/usr/share/openscenegraph/examples/osgmultiplerendertargets/osgmultiplerendertargets.cpp is in openscenegraph-examples 3.2.1-7ubuntu4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 | /* OpenSceneGraph example, osgmultiplerendertargets.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <osg/GLExtensions>
#include <osg/Node>
#include <osg/Geometry>
#include <osg/Notify>
#include <osg/MatrixTransform>
#include <osg/Texture2D>
#include <osg/TextureRectangle>
#include <osg/ColorMask>
#include <osg/Material>
#include <osgGA/TrackballManipulator>
#include <osgGA/FlightManipulator>
#include <osgGA/DriveManipulator>
#include <osgViewer/Viewer>
#include <iostream>
#include <stdio.h>
//
// Below is relatively straight forward example of using the OpenGL multiple render targets (MRT) extension
// to FrameBufferObjects/GLSL shaders.
//
// Another, more sophisticated MRT example can be found in the osgstereomatch example.
//
// The callback modifies an input image.
struct MyCameraPostDrawCallback : public osg::Camera::DrawCallback
{
MyCameraPostDrawCallback(osg::Image* image):
_image(image)
{
}
virtual void operator () (const osg::Camera& /*camera*/) const
{
if (_image && _image->getPixelFormat()==GL_RGBA && _image->getDataType()==GL_UNSIGNED_BYTE)
{
// we'll pick out the center 1/2 of the whole image,
int column_start = _image->s()/4;
int column_end = 3*column_start;
int row_start = _image->t()/4;
int row_end = 3*row_start;
// and then halve their contribution
for(int r=row_start; r<row_end; ++r)
{
unsigned char* data = _image->data(column_start, r);
for(int c=column_start; c<column_end; ++c)
{
(*data) = (*data)/2; ++data;
(*data) = (*data)/2; ++data;
(*data) = (*data)/2; ++data;
(*data) = 255; ++data;
}
}
_image->dirty();
}
else if (_image && _image->getPixelFormat()==GL_RGBA && _image->getDataType()==GL_FLOAT)
{
// we'll pick out the center 1/2 of the whole image,
int column_start = _image->s()/4;
int column_end = 3*column_start;
int row_start = _image->t()/4;
int row_end = 3*row_start;
// and then halve their contribution
for(int r=row_start; r<row_end; ++r)
{
float* data = (float*)_image->data(column_start, r);
for(int c=column_start; c<column_end; ++c)
{
(*data) = (*data)/2.0; ++data;
(*data) = (*data)/2.0; ++data;
(*data) = (*data)/2.0; ++data;
(*data) = 1.0f; ++data;
}
}
_image->dirty();
//print out the first three values
float* data = (float*)_image->data(0, 0);
fprintf(stderr,"Float pixel data: r %e g %e b %e\n", data[0], data[1], data[2]);
}
}
osg::Image* _image;
};
#define NUM_TEXTURES 4
// The quad geometry is used by the render to texture camera to generate multiple textures.
osg::Group* createRTTQuad(unsigned int tex_width, unsigned int tex_height, bool useHDR)
{
osg::Group *top_group = new osg::Group;
osg::ref_ptr<osg::Geode> quad_geode = new osg::Geode;
osg::ref_ptr<osg::Vec3Array> quad_coords = new osg::Vec3Array; // vertex coords
// counter-clockwise
quad_coords->push_back(osg::Vec3d(0, 0, -1));
quad_coords->push_back(osg::Vec3d(1, 0, -1));
quad_coords->push_back(osg::Vec3d(1, 1, -1));
quad_coords->push_back(osg::Vec3d(0, 1, -1));
osg::ref_ptr<osg::Vec2Array> quad_tcoords = new osg::Vec2Array; // texture coords
quad_tcoords->push_back(osg::Vec2(0, 0));
quad_tcoords->push_back(osg::Vec2(tex_width, 0));
quad_tcoords->push_back(osg::Vec2(tex_width, tex_height));
quad_tcoords->push_back(osg::Vec2(0, tex_height));
osg::ref_ptr<osg::Geometry> quad_geom = new osg::Geometry;
osg::ref_ptr<osg::DrawArrays> quad_da = new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,4);
osg::ref_ptr<osg::Vec4Array> quad_colors = new osg::Vec4Array;
quad_colors->push_back(osg::Vec4(1.0f,1.0f,1.0f,1.0f));
quad_geom->setVertexArray(quad_coords.get());
quad_geom->setTexCoordArray(0, quad_tcoords.get());
quad_geom->addPrimitiveSet(quad_da.get());
quad_geom->setColorArray(quad_colors.get(), osg::Array::BIND_OVERALL);
osg::StateSet *stateset = quad_geom->getOrCreateStateSet();
stateset->setMode(GL_LIGHTING,osg::StateAttribute::OFF);
stateset->addUniform(new osg::Uniform("width", (int)tex_width));
// Attach shader, glFragData is used to create data for multiple render targets
if (useHDR) {
static const char *shaderSource = {
"uniform int width;"
"void main(void)\n"
"{\n"
" gl_FragData[0] = vec4(-1e-12,0,0,1);\n"
" gl_FragData[1] = vec4(0,1e-12,0,1);\n"
" gl_FragData[2] = vec4(0,0,1e-12,1);\n"
" gl_FragData[3] = vec4(0,0,1e-12,1);\n"
"}\n"
};
osg::ref_ptr<osg::Shader> fshader = new osg::Shader( osg::Shader::FRAGMENT , shaderSource);
osg::ref_ptr<osg::Program> program = new osg::Program;
program->addShader(fshader.get());
stateset->setAttributeAndModes(program.get(), osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE );
} else {
static const char *shaderSource = {
"uniform int width;"
"void main(void)\n"
"{\n"
" gl_FragData[0] = vec4(1,0,0,1);\n"
" gl_FragData[1] = vec4(0,1,0,1);\n"
" gl_FragData[2] = vec4(0,0,1,1);\n"
" gl_FragData[3] = vec4(0,0,1,1);\n"
"}\n"
};
osg::ref_ptr<osg::Shader> fshader = new osg::Shader( osg::Shader::FRAGMENT , shaderSource);
osg::ref_ptr<osg::Program> program = new osg::Program;
program->addShader(fshader.get());
stateset->setAttributeAndModes(program.get(), osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE );
}
quad_geode->addDrawable(quad_geom.get());
top_group->addChild(quad_geode.get());
return top_group;
}
// Here a scene consisting of a single quad is created. This scene is viewed by the screen camera.
// The quad is textured using a shader and the multiple textures generated in the RTT stage.
osg::Node* createScene(osg::Node* cam_subgraph, unsigned int tex_width, unsigned int tex_height, bool useHDR, bool useImage, bool useMultiSample)
{
if (!cam_subgraph) return 0;
// create a group to contain the quad and the pre render camera.
osg::Group* parent = new osg::Group;
// textures to render to and to use for texturing of the final quad
osg::TextureRectangle* textureRect[NUM_TEXTURES] = {0,0,0,0};
for (int i=0;i<NUM_TEXTURES;i++) {
textureRect[i] = new osg::TextureRectangle;
textureRect[i]->setTextureSize(tex_width, tex_height);
textureRect[i]->setInternalFormat(GL_RGBA);
textureRect[i]->setFilter(osg::Texture2D::MIN_FILTER,osg::Texture2D::LINEAR);
textureRect[i]->setFilter(osg::Texture2D::MAG_FILTER,osg::Texture2D::LINEAR);
if (useHDR)
{
// Default HDR format
textureRect[i]->setInternalFormat(GL_RGBA32F_ARB);
// GL_FLOAT_RGBA32_NV might be supported on pre 8-series GPUs
//textureRect[i]->setInternalFormat(GL_FLOAT_RGBA32_NV);
// GL_RGBA16F_ARB can be used with this example,
// but modify e-12 and e12 in the shaders accordingly
//textureRect[i]->setInternalFormat(GL_RGBA16F_ARB);
textureRect[i]->setSourceFormat(GL_RGBA);
textureRect[i]->setSourceType(GL_FLOAT);
}
}
// first create the geometry of the quad
{
osg::Geometry* polyGeom = new osg::Geometry();
polyGeom->setSupportsDisplayList(false);
osg::Vec3Array* vertices = new osg::Vec3Array;
osg::Vec2Array* texcoords = new osg::Vec2Array;
vertices->push_back(osg::Vec3d(0,0,0));
texcoords->push_back(osg::Vec2(0,0));
vertices->push_back(osg::Vec3d(1,0,0));
texcoords->push_back(osg::Vec2(tex_width,0));
vertices->push_back(osg::Vec3d(1,0,1));
texcoords->push_back(osg::Vec2(tex_width,tex_height));
vertices->push_back(osg::Vec3d(0,0,1));
texcoords->push_back(osg::Vec2(0,tex_height));
polyGeom->setVertexArray(vertices);
polyGeom->setTexCoordArray(0,texcoords);
osg::Vec4Array* colors = new osg::Vec4Array;
colors->push_back(osg::Vec4(1.0f,1.0f,1.0f,1.0f));
polyGeom->setColorArray(colors, osg::Array::BIND_OVERALL);
polyGeom->addPrimitiveSet(new osg::DrawArrays(osg::PrimitiveSet::QUADS,0,vertices->size()));
// now we need to add the textures (generated by RTT) to the Drawable.
osg::StateSet* stateset = new osg::StateSet;
for (int i=0;i<NUM_TEXTURES;i++){
stateset->setTextureAttributeAndModes(i, textureRect[i], osg::StateAttribute::ON);
}
polyGeom->setStateSet(stateset);
// Attach a shader to the final quad to combine the input textures.
if (useHDR) {
static const char *shaderSource = {
"uniform sampler2DRect textureID0;\n"
"uniform sampler2DRect textureID1;\n"
"uniform sampler2DRect textureID2;\n"
"uniform sampler2DRect textureID3;\n"
"uniform float width;\n"
"uniform float height; \n"
"void main(void)\n"
"{\n"
" gl_FragData[0] = \n"
" vec4( -1e12 * texture2DRect( textureID0, gl_TexCoord[0].st ).rgb, 1) + \n"
" vec4( 1e12 * texture2DRect( textureID1, gl_TexCoord[0].st ).rgb, 1) + \n"
" vec4( 1e12 * texture2DRect( textureID2, gl_TexCoord[0].st ).rgb, 1) + \n"
" vec4(-0.5e12 * texture2DRect( textureID3, gl_TexCoord[0].st ).rgb, 1); \n"
"}\n"
};
osg::ref_ptr<osg::Shader> fshader = new osg::Shader( osg::Shader::FRAGMENT , shaderSource);
osg::ref_ptr<osg::Program> program = new osg::Program;
program->addShader( fshader.get());
stateset->setAttributeAndModes( program.get(), osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE );
} else {
static const char *shaderSource = {
"uniform sampler2DRect textureID0;\n"
"uniform sampler2DRect textureID1;\n"
"uniform sampler2DRect textureID2;\n"
"uniform sampler2DRect textureID3;\n"
"void main(void)\n"
"{\n"
" gl_FragData[0] = \n"
" vec4(texture2DRect( textureID0, gl_TexCoord[0].st ).rgb, 1) + \n"
" vec4(texture2DRect( textureID1, gl_TexCoord[0].st ).rgb, 1) + \n"
" vec4(texture2DRect( textureID2, gl_TexCoord[0].st ).rgb, 1) + \n"
" -0.5*vec4(texture2DRect( textureID3, gl_TexCoord[0].st ).rgb, 1); \n"
"}\n"
};
osg::ref_ptr<osg::Shader> fshader = new osg::Shader( osg::Shader::FRAGMENT , shaderSource);
osg::ref_ptr<osg::Program> program = new osg::Program;
program->addShader( fshader.get());
stateset->setAttributeAndModes( program.get(), osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE );
}
stateset->addUniform(new osg::Uniform("textureID0", 0));
stateset->addUniform(new osg::Uniform("textureID1", 1));
stateset->addUniform(new osg::Uniform("textureID2", 2));
stateset->addUniform(new osg::Uniform("textureID3", 3));
//stateset->setDataVariance(osg::Object::DYNAMIC);
osg::Geode* geode = new osg::Geode();
geode->addDrawable(polyGeom);
parent->addChild(geode);
}
// now create the camera to do the multiple render to texture
{
osg::Camera* camera = new osg::Camera;
// set up the background color and clear mask.
camera->setClearColor(osg::Vec4(0.1f,0.1f,0.3f,1.0f));
camera->setClearMask(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// the camera is going to look at our input quad
camera->setProjectionMatrix(osg::Matrix::ortho2D(0,1,0,1));
camera->setReferenceFrame(osg::Transform::ABSOLUTE_RF);
camera->setViewMatrix(osg::Matrix::identity());
// set viewport
camera->setViewport(0, 0, tex_width, tex_height);
// set the camera to render before the main camera.
camera->setRenderOrder(osg::Camera::PRE_RENDER);
// tell the camera to use OpenGL frame buffer objects
camera->setRenderTargetImplementation(osg::Camera::FRAME_BUFFER_OBJECT);
// attach the textures to use
for (int i=0; i<NUM_TEXTURES; i++) {
if (useMultiSample)
camera->attach(osg::Camera::BufferComponent(osg::Camera::COLOR_BUFFER0+i), textureRect[i], 0, 0, false, 4, 4);
else
camera->attach(osg::Camera::BufferComponent(osg::Camera::COLOR_BUFFER0+i), textureRect[i]);
}
// we can also read back any of the targets as an image, modify this image and push it back
if (useImage) {
// which texture to get the image from
const int tex_to_get = 0;
osg::Image* image = new osg::Image;
if (useHDR) {
image->allocateImage(tex_width, tex_height, 1, GL_RGBA, GL_FLOAT);
} else {
image->allocateImage(tex_width, tex_height, 1, GL_RGBA, GL_UNSIGNED_BYTE);
}
// attach the image so its copied on each frame.
camera->attach(osg::Camera::BufferComponent(osg::Camera::COLOR_BUFFER0 + tex_to_get), image);
camera->setPostDrawCallback(new MyCameraPostDrawCallback(image));
// push back the image to the texture
textureRect[tex_to_get]->setImage(0, image);
}
// add the subgraph to render
camera->addChild(cam_subgraph);
parent->addChild(camera);
}
return parent;
}
int main( int argc, char **argv )
{
// use an ArgumentParser object to manage the program arguments.
osg::ArgumentParser arguments(&argc,argv);
// set up the usage document, in case we need to print out how to use this program.
arguments.getApplicationUsage()->setDescription(arguments.getApplicationName() + " demonstrates the use of multiple render targets (MRT) with frame buffer objects (FBOs). A render to texture (RTT) camera is used to render to four textures using a single shader. The four textures are then combined to texture the viewed geometry.");
arguments.getApplicationUsage()->setCommandLineUsage(arguments.getApplicationName()+" [options] ...");
arguments.getApplicationUsage()->addCommandLineOption("-h or --help","Display this information.");
arguments.getApplicationUsage()->addCommandLineOption("--width","Set the width of the render to texture.");
arguments.getApplicationUsage()->addCommandLineOption("--height","Set the height of the render to texture.");
arguments.getApplicationUsage()->addCommandLineOption("--image","Render one of the targets to an image, then apply a post draw callback to modify it and use this image to update the final texture. Print some texture values when using HDR.");
arguments.getApplicationUsage()->addCommandLineOption("--hdr","Use high dynamic range (HDR). Create floating point textures to render to.");
// construct the viewer.
osgViewer::Viewer viewer(arguments);
// if user request help write it out to cout.
if (arguments.read("-h") || arguments.read("--help"))
{
arguments.getApplicationUsage()->write(std::cout);
return 1;
}
unsigned tex_width = 512;
unsigned tex_height = 512;
while (arguments.read("--width", tex_width)) {}
while (arguments.read("--height", tex_height)) {}
bool useHDR = false;
while (arguments.read("--hdr")) { useHDR = true; }
bool useImage = false;
while (arguments.read("--image")) { useImage = true; }
bool useMultiSample = false;
while (arguments.read("--ms")) { useMultiSample = true; }
osg::Group* subGraph = createRTTQuad(tex_width, tex_height, useHDR);
osg::Group* rootNode = new osg::Group();
rootNode->addChild(createScene(subGraph, tex_width, tex_height, useHDR, useImage, useMultiSample));
// add model to the viewer.
viewer.setSceneData( rootNode );
return viewer.run();
}
|