This file is indexed.

/usr/share/openturns/validation/ValidEstimatedTruncatedNormal.txt is in openturns-validation 1.5-7build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
> restart:
> Phi:=proc(x)
>   int(1/sqrt(2*Pi)*exp(-t^2/2),t=-infinity..x)
> end:
> sigma:=sqrt(v);
> #PhiA:=Phi((a-mu)/sigma);
> #PhiB:=Phi((b-mu)/sigma);
> #phiA:=1/sqrt(2*Pi)*exp(-((a-mu)/sigma)^2/2);
> #phiB:=1/sqrt(2*Pi)*exp(-((b-mu)/sigma)^2/2);
> assume(PhiB>PhiA,b>a,b>m,a<m);
> iDenom:=1/(PhiB-PhiA);ratio:=(phiB-phiA)*iDenom*sigma;aNorm:=(a-mu)/si
> gma;bNorm:=(b-mu)/sigma;
> eq:={m=mu-sigma^2*(phiB-phiA)/(PhiB-PhiA),s2=(sigma * sigma * (1 -
> sigma * (bNorm * phiB - aNorm * phiA) * iDenom - ratio * ratio))};
> sol:=map(factor,solve(eq,{mu,v}));

                                      1/2
                            sigma := v


                                       1
                       iDenom := -------------
                                 PhiB~ - PhiA~


                                             1/2
                              (phiB - phiA) v
                     ratio := ------------------
                                PhiB~ - PhiA~


                                    a~ - mu
                           aNorm := -------
                                      1/2
                                     v


                                    b~ - mu
                           bNorm := -------
                                      1/2
                                     v


                /
                |
                |
                |
  eq := {s2 = v |
                |
                \

             1/2 /(b~ - mu) phiB   (a~ - mu) phiA\
            v    |-------------- - --------------|
                 |      1/2              1/2     |                2
                 \     v                v        /   (phiB - phiA)  v
        1 - -------------------------------------- - ----------------
                        PhiB~ - PhiA~                               2
                                                     (PhiB~ - PhiA~)

        \
        |
        |
        |            v (phiB - phiA)
        |, m~ = mu - ---------------}
        |             PhiB~ - PhiA~
        /


                                   2          2
  sol := {mu = (-m~ PhiA~ + phiB m~  - phiA m~  + phiA a~ m~

         - phiB b~ m~ + s2 phiB - s2 phiA + m~ PhiB~)/(

        -PhiA~ + phiB m~ - phiA m~ + phiA a~ - phiB b~ + PhiB~),

                               s2 (-PhiB~ + PhiA~)
        v = - ------------------------------------------------------}
              -PhiA~ + phiB m~ - phiA m~ + phiA a~ - phiB b~ + PhiB~

> factor(subs(sol,mu)-1);

                      2          2
  (-m~ PhiA~ + phiB m~  - phiA m~  + phiA a~ m~ - phiB b~ m~

         + s2 phiB - s2 phiA + m~ PhiB~ + PhiA~ - phiB m~ + phiA m~

         - phiA a~ + phiB b~ - PhiB~)/(

        -PhiA~ + phiB m~ - phiA m~ + phiA a~ - phiB b~ + PhiB~)

>