/usr/share/openturns/validation/Curvature.txt is in openturns-validation 1.5-7build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 | > restart:
> G:=5-u2-1/2*(u1-1/10)^2;
> sol:=solve(G<0);
> with(plots):
> p1:=implicitplot(G,u1=-5..5,u2=-5..5):
> display(p1);
> P:=evalf(Int(int(1/(2*Pi)*exp(-(u1^2+u2^2)/2),u2=5-1/2*(u1-1/10)^2..in
> finity),u1=-infinity..infinity));
2
(u1 - 1/10)
G := 5 - u2 - ------------
2
999 2
sol := {--- - 1/2 u1 + 1/10 u1 < u2}
200
P := 0.003016311901
> L:=u1^2+u2^2-lambda*G:
> sol:=evalf(allvalues(solve({diff(L,u1),diff(L,u2),diff(L,lambda)},{u1,
> u2,lambda}))):
> p2:=plot([subs(sol[1],[u1,u2])],style=point,symbol=CIRCLE,color=GREEN)
> :
> p3:=plot([subs(sol[2],[u1,u2])],style=point,symbol=CIRCLE,color=BLUE):
> p4:=plot([subs(sol[3],[u1,u2])],style=point,symbol=CIRCLE,color=MAGENT
> A):
> display({p1,p2,p3,p4});
> map(Re,subs(sol[1],[u1,u2]));
> map(Re,subs(sol[2],[u1,u2]));
> map(Re,subs(sol[3],[u1,u2]));
[0.125001954, 4.999687451]
[2.915843269, 1.035513343]
[-2.740845224, 0.9647992061]
> with(LinearAlgebra):
> #G:=-(u1^2+u2^2-R^2);
> gradG:=<diff(G,u1),diff(G,u2)>;
> iGradNorm:=1/sqrt(gradG[1]^2+gradG[2]^2);
> uGradG:=iGradNorm*gradG;
> kron:=uGradG.Transpose(uGradG);
> W:=(kron-<<1,0>|<0,1>>).<<diff(G,u1$2),diff(diff(G,u1),u2)>|<diff(diff
> (G,u1),u2),diff(G,u2$2)>>;
> evalf(subs(sol[1],iGradNorm*Eigenvalues(W)));
> evalf(subs(sol[2],iGradNorm*Eigenvalues(W)));
> evalf(subs(sol[3],iGradNorm*Eigenvalues(W)));
> #evalf(subs(u1=0,u2=R,iGradNorm*Eigenvalues(W)));
[-u1 + 1/10]
gradG := [ ]
[ -1 ]
10
iGradNorm := --------------------------
2 1/2
(100 u1 - 20 u1 + 101)
[ 10 (-u1 + 1/10) ]
[ -------------------------- ]
[ 2 1/2 ]
[ (100 u1 - 20 u1 + 101) ]
uGradG := [ ]
[ 10 ]
[- --------------------------]
[ 2 1/2]
[ (100 u1 - 20 u1 + 101) ]
[ 2 ]
[100 (-u1 + 1/10) 100 (-u1 + 1/10)]
[----------------- - ----------------]
kron := [ %1 %1 ]
[ ]
[ 100 (-u1 + 1/10) 100 ]
[- ---------------- --- ]
[ %1 %1 ]
2
%1 := 100 u1 - 20 u1 + 101
[ 2 ]
[ 100 (-u1 + 1/10) ]
[- --------------------- + 1 0]
[ 2 ]
W := [ 100 u1 - 20 u1 + 101 ]
[ ]
[ 100 (-u1 + 1/10) ]
[ --------------------- 0]
[ 2 ]
[ 100 u1 - 20 u1 + 101 ]
[ 0. ]
[ ]
[ -10 ]
[0.9990630866 - 0.9481109191 10 I]
[ 0. ]
[ ]
[ -10 ]
[0.03747983864 + 0.3900484940 10 I]
[ 0. ]
[ ]
[ -10 ]
[0.03660667020 - 0.1602921043 10 I]
> s:=solve(G,u2);
999 2
s := --- - 1/2 u1 + 1/10 u1
200
> subs(sol[1],diff(s,u1$2)/(1+diff(s,u1)^2)^(3/2));
> subs(sol[2],diff(s,u1$2)/(1+diff(s,u1)^2)^(3/2));
> subs(sol[3],diff(s,u1$2)/(1+diff(s,u1)^2)^(3/2));
-10
-0.9990630851 + 0.9481109172 10 I
-10
-0.03747983863 - 0.3900484939 10 I
-10
-0.03660667020 + 0.1602921042 10 I
>
|