio and
experimental results of the crystalline phase. Using this empirical
model, we explored the structural properties of amorphous silicon
nitride through Monte Carlo simulations, and compared them to available
experimental data. The good description of the a-SiNx system for a wide
range of nitrogen contents (0 < x < 1.5) shows the reliability of this
model.
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
UFBA, Inst Fis, BR-40210340 Salvador, BA, Brazil.
RP de Brito Mota, F, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao
Paulo, Brazil.
CR AIYAMA T, 1979, J NONCRYSTALLINE SOL, V33, P131
ALLEN MP, 1987, COMPUTER SIMULATION
BALAMANE H, 1992, PHYS REV B, V46, P2250
BORGEN O, 1961, ACTA CHEM SCAND, V15, P1789
CUNHA C, 1993, PHYS REV B, V48, P17806
FLETCHER R, 1963, COMPUT J, V6, P163
FROHMANBENTCHKO.D, 1969, J APPL PHYS, V40, P3307
GRUN R, 1979, ACTA CRYSTALLOGR B, V35, P800
GURAYA MM, 1990, PHYS REV B, V42, P5677
HABRAKEN FHPM, 1994, MAT SCI ENG R, V12, P123
HARDIE D, 1957, NATURE, V180, P331
HERZBERG G, 1945, DIATOMIC MOL
KALIA RK, 1997, PHYS REV LETT, V78, P2144
KALIA RK, 1997, PHYS REV LETT, V78, P689
KATZ RN, 1980, SCIENCE, V208, P841
LIU AY, 1990, PHYS REV B, V41, P10727
MARTINMORENO L, 1987, PHYS REV B, V35, P9683
MCDONALD IR, 1972, MOL PHYS, V23, P41
MISAWA M, 1979, J NONCRYSTALLINE SOL, V34, P313
NIIHARA K, 1977, J MATER SCI, V12, P1233
PEPPER M, 1980, INSULATING FILMS SEM, V50, P193
POWELL MJ, 1981, APPL PHYS LETT, V38, P794
ROBERTSON J, 1991, PHILOS MAG B, V63, P44
SANFABIAN E, 1989, PHYS REV B, V39, P1844
TERSOFF J, 1986, PHYS REV LETT, V56, P632
TERSOFF J, 1988, PHYS REV B, V37, P6991
TERSOFF J, 1989, PHYS REV B, V39, P5566
UMESAKI N, 1992, J NON-CRYST SOLIDS, V150, P120
VASHISHTA P, 1990, PHYS REV B, V41, P12197
VASSILOU B, 1957, NATURE, V179, P435
VENEZUELA PPM, 1996, PHYS REV LETT, V77, P546
WYCKOFF RWG, 1986, CRYSTAL STRUCTURES
XU Y, 1988, PHYSICA B, V150, P32
NR 33
TC 32
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD OCT 1
PY 1998
VL 58
IS 13
BP 8323
EP 8328
PG 6
SC Physics, Condensed Matter
GA 125HU
UT ISI:000076232100036
ER
PT J
AU Resende, SM
Pliego, JR
De Almeida, WB
TI Free radical mechanism of the Cl-2 addition to acetylene
SO JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS
LA English
DT Article
ID MOLECULAR ELECTRONIC WAVEFUNCTIONS; ATOMS; SUBSTITUTIONS; INTERMEDIATE;
COMPLEXES; CHLORINE; SIGMA; C2H2
AB The free radical mechanism for the addition of Cl-2 to acetylene in the
gas phase has been studied. The structures and energies of reactants,
transition states and products were determined through ab initio
calculations of the stationary points on the potential-energy surface
(PES) for the interaction of these two molecules. Using BD(T)/6-311 +
G(2df,2p)//CASSCF(6,6)/6-31G(d,p) level of theory, the reaction rate
for the initiation step (Cl-2 + C2H2 --> Cl + C2H2Cl) was estimated as
10(-18) 1 mol(-1) s(-1) (at 298.15 K). This leads to the formation of a
small quantity of Cl and C2H2Cl radicals, the chain propagators, and
the following steps will only occur to an appreciable extent after an
induction period, which generates a measurable amount of these
radicals. The following steps were studied at the UCCSD(T)/6-311 +
G(2df,2p)//UMP2/6-31G(d,p) level of theory. The propagation reaction
C2H2 + Cl --> C2H2Cl occurs with an activation energy of -1.22 kcal
mol(-1), and produces a radical C2H2Cl, where the two hydrogens are on
opposite sides of the molecule (trans-isomer). This reaction has a rate
constant 2.85 x 10(10) 1 mol(-1) s(-1) at 298.15 K. The interconversion
of the two isomers of the C2H2Cl radical (cis-trans) is very fast, with
a rate constant 4.75 x 10(10) s(-1) and so these species can be
considered to be in equilibrium. The rate constants for the reaction
C2H2Cl + Cl-2 --> C2H2Cl2 + Cl, where the products trans- and
cis-1,2-dichloroethylenes are formed, are 1.95 x 10(10) and 3.63 x
10(9) 1 mol-l s(-1), respectively, and those for the two polymerization
reactions C2H2 + C2H2Cl --> C2H2C2H2Cl are ca. 10(2) 1 mol(-1) s(-1).
Hence, the latter reactions will not compete with the formation of
C2H2Cl2, and the polymerization products will not be produced in
meaningful amounts. Analysis of the kinetics data gives 97.3% of the
trans-1,2-dichloroethylene and 2.7% of the cis-1,2-dichloroethylene
products.
C1 UFMG, Dept Quim, Lab Quim Computac & Modelagem Mol, ICEX, BR-31270901 Belo Horizonte, MG, Brazil.
RP Resende, SM, UFMG, Dept Quim, Lab Quim Computac & Modelagem Mol, ICEX,
BR-31270901 Belo Horizonte, MG, Brazil.
CR BARTLETT RJ, 1989, J PHYS CHEM-US, V93, P1697
BARTON D, 1979, COMPREHENSIVE ORGANI, V1
BLOEMINK HI, 1994, CHEM PHYS LETT, V223, P162
BLOEMINK HI, 1995, J CHEM SOC FARADAY T, V91, P1891
CIZEK J, 1966, J CHEM PHYS, V45, P4256
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HANDY NC, 1989, CHEM PHYS LETT, V164, P185
KAISER EW, 1992, INT J CHEM KINET, V24, P179
KAISER EW, 1996, J PHYS CHEM-US, V100, P4111
KRISHNAN R, 1980, J CHEM PHYS, V72, P4244
LEGON AC, 1995, CHEM PHYS LETT, V237, P291
LIDE DR, 1993, CRC HDB CHEM PHYSICS
MARCH J, 1985, ADV ORGANIC CHEM REA
MOLLER C, 1934, PHYS REV, V46, P618
PALDUS J, 1972, PHYS REV A, V5, P50
POPLE JA, 1976, INT J QUANTUM CHEM S, V10, P1
POUTSMA MZ, 1966, TETRAHEDRON, V22, P2167
RESENDE SM, 1997, MOL PHYS, V91, P635
ROOS BO, 1987, ADV CHEM PHYSICS, V69
RUEDENBERG K, 1982, CHEM PHYS, V71, P41
RUEDENBERG K, 1982, CHEM PHYS, V71, P51
RUEDENBERG K, 1982, CHEM PHYS, V71, P65
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SIEGBAHN PEM, 1981, J CHEM PHYS, V74, P2384
NR 24
TC 4
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE CB4 0WF,
CAMBS, ENGLAND
SN 0956-5000
J9 J CHEM SOC FARADAY TRANS
JI J. Chem. Soc.-Faraday Trans.
PD OCT 7
PY 1998
VL 94
IS 19
BP 2895
EP 2900
PG 6
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA 126HM
UT ISI:000076287900004
ER
PT J
AU Lopez-Castillo, A
TI Nonlinear dynamics of the hydrogen molecule
SO PHYSICAL REVIEW A
LA English
DT Article
ID 3-BODY COULOMB PROBLEM; HELIUM ATOM; QUANTUM DEFECTS; STATES;
QUANTIZATION; H-2; MODEL
AB The hydrogen molecule (H-2) contains the basic ingredients for
understanding the chemical bond, even more so than the hydrogen
molecule ion. H-2 is studied in the context of nonlinear dynamics. The
classical mechanics of H-2 is studied in three dimensions with nine,
six, and three degrees of freedom and in one dimension (two degrees of
freedom). The semiclassical quantization is made using the
Bohr-Sommerfeld rules and the Gutzwiller formula to calculate the
eigenvalues of the doubly occupied symmetric excited states of H-2. An
ab initio quantum calculation is performed and compared with
semiclassical results. The difficulties that appear in those
calculations are discussed, and a proposal of the experimental measure
is made.
C1 Univ Fed Sao Carlos, Dept Matemat, Ctr Ciencias & Tecnol, BR-13560970 Sao Paulo, Brazil.
RP Lopez-Castillo, A, Univ Fed Sao Carlos, Dept Matemat, Ctr Ciencias &
Tecnol, Caixa Postal 676, BR-13560970 Sao Paulo, Brazil.
CR BARANGER M, 1987, ANN PHYS-NEW YORK, V177, P330
BATES DR, 1953, PHILOS T ROY SOC A, V246, P215
BAUSCHLICHER CW, 1989, CHEM PHYS LETT, V159, P485
BOHR N, 1913, PHILOS MAG, V25, P10
COVENEY PV, 1984, J PHYS B ATOM MOL PH, V17, P319
DUAN YW, 1995, PHYS REV A, V52, P3497
EBERLY JH, 1990, PHYS REV A, V42, P5750
ERIKSON HA, 1949, PHYS REV, V75, P29
EZRA GS, 1991, J PHYS B ATOM MOL PH, V24, L413
GUBERMAN SL, 1983, J CHEM PHYS, V78, P1404
KRAGH H, 1977, J CHEM EDUC, V54, P208
LEOPOLD JG, 1980, J PHYS B ATOM MOL PH, V13, P1025
LEOPOLD JG, 1980, J PHYS B ATOM MOL PH, V13, P1037
LOPEZCASTILLO A, 1996, J PHYS B-AT MOL OPT, V29, P197
LOPEZCASTILLO A, 1996, PHYS REV LETT, V77, P4516
MENIS T, 1992, J PHYS B ATOM MOL PH, V25, L263
MULLER J, 1995, J CHEM PHYS, V103, P4985
OSTROVSKY VN, 1997, J PHYS B-AT MOL OPT, V30, P151
PAULI W, 1922, ANN PHYS-BERLIN, V68, P177
RAWLINGS D, 1991, MOTTEC 91, P381
RICHTER K, 1992, J PHYS B ATOM MOL PH, V25, P3929
SHIMAMURA I, 1990, PHYS REV A, V41, P3545
STIEFEL EL, 1971, LINEAR REGULAR CELES
STRAND MP, 1979, J CHEM PHYS, V70, P3812
SUGIURA Y, 1927, Z PHYS, V45, P484
TAKAGI H, 1983, PHYS REV A, V27, P691
VANVLECK JH, 1922, PHILOS MAG, V44, P842
WINTGEN D, 1988, PHYS REV LETT, V61, P1803
WINTGEN D, 1992, CHAOS, V2, P19
NR 29
TC 4
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1050-2947
J9 PHYS REV A
JI Phys. Rev. A
PD SEP
PY 1998
VL 58
IS 3
BP 1846
EP 1858
PG 13
SC Physics, Atomic, Molecular & Chemical; Optics
GA 116MY
UT ISI:000075730200031
ER
PT J
AU De Almeida, WB
Dos Santos, HF
Zerner, MC
TI A theoretical study of the interaction of anhydrotetracycline with
Al(III)
SO JOURNAL OF PHARMACEUTICAL SCIENCES
LA English
DT Article
ID SOLVENT; TETRACYCLINE; ALUMINUM; PRODUCT; AM1
AB In this article the complexation of anhydrotetracycline (AHTC), the
major toxic decomposition product of the antibiotic tetracycline, with
Al(III) has been investigated using the AM1 semiempirical and ab initio
Hartree-Fock levels of theory. Different modes of complexation have
been considered with the structure of tetra- and pentacoordinated
complexes being fully optimized, In the gas phase, processes ii and
iii, which lead to the complexes with stoichiometry MHL2+, are favored.
Structure II ([AlLH2(OH)(H2O)](2+)) has the metal coordinated to the
O-11 and O-12 groups and the O-3 group protonated and is the global
minimum on the potential energy surface for the interaction. In water
solution, the Al(III) is predicted to form predominantly a
tetracoordinated complex at the O-am and O-3 site (V) of the AHTC with
the stoichiometry MH2L3+ (process i). The experimental proposal is the
complexed form with the metal ion coordinated to the O-11-O-12 moiety
(site II). The intramolecular proton transfer, which leads to the most
stable Al(III)-AHTC MHL2+ complex, has not been considered by the
experimentalists. The experimental structure was found to be
unfavorable in our calculations in both gas phase and water solution.
All the semiempirical results are in perfect agreement with the ab
initio calculations. So, we suggest that the experimental assignments
should be revised, taking into account the results obtained in the
present study.
C1 UFMG, ICEx, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA.
RP De Almeida, WB, UFMG, ICEx, Dept Quim, Lab Quim Computac & Modelagem
Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR ALVAREZFERNANDE.A, 1969, J PHARM SCI, V58, P443
DEALMEIDA WB, 1997, 6 C CURR TRENDS COMP
DEALMEIDA WB, 1997, J CHEM SOC P2, V7, P1335
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DEWAR MJS, 1990, ORGANOMETALLICS, V9, P508
DOSSANTOS HF, 1998, J PHARM SCI, V87, P190
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HASAN T, 1985, J ORG CHEM, V50, P1755
KARELSON M, 1993, J PHYS CHEM-US, V97, P11901
KLANT A, 1993, J CHEM SOC P2, P799
LAMBS L, 1988, INORG CHEM, V27, P3001
MACHADO FC, 1995, J INORG BIOCHEM, V60, P163
MARTIN RB, 1994, ACCOUNTS CHEM RES, V27, P204
PALENIK GJ, 1978, J AM CHEM SOC, V100, P4458
RIVAIL JL, 1996, COMPUTATIONAL CHEM R, V1, P139
SIQUEIRA JM, 1994, J PHARM SCI, V83, P291
SZAFRAN M, 1993, J COMPUT CHEM, V14, P371
TOMASI J, 1994, CHEM REV, V94, P2027
WARSHEL A, 1981, ACCOUNTS CHEM RES, V14, P284
NR 19
TC 13
PU AMER PHARMACEUTICAL ASSN
PI WASHINGTON
PA 2215 CONSTITUTION AVE NW, WASHINGTON, DC 20037 USA
SN 0022-3549
J9 J PHARM SCI
JI J. Pharm. Sci.
PD SEP
PY 1998
VL 87
IS 9
BP 1101
EP 1108
PG 8
SC Chemistry, Medicinal; Chemistry, Multidisciplinary; Pharmacology &
Pharmacy
GA 117MQ
UT ISI:000075785600012
ER
PT J
AU Aleman, C
Casanovas, J
Galembeck, SE
TI PAPQMD parametrization of molecular systems with cyclopropyl rings:
Conformational study of homopeptides constituted by
l-aminocyclopropane-l-carboxylic acid
SO JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN
LA English
DT Article
DE MM and MD techniques; homopeptides; parametrization
ID FORCE-FIELD PARAMETRIZATION; ELECTROSTATIC POTENTIALS; NUCLEIC-ACIDS;
AMINO-ACIDS; AB-INITIO; C-ALPHA,ALPHA-DIALKYLATED GLYCINES; STRUCTURAL
VERSATILITY; ORGANIC-MOLECULES; ENERGY FUNCTIONS; ATOMIC CHARGES
AB The suitability of ab initio, semiempirical and density functional
methods as sources of stretching and bending parameters has been
explored using the PAPQMD (Program for Approximate Parametrization from
Quantum Mechanical Data) strategy. Results show that semiempirical
methods provide parameters comparable to those compiled on empirical
force fields. In this respect the AMI method seems to be a good method
to obtain parameters at a minimum computational cost. On the other
hand, harmonic force fields initially developed for proteins and DNA
have been extended to include compounds containing highly strained
three-membered rings, Like 1-aminocyclopropane-1-carboxylic acid. For
this purpose the cyclopropyl ring has been explicitly parametrized at
the AMI level considering different chemical environments. Finally, the
new set of parameters has been used to investigate the conformational
preferences of homopeptides constituted by
1-aminocyclopropane-1-carboxylic acid. Results indicate that such
compounds tend to adopt a helical conformation stabilized by
intramolecular hydrogen bonds between residues i and i + 3. This
conformation allows the arrangement of the cyclic side chains without
steric clashes.
C1 Univ Politecn Catalunya, ETS Enginyers Ind, Dept Enginyeriia Quim, E-08028 Barcelona, Spain.
Univ Rovira & Virgili, Fac Quim, Dept Quim Fis & Inorgan, E-43005 Tarragona, Spain.
Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Quim, BR-14049901 Ribeirao Preto, Brazil.
RP Aleman, C, Univ Politecn Catalunya, ETS Enginyers Ind, Dept Enginyeriia
Quim, Av Diagonal 647, E-08028 Barcelona, Spain.
CR ALEMAN C, 1991, J COMPUT CHEM, V12, P664
ALEMAN C, 1992, BIOPOLYMERS, V32, P621
ALEMAN C, 1992, J COMPUT AID MOL DES, V6, P331
ALEMAN C, 1993, BIOPOLYMERS, V33, P1811
ALEMAN C, 1993, J COMPUT AID MOL DES, V7, P721
ALEMAN C, 1993, J COMPUT CHEM, V14, P799
ALEMAN C, 1993, J COMPUT CHEM, V14, P799
ALEMAN C, 1994, BIOPOLYMERS, V34, P941
ALEMAN C, 1994, J CHEM SOC P2, P563
ALEMAN C, 1995, J ORG CHEM, V60, P910
ALEMAN C, 1996, J POLYM SCI POL PHYS, V34, P963
ALEMAN C, 1997, J PHYS CHEM B, V101, P5046
ALEMAN C, 1997, PROTEINS, V28, P83
ALEMAN C, 1997, PROTEINS, V29, P575
ALHAMBRA C, 1994, J COMPUT CHEM, V15, P12
ALLINGER NL, 1977, J AM CHEM SOC, V99, P8127
ALLINGER NL, 1989, J AM CHEM SOC, V111, P8551
BAGUS PS, 1977, J CHEM PHYS, V67, P618
BAKOWIES D, 1996, J COMPUT CHEM, V17, P87
BALARAM P, 1992, CURR OPINI STRUCT BI, V2, P1845
BEEKE AD, 1988, PHYS REV A, V38, P3098
BENEDETTI E, 1989, BIOPOLYMERS, V28, P175
BENEDETTI E, 1989, INT J BIOL MACROMOL, V11, P353
BIRNGHAM RC, 1975, J AM CHEM SOC, V97, P1285
BROOKS BR, 1983, J COMPUT CHEM, V4, P187
BROOKS CL, 1988, PROTEINS THEORETICAL
BUCK CW, 1990, J COMPUT CHEM, V11, P623
CHALLACOMBE M, 1991, J CHEM PHYS, V95, P1064
CLARK M, 1989, J COMPUT CHEM, V10, P982
CORNELL WD, 1995, J AM CHEM SOC, V117, P5179
COX SR, 1984, J COMPUT CHEM, V5, P191
DECLERCQ E, 1993, MED RES REV, V13, P229
DECLERCQ E, 1995, J MED CHEM, V38, P2491
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DIBLASIO B, 1993, BIOPOLYMERS, V33, P1037
DINUR U, 1989, J AM CHEM SOC, V111, P5149
DINUR U, 1990, J COMPUT CHEM, V11, P1234
DUNCAN JL, 1969, J MOL SPECTROSC, V30, P253
FERENCZY GG, 1990, J COMPUT CHEM, V11, P159
FOGARASI G, 1984, ANNU REV PHYS CHEM, V35, P191
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
HAGLER AT, 1974, J AM CHEM SOC, V96, P5319
HARIHARAN PC, 1974, MOL PHYS, V27, P209
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HERMANS J, 1984, BIOPOLYMERS, V23, P1513
HOPFINGER AJ, 1984, J COMPUT CHEM, V5, P486
HWANG MJ, 1994, J AM CHEM SOC, V116, P2515
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
KARLE IL, 1990, CURR SCI INDIA, V59, P875
KARPLUS M, 1990, NATURE, V347, P631
KOLLMAN P, 1990, AMBER 3 0A
KOTTALAM J, 1990, BIOPOLYMERS, V29, P1409
LEE C, 1988, PHYS REV B, V37, P785
LEE JH, 1991, J COMPUT CHEM, V12, P186
LEONARD JM, 1990, J COMPUT CHEM, V11, P952
LUQUE FJ, 1991, J AM CHEM SOC, V113, P5203
MAPLE JR, 1988, P NATL ACAD SCI USA, V85, P5350
MOMMANY FA, 1975, J PHYS CHEM-US, V79, P2361
NILSSON L, 1986, J COMPUT CHEM, V7, P591
OLIVELLA S, 1984, QCPE B, V4, P109
OROZCO M, 1990, J COMPUT CHEM, V11, P909
OROZCO M, 1993, ACTA CHIM HUNG, V130, P695
OROZCO M, 1993, J COMPUT CHEM, V14, P881
PARK JM, 1995, J COMPUT CHEM, V16, P1011
PRANATA J, 1991, J AM CHEM SOC, V113, P2810
PULAY P, 1978, J CHEM PHYS, V68, P5077
PULAY P, 1983, J CHEM PHYS, V79, P3382
REN J, 1995, NAT STRUCT BIOL, V2, P293
REYNOLDS CA, 1992, J AM CHEM SOC, V114, P9075
SERRALLACH A, 1974, J MOL SPECTROSC, V52, P94
SINGH UC, 1984, J COMPUT CHEM, V5, P191
SMYTHE ML, 1995, J AM CHEM SOC, V117, P5445
STEWART JJP, 1983, Q C P E B, V3, P101
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
TONIOLO C, 1991, MACROMOLECULES, V24, P4004
VANGUNSTEREN WF, 1990, ANGEW CHEM INT EDIT, V29, P992
WEINER SJ, 1986, J COMPUT CHEM, V7, P230
WILLIAMS DE, 1988, J COMPUT CHEM, V9, P745
WILLIAMS DE, 1990, BIOPOLYMERS, V29, P1397
WILLIAMS RW, 1991, J COMPUT CHEM, V12, P761
YAMAGUCHI Y, 1980, J CHEM PHYS, V73, P2310
YAMAMOTO S, 1985, J PHYS CHEM-US, V89, P3298
ZHANG L, 1994, J AM CHEM SOC, V116, P11915
NR 84
TC 9
PU KLUWER ACADEMIC PUBL
PI DORDRECHT
PA SPUIBOULEVARD 50, PO BOX 17, 3300 AA DORDRECHT, NETHERLANDS
SN 0920-654X
J9 J COMPUT AID MOLEC DESIGN
JI J. Comput.-Aided Mol. Des.
PD MAY
PY 1998
VL 12
IS 3
BP 259
EP 273
PG 15
SC Computer Science, Interdisciplinary Applications; Biochemistry &
Molecular Biology; Biophysics
GA 116PR
UT ISI:000075734200004
ER
PT J
AU Sambrano, JR
de Sousa, AR
Queralt, JJ
Andres, J
Longo, E
TI A theoretical analysis on the intramolecular proton transfer of
alpha-alanine in an aqueous medium
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID AXES ELLIPSOIDAL CAVITY; GAS-PHASE; AB-INITIO; NONPERFECT
SYNCHRONIZATION; ABINITIO; GLYCINE; SOLVENT; ACETALDEHYDE; ZWITTERION;
ALGORITHM
AB Intramolecular proton transfer from oxygen to nitrogen atoms in the
alpha-alanine amino acid has been studied by ab initio methods at the
HF/6-31G*, HF/6-31 ++ G** and MP2/6-31 ++ G** levels of calculation
including the solvent effects by means of self-consistent reaction
field theory. An analysis of the results based on the natural bond
orbital charges shows that the transition structure presents an
imbalance in the sense that the charge shift lags behind the proton
transfer and that the bond formation is always in advance with respect
to the bond cleavage. All calculation levels show that the barrier
height associated with the conformational change on alpha-alanine is
larger than the proton transfer process. (C) 1998 Elsevier Science B.V.
All rights reserved.
C1 Univ Jaume I, Dept Ciencias Expt, Castello 12080, Spain.
Univ Estadual Paulista, Dept Matemat, BR-17030360 Bauru, SP, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Queralt, JJ, Univ Jaume I, Dept Ciencias Expt, Apartat 224, Castello
12080, Spain.
EM queralt@vents.uji.es
CR ANDRES J, 1997, RRD PHYS CHEM, V1, P99
BAKER J, 1986, J COMPUT CHEM, V7, P385
BAKER J, 1987, J COMPUT CHEM, V8, P563
BERNASCONI CF, 1987, ACCOUNTS CHEM RES, V20, P301
BERNASCONI CF, 1992, ACCOUNTS CHEM RES, V25, P9
BERNASCONI CF, 1992, ADV PHYS ORG CHEM, V27, P116
BERNASCONI CF, 1994, J AM CHEM SOC, V116, P5405
BERNASCONI CF, 1996, J AM CHEM SOC, V118, P10494
BONACCORSI R, 1984, J AM CHEM SOC, V106, P1945
BORGIS D, 1989, ENZYME CATALYSIS PRO
CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
CSASZAR AG, 1996, J PHYS CHEM-US, V100, P3541
DING YB, 1992, CHEM PHYS LETT, V199, P261
FERSHT A, 1985, ENZYME STRUCTURE MEC
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
JEFFREY GA, 1991, HYDROGEN BONDING BIO
KIRBY AJ, 1997, ACCOUNTS CHEM RES, V30, P290
LODISH H, 1995, MOL CELL BIOL
MIASKIEWICZ K, 1990, J SOLUTION CHEM, V19, P465
MOLLER C, 1934, PHYS REV, V46, P618
MOYANO A, 1989, J ORG CHEM, V54, P573
NAVARRETE JTL, 1997, THEOR CHEM ACC, V98, P5
QUERALT JJ, 1998, CHEM PHYS LETT, V283, P294
QUERALT JJ, 1998, CHEM PHYS, V229, P125
REED AE, 1988, CHEM REV, V88, P899
RINALDI D, 1983, J CHEM PHYS, V78, P834
RINALDI R, 1992, 622 QCPE IND U
RIVAIL JL, 1976, CHEM PHYS, V18, P233
RIVAIL JL, 1982, J CHIM PHYS PCB, V79, P1
STEWART R, 1985, PROTON APPL ORGANIC
TOMASI J, 1994, CHEM REV, V94, P2027
TOMASI J, 1994, STRUCTURE REACTIVITY, P10
TORTONDA FR, 1996, CHEM PHYS LETT, V260, P21
NR 33
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 11
PY 1998
VL 294
IS 1-3
BP 1
EP 8
PG 8
SC Physics, Atomic, Molecular & Chemical
GA 118WP
UT ISI:000075864200001
ER
PT J
AU Almeida, AL
Martins, JBL
Taft, CA
Longo, E
Lester, WA
TI Ab initio and semiempirical studies of the adsorption and dissociation
of water on pure, defective, and doped MgO (001) surfaces
SO JOURNAL OF CHEMICAL PHYSICS
LA English
DT Article
ID LARGE CLUSTER-MODELS; MAGNESIUM-OXIDE; CO INTERACTION;
ELECTRONIC-STRUCTURE; OXIDATIVE DIMERIZATION; CHARGE-DISTRIBUTION;
3D-METAL SURFACES; SOLID HYDROXIDES; ZNO SURFACES; HYDROGEN
AB Ab initio and semiempirical calculations of large cluster models have
been performed in order to study water adsorption and dissociation on
pure, defective (vacancies) and doped (Li, Na, K, Ca, Fe) MgO (001)
surfaces. The geometries of the adsorbed and dissociated molecules have
been optimized preparatory to analysis of binding energies, stretching
frequencies, charge transfers, preferential sites of interaction, and
bond distances. We have used Mulliken, natural bond order, and
electrostatic-derived atomic and overlap populations to analyze charge
distributions in the clusters. We have also investigated transition
structures, activation energies, energy gaps, HOMO, density of states,
SCF orbital energies as well as the acid-base properties of our cluster
model. Numerical results are compared, where possible, with experiment,
interpreted in the framework of various analytical models, and
correlated with site coordination numbers, corner and edge site
preferential locations, and direction of charge transfer. A thorough
charge analysis indicates substantial charge redistribution in the
magnesium oxide crystal as a result of water adsorption and
dissociation in pure, defective, and doped MgO crystals. The
introduction of heavier impurities and vacancies could produce
substantial changes in the physical and chemical properties of the
catalyst and increase the binding and dissociation energies. Some of
the largest changes originate from the introduction of vacancies. Two
and three-dimensional potential energy surfaces are used to investigate
activation energies of hydroxylation on the MgO surface. Stretching
frequencies are correlated with magnesium and oxygen coordination
numbers. (C) 1998 American Institute of Physics.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estat, BR-22290180 Rio De Janeiro, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA.
Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA.
RP Almeida, AL, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
Estat, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil.
CR ALMEIDA AL, 1996, UNPUB 4 WORLD C THEO
ANCHELL JL, 1996, J PHYS CHEM-US, V100, P18317
ANDRE JM, 1977, THEOR CHIM ACTA, V43, P239
BECKENKAMP K, 1992, J MOL STRUCT, V270, P393
BESLER BH, 1990, J COMPUT CHEM, V11, P431
BOEHM HP, 1983, CATALYSIS SCI TECHNO, V4, P39
BOUDART M, 1972, J AM CHEM SOC, V94, P6622
CARNEIRO JWD, 1987, J MOL STRUCT THEOCHE, V152, P281
CARNEIRO JWD, 1993, CHEM PHYS LETT, V202, P278
CAUSA M, 1986, PHYS REV B, V33, P1308
CHACONTAYLOR MR, 1996, J PHYS CHEM-US, V100, P7610
COLBOURN EA, 1982, SURF SCI, V117, P571
DAVYDOV AA, 1990, INFRARED SPECTROSCOP
DELEEUW NH, 1995, J PHYS CHEM-US, V99, P17219
DEROUANE EG, 1974, CHEM PHYS LETT, V28, P445
ERMOSHKIN AN, 1982, J PHYS C SOLID STATE, V15, P847
FOTY DC, 1977, J CATAL, V147, P2160
FRISCH MJ, 1992, GAUSSIAN 92
FUKUI K, MECH MOL MIGRATIONS, P2
FUKUI K, 1964, MOL ORBITALS CHEM PH
FUKUI K, 1965, TETRAHEDRON LETT, P4303
FUKUI K, 1966, TETRAHEDRON LETT, P51
GONIAKOWSKI J, 1993, SURF SCI, V287, P188
GONIAKOWSKI J, 1994, SURF SCI, V319, P68
GONIAKOWSKI J, 1994, SURF SCI, V68, P3198
GONIAKOWSKI J, 1995, SURF SCI, V323, P129
GUIMARES TC, IN PRESS PHYS REV B
HAY PJ, 1985, J CHEM PHYS, V82, P270
HERMANSSON K, 1991, J CHEM PHYS, V95, P3578
ITO T, 1985, J AM CHEM SOC, V107, P5062
ITO T, 1985, NATURE, V314, P721
JONES CF, 1984, J CHEM SOC FARAD T 1, V80, P2609
JUJIOKA HH, 1985, SURF SCI LETT, V149, L53
KNOZINGER E, 1993, SURF SCI, V290, P383
KRESIN VZ, 1992, CHEM PHYS LETT, V197, P1
KUNZ AB, 1976, INT J QUANTUM CHEM S, V10, P283
KUNZ AB, 1977, CHEM PHYS LETT, V45, P18
LANGEL W, 1994, PHYS REV LETT, V73, P504
LANGEL W, 1995, J CHEM PHYS, V103, P3240
LEMBERTON JL, 1984, J CATAL, V89, P69
LIANG SHC, 1986, J CATAL, V101, P293
LIN CH, 1987, J AM CHEM SOC, V109, P4808
LONGO E, 1985, ADV CERAM, V10, P592
LONGO E, 1985, LANGMUIR, V1, P456
LONGO E, 1987, HIGH TECH CERAMICS, P399
LUTZ HD, 1987, J MOL STRUCT, V156, P143
MARS P, 1963, ADV CATAL, V14, P35
MARTINS JBL, 1994, J MOL STRUCT, V303, P19
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
MARTINS JBL, 1995, J MOL STRUCT, V330, P411
MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
MARTINS JBL, 1996, THEOCHEM-J MOL STRUC, V363, P249
MCCARTHY MI, 1996, J PHYS CHEM-US, V100, P16990
OKAZAKI S, 1989, J CHEM PHYS, V90, P5595
ONISHI H, 1987, SURF SCI, V191, P479
PACCHIONI G, 1993, PHYS REV B, V48, P573
PAVAO AC, 1991, PHYS REV B, V43, P6962
PAVAO AC, 1991, PHYS REV B, V44, P1910
PAVAO AC, 1994, PHYS REV B, V50, P1868
PAVAO AC, 1994, TRENDS CHEM PHYS, V3, P109
PAVAO AC, 1995, SURF SCI, V323, P340
PAVAO AC, 1995, SURF SCI, V323, P40
PICAUD S, 1993, CHEM PHYS LETT, V209, P340
REED AE, 1985, J CHEM PHYS, V83, P735
RUSSO S, 1992, SURF SCI, V262, P245
SAWABE K, 1994, J CHEM PHYS, V101, P4819
SCAMEHORN CA, 1993, J CHEM PHYS, V99, P2786
SCHONBERGER U, 1995, PHYS REV B, V52, P8788
SEIDL PR, 1988, CHEM PHYS LETT, V373, P1147
SEIDL PR, 1990, CHEM PHYS LETT, V175, P183
SHIDO T, 1984, J CATAL, V89, P69
SHIDO T, 1989, J CHEM SOC FARAD T 1, V85, P441
SINGH UC, 1984, J COMPUT CHEM, V5, P129
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STIRNIMAN MJ, 1996, J CHEM PHYS, V105, P1295
TAFT CA, 1966, CHEM PHYS LETT, V248, P1164
TOSTES JGR, 1994, J MOL STRUCT THEOCHE, V306, P1019
TOSTES JGR, 1995, CHEM PHYS LETT, V237, P33
TOSTES JR, 1996, THEOCHEM-J MOL STRUC, V388, P85
TSYGANENKO AA, 1973, J MOL STRUCT, V19, P579
NR 80
TC 16
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY
11797-2999 USA
SN 0021-9606
J9 J CHEM PHYS
JI J. Chem. Phys.
PD SEP 1
PY 1998
VL 109
IS 9
BP 3671
EP 3685
PG 15
SC Physics, Atomic, Molecular & Chemical
GA 114ZP
UT ISI:000075639300042
ER
PT J
AU Mendes, MA
Moraes, LAB
Sparrapan, R
Eberlin, MN
Kostiainen, R
Kotiaho, T
TI Oxygen atom transfer to positive ions: A novel reaction of ozone in the
gas phase
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID MASS-SPECTROMETRY; ACYLIUM IONS; RADICAL-CATION; KINETICS; CHEMISTRY;
O3; MECHANISMS; ATMOSPHERE; O-3(-); NO2
AB In the gas phase, neutral ozone (O-3) transfers an oxygen atom to
several positive ions, i.e. the radical cations of pyridines (R-Py+.; R
= H, CH3, C2H5, and Cl), pyrimidine (Pi(+).), and alkyl halides
(CH3X+.; X = Cl and I), and the halogen cations (X+; X = Cl, Br, and
I). Reactivity changes drastically within the halogen series (Cl+ much
less than Br+ less than or equal to I+), whereas no O-transfer occurs
to F+. The oxide derivatives R-Py+-O ., Pi(+)-O ., CH3X+-O ., and XO+
are formed, as demonstrated by pentaquadrupole (QqQqQ) double- and
triple-stage mass spectrometry. No oxygen atom transfer occurs,
however, in "inverse" reactions, i.e., those of ionized ozone (O-3(+).)
with the corresponding neutrals; and charge transfer dominates. Ab
initio calculations suggest that O-transfer from ozone to ionized
pyridine yields ionized pyridine N-oxide via simple nucleophilic
addition of ozone as opposed to 1,3-dipolar cycloaddition. Similar
nucleophilic addition followed by Oz loss is also the most likely
mechanism for O-transfer from ozone to the ionized alkyl halides and
halogen cations. This novel O-transfer reaction to positive ions, which
expands our knowledge of the rich chemistry of ozone, introduces a new
pathway for the gas-phase oxidation of halogen atoms, pyridines,
pyrimidines, alkyl halides, and analogues, and consequently for the
gas-phase generation of their chemically interesting but difficult to
access ionized oxides.
C1 UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
Univ Helsinki, Dept Pharm, Div Pharmaceut Chem, FIN-00014 Helsinki, Finland.
VTT Chem Technol, FIN-02044 Espoo, Finland.
RP Eberlin, MN, UNICAMP, Inst Chem, CP6154, BR-13083970 Campinas, SP,
Brazil.
CR ARNOLD ST, 1995, J CHEM PHYS, V103, P2454
ATKINSON R, 1984, CHEM REV, V84, P437
BAILEY PS, 1978, OZONATION ORGANIC CH, V1
BUSCH KL, 1988, MASS SPECTROMETRY MA
CACACE F, 1994, SCIENCE, V265, P208
CAREY FA, 1984, ADV ORGANIC CHEM
CARVALHO MC, 1997, J CHEM SOC PERK NOV, P2347
COOKS RG, 1973, METASTABLE IONS
DOMINE F, 1992, J PHYS CHEM-US, V96, P2171
DOUGLAS DJ, 1998, J AM SOC MASS SPECTR, V9, P101
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FEDCHAK JA, 1995, J CHEM PHYS, V103, P981
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GARNER MC, 1996, CHEM PHYS LETT, V248, P20
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
HAKOLA H, 1994, J ATMOS CHEM, V18, P75
HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
HUEY LG, 1995, J PHYS CHEM-US, V99, P5001
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
LEVSEN K, 1983, MASS SPECTROM REV, V2, P77
LI ZJ, 1995, J PHYS CHEM-US, V99, P13445
LIAS SG, 1988, J PHYS CHEM REF D S1, V17
MARCH J, 1985, ADV ORGANIC CHEM
MCEWAN MJ, 1975, CHEM ATMOSPHERE
MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
MOLINA MJ, 1994, PURE APPL CHEM, V265, P18177
MOLINA MJ, 1996, PURE APPL CHEM, V68, P1749
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J ORG CHEM, V62, P5096
NEWSON KA, 1995, INT J MASS SPECTROM, V148, P203
NEWSON KA, 1996, INT J MASS SPECTROM, V153, P151
SCHMELZ T, 1991, CHEM PHYS LETT, V183, P209
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SLANGER TG, 1994, SCIENCE, V265, P1817
SMITH D, 1995, MASS SPECTROM REV, V14, P255
STEINFELD JI, 1987, J PHYS CHEM REF DATA, V16, P911
STEVENSON DP, 1951, DISCUSS FARADAY SOC, P35
TIERNAN TO, 1968, J PHYS CHEM-US, V72, P3080
VIGGIANO AA, 1993, MASS SPECTROM REV, V12, P115
WANG NS, 1990, J PHYS CHEM-US, V94, P8787
NR 47
TC 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD AUG 12
PY 1998
VL 120
IS 31
BP 7869
EP 7874
PG 6
SC Chemistry, Multidisciplinary
GA 111CQ
UT ISI:000075420100023
ER
PT J
AU Justo, JF
Bazant, MZ
Kaxiras, E
Bulatov, VV
Yip, S
TI Interatomic potential for silicon defects and disordered phases
SO PHYSICAL REVIEW B
LA English
DT Article
ID MOLECULAR-DYNAMICS SIMULATIONS; 90-DEGREES PARTIAL DISLOCATION;
CONCERTED-EXCHANGE MECHANISM; PURE AMORPHOUS-SILICON; LIQUID SILICON;
FORCE-FIELDS; ELECTRONIC-PROPERTIES; SELF-DIFFUSION; BULK PHASES; SI
AB We develop an empirical potential for silicon which represents a
considerable improvement over existing models in describing local
bonding for bulk defects and disordered phases. The model consists of
two- and three-body interactions with theoretically motivated
functional forms that capture chemical and physical trends as explained
in a companion paper. The numerical parameters in the functional form
are obtained by fitting to a set of ab initio results from
quantum-mechanical calculations based on density-functional theory in
the local-density approximation, which include various bulk phases and
defect structures. We test the potential by applying it to the
relaxation of point defects, core properties of partial dislocations
and the structure of disordered phases, none of which are included in
the fitting procedure. For dislocations, our model makes predictions in
excellent agreement with ab initio and tight-binding calculations. It
is the only potential known to describe both the 30 degrees- and 90
degrees-partial dislocations in the glide set {111}. The structural and
thermodynamic properties of the liquid and amorphous phases are also in
good agreement with experimental and ab initio results. Our potential
is capable of simulating a quench directly from the liquid to the
amorphous phase, and the resulting amorphous structure is more
realistic than with existing empirical preparation methods. These
advances in transferability come with no extra computational cost,
since force evaluation with our model is faster than with the popular
potential of Stillinger-Weber, thus allowing reliable atomistic
simulations of very large atomic systems. [S0163-1829(98)04026-0].
C1 Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil.
Harvard Univ, Dept Phys, Cambridge, MA 02138 USA.
MIT, Dept Mech Engn, Cambridge, MA 02139 USA.
MIT, Dept Nucl Engn, Cambridge, MA 02139 USA.
RP Justo, JF, Univ Sao Paulo, Inst Fis, CP 66318, BR-05315970 Sao Paulo,
Brazil.
CR ALINAGHIAN P, 1994, PHILOS MAG B, V69, P889
ALLEN MP, 1987, COMPUTER SIMULATION
ANTONELLI A, 1996, PHYS REV B, V53, P1310
ARIAS TA, 1994, PHYS REV LETT, V73, P680
BALAMANE H, 1992, PHYS REV B, V46, P2250
BARYAM Y, 1984, PHYS REV LETT, V52, P1129
BATRA IP, 1987, PHYS REV B, V35, P9552
BAZANT MZ, 1996, PHYS REV LETT, V77, P4370
BAZANT MZ, 1997, PHYS REV B, V56, P8542
BERNSTEIN N, 1997, PHYS REV B, V56, P10488
BIGGER JRK, 1992, PHYS REV LETT, V69, P2224
BISWAS R, 1987, PHYS REV B, V36, P7437
BLOCHL PE, 1993, PHYS REV LETT, V70, P2435
BOLDING BC, 1990, PHYS REV B, V41, P10568
BROUGHTON JQ, 1987, PHYS REV B, V35, P9120
BULATOV VV, 1995, PHILOS MAG A, V72, P453
CAR R, 1988, PHYS REV LETT, V60, P204
CARLSSON AE, 1990, PHYS REV B, V41, P1247
CARLSSON AE, 1990, SOLID STATE PHYS, V43, P1
CARLSSON AE, 1990, SPRINGER P PHYSICS, V48, P257
CHELIKOWSKY JR, 1989, PHYS REV LETT, V62, P292
CHELIKOWSKY JR, 1990, PHYS REV B, V41, P5735
CHELIKOWSKY JR, 1991, PHYS REV B, V44, P1538
CSANYI G, 1998, PHYS REV LETT, V80, P3984
DING KJ, 1986, PHYS REV B, V34, P6987
DUESBERY MS, 1991, PHYS REV B, V43, P5143
FORTNER J, 1989, PHYS REV B, V39, P5527
GLAZOV VM, 1969, LIQUID SEMICONDUCTOR
HANSEN LB, 1995, PHYS REV LETT, V75, P4444
HOLENDER JM, 1991, J PHYS-CONDENS MAT, V3, P1947
HUANG YM, 1995, PHYS REV LETT, V74, P3392
ISHIMARU M, 1996, PHYS REV B, V53, P7176
ISMAILBEIGI S, COMMUNICATION
JUSTO JF, UNPUB
KAXIRAS E, 1988, PHYS REV B, V38, P12736
KAXIRAS E, 1992, MODEL SIMUL MATER SC, V1, P91
KAXIRAS E, 1993, PHYS REV B, V47, P1659
KAXIRAS E, 1993, PHYS REV LETT, V70, P3752
KAXIRAS E, 1996, MATER RES SOC S P, V408, P79
KELIRES PC, 1988, PHYS REV LETT, V61, P562
KELLY PJ, 1992, PHYS REV B, V45, P6543
KUGLER S, 1989, PHYS REV B, V40, P8030
KWON I, 1994, PHYS REV B, V49, P7242
LI XP, 1988, PHYS REV B, V38, P3331
LUEDTKE WD, 1988, PHYS REV B, V37, P4656
MISTRIOTIS AD, 1989, PHYS REV B, V39, P1212
NANDEDKAR AS, 1990, PHILOS MAG A, V61, P873
NASTAR M, 1996, PHYS REV B, V53, P13521
NIELSEN OH, 1985, PHYS REV B, V32, P3792
NUNES RW, 1996, PHYS REV LETT, V77, P1516
PANDEY KC, 1986, PHYS REV LETT, V57, P2287
PANDEY KC, 1991, PHYS REV LETT, V66, P915
PARRINELLO M, 1981, J APPL PHYS, V52, P7182
PAYNE MC, 1992, REV MOD PHYS, V64, P1045
POON TW, 1990, PHYS REV LETT, V65, P2161
PORTER LJ, 1997, J APPL PHYS, V81, P96
ROORDA S, 1991, PHYS REV B, V44, P3702
SEONG H, 1996, PHYS REV B, V53, P9791
SIMMONS G, 1971, SINGLE CRYSTAL ELAST
STICH I, 1989, PHYS REV LETT, V63, P2240
STICH I, 1991, PHYS REV B, V44, P11092
STICH I, 1991, PHYS REV B, V44, P4262
STICH I, 1996, PHYS REV LETT, V76, P2077
STILLINGER FH, 1985, PHYS REV B, V31, P5262
SUZUKI T, 1991, DISLOCATION DYNAMICS, P99
TEICHLER H, 1989, SPRINGER P PHYSICS, V35, P25
TERSOFF J, 1988, PHYS REV B, V37, P6991
TERSOFF J, 1988, PHYS REV B, V38, P9902
TRINCZEK U, 1993, PHYS STATUS SOLIDI A, V137, P577
WALLACE DC, 1972, THERMODYNAMICS CRYST
WOOTEN F, 1985, PHYS REV LETT, V54, P1392
NR 71
TC 128
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD AUG 1
PY 1998
VL 58
IS 5
BP 2539
EP 2550
PG 12
SC Physics, Condensed Matter
GA 108UQ
UT ISI:000075284300040
ER
PT J
AU Augusti, R
Gozzo, FC
Moraes, LAB
Sparrapan, R
Eberlin, MN
TI The simplest azabutadienes in their N-protonated forms. Generation,
stability, and cycloaddition-reactivity in the gas phase
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID DIELS-ALDER REACTION; PENTAQUADRUPOLE MASS-SPECTROMETER;
MOLECULAR-ORBITAL METHODS; RADICAL-CATION; CARBONYL-COMPOUNDS; ACYLIUM
IONS; BASIS SETS; ISOMERS; TANDEM; DISSOCIATION
AB The simplest azabutadienes, i.e. 1-aza-1,3-butadiene and
2-aza-1,3-butadiene, are generated in their N-protonated forms 1 and 2
via gas-phase dissociative electron ionization of allylamine and
piperidine; respectively. Formation of 1 and 2 is suggested by simple
dissociation mechanisms, and supported by high-accuracy G2 ab initio
calculations, which show the ions to be stable, non-interconverting
species. Whereas 1 and 2 are unreactive toward ethylene and
cyclohexene, 2 reacts with alkenes activated by electron-donating
(OC2H5), electron-withdrawing (CN; COCH3), and vinyl and phenyl
substituents most likely by polar [4(+) + 2] cycloaddition, as
suggested by MS3 experiments and ab initio calculations. The
cycloadduct of 2 with ethyl vinyl ether is unstable and dissociates
promptly by ethanol loss; hence, net C2H2 addition occurs. This novel
vinylation reaction is proposed as a potential structurally diagnostic
test for both 2-azabutadienes and vinyl ethers. Isomer 1 is in general
much less reactive, and abundant adducts are only formed in reactions
with alkenes activated by electron-withdrawing substituents. In
reactions of 1 and 2 with esters (methyl acetate and dimethyl
carbonate), hydrogen-bridged ion-neutral complexes are formed as the
most abundant and stable products, as suggested by the ab initio
calculations. Acetone, fluoroacetone and acetonitrile form abundant
adducts with-bath 1 and 2; However, the experimental and theoretical
results on these adducts provide nb clear structural information.
Reactions of 1 with DMSO occur almost exclusively by proton transfer,
whereas 2 forms an abundant complex with DMSO. Limited reactivity is
observed for I and 2 with acetyl chloride and thionyl chloride; the
minor products observed were those of either dissociative proton
transfer or charge exchange.;The distinctive reactivities of 1 and 2
with styrene, ethyl vinyl ether, and dimethyl sulfoxide contrast to
their identical low energy CID behavior, and allow their
straightforward differentiation in the gas phase.
C1 State Univ Campinas, UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
Univ Fed Minas Gerais, Dept Chem, BR-31270901 Belo Horizonte, MG, Brazil.
RP Eberlin, MN, State Univ Campinas, UNICAMP, Inst Chem, CP 6154,
BR-13083970 Campinas, SP, Brazil.
CR ABBOUD JLM, 1993, J AM CHEM SOC, V115, P12468
BARLUENGA J, 1990, PURE APPL CHEM, V62, P1957
BASHEER MM, UNPUB
BAULD NL, 1992, ADV ELECTRON TRANSFE, V2, P1
BEIFUSS U, 1995, J CHEM SOC CHEM COMM, P2137
BELLVILLE DJ, 1981, J AM CHEM SOC, V103, P718
BOGER DL, 1987, HETER DIELSALDER MET
BOUCHOUX G, 1989, J AM CHEM SOC, V111, P5560
BOUCHOUX G, 1992, J AM CHEM SOC, V114, P10000
BOWERS MT, 1970, J PHYS CHEM-US, V74, P2583
BOYS SF, 1970, MOL PHYS, V19, P553
BUDZIKIEWICZ H, 1964, INTERPRETATION MASS
BUSCH KL, 1988, MASS SPECTROMETRY MA
CARVALHO M, 1998, CHEM-EUR J, V4, P1159
CASTLE LW, 1989, ORG MASS SPECTROM, V24, P637
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
DASS C, 1990, MASS SPECTROM REV, V9, P1
DUFFIELD AM, 1965, J AM CHEM SOC, V87, P810
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1994, J AM SOC MASS SPECTR, V6, P1
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GASSMAN PG, 1987, J AM CHEM SOC, V109, P2182
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
GROENEWOLD GS, 1984, J AM CHEM SOC, V106, P539
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KENTTAMAA HI, 1989, J AM CHEM SOC, V111, P4122
KIM T, 1990, J AM CHEM SOC, V112, P6285
KNOELKER HJ, 1995, TETRAHEDRON LETT, V36, P8194
LIAS SG, 1988, J PHYS CHEM REF D S1, V17
LONGEVIALLE P, 1992, MASS SPECTROM REV, V11, P157
LU L, 1995, J MASS SPECTROM, V30, P581
MATTAY J, 1987, ANGEW CHEM INT EDIT, V26, P825
MIGRON Y, 1977, ORG MASS SPECTROM, V12, P500
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J ORG CHEM, V62, P5096
PORTER QN, 1985, MASS SPECTROMETRY HE
SCHMIDT RR, 1973, ANGEW CHEM INT EDIT, V12, P212
SCHMITTEL M, 1997, ANGEW CHEM INT EDIT, V36, P2550
SCHOFFSTALL AM, 1990, ADV CYCLOADDITION, V2, P1
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
TURECEK F, 1984, MASS SPECTROM REV, V3, P85
UGGERUD E, 1992, MASS SPECTROM REV, V11, P389
VANTILBORG MWE, 1980, ORG MASS SPECTROM, V15, P152
WINCEL H, 1989, INT J MASS SPECTROM, V91, P339
NR 55
TC 21
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD JUL 24
PY 1998
VL 63
IS 15
BP 4889
EP 4897
PG 9
SC Chemistry, Organic
GA 108JQ
UT ISI:000075263100008
ER
PT J
AU Carvalho, M
Gozzo, FC
Mendes, MA
Sparrapan, R
Kascheres, C
Eberlin, MN
TI Locating the charge site in heteroaromatic cations
SO CHEMISTRY-A EUROPEAN JOURNAL
LA English
DT Article
DE ab initio calculations; collision-induced dissociation; in-molecule
reactions; mass spectrometry
ID GAS-PHASE; SOOT FORMATION; IONS; C3H3+; CHEMISTRY
AB Low-energy collision-induced dissociation (CID) and ion-molecule
reactions with 2-methyl-1,3-dioxolane (MD) performed by pentaquadrupole
(QqQqQ) mass spectrometry were applied to locate the charge site in
isomeric heteroaromatic cations. The 2-, 3-, and 4-pyridyl cations are
indistinguishable by CID. However, as suggest ed by MS3 experiments and
ab initio calculations, the 2-pyridyl cation reacts extensively with MD
by a transacetalization-like mechanism to afford a bicyclic
dihydrooxazolopyridyl cation. The 3- and 4-pyridyl cations, on the
contrary react predominantly with MD by proton transfer, as does the
analogous phenyl cation. The 2-. 4-, and 5-pyrimidyl cations display
characteristic CID behavior. In addition, the 2-pyrimidyl cation reacts
extensively with MD by the transacetalization-like mechanism, whereas
proton transfer occurs predominantly for the 4- and 5-pyrimidyl
cations. The ions thought to be the 2- and 3-furanyl and 2- and
3-thiophenyl cations show indistinguishable CID and ion-molecule
behavior. This is most likely the result of their inherent instability
in the gas phase and their spontaneous isomerization to the
corresponding butynoyl and butynethioyl cations HC=CHCH2C=O+ and
HC=CHCH2C=S+. These isomerizations, which are considerably exothermic
according to G2(MP2) ab initio calculations, are indicated by a series
of experimental results. The ions dissociate upon CID by loss of CO or
CS and undergo transacetalization with MD. Most informative is the
participation of HC=CHCH2C=S+ in a transacetalization/dissociation
sequence with replacement of sulfur by oxygen, which is structurally
diagnostic for thioacylium ions. It is therefore possible to locate the
charge site of the 2-pyridyl and the three 2-, 4-, and 5-pyrimidyl
cations and to identify the isomeric precursors from which they are
derived. However, rapid isomerization to the common HC=CHCH2-C=O(S)(+)
ion eliminates characteristic chemical behavior that could result from
different charge locations in the heteroaromatic 2- and 3-furanyl and
2- and 3-thiophenyl cations.
C1 UNICAMP, State Univ Campinas, Inst Chem, BR-13083970 Campinas, SP, Brazil.
RP Eberlin, MN, UNICAMP, State Univ Campinas, Inst Chem, CP 6154,
BR-13083970 Campinas, SP, Brazil.
EM eberlin@iqm.unicamp.br
CR AULOOS PJ, 1981, J AM CHEM SOC, V103, P6505
BAYKUT G, 1986, COMBUST SCI TECHNOL, V45, P233
BOWERS MT, 1979, GAS PHASE ION MOL RE, V1
BUSCH KL, 1988, MASS SPECTROMETRY MA
CAMERON A, 1989, J PHYS CHEM-US, V93, P139
CARVALHO MC, 1997, J CHEM SOC PERK NOV, P2347
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
DENHERTOG HJ, 1965, HETEROCYCL CHEM, V4, P121
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FORESMAN JB, 1993, EXPLORING CHEM ELECT
FRANKLIN JL, 1972, ION MOL REACTIONS
FRISCH MJ, 1995, GAUSSIAN94 REVISION
GOZZO FC, UNPUB J ORG CHEM
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
HARRISON AG, 1983, CHEM IONIZATION MASS
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOLMES JL, 1979, CAN J CHEM, V57, P249
HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KAUFFMANN T, 1962, CHEM BER, V95, P949
KAUFFMANN T, 1963, CHEM BER, V96, P2519
KAUFFMANN T, 1965, ANGEW CHEM INT EDIT, V4, P543
KAUFFMANN T, 1965, ANGEW CHEM, V77, P557
KAUFFMANN T, 1971, ANGEW CHEM INT EDIT, V10, P20
KAUFFMANN T, 1971, ANGEW CHEM, V83, P21
LEVSEN K, 1983, MASS SPECTROM REV, V2, P77
LOSSING FP, 1972, CAN J CHEM, V50, P139
MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J CHEM SOC P2, V10, P2105
MORAES LAB, 1997, J ORG CHEM, V62, P5096
RADOM L, 1976, J AM CHEM SOC, V98, P10
SMYTH KC, 1982, COMBUST SCI TECHNOL, V28, P147
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
TSAI BP, 1975, J CHEM PHYS, V63, P4384
NR 39
TC 27
PU WILEY-V C H VERLAG GMBH
PI BERLIN
PA MUHLENSTRASSE 33-34, D-13187 BERLIN, GERMANY
SN 0947-6539
J9 CHEM-EUR J
JI Chem.-Eur. J.
PD JUL
PY 1998
VL 4
IS 7
BP 1161
EP 1168
PG 8
SC Chemistry, Multidisciplinary
GA 103ZD
UT ISI:000074987000005
ER
PT J
AU Aleman, C
Ishiki, HM
Armelin, EA
Junior, OA
Galembeck, SE
TI Free energies of solvation for peptides and polypeptides using SCRF
methods
SO CHEMICAL PHYSICS
LA English
DT Article
ID AQUEOUS SOLVATION; HYDROGEN-BOND; AB-INITIO; SOLVENT; MODEL; MOLECULES;
COMPLEXES; CONTINUUM; POLYMERS; RESIDUES
AB The effects of the aqueous solvent in the conformational preferences of
peptides and homopeptides have been investigated using two different
and widely used self-consistent reaction-field models. The free
energies of solvation were predicted using the polarizable continuum
model developed by Tomasi and co-workers and adapted to semi-empirical
hamiltonians by Orozco and Luque, and the solvation model developed by
Cramer and Truhlar. The set of compounds investigated is constituted by
five dipeptides with different chemical nature and structural
properties as well as by two homopeptides in which the size of the
polypeptidic chain was varied. Results provided by the different
methods are compared and discussed. (C) 1998 Elsevier Science B.V. All
rights reserved.
C1 Univ Politecn Catalunya, ETS Engn Ind Barcelona, Dept Engn Quim, E-08028 Barcelona, Spain.
Univ Fed Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Quim, Ribeirao Preto, SP, Brazil.
RP Aleman, C, Univ Politecn Catalunya, ETS Engn Ind Barcelona, Dept Engn
Quim, Diagonal 647, E-08028 Barcelona, Spain.
CR AGUILAR M, 1993, CHEM PHYS, V174, P397
ALAGONA G, 1986, J MOL STRUCT THEOCHE, V137, P263
ALEMAN C, 1994, BIOPOLYMERS, V34, P841
ALEMAN C, 1995, J ORG CHEM, V60, P910
ALEMAN C, 1995, J PHYS CHEM-US, V99, P17653
ALEMAN C, 1996, J BIOMOL STRUCT DYN, V14, P193
ALEMAN C, 1996, J PHYS CHEM-US, V100, P11480
ALEMAN C, 1997, CHEM PHYS, V222, P9
ALEMAN C, 1997, J ORG CHEM, V62, P6562
ALEMAN C, 1997, J PHYS CHEM B, V101, P3441
ALEMAN C, 1997, J PHYS CHEM B, V101, P5046
ALEMAN C, 1997, PROTEINS, V29, P575
ALEMAN R, 1997, PROTEIN-STRUCT FUNCT, V28, P83
BACHS M, 1994, J COMPUT CHEM, V15, P446
BONACCORSI R, 1984, J AM CHEM SOC, V106, P1945
CHIPOT C, 1994, J PHYS CHEM-US, V98, P1601
CHUDINOV GE, 1992, CHEM PHYS, V160, P41
CRAMER CJ, 1991, J AM CHEM SOC, V113, P8552
CRAMER CJ, 1992, SCIENCE, V256, P213
CRAMER CJ, 1995, 95147 UMSI
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
FORD GP, 1993, J MOL STRUCT THEOCHE, V283, P49
FRISCH MJ, 1995, GAUSSIAN94 REVISION
GIESEN DJ, 1995, J AM CHEM SOC, V117, P1057
HARIHARAN PC, 1973, THEOR CHIM ACTA, V23, P213
HAWKINS GD, 606 QCPE
HODGKIN EE, 1990, BIOPOLYMERS, V30, P533
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
KARELSON MM, 1989, TETRAHEDRON COMPUT M, V2, P295
KARELSON MM, 1990, J CHEM SOC P2, P195
LEO AJ, 1993, CHEM REV, V93, P1281
LEON S, 1997, J PHYS CHEM A, V101, P4208
LEON S, 1997, STRUCT CHEM, V8, P39
LUQUE FJ, 1993, J PHYS CHEM-US, V97, P4386
LUZHKOV V, 1992, J COMPUT CHEM, V13, P199
MIERTUS S, 1981, CHEM PHYS, V55, P117
MIERTUS S, 1982, CHEM PHYS, V65, P239
MOLLER C, 1934, PHYS REV, V46, P618
NAVAS JJ, 1996, J ORG CHEM, V61, P6849
OROZCO M, 1995, J AM CHEM SOC, V117, P1378
OROZCO M, 1995, J COMPUT CHEM, V16, P563
OROZCO M, 1996, J MOL STRUCT THEOCHE, V371, P269
PIEROTTI RA, 1976, CHEM REV, V76, P717
RAUHUT G, 1993, J AM CHEM SOC, V115, P9174
RINALDI D, 1973, THEOR CHIM ACTA, V32, P57
STEWART JJP, 1993, MOPAC 93 REVISION 2
SZAFRAN M, 1993, J COMPUT CHEM, V14, P371
TAPIA O, 1975, MOL PHYS, V29, P1653
TOMASI J, 1994, CHEM REV, V94, P2027
WANG B, 1992, J COMPUT CHEM, V12, P4162
WILBERG KB, 1993, J AM CHEM SOC, V115, P1078
NR 51
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD JUL 15
PY 1998
VL 233
IS 1
BP 85
EP 96
PG 12
SC Physics, Atomic, Molecular & Chemical
GA ZZ999
UT ISI:000074790600008
ER
PT J
AU Sparrapan, R
Mendes, MA
Ferreira, IPP
Eberlin, MN
Santos, C
Nogueira, JC
TI Gas-phase chemistry of the sulfur hexafluoride fragment ions SFn+
(n=0-5) and SFn2+ (n=2, 4). Ab initio thermochemistry of novel
reactions of S+. and SF+
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID MASS-SPECTROMETRY; PROTON AFFINITY; KINETIC METHOD; ISOMERS
AB A systematic study of the gas-phase chemistry of the major positively
charged ions produced by 70 eV dissociative electron ionization of SF6,
i.e., SFn+ (n = 0-5) and SFn2+ (n = 2, 4), has been performed via
pentaquadrupole (QqQqQ) mass spectrometric experiments in conjunction
with G2(MP2) ab initio calculations. Comparison, under exactly the same
15 eV collision conditions, of the SFn+ proclivities to dissociate by F
loss was accomplished via a tandem-in-space three-dimensional MS2 scan.
The experimental SFn+ dissociation proclivities were found to correlate
perfectly with those expected from G2(MP2) dissociation thresholds.
Ion/molecule reactions of mass-selected SFn+ and SFn2+ were performed
with O-2 and the oxygenated neutral gases H2O, CO, CO2, and N2O. The
ions, under the very low energy (near zero) multiple collision
conditions employed, undergo either dissociation by F loss or charge
exchange, or participate in novel reactions that have been corroborated
by both MS3 experiments and G2(MP2) ab initio thermochemistry.
O-abstraction takes place in reactions of SF+ with O-2 and CO, and of
S+. with CO2 and O-2 and the corresponding oxyions F-SO+ and SO+. are
formed to great extents. CO-abstraction that yields ionized carbon
oxysulfide (COS+.) also occurs to a minor extent in reactions of S+.
with CO2. Reactions of SF+ with CO yields a minor COS+. product in a
net sulfur cation (S+.) transfer reaction. Theory corroborates the
experimental observations as the respective O-abstraction and S+.
transfer reactions are predicted by G2(MP2) ab initio thermochemistry
to be the most favorable processes.
C1 State Univ Campinas, UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil.
Univ Fed Sao Carlos, Dept Chem, BR-13560 Sao Carlos, SP, Brazil.
RP Eberlin, MN, State Univ Campinas, UNICAMP, Inst Chem, CP 6154,
BR-13083970 Campinas, SP, Brazil.
CR BABCOCK LM, 1981, J CHEM PHYS, V74, P5700
BABCOCK LM, 1981, J CHEM PHYS, V75, P3868
CARVALHO M, 1998, CHEM-EUR J, V4, P1159
CHEN CL, 1979, J CHEM PHYS, V71, P2897
CHEUNG YS, 1995, J AM CHEM SOC, V117, P9725
COB JW, 1982, PLASMA CHEM PLASMA P, V2, P1
COOKS RG, 1994, MASS SPECTROM REV, V13, P287
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
DILLARD JG, 1975, J PHYS CHEM-US, V79, P2455
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
EBERLIN MN, 1997, MASS SPECTROM REV, V16, P113
FEHSENFELD FC, 1971, J CHEM PHYS, V54, P438
FRISCH MJ, 1995, GAUSSIAN94 REVISION
GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
GRANT ER, 1977, CHEM PHYS LETT, V52, P595
HIRAOKA K, 1995, J AM SOC MASS SPECTR, V6, P1137
IRIKURA KK, 1995, J CHEM PHYS, V102, P5357
JIAO CQ, 1993, J AM CHEM SOC, V115, P6268
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KARACHEVTEV AZ, 1985, SOV J CHEM PHYS, V3, P695
KOMIENKO O, 1997, ANAL CHEM, V69, P1536
LATIMER DR, 1994, J CHEM PHYS, V101, P3410
LYMAN JL, 1973, J PHYS CHEM-US, V77, P883
LYMAN JL, 1977, J CHEM PHYS, V67, P1868
MACKAY GI, 1992, INT J MASS SPECTROM, V117, P387
MCALPINE RD, 1985, ADV CHEM PHYS, V60, P31
MCLAFFERTY FW, 1989, WILEY NBS REGISTRY M, V1
MITCHELL KAR, 1969, CHEM REV, V69, P157
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J ORG CHEM, V62, P5096
PAULING L, 1960, NATURE CHEM BOND
RICHTER R, 1987, J CHEM PHYS, V87, P4615
RICHTER R, 1993, J CHEM PHYS, V87, P4615
SAUERS I, 1986, IEEE T ELECTR INSUL, V21, P111
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SHUL RJ, 1987, J PHYS CHEM-US, V91, P2556
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
SPARRAPAN R, UNPUB J PHYS CHEM A
STONE JA, 1989, INT J MASS SPECTROM, V94, P269
STONE JA, 1989, INT J MASS SPECTROM, V94, P269
TAMURA A, 1987, APPL PHYS LETT, V51, P1503
TICHY M, 1987, INT J MASS SPECTROM, V79, P231
VANBRUNT RJ, 1990, IEEE T ELECTR INSUL, V25, P76
WANG HX, 1993, PLASMA CHEM PLASMA P, V13, P1
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
ZANGERLE R, 1993, INT J MASS SPECTROM, V129, P117
NR 48
TC 8
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD JUL 2
PY 1998
VL 102
IS 27
BP 5189
EP 5195
PG 7
SC Chemistry, Physical
GA ZZ640
UT ISI:000074751300006
ER
PT J
AU Casagrande, D
Srivastava, GP
Ferraz, AC
TI Theoretical calculations for Si(001)-(2x1)Cl
SO SURFACE SCIENCE
LA English
DT Article
DE adsorption; atomic geometry; chemisorption; semiconductor surfaces;
surface states
ID CL; PHOTOEMISSION; ADSORPTION; SURFACES; SI
AB We have investigated the atomic geometry, electronic states and bonding
at the Si(001)-(2 x 1) surface covered with a monolayer of Cl. The
calculations were performed with ab initio pseudopotentials, using a
plane wave basis and the local density approximation. We find that the
adsorption of Cl results in an elongated symmetric Si dimer. The
calculated Si-Cl, Si-Si (dimer) and Si-Si (back-bond) distances are
2.08 Angstrom, 2.43 Angstrom and 2.34 Angstrom, respectively. The Si-Cl
bond is inclined at 20 degrees with respect to the surface normal. Our
results for atomic geometry and electronic states are in good agreement
with available experimental data. (C) 1998 Elsevier Science B.V. All
rights reserved.
C1 Univ Exeter, Dept Phys, Exeter EX4 4QL, Devon, England.
Univ Sao Paulo, Inst Fis, BR-05389970 Sao Paulo, Brazil.
RP Srivastava, GP, Univ Exeter, Dept Phys, Stocker Rd, Exeter EX4 4QL,
Devon, England.
EM physics@ac.ex.uk
CR CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
JOHANSSON LSO, 1990, PHYS REV B, V42, P9534
KRUGER P, 1993, PHYS REV B, V47, P1898
LEE LQ, 1994, J PHYS-CONDENS MAT, V6, P6169
LEVINE JD, 1973, SURF SCI, V34, P90
PURDIE D, 1991, J PHYS-CONDENS MAT, V3, P7751
ROWE JE, 1977, PHYS REV B, V16, P1581
THORNTON G, 1989, SURF SCI, V211, P959
TROULLIER N, 1990, SOLID STATE COMMUN, V74, P613
NR 9
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD MAY 15
PY 1998
VL 404
IS 1-3
BP 653
EP 657
PG 5
SC Chemistry, Physical
GA ZY342
UT ISI:000074610800134
ER
PT J
AU Esteves, PM
Mota, CJA
Ramirez-Solis, A
Hernandez-Lamoneda, R
TI Mechanism of superacid catalyzed alkane activation: theoretical ab
initio studies of pentacoordinated carbonium ion rearrangement
SO TOPICS IN CATALYSIS
LA English
DT Article
DE carbonium ion; superacid; rearrangement; alkane activation
ID ELECTROPHILIC REACTIONS; ISOBUTANE CRACKING; ALIPHATIC-HYDROCARBONS;
DEUTERIUM-EXCHANGE; HYDROGEN-TRANSFER; SINGLE BONDS; Y-ZEOLITES; ACID
SITE; 3-CENTER; ETHANE
AB A theoretical ab initio study of the interconversion of
pentacoordinated carbonium ions was carried out. For the isobutonium
cations it was found that the respective C-carbonium ions were lower in
energy than the H-isobutonium ions. Nevertheless, the interconversion
of the 1-H-isobutonium cation in the C-isobutonium ion is a barrierless
process. This suggests that product arisen from C-C protonation in
liquid superacid and zeolite catalyzed alkane activation may be formed
by protonation in the outer and more accessible primary C-H bonds of
isobutane, rather than by direct protonation of the inner and more
steric demanding C-C bonds.
C1 Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, BR-21949900 Rio De Janeiro, Brazil.
Univ Estado Morelos, Fac Ciencias, Cuernavaca 62210, Morelos, Mexico.
RP Mota, CJA, Univ Fed Rio de Janeiro, Dept Quim Organ, Inst Quim, Cidade
Univ,CT Bloco A, BR-21949900 Rio De Janeiro, Brazil.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
BOHME DK, 1980, J CHEM PHYS, V73, P4976
BOYS SF, 1970, MOL PHYS, V19, P553
CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
CHUPKA WA, 1971, J CHEM PHYS, V54, P4256
COLLINS SJ, 1996, J CHEM SOC FARADAY T, V92, P4347
COMMEYRAS A, 1969, J AM CHEM SOC, V91, P2929
CORMA A, 1985, J CATAL, V93, P30
CORMA A, 1989, ZEOLITES FACTS FIGUR, P49
CORMA A, 1994, J CATAL, V145, P171
DEKOCK RL, 1988, J CHEM EDUC, V65, P194
FRENCH M, 1975, CAN J CHEM, V53, P2268
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GIANNETTO G, 1986, J CHEM SOC CHEM COMM, P1302
GILLESPIE RJ, 1966, J CHEM SOC A, P1170
HAAG WO, 1984, P 8 INT C CAT, P305
HIRAO K, 1984, CHEM PHYS, V89, P237
HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
KIM SJ, 1993, J PHYS CHEM-US, V97, P12232
LOMBARDO EA, 1988, J CATAL, V110, P171
LOMBARDO EA, 1988, J CATAL, V112, P565
MARCH J, 1996, ADV ORG CHEM, P215
MCMURRY JE, 1992, ACCOUNTS CHEM RES, V25, P47
MOTA CJA, IN PRESS J AM CHEM S
MOTA CJA, UNPUB
MOTA CJA, 1997, J AM CHEM SOC, V119, P5193
OLAH GA, 1968, J AM CHEM SOC, V90, P2726
OLAH GA, 1969, J AM CHEM SOC, V91, P3261
OLAH GA, 1972, J AM CHEM SOC, V94, P808
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLAH GA, 1973, J AM CHEM SOC, V95, P4952
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1979, SCIENCE, V206, P13
OLAH GA, 1985, SUPERACIDS
OLAH GA, 1987, HYPERCARBON CHEM
OLAH GA, 1992, CHEM ALKANES CYCLOAL, CH13
SCHLEYER PV, 1992, J COMPUT CHEM, V13, P997
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHREINER PR, 1993, J AM CHEM SOC, V115, P9659
SCHREINER PR, 1995, J AM CHEM SOC, V117, P453
SHERTUKDE PV, 1992, J CATAL, V136, P446
SOMMER J, 1992, J AM CHEM SOC, V114, P5884
SOMMER J, 1997, J AM CHEM SOC, V119, P3274
STEFANADIS C, 1991, J MOL CATAL, V67, P363
THOMPSON RC, 1965, INORG CHEM, V4, P1641
TRAEGER JC, 1981, J AM CHEM SOC, V103, P3647
YALURIS G, 1995, J CATAL, V153, P54
YALURIS G, 1995, J CATAL, V153, P65
NR 48
TC 15
PU BALTZER SCI PUBL BV
PI BUSSUM
PA PO BOX 221, 1400 AE BUSSUM, NETHERLANDS
SN 1022-5528
J9 TOPIC CATALYSIS
JI Top. Catal.
PY 1998
VL 6
IS 1-4
BP 163
EP 168
PG 6
SC Chemistry, Applied; Chemistry, Physical
GA ZW644
UT ISI:000074432300019
ER
PT J
AU do Monte, SA
Braga, M
TI Electronic factor for photoinduced electron transfer in
porphyrin-bridge-quinone systems
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID PHOTOSYNTHETIC REACTION CENTER; DISTANCE DEPENDENCE;
RHODOPSEUDOMONAS-VIRIDIS; SPHAEROIDES R-26; FIXED DISTANCES; LONE
PAIRS; MODEL; BICYCLO<2.2.2>OCTANE; SPACERS
AB Quantum-chemical calculations at a semiempirical level (CNDO/S) are
used for porphyrin-bridge-quinone systems and at an ab initio and
semiempirical level for CH2-bridge-CH22- systems. In both cases the
bridge is constituted by a number of aromatic, saturated or mixed
units. From these calculations the electronic factor (Delta) is
obtained, for photoinduced reaction (PET) in the first case and for
thermal reaction in the second case. The relative efficiency of the
bridges is discussed. For phenylene and staffane units, a
non-exponential dependence of Delta with distance is observed for PET,
while for the other two bridges the exponential behavior prevails. (C)
1998 Elsevier Science B.V. All rights reserved.
C1 Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540 Recife, PE, Brazil.
RP do Monte, SA, Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740540
Recife, PE, Brazil.
CR ANTOLOVICH M, 1991, J PHYS CHEM-US, V95, P1933
BENE JD, 1968, J CHEM PHYS, V48, P1807
BENE JD, 1968, J CHEM PHYS, V49, P1221
BENE JD, 1969, J CHEM PHYS, V50, P1126
BERATAN DN, 1986, J AM CHEM SOC, V108, P4321
BORN M, 1920, Z PHYS, V1, P45
BRAGA M, 1992, INT J QUANTUM CHEM, V44, P839
BRAGA M, 1992, J PHYS CHEM-US, V96, P9218
BRAGA M, 1993, J PHYS CHEM-US, V97, P8929
CHANG CH, 1986, FEBS LETT, V205, P82
DEISENHOFER J, 1984, J MOL BIOL, V180, P385
DEISENHOFER J, 1989, SCIENCE, V245, P1463
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
ELLIS RL, 1972, THEOR CHIM ACTA, V26, P131
FRISCH MJ, 1992, GAUSSIAN 92
HELMS A, 1992, J AM CHEM SOC, V114, P6227
JORAN AD, 1984, J AM CHEM SOC, V106, P6090
KHUNDKAR LR, 1994, J AM CHEM SOC, V116, P9700
KIM K, 1994, J PHYS CHEM-US, V98, P11053
KOOPMANS T, 1934, PHYSICA, V1, P104
LARSSON S, 1981, J AM CHEM SOC, V103, P4034
LARSSON S, 1986, J CHEM PHYS, V85, P2548
LARSSON S, 1987, J CHEM PHYS, V86, P5223
LARSSON S, 1991, INT J QUANTUM CHEM, V18, P99
LELAND BA, 1985, J PHYS CHEM-US, V89, P5571
YEATES TO, 1988, P NATL ACAD SCI USA, V85, P7993
NR 26
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JUN 26
PY 1998
VL 290
IS 1-3
BP 136
EP 142
PG 7
SC Physics, Atomic, Molecular & Chemical
GA ZW963
UT ISI:000074466600022
ER
PT J
AU Martins, JBL
Taft, CA
Perez, MA
Stamato, FMLG
Longo, E
TI Theoretical study of metiamide, a histamine H-2 antagonist
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
ID GAS-PHASE; MOLECULAR DETERMINANTS; ACTIVATION MECHANISM; RECEPTOR
MODEL; TAUTOMERISM; HISTAMINE-H2-RECEPTOR; H-2-RECEPTORS;
2-METHYLHISTAMINE; 4-METHYLHISTAMINE; CONFORMATION
AB The requirements for H-2-antagonist activity so far identified for most
of the known antagonists of histamine are the presence of a
heterocyclic ring containing a basic center linked via a methylene
chain to a substituted guanidine or thiourea polar side chain.
Metiamide is a potent H-2 antagonist (pA2 = 6.06). We have used the ab
initio Hartree-Fock (HF) method in order to study the conformational
properties of the N-3-H tautomers of metiamide molecule; and histamine
monocation. Three basis set (the 3-21G*, 6-31G**, and 6-31 + G**) were
used, the results compared, and the geometric parameters fully
optimized. Our results indicate the preference of metiamide for a
folded conformation with an intramolecular hydrogen bonding between the
imidazole ring and one of the NH groups. The optimized geometrical
parameters and charge distributions of both molecules, using the
Mulliken, and natural bond order (NBO) analysis, are given and
discussed. (C) 1998 John Wiley & Sons, Inc.
C1 Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis Estatist, BR-22290180 Rio De Janeiro, Brazil.
Univ Estadual Ponta Grossa, Ponta Grossa, Parana, Brazil.
Univ Fed Sao Carlos, Dept Quim, BR-13565905 Sao Carlos, SP, Brazil.
RP Taft, CA, Ctr Brasileiro Pesquisas Fis, Dept Mat Condensada & Fis
Estatist, R Xavier Sigaud 150, BR-22290180 Rio De Janeiro, Brazil.
CR ALAGONA G, 1988, MOL PHYSICS CHEM BIO, V2, P507
ASH ASF, 1966, BRIT J PHARMACOL CHE, V27, P427
BLACK JW, 1975, J MED CHEM, V18, P905
BONNET JJ, 1973, J AM CHEM SOC, V95, P4829
CAMPILLO M, 1996, J MOL STRUCT THEOCHE, V371, P279
DURANT GJ, 1975, J MED CHEM, V18, P905
ENRIZ RD, 1993, J MOL STRUCT THEOCHE, V280, P5
ERIKS JC, 1993, MOL PHARMACOL, V44, P886
FRANKE R, 1984, THEORETICAL DRUG DES
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GANELLIN CR, 1973, J MED CHEM, V16, P610
GANELLIN CR, 1973, J MED CHEM, V16, P620
GANELLIN CR, 1974, MOL QUANTUM PHARM, P43
GANELLIN CR, 1982, PHARM HISTAMINE RECE, V3
GANELLIN CR, 1993, MEDICINAL CHEM, CH3
GIRALDO J, 1992, MOL PHARMACOL, V42, P373
GREEN JP, 1977, P NATL ACAD SCI USA, V74, P5697
HERNANDEZLAGUNA A, 1995, J PHYS CHEM-US, V99, P9087
JOESTEN MD, 1974, HYDROGEN BONDING
KERNS RC, 1978, J AM CHEM SOC, V100, P6587
KIER LB, 1968, J MED CHEM, V11, P441
KIER LB, 1986, J MED CHEM, V11, P441
KIMURA E, 1984, CHEM PHARM BULL, V32, P3569
LAGUNA AH, 1993, J AM CHEM SOC, V115, P1450
LAGUNA AH, 1995, J MOL STRUCT THEOCHE, V335, P77
LAGUNA AH, 1995, J PHYS CHEM-US, V99, P9087
LUQUE FJ, 1990, J CHIM PHYS PCB, V87, P1569
MAZUREK AP, 1987, MOL PHARMACOL, V31, P345
NAGY PI, 1994, J AM CHEM SOC, V116, P4898
PARDO L, 1991, MOL PHARMACOL, V40, P980
PIMENTEL GC, 1960, HYDROGEN BOND
PROUT K, 1974, ACTA CRYSTALLOGR B, V30, P2284
PULLMAN B, 1974, MOL PHARMACOL, V10, P360
REGGIO P, 1986, J MED CHEM, V29, P2412
RICHARDS WG, 1977, QUANTUM PHARM
SCHWARTZ JC, 1986, INNOVATIVE APPROACHE, P73
SMEYERS YG, 1985, J MOL STRUCT THEOCHE, V123, P431
SMEYERS YG, 1985, QSAR STRATEGIES DESI, P374
SMEYERS YG, 1990, J MOL STRUCT THEOCHE, V207, P157
STAMATO FML, 1990, J MOL STRUCT THEOCHE, V210, P447
STAMATO FML, 1992, J MOL STRUCT THEOCHE, V254, P505
TAPIA O, 1990, INT J QUANTUM CHEM, V38, P727
TOPIOL S, 1984, J MED CHEM, V27, P1531
TOPIOL S, 1987, J COMPUT CHEM, V8, P142
VEIDIS MV, 1969, J CHEM SOC A, V17, P2659
VINORADOV SN, 1971, HYDROGEN BONDING
VOGELSANGER B, 1991, J AM CHEM SOC, V113, P7864
WEINSTEIN H, 1976, MOL PHARMACOL, V12, P738
WEINSTEIN H, 1986, MOL PHARMACOL, V29, P28
NR 49
TC 9
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD JUL 15
PY 1998
VL 69
IS 1
BP 117
EP 128
PG 12
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA ZV457
UT ISI:000074306500013
ER
PT J
AU Rocha, WR
De Almeida, WB
TI Theoretical study of the olefin insertion reaction in the
heterobimetallic Pt(H)(PH3)(2)(SnCl3)(C2H4) compound
SO ORGANOMETALLICS
LA English
DT Article
ID ASYMMETRIC HYDROFORMYLATION; BERRY PSEUDOROTATION; CRYSTAL-STRUCTURE;
BASIS-SETS; COMPLEXES; REARRANGEMENT; PHOSPHORUS; MOLECULES; NMR; MO
AB Ab initio MO calculations at the MP4(SDQ)//MP2 level of theory were
carried out to investigate the energies and reaction mechanism for the
olefin insertion reaction (first step in the olefin hydroformylation
catalytic cycle) using heterobimetallic trans-Pt(H)(PH3)(2)(SnCl)(3) as
the active catalytic species. The electronic effects of SnCl3 on the
trigonal-bipyramidal intermediates formed were analyzed through the
charge decomposition analysis method. The results show that the major
role of the SnCl3 ligand is to stabilize the pentacoordinated
intermediates as well as to weaken the Pt-H bond trans to it, favoring
the insertion.
C1 UFMG, Dept Quim, Lab Quim Computac & Modelagem Mol, ICRx, BR-31270901 Belo Horizonte, MG, Brazil.
RP De Almeida, WB, UFMG, Dept Quim, Lab Quim Computac & Modelagem Mol,
ICRx, BR-31270901 Belo Horizonte, MG, Brazil.
CR AGBOSSOU F, 1995, CHEM REV, V95, P2485
ALBINATI A, 1985, J ORGANOMET CHEM, V295, P239
ANTES I, 1995, ORGANOMETALLICS, V14, P4263
CLARK HC, 1973, INORG CHEM, V12, P357
CORNILS B, 1980, NEW SYNTHESIS CARBON
DAPPRICH S, 1995, ANGEW CHEM INT EDIT, V34, P354
DAPPRICH S, 1995, ANGEW CHEM, V107, P383
DAPPRICH S, 1995, J PHYS CHEM-US, V99, P9352
DAVIDSON PJ, 1976, CHEM REV, V76, P219
DELPRA A, 1979, J CHEM SOC DA, P1862
DEMUYNCK J, 1977, NOUVEAU J CHIM, V1, P217
FRENKING G, 1997, J CHEM SOC DALT 0521, P1653
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GOMEZ M, 1991, ORGANOMETALLICS, V10, P4036
HARMON RE, 1973, CHEM REV, V73, P21
HAY PJ, 1985, J CHEM PHYS, V82, P270
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOFFMANN R, 1972, J AM CHEM SOC, V94, P3047
HOLLWARTH A, 1993, CHEM PHYS LETT, V208, P237
HOLMES RR, 1972, ACCOUNTS CHEM RES, V5, P296
HOLT MS, 1989, CHEM REV, V89, P11
JOHNSON BFG, 1972, J CHEM SOC CHEM COMM, P1312
KOGA N, 1988, J AM CHEM SOC, V110, P3417
KOGA N, 1991, CHEM REV, V91, P823
KOLLAR L, 1987, J ORGANOMET CHEM, V330, P305
KOLLAR L, 1988, J ORGANOMET CHEM, V350, P277
MUSAEV DG, 1996, ADV CHEM PHYS, V95, P61
PARRINELLO G, 1987, J AM CHEM SOC, V109, P7122
ROCHA WR, 1997, INT J QUANTUM CHEM, V65, P643
ROMEO R, 1975, J MOLECULAR CATAL, V1, P325
ROSSI AR, 1975, INORG CHEM, V14, P365
ROUNDHILL DM, 1975, ADV ORGANOMET CHEM, V13, P273
SCHWAGER I, 1976, J CATAL, V45, P256
SCRIVANTI A, 1986, J ORGANOMET CHEM, V314, P369
STRICH A, 1973, J AM CHEM SOC, V95, P5574
STRICH A, 1978, INORG CHEM, V4, P942
THORN DL, 1978, J AM CHEM SOC, V100, P2079
UGI I, 1971, ACCOUNTS CHEM RES, V4, P288
NR 38
TC 21
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 0276-7333
J9 ORGANOMETALLICS
JI Organometallics
PD MAY 11
PY 1998
VL 17
IS 10
BP 1961
EP 1967
PG 7
SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
GA ZP802
UT ISI:000073789900015
ER
PT J
AU Ishiki, HM
Aleman, C
Galembeck, SE
TI Conformational preferences of flavone and isoflavone in the gas phase,
aqueous solution and organic solution
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; AB-INITIO; MODEL; PARAMETRIZATION;
PARAMETERS; SOLVENT; STATES; ENERGY
AB Flavone and isoflavone are an important class of secondary metabolites
that are widely distributed in nature. In this Letter we have
determined the conformational preferences of each compound in the gas
phase, aqueous solution and organic solution. Gas-phase calculations
were performed using AM1, MNDO, HF/3-21G, HF/6-31G(d) and
B3-LYP/6-31G(d) calculations. Besides solution calculations were
performed using the MST solvation model. (C) 1998 Elsevier Science B.V.
All rights reserved.
C1 Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Quim, Lab Modelagem Mol, BR-14049902 Ribeirao Preto, SP, Brazil.
Univ Politecn Catalunya, ETS Engn Ind Barcelona, Dept Engn Quim, E-08028 Barcelona, Spain.
RP Galembeck, SE, Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao
Pret, Dept Quim, Lab Modelagem Mol, Ave Bandelrantes 3900, BR-14049902
Ribeirao Preto, SP, Brazil.
CR ALEMAN C, 1996, J PHYS CHEM-US, V100, P1524
ALEMAN C, 1997, IN PRESS J ORG CHEM
BACHS M, 1994, J COMPUT CHEM, V15, P446
BAKER J, 1986, J COMPUT CHEM, V7, P385
BECKE AD, 1988, PHYS REV A, V38, P3098
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BLASDALE WC, 1945, J AM CHEM SOC, V67, P491
CODY V, 1994, J MOL STRUCT, V317, P89
COLLIE JN, 1899, J CHEM SOC, V75, P710
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
FOTSIS T, 1997, CANCER RES, V57, P2916
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P203
KARPFEN A, 1997, J PHYS CHEM A, V101, P7426
KOES RE, 1994, BIOESSAYS, V16, P123
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
LEANDERSON P, 1997, FREE RADICAL BIO MED, V23, P235
LEE C, 1988, PHYS REV B, V37, P785
LUQUE FJ, 1993, J PHYS CHEM-US, V97, P4386
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
MAHMOOD N, 1996, BIOCHEM BIOPH RES CO, V229, P73
MIERTUS S, 1981, CHEM PHYS, V55, P1981
MIERTUS S, 1982, CHEM PHYS, V65, P239
MIYAKE T, 1997, J AGR FOOD CHEM, V45, P1819
MOLLER C, 1934, PHYS REV, V46, P618
PIEROTTI RA, 1976, CHEM REV, V76, P717
RASTELLI G, 1995, EUR J MED CHEM, V30, P141
STEWART JJP, 1990, QCPE B, V10, P86
VAYA J, 1997, FOOD CHEM, V45, P3004
VAYA J, 1997, FREE RADICAL BIO MED, V23, P302
VENKATARAMAN K, 1962, CHEM FLAVONOIDS COMP
VRIELYNCK L, 1993, J MOL STRUCT, V297, P227
VRIELYNCK L, 1994, SPECTROCHIM ACTA A, V50, P2177
NR 34
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 8
PY 1998
VL 287
IS 5-6
BP 579
EP 584
PG 6
SC Physics, Atomic, Molecular & Chemical
GA ZP121
UT ISI:000073718500016
ER
PT J
AU Prudente, FV
Neto, JJS
TI The fitting of potential energy surfaces using neural networks.
Application to the study of the photodissociation processes
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DISCRETE VARIABLE REPRESENTATION; CROSS-SECTIONS; SCATTERING; MOLECULES
AB A back-propagation neural network is utilized to fit potential energy
surfaces and the transition dipole moment of the HCl+ ion, using the ab
initio electronic energies calculated by Pradhan, Kirby and Dalgarno.
These surfaces are used in the study of the photodissociation process.
The photodissociation cross section is calculated utilizing the equally
spaced discrete variable representation and the negative imaginary
potential method. (C) 1998 Elsevier Science B.V. All rights reserved.
C1 Univ Brasilia, Dept Fis, BR-70910900 Brasilia, DF, Brazil.
RP Prudente, FV, Univ Brasilia, Dept Fis, CP 04455, BR-70910900 Brasilia,
DF, Brazil.
CR BISHOP CM, 1982, REV SCI INSTRUM, V63, P4450
BLANK TB, 1995, J CHEM PHYS, V103, P4129
BROWN DFR, 1996, J CHEM PHYS, V105, P7597
COLBERT DT, 1992, J CHEM PHYS, V96, P1982
DARSEY JA, 1991, CHEM PHYS LETT, V177, P189
FRIEDMAN JH, 1991, ANN STAT, V19, P1
GARCIA E, 1985, MOL PHYS, V56, P621
MEYER W, 1986, J CHEM PHYS, V84, P891
PRADHAN AD, 1991, J CHEM PHYS, V95, P9009
PRESS WH, 1986, NUMERICAL RECIPES
PRUDENTE FV, 1997, J MOL STRUC-THEOCHEM, V394, P169
RODRIGUEZ A, 1991, J CHEM PHYS, V86, P4401
ROM N, 1991, CHEM PHYS, V151, P199
SEIDEMAN T, 1992, J CHEM PHYS, V96, P4412
SEIDEMAN T, 1992, J CHEM PHYS, V97, P2499
SEIDEMAN T, 1993, J CHEM PHYS, V98, P1989
SIMONS G, 1973, J CHEM PHYS, V59, P3229
SUMPTER BG, 1994, ANNU REV PHYS CHEM, V45, P439
VANDISHOECK EF, 1982, J CHEM PHYS, V77, P3693
ZUPAN J, 1993, NEURAL NETWORK CHEM
NR 20
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 8
PY 1998
VL 287
IS 5-6
BP 585
EP 589
PG 5
SC Physics, Atomic, Molecular & Chemical
GA ZP121
UT ISI:000073718500017
ER
PT J
AU Sambrano, JR
Andres, J
Beltran, A
Sensato, F
Longo, E
TI Theoretical study of the structure and stability of NbxOy, and NbxOy+
(x = 1-3; y = 2-5, 7, 8) clusters
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DENSITY-FUNCTIONAL THEORY; ELECTRON LOCALIZATION; TOPOLOGICAL ANALYSIS;
EXACT EXCHANGE; BONDS; IONS
AB Geometric, thermodynamic and electronic properties of cluster neutrals
NbxOy and cations NbxOy+ (x = 1-3; y = 2-5, 7, 8) have been
characterized theoretically. A DFT calculation using a hybrid
combination of B3LYP with contracted Huzinaga basis sets. Numerical
results of the relative stabilities, ionization potentials and band
gaps of different clusters are in agreement with experiment. Analysis
of dissociation channels supports the more stable building blocks as
formed by NbO2, NbO2+ NbO3 and NbO3+ stoichiometries. The net atomic
charges suggest that oxygen donor molecules can interact more favorably
on central niobium atoms of cluster cations, while the interaction with
oxygen acceptor molecules is more favorable on the terminal oxygen
atoms of neutral clusters. A topological analysis of the electron
localization function gradient field indicates that the clusters may be
described as having a strong ionic interaction between Nb and O atoms.
Published by Elsevier Science B.V.
C1 Univ Estadual Paulista, Dept Matemat, BR-17030360 Bauru, SP, Brazil.
Univ Jaume 1, Dept Ciencies Expt, Castello 12080, Spain.
Univ Fed Sao Carlos, Dept Quim, LIEC, BR-13565905 S Carlos, SP, Brazil.
RP Sambrano, JR, Univ Estadual Paulista, Dept Matemat, CP 473, BR-17030360
Bauru, SP, Brazil.
CR BADER RFW, 1990, ATOMS MOL
BAKER J, 1995, CHEM PHYS LETT, V237, P53
BECKE AD, 1990, J CHEM PHYS, V92, P5397
BECKE AD, 1993, J CHEM PHYS, V98, P5648
CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
CASTLEMAN AW, 1986, CHEM REV, V86, P589
DENG HT, 1996, J PHYS CHEM-US, V100, P13386
ELAZHARY AA, 1996, J PHYS CHEM-US, V100, P15056
FOSTER JP, 1980, J AM CHEM SOC, V102, P7211
GALBRAITH JM, 1996, J CHEM PHYS, V105, P862
HOLTHAUSEN MC, 1995, CHEM PHYS LETT, V240, P245
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
HUZINAGA S, 1985, BASIS SET MOL CALCUL
JENA P, 1992, PHYSICS CHEM FINITE, V374
KEESEE RG, 1986, J PHYS CHEM REF DATA, V15, P1011
LABONOWSKY JK, 1991, DENSITY FUNCTIONAL M
LEE C, 1988, PHYS REV B, V37, P785
LEE C, 1993, PHYS REV B, V98, P5648
LOPEZ X, 1996, CAN J CHEM, V74, P1032
NOURY S, 1997, TOPMOD PACKAGE
PARR RG, 1989, DENSITY FUNCTIONAL T
RAUHUT G, 1995, J PHYS CHEM-US, V99, P3093
REED AE, 1985, J CHEM PHYS, V83, P735
REED AE, 1988, CHEM REV, V88, P899
SAVIN A, 1992, ANGEW CHEM INT EDIT, V31, P187
SAVIN A, 1996, CAN J CHEM, V74, P1088
SEMINARIO JM, 1995, MODERN DENSITY FUNCT
SEMINARIO M, 1995, DENSITY FUNCTIONAL T
SILVI B, 1994, NATURE, V371, P683
STEVENS PJ, 1994, J PHYS CHEM-US, V98, P11623
WIERZBICKI A, 1996, J PHYS CHEM-US, V100, P11250
XU YC, 1995, J AM CHEM SOC, V117, P5413
ZIEGLER T, 1993, J AM CHEM SOC, V115, P636
ZIEGLER T, 1993, J AM CHEM SOC, V115, P636
NR 34
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAY 8
PY 1998
VL 287
IS 5-6
BP 620
EP 626
PG 7
SC Physics, Atomic, Molecular & Chemical
GA ZP121
UT ISI:000073718500023
ER
PT J
AU Bettega, MHF
Oliveira, AJS
Natalense, APP
Lima, MAP
Ferreira, LG
TI Static-exchange cross sections for electron-collisions with B2H6, C2H6,
Si2H6, and Ge2H6
SO EUROPEAN PHYSICAL JOURNAL D
LA English
DT Article
ID NORM-CONSERVING PSEUDOPOTENTIALS; LOW-ENERGY ELECTRONS;
INELASTIC-SCATTERING; POLYATOMIC-MOLECULES; ABINITIO; ETHANE;
EXCITATION; METHANE; SNH4; CH4
AB We report integral and differential cross sections from 5-30 eV for
elastic scattering of electrons by X2H6 (X=B, C, Si, Ge) obtained using
the Schwinger Multichannel Method with Pseudopotentials [M.K.F.
Bettega, L.G. Ferreira, M.A.P. Lima, Phys. Rev. A 47, 1111 (1993)]. We
compare our results with available experimental data and other
theoretical results, and also with previous results for XH4 (X=C, Si,
Ge) [M.H.F. Bettega, A.P.P. Natalense, M.A.P. Lime, L.G. Ferreira, J.
Chem. Phys. 103, 10566 (1995)]. To our knowledge this is the first ab
initio calculation of the B2H6 and Ge2H5 electron scattering cross
sections.
C1 Univ Fed Parana, Dept Fis, BR-81531990 Curitiba, Parana, Brazil.
Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Sao Paulo, Brazil.
UFMa, Dept Fis, BR-65040020 Sao Luiz, MA, Brazil.
RP Bettega, MHF, Univ Fed Parana, Dept Fis, Caixa Postal 19081,
BR-81531990 Curitiba, Parana, Brazil.
CR BACHELET G, 1982, PHYS REV B, V46, P4199
BETTEGA MHF, 1993, PHYS REV A, V47, P1111
BETTEGA MHF, 1995, J CHEM PHYS, V103, P10566
BETTEGA MHF, 1996, INT J QUANTUM CHEM, V60, P821
BETTEGA MHF, 1996, J CHEM PHYS, V105, P1029
CURRY PJ, 1985, J PHYS B ATOM MOL PH, V18, P2303
DILON MA, 1994, J PHYS B ATOM MOL PH, V27, P1209
DUNNING TH, 1970, J CHEM PHYS, V53, P2823
GILLAN CJ, 1987, J PHYS B ATOM MOL PH, V20, P4585
HAMANN DR, 1979, PHYS REV LETT, V43, P1494
LIMA MAP, 1990, PHYS REV A, V41, P327
MAPSTONE B, 1992, J PHYS B ATOM MOL PH, V25, P491
NATALENSE APP, 1995, PHYS REV A, V52, R1
NATALENSE APP, 1996, PHYS REV A, V54, P5435
NESTMANN BM, 1994, J PHYS B ATOM MOL PH, V27, P2297
PFINGST K, 1994, J PHYS B ATOM MOL PH, V27, P2283
RESCIGNO TN, 1992, PHYS REV A, V45, P2894
RESCIGNO TN, 1992, PHYS REV A, V45, P7800
RESCIGNO TN, 1996, J CHEM PHYS, V104, P120
SUEOKA O, 1986, J PHYS B ATOM MOL PH, V19, P4035
SUN WG, 1992, J CHEM PHYS, V97, P5480
TAKATSUKA K, 1981, PHYS REV A, V24, P2473
TAKATSUKA K, 1984, PHYS REV A, V30, P1734
TANAKA H, 1988, J PHYS B ATOM MOL PH, V21, P1255
VARELLA MTD, 1997, Z PHYS D ATOM MOL CL, V39, P59
WINSTEAD C, 1991, J CHEM PHYS, V94, P5455
NR 26
TC 7
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010 USA
SN 1434-6060
J9 EUR PHYS J D
JI Eur. Phys. J. D
PD MAR
PY 1998
VL 1
IS 3
BP 291
EP 296
PG 6
SC Physics, Atomic, Molecular & Chemical
GA ZM841
UT ISI:000073581700010
ER
PT J
AU Kahlal, S
Saillard, JY
Hamon, JR
Manzur, C
Carrillo, D
TI Molecular orbital analysis of the metal-hydrazide(2-) bonding in
co-ordination chemistry
SO JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
LA English
DT Review
ID X-RAY CRYSTAL; TUNGSTEN-DINITROGEN COMPLEXES; TRANSITION-METAL
COMPLEXES; BRIDGING ALKOXO LIGANDS; STRUCTURAL CHARACTERIZATION;
COORDINATED DINITROGEN; HYDRAZIDO(2-) COMPLEXES; MOLYBDENUM COMPLEXES;
ELECTRONIC-STRUCTURE; NITROGEN-FIXATION
AB The bonding in mono-and bis-hydrazido metal complexes has been studied
with the help of EHMO and ab initio calculations on various models as
well as on free hydrazide. The theoretical results have been analysed
together with a collection of structural data obtained through a
Cambridge Data Base search covering 118 compounds. Although generally
described as being a hydrazide(2-) ligand, its oxidation state is often
closer -1 in early transition-metal complexes, corresponding to the
following occupation of its frontier orbitals:
(sigma(n))(2)(pi(NN))(2)-(pi(sigma))(2)(pi*(NN))(1). The occupied
hydrazido pi(NN) orbital, which does not interact significantly with
the metal, is largely responsible for the significant double-bond
character of the N-N bond. The partial population of the pi*(NN) level,
which tends to reduce the N-N bond order, is partly balanced by
depopulation of the somewhat antibonding pi(sigma) orbital. Assuming
the traditional hydrazido(2-) formal charge, the ligand is a
six-electron donor in monohydrazido metal species if co-ordinated
linearly. If significantly bent, it is a four-electron donor. In the
case of cis bis(hydrazido) species, the two formally hydrazide(2-)
ligands act generally as a 10-electron donor system.
C1 Valparaiso Univ, Inst Quim, Lab Quim Inorgan, Valparaiso, Chile.
Univ Rennes 1, UMR CNRS 6511, Chim Solide & Inorgan Mol Lab, F-35042 Rennes, France.
Univ Rennes 1, UMR CNRS 6509, F-35042 Rennes, France.
RP Saillard, JY, Valparaiso Univ, Inst Quim, Lab Quim Inorgan, Ave Brasil
2950, Valparaiso, Chile.
CR *CAMBR CRYST DAT C, 1997, CAMBR DAT BAS SYST V
ALBRIGHT TA, 1985, ORBITAL INTERACTIONS
AMMETER JH, 1978, J AM CHEM SOC, V100, P3686
AOSHIMA T, 1992, J ORGANOMET CHEM, V423, P39
ARNDTSEN BA, 1991, J AM CHEM SOC, V113, P4971
ARNDTSEN BA, 1992, J AM CHEM SOC, V114, P7041
BAKAR MA, 1988, J CHEM SOC DA, P2525
BAKAR MA, 1988, J CHEM SOC DA, P2545
BARCLAY JE, 1990, J CHEM SOC DA, P2503
BARRIENTOSPENNA CF, 1982, INORG CHEM, V21, P2578
BARRY JT, 1997, POLYHEDRON, V16, P2113
BENSON MT, 1995, INORG CHEM, V34, P2348
BISHOP MW, 1979, J CHEM SOC DA, P1600
BISHOP PT, 1988, J ORGANOMET CHEM, V341, P373
BLOCK E, 1991, INORG CHEM, V30, P1736
BLOCK E, 1991, INORG CHIM ACTA, V181, P227
BLOWER PJ, 1985, J CHEM SOC DA, P2647
BRIDGEMAN AJ, 1995, J CHEM SOC DA, P1023
BULTITUDE J, 1986, J CHEM SOC CHEM COMM, P1748
BURRELL AK, 1994, J AM CHEM SOC, V116, P3813
BURT RJ, 1982, J CHEM SOC DA, P2295
BUSTOS C, 1991, INORG CHIM ACTA, V185, P25
BUSTOS C, 1994, INORG CHEM, V33, P1427
BUSTOS C, 1994, INORG CHEM, V33, P4937
CAI S, 1996, ORGANOMETALLICS, V15, P1023
CARRILLO D, 1992, INORG CHIM ACTA, V197, P209
CHATT J, 1979, J ORGANOMET CHEM, V170, C6
CHATT J, 1979, TRANSIT METAL CHEM, V4, P271
CHATT J, 1980, J CHEM SOC CHEM COMM, P786
CHATT J, 1982, INORG CHEM, V21, P2383
CHATT J, 1982, J CHEM SOC DA, P1041
CHATT J, 1982, J CHEM SOC DA, P345
CHISHOLM MH, 1987, COMPREHENSIVE COORDI, V2, P161
COIA GM, 1994, J AM CHEM SOC, V116, P3649
COIA GM, 1997, INORG CHEM, V36, P2341
CRAMER RE, 1988, ORGANOMETALLICS, V7, P841
CRICHTON BAL, 1980, TRANSIT METAL CHEM, V5, P316
CUNDARI TR, 1992, J AM CHEM SOC, V114, P7879
CUNDARI TR, 1993, ORGANOMETALLICS, V12, P4971
DAHLSTROM PL, 1982, INORG CHEM, V21, P933
DANOPOULOS AA, 1994, J CHEM SOC DA, P907
DANOPOULOS AA, 1997, POLYHEDRON, V16, P1081
DAY VW, 1976, J ORGANOMET CHEM, V112, C55
DEBORD JRD, 1993, INORG CHEM, V32, P785
DEETH RJ, 1991, J CHEM SOC DA, P1875
DEHNICKE K, 1989, POLYHEDRON, V8, P707
DEHNICKE K, 1993, CHEM REV, V93, P981
DILWORTH JR, 1981, J CHEM SOC CHEM COMM, P132
DILWORTH JR, 1982, J AM CHEM SOC, V104, P365
DILWORTH JR, 1983, INORG CHIM A-BIOINOR, V79, P208
DILWORTH JR, 1983, J CHEM SOC DA, P1489
DILWORTH JR, 1983, J CHEM SOC DA, P455
DILWORTH JR, 1985, INORG CHEM, V24, P2594
DILWORTH JR, 1992, POLYHEDRON, V11, P147
DILWORTH JR, 1993, POLYHEDRON, V12, P513
DILWORTH JR, 1997, J CHEM SOC DALT 0121, P269
DUBOIS DL, 1977, NOUV J CHIM, V1, P479
EINSTEIN FWB, 1982, INORG CHEM, V21, P2585
EMSLEY J, 1989, ELEMENTS
FITZROY MD, 1990, INORG CHIM ACTA, V169, P79
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GEBREYES K, 1986, INORG CHEM, V25, P405
GEORGE TA, 1990, POLYHEDRON, V9, P545
GEORGE TA, 1993, INORG CHEM, V32, P1706
GERNERT MB, 1996, ACTA CRYSTALLOGR C 3, V52, P545
GREEN JC, 1992, J CHEM SOC CHEM 0915, P1361
GREEN MLH, 1991, J CHEM SOC DA, P3781
GREEN MLH, 1997, J CHEM SOC DALT 0421, P1281
GREEN MLH, 1997, J CHEM SOC DALT 0521, P1719
HANSON IR, 1981, J CHEM SOC DA, P390
HEATH GA, 1974, J AM CHEM SOC, V96, P259
HENDERSON RA, 1983, ADV INORG CHEM, V27, P197
HIDAI M, 1976, INORG CHEM, V15, P2694
HIDAI M, 1984, J ORGANOMET CHEM, V272, P155
HIDAI M, 1986, J AM CHEM SOC, V108, P1562
HIRSCHKUCHMA M, 1997, J CHEM SOC DALT 0921, P3189
HOFFMANN R, 1962, J CHEM PHYS, V36, P2179
HOFFMANN R, 1963, J CHEM PHYS, V39, P1397
HOFFMANN R, 1982, ANGEW CHEM INT EDIT, V21, P711
HSIEH TC, 1988, INORG CHEM, V27, P241
HUGHES DL, 1981, ACTA CRYSTALLOGR B, V37, P557
IWANAMI K, 1981, B CHEM SOC JPN, V54, P1773
JIMENEZTENORIO M, 1994, J CHEM SOC DA, P2431
JOHNSON BFG, 1987, COMPREHENSIVE COORDI, V2, P99
JORGENSEN KA, 1993, INORG CHEM, V32, P1521
KANG H, 1988, J CHEM SOC CHEM COMM, P1192
KETTLER PB, 1994, INORG CHEM, V33, P5864
KOMORI K, 1983, CHEM LETT, P465
KORNER V, 1997, CHEM BER-RECL, V130, P489
KOSTIC NM, 1981, J AM CHEM SOC, V103, P4677
LATHAN WA, 1974, PROGR PHYS ORG CHEM, V11, P175
LIKAO J, 1995, ACTA CRYSTALLOGR 12, V51, P2486
LIN ZY, 1993, COORDIN CHEM REV, V123, P149
LYNE PD, 1994, J ORGANOMET CHEM, V478, P141
MAHY JP, 1984, J AM CHEM SOC, V106, P1699
MANZUR C, UNPUB
MANZUR C, 1996, INORG CHIM ACTA, V249, P245
MANZUR C, 1997, ACTA CRYSTALLOGR 10, V53, P1401
MANZUR C, 1997, INORG CHIM ACTA, V255, P73
MANZUR C, 1997, J CHEM CRYSTALLOGR, V27, P339
MANZUR C, 1998, INORG CHIM ACTA, V268, P199
MARCH FC, 1975, J ORGANOMET CHEM, V96, C43
MASON R, 1974, J AM CHEM SOC, V96, P260
MCCLEVERTY JA, 1987, TRANSIT METAL CHEM, V12, P283
MEALLI C, 1990, J CHEM EDUC, V67, P399
MOLLER C, 1934, PHYS REV, V46, P618
MOUNTFORD P, 1995, J CHEM SOC CHEM COMM, P2357
NICHOLSON T, 1985, J CHEM SOC CHEM COMM, P367
NICHOLSON T, 1987, POLYHEDRON, V6, P1577
NICHOLSON T, 1988, POLYHEDRON, V7, P171
NISHIHARA H, 1982, J AM CHEM SOC, V104, P4367
NUGENT WA, 1980, COORDIN CHEM REV, V31, P123
NUGENT WA, 1988, METAL LIGAND MULTIPL
OSBORNE JH, 1985, J AM CHEM SOC, V107, P7945
OSHITA H, 1990, CHEM LETT, P1303
OSHITA H, 1992, ORGANOMETALLICS, V11, P4116
PATERSSON GA, 1988, J CHEM PHYS, V89, P2193
PENG G, 1994, INORG CHEM, V33, P2864
PIETSCH MA, 1996, INORG CHEM, V35, P1273
RAPPE AK, 1982, J AM CHEM SOC, V104, P3287
RAPPE AK, 1982, J AM CHEM SOC, V104, P448
RAPPE AK, 1984, INORG CHEM, V23, P995
REDSHAW C, 1979, J CHEM SOC DA, P3343
RETBOLL M, 1995, ACTA CHEM SCAND, V49, P278
SCHOFIELD MH, 1991, INORG CHEM, V30, P3595
SEINO H, 1994, J AM CHEM SOC, V116, P7433
SEINO H, 1995, J AM CHEM SOC, V117, P12181
SEINO H, 1997, INORG CHEM, V36, P161
SHAIK SN, 1986, INORG CHIM ACTA, V115, L19
SHAIKH SN, 1988, INORG CHEM, V27, P1896
SHAIKH SN, 1988, INORG CHIM ACTA, V144, P147
SILAVWE ND, 1988, INORG CHEM, V27, P4669
STERGIOU AC, 1994, INORG CHIM ACTA, V217, P61
STREET AC, 1991, CHEM LETT, P383
SUTTON D, 1993, CHEM REV, V93, P995
VEITH M, 1976, ANGEW CHEM INT EDIT, V15, P387
WIGLEY DE, 1994, PROG INORG CHEM, V42, P239
WILLIAMS DN, 1992, J CHEM SOC DA, P739
WILLIAMS DS, 1993, ORGANOMETALLICS, V12, P4560
ZUBIETA J, 1990, INORG CHEM, V29, P4595
NR 140
TC 25
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE CB4 4WF,
CAMBS, ENGLAND
SN 0300-9246
J9 J CHEM SOC DALTON TRANS
JI J. Chem. Soc.-Dalton Trans.
PD APR 7
PY 1998
IS 7
BP 1229
EP 1240
PG 12
SC Chemistry, Inorganic & Nuclear
GA ZJ011
UT ISI:000073170600028
ER
PT J
AU Pliego, JR
Franca, MA
De Almeida, WB
TI Kinetics of the H2O+CCl2 reaction in gas phase and in solution by an
insertion mechanism
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID CORRELATED MOLECULAR CALCULATIONS; LASER FLASH-PHOTOLYSIS;
GAUSSIAN-BASIS SETS; O-H BOND; AB-INITIO; DIMETHOXYCARBENE; ADDITIVITY;
METHYLENE; HYDRATION; CARBENES
AB The single-step insertion reaction of dichlorocarbene into the water OH
bond was investigated at the ab initio level of theory. We have used
additivity approximation to obtain an effective CCSD(T)/cc-pVTZ + diff
single-point energy calculation on MP2/DZP optimized geometries. The
solvent effect on the activation free energy was included by performing
Monte Carlo simulations and statistical perturbation theory. it was
found that direct insertion should not play an important role in the
H2O + CCl2 reaction. A mechanism involving two water molecules is
suggested as a possible alternative reaction pathway. (C) 1998 Elsevier
Science B.V.
C1 Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Quim, Lab Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
RP Pliego, JR, Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Quim, Lab
Quim Computac & Modelagem Mol, BR-31270901 Belo Horizonte, MG, Brazil.
CR ADMASU A, 1997, J PHYS CHEM A, V101, P3832
BETHELL D, 1971, J CHEM SOC B, P23
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
CHIPOT C, 1994, J PHYS CHEM-US, V98, P11362
CURTISS LA, 1991, J CHEM PHYS, V94, P7221
CURTISS LA, 1992, J CHEM PHYS, V96, P9030
DU XM, 1990, J AM CHEM SOC, V112, P1920
DUNNING TH, 1977, METHODS ELECT STRUCT
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FRISCH MJ, 1995, GAUSSIAN 94
GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
GRILLER D, 1982, J AM CHEM SOC, V104, P5549
JORGENSEN WL, 1985, J CHEM PHYS, V83, P3050
JORGENSEN WL, 1988, J AM CHEM SOC, V110, P1657
JORGENSEN WL, 1990, J PHYS CHEM-US, V94, P1683
JORGENSEN WL, 1995, BOSS VERS 3 5
KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
KIRMSE W, 1993, J AM CHEM SOC, V115, P8918
MOSS RA, 1988, TETRAHEDRON LETT, V29, P6417
NOBES RH, 1982, CHEM PHYS LETT, V89, P497
PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
PLIEGO JR, 1997, J CHEM SOC FARADAY T, V93, P1881
POPLE JA, 1983, J AM CHEM SOC, V105, P6389
ROBINSON EA, 1961, J CHEM SOC, P1663
STAKER WS, 1991, J CHEM SOC FARADAY T, V87, P2421
TOSCANO JP, 1994, J AM CHEM SOC, V116, P8146
WANG JL, 1995, J AM CHEM SOC, V117, P5477
WOON DE, 1993, J CHEM PHYS, V98, P1358
ZUPANCIC JJ, 1985, TETRAHEDRON, V41, P1471
NR 31
TC 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD MAR 13
PY 1998
VL 285
IS 1-2
BP 121
EP 126
PG 6
SC Physics, Atomic, Molecular & Chemical
GA ZF354
UT ISI:000072889100019
ER
PT J
AU Castellano, EE
Piro, OE
Caram, JA
Mirifico, MV
Aimone, SL
Vasini, EJ
Glossman, MD
TI Crystallographic study and molecular orbital calculations of
1,2,5-thiadiazole 1,1-dioxide derivatives
SO JOURNAL OF PHYSICAL ORGANIC CHEMISTRY
LA English
DT Article
DE 1,2,5-thiadiazole; 1,1-dioxide derivatives; single-crystal x-ray
diffraction; ab initio MO calculations; structure; conformation;
reactivity
ID 3,4-DIPHENYL-1,2,5-THIADIAZOLE 1,1-DIOXIDE; CHEMICAL-REACTIVITY;
CRYSTAL-STRUCTURE; ACETONITRILE; ELECTROREDUCTION; HYDROLYSIS; SOLVENTS
AB Single-crystal x-ray diffraction studies are reported for 3,4-dimethyl
(I), 3-methyl-4-phenyl (II) and 3,4-diphenyl (III) derivatives of
1,2,5-thiadiazole 1,1-dioxide. Ab initio MO calculations on the
electronic structure, conformation and reactivity of I, II and III are
also reported and compared with the x-ray results. The structural data
are related to previous kinetic and electrochemical experimental
results on these compounds. (C) 1998 John Wiley & Sons, Ltd.
C1 Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, RA-1900 La Plata, Argentina.
Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560 Sao Carlos, SP, Brazil.
CONICET, Programa PROFIMO, RA-1900 La Plata, Argentina.
Natl Univ La Plata, INIFTA, CONICET, RA-1900 La Plata, Argentina.
Natl Univ La Plata, CEQUINOR, CONICET, RA-1900 La Plata, Argentina.
Univ Nacl Lujan, Dept Ciencias Basicas, RA-6700 Lujan, Argentina.
RP Piro, OE, Natl Univ La Plata, Fac Ciencias Exactas, Dept Fis, CC 67,
RA-1900 La Plata, Argentina.
EM Piro@ayelen.fisica.unlp.edu.ar
CR AMATO JS, 1982, J AM CHEM SOC, V104, P1375
ARAN VJ, 1988, ADV HETEROCYCL CHEM, V44, P81
BACHRACH SM, 1994, REV COMPUTATIONAL CH, V5
BAKER RJ, 1980, J ORG CHEM, V45, P482
BAUMGARTEL H, 1984, ENCY ELECTROCHEMISTR, V15, P168
CALDERON CE, 1979, ACTA CRYSTALLOGR B, V35, P2795
CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P1340
CALDERON CE, 1982, ACTA CRYSTALLOGR B, V38, P2296
CARAM JA, 1994, ELECTROCHIM ACTA, V39, P939
CARAM JA, 1996, CAN J CHEM, V74, P1564
CROMER DT, 1974, INT TABLES CRYSTALLO, V4, P71
CROMER DT, 1974, INT TABLES XRAY CRYS, V4, P149
DUNN PJ, 1989, J CHEM SOC CHEM COMM, P1134
FOCESFOCES C, 1975, ACTA CRYSTALLOGR B, V31, P2310
FOCESFOCES C, 1977, ACTA CRYSTALLOGR B, V33, P910
FRENZ BA, 1983, ENRAF NONIUS STRUCTU
FRISCH MJ, 1995, GAUSSIAN 94
FUKUI K, 1973, THEORY ORIENTATION S
GLOSSMAN MD, 1995, THEOCHEM-J MOL STRUC, V330, P385
GLOSSMAN MD, 1996, ATUALIDADES FISICO Q, P526
GLOSSMAN MD, 1997, J MOL STRUCTURE THEO, V390, P67
HAMILTON WC, 1959, ACTA CRYSTALLOGR, V12, P609
JOHNSON CK, 1965, ORNL3794 ORTEP
MIRIFICO MV, 1991, ELECTROCHIM ACTA, V36, P167
MIRIFICO MV, 1991, INT J CHEM KINET, V23, P197
MIRIFICO MV, 1993, J PHYS ORG CHEM, V6, P341
MIRIFICO MV, 1995, AN QUIM, V91, P557
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1841
MULLIKEN RS, 1955, J CHEM PHYS, V23, P2338
PARR RG, 1984, J AM CHEM SOC, V106, P4049
PARR RG, 1989, DENSITY FUNCTIONAL T
PEARSON RG, 1963, J AM CHEM SOC, V85, P3533
PEARSON RG, 1966, SCIENCE, V151, P172
PERICHON J, 1978, ENCY ELECTROCHEMISTR, V11, P71
POLITZER P, 1981, CHEM APPL ATOMIC MOL
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
SHELDRICK GM, 1976, SHELX PROGRAM CRYSTA
WEINSTOCK LM, 1984, COMPREHENSIVE HETERO, V6
YANG W, 1986, J AM CHEM SOC, V108, P5708
NR 40
TC 15
PU JOHN WILEY & SONS LTD
PI W SUSSEX
PA BAFFINS LANE CHICHESTER, W SUSSEX PO19 1UD, ENGLAND
SN 0894-3230
J9 J PHYS ORG CHEM
JI J. Phys. Org. Chem.
PD FEB
PY 1998
VL 11
IS 2
BP 91
EP 100
PG 10
SC Chemistry, Organic; Chemistry, Physical
GA ZD967
UT ISI:000072743700003
ER
PT J
AU Gomes, MG
Davanzo, CU
Silva, SC
Lopes, LGF
Santos, PS
Franco, DW
TI cis- and trans-nitrosyltetraammineruthenium(II). Spectral and
electrochemical properties and reactivity
SO JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS
LA English
DT Article
ID RUTHENIUM NITROSYL COMPLEXES; REVERSIBLE ELECTRON-TRANSFER;
NITRIC-OXIDE; CHEMISTRY; BEHAVIOR; LIGAND
AB A synthetic route was developed for the preparation of
trans-[Ru(NH3)(4)(NO)X](n+), where X = isonicotinamide (isn), pyrazine
(pyz) or sulfite, and cis-[Ru(NH3)(4)(NO)(NO2)](2+). The complexes have
been characterized by elemental analysis, UV/VIS, infrared, H-1 NMR and
ESR spectroscopies, molar conductance measurements and cyclic
voltammetry. All showed v(NO) in the range characteristic of
metal-co-ordinated NO+ and do not exhibit any ESR signal, consistent
with the formulation of Ru-II-NO+. The equilibrium constants K-eq for
the reaction trans-[Ru(NH3)(4)(NO)X](3+) + 20H(-) reversible arrow
trans-[Ru(NH3)(4)(NO2)X](+) + H2O are 2.5 x 10(8) and 6 x 10(8) dm(6)
mol(-2) for X = isn or pyz. Cyclic voltammograms of the complexes in
aqueous solution exhibited reversible one-electron waveforms in the
potential range -0.13 to -0.38 V vs. SCE, which were assigned to the
[Ru(NH3)(4)(No)X](n+) --> [Ru(NH3)(4)(NO)X]((n-1)+) process. Nitric
oxide and trans-[Ru(NH3)(4)(H2O)X](2+) are the final products of the
reaction between Eu-II and trans-[Ru(NH3)(4)(NO)X](3+), L = isn or pyz.
Ab initio molecular orbital calculations performed for
trans-[Ru(NH3)(4)(NO)(pyz)](3+) and trans-[Ru(NH3)(4)(NO)(pyz)](2+),
and the products of the trans-[Ru(NH3)(4)(NO)(pyz)](3+) one-electron
electrochemical or chemical reduction, strongly suggest the added
electron is localized mainly on the nitrosyl ligand. A correlation was
observed between v(NO) and E-1/2 for the reversible reduction wave.
These results indicate that the nitric oxide reduction is facilitated
by strong pi-acceptor ligands trans to the NO. Nitric oxide and
trans-[Ru(NH3)(4)(H2O)X](3+) were formed when solutions containing
trans-[Ru(NH3)(4)(NO)X](3+) were irradiated in the range 310-370 nm.
C1 USP, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil.
Univ Fed Ceara, Dept Quim Analit & Fis Quim, Fortaleza, Ceara, Brazil.
Univ Estadual Campinas, Inst Quim, BR-13081970 Campinas, SP, Brazil.
USP, Inst Quim, BR-09500900 Sao Paulo, Brazil.
RP Franco, DW, USP, Inst Quim Sao Carlos, Caixa Postal 780, BR-13560970
Sao Carlos, SP, Brazil.
CR *HYP INC, 1994, HYPERCHEM 4
ALBERT A, 1971, DETERMINATION IONIZA
ARMOR JN, 1975, INORG CHEM, V14, P444
ARNELLE DR, 1995, ARCH BIOCHEM BIOPHYS, V318, P279
BAGATIN IA, 1996, SPECTROSC LETT, V29, P1409
BECKE AD, 1988, PHYS REV A, V38, P3098
BEDIOUI F, 1994, J ELECTROANAL CHEM, V377, P295
BENEDIX R, 1993, INORG CHIM ACTA, V204, P189
BOHLE DS, 1995, J AM CHEM SOC, V117, P9584
BORGES SSS, UNPUB INORG CHEM
BORGES SSS, 1996, 8 INT PHOT SOC C FOZ, P81
BOTTOMLEY F, 1978, ACCOUNTS CHEM RES, V11, P158
BOTTOMLEY F, 1989, REACTIONS COORDINATE, V2
BOTTOMLEY F, 1996, METHODS NITRIC OXIDE
BROWN GM, 1978, J AM CHEM SOC, V100, P2767
BUTLER AR, 1993, CHEM SOC REV, P233
CALLAHAN RW, 1975, J AM CHEM SOC, V97, P894
CALLAHAN RW, 1977, INORG CHEM, V16, P574
CLARKE MJ, 1978, J AM CHEM SOC, V100, P5068
CLARKE MJ, 1993, STRUCT BONDING BERLI, V81, P144
CRAMER WA, 1990, ENERGY TRANSDUCTION, P334
DAHMEN EAM, 1986, ELECTROANALYSIS THEO
DAVIES NA, 1997, CHEM COMMUN 0107, P47
EISENBERG R, 1975, ACCOUNTS CHEM RES, V8, P26
ELDER RC, 1977, INORG CHEM, V16, P1048
ENEMARK JH, 1974, COORDIN CHEM REV, V13, P339
FONTECAVE M, 1994, B SOC CHIM FR, V131, P620
FORD PC, 1993, FEBS LETT, V326, P1
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GODBOUT N, 1992, CAN J CHEM, V70, P560
GODWIN JB, 1971, INORG CHEM, V10, P2150
HAMPL V, 1996, METHODS NITRIC OXIDE, CH21
ISIED SS, 1974, INORG CHEM, V13, P1545
KARLIN KD, 1993, BIONORGANIC CHEM COP
KOSHLAND DE, 1992, SCIENCE, V258, P1861
KUBAS GJ, 1981, INORG CHEM, V20, P2667
KUEHN CG, 1980, PROG INORG CHEM, V27, P153
LEE C, 1988, PHYS REV B, V37, P785
LEGZDINS P, 1994, J AM CHEM SOC, V116, P12105
LOPES LGF, UNPUB INORG CHEM
MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
MASTONE J, 1975, J INORG NUCL CHEM, V37, P473
MAZZETTO SE, 1996, INORG CHEM, V35, P3509
NAKAMOTO K, 1986, INFRARED RAMAN SPECT
PALMER JW, 1960, J INORG NUCL CHEM, V15, P279
PELL S, 1973, INORG CHEM, V12, P873
PIPES DW, 1984, INORG CHEM, V23, P2466
REED CA, 1972, J CHEM SOC DA, P1243
RITCHERADDO GB, 1992, METAL NITROSYLS
RODRIGUEZ JA, 1997, 26 REUN AN SOC BRAS, S32
SADLER PJ, 1991, ADV INORG CHEM RAD, V36, P1
SCHREINER AF, 1972, INORG CHEM, V11, P880
SILVA SC, UNPUB
THIEMENS MH, 1991, SCIENCE, V251, P932
THIEMENS MH, 1995, ACS S SER, V587
WINK DA, 1995, METHODS COMPANION ME, V7, P14
WINTER ERS, 1971, J CATAL, V22, P158
NR 57
TC 44
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE CB4 4WF,
CAMBS, ENGLAND
SN 0300-9246
J9 J CHEM SOC DALTON TRANS
JI J. Chem. Soc.-Dalton Trans.
PD FEB 21
PY 1998
IS 4
BP 601
EP 607
PG 7
SC Chemistry, Inorganic & Nuclear
GA ZD135
UT ISI:000072654900016
ER
PT J
AU Morgon, NH
TI Theoretical calculation of proton affinities using basis set functions
defined by the generator coordinate method
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID GAS-PHASE ACIDITIES; COMPACT EFFECTIVE POTENTIALS; EXPONENT BASIS-SETS;
OPTIMIZATION TECHNIQUE; GAUSSIAN-2 THEORY; EFFICIENT; ENERGIES;
1ST-ROW; ATOMS; IONS
AB Ab initio calculations have been performed to determine the molecular
structure and proton affinity of a set of molecules. The basis sets
were developed for pseudopotentials using the GCM procedure, This
technique is potentially useful for large molecules for which similar
procedures (such as the G2 method and variations) were not feasible.
This method achieves performance similar to the G2 method at a lower
computational cost, The mean absolute deviation and the mean deviation
of the results from experimental are 3.5 and 1.7 kJ mol(-1),
respectively, compared with 4.6 and 2.2 kJ mol(-1) for the G2 method.
C1 Univ Estadual Campinas, Inst Quim, BR-13083970 Campinas, SP, Brazil.
RP Morgon, NH, Univ Estadual Campinas, Inst Quim, CP 6154, BR-13083970
Campinas, SP, Brazil.
EM nelson@iqm.unicamp.br
CR CHANDRA AK, 1996, J PHYS CHEM-US, V100, P11596
CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
CURTISS LA, 1991, J CHEM PHYS, V94, P7221
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
CUSTODIO R, 1992, CAN J CHEM, V70, P580
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
DUNNING TH, 1977, METHODS ELECT STRUCT, P1
ERVIN KM, 1990, J AM CHEM SOC, V112, P5750
FELLER DF, 1979, THEOR CHIM ACTA, V52, P231
FRISCH MJ, 1994, GAUSSIAN 94 REVISION
GRAUL ST, 1990, J AM CHEM SOC, V112, P2517
LIAS SG, 1988, J PHYS CHEM REF DA S, V1, P17
MOHALLEM JR, 1986, INT J QUANTUM CH S20, P45
MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
MORGON NH, 1995, CHEM PHYS LETT, V235, P436
MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
MORGON NH, 1995, J PHYS CHEM-US, V99, P17832
MORGON NH, 1995, THEOCHEM-J MOL STRUC, V335, P11
MORGON NH, 1997, J AM CHEM SOC, V119, P1708
NELDER JA, 1965, COMPUT J, V7, P308
OCHTERSKI JW, 1995, J AM CHEM SOC, V117, P11299
SMITH BJ, 1991, J PHYS CHEM-US, V95, P10549
SMITH BJ, 1992, AUST J CHEM, V45, P285
SMITH BJ, 1995, CHEM PHYS LETT, V245, P123
SMITH BJ, 1995, J PHYS CHEM-US, V99, P6468
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEVENS WJ, 1992, CAN J CHEM, V70, P612
TANABE FKJ, 1996, J PHYS CHEM-US, V100, P2862
NR 28
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD MAR 12
PY 1998
VL 102
IS 11
BP 2050
EP 2054
PG 5
SC Chemistry, Physical
GA ZC830
UT ISI:000072622400023
ER
PT J
AU Rocha, WR
Pliego, JR
Resende, SM
dos Santos, HF
de Oliveira, MA
de Almeida, WB
TI Ab initio conformational analysis of cyclooctane molecule
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE ab initio conformational analysis; cyclooctane molecule; potential
energy surface; Hartree-Fock theory; Moller-Plesset theory
ID GAUSSIAN-TYPE BASIS; ORBITAL METHODS; ORGANIC-MOLECULES; MECHANICS;
SPACE; OXOCANES; MINIMUM
AB The potential energy surface (PES) for the cyclooctane molecule was
comprehensively investigated at the Hartree-Fock (HF) level of theory
employing the 3-21G, 6-31G, and 6-31G* basis sets. Six distinct true
minimum energy structures (named B, BB, BC, CROWN, TBC, and TCC1),
characterized through harmonic frequency analysis, were located on the
multidimensional PES. Two transition state structures were also located
on the PES for the cyclooctane molecule. Electron correlation effects
were accounted for using the Moller-Plesset second-order perturbation
theory (MP2) approach. The predicted global minimum energy structure on
the ab initio PES for the cyclooctane molecule is the BC conformer. A
gas phase electron diffraction study at 300 K suggested a
conformational mixture while an NMR study in solution at 161.5 K
predicted the BC conformer as the predominant form. The equilibrium
constants reported in the present study, which were evaluated from the
nb initio calculated total Gibbs free energy change values, were in
good agreement with both experimental investigations. The ab initio
results showed that the low temperature condition significantly favored
the BC conformer while above room temperature both BC and CROWN
structures can coexist. (C) 1998 John Wiley & Sons, Inc.
C1 UFMG, ICEx, Dept Quim, LQC MM, BR-31270901 Belo Horizonte, MG, Brazil.
RP Rocha, WR, Univ Florida, Quantum Theory Project, 362 Williamson Hall,
Gainesville, FL 32611 USA.
CR ALMENNINGEN A, 1966, ACTA CHEM SCAND, V20, P2689
ANET FAL, 1973, J AM CHEM SOC, V95, P4424
ANET FAL, 1973, TETRAHEDRON LETT, V50, P5029
BOFILL JM, 1994, J COMPUT CHEM, V15, P1
BRECKNELL DJ, 1985, J MOL STRUCT THEOCHE, V124, P343
CHANG G, 1989, J AM CHEM SOC, V111, P4379
CULOT P, 1992, THEOR CHIM ACTA, V82, P189
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DOBLER M, 1966, HELV CHIM ACTA, V49, P2492
DOROFEEVA OV, 1990, J STRUCT CHEM, V31, P153
FERGUSON DM, 1989, J AM CHEM SOC, V111, P4371
FERGUSON DM, 1992, J COMPUT CHEM, V13, P525
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HENRICKSON JB, 1967, J AM CHEM SOC, V89, P7047
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
KRISHNAN R, 1980, J CHEM PHYS, V72, P650
LIPTON M, 1988, J COMPUT CHEM, V9, P343
PAKES PW, 1981, J PHYS CHEM-US, V85, P2469
PAKES PW, 1981, J PHYS CHEM-US, V85, P2476
POPLE JA, 1993, ISRAEL J CHEM, V33, P345
ROCHA WR, 1997, J COMPUT CHEM, V18, P254
SAUNDERS M, 1987, J AM CHEM SOC, V109, P3150
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
NR 23
TC 15
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012 USA
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD APR 15
PY 1998
VL 19
IS 5
BP 524
EP 534
PG 11
SC Chemistry, Multidisciplinary
GA ZC849
UT ISI:000072624700005
ER
PT J
AU Alves, JLA
Alves, HWL
de Oliveira, C
Valadao, RDSC
Leite, JR
TI Zinc-blende GaN: ab initio calculations
SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
TECHNOLOGY
LA English
DT Article
DE zinc-blende; wide-gap device concepts; molecular cluster calculations
ID EFFECTIVE CORE POTENTIALS; SEMICONDUCTOR COMPOUNDS; MOLECULAR
CALCULATIONS; ZINCBLENDE GAN; 110 SURFACE; RECONSTRUCTION; ORBITALS
AB The purpose of this paper is to contribute, on a theoretical basis, an
understanding of future wide-gap device concepts and applications based
on III-V nitride semiconductors. The electronic properties of
zinc-blende structure GaN and their (110), (100) and (111) surfaces are
investigated using ab initio calculations based on the full potential
linear augmented plane-wave (FPLAPW) method within the large unit cell
approach, and on the molecular Gaussian-92 code. Lattice constant,
cohesive energy, bulk modulus are obtained from total energy
calculations. Light-hole and heavy-hole effective masses along (100),
(111) and (110) directions and electron masses at Gamma point are
extracted from band structure calculations and compared with previous
ones based on pseudopotential methods. The hydrostatic pressure
dependence of the Gamma Gamma, Gamma X and Gamma L energy gaps are also
obtained. Comparing our band structure and 'molecular cluster'
calculations, the relaxations of the surfaces are found to be mostly
determined by local rehybridization or valence effects and are
basically independent of energy band features. (C) 1997 Elsevier
Science S.A.
C1 DCNAT FUNREI, BR-36300000 Sao Joao Del Rei, MG, Brazil.
DFMM IFUSP, BR-05389970 Sao Paulo, SP, Brazil.
RP Alves, JLA, DCNAT FUNREI, CP 110, BR-36300000 Sao Joao Del Rei, MG,
Brazil.
EM arestrup@dedalus.lcc.ufmg.br
CR CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHANG KJ, 1984, SOLID STATE COMMUN, V50, P105
EDGAR JH, 1994, DATAREVIEWS SERIES
FAN WJ, 1996, J APPL PHYS, V79, P188
FANCIULLI M, 1993, PHYS REV B, V48, P15144
FIORENTINI V, 1993, PHYS REV B, V47, P13353
FRISCH MJ, 1992, GAUSSIAN 92
HAY PJ, 1985, J CHEM PHYS, V82, P270
HAY PJ, 1985, J CHEM PHYS, V82, P299
JAFFE JE, 1996, PHYS REV B, V53, R4209
JHI SH, 1995, PHYS STATUS SOLIDI B, V191, P367
LAMBRECHT WRL, 1992, MATER RES SOC S P, V242, P367
MADELUNG O, 1982, LANDOLTBORNSTEIN N A, V17
MONKHORST HJ, 1976, PHYS REV B, V13, P5188
PALUMMO M, 1992, PHYSICS SEMICONDUCTI, V1, P89
POWELL RC, 1993, J APPL PHYS, V73, P189
STRIFE S, 1992, J VAC SCI TECHNOL B, V10, P1237
SWARTS CA, 1980, J VAC SCI TECHNOL, V17, P982
SWARTS CA, 1981, SURF SCI, V110, P400
WADT WR, 1985, J CHEM PHYS, V82, P284
WIMMER E, 1981, PHYS REV B, V24, P864
NR 21
TC 4
PU ELSEVIER SCIENCE SA
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0921-5107
J9 MATER SCI ENG B-SOLID STATE M
JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
PD DEC 18
PY 1997
VL 50
IS 1-3
BP 57
EP 60
PG 4
SC Materials Science, Multidisciplinary; Physics, Condensed Matter
GA YW795
UT ISI:000071974800014
ER
PT J
AU Ishiki, HM
Donate, PM
Galembeck, SE
TI Electronic structure of chromone and its hydroxylated derivatives on
positions 2 and 3
SO JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM
LA English
DT Article
DE computational study; electronic structure; flavonoids; reactivity;
resonance
ID MOLECULAR-ORBITAL METHODS; INTRAMOLECULAR PROTON-TRANSFER;
GAUSSIAN-TYPE BASIS; CONFORMATIONAL-ANALYSIS; SEMIEMPIRICAL METHODS;
BASIS-SETS; ORGANIC-MOLECULES; OPTIMIZATION; FLAVONOIDS; PARAMETERS
AB The electronic structure of chromone (1) and those of its 2-hydroxy (2)
and 5-hydroxy (3) derivatives were studied by semiempirical and ab
initio molecular orbital methods. Several electronic parameters show
that the A-ring is an aromatic system, whereas the C-ring does not
present conjugation. In the C-ring, the double bonds are located in the
carbonyl group and between C(2)-C(3). These results were confirmed by
comparison with geometries of chromone derivatives which were
determined by X-ray diffraction data. The relative stability of
compounds (2) and (3) was explained and the sites of acid, basic,
nucleophilic and electrophilic attack were also determined. (C) 1998
Elsevier Science B.V.
C1 Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Quim, BR-14049901 Ribeirao Preto, SP, Brazil.
RP Galembeck, SE, Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao
Preto, Dept Quim, Ave Bandeirantes 3900, BR-14049901 Ribeirao Preto,
SP, Brazil.
EM segalemb@usp.br
CR AHUJA VK, 1978, INDIAN J CHEM A, V16, P531
BAKER J, 1986, J COMPUT CHEM, V7, P385
BESLER BH, 1990, J COMPUT CHEM, V11, P431
BEUGELMANS R, 1976, TETRAHEDRON LETT, V25, P2145
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BOUMAN TD, 1985, J PHYS CHEM-US, V89, P4460
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BROWN NMD, 1965, SPECTROCHIM ACTA, V21, P1277
CODY V, 1994, J MOL STRUCT, V317, P89
COLLIE JN, 1899, J CHEM SOC, V75, P710
COLLINS JB, 1976, J CHEM PHYS, V64, P5142
DEREU N, 1981, J ORGANOMET CHEM, V208, P23
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DICK B, 1990, J PHYS CHEM-US, V94, P5752
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
GEISSMAN TA, 1962, CHEM FLAVONOIDS COMP
GILLESPIE RJ, 1992, CHEM SOC REV, V21, P59
GORDON MH, 1995, J AGR FOOD CHEM, V43, P1784
HARBONE JB, 1988, FLAVONOIDS ADV RES 1
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HILA J, 1985, B SOC CHIM FR, V6, P1275
HUHEEY JE, 1972, INORGANIC CHEM PRINC
HVSTEEN B, 1983, BIOCHEM PHARMACOL, V32, P1141
ILIC P, 1982, J HETEROCYCLIC CHEM, V19, P625
KOES RE, 1994, BIOESSAYS, V16, P123
MATHIS CT, 1964, SPECTROCHIM ACTA, V20, P871
PEREIRA GK, 1996, THEOCHEM-J MOL STRUC, V363, P87
SAENGCHANTARA ST, 1986, NAT PROD REP, V3, P465
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SINGH UC, 1984, J COMPUT CHEM, V5, P129
SOMOGYI A, 1987, ACTA CHIM HUNG, V124, P855
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
STEWART JJP, 1990, J COMPUT AID MOL DES, V4, P1
VRIELYNCK L, 1993, J MOL STRUCT, V297, P227
WATSON WH, 1991, ACTA CRYSTALLOGR C, V47, P459
NR 36
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD FEB 2
PY 1998
VL 423
IS 3
BP 235
EP 243
PG 9
SC Chemistry, Physical
GA YX315
UT ISI:000072027900009
ER
PT J
AU Hollauer, E
Olabe, JA
TI A HF/CI-SD study of the low-lying states of nitroprusside ion
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE ab initio (SCF, CI-SD); nitroprusside; excited states; metastable
states; Na-2[Fe(CN)(5)NO]; pentacyanonitrosylferrate
ID TRANSPARENT MOLECULAR SYSTEMS; COMPACT EFFECTIVE POTENTIALS; METASTABLE
ELECTRONIC STATE; EXPONENT BASIS-SETS; OPTICAL DISPERSION;
SODIUM-NITROPRUSSIDE; POLARIZED-LIGHT; SINGLE-CRYSTAL; RAMAN-SPECTRA;
TGA-DTA
AB Since the discovering of two photoexcited metastable states of
crystalline sodium nitroprusside, Na-2[Fe(CN)(5)NO]..2H(2)O (SNP)
showing rather long lifetimes at temperatures below 160 K, much effort
has been devoted toward the study of its electronic structure. Despite
this tremendous effort the nature of the frontier orbitals and the
related low energy excitations remains controversial. Early
calculations, EHT, showed the HOMO as mainly the metallic 3d orbital
while the LUMO had a major pi* (NO) contribution. However INDO
calculations, clearly set the metal d orbital many electron-volts deep
in core. The vertical electronic spectrum have been estimated through
ab initio HF/CI-SD with a double-zeta quality basis set. The ab initio
results support Bottomley and Grein's interpretations and assign the
first electronic transitions to ligand-to-ligand charge-transfer
excitation from trans-cyano to nitrosyl ligands. The corresponding
oscillator strengths have been calculated showing comparable intensity
with the experimental results. The excitation energy of the metal -->
NO charge-transfer transition, 8e --> 13e (d(xz),d(yz) --> pi* NO) have
been estimated to be at 4.52 eV and show a rather intense absorption
band. The second CT excitation, 1b(2) --> 13e (d(xy) --> pi* NO),
pointed by previous works as a typical CT band, exhibits a small
intensity at 5.04 eV. In the calculations it was observed that SCF
orbital ordering are rather dependent on the metal basis set used.
Metallic minimal basis set show results in close agreement with EHT
early calculations while double-zeta basis set pushes the metallic d
orbitals deep away from the HOMO's. The HF orbital ordering has been
used to interpret photochemical and thermoanalysis experiments on SNP
and the results seem to fit properly with the calculated properties.
C1 Univ Fed Fluminense, Inst Quim, Dept Fisicoquim, BR-24210150 Niteroi, RJ, Brazil.
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Quim Inorgan Analit & Quim Fis Inquimae, RA-1428 Buenos Aires, DF, Argentina.
EM gfqholl@vm.uff.br
olabe@ayelen.q3.fcen.uba.ar
CR AMALVY JI, 1986, AN ASOC QUIM ARGENT, V74, P437
AMALVY JI, 1986, J CRYST SPECTROSC, V16, P537
AMMETER JH, 1978, J AM CHEM SOC, V100, P3686
BOTTOMLEY F, 1979, ACTA CRYSTALLOGR B, V35, P2193
BOTTOMLEY F, 1980, J CHEM SOC DA, P1359
BRAGA M, 1981, PHYS REV B, V23, P4328
CALABRESE A, 1974, J AM CHEM SOC, V96, P5054
COOK DB, 1995, INT J QUANTUM CHEM, V53, P309
CRICHTON O, 1977, J CHEM SOC DA, V10, P986
DELLAVEDOVA CO, 1981, J MOL STRUCT, V70, P241
DUNNING TH, MODERN THEORETICAL M, V3
ESTRIN DA, 1996, INORG CHEM, V35, P3897
FENSKE RF, 1972, INORG CHEM, V11, P437
GENTILE LA, 1975, J THERM ANAL, V7, P279
GOLEBIEWSKI A, 1980, J MOL STRUCT, V67, P183
GUIDA JA, 1986, SOLID STATE COMMUN, V57, P175
GUIDA JA, 1988, SOLID STATE COMMUN, V66, P1007
HAUSER U, 1977, Z PHYS A, V280, P125
HAUSER U, 1977, Z PHYS A, V280, P17
HAUSER U, 1978, Z PHYS A ATOMS NUCL, V284, P9
HUZINAGA S, 1965, J CHEM PHYS, V42, P1293
JARZYNOWSKI T, 1977, ROCZ CHEM, V51, P2299
KRASSER W, 1984, J MOL STRUCT, V114, P57
KRASSER W, 1986, J RAMAN SPECTROSC, V17, P83
MANOHARAN PT, 1965, J AM CHEM SOC, V87, P3340
MANOHARAN PT, 1966, INORG CHEM, V5, P823
MOHAI B, 1986, J THERM ANAL, V31, P157
NAKATSUJI H, 1990, J CHEM PHYS, V93, P1865
NAKATSUJI H, 1991, INT J QUANTUM CHEM, V39, P93
PIERLOOT K, 1993, J PHYS CHEM-US, V97, P12220
PRESSPRICH MR, 1994, J AM CHEM SOC, V116, P5233
RAPPE S, 1981, J CHEM PHYS, V85, P2607
RETZLAFF C, 1987, Z KRISTALLOGR, V180, P20
RIGOTTI G, 1984, J CRYST SPECTROSC, V14, P517
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEVENS WJ, 1990, COMMUNICATION MAR
STEVENS WJ, 1992, CAN J CHEM, V70, P612
STEVENS WJ, 1993, J CHEM PHYS, V98, P5555
STOCHEL G, 1986, Z INORG CHEM, V25, P3663
TERRILE C, 1990, SOLID STATE COMMUN, V73, P481
VERGARA MM, 1987, J PHYS CHEM SOLIDS, V13, P48
WASIELEWSKA E, 1986, INORG CHIM ACTA, V113, P115
WOIKE T, 1983, SOLID STATE COMMUN, V45, P499
WOIKE T, 1983, SOLID STATE COMMUN, V45, P503
WOIKE T, 1990, SOLID STATE COMMUN, V73, P149
WOIKE T, 1993, SOLID STATE COMMUN, V86, P333
WOLFE SK, 1975, INORG CHEM, V14, P1049
ZOLLNER H, 1989, S CHEM PHYS LETT, V161, P497
ZOLLNER H, 1989, Z KRISTALLOGR, V188, P139
NR 50
TC 5
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PD SEP-OCT
PY 1997
VL 8
IS 5
BP 495
EP 504
PG 10
SC Chemistry, Multidisciplinary
GA YT741
UT ISI:000071640400010
ER
PT J
AU Olivato, PR
Mondino, MG
Yreijo, MH
Wladislaw, B
Bjorklund, MB
Marzorati, L
Distefano, G
Dal Colle, M
Bombieri, G
Del Pra, A
TI Spectroscopic and theoretical studies on the conformation of some
alpha-sulfinylacetophenones
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID SUBSTITUTED CARBONYL-COMPOUNDS; ULTRAVIOLET PHOTOELECTRON-SPECTROSCOPY;
ELECTRONIC INTERACTION; INTRAMOLECULAR INTERACTIONS; ACETOPHENONES;
SPECTRA
AB IR nu(CO) and nu(SO) frequencies of some alpha-sulfinylacetophenones
[PhC(O)CH2S(O)R: R = Me 1, Et 2, Pr-i 3, Ph 4 and Bu' 5] have been
measured and their conformations are estimated with the help of ab
initio 6-31G** calculations and X-ray diffraction analyses. The
anomalous negative carbonyl frequency shifts for the cis(2) rotamer
together with the decrease of the cis:gauche population ratio in
solvents of increasing polarity for compounds 1-4 support the existence
of a strong intramolecular interaction between C=O and S=O dipoles,
which stabilizes the cis(2) rotamer more than the pi(CO)-sigma*(C-SO)
and pi(CO)*-sigma(C-SO) orbital interactions stabilize the gauche(3)
rotamer. The stability of the cis(2) rotamer is discussed in terms of
the electrostatic attraction between the C=O and S=O dipoles along with
the pi(S=O)*<--n(O(CO)) charge transfer which lead to an O-(C)...
S-(SO) contact shorter than the sum of the corresponding van der Waals
radii. The gauche(2) rotamer of 5 is more stable than the cis(2) one in
which steric strain between the carbonyl oxygen atom and the tert-butyl
group is present.
C1 Univ Sao Paulo, Inst Quim, BR-05599970 Sao Paulo, Brazil.
Univ Ferrara, Dipartimento Chim, I-44100 Ferrara, Italy.
Univ Milan, Ist Chim Farmaceut, I-20131 Milan, Italy.
RP Olivato, PR, Univ Sao Paulo, Inst Quim, Caixa Postal 26-077,
BR-05599970 Sao Paulo, Brazil.
CR ALCUDIA F, 1988, AN QUIM C-ORG BIOQ, V84, P333
ALTOMARE A, 1994, J APPL CRYSTALLOGR, V27, P435
BELLAMY LJ, 1975, ADV INFRARED GROUP F, P141
BELLAMY LJ, 1975, ADV INFRARED GROUP F, P143
BONFADA E, 1989, THESIS U SAO PAULO B
BUENO E, 1996, THESIS U SAO PAULO B
CHARTON M, 1977, DESIGN BIOPHARMACEUT, P228
DALCOLLE M, 1995, J PHYS CHEM-US, V99, P15011
DISTEFANO G, 1987, J CHEM SOC P2, P1459
DISTEFANO G, 1991, J CHEM SOC P2, P1195
DISTEFANO G, 1996, J CHEM SOC PERK AUG, P1661
ELIEL E, 1967, CONFORMATIONAL ANAL
FRISCH MJ, 1992, GAUSSIAN92
GASET A, 1968, B SOC CHIM FR, P4108
GRIESBAUM K, 1963, J AM CHEM SOC, V85, P1969
HANSCH C, 1970, SUBSTITUENT CONSTANT
JOHNSON CK, 1976, ORNL5138
JONES RN, 1968, NATL RES COUNCIL CAN, V12
JONES RN, 1969, NATL RES COUNCIL CAN, V13
KOBAYASHI T, 1974, B CHEM SOC JPN, V47, P2563
LOPES JCD, 1992, ANAIS ASS BRASIL QUI, V41, P87
LUMBROSO H, 1989, J MOL STRUCT, V212, P113
MONDINO MG, 1996, THESIS U SAO PAULO B
NARDELLI M, 1983, COMPUT CHEM, V7, P95
NARDELLI M, 1995, J APPL CRYSTALLOGR, V28, P659
OLIVATO PR, IN PRESS PHOSPHORUS
OLIVATO PR, 1987, PHOSPHORUS SULFUR, V33, P135
OLIVATO PR, 1989, PHOSPHORUS SULFUR, V44, P9
OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
OLIVATO PR, 1992, MAGN RESON CHEM, V30, P81
OLIVATO PR, 1992, PHOSPHORUS SULFUR, V66, P207
PITHA J, 1966, CAN J CHEM, V44, P3031
PITHA J, 1967, CAN J CHEM, V45, P2347
RIDDICK JA, 1970, ORGANIC SOLVENTS, V2
RUSSELL GA, 1966, J AM CHEM SOC, V88, P5498
SHELDRICK GM, 1993, SHELXL 93 PROGRAM CR
YOUNG VY, 1976, J CHEM PHYS, V65, P3187
NR 37
TC 16
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE CB4 4WF,
CAMBS, ENGLAND
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD JAN
PY 1998
IS 1
BP 109
EP 114
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA YR484
UT ISI:000071499900020
ER
PT J
AU Mohallem, JR
Vianna, RO
Quintao, AD
Pavao, AC
McWeeny, R
TI Pauling's resonating valence bond theory of metals: some studies on
lithium clusters
SO ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; GEOMETRIC STRUCTURE
AB We report for the first time fully ab initio valence bond (VB)
calculations with explicit use of the unsynchronized resonance
structures introduced by Pauling [1]. We show that resonance involving
these structures largely determines the stability and conformation of
the Li-4 cluster and plays a central role in a VB explanation of the
3-center bonds in planar alkali clusters. The theory can make
qualitative predictions on the behaviour of general metallic clusters,
and can relate stability and conformation to electronic structure, thus
indicating the origin of magic numbers. This first ab initio test of
Pauling's resonating VB theory confirms the importance of the metallic
orbital and the covalent character of the metal-metal bond.
C1 UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50740540 RECIFE,PE,BRAZIL.
UNIV PISA,DIPARTIMENTO CHIM & CHIM IND,I-56100 PISA,ITALY.
RP Mohallem, JR, UNIV FED MINAS GERAIS,INST CIENCIAS EXATAS,DEPT FIS,CP
702,BR-30161970 BELO HORIZONT,MG,BRAZIL.
CR AGUIAR JA, 1992, J MAG MAG MAT, V547, P104
BECKMANN HO, 1980, J CHEM PHYS, V73, P5182
BOBROWICZ FW, 1977, METHODS ELECTRONIC S, P79
BONACICKOUTECKY V, 1991, CHEM REV, V91, P1035
BOUSTANI I, 1987, PHYS REV B, V35, P9437
BOUSTANI I, 1988, J CHEM PHYS, V88, P5657
BRAGG WL, 1937, J ROY SOC ARTS, V85, P431
DUNNING TH, 1977, METHODS ELECT STRUCT, P1
GATTI C, 1987, THEOR CHIM ACTA, V72, P433
GERRATT J, 1980, P ROY SOC LOND A MAT, V371, P525
GONCALVES CP, UNPUB
KNIGHT WD, 1984, PHYS REV LETT, V52, P2141
MCADON MH, 1985, PHYS REV LETT, V55, P2563
MCWEENY R, 1959, P ROY SOC LOND A MAT, V253, P242
MCWEENY R, 1990, INT J QUANTUM CHEM S, V24, P733
PAULING L, 1948, NATURE, V161, P1029
PAULING L, 1949, P ROY SOC LOND A MAT, V196, P343
PAULING L, 1960, NATURE CHEM BOND
PAULING L, 1984, J SOLID STATE CHEM, V54, P2197
PAULING L, 1987, PHYS REV LETT, V59, P225
PAVAO AC, 1995, THEOCHEM-J MOL STRUC, V335, P59
PRESS WH, 1986, NUMERICAL RECIPES AR, CH10
QUINTAO AD, IN PRESS
RAY AK, 1993, PHYS REV B, V48, P14702
VOTER AF, 1981, CHEM PHYS, V57, P253
VOTER AF, 1986, J AM CHEM SOC, V108, P2830
WHELAND GW, 1955, RESONANCE ORGANIC CH
NR 27
TC 8
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010
SN 0178-7683
J9 Z PHYS D-ATOMS MOL CLUSTERS
JI Z. Phys. D-Atoms Mol. Clusters
PD NOV
PY 1997
VL 42
IS 2
BP 135
EP 143
PG 9
SC Physics, Atomic, Molecular & Chemical
GA YJ528
UT ISI:A1997YJ52800011
ER
PT J
AU Janotti, A
Fazzio, A
Piquini, P
Mota, R
TI Defect complexes in GaAs: First-principles calculations
SO PHYSICAL REVIEW B
LA English
DT Article
ID NATIVE DEFECTS; PSEUDOPOTENTIALS; IRRADIATION
AB The electronic and structural properties of selected defect complexes
in GaAs, created during electron or ion irradiation, are studied. An ab
initio calculation based on pseudopotential density-functional theory
is used. A supercell with 128 atoms is adopted in Car-Parrinello
scheme. For the antistructure pair (As-Ga+Ga-As), from the total-energy
calculations, first donor, first acceptor, and second acceptor levels
are observed, and a comparison is made with earlier, both theoretical
and experimental, results. Two other possible defect complexes
(V-As+As-Ga+Ga-i) and V-Ga+Ga-As+As-i), are discussed. It is shown that
the first one presents a metastable configuration, and the second one
is unstable presenting a spontaneous recombination. For all defect
complexes the formation energies and charge densities are discussed.
C1 UNIV FED SANTA MARIA,DEPT FIS,BR-97015900 SANTA MARIA,RS,BRAZIL.
RP Janotti, A, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05315970 SAO
PAULO,SP,BRAZIL.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BARAFF GA, 1986, PHYS REV B, V33, P7356
BOURGOIN JC, 1988, J APPL PHYS, V64, R65
CAR R, 1985, PHYS REV LETT, V55, P2471
DESOUZA JP, 1992, MATER RES SOC S P, V240, P887
DESOUZA JP, 1996, APPL PHYS LETT, V68, P535
DESOUZA JP, 1997, J APPL PHYS, V68, P680
HAUSMANN H, 1996, PHYS REV B, V54, P8527
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KRAMBROCK K, 1993, PHYS REV B, V47, P3987
LAKS DB, 1992, PHYS REV B, V45, P10965
PEARTON SJ, 1990, MATER SCI REP, V4, P313
PERDEW JP, 1981, PHYS REV B, V23, P5048
SCHMIDT TM, 1996, PHYS REV B, V53, P1315
NR 14
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 15
PY 1997
VL 56
IS 20
BP 13073
EP 13076
PG 4
SC Physics, Condensed Matter
GA YH588
UT ISI:A1997YH58800060
ER
PT J
AU Carvalho, MC
Juliano, VF
Kascheres, C
Eberlin, MN
TI Gas phase chemistry of the heterocumulene cations O=C=N+=C=O and
O=C=C=N+=O
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID ION-MOLECULE REACTIONS; PENTAQUADRUPOLE MASS-SPECTROMETER; KINETIC
METHOD; ACYLIUM IONS; ISOMERS; TANDEM; COLLISIONS; AFFINITIES; 3D
AB The low energy collisional dissociation and ion/molecule chemistry of
the heterocumulene cations O=C=N+=C=O 1 and O=C=C=N+=O 2 have been
investigated by pentaquadrupole mass spectrometry, and G2(MP2) ab
initio calculations applied to interrogate their relative stabilities
and dissociation thresholds, as well as those of six other conceivable
C2NO2+ isomers 3-8. The calculations show that the acyclic 1 (zero) and
2 (72.4 kcal mol(-1)) are the most stable isomers, whereas both the
location of the positive charge mainly at the CO-carbon and the short
CO bond lengths characterize their acylium ion structures, Two cyclic
isomers, i.e. 7 (131.3 kcal mol(-1)) and 8 (140.0) kcal mol(-1), were
also found to be stable, but placed at energy levels considerably
higher than 1. Exactly as predicted from G2(MP2) energy dissociation
thresholds, low-energy collisions cause dissociation of 1 exclusively
by CO loss to yield NCO+ of m/z 42. A more diverse dissociation
chemistry is predicted and exhibited by 2, which dissociates mainly by
loss of an oxygen atom (C2NO+ of m/z 54), CO (CNO+ of m/z 42) and C2O
(NO+ of m/z 30). Both ions are unreactive towards polar [4+2(+)]
cycloaddition with isoprene. However, they undergo ketalization with
2-methoxyethanol, and transacetalization with two cyclic neutral
acetals, i.e. 2-methyl-1,3-dioxolane and 1,3-dioxane, and these
structurally diagnostic ion/molecule reactions confirm experimentally
the acylium ion structures of 1 and 2. Cyclic 'ionic ketals', ie.
1,3-dioxonium ions, are formed in these reactions, as evidenced by
their MS3 spectra, which show extensive dissociation to re-form the
reactant ions. Whereas 1 readily forms a stable and covalently bound
adduct with pyridine, 2 reacts mainly by net CN+ and OCN+ transfer
via--most likely--the unstable (Py-2)(+) adduct.
C1 STATE UNIV CAMPINAS UNICAMP,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR BEAUGRAND C, 1989, ANAL CHEM, V61, P1447
BOWERS MT, 1979, GAS PHASE ION CHEM, V1
BUSCH KL, 1988, MASS SPECTROMETRY MA
COOKS RG, 1973, METASTABLE IONS
COOKS RG, 1994, MASS SPECTROM REV, V13, P287
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
EBERLIN MN, IN PRESS MASS SPECTR
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
ELLER K, 1991, CHEM REV, V91, P1121
FARRAR JM, 1988, TECHNIQUES STUDY ION
FRANKLIN JL, 1972, ION MOL REACTIONS
FRISCH MJ, 1995, GAUSSIAN 94
GRAUL ST, 1990, J AM CHEM SOC, V112, P2517
HEATH TG, 1991, J AM SOC MASS SPECTR, V2, P270
HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
JALONEN J, 1985, J CHEM SOC CHEM COMM, P872
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KENTTAMAA HI, 1989, J AM CHEM SOC, V111, P4122
KIM JK, 1982, J AM CHEM SOC, V104, P4624
KINTER MT, 1986, J AM CHEM SOC, V108, P1797
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
LEVSEN K, 1983, MASS SPECTROM REV, V2, P77
MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
MCLUCKEY SA, 1982, INT J MASS SPECTROM, V44, P215
MORAES LAB, IN PRESS J ORG CHEM
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J CHEM SOC PERK OCT, P2105
MORAES LAB, 1997, J ORG CHEM, V62, P5096
PARKARINEN JMH, 1996, J MASS SPECTROM, V31, P1003
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARZ H, 1989, PURE APPL CHEM, V61, P984
SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
SULZLE D, 1992, CHEM BER-RECL, V125, P279
THOEN KK, 1996, J AM SOC MASS SPECTR, V7, P1250
VAINIOTALO P, 1996, P 44 ASMS C MASS SPE, P453
WESDEMIOTIS C, 1987, CHEM REV, V87, P485
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
YANG SS, 1995, J MASS SPECTROM, V30, P807
ZAGOREVSKII DV, 1994, MASS SPECTROM REV, V13, P133
NR 45
TC 17
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE, CAMBS,
ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD NOV
PY 1997
IS 11
BP 2347
EP 2352
PG 6
SC Chemistry, Organic; Chemistry, Physical
GA YH013
UT ISI:A1997YH01300033
ER
PT J
AU Pliego, JR
DeAlmeida, WB
TI Reaction of CCl2 with CH2NH and the formation of dipolar and biradical
ylide structures
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID AB-INITIO; SPECTROSCOPIC DETECTION; 1,2-HYDROGEN MIGRATION;
POLYATOMIC-MOLECULES; CYCLO-ADDITIONS; RATE CONSTANTS; ABSOLUTE RATE;
DECOMPOSITION; SELECTIVITIES; PHOTOLYSIS
AB The potential energy surface for the reaction between CH2NH and CCl2
has been investigated using ab initio methods. We have performed
geometry optimizations at the MP2/6-31G* level of theory and single
point calculations at the MP4(SDQ)/6-311+ +G** level. The reaction step
for ylide formation has a free energy of activation predicted to be 5.0
kcal mol(-1). The parallel 1,2-cycloaddition reaction has a calculated
free energy barrier of 16.5 kcal mol(-1), indicating that this second
pathway is not competitive with ylide formation. The structure of the
azomethine ylide formed in the first reaction step is similar to that
found for the ylide resulting from the reaction of methylene with
ammonia and corresponds to a dipolar species, This is highly unstable
and rearranges to its more stable isomer, the biradical azomethine
ylide, which has a structure similar to the corresponding carbonyl
ylide. This species has a free energy barrier to ring closure
calculated to be 21.2 kcal mol(-1), so it has reasonable kinetic
stability, The resulting aziridine has a free energy of 24.1 kcal
mol(-1) lower than the biradical azomethine ylide, and the activation
free energy of ring opening is calculated to be 45.3 kcal mol(-1).
C1 UFMG,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEN MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BACH RD, 1995, J ORG CHEM, V60, P4653
BARTNIK R, 1984, TETRAHEDRON, V40, P2569
BONNEAU R, 1991, J AM CHEM SOC, V113, P9872
CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
COOK AG, 1962, J ORG CHEM, V27, P3686
DU XM, 1990, J AM CHEM SOC, V112, P1920
FRISH MJ, 1995, GAUSSIAN 94
GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
HOUK KN, 1980, J AM CHEM SOC, V102, P1504
HOUK KN, 1984, J AM CHEM SOC, V106, P4291
HOUK KN, 1985, TETRAHEDRON, V41, P1555
JACKSON JE, 1988, J AM CHEM SOC, V110, P5595
JACKSON JE, 1989, J AM CHEM SOC, V111, P6874
KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
LIU MTH, 1989, J AM CHEM SOC, V111, P6873
MACDONALD HHJ, 1972, CAN J CHEM, V50, P428
MILLER WH, 1980, J CHEM PHYS, V72, P99
MOSS RA, 1980, ACCOUNTS CHEM RES, V13, P58
MOSS RA, 1989, ACCOUNTS CHEM RES, V22, P15
NAITO T, 1994, J AM CHEM SOC, V116, P10080
PADWA A, 1991, CHEM REV, V91, P263
PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
PLIEGO JR, 1997, J CHEM PHYS, V106, P3582
POPLE JA, 1983, J AM CHEM SOC, V105, P6389
RONDAN NG, 1980, J AM CHEM SOC, V102, P1770
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
WALCH SP, 1993, J CHEM PHYS, V98, P3163
YAMAGUCHI Y, 1993, J AM CHEM SOC, V115, P5790
NR 29
TC 5
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE, CAMBS,
ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD NOV
PY 1997
IS 11
BP 2365
EP 2369
PG 5
SC Chemistry, Organic; Chemistry, Physical
GA YH013
UT ISI:A1997YH01300035
ER
PT J
AU Sambrano, JR
Andres, J
Beltran, A
Sensato, FR
Leite, ER
Stamato, FMLG
Longo, E
TI An ab initio study of oxygen vacancies and doping process of Nb and Cr
atoms on TiO2 (110) surface models
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE ab initio; oxygen vacancy; doping; titanium oxide surface; varistor
ceramics
ID OXIDE; SOLVENT; VARISTORS; CLUSTERS
AB We theoretically investigated how the formation of oxygen vacancies and
the addition of niobium and chromium atoms as dopants modify the
varistor properties of TiO2. The calculations were carried out at the
HF level using a contracted basis set, developed by Huzinaga et al.. to
represent the atomic centers on the (110) surface for the large
(TiO2)(15) cluster model. The change of the values for the net atomic
charges and band gap after oxygen vacancy formation and the presence of
dopants in the lattice are analyzed and discussed. It is shown that the
formation of oxygen vacancies decreases the band gap while an opposite
effect is found when dopants are located in the reduced surface. The
theoretical results are compared with available experimental data. A
plausible explanation of the varistor behavior of this system is
proposed. (C) 1997 John Wiley & Sons, Inc.
C1 UNIV JAUME 1,DEPT CIENCIES EXPT,CASTELLO 12080,SPAIN.
UNIV FED SAO CARLOS,DEPT QUIM,LIEC,BR-13565905 SAO CARLOS,SP,BRAZIL.
RP Sambrano, JR, UNIV ESTADUAL PAULISTA,DEPT MATEMAT,CP 473,BR-17030360
BAURU,SP,BRAZIL.
CR BAGUS PS, 1991, CLUSTER MODELS SUR B, V283, P233
BERMUDEZ VM, 1981, PROG SURF SCI, V11, P1
BUENO PR, UNPUB
BUENO PR, 1996, J MATER SCI LETT, V15, P2048
CARPENTER JE, 1988, J MOL STRUCT THEOCHE, V169, P41
EGDELL RG, 1995, J MATER CHEM, V5, P499
FOSTER JP, 1980, J AM CHEM SOC, V102, P7211
FRISCH MJ, 1995, GAUSSIAN94 REVISION
GUPTA TK, 1985, J MATER SCI, V20, P4091
HADJIIVANOV KI, 1996, CHEM SOC REV, V25, P61
HAGFELDT A, 1992, INT J QUANTUM CHEM, V44, P477
HAGFELDT A, 1994, INT J QUANTUM CHEM, V49, P97
HEILAND G, 1984, CHEM PHYSICS SOLID S, V3
HENRICH VE, 1983, PROG SURF SCI, V14, P175
HENRICH VE, 1985, REP PROG PHYS, V48, P11
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
HUZINAGA S, 1985, COMPUT PHYS REP, V2, P279
INAMADA M, 1978, JPN J APPL PHYS, V17, P1
LEITE ER, 1992, J MATER SCI, V27, P5325
MARTINS JBL, 1993, INT J QUANTUM CHEM, V27, P643
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
MARTINS JBL, 1995, J MOL STRUCT THEOCHE, V330, P447
MARUCCO JF, 1981, J PHYS CHEM SOLIDS, V42, P363
MASUYAMA T, 1968, JPN J APPL PHYS, V7, P1294
PENNEWISS J, 1982, MATER LETT, V40, P536
PENNEWISS J, 1990, MATER LETT, V40, P219
PETTERSSON LGM, 1993, THEOR CHIM ACTA, V85, P345
PIANARO SA, 1995, J MATER SCI LETT, V14, P692
RANTALA TS, 1994, PHYS SCRIPTA, V54, P252
REED AE, 1985, J CHEM PHYS, V83, P735
REED AE, 1988, CHEM REV, V88, P899
RINALDI D, 1992, J COMPUT CHEM, V13, P675
RIVAIL JL, 1976, CHEM PHYS, V18, P233
RIVAIL JL, 1985, J MOL STRUCT THEOCHE, V120, P387
SAKAI Y, 1982, J COMPUT CHEM, V3, P6
SANON G, 1991, PHYS REV, V44, P5681
TAPIA O, 1975, MOL PHYS, V29, P1653
TAPIA O, 1992, THEORETICAL MODELS C, P435
TOMASI J, 1994, CHEM REV, V94, P2027
WATANABE Y, 1994, J NON-CRYST SOLIDS, V178, P84
YANG SL, 1995, J MATER RES, V10, P345
NR 41
TC 9
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD DEC 5
PY 1997
VL 65
IS 5
BP 625
EP 631
PG 7
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA YG650
UT ISI:A1997YG65000028
ER
PT J
AU Rocha, WR
DeAlmeida, WB
TI Reaction path for the insertion reaction of SnCl2 into the Pt-Cl bond:
An ab initio study
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
ID COMPACT EFFECTIVE POTENTIALS; EXPONENT BASIS-SETS; ASYMMETRIC
HYDROFORMYLATION; ORGANIC SYNTHESES; OLEFIN HYDROFORMYLATION;
ELECTRONIC-STRUCTURE; MOLECULAR-STRUCTURE; CRYSTAL-STRUCTURE;
TRANSITION-METAL; COMPLEXES
AB The reaction pathway for the insertion reaction of SnCl2 into the Pt-Cl
bond on the cis-Pt(Cl)(2)(PH3)(2) compound was investigated at the ab
initio MO level of theory. The optimized structure obtained for the
transition state indicates that this reaction proceeds through a
three-center transition state, and the formed intermediate
cis-Pt(Cl)(PH3)(2)(SnCl3) easily isomerizes to the
trans-Pt(Cl)(PH3)(2)(SnCl3) compound. The nature of the bonds was
investigated with the charge decomposition analysis (CDA) method and
this method indicates that the SnCl3 group is a stronger trans director
than is the PH3 group. (C) 1997 John Wiley & Sons, Inc.
C1 UFMG,ICEF,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR ALBINATI A, 1985, J ORGANOMET CHEM, V295, P239
ANDERSON GK, 1980, CHEM SOC REV, V9, P185
BAERENDS EJ, 1986, NATO ASI SER C-MATH, V176, P159
BAGUS PS, 1984, J CHEM PHYS, V80, P4378
BAGUS PS, 1984, J CHEM PHYS, V81, P1966
BAGUS PS, 1992, J CHEM PHYS, V96, P8962
BARDI R, 1982, J ORGANOMET CHEM, V224, P407
BARDI R, 1982, J ORGANOMET CHEM, V234, P107
BASOLO F, 1967, MECH INORGANIC REACT
BERRY RS, 1960, J CHEM PHYS, V32, P933
CAVINATO G, 1983, J ORGANOMET CHEM, V241, P275
CHATT J, 1953, J CHEM SOC, P2939
DAPPRICH S, 1994, CDA 2 1
DAPPRICH S, 1995, J PHYS CHEM-US, V99, P9352
DELPRA A, 1979, J CHEM SOC DA, P1862
DEWAR MJS, 1951, B SOC CHIM FR, V18, C79
EHLERS AW, 1996, ORGANOMETALLICS, V15, P105
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
FUJIMOTO H, 1974, J CHEM PHYS, V60, P572
FUJIMOTO H, 1981, J AM CHEM SOC, V103, P752
GOMEZ M, 1991, ORGANOMETALLICS, V10, P4036
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOLLWARTH A, 1993, CHEM PHYS LETT, V208, P237
HSU CY, 1975, J AM CHEM SOC, V97, P3553
KATO S, 1974, J AM CHEM SOC, V94, P2024
KOLLAR L, 1987, J ORGANOMET CHEM, V330, P305
KOLLAR L, 1988, J ORGANOMET CHEM, V350, P277
OZAWA F, 1981, B CHEM SOC JPN, V54, P1868
PAONESSA RS, 1982, J AM CHEM SOC, V104, P3529
PARRINELLO G, 1987, J AM CHEM SOC, V109, P7122
PETTIT LD, 1971, Q REV, P1
PREGOSIN PS, 1978, HELV CHIM ACTA, V61, P1848
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEVENS WJ, 1992, CAN J CHEM, V70, P612
STILLE JK, 1983, J MOL CATAL, V21, P203
WISNER JM, 1986, J AM CHEM SOC, V108, P347
ZIEGLER T, 1977, THEOR CHIM ACTA, V46, P1
ZIEGLER T, 1992, NATO ASI SER C, V378, P367
NR 39
TC 9
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD DEC 5
PY 1997
VL 65
IS 5
BP 643
EP 650
PG 8
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA YG650
UT ISI:A1997YG65000030
ER
PT J
AU Cordeiro, JMM
TI C-H center dot center dot center dot O and N-H center dot center dot
center dot O hydrogen bonds in liquid amides investigated by Monte
Carlo simulation
SO INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY
LA English
DT Article
DE Monte Carlo simulation; amides; hydrogen bond; radial distribution
functions
ID X-RAY-DIFFRACTION; MOLECULAR-DYNAMICS SIMULATIONS; MO-SCF CALCULATIONS;
FORMAMIDE; METHYLFORMAMIDE; GEOMETRY; N,N-DIMETHYLFORMAMIDE; PEPTIDES;
MIXTURES; NEUTRON
AB Monte Carlo simulations of liquid formamide, N-methylformamide (MF),
and N,N-dimethylformamide (DMF) have been performed in the isothermal
and isobaric ensemble at 298 K and 1 atm, aiming to investigate the C-H
... O and N-H ... O hydrogen bonds. The interaction energy was
calculated using the classical 6-12 Lennard-Jones pairwise potential
plus a Coulomb term on a rigid six-site molecular model with the
potential parameters being optimized in this work. Theoretical values
obtained for heat of vaporization and liquid densities are in good
agreement with the experimental data. The radial distribution function
[RDF, g(r)] obtained compare well with R-X diffraction data available.
The RDF and molecular mechanics (MM2) minimization show that the C-H
... O interaction has a significant role in the structure of the three
liquids. These results are supported by ab initio calculations. This
Interaction is particularly important in the structure of MF. The
intensity of the N-H ... O hydrogen bond is greater in the MF than
formamide. This could explain some anomalous properties verified in MF.
(C) 1997 John Wiley & Sons, Inc.
RP Cordeiro, JMM, UNESP,FAC ENGN ILHA SOLTEIRA,DEPT QUIM & FIS,AV BRASIL
56,BR-15385000 ILHA SOLTEIRA,SP,BRAZIL.
CR *SER SOFTW, PCMODEL PROGR
ALLEN MP, 1987, COMPUTER SIMULATIONS
BERTOLASI V, 1995, ACTA CRYSTALLOGR B 6, V51, P1004
CARLSON HA, 1993, J COMPUT CHEM, V14, P1240
COURNOYER ME, 1984, MOL PHYS, V51, P119
DESIRAJU GR, 1990, J CHEM SOC CHEM COMM, V179, P454
DESIRAJU GR, 1991, ACCOUNTS CHEM RES, V24, P290
FANTONI AC, 1996, J CHEM SOC FARADAY T, V92, P343
FREITAS LCG, DIADORIM FORTRAN COD
FREITAS LCG, 1995, THEOCHEM-J MOL STRUC, V335, P189
FRISH MJ, 1992, GAUSSIAN REVISION A
GIBSON KD, 1990, J COMPUT CHEM, V11, P468
HAGLER AT, 1974, J AM CHEM SOC, V96, P5319
JORGENSEN WL, 1985, J AM CHEM SOC, V107, P569
JORGENSEN WL, 1991, CHEMTRACTS ORG CHEM, V4, P91
KALMAN E, 1983, Z NATURFORSCH A, V38, P231
LADANYI BM, 1993, ANNU REV PHYS CHEM, V44, P335
LIDE DR, 1992, CRC HDB PHYSICS CHEM
METROPOLIS N, 1953, J CHEM PHYS, V21, P108
NEUEFEIND J, 1992, MOL PHYS, V76, P143
OHTAKI H, 1983, B CHEM SOC JPN, V56, P2116
OHTAKI H, 1983, B CHEM SOC JPN, V56, P3406
OHTAKI H, 1986, B CHEM SOC JPN, V59, P271
RADNAI T, 1988, B CHEM SOC JPN, V61, P3845
RAO BG, 1990, J AM CHEM SOC, V112, P3803
SAGARIK KP, 1987, J CHEM PHYS, V86, P5117
SCHOESTER PC, 1995, Z NATURFORSCH A, V50, P38
SINOTI ALL, 1996, J BRAZIL CHEM SOC, V7, P133
STEINER T, 1994, J CHEM SOC CHEM COMM, P2341
STRAATSMA TP, 1992, ANNU REV PHYS CHEM, V43, P407
TAYLOR R, 1982, J AM CHEM SOC, V104, P5063
YASHONATH S, 1991, CHEM PHYS, V155, P351
NR 32
TC 10
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0020-7608
J9 INT J QUANTUM CHEM
JI Int. J. Quantum Chem.
PD DEC 5
PY 1997
VL 65
IS 5
BP 709
EP 717
PG 9
SC Chemistry, Physical; Mathematics, Interdisciplinary Applications;
Physics, Atomic, Molecular & Chemical
GA YG650
UT ISI:A1997YG65000037
ER
PT J
AU Mathon, J
Villeret, M
Umerski, A
Muniz, RB
Castro, JD
Edwards, DM
TI Quantum-well theory of the exchange coupling in magnetic multilayers
with application to Co/Cu/Co(001)
SO PHYSICAL REVIEW B
LA English
DT Article
ID NONMAGNETIC METALLIC LAYER; AB-INITIO CALCULATIONS; TORQUE METHOD;
OSCILLATIONS; SUPERLATTICES; STATES; MAGNETORESISTANCE; FERROMAGNETS;
CONFINEMENT; INTERFACES
AB Two parallel calculations of the-exchange coupling in a Co/Cu/Co(001)
trilayer, both using the same realistic s, p, and d tight-binding bands
with parameters determined from the ab initio band structures of bulk
Cu and Co, are reported. The coupling is first calculated within the
framework of the quantum-well (QW) formalism in which the periodic
behavior of the spectral density is exploited to derive an analytic
formula for the coupling valid for large spacer thicknesses. On the
other hand, an alternative expression for the coupling, referred to as
cleavage formula, is derived that allows accurate and efficient
numerical evaluation of the coupling. An analytic approximation to this
expression, valid in the asymptotic region of large spacer thickness,
is also obtained. These two approaches are discussed in relation to
other existing theoretical formulations of the coupling. The numerical
results for the coupling obtained from the cleavage formula are first
compared with the analytical QW calculation. The agreement between the
two calculations is impressive and entirely justifies the analytical QW
approach. The numerical calculation fully confirms the result of the QW
formalism that, for trilayers with thick Co layers, the short-period
oscillation due to the minority electrons from the vicinity of the Cu
Fermi-surface (FS) necks is dominant, the contribution of the
long-period oscillation being negligible. This is shown, in the
analytical QW formalism, to be due to the existence of bound states for
the minority-spin electrons at the Cu FS necks in the ferromagnetic
configuration. The dominant short-period oscillation has been confirmed
by spin-polarized scanning electron microscopy and observed directly in
the most recent photoemission experiments. The full confinement of the
minority electrons at the neck of the Cu FS also leads to a strong
temperature dependence of the short-period oscillation and an initial
decay of the coupling with spacer thickness N that is much slower than
predicted by the usual 1/N-2 law. For the electrons at the belly of the
Cu FS, the confinement is weak in both spin channels and the
long-period oscillation hardly changes between zero and room
temperatures. In addition, the belly contribution to the coupling
decreases at T=0 K following the usual 1/N-2 dependence. The amplitude
of the calculated coupling approximate to 1.2 mJ/m(2) at the first
antiferromagnetic peak of Cu is only a factor of 3 larger than the
observed coupling strength. Finally, the coupling for 2 ML of Co
embedded in Cu has also been evaluated from the cleavage formula. A
large initial coupling strength (3.4 mJ/m(2)) and comparable
contributions from the shea-and long-oscillation periods are obtained.
This is in complete agreement with theoretical results reported by
other groups. [S0163-1829(97)04138-6].
C1 UNIV FED FLUMINENSE,DEPT FIS,NITEROI,RJ,BRAZIL.
UNIV LONDON IMPERIAL COLL SCI & TECHNOL,DEPT MATH,LONDON SW7 2BZ,ENGLAND.
RP Mathon, J, CITY UNIV LONDON,DEPT MATH,LONDON EC1V 0HB,ENGLAND.
CR BAIBICH MN, 1988, PHYS REV LETT, V61, P2472
BLAND JAC, 1994, ULTRATHIN MAGNETIC S, V1
BRUNO P, 1991, PHYS REV LETT, V67, P1602
BRUNO P, 1992, PHYS REV B, V46, P261
BRUNO P, 1995, PHYS REV B, V52, P411
CASTRO JD, 1994, PHYS REV B, V49, P16062
CASTRO JDE, 1995, PHYS REV B, V51, P12876
CASTRO JDE, 1996, PHYS REV B, V53, P13306
DRCHAL V, 1996, PHYS REV B, V53, P15036
EDWARDS DM, 1991, J MAGN MAGN MATER, V93, P85
EDWARDS DM, 1991, J PHYS-CONDENS MAT, V3, P4941
EDWARDS DM, 1991, PHYS REV LETT, V67, P493
EDWARDS DM, 1995, J MAGN MAGN MATER 1, V140, P517
FEREIRA M, 1996, J PHYS CONDENS MATT, V8, P11259
HERMAN F, 1991, J APPL PHYS, V69, P4783
JOHNSON MT, 1993, MATER RES SOC S P, V313, P93
KROMPIEWSKI S, 1994, EUROPHYS LETT, V26, P303
KUDRNOVSKY J, 1994, PHYS REV B, V50, P16105
KUDRNOVSKY J, 1996, PHYS REV B, V53, P5125
LANG P, 1993, PHYS REV LETT, V71, P1927
LANG P, 1996, PHYS REV B, V53, P9092
LEE BC, 1995, PHYS REV B, V52, P3499
LEE DH, 1981, PHYS REV B, V23, P4988
MATHON J, 1989, J PHYS-CONDENS MAT, V1, P2505
MATHON J, 1992, J PHYS-CONDENS MAT, V4, P9873
MATHON J, 1993, J MAGN MAGN MATER, V127, L261
MATHON J, 1995, PHYS REV LETT, V74, P3696
MORUZZI VL, 1978, CALCULATED ELECTRONI
NORDSTROM L, 1994, PHYS REV B, V50, P13058
OPPENEER PM, 1993, PHYSICS TRANSITION M, V1
ORTEGA JE, 1992, PHYS REV LETT, V69, P844
ORTEGA JE, 1993, PHYS REV B, V47, P1540
PAPACONSTANTOPO.DA, 1986, HDB BAND STRUCTURE E
PARKIN SSP, 1990, PHYS REV LETT, V64, P2304
PARKIN SSP, 1992, MATER RES SOC S P, V231, P195
SANCHO MPL, 1985, J PHYS F MET PHYS, V15, P851
SEGOVIA P, 1996, PHYS REV LETT, V77, P3455
SLONCZEWSKI JC, 1989, PHYS REV B, V39, P6995
STILES MD, 1993, PHYS REV B, V48, P7238
UMERSKI A, 1997, PHYS REV B, V55, P5266
VANSCHILFGAARDE M, 1993, PHYS REV LETT, V71, P1923
VANSCHILFGAARDE M, 1995, PHYS REV LETT, V74, P4063
WEBER W, 1995, EUROPHYS LETT, V31, P431
NR 43
TC 35
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 1
PY 1997
VL 56
IS 18
BP 11797
EP 11809
PG 13
SC Physics, Condensed Matter
GA YF528
UT ISI:A1997YF52800068
ER
PT J
AU Enderlein, R
Sipahi, GM
Scolfaro, LMR
Leite, JR
TI Density functional theory for holes in semiconductors
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID DELTA-DOPED GAAS; FERMI-EDGE SINGULARITY; NIPI-SUPERSTRUCTURE;
QUANTUM-WELLS; CRYSTALS; GAS
AB A long standing problem of solid state theory is solved, being the
derivation of a set of self-consistent one-particle equations for the
interacting multicomponent hole gas of a semiconductor in an external
potential. Combining effective mass theory with density functional
theory, the Hohenberg-Kohn theorem is generalized and a set of
generalized Kohn-Sham equations is obtained for the multicomponent gas.
It is demonstrated how the exchange-correlation potential matrix may be
calculated by the local density approximation. Explicit results are
given for the Gamma(8) valence band holes of zinc blende type
semiconductors. [S0031-9007(97)04490-6].
RP Enderlein, R, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05315970
SAO PAULO,BRAZIL.
CR ANDO T, 1985, J PHYS SOC JPN, V54, P1528
BANGERT E, 1974, 12TH P INT C PHYS SE, P714
BROIDO DA, 1985, PHYS REV B, V31, P888
DHARMAWARDANA MWC, 1982, PHYS REV A, V26, P2096
DOHLER GH, 1972, PHYS STATUS SOLIDI B, V52, P533
DOHLER GH, 1972, PHYS STATUS SOLIDI, V52, P79
ENDERLEIN R, IN PRESS
HOHENBERG P, 1964, PHYS REV, V136, B864
KOHN W, 1965, PHYS REV, V140, A1133
LUTTINGER JM, 1955, PHYS REV, V97, P869
REBOREDO FA, 1993, PHYS REV B, V47, P4655
RICHARDS D, 1993, PHYS REV B, V47, P9629
SINGWI KS, 1968, PHYS REV, V176, P589
SIPAHI GM, 1996, PHYS REV B, V53, P9930
WAGNER J, 1991, PHYS REV B, V43, P12134
NR 15
TC 22
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD NOV 10
PY 1997
VL 79
IS 19
BP 3712
EP 3715
PG 4
SC Physics, Multidisciplinary
GA YF186
UT ISI:A1997YF18600042
ER
PT J
AU Moraes, LAB
Eberlin, MN
TI Transacetalization of 1,3-dioxane with acylium and sulfinyl cations in
the gas phase
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID ION-MOLECULE REACTIONS; MASS-SPECTROMETRY; ORBITAL METHODS; BASIS SETS;
ISOMERS; 1,3-DIOXOLANES; SUBSTITUTION; INSTRUMENT; SCANS; 3D
AB Transacetalization occurs extensively In gas phase ion-molecule
reactions of 1,3-dioxane with a variety of acylium ions [R-C+=O; R =
CH3, C2H5, Ph, CH3O, Cl, CH2=CH, (CH3)(2)N] and a sulfur analogue, the
thioacetyl ion CH3-C+=S. Six-membered 1,3-dioxanylium ions and
analogues, i.e. cyclic 'ionic (thio)ketals', are formed, as evidenced
by pentaquadrupole triple-stage collision-dissociation mass spectra and
MP2/6-311G(d,p)//6-311G(d,p) + ZPE ab initio calculations, as well as
by O-18 labelling experiments. Transacetalization with 1,3-dioxane is
not a general reaction for sulfinyl cations (R-S+=O). They react either
moderately (CH3-S+=O) or extensively (CH2=CH-S+=O) by
transacetalization, form abundant intact adducts (Ph-S+=O) or undergo
mainly proton transfer and/or hydride abstraction reactions (Cl-S+=O,
CH3O-S+=O and C2H5O-S+=O). Competitive MS2 experiments are employed to
compare the transacetalization reactivity of different acylium ions,
and that of two cyclic neutral acetals, that is 1,3-dioxane and
1,3-dioxolane. All the cyclic 'ionic ketals) dissociate exclusively
under low-energy collision conditions to regenerate the original
reactant ion species, a simple dissociation chemistry that is amply
demonstrated to be a very general characteristic of the
transacetalization products. The cyclic 'ionic thioketal' formed in
transacetalization with CH3-C+=S is found, however, to dissociate
exclusively to the oxygen analogue ion CH3-C+=O, a triple-stage mass
spectrometric(MS3) experiment that constitutes a novel gas-phase
strategy for conversion of thioacylium ions into acylium ions.
C1 UNICAMP,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR ATTINA M, 1983, J AM CHEM SOC, V105, P1122
CAREY FA, 1984, ADV ORGANIC CHEM
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
CREASER CS, 1996, J CHEM SOC PERK MAR, P427
EBERLIN MN, IN PRESS MASS SPECTR
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
EBERLIN MN, 1997, J AM CHEM SOC, V119
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
GOZZO FC, 1996, J CHEM SOC PERK APR, P587
HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KIM JK, 1982, J AM CHEM SOC, V104, P4624
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
KUMAKURA M, 1978, J PHYS CHEM-US, V82, P639
KUNZ H, 1991, COMPREHENSIVE ORGANI, V59, P659
LEINONEN A, 1994, ORG MASS SPECTROM, V29, P295
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, 1996, J ORG CHEM, V61, P8726
MORAES LAB, 1997, J ORG CHEM, V62, P5096
PARADISI C, 1988, ORG MASS SPECTROM, V23, P521
RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
STALEY RH, 1977, J AM CHEM SOC, V99, P5964
VAINIOTALO P, 1996, P 44 ASMS C MASS SPE, P453
NR 37
TC 18
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE, CAMBS,
ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD OCT
PY 1997
IS 10
BP 2105
EP 2111
PG 7
SC Chemistry, Organic; Chemistry, Physical
GA YB261
UT ISI:A1997YB26100035
ER
PT J
AU Jorge, FE
deCastro, EVR
daSilva, ABF
TI A universal Gaussian basis set for atoms Cerium through Lawrencium
generated with the generator coordinate Hartree-Fock method
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
DE universal Gaussian basis set; generator coordinate Hartree-Fock method;
heavy atoms
ID SLATER-TYPE BASES; LYING EXCITED-STATES; COULOMB CALCULATIONS;
HEAVY-ATOMS; EQUATIONS; VERSION
AB The generator coordinate Hartree-Fock method is applied to generate a
universal Gaussian basis set for the heavy atoms from Ce (Z = 58)
through Lr (Z = 103). The Hartree-Fock energies obtained with our
universal Gaussian basis set are compared with the new numerical
Hartree-Fock results of Koga et al., when available, and with
geometrical Gaussian basis sets results available in the Literature.
The universal Gaussian basis set presented here is generated taking
into account the shell constraint (the sharing of exponential functions
between all s, p, d, and f atomic orbitals), and can be used as
starting basis set in ab initio relativistic Hartree-Fock-Roothaan
calculations. (C) 1997 John Wiley & Sons, Inc.
C1 UNIV SAO PAULO, INST QUIM DE SAO CARLOS, DEPT QUIM & FIS MOL, BR-13560970 SAO CARLOS, SP, BRAZIL.
UNIV FED DO ESPIRITO SANTO, CCE, DEPT QUIM, VITORIA, ES, BRAZIL.
UNIV FED DO ESPIRITO SANTO, CCE, DEPT FIS, VITORIA, ES, BRAZIL.
CR CLEMENTI E, 1991, MOTECC MODERN TECHNI, P58
DACOSTA HFM, 1987, MOL PHYS, V62, P91
DASILVA ABF, 1989, MOL PHYS, V68, P433
DASILVA ABF, 1993, CAN J CHEM, V71, P1713
DASILVA ABF, 1993, CHEM PHYS LETT, V201, P37
DASILVA ABF, 1993, CHEM PHYS LETT, V203, P201
DASILVA ABF, 1993, MOL PHYS, V78, P1301
DASILVA ABF, 1996, CAN J CHEM, V74, P1526
FISCHER CF, 1977, HARTREEFOCK METHOD A
KOGA T, 1995, INT J QUANTUM CHEM, V54, P261
MALLI GL, 1993, PHYS REV A, V47, P143
MALLI GL, 1994, J CHEM PHYS, V101, P6829
MATSUOKA O, 1987, CHEM PHYS LETT, V140, P567
MOHALLEM JR, 1986, INT J QUANTUM CH S20, P45
MOHALLEM JR, 1986, Z PHYS D ATOM MOL CL, V3, P339
MOHALLEM JR, 1987, J CHEM PHYS, V86, P5043
MOHANTY AK, 1990, J CHEM PHYS, V93, P1829
OKADA S, 1989, J CHEM PHYS, V91, P4193
NR 18
TC 11
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD OCT
PY 1997
VL 18
IS 13
BP 1565
EP 1569
PG 5
SC Chemistry, Multidisciplinary
GA YA494
UT ISI:A1997YA49400001
ER
PT J
AU Guimaraes, TC
Pavao, AC
Taft, CA
Lester, WA
TI Interaction mechanism of N-2 with the Cr (110) surface
SO PHYSICAL REVIEW B
LA English
DT Article
ID ANGLE-RESOLVED PHOTOEMISSION; RAY-ABSORPTION-SPECTRA; HIGHER
EXCITED-STATES; ELECTRONIC-STRUCTURE; CHEMISORBED MOLECULES; 3D-METAL
SURFACES; TRANSITION-METALS; CO CHEMISORPTION; DISSOCIATION; PRECURSOR
AB The interaction:of N-2 With the Cr (110) surface is analyzed using the
ab initio Hartree-Fock method and a Cr5N2 cluster. Our results indicate
that the tilted state is energetically favored over perpendicular
adsorption. The Mulliken surface-->N-2 charge transfer, overlap
populations as well as N-N distances increase in the tilted
configuration. We also analyze the stretching frequencies, geometrical
parameters, natural bond orbital populations, density of states,
orbital energies,charge-density distribution and orbital contours. We
propose a model to explain the catalytic dissociation of N-2 On the Cr
(110) surface.
C1 CTR BRASILEIRO PESQUISAS FIS,BR-22290180 RIO JANEIRO,BRAZIL.
UNIV CALIF BERKELEY,LAWRENCE BERKELEY LAB,DIV CHEM SCI,BERKELEY,CA 94720.
UNIV CALIF BERKELEY,DEPT CHEM,BERKELEY,CA 94720.
UNIV ESTADO BAHIA,DEPT DESENHO & TECNOL,SALVADOR,BA,BRAZIL.
RP Guimaraes, TC, UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50670900
RECIFE,PE,BRAZIL.
CR BADER RFW, 1990, ATOMS MOL QUANTUM TH
BAGUS PS, 1980, J ELECTRON SPECTROSC, V20, P253
BENNDORF C, 1985, SURF SCI, V163, L675
BJORMEHJOLM O, 1994, PHYS REV LETT, V19, P2551
BJORNEHOLM O, 1993, PHYS REV B, V47, P2308
BLYHOLDER G, 1964, J PHYS CHEM-US, V68, P2772
BOZSO F, 1977, J CATAL, V49, P18
DEPAOLA RA, 1986, CHEM PHYS LETT, V128, P343
DOWBEN PA, 1984, SURF SCI, V147, P89
DOWBEN PA, 1988, SURF SCI, V193, P336
DOWBEN PA, 1991, SURF SCI, V254, L482
EGELHOFF WF, 1984, SURF SCI, V141, L324
ERTL G, 1984, PHYS REV LETT, V53, P850
FORESMAN JB, 1996, EXPLORING CHEM ELECT
FREUND HJ, 1983, PHYS REV LETT, V50, P768
FREUND HJ, 1987, SURF SCI, V185, P187
FRISCH MJ, 1992, GAUSSIAN 92
FUKUDA Y, 1988, SURF SCI, V203, L651
GRUNZE M, 1984, PHYS REV LETT, V53, P850
HASSE G, 1987, SURF SCI, V191, P75
HAY PJ, 1985, J CHEM PHYS, V82, P270
HERMANN K, 1981, SOLID STATE COMMUN, V38, P1257
HESKETT D, 1984, SURF SCI, V139, P558
HESKETT D, 1985, SURF SCI, V164, P490
HO W, 1980, SURF SCI, V95, P171
HORN K, 1982, SURF SCI, V118, P465
IBACH H, 1982, ELECTRON ENERGY LOSS
IBBOTSON DE, 1981, SURF SCI, V110, P313
MAHAN GD, 1978, J CHEM PHYS, V68, P1344
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
NIEUWENHUYS BE, 1981, SURF SCI, V105, P505
NORTON PR, 1978, SURF SCI, V72, P33
ORTEGA JE, 1994, PHYS REV B, V49, P859
PAULING L, 1960, NATURE CHEM BOND
PAULING L, 1984, J SOLID STATE CHEM, V54, P297
PAVAO AC, 1955, SURF SCI, V323, P340
PAVAO AC, 1991, PHYS REV B, V43, P6962
PAVAO AC, 1994, PHYS REV B, V50, P1868
PIVETEAU B, 1994, PHYS REV B, V49, P8402
PLUMMER EW, 1985, SURF SCI, V158, P58
REED AE, 1985, J CHEM PHYS, V83, P735
SANDELL A, 1993, PHYS REV LETT, V70, P2000
SHINN ND, 1985, J CHEM PHYS, V83, P5928
SHINN ND, 1986, PHYS REV B, V33, P1464
SHINN ND, 1988, PHYS REV B, V38, P12248
SHINN ND, 1990, PHYS REV B, V41, P9771
SINDER M, 1994, PHYS REV B, V50, P2775
SPENCER ND, 1982, J CATAL, V74, P129
STOHR J, 1982, PHYS REV B, V26, P4111
TOMANEK D, 1985, PHYS REV B, V31, P2488
TSAI MC, 1985, SURF SCI, V155, P387
UEBA H, 1986, SURF SCI, V169, P153
UMBACH E, 1984, SOLID STATE COMMUN, V51, P365
WHITMAN LJ, 1986, J CHEM PHYS, V85, P3788
WIBERG KB, 1993, J COMPUT CHEM, V14, P1504
WU Y, 1987, SURF SCI, V179, L26
WU Y, 1988, SURF SCI, V203, L651
ZDANSKY EOF, 1993, PHYS REV B, V48, P2632
ZHAO J, 1994, PHYS REV B, V20, P424
ZHOU RH, 1992, J PHYS-CONDENS MAT, V4, P2429
NR 60
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD SEP 15
PY 1997
VL 56
IS 11
BP 7001
EP 7010
PG 10
SC Physics, Condensed Matter
GA XY806
UT ISI:A1997XY80600093
ER
PT J
AU Aleman, C
Galembeck, SE
TI Intramolecular electronic and hydrogen-bonding interactions in
N,N'-dimethyl-2,3-di-O-methyl-L-tartaramide
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID L-TARTARIC ACID; MST-SCRF CALCULATIONS; CONFORMATIONAL-ANALYSIS;
PSEUDOROTATIONAL EQUILIBRIUM; PENTOFURANOSE MOIETY; POLY(ETHYLENE
OXIDE); ENERGY CALCULATIONS; COUPLING-CONSTANTS; FURANOSE RING;
FORCE-FIELD
AB The changes in energy of the
N,N'-dimethyl-2,3-di-O-methyl-L-tartaramide, model compound of
polytartaramides based on 2,3-di-O-methyl-L-tartaric acid and
1,n-alkanediamine, have been analyzed by ab initio quantum mechanical
calculations. The influences of the gauche oxygen effect have been
investigated in the gas phase as well as in aqueous, chloroform, and
carbon tetrachloride solutions. The results indicate that polarizable
environments enhance the gauche oxygen effect, but the amount of
stabilization depends on the electronic characteristics of the solvent.
C1 UNIV SAO PAULO,FAC FILOSOFIA CIENCIAS & LETRAS RIBEIRAO PRET,DEPT QUIM,BR-14049901 RIBEIRAO PRET,SP,BRAZIL.
RP Aleman, C, UNIV POLITECN CATALUNYA,ETS ENGN IND BARCELONA,DEPT ENGN
QUIM,DIAGONAL 647,E-08028 BARCELONA,SPAIN.
CR ABRAHAM RJ, 1972, J AM CHEM SOC, V94, P1913
ALEMAN C, 1993, J COMPUT AID MOL DES, V7, P241
ALEMAN C, 1994, J CHEM SOC P2, P563
ALEMAN C, 1995, J ORG CHEM, V60, P6135
ALEMAN C, 1995, J PHYS CHEM-US, V99, P17653
ALEMAN C, 1996, J PHYS CHEM-US, V100, P1524
ALEMAN C, 1996, TETRAHEDRON, V52, P8275
ALTONA C, 1972, J AM CHEM SOC, V94, P8205
ALTONA C, 1973, J AM CHEM SOC, V95, P2333
BACHS M, 1994, J COMPUT CHEM, V15, P446
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BOU JJ, 1994, MACROMOLECULES, V27, P5263
BOU JJ, 1995, POLYMER, V36, P181
CASANOVAS J, 1994, J COMPUT AID MOL DES, V8, P441
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
ELIEL EL, 1973, J AM CHEM SOC, V95, P8041
FREY RF, 1991, J AM CHEM SOC, V113, P7129
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GEJJI SP, 1994, CHEM PHYS LETT, V226, P427
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HOSSAIN N, 1993, NUCLEOS NUCLEOT, V12, P499
INOMATA K, 1992, J PHYS CHEM-US, V96, P7934
IRIBARREN I, 1996, MACROMOLECULES, V29, P4397
IRIBARREN I, 1996, MACROMOLECULES, V29, P8413
LEON S, 1997, STRUCT CHEM, V8, P39
LUQUE FJ, 1993, J PHYS CHEM-US, V97, P4386
LUQUE FJ, 1994, J COMPUT CHEM, V15, P847
LUQUE FJ, 1996, J COMPUT CHEM, V17, P806
LUQUE FJ, 1996, J PHYS CHEM-US, V100, P4269
MATSUURA H, 1987, J MOL STRUCT, V156, P293
MIERTUS S, 1982, CHEM PHYS, V65, P239
MOLLER C, 1934, PHYS REV, V46, P618
MULLERPLATHE F, 1994, MACROMOLECULES, V27, P6040
NAVAS JJ, 1996, J ORG CHEM, V61, P6849
OLSON WK, 1982, J AM CHEM SOC, V104, P270
OLSON WK, 1982, J AM CHEM SOC, V104, P278
OROZCO M, 1994, CHEM PHYS, V182, P237
OROZCO M, 1995, J AM CHEM SOC, V117, P1378
OROZCO M, 1995, J COMPUT CHEM, V16, S563
PEREIRA GK, IN PRESS J MOL STRUC
PEREIRA GK, 1996, THEOCHEM-J MOL STRUC, V363, P87
PIEROTTI RA, 1976, CHEM REV, V76, P717
PLAVEC J, 1993, J AM CHEM SOC, V115, P9734
RODRIGUEZGALAN A, 1992, J POLYM SCI POL CHEM, V30, P713
SHANG HS, 1994, J AM CHEM SOC, V116, P1528
SOSANUMA K, 1995, MACROMOLECULES, V28, P8629
STEWART JJP, 1993, MOPAC 93 REVISION 2
TASAKI K, 1985, POLYM J, V17, P641
THIBAUDEAU C, 1994, J AM CHEM SOC, V116, P8033
VEGA MC, 1992, J BIOMOL STRUCT DYN, V10, P1
VOIGHTMARTIN IG, 1995, MACROMOLECULES, V28, P242
YOSHIDA H, 1992, CHEM PHYS LETT, V196, P601
NR 52
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD SEP 19
PY 1997
VL 62
IS 19
BP 6562
EP 6567
PG 6
SC Chemistry, Organic
GA XX490
UT ISI:A1997XX49000024
ER
PT J
AU Martins, JBL
Taft, CA
Longo, E
Andres, J
TI Ab initio study of CO and H-2 interaction on ZnO surfaces using a small
cluster model
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE ab initio; adsorption; ZnO
ID OXIDE SURFACES; ZINC-OXIDE; ABINITIO CALCULATIONS; METHANOL SYNTHESIS;
CARBON-MONOXIDE; METAL; PHOTOELECTRON; ADSORPTION; POTENTIALS; SITES
AB We have studied the adsorption of H-2 and CO molecules, as well as the
dissociation of H-2, on the (ZnO)(6) cluster model using the ab initio
Hartree-Fock method. The effective core potential was used for Zn, C,
and O atoms at double-zeta-type valence basis set level, whereas for H
we used Dunning's basis set, We have also added polarization and
diffuse functions to the O, C, and H basis set. The CO molecule
interacts with the lowest coordination zinc sites which are located on
the edge between the (0001) and (10 (1) over bar 0) surfaces. The
decrease in CO bond length upon adsorption on ZnO surfaces is
associated with the charge transfer from CO to the surface, Our
calculations indicate the 5 sigma orbital from adsorbed CO stabilized
to a 1.56 eV deeper energy, Of all the configurations investigated, the
molecular H-2 interaction has the lowest binding energy with a decrease
in H-2 bond strength, The H-2 molecule also dissociates on the zinc and
oxygen sites of the ZnO cluster, and the preferential dissociation site
is the oxygen which has a coordination number of two. The H-2
dissociation shows a large stabilization energy for the most stable
adsorption site which is the lowest coordination site. Molecular CO and
H-2 adsorption yields a smaller change in the estimated energy gaps and
ionization potentials, We have also analysed the geometry of the
adsorbed molecules, the Mulliken charge, the orbital SCF energies, and
also the molecular orbital densities and contour plots. Our results are
compared with the available experimental data, (C) 1997 Elsevier
Science B.V.
C1 UNIV FED SAO CARLOS,DEPT QUIM,BR-13560905 SAO CARLOS,SP,BRAZIL.
UNIV JAUME 1,DEPT CIENCIAS EXPT,CASTELLO DE PLANA,SPAIN.
RP Martins, JBL, CTR BRASILEIRO PESQUISAS FIS,DEPT MAT CONDENSADA & FIS
ESTATIST,RUA XAVIER SIGAUD 150,BR-22290 RIO JANEIRO,BRAZIL.
CR ABRAHAMS SC, 1969, ACTA CRYSTALLOGR B, V25, P1233
ANDERSON AB, 1986, J AM CHEM SOC, V108, P1385
BOLIS V, 1989, J CHEM SOC FARAD T 1, V85, P855
CHANG CC, 1973, J PHYS CHEM-US, V77, P2634
DAMICO KL, 1983, J AM CHEM SOC, V105, P6380
DENT AL, 1969, J PHYS CHEM-US, V73, P3772
EARLEY CW, 1993, J COMPUT CHEM, V14, P216
FERRARI AM, 1996, INT J QUANTUM CHEM, V58, P241
FRISCH MJ, 1992, GAUSSIAN 92
GAY RR, 1980, J AM CHEM SOC, V102, P6752
HAY PJ, 1985, J CHEM PHYS, V82, P270
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HENGLEIN A, 1989, CHEM REV, V89, P1861
JACOBI K, 1984, SURF SCI, V141, P109
KITCHEN DB, 1989, J PHYS CHEM-US, V93, P7265
KLIER K, 1982, ADV CATAL, V31, P243
LIN JY, 1991, J AM CHEM SOC, V113, P8312
LIN JY, 1992, INORG CHEM, V31, P686
MARTINS JBL, IN PRESS J MOL STRUC
MARTINS JBL, 1994, J MOL STRUCT, V303, P19
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P347
MARTINS JBL, 1996, THEOCHEM-J MOL STRUC, V363, P249
MAVRIDIS A, 1989, J AM CHEM SOC, V111, P2482
MERCHAN M, 1987, J CHEM PHYS, V87, P1690
MOLLER PJ, 1995, SURF SCI, V323, P102
SCARANO D, 1992, SURF SCI, V276, P281
SOLOMON EI, 1993, CHEM REV, V93, P2623
SPANHEL L, 1991, J AM CHEM SOC, V113, P2826
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
VEILLARD A, 1991, CHEM REV, V91, P743
ZAKI MI, 1987, SPECTROCHIM ACTA A, V43, P1455
ZHANPEISOV NU, 1994, J STRUCT CHEM, V35, P9
NR 33
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD JUN 30
PY 1997
VL 398
BP 457
EP 466
PG 10
SC Chemistry, Physical
GA XV714
UT ISI:A1997XV71400050
ER
PT J
AU Gong, XG
Guenzburger, D
Saitovitch, EB
TI Structure and dynamic properties of neutral and ionized SiH5 and Si2H3
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID SPECTROSCOPY; SPECTRUM; ENTHALPIES; MOLECULES; DISILYNE; RADICALS;
SILANE; CATION; BANDS; ATOMS
AB The equilibrium structures and dynamical properties of neutral and
ionized SiH5, and Si2H3 have been studied using the ab initio molecular
dynamics method. The obtained equilibrium structures are in good
agreement with other highly precise methods. In SiH5+, we have clearly
observed that H-2 rotates about the C-3 axis. In Si2H3+, we have found
that H atoms can interchange positions frequently and also the
structure changes. The different dynamical behaviors of the Si-H and
C-H molecules has been addressed. (C) 1997 Published by Elsevier
Science B.V.
C1 CTR BRASILEIRO PESQUISAS FIS,URCA,RJ,BRAZIL.
RP Gong, XG, NANJING UNIV,INST SOLID STATE PHYS,NATL LAB SOLID STATE
MICROSTRUCT,NANJING 210093,PEOPLES R CHINA.
CR BACHELET GB, 1982, PHYS REV B, V26, P4199
BECERRA R, 1992, J PHYS CHEM-US, V96, P10856
BETRENCOURT M, 1986, J CHEM PHYS, V84, P4121
BOGEY M, 1991, PHYS REV LETT, V66, P413
BOO DW, 1993, CHEM PHYS LETT, V211, P358
BOO DW, 1995, J CHEM PHYS, V103, P514
BORRMANN A, 1996, CHEM PHYS LETT, V252, P1
BUDA F, 1989, PHYS REV LETT, V63, P294
CAO YB, 1993, J PHYS CHEM-US, V97, P5215
CAR R, 1985, PHYS REV LETT, V55, P2471
COLEGROVE BT, 1990, J CHEM PHYS, V93, P7230
COLEGROVE BT, 1990, J PHYS CHEM-US, V94, P5593
CURTISS LA, 1991, J CHEM PHYS, V95, P2433
DAVIES PB, 1994, J CHEM PHYS, V100, P6166
DEMOLLIENS A, 1989, J AM CHEM SOC, V111, P5623
GONG XG, IN PRESS
HOHENBERG P, 1964, PHYS REV B, V136, P864
HU CH, 1992, CHEM PHYS LETT, V190, P543
KHANNA SN, 1995, PHYS REV B, V51, P13705
KIRKPATRICK S, 1983, SCIENCE, V220, P671
KOHN W, 1965, PHYS REV, V140, A1133
NAKAMURA K, 1985, J CHEM PHYS, V83, P4504
OLAH GA, 1973, CARBOCATIONS ELECTRO
PERDEW JP, 1981, PHYS REV B, V23, P5048
RING MA, 1992, J PHYS CHEM-US, V96, P10848
SAX AF, 1991, J PHYS CHEM-US, V95, P1768
SCHLEYER PV, 1983, CHEM PHYS LETT, V95, P477
SCHREINER PR, 1993, J CHEM PHYS, V99, P3716
SCUSERIA GE, 1993, NATURE, V366, P512
SMITH DM, 1992, J CHEM PHYS, V96, P1741
TSE JS, 1995, PHYS REV LETT, V74, P876
VOLATRON F, 1990, CHEM PHYS LETT, V166, P49
NR 32
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD AUG 29
PY 1997
VL 275
IS 3-4
BP 392
EP 398
PG 7
SC Physics, Atomic, Molecular & Chemical
GA XV887
UT ISI:A1997XV88700038
ER
PT J
AU Morgon, NH
Linnert, HV
deSouza, LAG
Riveros, JM
TI Gas-phase nucleophilic reactions in SO2F2: experiment and theory
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID COMPACT EFFECTIVE POTENTIALS; EXPONENT BASIS-SETS; OPTIMIZATION
TECHNIQUE; ADDITION-ELIMINATION; IONS; FLUORIDE; SULFUR; ATOMS;
THERMOCHEMISTRY; SUBSTITUTION
AB The gas-phase ion-molecule reactions of simple anions (HO-, CH3O-,
NH2-) with SO2F2 proceed with rate constants close to the collision
limit. The energy surface for the OH-/SO2F2 reaction has been
characterized by ab initio calculations using basis functions adapted
for a pseudopotential and corrected for anionic systems by the
generator coordinate method (GCM) at the QCISD(T)/(ECP/TZV/GCM) level.
The calculations indicate that reaction occurs by initial addition of
the anion to SO2F2 to form a hypervalent sulfur species. The high
efficiency of the reaction is associated with a low energy barrier
separating the initial adduct from the product side ion-neutral
complex. (C) 1997 Elsevier Science B.V.
C1 UNIV SAO PAULO,INST CHEM,BR-05599970 SAO PAULO,BRAZIL.
RP Morgon, NH, UNIV CAMPINAS,INST CHEM,CAMPINAS,SP,BRAZIL.
CR ALKORTA I, 1994, THEOR CHIM ACTA, V89, P1
BACHRACH SM, 1996, J PHYS CHEM-US, V100, P3535
CHEUNG YS, 1995, J AM CHEM SOC, V117, P9725
CLARY DC, 1997, J CHEM PHYS, V106, P575
CUNDARI TR, 1993, J CHEM PHYS, V98, P5555
CUSTODIO R, 1992, CAN J CHEM, V70, P580
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
DASILVA MLP, 1995, J MASS SPECTROM, V30, P733
DUNNING TH, 1977, MODERN THEORETICAL C, V3, P1
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GLUKHOVTSEV MN, 1995, J AM CHEM SOC, V117, P2024
GORDON IM, 1989, CHEM SOC REV, V19, P65
GRABOWSKI JJ, 1989, J AM CHEM SOC, V111, P1193
HAGEN K, 1978, J MOL STRUCT, V44, P187
IRIKURA KK, 1995, J CHEM PHYS, V102, P5357
LARSON JW, 1985, J AM CHEM SOC, V107, P766
LARSON JW, 1987, INORG CHEM, V26, P4018
LIAS SG, 1988, J PHYS CHEM S1, V235, P436
MCKEE ML, 1996, J PHYS CHEM-US, V100, P3473
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
MILLER KJ, 1979, J AM CHEM SOC, V101, P7206
MORGON NH, 1995, CHEM PHYS LETT, V235, P436
MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
MORGON NH, 1995, J PHYS CHEM-US, V99, P17832
MORGON NH, 1995, THEOCHEM-J MOL STRUC, V335, P11
OKUYAMA T, 1990, CHEM SULPHINIC ACIDS, P623
RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
ROZAS I, 1996, J CHEM SOC PERK MAR, P461
SMITH D, 1977, INT J MASS SPECTROM, V23, P123
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEVENS WJ, 1992, CAN J CHEM, V70, P612
SU T, 1975, INT J MASS SPECTROM, V17, P211
WANG HB, 1994, J PHYS CHEM-US, V98, P1608
YANG KY, 1995, J PHYS CHEM-US, V99, P15035
NR 34
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD SEP 5
PY 1997
VL 275
IS 5-6
BP 457
EP 462
PG 6
SC Physics, Atomic, Molecular & Chemical
GA XV888
UT ISI:A1997XV88800004
ER
PT J
AU Srivastava, RM
Seabra, GM
TI Preparation and reactions of 3-[3-(aryl)-1,2,4-oxadiazol-5-yl]
propionic acids
SO JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY
LA English
DT Article
DE arylamidoximes; bis-1,2,4-oxadiazoles; diaryl-1,2,4-oxadiazoles;
ab-initio sto-3g calculations
AB The synthesis of title compounds 3a-g, from arylamidoximes 1a-g and
succinic anhydride in high yields is described. 1,2,4-Oxadiazoles 3a-f
were also obtained by carrying out the reaction in a domestic microwave
oven. Preliminary pharmacological evaluations demonstrated that 3b-e
possess analgesic properties. Ab initio molecular orbital calculations
of the type STO-3G have been performed for compounds 3a, 4a, 5a and 6a.
C1 UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50670901 RECIFE,PE,BRAZIL.
CR AFIATPOUR P, 1994, BRAZ J MED BIOL RES, V27, P1403
ARBASINO M, 1963, ATTI ACCAD NAZL SFMN, V34, P532
BALLARD RE, 1968, SPECTROCHIM ACTA A, V24, P1975
BARRANS J, 1959, CR HEBD ACAD SCI, V249, P1096
BLATT AH, 1943, ORG SYNTH, V2, P165
BRAM G, 1991, CHEM IND-LONDON, P396
FRISCH MJ, 1992, GAUSSAIN 92
HIROTA T, 1994, ACTA CRYSTALLOGR C, V50, P807
KALINOWSKI HO, 1984, 13C NMR SPECTROSKOPI, P183
LEITE LFC, 1983, THESIS U FEDERAL PER
LEITE LFCD, 1989, B SOC CHIM BELG, V98, P203
LOPEZ JP, 1983, J MOL STRUCT, V94, P203
MILLER JA, 1989, CHEM BER, V22, P243
MILLER JA, 1989, CHEM BER, V22, P2796
MOUSSEBOIS C, 1964, HELV CHIM ACTA, V47, P942
PARK CH, 1977, HAKSUL YONGUCHI CHUN, V4, P133
SCHULZ O, 1985, CHEM BER, V18, P2459
SRIVASTAVA M, 1984, J HETEROCYCLIC CHEM, V21, P1193
SRIVASTAVA RM, 1977, J ORG CHEM, V42, P1555
SRIVASTAVA RM, 1983, GAZZ CHIM ITAL, V113, P845
SRIVASTAVA RM, 1984, J CHEM ENG DATA, V29, P221
SRIVASTAVA RM, 1989, QUIM NOVA, V12, P221
SRIVASTAVA RM, 1992, J BRAZIL CHEM SOC, V3, P117
SRIVASTAVA RM, 1993, J BRAZIL CHEM SOC, V4, P84
NR 24
TC 9
PU SOC BRASILEIRA QUIMICA
PI SAO PAULO
PA CAIXA POSTAL 26037, 05599-970 SAO PAULO, BRAZIL
SN 0103-5053
J9 J BRAZIL CHEM SOC
JI J. Braz. Chem. Soc.
PY 1997
VL 8
IS 4
BP 397
EP 405
PG 9
SC Chemistry, Multidisciplinary
GA XV685
UT ISI:A1997XV68500013
ER
PT J
AU Pfannes, HD
TI Simple theory of superparamagnetism and spin-tunneling in Mossbauer
spectroscopy
SO HYPERFINE INTERACTIONS
LA English
DT Article
ID MAGNETIC-RELAXATION; SPECTRA; MOLECULES; DISSIPATION; SYSTEMS
AB The magnetic relaxation of isolated small (< 100 Angstrom) monodomain
magnetic particles is due to superparamagnetic relaxation (predominant
at high temperatures) and eventually quantum tunneling of the magnetic
moment (at low temperatures). The superparamagnetic relaxation process
can be formally described by an (multiple phonon absorption and
emission) Orbach process with an anisotropy Hamiltonian due to
crystalline or form anisotropy (H) over cap(Ion) = S-z(2) and a usual
dynamical spin-Hamiltonian for the spin-phonon interaction. From this
Mossbauer spectra can be calculated using ab-initio or stochastic
methods. Phonon-assisted tunneling and its influence on Mossbauer
spectra are discussed.
RP Pfannes, HD, UNIV FED MINAS GERAIS,DEPT FIS,CP 702,BR-30123970 BELO
HORIZONT,MG,BRAZIL.
CR BROWN WF, 1959, J APPL PHYS, V30, S130
BROWN WF, 1963, PHYS REV, V130, P1677
CALDEIRA AO, 1981, PHYS REV LETT, V46, P211
CALDEIRA AO, 1983, ANN PHYS-NEW YORK, V149, P374
CHUDNOVSKY EM, 1994, PHYS REV LETT, V72, P3433
CIANCHI L, 1986, REP PROG PHYS, V49, P1243
DATTAGUPTA S, 1977, PHYS REV B, V16, P3893
GARG A, 1994, J APPL PHYS 2, V76, P6168
HARTMANNBOUTRON F, 1995, J PHYS I, V5, P1281
HARTMANNBOUTRON F, 1996, INT J MOD PHYS B, V10, P2577
HARTMANNBOUTRON F, 1996, J PHYS I, V6, P137
MORUP S, 1980, APPLICATIONS MOSSBAU, V2, P1
NEEL L, 1949, ANN GEOPHYS, V5, P99
ORBACH R, 1972, ELECT PARAMAGNETIC R, P121
PFANNES HD, 1994, HYPERFINE INTERACT, V83, P79
POLITI P, 1995, PHYS REV LETT, V75, P537
STAMP PCE, 1992, INT J MOD PHYS B, V6, P1355
STONER EC, 1991, IEEE T MAGN, V27, P3475
VILLAIN J, 1994, EUROPHYS LETT, V27, P159
NR 19
TC 7
PU BALTZER SCI PUBL BV
PI AMSTERDAM
PA ASTERWEG 1A, 1031 HL AMSTERDAM, NETHERLANDS
SN 0304-3843
J9 HYPERFINE INTERACTIONS
JI Hyperfine Interact.
PY 1997
VL 110
IS 1-2
BP 127
EP 134
PG 8
SC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter;
Physics, Nuclear
GA XV680
UT ISI:A1997XV68000015
ER
PT J
AU daSilva, JBP
Ramos, MN
Suto, E
Bruns, RE
TI Transferability of the cis- and trans-dichloroethylene atomic polar
tensors
SO JOURNAL OF PHYSICAL CHEMISTRY A
LA English
DT Article
ID PHASE INTENSITY MEASUREMENTS; PRINCIPAL COMPONENT ANALYSIS;
DIPOLE-MOMENT DERIVATIVES; EFFECTIVE CHARGES; INFRARED INTENSITIES;
DIFLUOROETHYLENE
AB The isotopic invariance criterion, ab initio molecular orbital results,
and principal component analysis are used to resolve the sign
ambiguities of the dipole moment derivatives for cis-dichloroethylene
and the out-of-plane derivatives of trans-dichloroethylene. Atomic
polar tensors (APTs) for CiS-C2H2Cl2 and cis-C2D2Cl2 as well as
out-of-plane polar tensor elements for trans-C2H2Cl2 and trans-C2D2Cl2
are reported. Mean dipole moment derivatives of the difluoro-and
dichloroethylenes are compared and interpreted as atomic charges. The
APTs of cis-dichloroethylene are transferred to trans-dichloroethylene
to calculate its infrared fundamental vibrational intensities. These
intensities are in much better agreement with the experimental
intensities than those calculated by a MP2/6-311++G(d,p) wave function.
The transferability of mean dipole moment derivatives between the cis
and trans-dichloroethylenes is demonstrated using a simple potential
model and carbon and chlorine core electron binding energies obtained
by ESCA spectroscopy.
C1 UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13083970 CAMPINAS,SP,BRAZIL.
UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50739901 RECIFE,PE,BRAZIL.
CR BASSI ABM, 1975, THESIS U ESTADUAL CA
BIARGE JF, 1961, ANALES REAL SOC ES A, V57, P81
CIOSLOWSKI J, 1989, J AM CHEM SOC, V111, P8333
CRAIG NC, 1996, J PHYS CHEM-US, V100, P5310
CRAWFORD BL, 1952, J CHEM PHYS, V20, P977
FRISCH MJ, 1992, GAUSSIAN 92
GUADAGNINI PH, 1995, J AM CHEM SOC, V117, P4144
GUADAGNINI PH, 1997, J AM CHEM SOC, V119, P4224
HOPPER MJ, 1983, J CHEM PHYS, V79, P19
KAGEL RO, 1983, J CHEM PHYS, V78, P7029
KAGEL RO, 1984, J PHYS CHEM-US, V88, P521
MARDIA KV, 1979, MULTIVARIATE ANAL, P213
NEWTON JH, 1976, J CHEM PHYS, V64, P3036
OVEREND J, 1963, INFRARED SPECTROSCOP, CH10
PERSON WB, 1974, J CHEM PHYS, V61, P1040
RAMOS MN, 1985, J PHYS CHEM-US, V89, P4979
SCARMINIO IS, 1989, TRAC-TREND ANAL CHEM, V8, P326
SCHAFER L, 1986, J MOL STRUCT, V145, P135
SIEGBAHN K, 1969, ESCA APPLIED FREE MO
SUTO E, 1991, J COMPUT CHEM, V12, P885
SUTO E, 1991, J PHYS CHEM-US, V95, P9716
SUTO E, 1993, J PHYS CHEM-US, V97, P6161
NR 22
TC 4
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 1089-5639
J9 J PHYS CHEM A
JI J. Phys. Chem. A
PD AUG 28
PY 1997
VL 101
IS 35
BP 6293
EP 6298
PG 6
SC Chemistry, Physical
GA XT955
UT ISI:A1997XT95500020
ER
PT J
AU Ma, SG
Wong, P
Cooks, RG
Gozzo, FC
Eberlin, MN
TI Stereoelectronic effects in phosphorus dichloride cation pyridine
complexes
SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES
LA English
DT Article
DE kinetic method; stereoelectronic effects; cation affinity; PCL2+;
thermochemistry; agostic effects
ID MS(3) MASS-SPECTROMETRY; GAS-PHASE BASICITIES; AMMONIUM ION AFFINITIES;
TRANSITION-METAL BONDS; PROTON-BOUND DIMERS; KINETIC METHOD;
ELECTRON-AFFINITIES; PCL2 RADICALS; ACIDITIES; AM1
AB The kinetic method is applied to order the relative affinities of a
group of substituted pyridines towards PC2+ relationships with the
affinities towards other cations. The absolute affinities are estimated
with the aid of AM1 molecular orbital calculations while the PCl2+
affinity of pyridine itself is also estimated by ab initio calculations
at MP2/6-31G(d,p)//6-31G(d,p) level to be 76.0 kcal mol(-1). The
experiments employ the PCl2+-bound dimer of two pyridines generated via
ion/ molecule reactions between the mass-selected PCl2+ ion and a
mixture of pyridines. The dimers, examined using MS3 experiments,
fragment exclusively to yield the pyridine/PCl2+ monomers and this is
consistent with ab initio RHF/6-31G(d,p) and AM1 molecular orbital
calculations which show a tetrahedral complex with a N-P-N angle of 129
degrees. For meta- and parasubstituted pyridines, there is an excellent
linear correlation (slope 0.69) between the logarithm of the ratio of
the two fragment ion abundances and the proton affinity of the
corresponding substituted pyridine. Similar correlations are observed
for other cations (SiCl3+, Cl+, SF3+ and SiCl+) and it is shown that
both the number of degrees of freedom in the dimer and the cation
affinity control this correlation.
Dimers comprising ortho-substituted pyridines show decreased affinities
due to stereoelectronic interactions between the ortho-substituted
alkyl group and the central PCl2+ cation. A set of gas phase
stereoelectronic parameters (S-k) is determined and ordered as 2-MePy
(-0.38) < 2,4-diMePy (-0.84) < 2,6-diMePy (-0.86) < 2,5-diMePy (-1.08)
< 2,3-diMePy (-1.26). AM1 calculations show that the eclipsed
conformation of 2-methylpyridine/PCl2+ adduct is more stable than the
staggered conformation by approx. 3 kcal mol(-1) and this is suggested
to be due to a favorable agostic interaction between the hydrogen of
the ortho methyl group and the central phosphorus atom. The most stable
conformation is found when the two chlorines face the two hydrogens of
the ortho methyl substituent in a ''face-to-face'' interaction. This
novel type of interaction is also the reason for the relatively small
magnitude of S-k, the stereoelectronic parameter, in
2,6-dimethylpyridine. The overall stereoelectronic effects of the
ortho-substituent(s) on PCl2+ affinities indicate that steric effects
dominate electronic effects in this system. The PCl2+ ion behaves
similarly in its steric and agostic effects to SF3+ and very
differently to SiCl+ which displays uniquely strong agostic effects.
(C) 1997 Elsevier Science B.V.
C1 PURDUE UNIV,DEPT CHEM,W LAFAYETTE,IN 47907.
STATE UNIV CAMPINAS,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR ABBOUD JLM, 1989, J AM CHEM SOC, V111, P8960
ABBOUD JLM, 1996, J AM CHEM SOC, V118, P1126
ANDREWS L, 1969, J PHYS CHEM-US, V73, P2774
BOJESEN G, 1994, J CHEM SOC P2, P1029
BONAZZOLA L, 1981, J CHEM PHYS, V75, P4829
BRODBELTLUSTIG JS, 1989, TALANTA, V36, P255
BROOKHART M, 1983, J ORGANOMET CHEM, V250, P395
BROOKHART M, 1988, PROG INORG CHEM, V36, P1
BRUM JL, 1994, J PHYS CHEM-US, V98, P5587
BURINSKY DJ, 1984, J AM CHEM SOC, V106, P2770
CHEN GD, 1995, INT J MASS SPECTROM, V151, P69
CHEN GD, 1995, J MASS SPECTROM, V30, P1167
COOKS RG, 1977, J AM CHEM SOC, V99, P1279
COOKS RG, 1989, ADV MASS SPECTROM, V11, P33
COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
COOKS RG, 1994, MASS SPECTROM REV, V13, P287
CRAIG SL, UNPUB J PHYS CHEM
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DEWAR MJS, 1991, J AM CHEM SOC, V113, P735
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
GRAUL ST, 1990, INT J MASS SPECTROM, V96, P181
GREEN MLH, 1984, PURE APPL CHEM, V56, P47
GUTSEV GL, 1994, CHEM PHYS, V179, P325
HASS MJ, 1993, INT J MASS SPECTROM, V124, P115
HOKE SH, 1994, J AM CHEM SOC, V116, P4888
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KING RB, 1994, ENCY INORGANIC CHEM, V1, P35
LATIFZADEH L, 1995, CHEM PHYS LETT, V241, P13
LEE HN, IN PRESS J PHYS CHEM
LI XP, 1993, ORG MASS SPECTROM, V28, P366
LIOU CC, 1992, J AM CHEM SOC, V114, P6761
MAJUMDAR TK, 1992, J AM CHEM SOC, V114, P2897
MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
MCLUCKEY SA, 1983, INT J MASS SPECTROM, V52, P165
NOURSE BD, 1991, INT J MASS SPECTROM, V106, P249
OZGEN T, 1983, INT J MASS SPECTROM, V48, P427
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
SETHSON I, 1992, J AM CHEM SOC, V114, P953
VELJKOVIC M, 1985, ADV MASS SPECTROM B, V10, P1149
WONG PSH, 1997, J AM SOC MASS SPECTR, V8, P68
WRIGHT LG, 1982, INT J MASS SPECTROM, V42, P115
WU HF, 1993, J AM SOC MASS SPECTR, V4, P718
WU ZC, 1992, RAPID COMMUN MASS SP, V6, P403
WU ZC, 1994, RAPID COMMUN MASS SP, V8, P777
YANG SS, 1995, J MASS SPECTROM, V30, P184
YANG SS, 1995, J MASS SPECTROM, V30, P807
YANG SS, 1996, J AM SOC MASS SPECTR, V7, P198
NR 48
TC 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0168-1176
J9 INT J MASS SPECTROM ION PROC
JI Int. J. Mass Spectrom. Ion Process.
PD APR
PY 1997
VL 163
IS 1-2
BP 89
EP 99
PG 11
SC Physics, Atomic, Molecular & Chemical; Spectroscopy
GA XL627
UT ISI:A1997XL62700008
ER
PT J
AU Moraes, LAB
Gozzo, FC
Eberlin, MN
Vainiotalo, P
TI Transacetalization with acylium ions. A structurally diagnostic
ion/molecule reaction for cyclic acetals and ketals in the gas phase
SO JOURNAL OF ORGANIC CHEMISTRY
LA English
DT Article
ID MOLECULAR-ORBITAL METHODS; MASS-SPECTROMETRY; BASIS SETS; SUBSTITUTION;
ISOMERS
AB Transacetalization takes place in high yields in gas phase ion/molecule
reactions of acylium ions (RC+=O) with a variety of cyclic acetals and
ketals, that is, five-, six-, and seven-membered 1,3-O,O-heterocycles
and their mono-sulfur and nitrogen analogues. A general, structurally
diagnostic method for the gas phase characterization of cyclic acetals
and ketals is therefore available. Transacetalization occurs via
initial O(or S)-acylation, followed by a ring-opening/ring-re-forming
process in which a neutral carbonyl compound is eliminated and cyclic
''ionic ketals'' (that is, cyclic 1,3-dioxonium ions and analogues) are
formed. The nature of the substituents at the 2-position, which are
eliminated in the course of the reaction, is found to affect
considerably the extent of transacetalization. Substituents not at the
2-position remain in the ionic products; hence positional isomers
produce different cyclic ''ionic ketals'' and are easily
differentiated. The triple-stage (MS3) mass spectra of the cyclic
''ionic ketals'' show in all cases major dissociation to re-form the
reactant acylium ion, a unique dissociation chemistry that is
equivalent to the hydrolysis of neutral acetals and ketals and which is
then determined to be a very general characteristic of cyclic ''ionic
ketals''. Additionally, the O-18-labeled transacetalization product of
1,3-dioxolane shows dissociation to both CH3C+=O-18 and CH3C+=O to the
same extent, which confirms its cyclic ''ionic ketal'' structure and
the ''oxygen-scrambling'' mechanism of transacetalization. Ab initio
MP2/6-31G(d,p)//6-31G-(d,p) + ZPE energy surface diagrams show that
transacetalization is the most exothermic, thermodynamically favorable
process in reactions of CH3C+=O with 1,3-dioxolane and 1,3-oxathiolane,
whereas 1,3-dithiolane is unreactive due to the endothermicity of the
initial acylation step.
C1 UNICAMP,INST CHEM CP6154,BR-13083970 CAMPINAS,SP,BRAZIL.
UNIV JOENSUU,DEPT CHEM,FIN-80101 JOENSUU,FINLAND.
CR ATTINA M, 1983, J AM CHEM SOC, V105, P1122
BOGERT MT, 1933, J AM CHEM SOC, V55, P3741
CAREY FA, 1984, ADV ORGANIC CHEM
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
CREASER CS, 1996, J CHEM SOC PERK MAR, P427
EBERLIN MN, IN PRESS MASS SPECTR
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1997, J AM CHEM SOC, V119, P3550
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN 94 REVISION
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
GOZZO FC, 1996, J CHEM SOC PERK APR, P587
HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KIM JK, 1982, J AM CHEM SOC, V104, P4624
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
KUMAKURA M, 1978, J PHYS CHEM-US, V82, P639
LEIONONEN A, 1994, ORG MASS SPECTROM, V29, P295
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LA, IN PRESS J CHEM S P2
MORAES LAB, 1996, J ORG CHEM, V61, P8726
OLAH GA, 1964, FRIEDELCRAFTS RELATE, V3
OLAH GA, 1976, CARBONIUM IONS, V5, P2084
PARADISI C, 1988, ORG MASS SPECTROM, V23, P521
RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
STALEY RH, 1977, J AM CHEM SOC, V99, P5964
VAINIOTALO P, 1996, P 44 ASMS C MASS SPE, P453
NR 38
TC 47
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3263
J9 J ORG CHEM
JI J. Org. Chem.
PD JUL 25
PY 1997
VL 62
IS 15
BP 5096
EP 5103
PG 8
SC Chemistry, Organic
GA XN357
UT ISI:A1997XN35700035
ER
PT J
AU Gong, XG
TI Structure and stability of cluster-assembled solid Al12C(Si): A
first-principles study
SO PHYSICAL REVIEW B
LA English
DT Article
ID MAGNETIC-PROPERTIES; METALLIC CLUSTERS; ALUMINUM CLUSTERS; CRYSTALS;
SYSTEMS; C-60
AB We have proposed a possible crystal structure for the cluster-assembled
solid Al12C(Si), and its electronic structures and stability have been
studied in the framework of density functional theory and ab initio
molecular dynamics. We find that Al12C(Si) clusters are condensed by
van der Waals force, with a very small cohesive energy of similar to
1.1 eV. The combined steepest descent on ions shows that upon the
formation of solid the relaxation of atomic distances in the Al12C(Si)
cluster is very small. The stability of the Al12C solid is also
confirmed by a dynamical simulation at low temperature.
C1 ACAD SINICA,INST SOLID STATE PHYS,HEFEI 230031,PEOPLES R CHINA.
CTR BRASILEIRO PESQUISAS FIS,RIO JANEIRO,BRAZIL.
RP Gong, XG, NANJING UNIV,INST SOLID STATE PHYS,NATL LAB SOLID STATE
MICROSTRUCT,NANJING 210093,PEOPLES R CHINA.
CR *JENA P, 1992, PHYSICS CHEM FINITE
BACHELET GB, 1982, PHYS REV B, V26, P4199
BENOIT M, 1996, PHYS REV LETT, V76, P2934
CAR R, 1985, PHYS REV LETT, V55, P2471
CHENG HP, 1991, PHYS REV B A, V43, P10647
GONG XG, 1993, PHYS REV LETT, V70, P2078
HOHENBERG P, 1964, PHYS REV, V136, B864
HOHENBERG P, 1995, PHYS REV, V140, A1133
IDO H, 1990, J APPL PHYS, V67, P4978
KAWAI R, UNPUB
KHANNA SN, 1992, PHYS REV LETT, V69, P1664
KHANNA SN, 1994, CHEM PHYS LETT, V219, P479
KHANNA SN, 1995, PHYS REV B, V51, P13705
KROTO H, 1988, SCIENCE, V242, P1139
KUMAR V, UNPUB
LIU F, 1996, CHEM PHYS LETT, V248, P213
PERDEW JP, 1981, PHYS REV B, V23, P5048
SAITO S, 1991, PHYS REV LETT, V66, P2637
SEITSONEN AP, 1993, PHYS REV B, V48, P1981
SEITSONEN AP, 1995, J CHEM PHYS, V103, P8075
SHOEMAKER DP, 1952, ACTA CRYSTALLOGR, V5, P637
SUN DY, 1996, PHYS REV B, V54, P17051
WHITTEN RL, 1990, MRS LATE NEWS SESSIO
YI JY, 1990, CHEM PHYS LETT, V174, P461
YOU JQ, 1995, PHYS REV B, V51, P1358
ZHANG GW, 1994, J APPL PHYS 2, V76, P7037
NR 26
TC 23
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 1098-0121
J9 PHYS REV B
JI Phys. Rev. B
PD JUL 15
PY 1997
VL 56
IS 3
BP 1091
EP 1094
PG 4
SC Physics, Condensed Matter
GA XM766
UT ISI:A1997XM76600035
ER
PT J
AU Srivastava, RM
Pavao, AC
Seabra, GM
Brown, RK
TI Anomeric effect enhancement in C-5-substituted 2-methoxytetrahydropyrans
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE anomeric effect; 2-methoxytetrahydropyran; conformation; AM1
calculations; HF/6-31g** basis set
AB cis- and trans-2,5-Dimethoxytetrahydropyrans,
cis-2,5-dimethoxy-6-methyltetrahydropyran and
2-methoxy-5-methyltetrahydropyran have been examined to see the effect
of an OCH3 group at position 5 on the degree of anomeric effect in
substituted 2-methoxytetrahydropyrans. The present study shows that
this group stabilises the C-2 electronegative substituent in the axial
position. Semi-empirical and ab initio molecular orbital calculations
support this view. AM1 calculation gives lower enthalpies as well as
lower dipole moments for the compounds having an OCH3 group in the
axial position at C-2 over the equatorial form in
2-methoxytetrahydropyrans. This enhanced stabilisation is attributed to
the electrostatic interaction between the partial positive charge at
C-5 and the partial negative charge of the aglycone oxygen atom. (C)
1997 Elsevier Science B.V.
C1 UNIV ALBERTA,DEPT CHEM,EDMONTON,AB,CANADA.
RP Srivastava, RM, UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50670901
RECIFE,PE,BRAZIL.
CR ANDERSON CB, 1964, CHEM IND-LONDON, P2054
ANDERSON CB, 1968, TETRAHEDRON, V24, P1707
BOOTH GE, 1966, J ORG CHEM, V31, P544
BOOTH H, 1982, J CHEM SOC CHEM COMM, P1047
BOOTH H, 1985, J CHEM SOC CHEM COMM, P467
BOOTH H, 1992, TETRAHEDRON, V48, P6151
BUEMI G, 1988, J MOL STRUCT THEOCHE, V164, P379
DESCOTES G, 1970, B SOC CHIM FR, P3730
DESLONGCHAMPS P, 1983, STEREOELECTRONIC EFF
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
ELIEL EL, 1962, TETRAHEDRON LETT, P97
ELIEL EL, 1968, J ORG CHEM, V33, P3754
FRISCH MJ, 1992, GAUSSIAN 92
GELIN M, 1970, B SOC CHIM FR, P3723
HALL SS, 1978, J ORG CHEM, V43, P667
JUARISTI E, 1992, TETRAHEDRON, V48, P5019
JUARISTI E, 1995, ANOMERIC EFFECT
KIRBY AJ, 1983, ANOMERIC EFFECT RELA
LEMIEUX RU, 1969, CAN J CHEM, V47, P4427
LEMIEUX RU, 1971, PURE APPL CHEM, V25, P527
MONNERET C, 1978, CARBOHYD RES, V65, P35
MONNERET C, 1987, J CARBOHYD CHEM, V6, P221
PIERSON GO, 1968, J ORG CHEM, V33, P2572
PRALY JP, 1987, CAN J CHEM, V65, P213
PULAG P, 1977, MODERN THEORETICAL C, V4
SOUZA AMA, 1986, THESIS U FEDERAL PER
SRIVASTAVA RM, 1970, CAN J CHEM, V48, P2334
STEWART JJP, 1990, J COMPUT AID MOL DES, V4, P1
STEWART JJP, 1993, MOPAC 9300 MANUAL
SWEET F, 1968, CAN J CHEM, V46, P1543
TVAROSKA I, 1981, CARBOHYD RES, V90, P173
TVAROSKA I, 1989, ADV CARBOHYD CHEM, P75
VENTURA ON, 1989, J MOL STRUCT THEOCHE, V187, P55
WIBERG KB, 1989, J AM CHEM SOC, V111, P4821
WOOD G, 1969, CAN J CHEM, V47, P429
WOODS RJ, 1991, J CHEM SOC CHEM COMM, P334
WOODS RJ, 1995, J PHYS CHEM-US, V99, P3832
NR 37
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD JUL 7
PY 1997
VL 412
IS 1-2
BP 51
EP 58
PG 8
SC Chemistry, Physical
GA XL894
UT ISI:A1997XL89400006
ER
PT J
AU Glaser, MA
Clark, NA
Garcia, E
Walba, DM
TI Quantum chemistry based force fields for soft matter
SO SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY
LA English
DT Article
DE liquid crystal; modeling; force fields; quantum chemistry
ID FERROELECTRIC LIQUID-CRYSTALS; HIGH SPONTANEOUS POLARIZATION; OPLS
POTENTIAL FUNCTIONS; MONTE-CARLO SIMULATIONS;
NUCLEAR-MAGNETIC-RESONANCE; MOLECULAR-DYNAMICS
AB We describe the use of ab initio electronic structure calculations in
the development of high-quality classical interaction potentials for
liquid crystal modeling. Our focus is on methods for the rapid,
on-demand creation of force fields for use in mean field theory based
calculations of materials properties, employed for routine
pre-synthesis evaluation of novel liquid crystalline materials. The
role of quantum chemistry in the development of intermolecular
interaction potentials for large-scale simulations of soft matter is
also discussed, and directions for future work are outlined. The
utility of quantum chemistry derived force fields for liquid crystal
modeling is illustrated by two example applications: mean field theory
based prediction of the spontaneous polarization density P of
ferroelectric liquid crystals, and large-scale simulation studies of
the nanosegregation of polymer precursors in smectic liquid crystal
hosts. (C) 1997 Elsevier Science B.V.
C1 UNIV BRAZILIA,DEPT CHEM,BRASILIA,BRAZIL.
UNIV COLORADO,DEPT CHEM & BIOCHEM,BOULDER,CO 80309.
RP Glaser, MA, UNIV COLORADO,DEPT PHYS,CONDENSED MATTER LAB,BOULDER,CO
80309.
CR 1996, LIQCRYST DATABASE 5
*BIOS MOL SIM, 1995, CERIUS2
*WAV INC, SPART
BAHR C, 1986, MOL CRYST LIQ CRYST, V4, P31
BAHR C, 1987, MOL CRYST LIQ CRYST, V148, P29
BERENDSEN HJC, 1984, J CHEM PHYS, V81, P3684
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BRIGGS JM, 1990, J COMPUT CHEM, V11, P958
BRIGGS JM, 1991, J PHYS CHEM-US, V95, P3315
DEMUS D, 1983, WISSENSCHAFTL BEITRA, V41, P18
FRISCH MJ, 1995, GAUSSIAN 94
GLASER MA, UNPUB
GLASER MA, 1995, MOL PHYS REP, V10, P26
GLASER MA, 1996, UNPUB
GUYMON CA, 1997, SCIENCE, V275, P57
HEHRE WJ, 1995, PRACTICAL STRATEGIES
HO MS, 1993, FERROELECTRICS, V138, P51
JORGENSEN WL, 1984, J AM CHEM SOC, V106, P6638
JORGENSEN WL, 1993, J COMPUT CHEM, V14, P206
KELLER P, 1985, J PHYS PARIS G, V4, P2203
LIDE DR, 1996, CRC HDB CHEM PHYSICS
MAYO SL, 1990, J PHYS CHEM-US, V94, P8897
POON CD, 1989, J CHEM PHYS, V91, P7392
POON CD, 1989, LIQ CRYST, V5, P1159
PRICE SL, 1991, COMPUTER SIMULATION, P183
RAPPE AK, 1991, J PHYS CHEM-US, V95, P3358
RAPPE AK, 1992, J AM CHEM SOC, V114, P10024
SEXTON JC, 1992, NUCL PHYS B, V380, P665
SIEPMANN JI, 1993, NATURE, V365, P330
SMITH GD, 1995, MACROMOLECULES, V28, P5804
STONE AJ, 1991, HYDROGEN BONDED LIQU, P25
TUCKERMAN M, 1992, J CHEM PHYS, V97, P1990
WATANABE M, 1993, J CHEM PHYS, V99, P8063
YOSHINO K, 1987, MOL CRYST LIQ CRYST, V144, P87
NR 34
TC 10
PU PERGAMON-ELSEVIER SCIENCE LTD
PI OXFORD
PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND OX5 1GB
SN 1386-1425
J9 SPECTROCHIM ACTA PT A-MOL BIO
JI Spectroc. Acta Pt. A-Molec. Biomolec. Spectr.
PD JUL 30
PY 1997
VL 53
IS 8
BP 1325
EP 1346
PG 22
SC Spectroscopy
GA XL198
UT ISI:A1997XL19800024
ER
PT J
AU Resende, SM
DeAlmeida, WB
TI Ab initio study of the formation of molecular complexes between Cl-2
and C2H2
SO MOLECULAR PHYSICS
LA English
DT Article
ID ROTATIONAL SPECTROSCOPY; HYDROGEN-FLUORIDE; ABINITIO; PHOTOCHEMISTRY;
INTERMEDIATE; SURFACE; WATER
AB The intermolecular potential energy surface (PES) for the interaction
between the Cl-2 and C2H2 molecules has been comprehensively
investigated using nb initio methods, aiming to locate the possible
stationary points. The calculations were performed with the double zeta
plus double polarization (DZ2P), triple zeta plus polarization (TZP)
and triple zeta plus double polarization (TZ2P) basis sets, including
electron correlation at the second-order Moller-Plesset (MP2) level,
and basis set superposition error correction. Six stationary points
were located on the PES: a T-shaped form where one chlorine atom is
attached to the acetylene triple bond (b pi-a sigma type), a parallel
form, a slipped parallel form, a crossed form and an inclined and a
symmetric inverse T-shaped forms, where the van der Waals bond is
between one of the H atoms of the acetylene and the Cl-Cl bond. At the
MP2/TZ2P//MP2/TZP level of calculation, only the T-shaped and the
parallel forms are minimum energy structures, and their stabilization
energies are 2.002 and 0.422 kcal mol(-1) respectively. The two inverse
T-shaped forms and the slipped parallel form are predicted to be
first-order transition states at this level of calculation, and their
stabilization energies are 0.709 kcal mol(-1) for the inclined form,
0.694 kcal mol(-1) for the symmetric form, and 0.624 kcal mol(-1) for
the slipped parallel form, which suggest that the intermolecular PES is
very flat in this region. The crossed form is a second-order transition
state, and it is stabilized by 0.390 kcal mol(-1). The shifts of the
intramolecular frequencies upon complexation are also discussed. The
global minimum is the T-shaped bn-ao structure, and the geometry, the
intermolecular stretching force constant and the charge redistribution
on complex formation lead to a classification of the outer (weak) type
according to Mulliken. These results show the weakness of this
interaction, which is dominated by dispersion forces, characteristic of
the complexes between molecules without a permanent electric dipole,
such as C2H2 and Cl-2.
RP Resende, SM, UNIV FED MINAS GERAIS,ICEX,DEPT QUIM,LAB QUIM COMPUTAC &
MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR ANDREWS L, 1983, J CHEM PHYS, V79, P3670
AULT BS, 1987, J PHYS CHEM-US, V91, P4723
BLAKE JF, 1989, J AM CHEM SOC, V111, P1919
BLOEMINK H, 1995, J CHEM SOC CHEM COMM, V18, P1833
BLOEMINK HI, 1994, CHEM PHYS LETT, V223, P162
BLOEMINK HI, 1995, J CHEM SOC FARADAY T, V91, P1891
BOYS SF, 1970, MOL PHYS, V19, P533
DEALMEIDA WB, 1989, CHEM PHYS, V137, P143
DEALMEIDA WB, 1990, CHEM PHYS, V141, P297
DEALMEIDA WB, 1993, J PHYS CHEM-US, V97, P2560
FRISCH MJ, 1995, GAUSSIAN 94
HOBZA P, 1988, CHEM REV, V88, P871
INGOLD CK, 1969, STRUCTURE MECHANISM
KANG HC, 1996, CHEM PHYS LETT, V254, P135
LAURSEN SL, 1989, J PHYS CHEM-US, V93, P2328
LAURSEN SL, 1990, J PHYS CHEM-US, V94, P8175
LEGON AC, 1995, J CHEM SOC FARADAY T, V91, P1881
MULLIKEN RS, 1952, J PHYS CHEM-US, V56, P801
NOVOA JJ, 1994, CHEM PHYS, V186, P175
PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
PLIEGO JR, 1996, THEOR CHIM ACTA, V93, P333
RESENDE SM, 1996, CHEM PHYS, V206, P1
RESENDE SM, 1997, IN PRESS J PHYS CHEM
SCHMIDT M, 1993, J COMPUT CHEM, V14, P1346
NR 25
TC 5
PU TAYLOR & FRANCIS LTD
PI LONDON
PA ONE GUNPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE
SN 0026-8976
J9 MOL PHYS
JI Mol. Phys.
PD JUL
PY 1997
VL 91
IS 4
BP 635
EP 641
PG 7
SC Physics, Atomic, Molecular & Chemical
GA XK031
UT ISI:A1997XK03100005
ER
PT J
AU Martins, JBL
Longo, E
Taft, CA
Andres, J
TI Ab initio and semiempirical MO studies using large cluster models of CO
and H-2 adsorption and dissociation on ZnO surfaces with the formation
of ZnH and OH species.
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE ab initio; semiempirical MO study; cluster model
ID ZINC-OXIDE SURFACES; METHANOL SYNTHESIS; PHOTOELECTRON-SPECTROSCOPY;
ROOM-TEMPERATURE; CARBON-MONOXIDE; HYDROGEN; MECHANISMS; POTENTIALS;
PARAMETERS; CATALYST
AB We have used ab initio MO as well as MNDO, AM1 and PM3 semiempirical
methods with large (ZnO)(60) clusters to study the H-2 and CO
adsorption, as well as the H-2 dissociation, on ZnO surfaces with the
formation of ZnH and OH species. From the optimized adsorption and
dissociation geometries, we analyse Mulliken populations, binding
energies, band gaps, and bonding distances. The calculated SCF orbital
energies, density of states and stretch frequencies are compared with
infrared and ultraviolet photoelectron experiments. We analyse the
effect of cluster size on our calculations, hydrogen bonding, and
heterolytic dissociation, as well as the diversity and stability of the
bonding sites, and compare our results obtained using both ab initio
and semiempirical methods. (C) 1997 Elsevier Science B.V.
C1 UNIV FED SAO CARLOS,DEPT QUIM,BR-13565905 SAO CARLOS,SP,BRAZIL.
UNIV JAUME 1,DEPT CIENCIAS EXPT,CASTELLO DE PLANA 12080,SPAIN.
RP Martins, JBL, CTR BRASILEIRO PESQUISAS FIS,DEPT MAT CONDENSADA & FIS
ESTATIST,RUA XAVIER SIGAUD 150,BR-22290180 RIO JANEIRO,BRAZIL.
CR AU CT, 1988, SURF SCI, V197, P391
BOCCUZZI F, 1978, J CATAL, V51, P150
BOLIS V, 1989, J CHEM SOC FARAD T 1, V85, P855
CHANG CC, 1973, J PHYS CHEM-US, V77, P2634
DAMICO KL, 1983, J AM CHEM SOC, V105, P6380
DENT AL, 1969, J PHYS CHEM-US, V73, P3772
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
EISCHENS RP, 1962, J CATAL, V1, P180
FRISCH MJ, 1992, GAUSSIAN 92
FUBINI B, 1982, J CHEM SOC F1, V78, P153
FUJITA S, 1993, B CHEM SOC JPN, V66, P3094
GAY RR, 1980, J AM CHEM SOC, V102, P6752
GHIOTTI G, 1993, SURF SCI A, V287, P228
GIAMELLO E, 1983, J CHEM SOC FARAD T 1, V79, P1995
GRUNZE M, 1981, J CRYST GROWTH, V52, P241
HAY PJ, 1985, J CHEM PHYS, V82, P270
HOTAN W, 1979, SURF SCI, V83, P162
HOWARD J, 1984, J CHEM SOC FARAD T 1, V80, P225
HUSSAIN G, 1990, J CHEM SOC FARADAY T, V86, P1615
JACOBI K, 1984, SURF SCI, V141, P109
KLIER K, 1982, ADV CATAL, V31, P243
LEY L, 1974, PHYS REV B, V9, P600
LONGO E, 1984, ADV CERAM, V10, P526
LONGO E, 1985, LANGMUIR, V1, P456
MARTINS JBL, 1993, INT J QUANTUM CHEM, V27, P643
MARTINS JBL, 1994, J MOL STRUCT, V303, P19
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P301
MARTINS JBL, 1995, J MOL STRUC-THEOCHEM, V330, P347
MARTINS JBL, 1996, INT J QUANTUM CHEM, V57, P861
MARTINS JBL, 1996, J MOL STRUCT, V363, P249
MOLLER PJ, 1995, SURF SCI, V323, P102
SEANOR DA, 1965, J CHEM PHYS, V42, P2967
SOLOMON EI, 1993, CHEM REV, V93, P2623
SPANHEL L, 1991, J AM CHEM SOC, V113, P2826
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JP, 1983, QCPE B, V3, P43
ZERNER MC, 1991, REV COMPUTATIONAL CH
NR 39
TC 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD JUN 2
PY 1997
VL 397
BP 147
EP 157
PG 11
SC Chemistry, Physical
GA XJ804
UT ISI:A1997XJ80400015
ER
PT J
AU Acioli, PH
TI Review of quantum Monte Carlo methods and their applications
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE quantum Monte Carlo; correlation energy; jellium model; variational
Monte Carlo; diffusion Monte Carlo
ID GENERALIZED GRADIENT APPROXIMATION; LOCAL-DENSITY APPROXIMATION;
METAL-SURFACES; GROUND-STATE; EXCHANGE-ENERGY; WAVE-FUNCTIONS;
GREEN-FUNCTION; ELECTRON-GAS; MOLECULES; SOLIDS
AB Correlation energy makes a small but very important contribution to the
total energy of an electronic system. Among the traditional methods
used to study electronic correlation are coupled clusters (CC),
configuration interaction (CI) and many-body perturbation theory (MBPT)
in quantum chemistry, and density functional theory (DFT) in solid
state physics. An alternative method, which has been applied
successfully to systems ranging from the homogeneous electron gas, to
atoms, molecules, solids and clusters is quantum Monte Carlo (QMC). In
this method the Schrodinger equation is transformed to a diffusion
equation which is solved using stochastic methods. In this work we
review some of the basic aspects of QMC in two of its variants,
variational (VMC) and diffusion Monte Carlo (DMC). We also review some
of its applications, such as the homogeneous electron gas, atoms and
the inhomogeneous electron gas (jellium surface). The correlation
energy obtained by Ceperley and Alder (D.M. Ceperley and B.J. Alder,
Physical Review, 45 (1980) 566), as parameterized by Perdew and Zunger
(J.P. Perdew and A. Zunger, Phys. Rev. B23 (1980) 5469), is one of the
most used in DFT calculations in the local density approximation (LDA).
Unfortunately, the use of the LDA in inhomogeneous systems is
questionable, and better approximations are desired or even necessary.
We present results of the calculations performed on metallic surfaces
in the jellium model which can be useful to obtain better
approximations for the exchange and correlation functionals. We have
computed the electronic density, work function, surface energy and pair
correlation functions for a jellium slab at the average density of
magnesium (r(s) = 2.66). Since there is an exact expression for the
exchange and correlation functional in terms of the pair correlation
functions, the knowledge of such functions near the edge of the surface
may be useful to obtain exchange and correlation functionals valid for
inhomogeneous systems. From the exchange and correlation functional we
can conclude that the exchange-correlation hole is nearly spherical in
the bulk region but elongated in the direction perpendicular to the
surface as the electron approaches the edge of the surface, showing the
anisotropic character of the electronic correlation near the surface.
(C) 1997 Elsevier Science B.V.
RP Acioli, PH, UNIV BRASILIA,DEPT FIS,BR-70910900 BRASILIA,DF,BRAZIL.
CR ACIOLI PH, UNPUB
ACIOLI PH, 1994, J CHEM PHYS, V100, P8169
ACIOLI PH, 1996, PHYS REV B, V54, P17199
ANDERSON JB, 1995, INT REV PHYS CHEM, V14, P85
BACHELET GB, 1989, PHYS REV LETT, V62, P2088
BECKE AD, 1988, PHYS REV A, V38, P3098
BOSIN A, UNPUB
BOYS SF, 1969, P ROY SOC LOND A MAT, V31, P43
CAFFAREL M, 1992, J CHEM PHYS, V97, P8415
CEPERLEY D, 1978, PHYS REV B, V18, P3126
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CEPERLEY DM, 1981, RECENT PROGR MANY BO, P262
CEPERLEY DM, 1984, J CHEM PHYS, V81, P5833
CEPERLEY DM, 1986, J STAT PHYS, V43, P815
CHASE MW, 1985, J PHYS CHEM REF D S1, V14, P535
CHEN B, IN PRESS
FAHY S, 1988, PHYS REV LETT, V61, P1631
FAHY S, 1990, PHYS REV B, V42, P3503
GROSSMAN JC, 1995, PHYS REV B, V52, P16735
GROSSMAN JC, 1995, PHYS REV LETT, V74, P1323
HAMMOND BL, 1987, J CHEM PHYS, V87, P1130
HAMMOND BL, 1994, MONTE CARLO METHODS
HANDY NC, 1973, J CHEM PHYS, V58, P279
HOHENBERG P, 1964, PHYS REV, V136, B864
HOLMSTROM JE, 1969, ARK FYS, V40, P133
HU CD, 1985, PHYS SCRIPTA, V32, P391
KALOS MH, 1962, PHYS REV, V128, P1791
KOHN W, 1965, PHYS REV, V140, A113
KROTSCHECK E, 1985, PHYS REV B, V32, P5693
KWON YK, 1993, PHYS REV B, V48, P12037
LANG ND, 1970, PHYS REV B, V1, P4555
LANG ND, 1971, PHYS REV B, V3, P1215
LANGRETH DC, 1983, PHYS REV B, V28, P1809
LI XP, 1991, PHYS REV B, V44, P10929
LI XP, 1992, PHYS REV B, V45, P6124
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
MITAS L, 1991, J CHEM PHYS, V95, P3467
MITAS L, 1994, PHYS REV A, V49, P4411
MITAS L, 1994, PHYS REV LETT, V72, P2438
NEEDS RJ, 1990, PHYS REV B, V42, P10933
OLSEN J, 1991, PHYS REV A, V43, P3355
PERDEW JP, 1986, PHYS REV B, V33, P8800
PERDEW JP, 1989, PHYS REV B, V40, P3399
PERDEW JP, 1992, PHYS REV B, V46, P6671
PERDEW JP, 1993, PHYS REV B, V48, P4978
REYNOLDS PJ, 1982, J CHEM PHYS, V77, P5593
ROOTHAN CCJ, 1951, PHYS REV, V97, P1474
SHAVITT I, 1977, METHODS ELECT STRUCT
SIEGBAHN PEM, 1983, METHODS COMPUTATIONA
SLATER JC, 1929, PHYS REV, V34, P1293
UMRIGAR CJ, 1988, PHYS REV LETT, V60, P1719
UMRIGAR CJ, 1993, J CHEM PHYS, V94, P3657
VEILLARD A, 1968, J CHEM PHYS, V49, P2415
ZHANG ZY, 1990, PHYS REV B, V41, P5674
NR 54
TC 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD MAY 2
PY 1997
VL 394
IS 2-3
BP 75
EP 85
PG 11
SC Chemistry, Physical
GA XF583
UT ISI:A1997XF58300002
ER
PT J
AU Mota, CJA
Esteves, PM
RamirezSolis, A
HernandezLamoneda, R
TI Protonated isobutane. A theoretical ab initio study of the isobutonium
cations
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID HYDROGEN-DEUTERIUM EXCHANGE; ELECTROPHILIC REACTIONS; ELECTROSTATIC
POTENTIALS; PROTOLYSIS DEUTEROLYSIS; ELECTRONIC-STRUCTURE;
CARBONIUM-IONS; SINGLE BONDS; CARBOCATIONS; 3-CENTER; MOLECULES
AB The structure and energy of the isobutonium cations, protonated
isobutane, were studied by ab initio methods. At MP2(full)/6-31G**
level, besides the C-isobutonium cation (5), the 2-H-isobutonium cation
(6), and the 1-H-isobutonium cation (7), two additional structures,
representing the van der Wads complex between methane and isopropyl.
cation (8) and hydrogen plus tert-butyl cation (9), could also be
characterized. The,energy increases in the order 9 < 8 < 5 < 6 < 7,
indicating the lower energy of the van der Waals complexes. The
experimental proton affinity of isobutane is in good agreement with the
calculated values for the van der Waals complexes 8 and 9, indicating
the facility of rupture of the three center bond in 5 and 6. On the
other hand, the relative order of stability of the isobutonium cations
can explain the experimental gas phase protonation of isobutane by
small electrophiles, such as H-3(+) and H3O+, as well as the H-D
exchange in liquid superacid.
C1 UNIV AUTONOMA ESTADO MORELOS,FAC CIENCIAS,CUERNAVACA 62210,MORELOS,MEXICO.
RP Mota, CJA, UNIV FED RIO DE JANEIRO,DEPT QUIM ORGAN,INST
QUIM,BR-21949900 RIO JANEIRO,BRAZIL.
CR AQUILANTI V, 1968, J CHEM PHYS, V48, P4310
BISCHOF PK, 1975, J AM CHEM SOC, V97, P2278
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BURWELL RL, 1948, J AM CHEM SOC, V70, P3128
BURWELL RL, 1954, J AM CHEM SOC, V76, P5822
CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
COLLINS SJ, 1994, CHEM PHYS LETT, V228, P246
CORMA A, 1993, CATAL REV, V35, P483
DEKOCK RL, 1988, J CHEM EDUC, V65, P194
DUPUIS M, 1994, HONDO 8 5 CHEM STATI
DYCZMONS V, 1970, CHEM PHYS LETT, V5, P361
FIELD FH, 1968, ACCOUNTS CHEM RES, V1, P42
FRISCH MJ, 1995, GUASSIAN 94 REVISION
HACHOUMY M, 1995, THESIS U L PASTEUR
HIRAO K, 1984, CHEM PHYS, V89, P237
HIRAOKA K, 1975, CAN J CHEM, V53, P970
HIRAOKA K, 1975, J CHEM PHYS, V63, P394
HIRAOKA K, 1976, J AM CHEM SOC, V98, P6119
HIRAOKA K, 1978, INT J MASS SPEC ION, V27, P139
HOBZA P, 1995, J COMPUT CHEM, V16, P1315
HOGEVEEN H, 1967, RECL TRAV CHIM PAY B, V86, P1313
HOGEVEEN H, 1969, RECL TRAV CHIM PAY B, V88, P703
HOUT RF, 1982, J COMPUT CHEM, V3, P234
KOHLER HJ, 1978, CHEM PHYS LETT, V58, P175
LIAS SG, 1984, J PHYS CHEM REF DATA, V13, P695
LIDE DR, 1994, CRC HDB CHEM PHYSICS
LOMBARDO EA, 1988, J CATAL, V112, P565
MCMURRY JE, 1992, ACCOUNTS CHEM RES, V25, P47
MOTA CJA, 1996, J PHYS CHEM-US, V100, P12418
OLAH GA, 1968, J AM CHEM SOC, V90, P2726
OLAH GA, 1969, J AM CHEM SOC, V91, P3261
OLAH GA, 1971, J AM CHEM SOC, V93, P1251
OLAH GA, 1972, J AM CHEM SOC, V94, P808
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P171
OLAH GA, 1973, ANGEW CHEM INT EDIT, V12, P173
OLAH GA, 1973, J AM CHEM SOC, V95, P4960
OLAH GA, 1987, HYPERCARBON CHEM
OLAH GA, 1987, HYPERCARBON CHEM, P222
OTVOS JW, 1951, J AM CHEM SOC, V73, P5741
POIRIER RA, 1982, J MOL STRUCT THEOCHE, V88, P343
RAGHAVACHARI K, 1981, J AM CHEM SOC, V103, P5649
SCHELEYER PV, 1992, J COMPUT CHEM, V13, P997
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SHERTUKDE PV, 1992, J CATAL, V136, P446
SOMMER J, 1992, J AM CHEM SOC, V114, P5884
SOMMER J, 1997, J AM CHEM SOC, V119, P32474
STEVENSON DP, 1952, J AM CHEM SOC, V74, P3269
TALROZE VL, 1952, DOKL AKAD NAUK SSSR, V86, P909
NR 49
TC 38
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD JUN 4
PY 1997
VL 119
IS 22
BP 5193
EP 5199
PG 7
SC Chemistry, Multidisciplinary
GA XC669
UT ISI:A1997XC66900016
ER
PT J
AU Pliego, JR
DeAlmeida, WB
TI Absolute proton affinity and basicity of the carbenes CH2, CF2, CCl2,
C(OH)(2), FCOH, CPh2 and fluorenylidene
SO JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS
LA English
DT Article
ID O-H BOND; POLYATOMIC-MOLECULES; ION
AB Ab initio molecular orbital calculations were performed in order to
determine the absolute proton affinity and basicity of some carbenes.
For the species CH2, CF2, CCl2 C(OH)(2), and FCOH, the G2(MP2) method
was utilized, and we have obtained the values 207.0, 177.4, 209.6,
217.3 and 199.9 kcal mol(-1), respectively, for the absolute proton
affinities. For CPh2 and fluorenylidene the calculation was performed
at the HF/DZ + (P)/HF/DZ and MP2/DZ/HF/DZ levels of theory. For CPh2 we
have obtained an absolute proton affinity of 275.0 kcal mol(-1) and,
for fluorenylidene, the value is 272.4 kcal mol(-1). The implication of
these results for the carbene reaction mechanism with PH groups is
discussed.
C1 UFMG,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BETHELL D, 1971, J CHEM SOC B, P23
CEYER ST, 1979, J CHEM PHYS, V70, P14
CHATEAUNEUF JE, 1991, J CHEM SOC CHEM 1015, P1437
CURTISS LA, 1993, J CHEM PHYS, V98, P1293
DIXON DA, 1991, J PHYS CHEM-US, V95, P4180
DU XM, 1990, J AM CHEM SOC, V112, P1920
FRISCH MJ, 1995, GAUSSIAN 94
GONZALEZ C, 1996, J AM CHEM SOC, V118, P5408
GRILLER D, 1983, J AM CHEM SOC, V104, P5849
HILLEBRAND C, 1996, J PHYS CHEM-US, V100, P9698
KIRMSE W, 1964, CARBENE CHEM
KIRMSE W, 1981, J AM CHEM SOC, V103, P5935
KIRMSE W, 1990, J AM CHEM SOC, V112, P6399
LEE C, 1996, J PHYS CHEM-US, V100, P7398
LEVI BA, 1977, J AM CHEM SOC, V99, P8454
LIAS SG, 1988, J PHYS CHEM REF D S1, V17
NG CY, 1977, J CHEM PHYS, V67, P4235
PLIEGO JR, 1996, CHEM PHYS LETT, V249, P136
PLIEGO JR, 1996, J PHYS CHEM-US, V100, P12410
POPLE JA, 1983, J AM CHEM SOC, V105, P6389
VOGT J, 1975, J AM CHEM SOC, V97, P6682
WALCH SP, 1993, J CHEM PHYS, V98, P3163
ZUPANCIC JJ, 1985, TETRAHEDRON, V41, P1471
NR 23
TC 10
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON ROAD, CAMBRIDGE, CAMBS,
ENGLAND CB4 4WF
SN 0956-5000
J9 J CHEM SOC FARADAY TRANS
JI J. Chem. Soc.-Faraday Trans.
PD MAY 21
PY 1997
VL 93
IS 10
BP 1881
EP 1883
PG 3
SC Chemistry, Physical; Physics, Atomic, Molecular & Chemical
GA XC287
UT ISI:A1997XC28700004
ER
PT J
AU Zeng, Z
Duan, Y
Guenzburger, D
TI Magnetism, chemical bonding, and hyperfine properties in the nanoscale
antiferromagnet [Fe(OMe)(2)(O2CCH2Cl)](10)
SO PHYSICAL REVIEW B
LA English
DT Article
ID ELECTRONIC-STRUCTURE; CLUSTER; TRANSITION; PARTICLES; ARRAYS; WHEEL;
STATE
AB The electronic and magnetic properties of the nanometer-size
antiferromagnet [Fe(OMe)(2)(O2CCH2Cl)](10) are investigated with the
first-principles spin-polarized discrete variational method, in the
framework of density-functional theory. Magnetic moments, densities of
slates, and charge- and spin-density maps are obtained. The Mossbauer
hyperfine parameters isomer shift, quadrupole splitting, and hyperfine
field are obtained from the calculations and compared to reported
experimental values when available.
RP Zeng, Z, CTR BRASILEIRO PESQUISAS FIS,CBPF,RUA DR XAVIER SIGAUD
150,BR-22290180 RIO JANEIRO,BRAZIL.
CR AWSCHALOM DD, 1992, PHYS REV LETT, V68, P3092
AWSCHALOM DD, 1992, SCIENCE, V258, P414
AWSCHALOM DD, 1995, PHYS TODAY, V48, P43
BAERENDS EJ, 1973, CHEM PHYS, V2, P41
BARBARA B, 1990, PHYS LETT A, V145, P205
BENCINI A, 1995, J CHEM SOC DA, P963
CANESCHI A, 1996, INORG CHIM ACTA, V243, P295
CAO PL, 1982, PHYS REV B, V25, P2124
DELFS C, 1993, INORG CHEM, V32, P3099
DELLEY B, 1982, J CHEM PHYS, V76, P1949
DUFEK P, 1995, PHYS REV LETT, V75, P3545
ELLIS DE, 1968, INT J QUANTUM CHEM S, V2, P35
ELLIS DE, 1970, PHYS REV B, V2, P2887
ELLIS DE, 1994, ELECT DENSITY FUNCTI
GATTESCHI D, 1994, SCIENCE, V265, P1054
GATTESCHI D, 1996, INORG CHEM, V35, P1926
GREENWOOD NN, 1971, MOSSBAUER SPECTROSCO
GUENZBURGER D, 1980, PHYS REV B, V22, P4203
GUENZBURGER D, 1987, PHYS REV B, V36, P6971
KENT AD, 1994, J APPL PHYS 2, V76, P6656
MELDRUM FC, 1992, SCIENCE, V257, P522
MICHAEL RD, 1992, J MAGN MAGN MATER, V111, P29
PAPAEFTHYMIOU GC, 1992, PHYS REV B, V46, P10366
PARR RG, 1989, DENSITY FUNCTIONAL T
POWELL AK, 1995, J AM CHEM SOC, V117, P2491
SESSOLI R, 1993, NATURE, V365, P141
SHENOY GK, 1978, MOSSBAUER ISOMER SHI
SMYTH JF, 1991, J APPL PHYS, V69, P5262
STPIERRE TG, 1987, J MAGN MAGN MATER, V69, P276
TAFT KL, 1990, J AM CHEM SOC, V112, P9629
TAFT KL, 1994, J AM CHEM SOC, V116, P823
TERRA J, 1991, PHYS REV B, V44, P8584
TERRA J, 1995, J PHYS CHEM-US, V99, P4935
UMRIGAR C, 1980, PHYS REV B, V21, P852
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P1629
ZIOLO RF, 1992, SCIENCE, V257, P219
NR 36
TC 10
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD MAY 1
PY 1997
VL 55
IS 18
BP 12522
EP 12528
PG 7
SC Physics, Condensed Matter
GA XA260
UT ISI:A1997XA26000081
ER
PT J
AU Ferraz, AC
Srivastava, GP
TI Atomic geometry and electronic structure of S/InP(001)
SO SURFACE SCIENCE
LA English
DT Article
DE adatoms; density functional calculations; indium phosphide; sulfur;
surface electronic phenomena; surface relaxation and reconstruction
ID PASSIVATED INP(100)-(1X1) SURFACE
AB We have performed ab initio pseudopotential calculations of the atomic
geometry and electronic states for a monolayer S-covered (001) surface
of InP. It is found that for the 1 x 1 periodicity with S in the bridge
site, the overlayer-substrate distance between S and In is 1.3 Angstrom
and the In-S-In angle is 113.8 degrees. While the calculated In-S-In
angle is close to the experimentally deduced value, we find that our
prediction of overlayer-substrate distance is smaller than the value
obtained from LEED analysis. We also discuss the energetics of
formation of long and short dimer bonds for the 1 x 2, 2 x 1 and 2 x 2
reconstructions of the surface.
C1 UNIV EXETER,DEPT PHYS,EXETER EX4 4QL,DEVON,ENGLAND.
RP Ferraz, AC, UNIV SAO PAULO,INST FIS,CP 66318,BR-05389970 SAO
PAULO,SP,BRAZIL.
CR GONZE X, 1991, PHYS REV B, V44, P8503
JIN JM, 1995, PHYS REV LETT, V75, P878
LU ZH, 1992, APPL PHYS LETT, V60, P2773
NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
PERDEW JP, 1981, PHYS REV B, V23, P5048
TAO Y, 1992, APPL PHYS LETT, V60, P2669
WARREN OL, 1995, PHYS REV B, V52, P2959
NR 7
TC 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD APR 20
PY 1997
VL 377
IS 1-3
BP 121
EP 124
PG 4
SC Chemistry, Physical
GA WZ496
UT ISI:A1997WZ49600027
ER
PT J
AU Urquhart, SG
Turci, CC
Tyliszczak, T
Brook, MA
Hitchcock, AP
TI Core excitation spectroscopy of phenyl- and methyl-substituted silanol,
disiloxane, and disilane compounds: Evidence for pi-delocalization
across the Si-C-phenyl bond
SO ORGANOMETALLICS
LA English
DT Article
ID ABSOLUTE OSCILLATOR-STRENGTHS; INNER-SHELL SPECTROSCOPY;
HIGH-RESOLUTION; K-EDGE; ELECTRON-EXCITATION; GAS-PHASE; SPECTRA;
MOLECULES; PHOTOABSORPTION; MONOCHROMATOR
AB The Si 1s and 2p solid state photoabsorption (total electron yield)
spectra of triphenylsilanol, hexaphenyldisiloxane, and
hexaphenyldisilane and the Si 1s spectra (total ion yield) of gaseous
trimethylsilanol, hexamethyldisiloxane, hexamethyldisilane, and
trimethylmethoxysilane have been recorded using synchrotron radiation.
These spectra are compared to inner shell electron energy loss spectra
of gaseous triphenylsilanol, hexaphenyldisilane,
trimethylmethoxysilane, hexamethyldisiloxane, and hexamethyldisilane in
the Si 2p and C 1s regions, measured under scattering conditions where
electric dipole transitions dominate (2.5 keV residual energy, theta
less than or equal to 2 degrees). Comparison of the Si 1s and Si 2p
spectra of the Ph3Si-X and Me3Si-X species shows there are low-lying
transitions at Si which occur exclusively in the Ph3Si-X species. These
transitions are attributed to (Si 1s(-1),pi*Si-Ph) and (Si
2p(-1),pi*Si-Ph) states in which the core excited electron is
delocalized across the Si-C(phenyl) bond into the pi* levels ofthe
phenylring. Extended Huckel and ab initio molecular orbital
calculations of the core excitation spectra support this
interpretation. Transitions characteristic of Si-Si and Si-O bonds are
also identified.
C1 MCMASTER UNIV,DEPT CHEM,HAMILTON,ON L8S 4M1,CANADA.
UNIV FED RIO JANEIRO,INST QUIM,BR-21910900 RIO JANEIRO,BRAZIL.
CR *WAV INC, 1994, SPART VERS 4 0
AGREN H, 1995, CHEM PHYS, V195, P47
BADER M, 1986, J PHYS-PARIS, V47, P501
BADER RFW, 1990, ATOMS MOL QUANTUM TH
BOCK H, 1968, J CHEM SOC B, P1158
BODEUR S, 1990, PHYS REV A, V41, P252
BOUISSET E, 1991, J PHYS B ATOM MOL PH, V24, P1609
BOZEK JD, 1990, CHEM PHYS, V145, P131
BRION CE, 1982, AIP C P, V94, P429
COOPER G, 1990, CHEM PHYS, V140, P147
COOPER G, 1995, CHEM PHYS, V196, P293
DAVIS DW, 1974, SPECTROSC RELAT PHEN, V3, P157
EASTMOND R, 1972, TETRAHEDRON, V28, P4601
FLANK AM, 1991, Z PHYS D ATOM MOL CL, V21, P357
FRANCIS JT, 1992, J PHYS CHEM-US, V96, P6598
GARDELIS S, 1996, APPL SURF SCI, V102, P408
GILLESPIE RJ, UNPUB
GREENWOOD NN, 1984, CHEM ELEMENTS
HENKE BL, 1982, ATOM DATA NUCL DATA, V27, P1
HITCHCOCK AP, 1988, CHEM PHYS, V121, P265
HITCHCOCK AP, 1990, PHYSICA SCRIPTA T, V31, P159
HITCHCOCK AP, 1993, SURF SCI, V291, P350
HITCHCOCK AP, 1994, J ELECTRON SPECTROSC, V67, P1
HORSLEY JA, 1985, J CHEM PHYS, V83, P6099
HOWELL J, 1982, FORTICON8 PROGRAM QC
HUNT WJ, 1969, CHEM PHYS LETT, V3, P414
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
IWATA S, 1978, JPN J APPL PHYS, V17, P109
JOLLY WL, 1984, ATOM DATA NUCL DATA, V31, P109
KELFVE P, 1980, PHYS SCR, V21, P75
KENNAN JJ, 1993, SILOXANE POLYM, P72
KOSUGI N, 1980, CHEM PHYS LETT, V74, P500
KOSUGI N, 1987, THEOR CHIM ACTA, V72, P150
KOSUGI N, 1992, CHEM PHYS LETT, V190, P481
KOSUGI N, 1992, J CHEM PHYS, V97, P8842
KWART H, 1977, D ORBITALS CHEM SILI
LI D, 1993, SOLID STATE COMMUN, V87, P613
MCGRATH R, 1992, PHYS REV B, V45, P9327
MEALLI C, 1990, J CHEM EDUC, V67, P399
MILLER AA, 1964, I EC PROD RES DEV, V3, P1964
MURPHY CM, 1950, IND ENG CHEM, V42, P2462
NOLL W, 1968, CHEM TECHNOLOGY SILI
PATAI S, 1989, CHEM ORGANIC SILICON
PITT CG, 1972, J CHEM SOC CHEM COMM, P28
REED AE, 1990, J AM CHEM SOC, V112, P1434
SCHWARZ WHE, 1975, CHEM PHYS, V11, P217
SCHWARZ WHE, 1987, CHEM PHYS, V117, P73
SHAMBAYATI S, 1990, J AM CHEM SOC, V112, P697
SODHI RNS, 1984, J ELECTRON SPECTROSC, V34, P363
SOMMER LH, 1946, J AM CHEM SOC, V68, P2282
STOHR J, 1992, NEXAFS SPECTROSCOPY
SUTHERLAND DGJ, 1992, J CHEM PHYS, V97, P7918
SUTHERLAND DGJ, 1993, PHYS REV B, V48, P15089
TAN KH, 1982, CAN J PHYS, V60, P131
URQUHART SG, UNPUB J AM CHEM SOC
URQUHART SG, 1994, CHEM PHYS, V189, P757
URQUHART SG, 1995, J POLYM SCI POL PHYS, V33, P1603
WALSH R, 1989, CHEM ORGANIC SILICON
WINKLER DC, 1994, CHEM PHYS LETT, V222, P1
XIONG JZ, 1996, CHEM PHYS, V203, P81
YANG BX, 1992, NUCL INSTRUM METH A, V316, P422
YANG BX, 1992, REV SCI INSTRUM 2B, V63, P1355
NR 62
TC 7
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0276-7333
J9 ORGANOMETALLICS
JI Organometallics
PD MAY 13
PY 1997
VL 16
IS 10
BP 2080
EP 2088
PG 9
SC Chemistry, Inorganic & Nuclear; Chemistry, Organic
GA WY882
UT ISI:A1997WY88200014
ER
PT J
AU Cerqueira, M
Nasar, RS
Longo, E
Varela, JA
Beltran, A
Llusar, R
Andres, J
TI Piezoelectric behaviour of PZT doped with calcium: A combined
experimental and theoretical study
SO JOURNAL OF MATERIALS SCIENCE
LA English
DT Article
ID MORPHOTROPIC PHASE-BOUNDARY; PERTURBED-ION; CRYSTALS; SEPARABILITY;
SIMULATION; CERAMICS; FILMS; MODEL
AB An experimental and theoretical study on the piezoelectric behaviour of
PZT doped with a range of calcium ion concentrations is presented. A
systematic study of the effect on the piezoelectric properties of PZT
doped with various concentrations of CaO at constant sintering
temperature and sintering time was carried out. The remanent
polarization, planar coupling factor and frequency-thickness constant
increase with calcium concentration. Ab initio perturbed ion
calculations show that the lattice energy decreases with calcium
addition for both tetragonal and rhombohedral phases of PZT.
C1 UNIV JAUME 1,DEPT CIENCIES EXPT,CASTELLO 12080,SPAIN.
UFSCAR,DEPT QUIM,LAB INTERDISCIPLINAR ELECTROQUIM & CERAM,BR-13565 SAO CARLOS,SP,BRAZIL.
UNESP,INST QUIM,BR-14800900 ARARAQUARA,SP,BRAZIL.
CR ANDRES J, 1993, INT J QUANTUM CHEM S, V27, P175
ANDRES J, 1994, CHEM PHYS LETT, V221, P249
BANNO H, 1967, JPN J APPL PHYS, V6, P954
BELTRAN A, 1993, J PHYS CHEM-US, V97, P2555
BERNARD J, 1971, PIEZOELECTRIC CERAMI
CHAKRAVORTY SJ, 1989, PHYS REV A, V39, P2290
CLEMENTI E, 1974, ATOM DATA NUCL DATA, V14, P177
COMES R, 1970, ACTA CRYSTALLOGR A, V26, P244
FLOREZ M, 1992, CLUSTER MODELS SURFA, P605
HANKEY DL, 1980, THESIS PENNSYLVANIA
HIMERATH BV, 1983, J AM CERAM SOC, V66, P790
HSUEH CC, 1993, INTEGR FERROELECTR, V3, P21
HUZINAGA S, 1971, J CHEM PHYS, V55, P5543
JAFFE B, 1971, PIEZOELECTRIC CERAMI
KAKEGAWA K, 1977, SOLID STATE COMMUN, V24, P769
KAWAGUCHI T, 1984, APPL OPTICS, V23, P2187
KULCSAR F, 1959, J AM CERAM SOC, V42, P49
KUMADA A, 1985, JPN J APPL PHYS S, V24, P739
LAL R, 1988, BRIT CERAM TRANS J, V87, P99
LINES EM, 1977, PRINCIPLES APPL FERR
LUANA V, 1988, J MOL STRUCT THEOCHE, V166, P215
LUANA V, 1989, PHYS REV B, V39, P11093
LUANA V, 1990, PHYS REV B, V41, P3800
LUANA V, 1990, PHYS REV B, V42, P1791
LUANA V, 1992, CLUSTER MODELS SURFA, P619
MATSUO Y, 1965, J AM CERAM SOC, V48, P289
MCLEAN AD, 1981, ATOM DATA NUCL DATA, V26, P197
NOMURA S, 1955, J PHYS SOC JPN, V10, P108
OHMO T, 1973, J JPN SOC POWDER MET, V20, P154
PAIVASANTOS CP, 1990, THESIS
PETROVSKY VI, 1993, INTEGR FERROELECTR, V3, P59
PRESTON KD, 1992, APPL PHYS LETT, V60, P2831
SAHA SK, 1992, AM CERAM SOC BULL, V71, P1424
SHIRANE G, 1953, J PHYS SOC JPN, V8, P615
STOTZ S, 1987, FERROELECTRICS, V76, P123
TURIK AV, 1987, SOV PHYS-TECH PHYS, V25, P1251
UCHINO K, 1986, AM CERAM SOC BULL, V65, P647
VASILIU F, 1983, PHYS STATUS SOLIDI A, V80, P637
VENKATARAMANI S, 1980, AM CERAM SOC B, V59, P462
WOOD VE, 1992, J APPL PHYS, V71, P4557
YAMAGUCHI O, 1989, J AM CERAM SOC, V72, P1065
YAMAGUCHI T, 1976, CERAM INT, V2, P76
YAMAMOTO T, 1992, AM CERAM SOC BULL, V71, P978
ZHANG QM, 1994, J APPL PHYS, V1, P75
NR 44
TC 4
PU CHAPMAN HALL LTD
PI LONDON
PA 2-6 BOUNDARY ROW, LONDON, ENGLAND SE1 8HN
SN 0022-2461
J9 J MATER SCI
JI J. Mater. Sci.
PD MAY 1
PY 1997
VL 32
IS 9
BP 2381
EP 2386
PG 6
SC Materials Science, Multidisciplinary
GA WY350
UT ISI:A1997WY35000020
ER
PT J
AU deMelo, CP
Fonseca, TL
TI Polarizabilities of defect-bearing polyenic chains
SO SYNTHETIC METALS
LA English
DT Article
DE ab initio quantum chemical methods and calculations
AB We investigate the effect of the presence of conformational defects on
the polarization response of conjugated chains. Our ab initio results
for the polarizabilities of small C2n+1H2n+3+, and C2nH2n+2++ oligomers
of polyacetylene confirm previous suggestions that the nonlinear
optical properties of these systems are highly dependent on the type of
conformational defect introduced. Especially, we call attention to the
fact that the first hyperpolarizability of soliton bearing chains has
opposite signs' for positive and negative defects.
RP deMelo, CP, UNIV FED PERNAMBUCO,DEPT FIS,BR-50670901 RECIFE,PE,BRAZIL.
CR ANDERSON T, 1994, BRAZ J PHYS, V24, P756
DEMELO CP, UNPUB CHEM PHYS LETT
DEMELO CP, 1988, J CHEM PHYS, V88, P2567
DUCASSE L, 1993, SYNTHETIC MET, V55, P4536
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
KIRTMAN B, 1995, J CHEM PHYS, V102, P5350
LINDSAY GA, 1995, POLYM 2 ORDER NONLIN
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
NR 8
TC 4
PU ELSEVIER SCIENCE SA LAUSANNE
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD FEB 15
PY 1997
VL 85
IS 1-3
BP 1085
EP 1086
PG 2
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
Polymer Science
GA WX708
UT ISI:A1997WX70800028
ER
PT J
AU DelNero, J
Laks, B
Custodio, R
TI Polycarbonitrile: A semiempirical, ab initio and density functional
study of molecular stability
SO SYNTHETIC METALS
LA English
DT Article
DE polycarbonitrile; semiempirical; ab initio; density functional method;
conformational structure
ID POLYMETHINEIMINE; POLYMERS
AB The theoretical literature data with respect to the electronic
properties of this compound is quite scarce and makes use of the planar
all-trans structure as the most stable for the calculations. In this
work semiempirical (AMI and PM3), ab initio (at the Hartree-Fock level)
and density functional theory (using the correlation functional of
Vosko, Wille and Nussair) were used to analyse the conformational
stability of the all-trans and all-cis dimers, trimers and tetramers of
polycarbonitrile. The semiempirical and ab initio calculations at the
Hartree-Fock level showed in general that the all-trans structure with
respect to other conformers is the most unstable structure. The
inclusion of electronic correlation energy through the MP2 calculations
or the VWN functional method suggest that the trans structure is the
most stable. The relative energies calculated at the correlated level
presented differences around 2 kcal/mol among the different conformers.
While the all-cis compounds presented a planar structure for any of the
three methods, the all-trans polymer showed a strong deviation of
planarity with a set of local minima in its energy surface. These
results suggest that further calculations on the electronic properties
of this polymer can be significantly different of those actually
available in the literature.
C1 UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13083970 CAMPINAS,SP,BRAZIL.
RP DelNero, J, UNIV ESTADUAL CAMPINAS,INST FIS,BR-13083970
CAMPINAS,SP,BRAZIL.
CR BREDAS JL, 1983, J CHEM PHYS, V78, P6137
KARPFEN A, 1979, CHEM PHYS LETT, V64, P299
MOLLER C, 1934, PHYS REV, V46, P618
SPRINGBORG M, 1991, SYNTHETIC MET, V41, P4393
VOSKO SH, 1980, CAN J PHYS, V58, P1200
NR 5
TC 6
PU ELSEVIER SCIENCE SA LAUSANNE
PI LAUSANNE
PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND
SN 0379-6779
J9 SYNTHET METAL
JI Synth. Met.
PD FEB 15
PY 1997
VL 85
IS 1-3
BP 1127
EP 1128
PG 2
SC Materials Science, Multidisciplinary; Physics, Condensed Matter;
Polymer Science
GA WX708
UT ISI:A1997WX70800049
ER
PT J
AU Eberlin, MN
Sorrilha, AEPM
Gozzo, FC
Pimpim, RS
TI Novel [3+2] 1,3-cycloaddition of the ionized carbonyl ylide +CH2OCH2
center dot with carbonyl compounds in the gas phase
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID DISTONIC RADICAL CATIONS; ION-MOLECULE REACTIONS; CATALYZED
DIELS-ALDER; MASS-SPECTROMETRY; PERICYCLIC-REACTIONS; ORBITAL METHODS;
DIMETHYL ETHER; ETHYLENE-OXIDE; ACYLIUM IONS; BASIS SETS
AB For the first time [3 + 2] 1,3-cycloaddition of an ionized carbonyl
ylide has been observed in gas phase ion-molecule reactions of
(+CH2OCH2.) (1) with several carbonyl compounds. The reaction, which
competes with electrophilic addition that leads to net CH2.+ transfer,
occurs across the C=O double bond of acetaldehyde and several acyclic
ketones yielding ionized 4,3-dialkyl-1,3-dioxolanes as unstable
cycloadducts. Rapid dissociation of the nascent cycloadducts by loss of
a 4-alkyl substituent as a radical leads to the observed products, that
is cyclic 3-alkyl-1,3-dioxolanylium ions. Cycloaddition of 1 with
cyclic ketones yields bicyclic spiro adducts, which also undergo rapid
dissociation. Cyclobutanone yields ionized 1,3-dioxaspiro[4,3]octane,
which dissociates exclusively by neutral ethene loss to ionized
4-methylene-1,3-dioxolane. Ionized 1,3-dioxaspiro[4,4]nonane is formed
in reactions with cyclopentanone, and its rapid dissociation by loss of
C3H6 and C2H5. yields the ionized 4-methylene-1,3-dioxolanylium and the
4-ethenyl-1,3-dioxolanylium product ions, respectively. A systematic
study of this novel reaction and characterization of the product ions
carried out via pentaquadrupole (QqQqQ) multiple stage (MS-(1) and MS3)
mass spectrometric experiments provide experimental evidence for the
cycloaddition mechanism. The dissociation chemistry observed for the
cycloaddition products correlate well with their proposed structures
and was compared to that of both isomeric and reference ions. Ab initio
MP2/6-31G(d,p)//HF/6-31G(d,p) + ZPE potential energy surface diagrams
for the reactions of 1 with acetone, fluoroacetone, and
1,1,1-trifluoroncetone support the operation of the two competitive
reaction pathways, that is CH2.+ transfer and [3 + 2]
1,3-cyclonddition/dissociation, and show that the cycloaddition process
is favored by electron-withdrawing substituents.
RP Eberlin, MN, UNIV CAMPINAS,INST CHEM,CP 6154,BR-13083970
CAMPINAS,SP,BRAZIL.
CR AUDIER H, 1964, B SOC CHIM FR, P1880
BASHER MM, IN PRESS
BAULD NL, 1987, ACCOUNTS CHEM RES, V20, P371
BAUMANN BC, 1981, J AM CHEM SOC, V103, P6223
BELLVILLE DJ, 1981, J AM CHEM SOC, V103, P718
BIANCHI G, 1977, CHEM DOUBLE BON 1 SA, P369
BLAIR AS, 1973, CAN J CHEM, V51, P703
BOGER DL, 1987, HETERO DIELSALDER ME
BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P1
BOUMA WJ, 1979, J AM CHEM SOC, V101, P5540
BOUMA WJ, 1980, ADV MASS SPECTROM A, V8, P178
BOUMA WJ, 1980, J AM CHEM SOC, V102, P2246
BOUMA WJ, 1983, J AM CHEM SOC, V105, P1743
BOWERS MT, 1970, J PHYS CHEM-US, V74, P2583
BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR
CASTLE LW, 1989, ORG MASS SPECTROM, V24, P637
DASS C, 1990, MASS SPECTROM REV, V9, P1
DOMINH T, 1970, J AM CHEM SOC, V92, P1402
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1993, P 41 ASMS C MASS SPE, P975
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
FLEMING I, 1976, FRONTIER ORBITALS OR
FRASERMONTEIRO ML, 1982, J PHYS CHEM-US, V86, P739
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN 94
FUKUI K, 1971, ACCOUNTS CHEM RES, V4, P57
GASSMAN PG, 1987, J AM CHEM SOC, V109, P2182
GILLON A, 1982, TETRAHEDRON, V38, P1477
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
GOZZO FC, 1996, J CHEM SOC PERK APR, P587
GROENEWOLD GS, 1984, J AM CHEM SOC, V106, P539
HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
HARIHARAN PC, 1973, THEOR CHIM ACTA, V28, P213
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOFFMANN RW, 1968, CHEM BER, V101, P3861
HOLMES JL, 1975, CAN J CHEM, V53, P2076
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KEOUGH T, 1982, ANAL CHEM, V54, P2540
KIM T, 1990, J AM CHEM SOC, V112, P6285
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
MATTAY J, 1987, ANGEW CHEM INT EDIT, V26, P825
MOLLER C, 1934, PHYS REV, V46, P618
MORAES LAB, UNPUB J ORG CHEM
MORAES LAB, 1996, J ORG CHEM, V61, P8726
NOBES RH, 1987, CHEM PHYS LETT, V135, P78
NOURSE BD, 1992, ORG MASS SPECTROM, V27, P453
POTTS KT, 1984, 1 3 DIPOLAR CYCLOADD
RADOM L, 1984, PURE APPL CHEM, V56, P1831
SCHMIDT RR, 1973, ANGEW CHEM INT EDIT, V12, P212
SCHOFFSTALL AM, 1990, ADV CYCLOADDITION, V2, P1
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
SMITH RL, 1993, J AM CHEM SOC, V115, P10348
SORRILHA AEPM, 1996, J AM SOC MASS SPECTR, V7, P1126
STIRK KM, 1992, CHEM REV, V92, P1649
STIRK KM, 1992, J AM CHEM SOC, V114, P8604
TERLOUW JK, 1983, J CHEM SOC CHEM COMM, P1121
VANDESANDE CC, 1975, J AM CHEM SOC, V97, P4613
VANIOTALO P, 1996, P 44 ASMS C MASS SPE, P453
VANTILBORG MWE, 1980, ORG MASS SPECTROM, V15, P152
VANVELZEN PNT, 1981, CHEM PHYS LETT, V83, P55
YAMAGUCHI Y, 1993, J AM CHEM SOC, V115, P5790
YATES BF, 1984, J AM CHEM SOC, V106, P5805
YATES BF, 1986, TETRAHEDRON, V42, P6225
YU SJ, 1993, J AM SOC MASS SPECTR, V4, P117
NR 71
TC 27
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD APR 16
PY 1997
VL 119
IS 15
BP 3550
EP 3557
PG 8
SC Chemistry, Multidisciplinary
GA WU272
UT ISI:A1997WU27200017
ER
PT J
AU Morgon, NH
Argenton, AB
daSilva, MLP
Riveros, JM
TI Experimental and theoretical characterization of FSi(OCH3)(2)(OCH2)(-):
A gas phase fluoride-siloxirane adduct
SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
LA English
DT Article
ID OPTIMIZATION TECHNIQUE; SUBSTITUTED SILANES; BASIS-SETS; H SYSTEM;
ANIONS; THERMOCHEMISTRY; CHEMISTRY; IONS; AFFINITIES; MOLECULES
AB The structural characteristics and reactivity of the gas-phase
FSi(OCH3)(2)(OCH2)(-) ion were investigated by a combination of ab
initio calculations and FT-ICR techniques. The theoretical calculations
for different possible structures reveal that carbanion and alkoxide
ion type structures lead to ring closure upon geometry optimization to
yield two different cyclic fluoride-siloxirane structures. The
FSi(OCH3)(2)(cyc-OCH2)(-) ions containing the elusive siloxirane ring
are estimated to be extremely stable with respect to F-(69 kcal
mol(-1)) dissociation in agreement with earlier calculations on simpler
systems. Experimentally, this ion is formed as a minor product (7%) in
the gas-phase ion/molecule reaction of F- with Si(OMe)(4) and is
observed to undergo readily fluoride transfer to the parent neutral.
This strongly suggests an ion with a structure corresponding to a
fluoride adduct of a siloxirane species, Reaction of
FSi(OCH3)(2)(OCH2)(-) with BF3, hexafluorobenzene, and gas-phase acids
more acidic than ethanol further suggests that this ion is capable of
reacting as an alkoxide type nucleophile or base. This latter behavior
has been associated with the possibility of ring opening of the
siloxirane in the collision complex that mediates this ion/molecule
reaction.
C1 UNIV SAO PAULO,INST CHEM,BR-05599970 SAO PAULO,BRAZIL.
CR ALLENDORF MD, 1992, J PHYS CHEM-US, V96, P428
ALLENDORF MD, 1995, J PHYS CHEM-US, V99, P15285
BARTMESS JE, 1993, NIST STANDARD REFERE
BENSON SW, 1976, THERMOCHEMICAL KINET, P60
BIERBAUM VM, 1976, J AM CHEM SOC, V98, P4229
BOATZ JA, 1988, J AM CHEM SOC, V110, P352
BRICKHOUSE MD, 1988, J AM CHEM SOC, V110, P2706
BROOK AG, 1974, ACCOUNTS CHEM RES, V7, P77
CHU JCS, 1995, J PHYS CHEM-US, V99, P663
COLVIN EW, 1981, SILICON ORGANIC SYNT, CH5
CORRIU R, 1980, J ORGANOMET CHEM, V9, P357
CUSTODIO R, 1992, CAN J CHEM, V70, P580
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
DAMRAUER R, 1990, ORGANOMETALLICS, V9, P999
DAMRAUER R, 1991, J AM CHEM SOC, V113, P4431
DAMRAUER R, 1995, CHEM REV, V95, P1137
DEPUY CH, 1980, J AM CHEM SOC, V102, P5012
DEPUY CH, 1984, ORGANOMETALLICS, V3, P362
DEPUY CH, 1987, ACCOUNTS CHEM RES, V20, P127
DRIESS M, 1996, ANGEW CHEM INT EDIT, V35, P828
DUNNING TH, 1977, METHODS ELECT STRUCT, P1
FRERIKS IL, 1991, J AM CHEM SOC, V113, P9119
GORDON MS, 1992, ADV GAS PHASE ION CH, P203
GRIMM DT, 1992, J AM CHEM SOC, V114, P1227
HO P, 1995, J PHYS CHEM-US, V99, P2166
KREMPP M, 1995, ORGANOMETALLICS, V14, P170
LARSON JW, 1985, J AM CHEM SOC, V107, P766
MAIER G, 1994, ANGEW CHEM INT EDIT, V33, P1248
MAIER G, 1995, J AM CHEM SOC, V117, P12712
MORGON NH, UNPUB
MORGON NH, 1995, CHEM PHYS LETT, V235, P436
MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
MORGON NH, 1995, J PHYS CHEM-US, V99, P17832
NICHOLAS JB, 1995, J CHEM PHYS, V103, P8031
RODRIQUEZ CF, 1992, CAN J CHEM, V70, P2234
SCHLEGEL HB, 1993, J AM CHEM SOC, V115, P10916
SCHLEGEL HB, 1993, J PHYS CHEM-US, V97, P8207
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHWARZ H, 1989, CHEM ORGANIC SILICON, P445
SHERRILL CD, 1996, J AM CHEM SOC, V118, P7158
SILVA MLP, 1995, J MASS SPECTROM, V30, P733
SKANCKE PN, 1994, J PHYS CHEM-US, V98, P3154
SMITH BJ, 1991, J PHYS CHEM-US, V95, P10549
STEVENS WJ, 1984, J CHEM PHYS, V81, P6086
SULLIVAN SA, 1981, J AM CHEM SOC, V103, P480
TAYLOR WS, 1995, J AM CHEM SOC, V117, P6497
WEST R, 1971, J AM CHEM SOC, V93, P282
WETZEL DM, 1989, J AM CHEM SOC, V111, P3835
ZHONG ML, 1996, J AM CHEM SOC, V118, P636
NR 49
TC 16
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0002-7863
J9 J AMER CHEM SOC
JI J. Am. Chem. Soc.
PD FEB 19
PY 1997
VL 119
IS 7
BP 1708
EP 1716
PG 9
SC Chemistry, Multidisciplinary
GA WJ097
UT ISI:A1997WJ09700025
ER
PT J
AU Varella, MTD
Bettega, MHF
Lima, MAP
TI Cross sections for rotational excitations of CH4, SiH4, GeH4, SnH4 and
PbH4 by electron impact
SO ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS
LA English
DT Article
ID TEMPERATURE; SCATTERING; MOLECULES
AB We report differential and integral cross sections for rotational
excitation of XH(4) molecules (X: C, Si, Ge, Sn, Pb) from 7.5-30 eV by
electron impact. These cross sections were derived from fixed-nuclei
scattering amplitudes (Bettega et al. 1995) obtained using the
Schwinger Multichannel Method with Pseudopotentials (SMCPP) (Bettega et
al. 1993). Our results represent the first rotational excitation cross
sections for molecules as large as GeH4, SnH4 and PbH4 using entirely
ab initio procedures. The cross sections for CH4 and SiH4 obtained with
pseudopotentials are in very good agreement with all-electron
calculations and with other theoretical results. A comparison between
our calculated cross sections and experimental data for CH4 is in
general encouraging, but some discrepancies remain. We found inelastic
rotational cross sections and momentum transfer cross sections to be
larger for SiH4, GeH4, SnH4 and PbH4 than for CH4. We could explain
this feature.
C1 UNIV FED PARANA,DEPT FIS,BR-81531990 CURITIBA,PARANA,BRAZIL.
RP Varella, MTD, UNIV ESTADUAL CAMPINAS,INST FIS GLEB WATAGHIN,BR-13083970
CAMPINAS,SP,BRAZIL.
CR ABULSABI N, 1983, J CHEM PHYS, V78, P1213
BETTEGA MHF, 1993, PHYS REV A, V47, P1111
BETTEGA MHF, 1995, J CHEM PHYS, V103, P10566
BRESCANSIN LM, 1989, PHYS REV A, V40, P5577
GARSCADDEN A, 1992, Z PHYS D ATOM MOL CL, V24, P97
GIANTURCO FA, 1988, PHYS SCRI T, V23, P141
GIANTURCO FA, 1995, PHYS REV A, V52, P1257
JAIN A, 1983, J PHYS B-AT MOL OPT, V16, P3077
JAIN A, 1991, Z PHYS D ATOM MOL CL, V21, P153
MULLER R, 1985, J PHYS B ATOM MOL PH, V18, P3971
NATALENSE APP, 1995, PHYS REV A, V52, R1
ROSE ME, 1957, ELEMENTARY THEORY AN
SHIMAMURA I, 1984, ELECT MOL COLLISIONS
NR 13
TC 13
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010
SN 0178-7683
J9 Z PHYS D-ATOMS MOL CLUSTERS
JI Z. Phys. D-Atoms Mol. Clusters
PD JAN
PY 1997
VL 39
IS 1
BP 59
EP 67
PG 9
SC Physics, Atomic, Molecular & Chemical
GA WF781
UT ISI:A1997WF78100011
ER
PT J
AU Tostes, JR
Seidl, PR
Taft, CA
Lie, SK
Carneiro, JWD
Brown, W
Lester, WA
TI Carbon-carbon and carbon-hydrogen hyperconjugation in neutral alcohols
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE hyperconjugation; neutral alcohol; carbon-carbon bonding;
carbon-hydrogen bonding; charge distribution
ID MOLECULAR-ORBITAL THEORY; NEGATIVE HYPERCONJUGATION;
ELECTRONIC-STRUCTURE; CHARGE-DISTRIBUTION; AB-INITIO; METHYL;
CONFORMATIONS; CONSEQUENCES; SUBSTITUENTS; SPECTROSCOPY
AB A short review of hyperconjugation is presented emphasizing
carbon-carbon and carbon-hydrogen hyperconjugation in neutral alcohols
of different sizes and geometries. Charge distribution and geometrical
parameters, involving adjacent 'acceptor' carbon-hydrogen and
carbon-carbon bonds such as those found on methanol ethanol, 2-propanol
t-butanol, exo and endo norbornol as well as their tetra-penta- and
hexacyclic analogs in different conformations provide sensitive probes
for hyperconjugation.
C1 UNIV FED FLUMINENSE,DEPT QUIM GERAL & INORGAN,BR-24249 NITEROI,RJ,BRAZIL.
UNIV FED FLUMINENSE,DEPT FIS,BR-24249 NITEROI,RJ,BRAZIL.
UNIV FED RIO DE JANEIRO,ESCOLA QUIM,RIO JANEIRO,BRAZIL.
CTR BRASILEIRO PESQUISAS FIS,BR-22290 RIO JANEIRO,BRAZIL.
UNIV CALIF BERKELEY,LAWRENCE BERKELEY LAB,DIV CHEM SCI,BERKELEY,CA 94720.
UNIV CALIF BERKELEY,DEPT CHEM,BERKELEY,CA 94720.
RP Tostes, JR, UNIV FED FLUMINENSE,DEPT QUIM FIS,BR-24249
NITEROI,RJ,BRAZIL.
CR ADCOCK W, 1990, J ORG CHEM, V55, P1411
ALBRIGHT TA, 1985, ORBITAL INTERACTIONS, P171
APBLETT A, 1991, CAN J CHEM, V69, P1022
BADER RFW, 1983, J AM CHEM SOC, V105, P5061
BASSINDALE AR, 1969, ORGANOMET CHEM, V20, P29
BELLAMY LJ, 1976, J PHYS CHEM-US, V80, P1217
BROWN KL, 1994, INORG CHEM, V33, P4189
CARNEIRO JWD, 1987, J MOL STRUCT THEOCHE, V152, P281
CARNEIRO JWD, 1993, CHEM PHYS LETT, V202, P278
CHAMBERS RD, 1973, FLUORINE ORGANIC CHE
CRAMER CJ, 1993, J AM CHEM SOC, V115, P9315
DACOSTA NB, 1994, J MOL STRUCT, V305, P19
DAVIS DD, 1981, J ORGANOMET CHEM, V206, P21
DELLA EW, 1994, J CHEM SOC CHEM COMM, P417
DESLONGCHAMPS P, 1983, STEREOELECTRONIC EFF
DILL JD, 1976, J AM CHEM SOC, V98, P1663
DOLBIER WR, 1984, J AM CHEM SOC, V106, P1871
FORSYTH DA, 1986, J AM CHEM SOC, V108, P2157
GONDO Y, 1994, SPECTROCHIM ACTA A, V50, P1451
HAMLOW HP, 1964, TETRAHEDRON LETT, P2553
HANSTEIN W, 1970, J AM CHEM SOC, V92, P7476
HANSTEIN W, 1970, J AM CHEM SOC, V94, P7476
HERNANDEZ V, 1994, J MOL STRUCT, V324, P189
IGNATYEV IS, 1989, J MOL STRUCT, V197, P291
KIRBY AJ, 1983, ANOMERIC EFFECT RELA
KOPPEL IA, 1994, J AM CHEM SOC, V116, P8654
LAMBERT JB, 1990, TETRAHEDRON, V46, P2677
LAMBERT JB, 1992, J AM CHEM SOC, V114, P10246
LAUBE T, 1995, ACCOUNTS CHEM RES, V28, P399
LEMIEUX RU, 1974, TETRAHEDRON, V30, P1033
MURUGAVEL R, 1993, INORG CHEM, V32, P5447
OLIVER AM, 1989, J AM CHEM SOC, V111, P7259
PAULING L, 1960, NATURE CHEM BOND, P609
PITT CG, 1973, J ORGANOMET CHEM, V61, P49
PROSS A, 1980, J AM CHEM SOC, V102, P2253
RADOM L, 1972, J AM CHEM SOC, V94, P2371
RADOM L, 1982, PROGR THEORETICAL OR, P3
RASTOGI RC, 1992, J INDIAN CHEM SOC, V69, P310
REED AE, 1983, J CHEM PHYS, V78, P4066
REED AE, 1987, J AM CHEM SOC, V109, P7362
REED AE, 1990, J AM CHEM SOC, V112, P1434
RODRIQUEZ CF, 1993, THEOCHEM-J MOL STRUC, V99, P205
ROMERS C, 1969, TOP STEREOCHEM, V4, P39
RONDAN NG, 1985, J AM CHEM SOC, V107, P2099
SALZNER U, 1992, CHEM PHYS LETT, V401, P190
SALZNER U, 1993, J AM CHEM SOC, V115, P10231
SCHLEYER PV, 1983, TETRAHEDRON, V39, P1141
SCHLEYER PV, 1985, J AM CHEM SOC, V107, P6393
SCHLEYER PV, 1991, J AM CHEM SOC, V113, P3990
SCHNEIDER WF, 1995, J AM CHEM SOC, V117, P478
SEIDL PR, 1988, CHEM PHYS LETT, V1147, P373
SEIDL PR, 1990, CHEM PHYS LETT, V175, P183
SEIDL PR, 1990, J MOL STRUCT THEOCHE, V204, P183
SIEHL HU, 1992, J AM CHEM SOC, V114, P9343
SKANCKE A, 1992, J MOL STRUCT THEOCHE, V259, P411
TAFT CA, 1996, CHEM PHYS LETT, V248, P164
TEH CK, 1989, CHEM PHYS LETT, V158, P351
TOSTES JGR, 1994, J MOL STRUCT THEOCHE, V306, P1019
TOSTES JGR, 1995, CHEM PHYS LETT, V237, P33
VINKOVIC V, 1992, TETRAHEDRON LETT, V33, P7441
VOLATRON ID, 1994, J PHYS CHEM-US, V98, P10728
WIBERG KB, 1993, J AM CHEM SOC, V115, P614
WILLIAMS JO, 1981, J MOL STRUCT, V76, P11
WOLFE S, 1972, ACCOUNTS CHEM RES, V5, P102
NR 64
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD DEC 11
PY 1996
VL 388
BP 85
EP 95
PG 11
SC Chemistry, Physical
GA WE809
UT ISI:A1996WE80900013
ER
PT J
AU Lins, JOMDL
Nascimento, MAC
TI Theoretical investigation of the methane activation reaction on
protonated zeolite from generalized valence-bond plus configuration
interaction calculations
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE activation energy; methane activation; transition state; zeolite
ID MOLECULAR ELECTROSTATIC POTENTIALS; DISSOCIATION ENERGIES; ATOMIC
CHARGES; EXCHANGE; DEHYDROGENATION; DENSITY; CD4
AB Generalized valence-bond plus configuration interaction calculations
are performed to study the activation of methane by a protonated model
zeolite. The resulting transition state exhibits carbenium-like ion
character, with a positively charged methyl group and an almost neutral
hydrogen molecule to be formed. The nature of the transition state is
similar to that obtained with density functional theory (DFT), in spite
of significant differences in the geometry of the optimized model
clusters. The activation barrier for the dehydrogenation process was
found to be 74.8 kcal mol(-1), which compares well with the DFT value
of 82.0 kcal mol(-1).
C1 UNIV FED RIO DE JANEIRO,DEPT FISICOQUIM,INST QUIM,BR-21949900 RIO JANEIRO,BRAZIL.
CR BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
BRENEMAN CM, 1990, J COMPUT CHEM, V11, P361
BROBOWICZ FW, 1977, MODERN THEORETICAL C, CH4
CARTER EA, 1988, J CHEM PHYS, V88, P3132
CHIANG AS, 1984, CHEM ENG SCI, V39, P1451
CHIRLIAN LE, 1987, J COMPUT CHEM, V8, P894
DAVIS ME, 1991, IND ENG CHEM RES, V30, P1675
DAVIS ME, 1995, STUD SURF SCI CATAL, V97, P35
ESTEVES PM, UNPUB
EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
HIROTA E, 1979, J MOL SPECTROSC, V77, P213
KRAMER GJ, 1993, NATURE, V363, P529
KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
MCIVER JW, 1971, CHEM PHYS LETT, V10, P303
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
NASCIMENTO MAC, UNPUB J PHYS CHEM
RAPPE AK, 1988, GRADGVB PROGRAM
SILVA SC, 1993, THEOCHEM-J MOL STRUC, V101, P51
STACH H, 1986, ZEOLITES, V6, P74
STEFANADIS C, 1991, J MOL CATAL, V67, P363
VANSANTEN RA, 1995, CHEM REV, V95, P637
WANG LS, 1993, CATAL LETT, V21, P35
WOODS RJ, 1990, J COMPUT CHEM, V11, P297
NR 23
TC 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD NOV 18
PY 1996
VL 371
BP 237
EP 243
PG 7
SC Chemistry, Physical
GA WD890
UT ISI:A1996WD89000027
ER
PT J
AU Rocha, WR
DeAlmeida, WB
TI Quantum-mechanical and molecular mechanics conformational analysis of
1,5-cyclooctadiene
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
ID GAUSSIAN-TYPE BASIS; MM3 FORCE-FIELD; SEMIEMPIRICAL METHODS;
ORGANIC-MOLECULES; ORBITAL METHODS; OPTIMIZATION; PARAMETERS
AB The 1,5-cyclooctadiene (COD) molecule can easily form complexes with
transition metals with the molecular structure of various of these
complexes being proposed with the aid of X-ray diffraction methods. The
fact that the complexes exhibit weak metal-GOD bonds makes it very
important in inorganic synthesis and catalysis. In this work the
potential energy surface (PES) for the GOD molecule was comprehensively
investigated first with molecular mechanics (casing the MM3 force
field); and, in a second stage, at the ab initio Hartree-Fock level of
theory employing the 3-21G*, 6-31G, and 6-31G* basis sets and also
including electron correlation effects at the Moller-Plesset
second-order perturbation theory level. This work revealed that there
are three distinct conformers of the COD molecule with the predicted
lowest energy conformation being in agreement with the proposed
structure based on experimental electron diffraction data. (C) 1997 by
John Wiley & Sons, Inc.
C1 UFMG,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,ICEX,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR ALLINGER NL, 1975, TETRAHEDRON, V31, P21
ALLINGER NL, 1989, J AM CHEM SOC, V111, P111
ALLINGER NL, 1990, J COMPUT CHEM, V11, P848
ALLINGER NL, 1993, J COMPUT CHEM, V14, P655
ANET FAL, 1973, J AM CHEM SOC, V95, P3407
DEALMEIDA WB, 1996, IN PRESS ANN 3 LAT A
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
DOSSANTOS HF, IN PRESS INF TECNOL
DOVAL AMG, 1995, J HETEROCYCLIC CHEM, V32, P557
ERMER O, 1976, J AM CHEM SOC, V98, P3964
GLICK MD, 1965, J ORGANOMET CHEM, V3, P200
HAGNER K, 1982, J PHYS CHEM-US, V86, P117
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HENDRA PJ, 1961, SPECTROCHIM ACTA, V17, P913
HUZINAGA S, 1984, GAUSSIAN BASIS SETS
IBERS JA, 1962, ACTA CRYSTALLOGR, V15, P923
LII JH, 1989, J AM CHEM SOC, V111, P8566
MOLLER C, 1934, PHYS REV, V46, P618
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
VANDENHENDE JH, 1963, J AM CHEM SOC, V85, P1009
NR 23
TC 7
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD JAN 30
PY 1997
VL 18
IS 2
BP 254
EP 259
PG 6
SC Chemistry, Multidisciplinary
GA WB112
UT ISI:A1997WB11200009
ER
PT J
AU Wong, PSH
Ma, SG
Yang, SS
Cooks, RG
Gozzo, FC
Eberlin, MN
TI Sulfur trifluoride cation (SF3+) affinities of pyridines determined by
the kinetic method: Stereoelectronic effects in the gas phase
SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
LA English
DT Article
ID MS(3) MASS-SPECTROMETRY; BOND-DISSOCIATION ENERGIES; TRANSITION-METAL
BONDS; PROTON AFFINITY; CHEMISTRY; CARBONYL; SF6
AB Ion/molecule reactions performed by pentaquadrupole mass spectrometry
are used to generate cluster ions in which neutral pyridines are bound
to the polyatomic cation SF3+. The dimeric ions Py(1)SF(3)(+)Py(2),
where Py(1) and Py(2) represent substituted pyridines, are shown to
have loosely bound structures by collision-induced dissociation (MS(3))
experiments and by semiempirical AM1 and ab initio RHF/G-S1G(d, p)
molecular orbital calculations. In the case of dimers comprised of
meta- and/or para-substituted pyridines (unhindered pyridines), there
is an excellent Linear correlation between the logarithm of the
fragment ion abundance ratio In{[Py(1)(SF3+)]/[Py(SF3+)]} and the
proton affinities (PA) of the constituent pyridines. Semiempirical
calculations are used to estimate the SF3+ affinities of pyridines
which are found to be in the range of 25-31 kcal/mol. The SF3+
affinities show an excellent linear correlation with the proton
affinities of the pyridines, and the relationship SF3+ affinity
(kcal/mol) = 0.73PA - 135.8 between the two affinities is derived. The
effective temperature of the dimeric ions is determined to be 595 +/-
69 K, which is in good agreement with values of around 600 K obtained
experimentally in studies on many other systems activated under similar
conditions. Ortho-substituted pyridines show lower than expected
affinities due to stereoelectronic effects that decrease the cation
affinities. Gas-phase stereoelectronic parameters (S-k) are measured
from the deviation from the PA correlation and are ordered as 2-MePy
(-1.09) < 2,6-diMePy (-1.11) < 2-EtPy (-1.91) < 2,3-diMePy (-2.15) <
2,5-diMePy (-2.25) < 2,4-diMePy (-2.40). Overall, the steric effects
are larger than those in the corresponding Cl+-bound dimers but smaller
than those in the bulky [OCNCO+] system. Calculations show evidence for
agostic bonding that offsets the steric effects in some eases. The
eclipsed conformation of 2-methylpyridine/SF3+ adduct is found to be
more stable than the staggered form by 0.8 kcal/mol, due to auxiliary
agostic bonding between the hydrogen of the ortho methyl substituent
and the sulfur atom. Calculations on atomic charge distribution reveal
that the positive charge is mainly on the sulfur atom (+1.99) and the
charge on the bonding hydrogen S-H-C (+0.07) is considerably lower than
that on the other two methyl hydrogens (+0.14), which appears to be a
good indication of agostic binding. The most stable form of the
2-ethylpyridine/SF3+ adduct is found when the N-C-1-C-alpha-C-beta
dihedral angle is approximately 60 degrees, where the ethyl hydrogen is
directed toward the SF3 group via an interesting six-membered ring
alignment. The experiments show a remarkably small steric effect in
2,6-dimethylpyridine, probably due to strong agostic bonding enhanced
by the buttressing effect that shortens the S-H distance. In addition,
the face-to-face interactions of the F atoms and the H atoms further
stabilize this form. (C) 1997 American Society for Mass Spectrometry
C1 PURDUE UNIV,BROWN LAB,DEPT CHEM,W LAFAYETTE,IN 47907.
UNICAMP,INST CHEM,CAMPINAS,SP,BRAZIL.
CR AYNG SS, 1996, J AM SOC MASS SPECTR, V7, P198
BABCOCK LM, 1981, J CHEM PHYS, V75, P3864
BOWERS MT, 1979, GAS PHASE ION CHEM, V1
BROOKHART M, 1983, J ORGANOMET CHEM, V250, P395
BROOKHART M, 1988, PROG INORG CHEM, V36, P1
CARMONA E, 1991, J AM CHEM SOC, V113, P4322
CHEUNG YS, 1995, J AM CHEM SOC, V117, P9725
COOKS RG, 1989, ADV MASS SPECTROM, V11, P33
COOKS RG, 1991, RAPID COMMUN MASS SP, V5, P93
COOKS RG, 1994, MASS SPECTROM REV, V13, P287
CORDERMAN RR, 1976, J AM CHEM SOC, V98, P3998
CRABTREE RH, 1985, INORG CHEM, V24, P1986
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DILLARD JG, 1975, J PHYS CHEM-US, V79, P2455
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
FEHSENFELD FC, 1971, J CHEM PHYS, V54, P438
FRANKLIN JL, 1972, ION MOL REACTIONS
FUTRELL JH, 1986, GASEOUS ION CHEM MAS
GREEN MLH, 1984, PURE APPL CHEM, V56, P47
HARRISON AG, 1983, CHEM IONIZATION MASS
HERRON JT, 1987, J PHYS CHEM REF DATA, V16, P1
HO Y, 1992, J AM CHEM SOC, V114, P10961
JENKINS HDB, 1994, TETRAHEDRON LETT, V34, P6543
JONES RW, 1982, J PHYS CHEM-US, V86, P1387
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KOGA N, 1984, J AM CHEM SOC, V106, P4625
LATIMER DR, 1994, J CHEM PHYS, V101, P3410
LIAS SG, 1975, ION MOL REACTIONS TH
MACKAY GI, 1992, INT J MASS SPECTROM, V117, P38
MAJUMDAR TK, 1992, J AM CHEM SOC, V114, P2897
MCLUCKEY SA, 1981, J AM CHEM SOC, V103, P1313
NOURSE BD, 1991, INT J MASS SPECTROM, V106, P249
OPERTI L, 1988, J AM CHEM SOC, V110, P3847
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
STONE JA, 1989, INT J MASS SPECTROM, V94, P269
TAMURA A, 1987, APPL PHYS LETT, V51, P1503
YANG SS, 1995, J MASS SPECTROM, V30, P184
YANG SS, 1995, J MASS SPECTROM, V30, P807
ZANGERLE R, 1993, INT J MASS SPECTROM, V129, P117
NR 40
TC 20
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010
SN 1044-0305
J9 J AMER SOC MASS SPECTROM
JI J. Am. Soc. Mass Spectrom.
PD JAN
PY 1997
VL 8
IS 1
BP 68
EP 75
PG 8
SC Chemistry, Analytical; Chemistry, Physical; Spectroscopy
GA WA210
UT ISI:A1997WA21000010
ER
PT J
AU Olivato, PR
Rittner, R
TI Conformational and electronic interaction studies of some
alpha-mono-heterosubstituted carbonyl compounds
SO REVIEWS ON HETEROATOM CHEMISTRY
LA English
DT Article
DE alpha-heterosubstituted carbonyl compounds; conformational isomerism;
electronic interactions
ID SOLUTION-STATE CONFORMATIONS; VIBRATIONAL ASSIGNMENT;
INTERNAL-ROTATION; ULTRAVIOLET PHOTOELECTRON; ABINITIO CALCULATIONS;
MOLECULAR-MECHANICS; MICROWAVE-SPECTRUM; IR SPECTROSCOPY;
FLUOROACETONE; DERIVATIVES
AB nu(CO) frequencies and intensities of some alpha-heterosubstituted
carbonyl compounds [XCH(2)C(O)Y: X = F, OMe, NR(2), Cl, Br, SEt, or I;
and Y = Me, Ph, SR, OMe or NEt(2)], together with molecular mechanics
calculations indicated the existence of cis-gauche rotational
isomerism. In solvents of low polarity the gauche rotamers predominate
over the cis ones, except for the fluoro and methoxy derivatives of
acetophenone and methyl acetate series. The progressive increase in the
gauche rotamer population in each series, on going from the fluoro to
the iodo derivative has been mainly ascribed to the increasing
contribution of the pi*(CO)/sigma(C-X) and pi*(CO)/n(X) orbital
interactions. The carbonyl frequency shifts of the cis rotamers are
interpreted as being due to the substituent field and inductive
effects, while the corresponding shifts of the gauche rotamers have
been attributed to an interplay of inductive and hyperconjugative
effects. The carbonyl shifts induced by inductive (Delta nu(I)), field
(Delta nu(F)) and hyperconjugative effects (Delta nu(H)) were estimated
separately for the acetone derivatives. The larger negative carbonyl
gauche shifts (Delta nu(g)) along with a higher non-additivity effect
(Delta delta) of the alpha-methylene carbon chemical shifts can be
associated with stronger pi*(CO)/sigma(C-X) and pi*(CO)/n(X) orbital
interactions. The higher stabilization of the gauche rotamers for the
alpha-akylthio carbonyl compounds, the larger nu(CO) gauche shifts and
the lower non-additivity effect for the alpha-methylene carbon have
been interpreted as being due to the simultaneous occurrence of
pi*(CO)/sigma(C-S) and pi(CO)/sigma*(C-S) orbital interactions. The
progressive bathochromic shifts of n(O) --> pi*(CO) transition for the
alpha-heterosubstituted ketones, on going from the fluorine to the
iodine substituent, were mainly ascribed to a contribution of the
hyperconjugative interaction (pi*(CO)/sigma*(C-X)). Ab initio
calculations, and photoelectron and electron transmission
spectroscopies have supported, in general, the mentioned orbital
interactions.
C1 UNIV SAO PAULO,INST QUIM,BR-05599970 SAO PAULO,BRAZIL.
UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
BASSO EA, 1993, J ORG CHEM, V58, P7865
BONNIOL A, 1979, CR ACAD SCI C CHIM, V288, P407
CANTACUZENE D, 1976, CAN J CHEM, V54, P2759
CANTACUZENE J, 1972, TETRAHEDRON, V28, P717
COOK BR, 1967, J CHEM PHYS, V47, P1700
DISTEFANO G, 1991, J CHEM SOC P2, P1195
DUDDECK H, 1986, TOP STEREOCHEM, V16, P219
DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
DURIG JR, 1991, SPECTROCHIM ACTA A, V47, P105
DURIG JR, 1992, J RAMAN SPECTROSC, V23, P253
EISENSTEIN O, 1974, TETRAHEDRON, V30, P1717
FAUSTO R, 1986, J MOL STRUCT, V144, P225
FRASER RR, 1995, CAN J CHEM, V73, P88
GASET A, 1968, B SOC CHIM FR, P4108
GODUNOV IA, 1994, RUSS CHEM B, V43, P723
GODUNOV IA, 1994, ZH FIZ KHIM, V68, P1057
GOUGH TE, 1967, CAN J CHEM, V45, P2529
GUERRERO SA, 1983, J CHEM SOC PERK T 2, P1053
GUTIERREZ MA, 1982, ORG MAGN RESONANCE, V20, P20
JONES D, 1994, J CHEM SOC P2, P1651
KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P1124
KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P3577
KARABATSOS GJ, 1970, TOP STEREOCHEM, V5, P167
KLAPSTEIN D, 1988, CAN J SPECTROSC, V33, P161
LUMBROSO H, 1987, J MOL STRUCT, V162, P131
LUMBROSO H, 1987, J MOL STRUCT, V162, P141
LUMBROSO H, 1989, J MOL STRUCT, V212, P113
MARTINS MAP, 1981, SPECTROSC LETT, P505
MAURY C, 1991, J MOL STRUCT, V246, P267
MEYER AY, 1980, ISRAEL J CHEM, V20, P57
MEYER M, 1992, CHEM BRIT, P785
MIDO Y, 1985, J MOL STRUCT, V129, P253
NESMEYANOV AN, 1975, DOKL AKAD NAUK, V220, P162
OIKE F, 1992, THESIS U SAO PAULO
OLIVATO PR, UNPUB
OLIVATO PR, 1979, J CHEM PHYS, V70, P1677
OLIVATO PR, 1984, J CHEM SOC P2, P1505
OLIVATO PR, 1985, PHOSPHORUS SULFUR, V24, P225
OLIVATO PR, 1990, J CHEM SOC P2, P465
OLIVATO PR, 1990, PHOSPHORUS SULFUR, V47, P391
OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
OLIVATO PR, 1992, CAN J APPL SPECTROSC, V37, P37
OLIVATO PR, 1992, PHOSPHORUS SULFUR, V71, P107
OLIVATO PR, 1993, PHOSPHORUS SULFUR, V82, P7
OLIVATO PR, 1994, PHOSPHORUS SULFUR, V95, P391
OLIVATO PR, 1995, SPECTROCHIM ACTA A, V51, P1479
PAN YH, 1967, CAN J CHEM, V45, P2943
PHAN HV, 1990, J MOL STRUCT THEOCHE, V209, P333
RAMARAO M, 1976, ORG MAGN RESONANCE, V39, P329
RITTNER R, 1987, RECENT ADV ORGANIC N, P127
RITTNER R, 1988, MAGN RESON CHEM, V26, P51
RITTNER R, 1988, MAGN RESON CHEM, V26, P73
RITTNER R, 1988, QUIM NOVA, V8, P170
RITTNER R, 1990, SPECTROSC INT J, V8, P173
RITTNER R, 1991, SPECTROSC-INT J, V9, P31
SAEGEBARTH E, 1970, J CHEM PHYS, V52, P3555
SHAPIRO BL, 1973, J MAGN RESON, V10, P65
SUMATHI R, 1993, J MOL STRUCT THEOCHE, V280, P49
VANDERVEKEN BJ, 1993, J MOL STRUCT, V293, P55
VARNALI T, 1993, J MOL STRUCT THEOCHE, V280, P169
WLADISLAW B, 1980, J CHEM SOC P2, P453
YAMAGUCHI I, 1995, J MOL STRUCT, V352, P309
YATES K, 1969, SPECTROCHIM ACTA A, V25, P765
YATES P, 1961, CAN J CHEM, V39, P1977
NR 65
TC 16
PU MYU K K
PI TOKYO
PA SCIENTIFIC PUBLISHING DIV, 2-32-3 SENDAGI, BUNKYO-KU, TOKYO 113, JAPAN
SN 0915-6151
J9 REV HETEROATOM CHEM
JI Rev. Heteroatom Chem.
PY 1996
VL 15
BP 115
EP 159
PG 45
SC Chemistry, Multidisciplinary
GA VV529
UT ISI:A1996VV52900006
ER
PT J
AU Camargo, AC
Igualada, JA
Beltran, A
Llusar, R
Longo, E
Andres, J
TI An ab initio perturbed ion study of structural properties of TiO2,
SnO2, and GeO2 rutile lattices
SO CHEMICAL PHYSICS
LA English
DT Article
ID VANADIUM-DOPED ZIRCON; PERIODIC HARTREE-FOCK; TITANIUM-DIOXIDE;
ELECTRONIC-STRUCTURE; CRYSTAL-STRUCTURES; OXIDE; PRINCIPLES;
POLYMORPHS; DYNAMICS; SURFACES
AB This work describes a theoretical quantum mechanical study on TiO2,
SnO2 and GeO2 rutile structures in order to characterize the geometric,
mechanical, thermodynamic and electronic properties of these systems.
The doping processes of V4+ at the sixfold-coordinated site have been
studied with the aim of determining the relative stability of pure and
doped structures. Ab initio perturbed ion calculations with Slater-type
orbitals for representing atomic centers and large cluster models have
been used. Local geometry optimizations have been performed to
determine the lattice energy, lattice parameters and bulk modulus, as
well as the force constant and vibrational frequencies (nu) of the
breathing vibrational modes, a(1g), in the sixfold-coordinated site.
Numerical results are analyzed and compared with experimental data, the
geometrical distances obtained by computer simulation being in
agreement with the reported experimental values. The difference in
energy for the substitution of Ti4+, Sn4+ and Ge4+ for V4+ in TiO2,
SnO2 and GeO2, respectively is very dependent on the method used to
represent these doping processes. The TiO2, SnO2 lattices show a
decrease in the nu value from the pure to the doped structure while a
opposite trend is obtained for the GeO2 structure. The validity of the
methodology is discussed.
C1 UNIV JAUME 1,DEPT EXPT SCI,CASTELLO 12080,SPAIN.
UNIV FED SAO CARLOS,DEPT CHEM,BR-131560 SAO CARLOS,BRAZIL.
CR ANDRES J, 1994, CHEM PHYS LETT, V221, P249
ANDRES J, 1995, CHEM PHYS LETT, V236, P521
ANDRES J, 1995, J PHYS CHEM SOLIDS, V56, P901
ANDRES J, 1995, J PHYS CHEM-US, V99, P8092
ANDRES J, 1995, THEOCHEM-J MOL STRUC, V330, P313
BAUR WH, 1956, ACTA CRYSTALLOGR, V9, P515
BELTRAN A, 1993, J PHYS CHEM-US, V97, P2555
BELTRAN A, 1994, J PHYS CHEM-US, V98, P7741
BELTRAN A, 1995, INT J QUANTUM CHEM S, V29, P685
BELTRAN A, 1995, J PHYS CHEM-US, V99, P6493
BIRCH F, 1952, J GEOPHYS RES, V57, P227
BONIFACIC V, 1982, J CHEM PHYS, V76, P2537
BURDETT JK, 1985, INORG CHEM, V24, P2244
BURDETT JK, 1987, J AM CHEM SOC, V109, P3639
CATLOW CRA, 1990, NATURE, V347, P243
CATLOW CRA, 1993, J SOLID STATE CHEM, V106, P13
CHAKRAVORTY SJ, 1989, PHYS REV A, V39, P2290
CLEMENTI E, 1974, ATOM DATA NUCL DATA, V14, P177
DEBIASI RS, 1994, J PHYS CHEM SOLIDS, V55, P453
DIXON R, 1995, J CHEM SOC FARADAY T, V91, P3495
FAHMI A, 1993, PHYS REV B, V47, P11717
GLASSFORD KM, 1992, PHYS REV B, V46, P1284
HAGFELDT A, 1992, INT J QUANTUM CHEM, V44, P477
HAGFELDT A, 1994, INT J QUANTUM CHEM, V49, P97
HAGFELDT A, 1994, SOL ENERG MAT SOL C, V31, P481
HAZEN RM, 1981, J PHYS CHEM SOLIDS, V42, P143
HUZINAGA S, 1971, J CHEM PHYS, V55, P5543
HUZINAGA S, 1973, ADV QUANTUM CHEM, V7, P1987
JOLLY LH, 1994, EUR J MINERAL, V6, P7
KOHL D, 1989, SENSOR ACTUATOR, V18, P71
LASSALETTA G, 1995, J PHYS CHEM-US, V99, P1484
LIAO KH, 1995, J PHYS CHEM-US, V99, P4569
LINSEBIGLER AL, 1995, CHEM REV, V95, P735
LUANA V, 1988, J MOL STRUCT THEOCHE, V166, P215
LUANA V, 1990, PHYS REV B, V41, P3800
LUANA V, 1990, PHYS REV B, V42, P1791
LUANA V, 1992, CLUSTER MODELS SURFA, P605
LUANA V, 1992, J CHEM PHYS, V97, P6544
LUANA V, 1993, COMPUT PHYS COMMUN, V77, P107
MARUTHAMUTHU P, 1995, J PHYS CHEM-US, V99, P3636
MCWEENY R, 1959, P ROY SOC LOND A MAT, V253, P242
NAKATO Y, 1986, J PHYS CHEM-US, V90, P6210
NICOLOSO N, 1990, BER BUNSEN PHYS CHEM, V94, P731
OKADA F, 1990, J PHYS CHEM-US, V94, P5900
POUMELLEC B, 1991, J PHYS-CONDENS MAT, V3, P8195
POWELL MJD, 1970, NUMERICAL METHODS NO
RAMAMOORTHY M, 1994, PHYS REV B, V49, P16721
RAMANA MV, 1988, J CHEM PHYS, V88, P2637
SAKAI Y, 1985, J CHEM PHYS, V82, P270
SAUER J, 1989, CHEM REV, V363, P493
SAUER J, 1993, NATURE, V363, P493
SCHINDLER KM, 1990, J PHYS CHEM-US, V94, P8222
SILVI B, 1990, J CHEM PHYS, V93, P2637
SILVI B, 1991, J PHYS CHEM SOLIDS, V52, P1005
SIROKY K, 1994, TALANTA, V41, P1735
VOS K, 1977, J PHYS C SOLID STATE, V10, P917
WOLD A, 1993, SOLID STATE CHEM SYN
XU WX, 1996, J SOLID STATE CHEM, V121, P301
YU N, 1995, PHYS REV B, V49, P4768
NR 59
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD DEC 1
PY 1996
VL 212
IS 2-3
BP 381
EP 391
PG 11
SC Physics, Atomic, Molecular & Chemical
GA VV617
UT ISI:A1996VV61700010
ER
PT J
AU Teles, LK
Scolfaro, LMR
Enderlein, R
Leite, JR
Josiek, A
Schikora, D
Lischka, K
TI Structural properties of cubic GaN epitaxial layers grown on beta-SiC
SO JOURNAL OF APPLIED PHYSICS
LA English
DT Article
ID MOLECULAR-BEAM EPITAXY; GALLIUM NITRIDE; AB-INITIO; INTERFACES
AB Self-consistent Eight-binding total energy calculations are performed
to study the deposition of a few layers of cubic GaN on (100) beta-SiC
substrates. Cohesion energies, atomic displacements, dangling bond
occupancies and surface reconstructions are calculated for a variety of
epitaxial systems including monolayers of either Ga or N as well as
single and double bilayers of GaN on either Si or C terminated
substrates. The SiC substrates and Ga-N epitaxial layers are
represented by 2x2 supercells of 9 Si and C monolayers plus the
respective number of monolayers of Ga and N atoms. Depending on the
system, surface atoms dimerize either symmetrically or asymmetrically
resulting in either 2x1, c-2x2, or 2x2 surface reconstructions. At the
substrate-epitaxial-layer interfaces, N binds stronger than Ga to
either Si or C. Interface mixing is found to be energetically not
advantageous for both C- and Si-terminated substrates, although for the
latter the obtained small energy differences may suggest the
possibility of mixing. (C) 1996 American Institute of Physics.
C1 UNIV BORDEAUX 1,LAB COMPOSITES THERMOSTRUCT,F-33600 PESSAC,FRANCE.
UNIV GESAMTHSCH PADERBORN,FB PHYS 6,D-33098 PADERBORN,GERMANY.
RP Teles, LK, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05389970 SAO
PAULO,BRAZIL.
CR ALVES JLA, COMMUNICATION
ALVES JLA, IN PRESS MAT SCI ENG
BECHSTEDT F, 1985, PHYS STAT US SOLID B, V131, P646
BECHSTEDT F, 1988, SEMICONDUCTOR SURFAC
BRANDT O, 1995, PHYS REV B, V52, R2253
CAPAZ RB, 1995, PHYS REV B, V51, P17755
CHURCHER N, 1986, J PHYS C SOLID STATE, V19, P4413
HARBEKE G, 1982, PHYSICS GROUP 4 ELEM, V17
HARRISON WA, 1980, ELECTRONIC STRUCTURE
JOSIEK A, 1992, SUPERLATTICE MICROST, V12, P225
KACKELL P, 1994, PHYS REV B, V50, P17037
MAJEWSKI JA, 1987, PHYS REV B, V35, P9666
NAKAMURA S, 1994, APPL PHYS LETT, V64, P1687
NAKAMURA S, 1996, JPN J APPL PHYS 2, V35, L74
NEUGEBAUER J, 1990, J CRYST GROWTH, V101, P332
NEUGEBAUER J, 1992, SUPERLATTICE MICROST, V11, P393
PAISLEY MJ, 1989, J VAC SCI TECHNOL A, V7, P701
PARRY DE, 1975, SURF SCI, V49, P433
PETALAS J, 1995, PHYS REV B, V52, P8082
POLLMANN J, 1980, FESTKORPERPROBLEME, V20, P117
SASAKI T, 1988, J APPL PHYS, V64, P4531
SCHIKORA D, IN PRESS
SHERWIN ME, 1991, J APPL PHYS, V69, P8423
SITAR Z, 1992, J MATER SCI LETT, V11, P261
STRITE S, 1991, J VAC SCI TECHNOL B, V9, P1924
NR 25
TC 9
PU AMER INST PHYSICS
PI WOODBURY
PA CIRCULATION FULFILLMENT DIV, 500 SUNNYSIDE BLVD, WOODBURY, NY 11797-2999
SN 0021-8979
J9 J APPL PHYS
JI J. Appl. Phys.
PD DEC 1
PY 1996
VL 80
IS 11
BP 6322
EP 6328
PG 7
SC Physics, Applied
GA VV267
UT ISI:A1996VV26700036
ER
PT J
AU Zeng, Z
Ellis, DE
Guenzburger, D
BaggioSaitovitch, E
TI Spin density and magnetism of rare-earth nickel borocarbides:
RNi(2)B(2)C
SO PHYSICAL REVIEW B
LA English
DT Article
ID ANTIFERROMAGNETIC SUPERCONDUCTOR HONI2B2C; ELECTRONIC-STRUCTURE; BORIDE
CARBIDE; R=RARE EARTH; INTERMETALLIC COMPOUNDS; QUATERNARY COMPOUNDS;
SINGLE-CRYSTALS; ENERGY-GAP; B-C; YNI2B2C
AB The rare-earth spin moments in quarternary borocarbides RNi(2)B(2)C,
R=Pr, Nd, Sm, Gd, Ho, Tm are determined by self-consistent density
functional theory, using the embedded cluster formalism. Spin-polarized
electronic structure calculations considering antiferromagnetic
coupling between R-C layers are performed. Spin polarization of the
lattice is examined in detail and related to observed ferromagnetic
ordering in R-C layers and antiferromagnetic ordering between layers.
The observed superconductivity of Y, Lu, Tm, Er, and Ho compounds and
regions of coexistence with antiferromagnetism in Tm and Ho is
discussed in terms of the magnitude of R moments, differences in R
4f-5d hybridization, and resulting lattice polarization.
RP Zeng, Z, CTR BRASILEIRO PESQUISAS FIS,RUA XAVIER SIGAUD 150,BR-22290180
RIO JANEIRO,BRAZIL.
CR ABRIKOSOV AA, 1961, SOV PHYS JETP, V12, P1243
ALLENO E, 1995, PHYSICA C, V242, P169
BAERENDS EJ, 1973, CHEM PHYS, V2, P41
BALTENSPERGER W, 1963, PHYS KONDENS MATER, V1, P20
BUDKO SL, 1995, PHYS REV B, V52, P305
CANEPA F, 1994, NUOVO CIMENTO D, V16, P1857
CARTER SA, 1995, PHYS REV B, V51, P12644
CAVA RJ, 1994, NATURE, V367, P146
CAVA RJ, 1994, NATURE, V367, P252
CHO BK, 1995, PHYS REV B, V52, R3844
COEHOORN R, 1994, PHYSICA C, V228, P331
DECROUX M, 1982, SUPERCONDUCTIVITY TE, V34, P57
DEGENENS PG, 1966, CR HEBD ACAD SCI, V247, P1836
DEGENNES PG, 1962, J PHYS RADIUM, V23, P510
DELLEY B, 1982, J CHEM PHYS, V76, P1949
DUNLAP BD, 1983, J MAGN MAGN MATER, V37, P211
DUNLAP BD, 1988, PHYS REV B, V39, P6224
EISAKI H, 1994, PHYS REV B, V50, P647
EKINO T, 1994, PHYSICA C, V235, P2529
ELLIOTT RJ, 1972, MAGNETIC PROPERTIES, P1
ELLIS DE, 1970, PHYS REV B, V2, P2887
ELLIS DE, 1979, PHYS REV B, V20, P1198
ELLIS DE, 1994, ELECT DENSITY FUNCTI, P263
ELMASSALAMI M, 1995, J PHYS-CONDENS MAT, V7, P10015
ELMASSALAMI M, 1995, PHYSICA C, V244, P41
FISCHER O, 1990, FERROMAGNETIC MATERI, V5, P465
FULDE P, 1966, PHYS REV, V141, P275
GINZBURG VL, 1957, SOV PHYS JETP, V4, P153
GRIGEREIT TE, 1994, PHYS REV LETT, V73, P2756
GUO GY, 1990, PHYS REV B, V41, P6372
GUPTA LC, 1994, PHYSICA C 1, V235, P150
HALLEY JW, 1988, THEORIES HIGH TEMPER
HANSON ME, 1995, PHYS REV B, V51, P674
HUANG Q, 1995, PHYS REV B, V51, P3701
JOHNSTONHALPERIN E, 1995, PHYS REV B, V51, P12852
KITTEL C, 1968, SOLID STATE PHYS, V22, P1
KOHARA T, 1995, PHYS REV B, V51, P3985
LAWRIE DD, 1995, PHYSICA C, V245, P159
LEE JI, 1994, PHYS REV B, V50, P4030
LEGVOLD S, 1980, FERROMAGNETIC MATERI, V1, P183
MAPLE MB, 1968, PHYS LETT A, V26, P513
MAPLE MB, 1973, MAGNETISM, V5, P289
MAPLE MB, 1987, PHYSICA B & C, V148, P155
MAPLE MB, 1989, J LESS-COMMON MET, V149, P405
MATTHEISS LF, 1994, PHYS REV B, V49
MATTHEISS LF, 1994, SOLID STATE COMMUN, V91, P587
MULDER FM, 1995, J ALLOY COMPD, V217, P118
MULLERHARTMANN E, 1971, PHYS REV LETT, V26, P428
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1833
MURAYAMA C, 1994, PHYSICA C 4, V235, P2545
NAGARAJAN R, 1994, PHYS REV LETT, V72, P274
PARR RG, 1989, DENSITY FUNCTIONAL T
PELLEGRIN E, 1995, PHYS REV B, V51, P16159
PICKETT WE, 1994, PHYS REV LETT, V72, P3702
PRASSIDES K, 1995, EUROPHYS LETT, V29, P641
RHEE JY, 1995, PHYS REV B, V51, P15585
RIBLET G, 1971, SOLID STATE COMMUN, V9, P1663
ROSEN A, 1976, J CHEM PHYS, V65, P3629
SANCHEZ DR, 1996, PHYS REV LETT, V76, P507
SCHMIDT H, 1994, PHYSICA C, V229, P315
SIEGRIST T, 1994, NATURE, V367, P254
SINHA SK, 1995, PHYS REV B, V51, P681
SLATER JC, 1974, QUANTUM THEORY MOL S, V4
SUN YY, 1994, PHYSICA C, V230, P435
SZYTULA A, 1994, HDB CRYSTAL STRUCTUR
VONBARTH U, 1972, J PHYS C SOLID STATE, V5, P129
XU M, 1994, PHYSICA C 4, V235, P2533
XU M, 1994, PHYSICA C, V227, P321
ZARESTKY J, 1995, PHYS REV B, V51, P678
ZENG Z, IN PRESS PHYSICA C
ZENG Z, 1996, PHYS REV B, V53, P6613
ZHOU H, 1987, PHYS REV B, V36, P594
NR 72
TC 6
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD NOV 1
PY 1996
VL 54
IS 18
BP 13020
EP 13029
PG 10
SC Physics, Condensed Matter
GA VT682
UT ISI:A1996VT68200060
ER
PT J
AU Morgon, NH
Giroldo, T
Linnert, HV
Riveros, JM
TI Isomerization of the molecular ion of allyl bromide
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID DISTONIC RADICAL CATIONS; MASS-SPECTROMETRY NRMS; X = CL; GAS-PHASE;
AB-INITIO; OPTIMIZATION TECHNIQUE; IONIZATION ENERGIES;
ORGANIC-MOLECULES; SPECTRA; NEUTRALIZATION
AB The molecular ion of allyl bromide has been characterized by nb initio
molecular orbital calculations at the MP4(SDTQ) level with optimized
geometries at the MP2 level in order to account for experimental data
suggesting the presence of two isomers. The calculations predict the
existence of an allyl bromide molecular ion with structural parameters
resembling the neutral species except for a lengthening of the double
bond. This structure is calculated to be more stable than a cyclic
bromonium radical cation structure, Rearrangement of the molecular ion
of allyl bromide to that of 1-bromopropene is shown to be possible
through a transition state represented by the distonic ion,
(BrHCCH2CH2.)-Br-+, lying just below the dissociation limit of the
allyl bromide molecular ion. Studies based on ion/molecule reactivity
of C3H5Br.+ ions generated from allyl bromide and 1-bromopropene with
ammonia, methanol, allyl bromide, and charge transfer reactions
strongly suggest that a small fraction of the molecular ions of allyl
bromide isomerize to the 1-bromopropene molecular ion as predicted by
the calculation. These experiments cannot establish unequivocally
whether the allyl bromide molecular ions retain the structure of the
parent molecules as predicted by the calculations or undergo
ion/molecule reactions mediated by a bromonium type complex. Charge
transfer experiments also suggest the adiabatic ionization energy of
allyl bromide to be 9.83 +/- 0.07 eV.
C1 UNIV SAO PAULO,INST QUIM,BR-05599970 SAO PAULO,BRAZIL.
CR BERMAN DW, 1979, J AM CHEM SOC, V101, P1239
BIERI G, 1981, J ELECTRON SPECTROSC, V23, P281
BIERI G, 1982, J ELECTRON SPECTRY R, V27, P129
BLANCHETTE MC, 1987, ORG MASS SPECTROM, V22, P701
BOWEN RD, 1991, ACCOUNTS CHEM RES, V24, P364
BOWERS MT, 1980, J AM CHEM SOC, V102, P4830
BOYS SF, 1970, MOL PHYS, V19, P553
BURGERS PC, 1983, ORG MASS SPECTROM, V18, P596
BUSCH KL, 1988, MASS SPECTROMETRY MA
CARRUPT PA, 1991, INT J MASS SPECTROM, V110, R1
CUSTODIO R, 1992, CAN J CHEM, V70, P580
CUSTODIO R, 1992, INT J QUANTUM CHEM, V42, P411
CUSTODIO R, 1993, J MOL STRUCT THEOCHE, V281, P75
DUNNING TH, 1977, METHODS ELECTRONIC S, CH1
DURIG JR, 1980, J PHYS CHEM-US, V94, P3543
FOX T, 1996, J PHYS CHEM-US, V100, P2950
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
GAUMANN T, 1990, HELV CHIM ACTA, V73, P1215
GAUMANN T, 1990, HELV CHIM ACTA, V73, P2218
GAUMANN T, 1991, J AM SOC MASS SPECTR, V2, P372
GIROLDO T, UNPUB
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
HALGREN TA, 1977, CHEM PHYS LETT, V49, P225
HAMILTON TP, 1990, J AM CHEM SOC, V112, P8260
HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
HECK AJR, 1995, J AM SOC MASS SPECTR, V6, P11
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HOLMES JL, COMMUNICATION
HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
HOLMES JL, 1989, MASS SPECTROM REV, V8, P513
HONOVICH JP, 1985, INT J MASS SPECTROM, V42, P33
HUDSON CE, 1995, J AM SOC MASS SPECTR, V6, P1037
ISOLANI PC, 1992, QUIM NOVA, V15, P351
LAY JO, 1983, J AM CHEM SOC, V105, P3445
LIAS SG, 1976, INT J CHEM KINET, V8, P725
LIAS SG, 1978, CHEM PHYS LETT, V54, P147
LIAS SG, 1978, J AM CHEM SOC, V100, P6027
LIAS SG, 1984, J PHYS CHEM REF DATA, V13, P695
LIAS SG, 1994, NIST STANDARD REFERE
MAYER I, 1992, CHEM PHYS LETT, V191, P497
MCADOO DJ, 1993, ACCOUNTS CHEM RES, V26, P295
MCLAFFERTY FW, 1962, ANAL CHEM, V34, P2
MEOTNER M, 1976, CHEM PHYS LETT, V4, P484
MINES GW, 1973, SPECTROCHIM ACTA A, V29, P1377
MORGON NH, 1995, CHEM PHYS LETT, V235, P436
MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
NAGY PI, 1995, J CHEM PHYS, V102, P6812
RADOM L, 1992, INT J MASS SPECTROM, V118, P339
REYNOLDS CH, 1992, J AM CHEM SOC, V114, P8676
RIVEROS JM, 1983, INT J MASS SPECTROM, V47, P183
RIVEROS JM, 1985, ADV PHYS ORG CHEM, V21, P197
RIVEROS JM, 1991, RAPID COMMUN MASS SP, V5, P387
SCHEI H, 1982, J MOL STRUCT, V17, P269
SEVILLA MD, 1995, J PHYS CHEM-US, V99, P1060
SHALER TA, 1994, J AM CHEM SOC, V116, P9222
SKANCKE A, 1995, J PHYS CHEM-US, V99, P13886
STIRK KM, 1992, CHEM REV, V92, P1649
STIRK KM, 1992, J AM CHEM SOC, V114, P8604
STIRK KM, 1994, INT J MASS SPECTROM, V130, P187
TERLOUW JK, 1987, ANGEW CHEM INT EDIT, V26, P805
TRAEGER JC, 1984, INT J MASS SPECTROM, V58, P259
VANTILBORG MWEM, 1983, INT J MASS SPECTROM, V54, P299
WADT WR, 1985, J CHEM PHYS, V82, P284
WESDEMIOTIS C, 1987, CHEM REV, V87, P485
WORRELL CW, 1974, J ELECTRON SPECTROSC, V3, P359
XANTHEAS SS, 1996, J PHYS CHEM-US, V100, P3989
YATES BF, 1986, TETRAHEDRON, V42, P6225
NR 67
TC 10
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD NOV 14
PY 1996
VL 100
IS 46
BP 18048
EP 18056
PG 9
SC Chemistry, Physical
GA VT708
UT ISI:A1996VT70800008
ER
PT J
AU Araujo, RCMU
Ramos, MN
TI An ab initio study of the molecular properties of the acetylene-HX
hydrogen complexes
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE ab initio calculation; acetylene; hydrogen bonding; infrared; molecular
complex
ID VANDERWAALS MOLECULES; ROTATIONAL SPECTRUM; ATOMIC CHARGES; GAS-PHASE;
ABINITIO; INTENSITIES; DIMER; HCL; HF
AB MP2/6-311++G** ab initio molecular orbital calculations indicate that
larger Delta Q(corr) intermolecular charge transfer values are
associated with stronger hydrogen bonds in the acetylene-HX complexes
where X is F, Cl CN, NC or CCH. The MP2/6-311++G** H-bond lengths are
in very good agreement with the corresponding experimental values.
The H-X stretching frequency is shifted downward upon H-bond formation.
Its displacement shows an excellent linear correlation with the
intermolecular charge transfer, in agreement with the experimental
behaviour previously observed in such complexes. As expected, the more
pronounced effect on the IR intensities occurs with the H-X stretching
intensity, and it is much enhanced after complexation owing to the
charge-flux term.
The new low-frequency vibrational modes arising from complexation show
several interesting features and their normal modes are schematically
described herein.
C1 UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50739901 RECIFE,PE,BRAZIL.
RP Araujo, RCMU, UNIV FED PARAIBA,DEPT QUIM,BR-58036300 JOAO
PESSOA,PARAIBA,BRAZIL.
CR ALDRICH PD, 1983, J CHEM PHYS, V78, P3521
ARAUJO RCMU, 1995, SPECTROCHIM ACTA A, V51, P821
BOYS SF, 1970, MOL PHYS, V19, P553
BUCKINGHAM AD, 1986, INT REV PHYS CHEM, V5, P107
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
CRAW JS, 1991, SPECTROCHIM ACTA A, V47, P69
DELBENE JE, 1992, INT J QUANTUM CHEM Q, V26, P527
FRASER GT, 1988, J CHEM PHYS, V89, P6028
FRISCH MJ, 1992, GAUSSIAN 92 GAUSS IN
GUSSONI M, 1984, J MOL STRUCT, V113, P323
KESTNER NR, 1968, J CHEM PHYS, V48, P252
KING WT, 1976, J PHYS CHEM-US, V80, P2521
LEGON AC, 1980, P ROY SOC LOND A MAT, V370, P213
LEGON AC, 1981, J CHEM PHYS, V75, P625
LEGON AC, 1986, CHEM REV, V86, P635
MCDONALD SA, 1980, J AM CHEM SOC, V102, P2892
POPLE JA, 1982, CHEM PHYS LETT, V91, P185
POPLE JA, 1983, J CHEM PHYS, V78, P4063
RAMOS MN, 1988, CHEM PHYS LETT, V151, P397
RAMOS MN, 1991, J MOL STRUCT, V248, P281
READ WG, 1982, J CHEM PHYS, V76, P2238
SVEIN S, 1993, J CHEM PHYS, V98, P2170
TANG TH, 1990, J MOL STRUCT THEOCHE, V207, P319
TOSTES JGR, 1987, J PHYS CHEM-US, V91, P3157
NR 24
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD AUG 26
PY 1996
VL 366
IS 3
BP 233
EP 240
PG 8
SC Chemistry, Physical
GA VP836
UT ISI:A1996VP83600009
ER
PT J
AU Sorrilha, AEPM
Gozzo, FC
Pimpim, RS
Eberlin, MN
TI Multiple stage pentaquadrupole mass spectrometry for generation and
characterization of gas-phase ionic species. The case of the
PyC(2)H(5)(+center dot) isomers
SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY
LA English
DT Article
ID DISTONIC RADICAL CATIONS; MOLECULAR-ORBITAL METHODS; REACTIVE
COLLISIONS; BASIS SETS; CHEMISTRY; IDENTIFICATION; AMMONIA; OXIDE;
DERIVATIVES; INSTRUMENT
AB Eleven isomers with the PyC(2)H(5)(+.) composition, which include three
conventional (1-3) and eight distonic radical cations (4-11), have been
generated and in most cases successfully characterized in the gas phase
via tandem-in-space multiple-stage pentaquadrupole MS(2) and MS(3)
experiments, The three conventional radical cations,that is, the
ionized ethylpyridines C2H5-C5H4N+.(1-3), were generated via direct
70-eV electron ionization of the neutrals, whereas sequences of
chemical ionization and collision-induced dissociation (CID) or
mass-selected ion-molecule reactions were used to generate the distonic
ions H2C.-C5H4N+-CH3 (4-6), CH3-C5H4N+-CH2. (7-9), C5H5N+-CH2CH2. (10),
and C5H5N+-CH.-CH3 (11). Unique features of the low-energy (15-eV) CID
an ion-molecule reaction chemistry with the diradical oxygen molecule
of the isomers were used for their structural characterization. All the
ion-molecule reaction products of a mass-selected ion, each associated
with its corresponding CID fragments, were collected in a single
three-dimensional mass spectrum. Ab initio calculations at the
ROMP2/6-31G(d, p)//6-31G(d, p) + ZPE level of theory were performed to
estimate the energetics involved in interconversions within the
PyC(2)H(5)(+.) system, which provided theoretical support for facile 4
reversible arrow 7 interconversion evidenced in both CID and
ion-molecule reaction experiments. The ab initio spin densities for the
alpha-distonic ions 4-9 and 11 were found to be largely on the
methylene or methyne formal radical sites, which thus ruled out
substantial odd-spin delocalization throughout the neighboring pyridine
ring. However, only 8 and 9 (and 10) react extensively with oxygen by
radical coupling, hence high spin densities on the radical site of the
distonic ions do not necessarily lead to radical coupling reaction with
oxygen. The very typical ''spatially separated'' ab initio charge and
spin densities of 4-11 were used to classify them as distonic ions,
whereas 1-3 show, as expected, ''localized'' electronic structures
characteristic of conventional radical ions. (C) 1996 American Society
for Mass Spectrometry
C1 STATE UNIV CAMPINAS,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR *MINN SUP CTR INC, 1993, XMOL VERS 1 3 1
BATEMAN RH, 1992, INT J MASS SPECTROM, V115, P205
BEASLEY BJ, 1995, J MASS SPECTROM, V30, P384
BJORNHOLM T, 1988, J AM CHEM SOC, V110, P3862
BORTOLINI O, 1993, ORG MASS SPECTROM, V28, P1313
BOUCHOUX G, 1988, MASS SPECTROM REV, V7, P203
BOUMA WJ, 1980, ADV MASS SPECTROM A, V8, P178
BOWERS MT, 1979, GAS PHASE ION CHEM
BUSH KL, 1989, MASS SPECTROMETRY MA
CAREY FA, 1984, ADV ORGANIC CHEM
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
COOKS RG, 1979, COLLISION SPECTROSCO
DEKOSTER CG, 1990, INT J MASS SPECTROM, V98, P178
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P69
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
FETTEROLF DD, 1984, ORG MASS SPECTROM, V19, P104
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1995, GAUSSIAN94
GLENDENING ED, NBO VERSION 3 1
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GOZZO FC, 1993, P 41 ASMS C MASS SPE, A974
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
GOZZO FC, 1996, J CHEM SOC PERK APR, P587
GROSS ML, 1972, ANAL CHEM, V44, P974
GROSS ML, 1973, J AM CHEM SOC, V93, P1267
HAMMERUM S, 1988, MASS SPECTROM REV, V7, P123
HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
HEATH TG, 1991, J AM SOC MASS SPECTR, V2, P270
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOLMES JL, 1985, ORG MASS SPECTROM, V20, P169
JULIANO VF, 1996, ANAL CHEM, V68, P1328
KASCHERES C, 1988, ANAL CHIM ACTA, P223
KAUFFMANN T, 1962, CHEM BER, V95, P949
KENTTAMAA HI, 1989, J AM CHEM SOC, V111, P4122
KENTTAMAA HI, 1994, ORG MASS SPECTROM, V29, P1
KINTER MT, 1986, J AM CHEM SOC, V108, P1797
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
LARSEN E, 1978, ORG MASS SPECTROM, V13, P417
LAY JO, 1983, J AM CHEM SOC, V105, P3445
LEVSEN K, 1983, MASS SPECTROM REV, V2, P77
LEWIS ES, 1992, J AM CHEM SOC, V84, P3847
LEWIS GN, 1916, J AM CHEM SOC, V38, P762
MABUD MA, 1987, J AM CHEM SOC, V109, P7597
MALEKNIA S, 1991, J AM SOC MASS SPECTR, V2, P212
MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
MCLAFFERTY FW, 1993, INTERPRETATION MASS
MOLLER C, 1934, PHYS REV, V46, P618
PORTER QN, 1985, MASS SPECTROMETRY HE, P633
RADOM L, 1984, PURE APPL CHEM, V56, P1831
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SCHWARTZ JC, 1990, INT J MASS SPECTROM, V101, P1
SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
SIMONETTA M, 1968, STRUCTURAL CHEM MOL, P769
STALEY RH, 1974, J AM CHEM SOC, V96, P1260
STIRK KM, 1992, CHEM REV, P92
VAIRAMANI M, 1990, MASS SPECTROM REV, V9, P235
VANDEGUCHTE WJ, 1990, ORG MASS SPECTROM, V25, P309
VANDESANDE CC, 1975, J AM CHEM SOC, V97, P4613
WESDEMIOTIS C, 1991, ORG MASS SPECTROM, V26, P671
WESTMORE JB, 1986, MASS SPECTROM REV, V5, P381
WITTNEBEN D, 1990, INT J MASS SPECTROM, V100, P545
WRONKA J, 1984, J AM CHEM SOC, V106, P67
WYSOCKI VH, 1990, J AM CHEM SOC, V112, P5110
YATES BF, 1984, J AM CHEM SOC, V106, P5805
YATES BF, 1986, TETRAHEDRON, V42, P6225
YU SJ, 1993, J AM CHEM SOC, V115, P9676
YU SJ, 1993, J AM SOC MASS SPECTR, V4, P117
NR 71
TC 15
PU ELSEVIER SCIENCE INC
PI NEW YORK
PA 655 AVENUE OF THE AMERICAS, NEW YORK, NY 10010
SN 1044-0305
J9 J AMER SOC MASS SPECTROM
JI J. Am. Soc. Mass Spectrom.
PD NOV
PY 1996
VL 7
IS 11
BP 1126
EP 1137
PG 12
SC Chemistry, Analytical; Chemistry, Physical; Spectroscopy
GA VP553
UT ISI:A1996VP55300006
ER
PT J
AU Silva, CR
Reilly, JP
TI Theoretical calculations on excited electronic states of benzaldehyde
and observation of the S-2<-S-0 jet-cooled spectrum
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID PLANE VIBRATIONAL MODES; BAND SYSTEM; ABSORPTION-SPECTRA;
CARBONYL-COMPOUNDS; MASS-SPECTROMETRY; SUPERSONIC JETS; TRIPLET-STATES;
GAS-PHASE; IONIZATION; PHOSPHORESCENCE
AB The S-2(pi pi*)<--S-0 spectrum of jet-cooled benzaldehyde has been
recorded by laser ionization. The O-0(0) band has been located at 35
191 cm(-1). Ten fundamental vibrations have been assigned following a
vibrational analysis assisted by theoretical calculations. Ab initio
molecular orbital methods have been used to examine the electronically
excited states of benzaldehyde. On pi*<--pi excitation the primary
geometric distortions are in the formyl group, while on pi*<--pi
excitation these are mainly in the aromatic ring. Vibrational
frequencies were found to be in reasonable agreement with the
experimental data for the states studied (S-0, S-1(n pi*), S-2(pi pi*),
and T(n pi*)), and the calculations provided a useful guide in
assigning the observed excited state fundamentals.
C1 INDIANA UNIV,DEPT CHEM,BLOOMINGTON,IN 47405.
UNIV FED RIO DE JANEIRO,DEPT FISICOQUIM,INST QUIM,BR-21949900 RIO JANEIRO,BRAZIL.
CR ABE H, 1984, CHEM PHYS LETT, V109, P217
ALMASY F, 1933, J CHIM PHYS PCB, V30, P528
ALMASY F, 1933, J CHIM PHYS PCB, V30, P634
ANTONOV VS, 1981, APPL PHYS, V24, P89
BERGER M, 1973, J AM CHEM SOC, V95, P1717
BIRON M, 1985, CHEM PHYS LETT, V116, P250
BIST HD, 1966, J MOL SPECTROSC, V21, P76
BIST HD, 1967, J MOL SPECTROSC, V24, P413
BIST HD, 1970, APPL SPECTROSC, V24, P292
BOCK CW, 1985, J MOL STRUCT THEOCHE, V122, P155
BOCK CW, 1987, J PHYS CHEM-US, V91, P6120
BRAND JCD, 1966, J MOL SPECTROSC, V20, P359
BRUHLMANN U, 1983, CHEM PHYS, V81, P439
COLBY SM, 1994, INT J MASS SPECTROM, V131, P125
COUSSENS B, 1992, J MOL STRUCT THEOCHE, V259, P331
DAVIDSON ER, 1992, CHEM PHYS LETT, V197, P123
ELSTON HJ, 1993, J PHYS CHEM-US, V97, P5506
FORESMAN JB, 1992, J PHYS CHEM-US, V96, P135
FORESMAN JB, 1993, EXPLORING CHEM ELECT
FRISCH MJ, 1992, GAUSSIAN 92
GARG SN, 1951, J SCI RES BANARAS, V2, P153
GARRIGOULAGRANG.C, 1961, J CHIM PHYS PCB, V58, P559
GILBERT A, 1991, ESSENTIALS MOL PHOTO
GOODMAN L, 1972, MOL PHOTOCHEM, V4, P369
GREEN JHS, 1976, SPECTROCHIM ACTA PT, V32, P1265
HADAD CM, 1993, J PHYS CHEM-US, V97, P4293
HARMONY MD, 1979, J PHYS CHEM REF DATA, V8, P619
HAYASHI H, 1974, MOL PHYS, V27, P969
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HIRATA Y, 1980, J CHEM PHYS, V72, P5505
HOLLAS JM, 1963, SPECTROCHIM ACTA, V19, P1425
HOLLAS JM, 1968, J CHEM PHYS, V49, P1745
HOLLAS JM, 1973, CHEM PHYS, V1, P385
HOLLAS JM, 1973, J MOL SPECTROSC CHEM, V1, P62
HOLLAS JM, 1978, J MOL SPECTROSC, V73, P240
HOPKINS JB, 1980, J CHEM PHYS, V72, P5039
HUBBARD LM, 1981, J AM CHEM SOC, V103, P3313
IIJIMA T, 1969, B CHEM SOC JPN, V42, P2159
IMANISHI S, 1951, J CHEM PHYS, V19, P389
IMANISHI S, 1952, B CHEM SOC JPN, V25, P150
INUZUKA K, 1965, B CHEM SOC JPN, V38, P1055
ITO M, 1994, DYNAMICS EXCITED MOL, CH4
ITOH T, 1988, CHEM PHYS LETT, V151, P166
JAIN YS, 1973, J MOL SPECTROSC, V47, P126
KAKAR RK, 1970, J CHEM PHYS, V52, P3803
KIMURA K, 1965, THEOR CHIM ACTA, V3, P164
KING GW, 1971, J MOL SPECTROSC, V37, P543
KOYANAGI M, 1973, CHEM P LETT, V21, P1
KOYANAGI M, 1979, CHEM PHYS, V39, P237
LEOPOLD DG, 1981, J CHEM PHYS, V75, P4758
LIN CT, 1971, J MOL SPECTROM, V37, P280
LIPP ED, 1981, J MOL SPECTROSC, V87, P242
LOMBARDI JR, 1976, J CHEM PHYS, V65, P2357
LONG SR, 1983, J CHEM PHYS, V78, P3341
MULLIKEN RS, 1955, J CHEM PHYS, V23, P1997
OHMORI N, 1988, J PHYS CHEM-US, V92, P1086
OLMSTED J, 1971, J MOL SPECTROSC, V40, P71
OPSAL RB, 1985, ANAL CHEM, V57, P1884
OTIS CE, 1980, REV SCI INSTRUM, V51, P1128
PEDLEY JB, 1986, THERMOCHEMICAL DATA
PENNER GH, 1987, J MOL STRUCT THEOCHE, V152, P201
POLEVOY AV, 1984, KHIM VYS ENERG, V18, P195
POLEVOY AV, 1987, KHIM FIZ, V6, P620
POLEVOY AV, 1990, SOV J CHEM PHYS, V6, P1157
POPLE JA, 1981, INT J QUANTUM CHEM S, V15, P269
PRILESHAJEWA N, 1935, ACTA PHYSICOCHIM URS, V3, P195
REINSCH M, 1990, J PHYS ORG CHEM, V3, P81
RIDLEY JE, 1979, J MOL SPECTROSC, V76, P71
ROBINSON GW, 1954, J CHEM PHYS, V22, P1384
ROSENSTOCK HM, 1977, J PHYS CHEM REF D S1, V6
SCHAEFER T, 1982, J MOL STRUCT THEOCHE, V89, P93
SCHERER JR, 1963, SPECTROCHIM ACTA, V19, P601
SCHERER JR, 1965, SPECTROCHIM ACTA, V21, P321
SCHULER H, 1950, Z NATURFORSCH, V5, P448
SELISKAR CJ, 1978, CHEM PHYS LETT, V59, P47
SHAH AK, 1978, SPECTROCHIM ACTA A, V34, P749
SILVA CR, IN PRESS
SILVA CR, 1996, THESIS INDIANA U
SMOLAREK J, 1972, J MOL SPECTROSC, V43, P416
SNEH O, 1991, J PHYS CHEM-US, V95, P7154
STOCKBURGER M, 1962, Z PHYS CHEM FRANKFUR, V31, P350
STOICHEFF BP, 1954, CAN J PHYS, V32, P339
TAKAGI K, 1963, J PHYS SOC JPN, V18, P1174
THAKUR SN, 1977, INDIAN J PHYS, V51, P184
VARSANYI G, 1969, VIBRATIONAL SPECTRA
VILLA E, 1988, CHEM PHYS LETT, V147, P43
WALSH AD, 1946, T FARADAY SOC, V42, P62
WALSH AD, 1953, J CHEM SOC, P2306
WHIFFEN DH, 1956, J CHEM SOC, P1350
WIBERG KB, 1984, J PHYS CHEM-US, V88, P4723
WILSON EB, 1934, PHYS REV, V45, P706
YANG JJ, 1983, J PHYS CHEM-US, V87, P2255
YANG JJ, 1985, J PHYS CHEM-US, V89, P3426
ZWARICH R, 1971, J MOL SPECTROSC, V38, P336
NR 94
TC 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD OCT 24
PY 1996
VL 100
IS 43
BP 17111
EP 17123
PG 13
SC Chemistry, Physical
GA VP261
UT ISI:A1996VP26100006
ER
PT J
AU deMelo, CP
Fonseca, TL
TI Ab initio polarizabilities of polyenic chains with conformational
defects
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID VARIATIONAL PERTURBATIONAL TREATMENT; NONLINEAR-OPTICAL PROPERTIES;
CONJUGATED CHAINS; LINEAR-POLARIZABILITIES; POLYACETYLENE; ABINITIO;
POLYMERS; HYPERPOLARIZABILITY; SOLITONS; POLYPYRROLE
AB We present an ab initio Hartree-Fock study of the electronic
polarizabilities of the C2n+1H2n+3+ (2 < n < 11) and C2nH2n+2++ (2 < n
< 15) oligomers of polyacetylene. After a complete geometry
optimization implemented through the GAUSSIAN 92 program, the
longitudinal components of the linear polarizabilities were
analytically determined and the second hyperpolarizabilities calculated
through a finite field procedure. While the first hyperpolarizabilities
of the bipolaron-like structures vanish (since inversion symmetry is
preserved), the dominant component beta(xxy) of the soliton chains was
obtained analytically. We confirm that the polarizabilities of these
polyenic oligomers are quite sensitive to the nature of the
conformational defect present.
RP deMelo, CP, UNIV FED PERNAMBUCO,DEPT FIS,BR-50670901 RECIFE,PE,BRAZIL.
CR ANDERSON T, 1994, BRAZ J PHYS, V24, P756
CHAMPAGNE B, COMMUNICATION
CHAMPAGNE B, 1992, INT J QUANTUM CHEM, V42, P1009
CRAIG GSW, 1993, J AM CHEM SOC, V115, P860
DEMELO CP, 1987, CHEM PHYS LETT, V140, P537
DEMELO CP, 1988, J CHEM PHYS, V88, P2558
DEMELO CP, 1988, J CHEM PHYS, V88, P2567
DUCASSE L, 1992, J CHEM PHYS, V97, P9389
DUCASSE L, 1993, SYNTHETIC MET, V55, P4536
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
HURST GJB, 1988, J CHEM PHYS, V89, P385
KIRTMAN B, 1995, J CHEM PHYS, V102, P5350
PRASAD PN, 1988, NONLINEAR OPTICAL EL
PRASAD PN, 1991, INTRO NONLINEAR OPTI
ROBINS KA, 1995, SYNTHETIC MET, V71, P1671
ROTH S, 1987, ADV PHYS, V36, P385
SALEM L, 1966, MOL ORBITAL THEORY C
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SKOTHEIM TA, 1986, HDB CONDUCTING POLYM, V1
TOTO JL, 1994, J CHEM PHYS, V101, P3945
TOTO JL, 1995, CHEM PHYS LETT, V245, P660
TOTO JL, 1995, J CHEM PHYS, V102, P8048
TOTO JL, 1996, J CHEM PHYS, V104, P8586
TOTO TT, 1995, CHEM PHYS LETT, V244, P59
VILLAR HO, 1988, J CHEM PHYS, V88, P1003
VILLAR HO, 1988, J CHEM PHYS, V88, P2859
VILLAR HO, 1988, PHYS REV B, V37, P2520
VILLESUZANNE A, 1992, J CHEM PHYS, V96, P495
WILLIAMS DJ, 1983, NONLINEAR OPTICAL PR
NR 29
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD OCT 11
PY 1996
VL 261
IS 1-2
BP 28
EP 34
PG 7
SC Physics, Atomic, Molecular & Chemical
GA VL879
UT ISI:A1996VL87900006
ER
PT J
AU Ornellas, FR
Iwata, S
TI Structures and energetics of new nitrogen and silicon molecules: An ab
initio study of Si2N2
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID DENSITY-FUNCTIONAL METHODS; SPECTROSCOPIC PROPERTIES; VIBRATIONAL
FREQUENCIES; INTERSTELLAR CLOUDS; DIAZASILENE SINN; HARTREE-FOCK; BOND;
CHEMISTRY; SI2H2; ENERGIES
AB New species with molecular formula Si2N2, not yet observed
experimentally, are described theoretically for the first time. Nine
different stationary points have been examined and the effects of
electronic correlation on the structural parameters, harmonic
frequencies, and relative energies are described at increasingly higher
levels of correlation treatment (MP2, MP4, CCSD(T)). The global minimum
corresponds to a linear singlet state ((1) Sigma(g)(+)) SiNNSi. At the
CCSD(T) level, the next most stable species (at 15.08 kcal/mol) has a
nonclassical tetrahedral-like structure similar to the global minimum
of Si2H2. This is followed by another local minimum with a linear
structure SiNSiN (at 20.25 kcal/mol) and by a rhomboidal-type structure
(at 21.33 kcal/mol), which is in fact a transition state connecting two
equivalent tetrahedral-like structures. Another nonclassical structure
similar to the monobridged one in the case of Si2H2 was also found to
be a local minimum (at 28.18 kcal/mol). An interconversion path from
this latter structure to the linear SiNNSi one is likely to occur via
another transition state located at about 38 kcal/mol. With the
exception of the linear isomer SiNNSi, the triplet states were found to
lie very high energetically and to correspond to unstable structures.
None of these species exhibits any appreciable amount of
silicon-silicon bonding, and the analogue of cyanogen (NCCN) NSiSiN is
unstable. The nature of the bonding in the most relevant species is
also discussed, as well the energetics of dissociation. An analysis of
the energetics and structural similarities and differences between
Si2N2, C2N2, Si2H2, and Si2C2 is also carried out. Caution must be
exercized in generalizing results at a low level of theory since they
have not been confirmed by the CCSD(T) calculations.
C1 INST MOL SCI,OKAZAKI,AICHI 444,JAPAN.
RP Ornellas, FR, UNIV SAO PAULO,DEPT QUIM FUNDAMENTAL,INST QUIM,CP
26077,BR-05599970 SAO PAULO,BRAZIL.
CR BALDRIDGE KK, 1987, ANNU REV PHYS CHEM, V38, P211
BILLY M, 1969, CR ACAD SCI C CHIM, V269, P919
BOGEY M, 1991, PHYS REV LETT, V66, P413
BOLDYREV AI, 1993, J PHYS CHEM-US, V97, P5875
BOLDYREV AI, 1994, J PHYS CHEM-US, V98, P1427
BOLTON EE, 1992, J CHEM PHYS, V97, P5586
BOTSCHWINA P, 1990, CHEM PHYS, V141, P311
BOTSCHWINA P, 1994, CHEM PHYS LETT, V225, P480
BRUNA PJ, 1984, CAN J PHYS, V62, P1508
CAI ZL, 1992, J CHEM SOC FARADAY T, V88, P1611
CARLOTTI M, 1974, CAN J PHYS, V52, P340
COLEGROVE BT, 1990, J PHYS CHEM-US, V94, P5593
CORDONNIER M, 1992, J CHEM PHYS, V97, P7984
DEKOCK RL, 1988, J CHEM PHYS, V89, P3016
DEKOCK RL, 1989, INORG CHEM, V28, P1680
DURIG JR, 1972, J CHEM PHYS, V56, P5652
ELHANINE M, 1992, J PHYS II, V2, P931
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
FROUDAKIS G, 1994, J CHEM PHYS, V101, P6790
GOLDBERG N, 1993, CHEM BER, V126, P2753
GOLDBERG N, 1994, J CHEM PHYS, V101, P2871
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GORDON MS, 1986, CHEM PHYS LETT, V126, P451
GORDON MS, 1986, MOL STRUCTURES ENERG, V1, P101
GREV RS, 1992, J CHEM PHYS, V97, P7990
HAGEN K, 1977, J AM CHEM SOC, V99, P1365
HERBST E, 1989, ASTRON ASTROPHYS, V222, P205
HUBER KP, 1979, MOL SPECTRA MOL STRU, V4
IGNATYEV IS, 1992, J PHYS CHEM-US, V96, P7632
IRAQI M, 1993, J PHYS CHEM-US, V97, P11371
ITO H, 1993, CHEM PHYS LETT, V208, P328
KAWAMATA H, IN PRESS J CHEM PHYS
KISHI R, 1994, CHEM PHYS LETT, V224, P200
KISHI R, 1996, J CHEM PHYS, V104, P8593
KRISHNAN R, 1980, J CHEM PHYS, P560
KUTZELNIGG W, 1984, ANGEW CHEM INT EDIT, V23, P272
LAMMERTSMA K, 1988, J AM CHEM SOC, V110, P5239
LANGER WD, 1990, ASTROPHYS J, V352, P123
LEMBKE RR, 1977, J AM CHEM SOC, V99, P416
LUKE BT, 1986, J AM CHEM SOC, V108, P260
MCLEAN AD, 1980, J CHEM PHYS, V72, P5639
MOLLER C, 1934, PHYS REV, V46, P618
MURRAY CW, 1993, J PHYS CHEM-US, V97, P1868
NAULIN C, 1993, CHEM PHYS LETT, V202, P452
NGUYEN MT, 1989, CHEM PHYS LETT, V157, P430
ORNELLAS FR, 1996, J PHYS CHEM-US, V100, P10919
PARISEL O, 1996, J CHEM PHYS, V104, P1979
POPLE JA, 1954, J CHEM PHYS, V22, P541
POPLE JA, 1991, J CHEM PHYS, V95, P4385
RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P479
RANKIN DW, 1990, J CHEM SOC, A1224
ROOTHAAN CCJ, 1951, REV MOD PHYS, V23, P69
SCHAEFER HF, 1982, ACCOUNTS CHEM RES, V15, P283
SCHNICK W, 1993, ANGEW CHEM INT EDIT, V32, P806
SCUSERIA GE, 1991, CHEM PHYS LETT, V176, P27
SEFYANI F, 1994, ASTROPHYS J, V434, P816
SHIMANOUCHI T, 1977, J PHYS CHEM REF DATA, V6, P993
SOMMERFELD T, 1995, J CHEM PHYS, V103, P1057
SOMMERFELD T, 1996, J CHEM PHYS, V104, P1464
SUDHAKAR PV, 1989, J PHYS CHEM-US, V93, P7289
SUNIL KK, 1990, CHEM PHYS LETT, V171, P185
TRUONG TN, 1986, J AM CHEM SOC, V108, P1775
WALTENBURG HN, 1995, CHEM REV, V95, P1589
WANG J, 1994, J PHYS CHEM-US, V98, P1844
WIBERG N, 1986, ANGEW CHEM INT EDIT, V25, P79
ZHENG C, 1986, J AM CHEM SOC, V108, P1876
NR 66
TC 12
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD OCT 3
PY 1996
VL 100
IS 40
BP 16155
EP 16161
PG 7
SC Chemistry, Physical
GA VK731
UT ISI:A1996VK73100019
ER
PT J
AU Distefano, G
DalColle, M
dePalo, M
Jones, D
Bombieri, G
DelPra, A
Olivato, PR
Mondino, MG
TI Experimental and theoretical study of the intramolecular interactions
determining the conformation of beta-carbonyl sulfoxides
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID ULTRAVIOLET PHOTOELECTRON-SPECTROSCOPY; ELECTRON TRANSMISSION
SPECTROSCOPY; MOLECULAR-PROPERTIES; IR SPECTROSCOPY; SPECTRA;
ACETOPHENONES; DERIVATIVES; ACETONES
AB Information on the geometrical and electronic structures of
alpha-methylsulfinylacetophenone, C6H5C(O)CH2S(O)CH3 2, have been
obtained from X-ray diffraction analysis, UV photoelectron spectroscopy
and ab initio 6-31G**calculations. A comparison of the results with
those obtained from the spectra and the computations on
alpha-methylthioacetophenone, C6H5C(O)CH2SCH3 1 and
alpha-methylsulfonylacetophenone, C6H5C(O)CH2SO2CH3 3, together with
previous results on; beta-keto sulfides and beta-keto sulfones
indicates that the CH2-S(O) bond in is quasi-cis to the carbonyl group
in the gas and solid phase, at variance with the other beta-carbonyl
thioderivatives which adopt a gauche conformation. Eigenvector
analysis, electron charge distribution at various atoms and/or groups
and geometric parameters indicate that the cis conformation of 2 is
stabilized by a strong non-bonded interaction between the negatively
charged carbonyl oxygen and the positively charged sulfur atom from
which it is separated by a distance (2.8-2.9 Angstrom much shorter than
the sum of the the van der Waals radii. The predominant charge transfer
interaction in 3 and related sulfones occurs in the opposite direction
(O-SO2-->C-CO). The inversion of We direction of the charge transfer
(and the change of the cis/gauche orientation of the thio group) from
sulfone to sulfoxide is associated with an increase of electron
affinity of the thio group in the latter, and could explain its smaller
thermal stability.
Ab initio 3-21G* calculations on several conformations of the
bis-thioderivatives C6H5C(O)CH(SCH3)S(O)CH3 4, C6H5C(O)CH(SR)SO(2)R (R
= Me 5 and Ph 6) and C6H5C(O)CH(SOCH3)SO2CH3 7, together with X-ray
diffraction (4, 6 and 7) and photoelectron spectroscopy (4) analyses
confirmed the cis (SOR) and gauche (SR and SO(2)R) preferred
orientation of the thio groups with respect to the carbonyl group as
observed in the monosubstituted derivatives. In 4 and 7 the S-SO atom
is about 30 degrees out of the cis plane [O(1)-C(2)C(3)].
C1 CNR,AREA RIC,ICOCEA,I-40129 BOLOGNA,ITALY.
UNIV MILAN,IST CHIM FARMACEUT,I-2013 MILAN,ITALY.
UNIV SAO PAULO,INST QUIM,BR-05508 SAO PAULO,BRAZIL.
RP Distefano, G, UNIV FERRARA,DIPARTMENTO CHIM,VIA BORSARI 46,I-44100
FERRARA,ITALY.
CR 1974, INT TABLES XRAY CRYS, V4, P101
1981, CALCULATES ANTOMIQUE
BERTHELAT JC, 1977, MOL PHYS, V33, P159
BERTHELAT JC, 1978, PSATOM MANUAL
BERTONCELLO R, 1989, J CHEM SOC P2
BOCK H, 1974, CHEM BER, V107, P2299
BONDI A, 1964, J PHYS CHEM-US, V68, P441
DALCOLLE M, 1995, J PHYS CHEM-US, V99, P15011
DISTEFANO G, 1987, J CHEM SOC P2, P1459
DISTEFANO G, 1989, J ELECTRON SPECTROSC, V49, P281
DISTEFANO G, 1991, J CHEM SOC P2, P1195
DUPUIS M, PHSONDO MODIFIED VER
FRISCH BMJ, 1992, GAUSSIAN 92
GAL JF, 1985, J CHEM SOC P2, P103
GROSSERT JS, 1984, CAN J CHEM, V62, P798
GUERRERO SA, 1983, J CHEM SOC PERK T 2, P1053
HOFFMANN R, 1971, ACCOUNTS CHEM RES, V4, P1
JOHNSON CK, 1976, 5138 ORNL
JONES D, 1994, J CHEM SOC P2, P1661
LUMBROSO H, 1989, J MOL STRUCT, V212, P113
MARTIN HD, 1986, J ELECTRON SPECTROSC, V41, P385
MODELLI A, UNPUB
MODELLI A, 1991, CHEM PHYS LETT, V181, P361
NARDELLI M, 1983, COMPUT CHEM, V7, P95
OLIVATO PR, UNPUB
OLIVATO PR, 1976, CAN J CHEM, V54, P3026
OLIVATO PR, 1984, J CHEM SOC P2, P1505
OLIVATO PR, 1985, PHOSPHORUS SULFUR, V24, P225
OLIVATO PR, 1987, PHOSPHORUS SULFUR, V33, P135
OLIVATO PR, 1990, PHOSPHORUS SULFUR, V47, P391
OLIVATO PR, 1991, PHOSPHORUS SULFUR, V59, P219
OLIVATO PR, 1992, MAGN RESON CHEM, V30, P81
OLIVATO PR, 1992, PHOSPHORUS SULFUR, V71, P107
ROSS B, 1968, RJ518 IBM RES
SHELDRICK EM, 1985, SHELX 86 CRYSTALLOGR
SHELDRICK GM, 1976, SHELX PROGRAM CRYSTA
WAGNER G, 1974, CHEM BER, V107, P68
WLADISLAW B, 1980, J CHEM SOC P2, P453
NR 38
TC 21
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK MILTON ROAD, CAMBRIDGE, CAMBS,
ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD AUG
PY 1996
IS 8
BP 1661
EP 1669
PG 9
SC Chemistry, Organic; Chemistry, Physical
GA VC214
UT ISI:A1996VC21400019
ER
PT J
AU Alejandre, J
LozadaCassou, M
Degreve, L
TI Effect of pore geometry on a confined hard sphere fluid
SO MOLECULAR PHYSICS
LA English
DT Article
ID ELECTRICAL DOUBLE-LAYER; EXTENSION HYPERNETTED-CHAIN; INTEGRAL-EQUATION
APPROACH; ORNSTEIN-ZERNIKE EQUATION; DENSITY FUNCTIONAL THEORY; 3 POINT
EXTENSION; MONTE-CARLO; PAIR CORRELATION; CHARGED WALL;
STATISTICAL-MECHANICS
AB The structure of a hard sphere fluid confined by model slit and
cylindrical pores is investigated. Results from grand canonical Monte
Carlo (GCMC) simulations and from the hypernetted chain/mean spherical
approximation (HNC/MSA) equation are reported. GCMC results are
compared with those from the HNC/MSA equation, and agreement is good.
The effect of confinement on liquids at the same chemical potentials is
that the absorption of the hard sphere fluid into the pores decreases
with increasing confinement, i.e., when going from planar to
cylindrical geometry or by narrowing the pores. The adsorption on the
pore walls has, in general, the opposite behaviour. For high bulk
concentrations and certain values of cylindrical pore diameter the
concentration profile is higher at the centre of the pore than next to
the pore wall. A very strong, but continuous, transition occurs in the
concentration profile, as a function of the cylinder's diameter. These
results could be of some interest in catalysis studies.
C1 UNIV AUTONOMA METROPOLITANA IZTAPALAPA,DEPT FIS,MEXICO CITY 09340,DF,MEXICO.
UNIV SAO PAULO,DEPT QUIM,FAC FILOSOFIA CIENCIAS & LETRAS,BR-14040 SAO PAULO,BRAZIL.
RP Alejandre, J, UNIV AUTONOMA METROPOLITANA IZTAPALAPA,DEPT QUIM,APARTADO
POSTAL 55-534,MEXICO CITY 09340,DF,MEXICO.
CR ALEJANDRE J, 1990, CHEM PHYS LETT, V175, P111
ALLEN MP, 1987, COMPUTER SIMULATION
ATTARD P, 1989, J CHEM PHYS, V91, P3072
BACQUET R, 1984, J PHYS CHEM-US, V88, P2660
BALL PC, 1988, MOL PHYS, V63, P159
BLUM L, J CHEM PHYS, V75, P5974
BLUM L, 1981, J CHEM PHYS, V74, P1902
CARNAHAN NF, 1969, J CHEM PHYS, V51, P635
CARNIE SL, 1981, J CHEM PHYS, V74, P1293
CICCOTTI G, 1990, SIMULATION LIQUIDS S
DEGREVE L, 1993, J CHEM PHYS, V98, P8905
DEGREVE L, 1995, MOL PHYS, V86, P759
EVANS R, 1992, FUNDAMENTALS INHOMOG, CH3
FELLER SE, 1993, MOL PHYS, V80, P721
FELLER SE, 1994, J COLLOID INTERF SCI, V162, P208
GONZALEZTOVAR E, 1989, J PHYS CHEM-US, V93, P3761
GONZALEZTOVAR E, 1991, J CHEM PHYS, V95, P6784
HENDERSON D, P ROY SOC LOND A MAT, V410, P409
HENDERSON D, 1976, MOL PHYS, V31, P1291
HENDERSON D, 1978, J CHEM PHYS, V69, P5441
HENDERSON D, 1979, J ELECTROANAL CH INF, V102, P315
HENDERSON D, 1995, CHEM PHYS LETT, V234, P25
HENDERSON DJ, 1992, FUNDAMENTAL INHOMOGE
HENDERSON JR, 1992, FUNDAMENTALS INHOMOG, CH2
KJELLANDER R, 1984, CHEM PHYS LETT, V112, P49
KJELLANDER R, 1988, CHEM PHYS LETT, V149, P102
LOZADACASSOU M, 1981, CHEM PHYS LETT, V81, P472
LOZADACASSOU M, 1981, J CHEM PHYS, V75, P1412
LOZADACASSOU M, 1982, J CHEM PHYS, V77, P5150
LOZADACASSOU M, 1982, J CHEM PHYS, V77, P5258
LOZADACASSOU M, 1983, J PHYS CHEM-US, V87, P3279
LOZADACASSOU M, 1984, J CHEM PHYS, V80, P3344
LOZADACASSOU M, 1990, J CHEM PHYS, V92, P1194
LOZADACASSOU M, 1990, J CHEM PHYS, V93, P1386
LOZADACASSOU M, 1996, PHYS REV E A, V53, P522
MARTINA E, 1983, CHEM PHYS LETT, V94, P205
MCQUARRIE DA, 1976, STATISTICAL MECHANIC
METROPOLIS N, 1953, J CHEM PHYS, V21, P1087
NICHOLSON D, 1982, COMPUTER SIMULATION
NIELABA P, 1985, CHEM PHYS LETT, V117, P46
OLIVARES W, 1980, J PHYS CHEM-US, V84, P863
OUTHWAITE CW, 1991, ELECTROCHIM ACTA, V36, P1747
OUTHWAITE CW, 1991, MOL PHYS, V74, P367
PLISCHKE M, 1984, J PHYS CHEM-US, V88, P6544
PLISCHKE M, 1986, P ROY SOC LOND A MAT, V404, P323
PLISCHKE M, 1989, ELECTROCHIM ACTA, V34, P1863
RICKAYZEN G, 1985, MOL PHYS, V55, P161
ROSINBERG ML, 1984, J CHEM PHYS, V81, P3700
SANCHEZSANCHEZ JE, 1992, CHEM PHYS LETT, V190, P202
SLOTH P, 1990, J CHEM PHYS, V93, P1292
SNOOK IK, 1980, J CHEM PHYS, V72, P2907
TARAZONA P, 1987, MOL PHYS, V60, P573
VALLEAU JP, 1991, J CHEM PHYS, V95, P520
WIDOM B, 1963, J CHEM PHYS, V39, P2808
WOOD WW, 1968, PHYSICS SIMPLE LIQUI, P115
YEOMANS L, 1993, J CHEM PHYS, V98, P1436
YOSHIZAWA H, 1993, J PHYS CHEM-US, V97, P11300
ZHOU Y, 1989, MOL PHYS, V68, P1265
ZHOU YQ, 1989, MOL PHYS, V66, P767
ZHOU YQ, 1989, MOL PHYS, V66, P791
NR 60
TC 5
PU TAYLOR & FRANCIS LTD
PI LONDON
PA ONE GUNDPOWDER SQUARE, LONDON, ENGLAND EC4A 3DE
SN 0026-8976
J9 MOL PHYS
JI Mol. Phys.
PD AUG 10
PY 1996
VL 88
IS 5
BP 1317
EP 1336
PG 20
SC Physics, Atomic, Molecular & Chemical
GA VB761
UT ISI:A1996VB76100013
ER
PT J
AU Pliego, JR
DeAlmeida, WB
TI Reaction paths for aqueous decomposition of CCl2
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
AB The potential energy surface (PES) for the H2O + CCl2 reaction was
investigated at the ab initio SCF and MP2 levels of theory, employing
the DZP basis set, in order to determine the mechanism of basic aqueous
decomposition of CCl2. Several possible pathways were considered,
including reactions with other H2O molecules and OH-. We have found
that the first step corresponds to insertion of CCl2 into the O-H bond
of water, resulting in the CHCl2OH species. This molecule loses HCl in
one elimination reaction catalyzed by OH-, forming ClCHO. Again, OH-
catalyzes the elimination of other HCl, resulting in CO, the
decomposition product. The first step is the slow one, and we have used
transition-state theory to estimate the rate constant for the aqueous
decomposition of CCl2, The obtained rate constant was used for building
a general picture of CHCl3, decomposition in basic aqueous solution.
The results of the present study are in agreement with experimental
observations.
C1 UNIV FED MINAS GERAIS,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BETHELL D, 1973, ORGANIC REACTIVE INT
DUNNING TH, 1977, METHODS ELECTRONIC S
FRANCISCO JS, 1993, J AM CHEM SOC, V115, P3761
GONZALEZ C, 1990, J PHYS CHEM-US, V94, P5523
HINE J, 1950, J AM CHEM SOC, V72, P2438
HINE J, 1954, J AM CHEM SOC, V76, P2688
KIRMSE W, 1964, CARBENE CHEM
PILEGO JR, 1996, CHEM PHYS LETT, V249, P136
ROBINSON EA, 1961, J CHEM SOC, P1663
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
NR 10
TC 34
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD JUL 25
PY 1996
VL 100
IS 30
BP 12410
EP 12413
PG 4
SC Chemistry, Physical
GA UY938
UT ISI:A1996UY93800041
ER
PT J
AU Mota, CJA
Esteves, PM
deAmorim, MB
TI Theoretical studies of carbocations adsorbed over a large zeolite
cluster. Implications on hydride transfer reactions
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID SHAPE-SELECTIVE CATALYSIS; HIGH-SILICA ZEOLITES; HYDROGEN-TRANSFER;
HYDROXYL-GROUPS; CARBENIUM IONS; DEUTERIUM EXCHANGE; SN2-SN1 SPECTRUM;
MOLECULAR-MODELS; CARBONIUM-IONS; HY ZEOLITES
AB A semiempirical MNDO study of simple alkylcarbenium ions (Me, Et, i-Pr,
t-Bu) on a large and more realistic cluster, comprising a hexagonal
prism and a sodalite unit (3) and simulating different adsorption sites
on zeolite Y, was carried out. On going from H to bulky alkyl groups,
there is an increasing tendency to stretch the Al-O bond length and to
decrease the Si-O-Al bond angle. Nevertheless, the proton and the alkyl
groups are covalently bonded to the framework, as expressed by the high
bond orders, near unity. Adsorption on site O-4, located in the
sodalite, is energetically disfavored by 2-4 kcal/mol relative to
adsorption on site O-1, in the hexagonal prism. The MNDO calculations
on cluster 3 showed a reasonable agreement with ab initio calculations
of carbenium ions adsorbed on smaller clusters 1 and 2, except when
adsorption on O-4 is considered, indicating that steric strain, due to
the crystalline structure, plays an important role. Adsorption on
Si-O-Si sites is about 45 kcal/mol higher in energy than the
correspondent adsorption on Si-O-Al sites. This result may explain the
observed experimental dependence of hydride transfer reactions with the
structural Si/Al ratio, also suggesting the participation of the
zeolite structure in the transition state.
C1 UNIV FED RIO DE JANEIRO,INST QUIM,BR-21949900 RIO JANEIRO,BRAZIL.
UNIV FED RIO DE JANEIRO,NPPN,BR-21941540 RIO JANEIRO,BRAZIL.
RP Mota, CJA, PETROBRAS CENPES,ILHA FUNDAO Q 7,BR-21949900 RIO
JANEIRO,BRAZIL.
CR ABBOT J, 1988, J CATAL, V113, P353
ABBOT J, 1989, J CATAL, V115, P1
ARONSON MT, 1989, J AM CHEM SOC, V111, P840
BATES S, 1994, J MOL STRUCT THEOCHE, V306, P57
BENTLEY TW, 1976, J AM CHEM SOC, V98, P7658
BENTLEY TW, 1981, J AM CHEM SOC, V103, P5466
BHATIA S, 1989, CATAL REV, V31, P431
BIBBY DM, 1992, APPL CATAL A-GEN, V93, P1
BITTENCOURT R, IN PRESS
BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
CATLOW CRA, 1992, MODELLING STRUCTURE
CHANG CD, 1983, HYDROCARBONS METHANO
CHEN NY, 1986, CATAL REV, V28, P185
CHENG WC, 1989, J CATAL, V119, P354
CORMA A, 1985, J CATAL, V93, P30
CORMA A, 1985, J CATAL, V94, P445
CORMA A, 1989, APPL CATAL, V47, P125
CORMA A, 1989, J CATAL, V115, P551
CORMA A, 1989, ZEOLITES FACTS FIGUR, P49
CORMA A, 1994, J CATAL, V145, P171
CSICSERY SM, 1984, ZEOLITES, V4, P202
CZJZEK M, 1992, J PHYS CHEM-US, V96, P1535
DAVIS ME, 1991, IND ENG CHEM RES, V30, P1675
DAVIS ME, 1993, ACCOUNTS CHEM RES, V26, P111
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DUBSKY J, 1979, J MOL CATAL, V6, P321
DWYER J, 1991, J CHEM SOC FARADAY T, V87, P783
EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
FORSTER H, 1987, ZEOLITES, V7, P508
GALE JD, 1991, J CHEM SOC CHEM COMM, P178
GORB LG, 1991, KINET KATAL, V32, P1114
HABIB ET, 1990, HYDROCARBON CHEM FCC, P1
HAW JF, 1989, J AM CHEM SOC, V111, P2052
HAW JF, 1994, J AM CHEM SOC, V116, P7308
HOSER H, 1987, APPL CATAL, V30, P11
JACQUINOT E, 1990, APPL CATAL, V60, P101
JIRAK Z, 1980, J PHYS CHEM SOLIDS, V41, P1089
KASSAB E, 1993, J PHYS CHEM-US, V97, P9034
KAZANSKY VB, 1989, J CATAL, V119, P108
KAZANSKY VB, 1991, ACCOUNTS CHEM RES, V24, P379
KAZANSKY VB, 1992, J MOL CATAL, V74, P257
KAZANSKY VB, 1994, CATAL LETT, V28, P211
KIRICSI I, 1988, J CHEM SOC F1, V82, P491
KRAMER GJ, 1991, J AM CHEM SOC, V113, P6435
KRAMER GJ, 1993, J AM CHEM SOC, V115, P2887
KRAMER GJ, 1993, NATURE, V363, P529
KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
KUSTOV LM, 1981, J CATAL, V72, P149
LECHER JA, 1994, CATAL LETT, V27, P91
LUKYANOV DB, 1994, J CATAL, V145, P54
LUKYANOV DB, 1994, J CATAL, V146, P87
MEIER WM, 1987, ATLAS ZEOLITE STRUCT
MORTIER WJ, 1968, J CATAL, V45, P367
MOTA CJA, IN PRESS
MOTA CJA, 1991, J CHEM SOC CHEM COMM, P171
MOTA CJA, 1992, J AM CHEM SOC, V114, P1121
MOTA CJA, 1993, NEW FRONTIERS CATALY, P463
MOTA CJA, 1994, J CHEM SOC FARADAY T, V90, P2297
MOTA CJA, 1995, IND ENG CHEM RES, V34, P4326
OLSON DH, 1969, J CATAL, V13, P221
OMALLEY PJ, 1988, J PHYS CHEM-US, V92, P3005
OZIN GA, 1990, J PHYS CHEM-US, V94, P8289
PINE LA, 1984, J CATAL, V85, P466
REDONDO A, 1993, J PHYS CHEM-US, V97, P11754
RICHARDSON BR, 1990, J AM CHEM SOC, V112, P2886
ROCHETTES BM, 1990, J APPL CATAL, V58, P35
SAUER J, 1989, CHEM REV, V89, P199
SAUER J, 1990, CHEM PHYS LETT, V173, P26
SCHERZER J, 1989, CATAL REV SCI ENG, V31, P215
SCHRODER KP, 1992, CHEM PHYS LETT, V188, P320
SENCHENYA IN, 1991, CATAL LETT, V8, P317
SENCHENYA IN, 1991, CATALYSIS ADSORPTION, P653
SHANNO DF, 1985, J OPTIMIZ THEORY APP, V46, P87
SHERTUKDE PV, 1992, J CATAL, V136, P446
SOMMER J, 1994, J AM CHEM SOC, V116, P5491
SOMMER J, 1995, J AM CHEM SOC, V117, P1135
STEPANOV AG, 1992, CATAL LETT, V13, P407
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
SZOSTAK R, 1991, STUD SURF SCI CATAL, V58, P153
TEUNISSEN EH, 1992, J PHYS CHEM-US, V96, P366
TEUNISSEN EH, 1993, J PHYS CHEM-US, V97, P203
VANSANTEN RA, 1994, ADV ZEOLITE SCI APPL, P273
VANSANTEN RA, 1995, CHEM REV, V95, P637
VAUGHAN DEW, 1988, CHEM ENG PROGR FEB, P25
VENUTO PB, 1979, FLUID CATALYTIC CRAC
VIRUELAMARTIN P, 1993, J PHYS CHEM-US, V97, P13713
ZARDKOOHI M, 1987, J AM CHEM SOC, V109, P5278
ZHAO YX, 1993, J CATAL, V140, P243
NR 90
TC 23
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD JUL 25
PY 1996
VL 100
IS 30
BP 12418
EP 12423
PG 6
SC Chemistry, Physical
GA UY938
UT ISI:A1996UY93800043
ER
PT J
AU Venezuela, PPM
Fazzio, A
TI Ab initio study of N impurity in amorphous germanium
SO PHYSICAL REVIEW LETTERS
LA English
DT Article
ID ELECTRONIC-STRUCTURE; MOLECULAR-DYNAMICS; SILICON; NITROGEN; SYSTEMS;
PSEUDOPOTENTIALS; SEMICONDUCTORS; CARBON; STATE; MODEL
AB The electronic and structural properties of N-atom-doped amorphous
germanium are obtained by ab initio, total energy calculations. We find
that the 3-fold coordinated N impurity (N-3) and the 4-fold coordinated
N impurity (N-4) present negative effective Coulombic interactions.
Analysis of these results shows that the electrical effect of n-type
doping due to N atoms is not related only to chemical equilibrium
between N-3 and N-4.
RP Venezuela, PPM, UNIV SAO PAULO,INST FIS,CP 66318,BR-05389970 SAO
PAULO,SP,BRAZIL.
CR ANDERSON PW, 1975, PHYS REV LETT, V34, P953
BACHELET GB, 1982, PHYS REV B, V26, P4199
BARYAM Y, 1986, PHYS REV LETT, V56, P2203
BARYAM Y, 1986, PHYS REV LETT, V57, P467
BROWER KL, 1982, PHYS REV B, V26, P6040
BYER W, 1984, SEMICONDUCTORS SEM C, V21, CH8
CAR R, 1985, PHYS REV LETT, V55, P2471
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CHAMBOULEYRON I, 1993, APPL PHYS LETT, V62, P58
CUNHA C, 1993, PHYS REV B, V48, P17806
ELLIOTT SR, 1993, P 15 INT C AM SEM, V164
ETHERINGTON G, 1982, J NONCRYST SOLIDS, V48, P265
HOHENBERG P, 1964, PHYS REV, V136, B864
KELIRES PC, 1993, PHYS REV B, V47, P1829
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KOHN W, 1965, PHYS REV, V140, A1133
LEE CH, 1994, PHYS REV B, V49, P11448
PERDEW JP, 1981, PHYS REV B, V23, P5048
SCHULTZ PA, 1986, PHYS REV B, V34, P2532
SPEAR WE, 1975, SOLID STATE COMMUN, V17, P1193
STICH I, 1991, PHYS REV B, V44, P11092
STREET RA, 1982, PHYS REV LETT, V49, P1187
TAKANO Y, 1983, J NON-CRYST SOLIDS, V55, P325
TERSOFF J, 1989, PHYS REV B, V39, P5566
TERSOFF J, 1994, PHYS REV B, V49, P16349
ZANATTA AR, 1992, PHYS REV B, V46, P2119
ZHOU JH, 1993, J APPL PHYS, V74, P5086
NR 27
TC 7
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0031-9007
J9 PHYS REV LETT
JI Phys. Rev. Lett.
PD JUL 15
PY 1996
VL 77
IS 3
BP 546
EP 549
PG 4
SC Physics, Multidisciplinary
GA UW791
UT ISI:A1996UW79100034
ER
PT J
AU Ferraz, AC
daSilva, RC
TI Atomic and electronic structures of Te adsorbed on GaAs(100) and
InAs(100)
SO SURFACE SCIENCE
LA English
DT Article
DE density functional calculations; gallium arsenide; indium arsenide;
tellurium
ID SURFACES; GAAS; GROWTH
AB We report results of density functional theory total energy and force
calculations of Te covered GaAs- and InAs(100)-(2 X 1). The adsorption
is studied for the coverages of 1/2 and 1 monolayer of Te. The atomic
positions of the adsorbate and the three outermost substrate layers are
fully relaxed and the equilibrium surface geometries are given. We
discuss how the adsorption modifies the dean surface geometry and the
electronic structures.
RP Ferraz, AC, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05389970 SAO
PAULO,BRAZIL.
CR CAR R, 1985, PHYS REV LETT, V55, P2471
CEPERLEY DM, 1980, PHYS REV LETT, V45, P566
CIBERT J, 1989, PHYS REV B, V39, P12047
COHENSOLAL G, 1989, APPL PHYS LETT, V49, P1519
COPEL M, 1989, PHYS REV LETT, V63, P632
ETGENS VH, 1993, PHYS REV B, V47, P10607
FELDMAN RD, 1986, APPL PHYS LETT, V48, P248
GOBIL Y, 1989, SURF SCI, V211, P969
GONZE X, 1991, PHYS REV B, V44, P8503
GRANDJEAN N, 1992, PHYS REV LETT, V69, P799
KIM TW, 1994, APPL PHYS LETT, V64, P2526
MIWA RH, IN PRESS
MONCKHORST HJ, 1976, PHYS REV B, V13, P5188
NEUGEBAUER J, 1992, PHYS REV B, V46, P16067
OHNO T, 1991, SURF SCI, V255, P229
PERDEW JP, 1981, PHYS REV B, V23, P5048
QIAN GX, 1988, PHYS REV B, V38, P7649
RODRIGUES WN, 1995, IN PRESS SOLID STATE
SPINDT CJ, 1989, APPL PHYS LETT, V55, P861
NR 19
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0039-6028
J9 SURFACE SCI
JI Surf. Sci.
PD MAY 15
PY 1996
VL 352
BP 379
EP 382
PG 4
SC Chemistry, Physical
GA UV254
UT ISI:A1996UV25400072
ER
PT J
AU Ornellas, FR
Iwata, S
TI Ab initio studies of silicon and nitrogen clusters: Cyclic or linear
Si2N?
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS;
PERTURBATION-THEORY; DERIVATIVES; ABINITIO; SPECTRUM; STATES; BOND;
SICO; SINN
AB Theoretical studies are carried out on the doublet and quartet states
of three isomeric forms of the species Si2N. Correlation effects on the
structural parameters, harmonic frequencies, and relative energies are
investigated at increasingly higher levels of theory (MP2, MP4, and
CCSD(T)) and basis sets (DZP, cc-pVTZ-f, and cc-pVTZ). At the highest
level of theory (CCSD(T)/cc-pVTZ) all three isomers are found to be
thermodynamically stable species with the symmetric linear structure
(SiNSi) as the global minimum; a symmetric cyclic structure (93.1
degrees) lies only 4.90 kcal/mol higher in energy, while the asymmetric
linear isomer (SiSiN) is much higher located (85.23 kcal/mol).
Dissociation of the most stable isomer into the channels SiN + Si and
Si-2 + N would require 123 and 148 kcal/mol, respectively, including
the zero-point energies. Chemical bonding as reflected in bond
distances indicates a SiN bond character intermediate between that of a
single and a double bonds in the linear SiNSi isomer (1.644 Angstrom),
changing then to a single bond in the cyclic structure (1.695 Angstrom)
and a double bond in SiSiN (1.608 Angstrom). The energetics involved in
various dissociation channels is also analyzed, as well as the strength
of the vibronic interaction in the linear isomer estimated by the
computation of the Renner parameter. A comparison with the molecules
C2N, Si2C, Si2C-, and Si2O clearly shows structural and stability
trends among these triatomics.
C1 INST MOLEC SCI,OKAZAKI,AICHI 444,JAPAN.
RP Ornellas, FR, UNIV SAO PAULO,INST QUIM,DEPT QUIM FUNDAMENTAL,CP
26077,BR-05599970 SAO PAULO,BRAZIL.
CR ANDERSSON K, 1992, J CHEM PHYS, V96, P1218
BALDRIDGE KK, 1987, ANNU REV PHYS CHEM, V38, P211
BEAGLEY B, 1972, J STRUCT CHEM, V11, P371
BOLDYREV AI, 1993, J PHYS CHEM-US, V97, P5875
BOLDYREV AI, 1994, J PHYS CHEM-US, V98, P1427
BOLTON EE, 1992, J CHEM PHYS, V97, P5586
DAVIDSON ER, 1991, MODERN TECHNIQUES CO, P381
DEKOCK RL, 1988, J CHEM PHYS, V89, P3016
DEKOCK RL, 1989, INORG CHEM, V28, P1680
DUNNING TH, 1977, MODERN THEORETICAL C, V3, P1
DUNNING TH, 1989, J CHEM PHYS, V90, P1007
FRISCH MJ, 1992, GAUSSIAN 92 REVISION
GERHOLD G, 1972, AM J PHYS, V40, P988
GOLDBERG N, 1994, J CHEM PHYS, V101, P2871
GORDON MS, 1986, CHEM PHYS LETT, V126, P451
GORDON MS, 1986, MOL STRUCTURES ENERG, V1, P101
GORDON MS, 1990, J PHYS CHEM-US, V94, P5527
GUELIN M, 1986, ASTRON ASTROPHYS, V157, L17
HERZBERG G, 1933, Z PHYS CHEM B-CHEM E, V21, P410
HERZBERG G, 1966, MOL SPECTRA MOL STRU, V3
HIRAO K, 1993, CHEM PHYS LETT, V201, P59
HUBER KP, 1979, MOL SPECTRA MOL STRU, V4
IGNATYEV IS, 1992, J PHYS CHEM-US, V96, P7632
IRAQI M, 1993, J PHYS CHEM-US, V97, P11371
KAFAFI ZH, 1983, J PHYS CHEM-US, V87, P797
KISHI R, IN PRESS
KOLZLOWSKI PM, 1994, CHEM PHYS LETT, V222, P615
KOLZLOWSKI PM, 1994, J CHEM PHYS, V100, P3672
LEE TJ, 1984, J CHEM PHYS, V81, P356
LEMBKE RR, 1977, J AM CHEM SOC, V99, P416
LUKE BT, 1986, J AM CHEM SOC, V108, P260
MARTIN JML, 1994, CHEM PHYS LETT, V226, P475
MOLLER C, 1934, PHYS REV, V46, P618
MURPHY RB, 1992, J CHEM PHYS, V97, P4974
NAKANO H, 1993, CHEM PHYS LETT, V207, P372
PETERSON KA, 1995, J PHYS CHEM-US, V99, P3898
PRESILLAMARQUEZ JD, 1991, J CHEM PHYS, V95, P5612
RAGHAVACHARI K, 1989, CHEM PHYS LETT, V157, P479
RANKIN DW, 1990, J CHEM SOC, A1224
RENNER R, 1934, Z PHYS, V92, P172
RITTBY CML, 1991, J CHEM PHYS, V95, P5609
SCHAEFER HF, 1982, ACCOUNTS CHEM RES, V15, P283
SCHNICK W, 1993, ANGEW CHEM INT EDIT, V32, P806
SCUSERIA GE, 1991, CHEM PHYS LETT, V176, P27
TRUONG TN, 1986, J AM CHEM SOC, V108, P1775
WALTENBURG HN, 1995, CHEM REV, V95, P1589
WOON DE, 1993, J CHEM PHYS, V98, P1358
NR 47
TC 17
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD JUN 27
PY 1996
VL 100
IS 26
BP 10919
EP 10927
PG 9
SC Chemistry, Physical
GA UU477
UT ISI:A1996UU47700013
ER
PT J
AU Pliego, JR
Resende, SM
DeAlmeida, WB
TI Ab initio MP2 study of the HF center dot center dot center dot ClF
complex using various extended basis sets and bond functions
SO THEORETICA CHIMICA ACTA
LA English
DT Article
DE van der Waals complex; transition states; extended basis sets; bond
functions; electronic correlation
ID ABINITIO CALCULATIONS; SYSTEMS
AB The stationary points on the intermolecular potential energy surface
(PES) for the HF ... CIF complex have been investigated at the
second-order Moller-Plesset perturbation theory (MP2) level using
various extended bais sets, including diffuse functions, and also bond
functions. The last ones were placed at different intermolecular
positions, for distinct stationary points. The basis set superposition
errors (BSSE) were accounted for using the counterpoise method. Besides
the anti-H-bonded and H-bonded minimum energy structures, four
transition state structures were also located on the PES. It was shown
that higher polarization functions are required for the description of
the anti H-bonded isomer and diffuse functions had to be included for
the H-bonded isomer. The bond functions are able to replace the f(Cl,
F) and d(H) polarization functions at a lower computational cost.
However, for the H-bonded isomer intramolecuIar electron correlation
also plays an important role. So we have to use diffuse nucleus
centered polarization functions for an adequate description of
intermolecular and intramolecular correlation.
RP Pliego, JR, UFMG,LAB QUIM COMPUTAC & MODELAGEM MOL,DEPT
QUIM,ICEX,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BONE RGA, 1990, THEOR CHIM ACTA, V78, P133
BOYS SF, 1970, MOL PHYS, V19, P533
CHALASINSKI G, 1988, CHEM REV, V88, P943
CHALASINSKI G, 1994, CHEM REV, V94, P1723
DEALMEIDA WB, 1991, THEOCHEM, V228, P191
DEALMEIDA WB, 1993, J CHEM PHYS, V99, P5917
DEALMEIDA WB, 1993, THEOCHEM, V285, P277
DEALMEIDA WB, 1995, SPECTROCHIM ACTA A, V51, P653
DUNNING TH, 1977, METHODS ELECT STRUCT, P1
HOBZA P, 1981, CHEM PHYS LETT, V82, P469
HOBZA P, 1988, CHEM REV, V88, P871
HOBZA P, 1994, CHEM REV, V94, P1767
HOBZA P, 1994, THEOR CHIM ACTA, V88, P233
LEGON AC, 1994, FARADAY DISCUSS, V97, P19
LEOPOLD KR, 1994, CHEM REV, V94, P1807
NESBITT DJ, 1988, CHEM REV, V88, P843
NEUSSER HJ, 1994, CHEM REV, V94, P1829
NOVICK SE, 1976, J CHEM PHYS, V65, P5115
RENDELL APL, 1987, J CHEM PHYS, V87, P535
RESENDE SM, UNPUB
RESENDE SM, 1995, J CHEM PHYS, V102, P4184
SCHM, 1993, UJ, V14, P1347
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SLANINA Z, 1991, THEOCHEM, V235, P51
SLANINA Z, 1994, THERMOCHIM ACTA, V231, P55
TAO FM, 1992, CHEM PHYS LETT, V194, P162
TAO FM, 1992, J CHEM PHYS, V97, P4989
TAO FM, 1993, J CHEM PHYS, V98, P3049
VANDERAVOIRD A, 1994, CHEM REV, V94, P1931
VANLENTHE JH, 1987, ADV CHEM PHYS, V69, P522
YAN YB, 1994, CHEM PHYS LETT, V230, P480
ZHANG DH, 1995, J CHEM PHYS, V102, P2315
NR 32
TC 4
PU SPRINGER VERLAG
PI NEW YORK
PA 175 FIFTH AVE, NEW YORK, NY 10010
SN 0040-5744
J9 THEOR CHIM ACTA
JI Theor. Chim. Acta
PD JUN
PY 1996
VL 93
IS 6
BP 333
EP 342
PG 10
SC Chemistry, Physical
GA UT564
UT ISI:A1996UT56400002
ER
PT J
AU Resende, SM
DeAlmeida, WB
TI A theoretical study of tunneling in the (HCCH)(2) complex
SO CHEMICAL PHYSICS
LA English
DT Article
ID RESOLUTION INFRARED-SPECTROSCOPY; POTENTIAL-ENERGY SURFACE; ACETYLENE
DIMER; MICROWAVE; ABINITIO; (HF)2; SPECTRUM; MOTION
AB The internal motion in the acetylene dimer has been investigated at the
ab initio Moller-Plesset second-order perturbation theory (MP2) level,
employing the double-zeta plus polarization function (DZP) basis set.
Basis set superposition errors (BSSE) corrections were included using
the counterpoise method. A two-dimensional (2D) Hamiltonian for the
tunneling motion, considering the two bending modes in the dimer plane
was solved variationally, using as the potential energy function a
two-dimensional ab initio intermolecular potential energy surface
(PES), Coupling of the intramolecular vibration and dimer internal
rotation has been neglected. Also, the synchronized one-dimensional
(1D) tunneling motion was obtained through a change of variables which
allowed the separation of the motion along the minimum energy path and
the one perpendicular to it. Anharmonicity corrections were also added
to the 1D procedure to reach the 2D results. The calculated splitting
of transition frequencies are compared with the experimental data. The
1D Hamiltonian including anharmonicity corrections is shown to be a
very efficient and computational inexpensive procedure for treating the
tunneling motion.
C1 UNIV FED MINAS GERAIS,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM MOL,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR ALTHORPE SC, 1991, CHEM PHYS LETT, V187, P345
BERNSTEIN E, 1990, ATOMIC MOL CLUSTERS
BONE RGA, 1990, THEOR CHIM ACTA, V78, P133
BOYS SF, 1970, MOL PHYS, V19, P533
BRYANT GW, 1988, J CHEM SOC F2, V84, P1443
BUMGARNER RE, 1991, CHEM PHYS LETT, V176, P123
DEALMEIDA WB, 1993, CHEM PHYS, V169, P185
DEALMEIDA WB, 1993, J CHEM PHYS, V99, P5617
DEALMEIDA WB, 1993, J PHYS CHEM-US, V97, P2560
DEALMEIDA WB, 1993, MOL PHYS, V78, P1351
DEALMEIDA WB, 1993, MOL STRUCT THEOCHEM, V285, P77
DEALMEIDA WB, 1994, MOL PHYS, V81, P1397
DEALMEIDA WB, 1995, SPECTROCHIM ACTA A, V51, P653
DUNNING TH, 1970, J CHEM PHYS, V53, P2823
FRASER GT, 1988, J CHEM PHYS, V89, P6028
FRASER GT, 1989, J CHEM PHYS, V90, P2097
FRASER GT, 1989, J CHEM PHYS, V90, P6077
HA TK, 1993, J PHYS CHEM-US, V97, P11415
HOBZA P, 1988, CHEM REV, V88, P871
MAKAREWICZ J, 1993, J CHEM PHYS, V99, P3694
MILLER RE, 1984, J CHEM PHYS, V80, P5453
MOLLER C, 1934, PHYS REV, V46, P618
OHSHIMA Y, 1988, CHEM PHYS LETT, V147, P1
PLIEGO JR, 1996, IN PRESS THEORET CHI
PRICHARD D, 1987, CHEM PHYS LETT, V135, P9
PRICHARD DG, 1988, J CHEM PHYS, V89, P115
RESENDE SM, 1995, J CHEM PHYS, V102, P4184
RICE JK, 1990, J CHEM PHYS, V92, P6408
SADLEJ J, 1994, J CHEM PHYS, V100, P4272
SCHMIDT MW, 1990, QCPE B, V10, P52
SUNI II, 1993, J CHEM PHYS, V98, P988
TENNYSON J, 1982, J CHEM PHYS, V77, P5664
VONPUTTKAMER K, 1987, MOL PHYS, V62, P1047
ZHANG DH, 1995, J CHEM PHYS, V102, P2315
NR 34
TC 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0301-0104
J9 CHEM PHYS
JI Chem. Phys.
PD MAY 15
PY 1996
VL 206
IS 1-2
BP 1
EP 8
PG 8
SC Physics, Atomic, Molecular & Chemical
GA UP170
UT ISI:A1996UP17000001
ER
PT J
AU Alves, JLA
Alves, HWL
deCastilho, CMC
TI Hydrogen, oxygen and chlorine adsorption on Ag(110) surface: A cluster
calculation
SO MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED
TECHNOLOGY
LA English
DT Article
DE hydrogen; oxygen; chlorine; adsorption; silver
ID EFFECTIVE CORE POTENTIALS; MOLECULAR CALCULATIONS
AB The adsorption of atoms on Ag(110) surfaces has been widely
investigated both theoretically and experimentally. The importance of
the (110) face results from the much better catalytic properties of the
single crystal Ag(110) compared with polycrystalline samples. The aim
of this work is to study the systems Ag(110): H, O, Cl by means of
rigorous ab initio quantum-chemical calculations. We have investigated
several possible binding sites, geometries, elastic constants, binding
energies and charge distributions for H, O and Cl on Ag(110) surfaces
simulated by clusters Ag, (n = 3,10).
C1 UNIV FED BAHIA,INST FIS,BR-40210340 SALVADOR,BA,BRAZIL.
RP Alves, JLA, FDN ENSINO SUPER SAO DEL REI,FUNREI,DEPT CIENCIAS NAT,PRACA
D HELVECIO,74,BR-36300000 SAO JOAO REI,MG,BRAZIL.
CR FRISCH MJ, 1992, GAUSSIAN 92
HAY PJ, 1985, J CHEM PHYS, V82, P270
HAY PJ, 1985, J CHEM PHYS, V82, P299
MARTIN RL, 1983, SURF SCI, V130, P283
SELMANI A, 1986, INT J QUANTUM CHEM, V29, P829
SELMANI A, 1988, SURF SCI, V206, P279
WADT WR, 1985, J CHEM PHYS, V82, P284
NR 7
TC 6
PU ELSEVIER SCIENCE SA LAUSANNE
PI LAUSANNE 1
PA PO BOX 564, 1001 LAUSANNE 1, SWITZERLAND
SN 0921-5107
J9 MATER SCI ENG B-SOLID STATE M
JI Mater. Sci. Eng. B-Solid State Mater. Adv. Technol.
PD FEB
PY 1996
VL 37
IS 1-3
BP 139
EP 141
PG 3
SC Materials Science, Multidisciplinary; Physics, Condensed Matter
GA UM735
UT ISI:A1996UM73500025
ER
PT J
AU Pereira, GK
Donate, PM
Galembeck, SE
TI Electronic structure of hydroxylated derivatives of the flavylium cation
SO THEOCHEM-JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
DE anthocyanins; computational study; electronic structure; flavonoids;
flavylium cation
ID MOLECULAR-ORBITAL METHODS; GAUSSIAN-TYPE BASIS; ORGANIC-MOLECULES;
BASIS-SETS; ANTHOCYANINS
AB The electronic structure of the flavylium cation (1) and those of some
of its hydroxylated derivatives were studied by semiempirical and ab
initio molecular orbital methods. This ion presents a small resonance
in the pyrylium group (C-ring), which is not conjugated to the phenyl
group (B-ring). The planarity of the molecule is due to a hydrogen bond
between the oxygen atom in C-ring and some hydrogen atoms in B-ring.
There is also a repulsive interaction between hydrogen atoms of these
rings. The theoretical locations of the sites of nucleophilic and
electrophilic attack corresponds to those experimentally observed.
Monohydroxylation does not cause important alterations in the
electronic structure of the cation (1) except for the substitution on
C(4'), which causes the appearance of resonance between B- and C-rings.
C1 UNIV SAO PAULO,FAC FILOSOFIA CIENCIAS & LETRAS RIBEIRAO PRET,DEPT QUIM,BR-14049901 RIBEIRAO PRET,SP,BRAZIL.
CR BAKER J, 1986, J COMPUT CHEM, V7, P385
BENT HA, 1961, CHEM REV, V61, P275
BESLER BH, 1990, J COMPUT CHEM, V11, P431
BINKLEY JS, 1980, J AM CHEM SOC, V102, P939
BROUILLARD R, 1988, FLAVONOIDS ADV RES 1, P525
BUSETTA PB, 1974, ACTA CRYSTALLOGR B, V30, P1448
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
DITCHFIELD R, 1971, J CHEM PHYS, V54, P724
FLEMING I, 1976, FRONTIER ORBITALS OR
GOTO T, 1991, ANGEW CHEM INT EDIT, V30, P17
GUEDES MC, 1993, THESIS U CAMPINAS CA
HARBORNE JB, 1988, FLAVONOIDS ADV RES 1, P1
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
HOLTON TA, 1994, TRENDS BIOTECHNOL, V12, P40
HUHEEY JE, 1972, INORGANIC CHEM PRINC
IACOBUCCI GA, 1983, TETRAHEDRON, V39, P3005
KOES RE, 1994, BIOESSAYS, V16, P123
LISTER CE, 1994, J SCI FOOD AGR, V64, P155
MERLIN JC, 1994, PHYTOCHEMISTRY, V35, P227
MERLIN JC, 1994, SPECTROCHIM ACTA A, V50, P703
NESSLER CL, 1994, TRANSGENIC RES, V3, P109
RASTELLI G, 1993, J MOL STRUCT THEOCHE, V279, P157
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
SCHWINN KE, 1994, PHYTOCHEMISTRY, V35, P145
STEWART JJP, 1990, J COMPUT AID MOL DES, V4, P1
UENO K, 1977, ACTA CRYSTALLOGR B, V33, P111
UENO K, 1977, ACTA CRYSTALLOGR B, V33, P114
NR 27
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0166-1280
J9 THEOCHEM-J MOL STRUCT
JI Theochem-J. Mol. Struct.
PD MAR 29
PY 1996
VL 363
IS 1
BP 87
EP 96
PG 10
SC Chemistry, Physical
GA UH856
UT ISI:A1996UH85600007
ER
PT J
AU Abraham, RJ
Jones, AD
Warne, MA
Rittner, R
Tormena, CF
TI Conformational analysis .27. NMR, solvation and theoretical
investigation of conformational isomerism in fluoro- and
1,1-difluoro-acetone
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID SUBSTITUTED CARBONYL-COMPOUNDS; VIBRATIONAL ASSIGNMENT;
INTERNAL-ROTATION; ABINITIO CALCULATIONS; ELECTRONIC INTERACTION;
BARRIERS; STABILITY; FLUOROACETONE; CHLORIDE; SPECTRA
AB The solvent and temperature dependence of the H-1 and C-13 NMR spectra
of fluoroacetone (FA), 1,1-difluoroacetone (DFA) and
1,1,1-trifluoroacetone (TFA) are reported and the (4)J(HF), (1)J(CF)
and (2)J(CF) couplings analysed using ab initio calculations and
solvation theory.
In FA the energy difference (E(cis) - E(tr)) between the cis (F-C-C=O 0
degrees) and trans (F-C-C=O 180 degrees) conformers is 2.2 kcal mol(-1)
in the vapour, decreasing to 1.0 kcal mol(-1) in CCl4 solution and to
-0.6 kcal mol(-1) in the pure liquid.
In DFA the conformational equilibrium is between the less polar cis
(H-C-C=O 0 degrees) and a gauche conformation (H-C-C=O 104 degrees).
The energy difference (E(g) - E(cis)) is +0.8 kcal mol(-1) in the
vapour, decreasing to 0.1 kcal mol(-1) in CCl4 solution and to -0.6
kcal mol(-1) in the pure liquid.
The vapour state energy difference for FA compares well with that
calculated (2.8 kcal mol(-1) at MP4/6-31G*). DFA calculations at this
level gave only one minimum in the potential surface corresponding to
the cis form, A minimum for the gauche conformer was only found when
sol solvation was included in the ab initio calculations, or at much
larger basis sets (6-311++G**).
The conformer couplings obtained show that the (4)J(HF) coupling
(F-C-C-CH3) is proportional to cos(2) theta, where theta is the F-C-C-C
dihedral angle. The (1)J(CF) and (2)J(CF) couplings also show a
pronounced orientation dependence which could be of particular utility
in those cases where other couplings are not present.
C1 UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13083970 CAMPINAS,SP,BRAZIL.
RP Abraham, RJ, UNIV LIVERPOOL,DEPT CHEM,POB 147,LIVERPOOL L69
3BX,MERSEYSIDE,ENGLAND.
CR ABRAHAM RJ, 1974, INTERNAL ROTATION MO, CH13
ABRAHAM RJ, 1981, TETRAHEDRON, V37, P575
ABRAHAM RJ, 1991, J COMPUT AID MOL DES, V5, P21
ABRAHAM RJ, 1994, J CHEM SOC P2, P949
ABRAHAM RJ, 1995, J CHEM SOC P2, P1973
CHOI SC, 1985, CAN J CHEM, V63, P836
COOK BR, 1967, J CHEM PHYS, V47, P1700
CROWDER GA, 1967, J CHEM PHYS, V47, P367
DURIG JR, 1989, J CHEM PHYS, V90, P6840
DURIG JR, 1989, SPECTROCHIM ACTA A, V45, P1239
DURIG JR, 1991, J MOL STRUCT, V242, P179
DURIG JR, 1991, J RAMAN SPECTROSC, V22, P141
EWING DF, 1972, J CHEM SOC P2, P701
FOREMAN JB, 1993, EXPLORING CHEM ELECT
FRISCH MJ, 1992, GAUSSIAN 92
GUERRERO SA, 1983, J CHEM SOC PERK T 2, P1053
JONES GIL, 1973, J MOL STRUCT, V18, P1
JONES VIP, 1970, J CHEM SOC B, P1719
KAISEN CR, 1982, THESIS U ESTADUAL CA
KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P1124
KARABATSOS GJ, 1969, J AM CHEM SOC, V91, P3572
KHAN AY, 1969, J CHEM PHYS, V50, P1801
LUMBROSO H, 1987, J MOL STRUCT, V162, P131
OLIVATO PR, 1992, CAN J APPL SPECTROSC, V37, P37
PHAN HV, 1993, SPECTROCHIM ACTA A, V49, P1967
SAEGEBARTH E, 1967, J CHEM PHYS, V46, P3088
SAEGEBARTH E, 1970, J CHEM PHYS, V52, P3555
SHAPIRO BL, 1970, J MAGN RESON, V3, P336
SHAPIRO BL, 1973, J MAGN RESON, V10, P65
SHAPIRO BL, 1973, J MAGN RESON, V11, P355
SHAPIRO BL, 1973, J MAGN RESON, V9, P305
VANEIJCK BP, 1972, J MOL STRUCT, V11, P67
VEKEN BJV, 1993, J MOL STRUCT, V293, P55
WEAST RC, HDB CHEM PHYSICS
WOLFE S, 1972, ACCOUNTS CHEM RES, V5, P102
WOODWARD AJ, 1970, J MOL SPECTROSC, V35, P127
WOODWARD AJ, 1970, J PHYS CHEM-US, V74, P798
NR 37
TC 26
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK MILTON ROAD, CAMBRIDGE, CAMBS,
ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD APR
PY 1996
IS 4
BP 533
EP 539
PG 7
SC Chemistry, Organic; Chemistry, Physical
GA UF122
UT ISI:A1996UF12200010
ER
PT J
AU Gozzo, FC
Sorrilha, AEPM
Eberlin, MN
TI The generation, stability, dissociation and ion molecule chemistry of
sulfinyl cations in the gas phase
SO JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2
LA English
DT Article
ID MASS-SPECTROMETRY; ELECTRON-IMPACT; ORBITAL METHODS; ACYLIUM IONS;
BASIS SETS; INTERMEDIATE; SUBSTITUTION; ISOMERS; C2H3O+
AB Sulfinyl cations [R-S+-O (R = CH3, Ph, Cl, CH3O and C2H5O)] have been
demonstrated by MO calculations in conjunction with pentaquadrupole
multidimensional (2D and 3D) MS(2) and MS(3) mass spectrometric
experiments to be stable and easily accessible gas phase species, and
their dissociation and ion/molecule chemistry have been studied.
Potential energy surface diagrams indicate that the sulfoxides
(CH3)(2)S=O, Ph(2)S=O, Cl2S=O, (CH3O)(2)S=O and (C2H5O)(2)S=O do not
undergo rearrangement upon dissociative ionization, yielding the
corresponding sulfinyl cations as primary fragments, Ph(CH3)S=O-+., on
the other hand, is predicted to isomerize to CH3-S-O-Ph(+.) via a
four-membered ring transition state, yielding upon further CH3. loss
the isomeric ion S=O+-Ph. The sulfinyl cations were found by ab initio
calculations to be much more stable than their S=O+-R isomers, hence
isomerization via [1,2-R] shifts is not expected, Direct cleavage of
the R-SO+ bonds and/or processes that are preceded by isomerization
dominate the low-energy collision dissociation chemistry of the
sulfinyl cations, thus providing limited structural information. On the
other hand, a general and structurally diagnostic ion/molecule reaction
with 2-methyl-1,3-dioxolane occurs for all the sulfinyl cations
yielding abundant net oxirane (C2H4O) addition products. The reaction
probably occurs via a transketalization-like mechanism that leads to
cyclic 2-thia-1,3-dioxolanylium ions. This reactivity parallels that of
several acylium (R-C+=O) and thioacylium ions (R-C+=S), and is not
shared by the isomeric ions SO+-Ph and CH2=S+-OH. While the
corresponding acylium ions react extensively with isoprene by [4 +
2(+)] cycloaddition, only the phenylsulfinyl cation Ph-S+=O yields an
abundant cycloadduct.
C1 STATE UNIV CAMPINAS UNICAMP,INST CHEM,BR-13083970 CAMPINAS,SP,BRAZIL.
CR *MIN SUP CTR INC, 1993, XMOL VER 1 3 1
APPEL R, 1966, CHEM BER, V99, P3108
ATTINA M, 1983, J AM CHEM SOC, V105, P1122
BAAR BV, 1986, J CHEM SOC CHEM COMM, P1607
BASHER MM, UNPUB
BEAUGRAND C, 1989, ADV MASS SPECTROM A, V11, P256
BLICKE FF, 1942, ORG REACTIONS, V1, P303
BOGERT MT, 1933, J AM CHEM SOC, V55, P3741
BOWERS MT, 1979, GAS PHASE ION CHEM
BOWIE JH, 1966, TETRAHEDRON, V22, P3515
BUDZIKIEWICZ H, 1967, MASS SPECTROMETRY OR
BUSH KL, 1989, MASS SPECTROMETRY MA
CAREY FA, 1983, ADV ORGANIC CHEM
CARLSEN L, 1988, J AM CHEM SOC, V110, P6701
CASERIO MC, 1983, J AM CHEM SOC, V105, P6896
CHAPMAN JR, 1993, PRACTICAL ORGANIC MA
CHATFIELD DA, 1976, J AM CHEM SOC, V98, P6492
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
EBERLIN MN, 1992, J AM CHEM SOC, V114, P2884
EBERLIN MN, 1993, J AM CHEM SOC, V115, P9226
EBERLIN MN, 1993, ORG MASS SPECTROM, V28, P679
EBERLIN MN, 1994, J AM CHEM SOC, V116, P2457
EBERLIN MN, 1995, J AM SOC MASS SPECTR, V6, P1
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1992, GAUSSIAN92
GORDON MS, 1980, CHEM PHYS LETT, V76, P163
GOZZO FC, 1993, P 41 ASMS C MASS SPE, P974
GOZZO FC, 1995, J AM SOC MASS SPECTR, V6, P554
GOZZO FC, 1995, J MASS SPECTROM, V30, P1553
GU M, 1992, J AM CHEM SOC, V114, P7146
HARIHARAN PC, 1973, THEOR CHEM ACTA, V72, P650
HEHRE WJ, 1972, J CHEM PHYS, V56, P2257
JOHNSTONE RAW, 1979, MASS SPECTROMETRY, V5, P277
JULIANO VF, IN PRESS ANAL CHEM
KHMELNITSKII RA, 1977, RUSS CHEM REV, V46, P46
KIM JK, 1982, J AM CHEM SOC, V104, P4624
KOTIAHO T, 1993, J AM CHEM SOC, V115, P1004
KUMAKURA M, 1978, J PHYS CHEM-US, V82, P639
LINDNER E, 1968, ANGEW CHEM INT EDIT, V7, P548
LIU LK, 1983, ORG MASS SPECTROM, V18, P22
LU L, 1995, J MASS SPECTROM, V30, P581
MANNICH C, 1936, CHEM BER, V69, P2299
MCGIBBON GA, 1994, CHEM PHYS LETT, V218, P499
MCLAFFERTY FW, 1983, TANDEM MASS SPECTROM
MCLAFFERTY FW, 1993, INTERPRETATION MASS
MEYERSON S, 1964, ANAL CHEM, V36, P1294
MOLLER C, 1934, PHYS REV, V46, P618
MORRISON JD, 1986, 34TH P AM SOC MASS S, P222
MUKAIYAMA T, 1982, ORG REACTIONS, V28, P203
NIXON WB, 1978, INT J MASS SPECTROM, V26, P115
NOBES RH, 1983, J AM CHEM SOC, V105, P309
OLAH GA, 1964, FRIEDELCRAFTS RELATE, V3
OLAH GA, 1974, J AM CHEM SOC, V96, P3581
OLAH GA, 1976, CARBONIUM IONS, V5, P2049
OLAH GA, 1980, ANGEW CHEM INT EDIT, V19, P812
PARADISI C, 1988, ORG MASS SPECTROM, V23, P521
PEERS AM, 1975, INT J MASS SPECTROM, V16, P321
PIHLAJA K, 1988, CHEM SULPHONES SULPH, P125
PIHLAJA K, 1988, ORG MASS SPECTROM, V23, P770
POTZINGER P, 1975, Z NATURFORSCH A, V30, P340
RAHMAN NA, 1988, ORG MASS SPECTROM, V23, P517
ROLSTON JH, 1969, J AM CHEM SOC, V91, P1469
SABLIER M, 1994, TETRAHEDRON LETT, V35, P2895
SCHWARTZ JC, 1989, INT J MASS SPECTROM, V3, P305
SCHWARTZ JC, 1990, ANAL CHEM, V62, P1809
SHAY BJ, 1992, J AM SOC MASS SPECTR, V3, P518
SPARAPANI C, 1980, J AM CHEM SOC, V102, P3120
STALEY RH, 1977, J AM CHEM SOC, V99, P5964
TURECEK F, 1983, ORG MASS SPECTROM, V18, P608
TURECEK F, 1984, MASS SPECTROM REV, V3, P85
TURECEK F, 1989, J AM CHEM SOC, V111, P7696
WEBER R, 1980, ORG MASS SPECTROM, V15, P138
YANG SS, 1995, J MASS SPECTROM, V30, P807
NR 73
TC 17
PU ROYAL SOC CHEMISTRY
PI CAMBRIDGE
PA THOMAS GRAHAM HOUSE, SCIENCE PARK MILTON ROAD, CAMBRIDGE, CAMBS,
ENGLAND CB4 4WF
SN 0300-9580
J9 J CHEM SOC PERKIN TRANS 2
JI J. Chem. Soc.-Perkin Trans. 2
PD APR
PY 1996
IS 4
BP 587
EP 596
PG 10
SC Chemistry, Organic; Chemistry, Physical
GA UF122
UT ISI:A1996UF12200020
ER
PT J
AU Blaszkowski, SR
Nascimento, MAC
vanSanten, RA
TI Activation of C-H and C-C bonds by an acidic zeolite: A density
functional study
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID MOLECULAR-SIEVES; OPTIMIZATION; ENERGIES; APPROXIMATION; BEHAVIOR;
GEOMETRY
AB Density functional theory is used to determine transition states and
the corresponding energy barriers of the reactions related to C-H bond
activation of hydrogen exchange and dehydrogenation of ethane catalyzed
by a protonated zeolite as well as hydride transfer between methanol
and a methoxide (CH3-zeolite) species. Additionally the C-C bond
activation involved in the acid catalyzed cracking reaction of ethane
was investigated. The computed activation barriers are 118 for hydrogen
exchange, 202 for hydride transfer, 292 for cracking and finally 297
for dehydrogenation, all in kilojoules per mole. For the cracking
reaction, two different transition states with the same activation
barrier have been obtained, dependent on the approach of the ethane
molecule to the zeolite cluster. A study of the relation between
acidity and the structure of the zeolite shows that the transition
state for the hydrogen exchange reaction is rather covalent and its
geometry resembles the well-known carbonium ion, while the others are
rather ionic carbenium ions. From the calculated activation barriers as
well as vibrational, rotational, and translational partition functions,
reaction rate constants have been evaluated by means of the transition
state reaction rate theory.
C1 EINDHOVEN UNIV TECHNOL,SCHUIT INST CATALYSIS,INORGAN CHEM LAB,5600 MB EINDHOVEN,NETHERLANDS.
EINDHOVEN UNIV TECHNOL,CATALYSIS THEORY GRP,5600 MB EINDHOVEN,NETHERLANDS.
RP Blaszkowski, SR, FED UNIV RIO DE JANEIRO,DEPT QUIM FIS,INST QUIM,CIDADE
UNIV,BLOCO A,BR-21949900 RIO JANEIRO,BRAZIL.
CR ANDZELM J, 1987, CHEM PHYS LETT, V142, P169
ANDZELM J, 1992, J CHEM PHYS, V96, P1280
BECKE AD, 1988, PHYS REV A, V38, P3098
BLASZKOWSKI SR, 1994, J PHYS CHEM-US, V98, P12938
BLASZKOWSKI SR, 1995, J PHYS CHEM-US, V99, P11728
BOHME DK, 1975, INTERACTIONS IONS MO, P489
CARNEIRO JWD, 1994, J AM CHEM SOC, V116, P3483
COLLINS SJ, 1995, J CATAL, V153, P94
CORMA A, 1994, J CATAL, V145, P58
ENGELHARDT J, 1995, J CATAL, V151, P1
EVLETH EM, 1994, J PHYS CHEM-US, V98, P1421
FAN LY, 1992, J AM CHEM SOC, V114, P10890
FROST AA, 1961, KINETICS MECHANISMS
GILBERT RG, 1990, THEORY UNIMOLECULAR
GODBOUT N, 1992, CAN J CHEM, V70, P560
HEAD JD, 1989, ADV QUANTUM CHEM, V20, P239
HEHRE WJ, 1986, AB INITIO MOL ORBITA
HOCEVAR S, 1992, J CATAL, V135, P518
HOHENBERG P, 1964, PHYS REV B, V136, P864
HOUTE JJ, 1992, INT J MASS SPECTROM, V155, P173
KAZANSKY VB, 1994, CATAL LETT, V27, P345
KAZANSKY VB, 1994, CATAL LETT, V28, P211
KOHN W, 1965, PHYS REV, V140, A1133
KRAMER GJ, 1993, J AM CHEM SOC, V115, P2887
KRAMER GJ, 1993, NATURE, V363, P529
KRAMER GJ, 1995, J AM CHEM SOC, V117, P1766
LERCHER JA, 1994, CATAL LETT, V27, P91
MCIVER JW, 1971, CHEM PHYS LETT, V10, P303
MEUSINGER J, 1995, J CATAL, V152, P189
MOORE JW, 1990, KINETICS MECHANISM
MOULIJN JA, 1995, STUDIES SURFACE SCI, V79, P69
ONO Y, 1992, CATAL REV SCI ENG, V34, P179
PERDEW JP, 1986, PHYS REV B, V33, P8822
ROBERTS JD, 1981, BASIC PRINCIPLES ORG, P121
SHLEGEL HB, 1987, AB INITIO METHODS QU
STACH H, 1993, PURE APPL CHEM, V65, P2193
STEFANADIS C, 1991, J MOL CATAL, V67, P363
VANSANTE RA, 1990, NATO ASI SER B-PHYS, V221, P227
VANSANTEN RA, 1995, J CHEM REV, V95, P637
VOSKO SH, 1980, CAN J PHYS, V58, P1200
WILSON EB, 1955, MOL VIBRATIONS
YALURIS G, 1995, J CATAL, V153, P65
NR 42
TC 76
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD FEB 29
PY 1996
VL 100
IS 9
BP 3463
EP 3472
PG 10
SC Chemistry, Physical
GA TX766
UT ISI:A1996TX76600024
ER
PT J
AU daSilva, JBP
daCosta, NB
Ramos, MN
Fausto, R
TI Vibrational spectra and structure of the cis and trans conformers of
methyl nitrite: An ab initio MO study
SO JOURNAL OF MOLECULAR STRUCTURE
LA English
DT Article
ID ABINITIO CALCULATIONS; MICROWAVE-SPECTRA; PHASE
AB The vibrational and conformational properties exhibited by nethyl
nitrite (CH3ON=O) were studied by ab initio MO methods (HF-SCF and MP2)
using both the 6-31G and 6-311G basis sets without or with the
inclusion of diffuse and/or polarization functions, Fully optimized
geometries, relative stabilities, dipole moments and harmonic force
fields for both the cis and trans conformers of this molecule were
determined and the results compared with available experimental data.
In agreement with the experimental results, the calculations involving
polarization functions at the MP2 level of theory indicate that the
most stable conformer of methyl nitrite is the planar cis conformer,
where the methyl group is eclipsing the N=O bond, while the trans form
was predicted to have a higher energy than this form by about 4 kJ
mol(-1) The conformational dependence of some relevant structural
parameters was used to characterize the most important intramolecular
interactions present in the studied conformers, and their calculated
infrared spectra were used to review previous assignments of the
experimentally observed bands for both the normal and deuterated
(CD3ON=O) species. Chemometrics methods (principal components and
two-level factorial designing) were used both to analyze the effect of
changing the basis set and level of theory used to perform the
calculations, and to aid comparison between the experimental and
calculated vibrational spectra.
C1 UNIV COIMBRA,DEPT QUIM,P-3049 COIMBRA,PORTUGAL.
UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50740250 RECIFE,PE,BRAZIL.
CR *INF INC, 1991, EIN SIGHT PATT REC S
BAUER SH, 1980, J PHYS CHEM-US, V84, P2507
BODENBINDER M, 1994, J PHYS CHEM-US, V98, P6441
BOX GEP, 1978, STATISTICS EXPT
BROWN HW, 1964, J MOL SPECTROSC, V13, P305
CHAUVEL JP, 1983, J PHYS CHEM-US, V87, P1622
CONBOY CB, 1986, J PHYS CHEM-US, V90, P4353
CORDELL FR, 1980, J MOL STRUCT, V64, P57
CORKILL MJ, 1978, 7 AUST S MOL STRUCT
FARIA MDG, 1990, BUILD G VIBRAT
FARIA MDG, 1990, TRANSFORMER VERSION
FELDER P, 1979, CHEM PHYS LETT, V66, P283
FELDER P, 1981, SPECTROCHIM ACTA, V37, P337
FRISCH MJ, 1984, J CHEM PHYS, V80, P3265
FRISCH MJ, 1992, GAUSSIAN 92
FUHER F, 1976, NATL RES COUNCIL CAN, V15, P1
GHOSH PN, 1980, CHEM PHYS, V53, P39
GHOSH PN, 1981, SPECTROCHIM ACTA A, V37, P347
GORDON MS, 1980, CHEM PHYS LETT, V163, P76
GRAY P, 1963, T FARADAY SOC, V59, P347
INGLEFIELD PT, 1968, MOL PHYS, V15, P65
KLABOE P, 1967, SPECTROCHIM ACTA A, V23, P2957
KRISHNAN R, 1980, J CHEM PHYS, V192, P690
LEES RM, 1968, J CHEM PHYS, V48, P5299
MAVDIA KV, 1979, MULTIVARIATE ANAL, CH8
PULAY P, 1979, J AM CHEM SOC, V101, P2550
ROOK FL, 1982, J MOL SPECTROSC, V93, P101
SCARMINIO IS, 1989, TRAC-TREND ANAL CHEM, V8, P326
SCHLEGEL HB, 1975, THESIS QUEENS U KING
STIDHAM HD, 1990, J RAMAN SPECTROSC, V21, P615
SUTO E, 1991, J COMPUT CHEM, V12, P885
TARTE PJ, 1979, J AM CHEM SOC, V101, P2550
TEIXEIRADIAS JJC, 1986, J MOL STRUCT, V133, P199
TOMAGAWA K, 1984, J MOL STRUCT, V125, P131
TURNER PH, 1979, J CHEM SOC F2, V2, P317
TURNER PH, 1979, J PHYS CHEM-US, V83, P1473
VANDERVEKEN BJ, 1989, J MOL STRUCT THEOCHE, V200, P413
VANDERVEKEN BJ, 1990, J PHYS CHEM-US, V94, P4029
NR 38
TC 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0022-2860
J9 J MOL STRUCT
JI J. Mol. Struct.
PD JAN 22
PY 1996
VL 375
IS 1-2
BP 153
EP 180
PG 28
SC Chemistry, Physical
GA TX261
UT ISI:A1996TX26100014
ER
PT J
AU Tanabe, FKJ
Morgon, NH
Riveros, JM
TI Relative gas-phase bromide and iodide affinity of simple solvent
molecules determined by FT-ICR
SO JOURNAL OF PHYSICAL CHEMISTRY
LA English
DT Article
ID TRANSFORM MASS-SPECTROMETRY; HALIDE-IONS; CHLORIDE-ION; EQUILIBRIA
MEASUREMENTS; EXCHANGE EQUILIBRIA; IMPULSE EXCITATION; BRONSTED ACIDS;
BOND STRENGTHS; NEGATIVE-IONS; COMPLEXES
AB The gas-phase ion/molecule reaction of CH3O- with bromo- and
iodobenzene has been used to generate Br-(CH3OH) and I-(CH3OH) ions in
an FT-ICR spectrometer. These ions are shown to undergo rapid solvent
exchange with molecules of comparable or higher halide affinity. The
equilibrium constants have been determined for these exchange reactions
and the relative bromide free-energy affinity at 335 K (-Delta G
degrees/kcal mol(-1)) is shown to increase in the order H2O (0.0) <
CH3OH (1.07) < CH3CN (1.51) similar to C2H5OH (1.53) < i-C3H7OH (1.88)
< CH3NO2 (2.34). For I-, a similar trend is observed except that C2H5OH
< CH3CN. Ab initio calculations were carried out at the MP4(SDTQ) level
with geometry optimization at the MP2 level and using the generator
coordinate method to add diffuse functions to the Br basis set. Changes
in entropies for the gas-phase equilibrium experiments were estimated
from the calculated vibrational frequencies, and the enthalpies of
solvation were derived by using the reported value for Br-(CH3OH) as a
reference point.
C1 UNIV SAO PAULO,INST QUIM,BR-05599970 SAO PAULO,BRAZIL.
CR ABBOUD JLM, 1989, J AM CHEM SOC, V111, P8960
ARSHADI M, 1970, J PHYS CHEM-US, V74, P1475
BURDETT NA, 1982, J CHEM SOC F1, V78, P2997
CALDWELL G, 1984, J AM CHEM SOC, V106, P967
CALDWELL GW, 1989, ORG MASS SPECTROM, V24, P8
CASTLEMAN AW, 1986, CHEM REV, V86, P589
DANGNHU M, 1990, J MOL SPECTROSC, V140, P412
DOUGHERTY RC, 1974, ORG MASS SPECTROM, V8, P81
DUNBAR RC, 1994, J PHYS CHEM-US, V98, P8705
DUNNING TH, 1977, METHODS ELECTRONIC S, CH1
EVANS DH, 1987, J CHEM PHYS, V86, P2927
FAIGLE JFG, 1976, J AM CHEM SOC, V98, P2049
FRISCH C, 1992, GAUSSIAN 92 REVISION
GONZALEZ C, 1989, J CHEM PHYS, V90, P2154
GRAUL ST, 1990, J AM CHEM SOC, V112, P2517
HEHRE WJ, 1986, AB INITIO MOL ORBITA, CH6
HIRAOKA K, 1988, J PHYS CHEM-US, V92, P3943
HIRAOKA K, 1991, INT J MASS SPECTROM, V109, P133
HIRAOKA K, 1993, CHEM PHYS LETT, V208, P491
HIRAOKA K, 1993, J AM SOC MASS SPECTR, V4, P58
HOP CECA, 1990, INT J MASS SPECTROM, V101, P191
ISOLANI PC, 1992, QUIM NOVA, V15, P351
KATRITZKY AR, 1990, J AM CHEM SOC, V112, P2472
KEBARLE P, 1972, IONS ION PAIRS ORGAN, V1
KEBARLE P, 1979, PURE APPL CHEM, V51, P63
KEESEE RG, 1980, CHEM PHYS LETT, V74, P139
KEESEE RG, 1986, J PHYS CHEM REF DATA, V15, P1011
LARSON JW, 1983, J AM CHEM SOC, V105, P2944
LARSON JW, 1984, CAN J CHEM, V62, P675
LARSON JW, 1984, J AM CHEM SOC, V106, P517
LINNERT HV, COMMUNICATION
LINNERT HV, UNPUB
LINNERT HV, 1993, J CHEM SOC CHEM COMM, P48
LINNERT HV, 1994, INT J MASS SPECTROM, V140, P165
MCIVER RT, 1989, INT J MASS SPECTROM, V89, P343
MCIVER RT, 1989, REV SCI INSTRUM, V60, P400
MORGON NH, 1995, CHEM PHYS LETT, V235, P436
MORGON NH, 1995, J PHYS CHEM-US, V99, P11667
PAUL GJC, 1991, J AM CHEM SOC, V113, P1148
PITZER KS, 1942, J CHEM PHYS, V10, P428
RIVEROS JM, 1973, J AM CHEM SOC, V95, P4066
RIVEROS JM, 1991, J AM CHEM SOC, V113, P1053
SENA M, 1994, RAPID COMMUN MASS SP, V8, P1031
SIECK LW, 1985, J PHYS CHEM-US, V89, P5552
SIEVERS HL, 1995, J AM CHEM SOC, V117, P2313
THOLMANN D, 1994, J PHYS CHEM-US, V98, P2002
VANDEGUCHTE WJ, 1990, INT J MASS SPECTROM, V95, P317
VANDERHART WJ, 1988, INT J MASS SPECTROM, V82, P17
WADT WR, 1985, J CHEM PHYS, V82, P284
YAMABE S, 1986, CHEM PHYS LETT, V131, P261
YAMDAGNI R, 1972, J AM CHEM SOC, V94, P2940
NR 51
TC 11
PU AMER CHEMICAL SOC
PI WASHINGTON
PA 1155 16TH ST, NW, WASHINGTON, DC 20036
SN 0022-3654
J9 J PHYS CHEM
JI J. Phys. Chem.
PD FEB 22
PY 1996
VL 100
IS 8
BP 2862
EP 2866
PG 5
SC Chemistry, Physical
GA TX257
UT ISI:A1996TX25700014
ER
PT J
AU Schmidt, TM
Fazzio, A
Caldas, MJ
TI Germanium negative-U center in GaAs
SO PHYSICAL REVIEW B
LA English
DT Article
ID DX-CENTER; PERSISTENT PHOTOCONDUCTIVITY; ALXGA1-XAS ALLOYS;
HYDROSTATIC-PRESSURE; DEEP DONORS; GE; SEMICONDUCTORS; STATES; SI;
ENERGETICS
AB The DX center related to the Ge impurity in GaAs is investigated by ab
initio pseudopotential calculations within the local-density
aproximation. Our results indicate that the behavior of the Ge-Ga
defect is qualitatively different from the broken-bond model usually
associated to Si-Ga, even if the electronic structure behaves in a very
similar way. Indeed, for the Ge impurity our calculations show that
already for breathing-mode relaxations of the Ge neighbors, in T-d
symmetry, a negative-U behavior is found, and many details of the
experimental data can be explained.
C1 UNIV FED UBERLANDIA,DEPT CIENCIAS FIS,BR-38400902 UBERLANDIA,MG,BRAZIL.
RP Schmidt, TM, UNIV SAO PAULO,INST FIS,CAIXA POSTAL 66318,BR-05389970 SAO
PAULO,BRAZIL.
CR BAJ M, COMMUNICATION
BAJ M, 1993, PHYS REV LETT, V71, P3529
BAJ M, 1994, MATER SCI FORUM, V143, P1019
BOURGOIN J, 1981, SPRINGER SERIES SOLI, V22
CALDAS MJ, 1990, INT J QUANTUM CHEM S, V24, P563
CALDAS MJ, 1990, PHYS REV LETT, V65, P2046
CALDAS MJ, 1994, SOLID STATE COMMUN, V89, P493
CAR R, 1985, PHYS REV LETT, V55, P2471
CHADI DJ, 1973, PHYS REV B, V8, P5747
CHADI DJ, 1988, PHYS REV LETT, V61, P873
CHADI DJ, 1989, PHYS REV B, V39, P10063
DABROWSKI J, 1988, PHYS REV LETT, V60, P2183
DABROWSKI J, 1992, MATER SCI FORUM, V83, P735
DISSANAYAKE A, 1992, PHYS REV B, V45, P13996
DMOCHOWSKI JE, 1990, 20TH P INT C PHYS SE, V1, P658
FAZZIO A, 1984, PHYS REV B, V30, P3430
FAZZIO A, 1993, 21 P INT C BEIJ, V1, P1713
FAZZIO A, 1993, 21 P INT C BEIJ, V2, P1713
FUJISAWA T, 1990, JPN J APPL PHYS PT 2, V29, L388
FURTHMULLER J, 1992, PHYS REV B, V46, P3839
GHOSH S, 1992, PHYS REV B, V46, P7533
IHM J, 1979, J PHYS C SOLID STATE, V12, P4409
JONES R, 1991, PHYS REV B, V44, P3407
KLEINMAN L, 1982, PHYS REV LETT, V48, P1425
KUMAGAI O, 1984, APPL PHYS LETT, V45, P1322
LANG DV, 1979, PHYS REV B, V19, P1015
LI MF, 1987, PHYS REV B, V36, P4531
MEHRAN F, 1972, SOLID STATE COMMUN, V11, P661
MOONEY PM, 1990, J APPL PHYS, V67, R1
MORGAN TN, 1986, PHYS REV B, V34, P2664
MOSSER V, 1991, PHYS REV LETT, V66, P1737
PANTELIDES ST, 1974, PHYS REV B, V10, P638
SAARINEN K, 1994, PHYS REV B, V49, P8005
SAITO M, 1993, MOD PHYS LETT B, V7, P1567
SAITO M, 1993, PHYS REV B, V47, P13205
SCHMIDT TM, UNPUB
SCHMIDT TM, 1992, SOLID STATE COMMUN, V82, P83
SKIERBISZEWSKI C, 1993, APPL PHYS LETT, V63, P3209
SLATER JC, 1974, SELF CONSISTENT FIEL, V4
STUMPF RS, UNPUB
SUSKI T, 1991, J APPL PHYS, V69, P3087
TACHIKAWA M, 1985, JPN J APPL PHYS PT 2, V24, L893
THEIS TN, 1991, J ELECTRON MATER, V20, P35
VANDERWEL PJ, 1993, J PHYS-CONDENS MAT, V5, P5001
YAMAGUCHI E, 1991, J PHYS SOC JPN, V60, P3093
NR 45
TC 10
PU AMERICAN PHYSICAL SOC
PI COLLEGE PK
PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA
SN 0163-1829
J9 PHYS REV B
JI Phys. Rev. B
PD JAN 15
PY 1996
VL 53
IS 3
BP 1315
EP 1321
PG 7
SC Physics, Condensed Matter
GA TU290
UT ISI:A1996TU29000063
ER
PT J
AU Pliego, JR
DeAlmeida, WB
TI Searching for the ylide structure. An ab initio study of the H2O...CCl2
complex
SO CHEMICAL PHYSICS LETTERS
LA English
DT Article
ID DICHLOROCARBENE
AB The potential energy surface (PES) for the H2O...CCl2 complex has been
investigated at the self-consistent field level with a DZP basis set in
order to search for stationary points and to verify the possible
formation of an ylide species. Six stationary points were located on
the PES, being one minimum, three first-order transition sates (TS) and
two second-order TS structures. A stable ylide species was not found,
and an explanation for this is given based on electrostatic grounds,
The unique minimum corresponds to an H-bond structure, with a
dissociation energy of 845.5 cm(-1), calculated including zero point
energy correction, a more extended basis set, electron correlation
effects at the MP2 level and taking into account basis set
superposition errors employing the counterpoise method.
RP Pliego, JR, UFMG,ICEX,DEPT QUIM,LAB QUIM COMPUTAC & MODELAGEM
MOLEC,BR-31270901 BELO HORIZONT,MG,BRAZIL.
CR BETHELL D, 1973, ORGANIC REACTIVE INT
BOYS SF, 1970, MOL PHYS, V19, P553
BUCKINGHAM AD, 1988, CHEM REV, V88, P963
CAI ZL, 1993, CHEM PHYS LETT, V210, P481
CARTER EA, 1988, J CHEM PHYS, V88, P1752
CHALASINSKI G, 1994, CHEM REV, V94, P1723
CHATEAUNEUF JE, 1990, J AM CHEM SOC, V112, P3217
DEALMEIDA WB, 1993, J PHYS CHEM-US, V97, P2560
DEALMEIDA WB, 1994, CHEM PHYS LETT, V231, P283
DEALMEIDA WB, 1994, MOL PHYS, V81, P1397
DEALMEIDA WB, 1995, SPECTROCHIM ACTA A, V51, P653
DUNNING TH, 1977, METHODS ELECTRONIC S
GOBBI A, 1993, J CHEM SOC CHEM COMM, P1162
GUTSEV GL, 1991, J PHYS CHEM-US, V95, P7220
HOBZA P, 1988, CHEM REV, V88, P71
KIM SJ, 1991, J CHEM PHYS, V94, P2063
KIRMSE W, 1964, CARBENE CHEM
MOSS RA, 1989, ACCOUNTS CHEM RES, V22, P15
PLIEGO JR, UNPUB
RESENDE SM, 1995, J CHEM PHYS, V102, P4184
RUSSO N, 1992, J CHEM PHYS, V97, P5031
SCHMIDT MW, 1993, J COMPUT CHEM, V14, P1347
NR 22
TC 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0009-2614
J9 CHEM PHYS LETT
JI Chem. Phys. Lett.
PD JAN 26
PY 1996
VL 249
IS 1-2
BP 136
EP 140
PG 5
SC Physics, Atomic, Molecular & Chemical
GA TR918
UT ISI:A1996TR91800023
ER
PT J
AU Giordan, M
Custodio, R
Trigo, JR
TI Pyrrolizidine alkaloids necine bases: Ab initio, semiempirical, and
molecular mechanics approaches to molecular properties
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
ID BUTTERFLIES DANAUS-PLEXIPPUS; ARCTIID MOTH; PARAMETERS; OPTIMIZATION
AB The structural stabilities of endo and exo conformations of retronecine
and heliotridine molecules were analyzed using different ab initio,
semiempirical, and molecular mechanics methods. All electron and
pseudopotential nb initio calculations at the Hartree-Fock level of
theory with 6-31G* and CEP-31G* basis sets provided structures in
excellent agreement with available experimental results obtained from
X-ray crystal structure and H-1-NMR (nuclear magnetic resonance)
studies in D2O solutions. The exo conformations showed a greater
stability for both molecules. The most significant difference between
the calculations was found in the ring planarity of heliotridine, whose
distortion was associated with the interaction between the O(11)H group
and the C(1)-C(2) double bond as well as with a hydrogen bond between
O(11)H and N(4). The discrepancy between pseudopotential and
all-electron optimized geometries was reduced after inclusion of the
innermost electrons of C(1), C(2), and N(4) in the core potential
calculation. The MNDO, AM1, and PM3 semiempirical results showed poor
agreement with experimental data. The five-membered rings were observed
to be planar for AM1 and MNDO calculations. The PM3 calculations for
exo-retronecine showed a greater stability than the endo conformer, in
agreement with ab initio results. A good agreement was observed between
MM3 and nb initio geometries, with small differences probably due to
hydrogen bonds. While exo-retronecine was calculated to be more stable
than the endo conformer, the MM3 calculations suggested that
endo-heliotridine was slightly more stable than the exo form. (C) 1996
by John Wiley & Sons, Inc.
C1 UNIV ESTADUAL CAMPINAS,INST BIOL,DEPT ZOOL,LAB ECOL QUIM,BR-13081970 CAMPINAS,SP,BRAZIL.
RP Giordan, M, UNIV ESTADUAL CAMPINAS,DEPT FISICOQUIM,INST
QUIM,BR-13081970 CAMPINAS,SP,BRAZIL.
CR ALLINGER NL, MM392 QCPE IND U
ALLINGER NL, 1989, J AM CHEM SOC, V111, P8551
ALLINGER NL, 1989, J AM CHEM SOC, V111, P8566
ALLINGER NL, 1989, J AM CHEM SOC, V111, P8576
BOPPRE M, 1986, NATURWISSENSCHAFTEN, V73, P17
BOPPRE M, 1990, J CHEM ECOL, V16, P165
CULVENOR CCJ, 1965, AUST J CHEM, V18, P1605
DEWAR MJS, 1977, J AM CHEM SOC, V99, P4899
DEWAR MJS, 1985, J AM CHEM SOC, V107, P3902
EDGAR JA, 1975, PHIL T R SOC LOND B, V272, P467
EDGAR JA, 1979, EXPERIENTIA, V35, P1447
FERGUSON DM, 1992, J COMPUT CHEM, V13, P525
FRISCH MJ, 1992, GAUSSIAN 92
GELBAUM LT, 1985, ACTA CRYSTALLOGR C, V41, P1342
HARTMANN T, 1988, CELL CULTURE SOMATIC, V5, P277
HARTMANN T, 1995, ALKALOIDS CHEM BIOL, V9, P155
HAY DG, 1982, ACTA CRYSTALLOGR B, V38, P155
HEHRE WJ, 1986, AB INITIO MOL ORBITA, P137
KARPLUS M, 1963, J AM CHEM SOC, V85, P2870
KELLEY RB, 1987, EXPERIENTIA, V43, P943
LEMPEREUR KM, 1989, J NAT PRODUCTS, V52, P360
MACKAY MF, 1982, ACTA CRYSTALLOGR B, V38, P2754
MACKAY MF, 1983, ACTA CRYSTALLOGR C, V39, P785
MATTOCKS AR, 1972, PHYTOCHEMICAL ECOLOG, P179
MATTOCKS AR, 1986, CHEM TOXICOLOGY PYRR
NISHIDA R, 1991, AGR BIOL CHEM TOKYO, V55, P1787
RIZAK AFM, 1991, NATURALLY OCCURRING, P1
RIZAK AFM, 1991, NATURALLY OCCURRING, P211
STELLJES ME, 1990, J CHEM ECOL, V16, P1459
STEVENS WJ, 1984, J CHEM PHYS, V81, P6026
STEWART JJP, 1989, J COMPUT CHEM, V10, P209
STEWART JJP, 1989, J COMPUT CHEM, V10, P221
STOECKLIEVANS H, 1976, HELV CHIM ACTA, V59, P2168
STOECKLIEVANS H, 1982, ACTA CRYSTALLOGR B, V38, P1617
SUSSMAN JL, 1973, ACTA CRYSTALLOGR B, V29, P2918
TRIGO JR, 1993, ALCALOIDES PIRROLIZI
TRIGO JR, 1993, J CHEM ECOL, V19, P669
TRIGO JR, 1994, J CHEM ECOL, V20, P2603
VILKOV LV, 1983, DETERMINATION GEOMET
WODAK SJ, 1975, ACTA CRYSTALLOGR B, V31, P569
NR 40
TC 7
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD JAN 30
PY 1996
VL 17
IS 2
BP 156
EP 166
PG 11
SC Chemistry, Multidisciplinary
GA TM791
UT ISI:A1996TM79100003
ER
PT J
AU DeAzevedo, ALMS
Neto, BB
Scarminio, IS
DeOliveira, AE
Bruns, RE
TI A chemometric analysis of ab initio vibrational frequencies and
infrared intensities of methyl fluoride
SO JOURNAL OF COMPUTATIONAL CHEMISTRY
LA English
DT Article
ID DIPOLE-MOMENT DERIVATIVES; THEORETICAL THERMOCHEMISTRY; ANALYTIC
EVALUATION; MOLECULES; SIGNS; HEATS; CH3F
AB Factorial design and principal component analyses are applied to CH3F
infrared frequencies and intensities calculated from ab initio wave
functions. In the factorial analysis, the quantitative effects of
changing from a 6-31G to a 6-311G basis, of including polarization and
diffuse orbitals, and of correcting for electron correlation using the
second-order Moller-Plesset procedure are determined for all
frequencies and intensities. The most significant main effect observed
for the frequencies corresponds to the shift from Hartree-Fock to MP2
calculations, which tends to lower all frequency values by
approximately 100 cm(-1). For the intensities, the main effects are
larger for the CF stretching and the CH3 asymmetric stretching modes.
Interaction effects between two or more of the four factors are found
to be of minor importance, except for the interaction between
correlation and polarization. The principal component analysis
indicates that wave functions with polarization and diffuse orbitals at
the second-order Moller-Plesset level provide the best estimates for
the harmonic frequencies, but not for the intensities. For the
frequencies, the first principal component distinguishes between MP2
and Hartree-Fock calculations, while the second component separates the
wave functions with polarization orbitals from those without these
orbitals. For the intensities, the separation is similar but less well
defined. This analysis also shows that wave function optimization to
calculate accurate intensities is more difficult than an optimization
for frequencies. (C) 1996 by John Wiley & Sons, Inc.
C1 UNIV ESTADUAL CAMPINAS,INST QUIM,BR-13081970 CAMPINAS,SP,BRAZIL.
UNIV FED PERNAMBUCO,DEPT QUIM FUNDAMENTAL,BR-50739 RECIFE,PE,BRAZIL.
UNIV ESTADUAL LONDRINA,DEPT QUIM,LONDRINA,PARANA,BRAZIL.
CR BARROW GM, 1952, P ROY SOC LOND A MAT, V213, P27
BLOM CE, 1978, J MOL SPECTROSC, V70, P449
BOX GEP, 1978, STATISTICS EXPT
DILAURO C, 1966, J MOL SPECTROSC, V21, P386
DUNCAN JL, 1972, MOL PHYS, V24, P553
FRISCH MJ, 1992, GAUSSIAN 92
KONDO S, 1982, J CHEM PHYS, V76, P809
MARDIA KV, 1979, MULTIVARIATE ANAL, CH8
MILLER MD, 1989, J PHYS CHEM-US, V93, P4495
NEWTON JH, 1976, J CHEM PHYS, V64, P3036
PERSON WB, 1977, J CHEM PHYS, V66, P1442
PERSON WB, 1982, VIBRATIONAL INTENSIT, P271
POPLE JA, 1985, J PHYS CHEM-US, V89, P2198
POPLE JA, 1987, J PHYS CHEM-US, V91, P155
RUSSELL JW, 1966, J CHEM PHYS, V45, P3383
SCARMINIO IS, 1989, TRAC-TREND ANAL CHEM, V8, P326
SIMANDIRAS ED, 1987, CHEM PHYS, V114, P9
SOSA C, 1987, J CHEM PHYS, V86, P6937
STANTON JF, 1989, J CHEM PHYS, V90, P3241
SUTO E, 1991, J COMPUT CHEM, V12, P885
SUTO E, 1993, J MOL STRUCT THEOCHE, V282, P81
YAMAGUCHI Y, 1986, J CHEM PHYS, V84, P2262
NR 22
TC 6
PU JOHN WILEY & SONS INC
PI NEW YORK
PA 605 THIRD AVE, NEW YORK, NY 10158-0012
SN 0192-8651
J9 J COMPUT CHEM
JI J. Comput. Chem.
PD JAN 30
PY 1996
VL 17
IS 2
BP 167
EP 177
PG 11
SC Chemistry, Multidisciplinary
GA TM791
UT ISI:A1996TM79100004
ER
EF
|