This file is indexed.

/usr/lib/python2.7/dist-packages/ffc/representationutils.py is in python-ffc 1.3.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""This module contains utility functions for some code shared between
quadrature and tensor representation."""

# Copyright (C) 2012-2013 Marie Rognes
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Martin Alnaes, 2013
#
# First added:  2013-01-08
# Last changed: 2013-02-10

from ffc.fiatinterface import create_element
from ffc.fiatinterface import cellname_to_num_entities
from ffc.cpp import format

def transform_component(component, offset, ufl_element):
    """
    This function accounts for the fact that if the geometrical and
    topological dimension does not match, then for native vector
    elements, in particular the Piola-mapped ones, the physical value
    dimensions and the reference value dimensions are not the
    same. This has certain consequences for mixed elements, aka 'fun
    with offsets'.
    """
    # This code is used for tensor/monomialtransformation.py and
    # quadrature/quadraturetransformerbase.py.

    gdim = ufl_element.cell().geometric_dimension()
    tdim = ufl_element.cell().topological_dimension()

    # Do nothing if we are not in a special case: The special cases
    # occur if we have piola mapped elements (for which value_shape !=
    # ()), and if gdim != tdim)
    if gdim == tdim:
        return component, offset
    all_mappings =  create_element(ufl_element).mapping()
    special_case = (any(['piola' in m for m in all_mappings])
                    and ufl_element.num_sub_elements() > 1)
    if not special_case:
        return component, offset

    # Extract lists of reference and physical value dimensions by
    # sub-element
    reference_value_dims = []
    physical_value_dims = []
    for sub_element in ufl_element.sub_elements():
        assert (len(sub_element.value_shape()) < 2), \
            "Vector-valued assumption failed"
        if sub_element.value_shape() == ():
            reference_value_dims += [1]
            physical_value_dims += [1]
        else:
            reference_value_dims += [sub_element.value_shape()[0]
                                     - (gdim - tdim)]
            physical_value_dims += [sub_element.value_shape()[0]]

    # Figure out which sub-element number 'component' is in,
    # 'sub_element_number' contains the result
    tot = physical_value_dims[0]
    for sub_element_number in range(len(physical_value_dims)):
        if component < tot:
            break
        else:
            tot += physical_value_dims[sub_element_number+1]

    # Compute the new reference offset:
    reference_offset = sum(reference_value_dims[:sub_element_number])
    physical_offset = sum(physical_value_dims[:sub_element_number])
    shift = physical_offset - reference_offset

    # Compute the component relative to the reference frame
    reference_component = component - shift

    return reference_component, reference_offset

def needs_oriented_jacobian(form_data):
    # Check whether this form needs an oriented jacobian (only forms
    # involgin contravariant piola mappings seem to need it)
    for ufl_element in form_data.unique_elements:
        element = create_element(ufl_element)
        if "contravariant piola" in element.mapping():
            return True
    return False

def initialize_integral_ir(representation, itg_data, form_data, form_id):
    """Initialize a representation dict with common information that is
    expected independently of which representation is chosen."""
    entitytype = { "cell": "cell",
                   "exterior_facet": "facet",
                   "interior_facet": "facet",
                   "point": "vertex",
                   }[itg_data.domain_type]
    return { "representation":       representation,
             "domain_type":          itg_data.domain_type,
             "domain_id":            itg_data.domain_id,
             "form_id":              form_id,
             "rank":                 form_data.rank,
             "geometric_dimension":  form_data.geometric_dimension,
             "topological_dimension":form_data.topological_dimension,
             "entitytype":           entitytype,
             "num_facets":           cellname_to_num_entities[form_data.cell.cellname()][-2],
             "num_vertices":         cellname_to_num_entities[form_data.cell.cellname()][0],
             "needs_oriented":       needs_oriented_jacobian(form_data),
           }

def initialize_integral_code(ir, prefix, parameters):
    "Representation independent default initialization of code dict for integral from intermediate representation."
    code = {}
    code["restrict"] = parameters["restrict_keyword"]
    code["classname"] = format["classname " + ir["domain_type"] + "_integral"](prefix, ir["form_id"], ir["domain_id"])
    code["members"] = ""
    code["constructor"] = format["do nothing"]
    code["constructor_arguments"] = ""
    code["initializer_list"] = ""
    code["destructor"] = format["do nothing"]
    #code["additional_includes_set"] = set() #ir["additional_includes_set"]
    return code