This file is indexed.

/usr/share/openturns/validation/Curvature.txt is in openturns-validation 1.5-7build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
> restart:
> G:=5-u2-1/2*(u1-1/10)^2;
> sol:=solve(G<0);
> with(plots):
> p1:=implicitplot(G,u1=-5..5,u2=-5..5):
> display(p1);
> P:=evalf(Int(int(1/(2*Pi)*exp(-(u1^2+u2^2)/2),u2=5-1/2*(u1-1/10)^2..in
> finity),u1=-infinity..infinity));

                                               2
                                    (u1 - 1/10)
                      G := 5 - u2 - ------------
                                         2


                        999         2
                sol := {--- - 1/2 u1  + 1/10 u1 < u2}
                        200



                         P := 0.003016311901

> L:=u1^2+u2^2-lambda*G:
> sol:=evalf(allvalues(solve({diff(L,u1),diff(L,u2),diff(L,lambda)},{u1,
> u2,lambda}))):
> p2:=plot([subs(sol[1],[u1,u2])],style=point,symbol=CIRCLE,color=GREEN)
> :
> p3:=plot([subs(sol[2],[u1,u2])],style=point,symbol=CIRCLE,color=BLUE):
> p4:=plot([subs(sol[3],[u1,u2])],style=point,symbol=CIRCLE,color=MAGENT
> A):
> display({p1,p2,p3,p4});
> map(Re,subs(sol[1],[u1,u2]));
> map(Re,subs(sol[2],[u1,u2]));
> map(Re,subs(sol[3],[u1,u2]));


                      [0.125001954, 4.999687451]


                      [2.915843269, 1.035513343]


                     [-2.740845224, 0.9647992061]

> with(LinearAlgebra):
> #G:=-(u1^2+u2^2-R^2);
> gradG:=<diff(G,u1),diff(G,u2)>;
> iGradNorm:=1/sqrt(gradG[1]^2+gradG[2]^2);
> uGradG:=iGradNorm*gradG;
> kron:=uGradG.Transpose(uGradG);
> W:=(kron-<<1,0>|<0,1>>).<<diff(G,u1$2),diff(diff(G,u1),u2)>|<diff(diff
> (G,u1),u2),diff(G,u2$2)>>;
> evalf(subs(sol[1],iGradNorm*Eigenvalues(W)));
> evalf(subs(sol[2],iGradNorm*Eigenvalues(W)));
> evalf(subs(sol[3],iGradNorm*Eigenvalues(W)));
> #evalf(subs(u1=0,u2=R,iGradNorm*Eigenvalues(W)));

                                 [-u1 + 1/10]
                        gradG := [          ]
                                 [    -1    ]


                                        10
               iGradNorm := --------------------------
                                   2               1/2
                            (100 u1  - 20 u1 + 101)


                         [      10 (-u1 + 1/10)       ]
                         [ -------------------------- ]
                         [        2               1/2 ]
                         [ (100 u1  - 20 u1 + 101)    ]
               uGradG := [                            ]
                         [              10            ]
                         [- --------------------------]
                         [         2               1/2]
                         [  (100 u1  - 20 u1 + 101)   ]


                  [                2                       ]
                  [100 (-u1 + 1/10)        100 (-u1 + 1/10)]
                  [-----------------     - ----------------]
          kron := [       %1                      %1       ]
                  [                                        ]
                  [  100 (-u1 + 1/10)           100        ]
                  [- ----------------           ---        ]
                  [         %1                  %1         ]

                                   2
                       %1 := 100 u1  - 20 u1 + 101


                    [                    2           ]
                    [    100 (-u1 + 1/10)            ]
                    [- --------------------- + 1    0]
                    [        2                       ]
               W := [  100 u1  - 20 u1 + 101         ]
                    [                                ]
                    [     100 (-u1 + 1/10)           ]
                    [   ---------------------       0]
                    [         2                      ]
                    [   100 u1  - 20 u1 + 101        ]


                [                0.                 ]
                [                                   ]
                [                              -10  ]
                [0.9990630866 - 0.9481109191 10    I]


                [                 0.                 ]
                [                                    ]
                [                               -10  ]
                [0.03747983864 + 0.3900484940 10    I]


                [                 0.                 ]
                [                                    ]
                [                               -10  ]
                [0.03660667020 - 0.1602921043 10    I]

> s:=solve(G,u2);

                          999         2
                     s := --- - 1/2 u1  + 1/10 u1
                          200

> subs(sol[1],diff(s,u1$2)/(1+diff(s,u1)^2)^(3/2));
> subs(sol[2],diff(s,u1$2)/(1+diff(s,u1)^2)^(3/2));
> subs(sol[3],diff(s,u1$2)/(1+diff(s,u1)^2)^(3/2));

                                                -10
                 -0.9990630851 + 0.9481109172 10    I


                                                -10
                -0.03747983863 - 0.3900484939 10    I


                                                -10
                -0.03660667020 + 0.1602921042 10    I

>