/usr/lib/perl5/PDL/Transform.pm is in pdl 1:2.007-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 | #
# GENERATED WITH PDL::PP! Don't modify!
#
package PDL::Transform;
@EXPORT_OK = qw( apply invert map PDL::PP map unmap t_inverse t_compose t_wrap t_identity t_lookup t_linear t_scale t_offset t_rot t_fits t_code t_cylindrical t_radial t_quadratic t_cubic t_quadratic t_spherical t_projective );
%EXPORT_TAGS = (Func=>[@EXPORT_OK]);
use PDL::Core;
use PDL::Exporter;
use DynaLoader;
@ISA = ( 'PDL::Exporter','DynaLoader' );
push @PDL::Core::PP, __PACKAGE__;
bootstrap PDL::Transform ;
=head1 NAME
PDL::Transform - Coordinate transforms, image warping, and N-D functions
=head1 SYNOPSIS
use PDL::Transform;
my $t = new PDL::Transform::<type>(<opt>)
$out = $t->apply($in) # Apply transform to some N-vectors (Transform method)
$out = $in->apply($t) # Apply transform to some N-vectors (PDL method)
$im1 = $t->map($im); # Transform image coordinates (Transform method)
$im1 = $im->map($t); # Transform image coordinates (PDL method)
$t2 = $t->compose($t1); # compose two transforms
$t2 = $t x $t1; # compose two transforms (by analogy to matrix mult.)
$t3 = $t2->inverse(); # invert a transform
$t3 = !$t2; # invert a transform (by analogy to logical "not")
=head1 DESCRIPTION
PDL::Transform is a convenient way to represent coordinate
transformations and resample images. It embodies functions mapping
R^N -> R^M, both with and without inverses. Provision exists for
parametrizing functions, and for composing them. You can use this
part of the Transform object to keep track of arbitrary functions
mapping R^N -> R^M with or without inverses.
The simplest way to use a Transform object is to transform vector
data between coordinate systems. The L<apply|/apply> method
accepts a PDL whose 0th dimension is coordinate index (all other
dimensions are threaded over) and transforms the vectors into the new
coordinate system.
Transform also includes image resampling, via the L<map|/map> method.
You define a coordinate transform using a Transform object, then use
it to remap an image PDL. The output is a remapped, resampled image.
You can define and compose several transformations, then apply them
all at once to an image. The image is interpolated only once, when
all the composed transformations are applied.
In keeping with standard practice, but somewhat counterintuitively,
the L<map|/map> engine uses the inverse transform to map coordinates
FROM the destination dataspace (or image plane) TO the source dataspace;
hence PDL::Transform keeps track of both the forward and inverse transform.
For terseness and convenience, most of the constructors are exported
into the current package with the name C<< t_<transform> >>, so the following
(for example) are synonyms:
$t = new PDL::Transform::Radial(); # Long way
$t = t_radial(); # Short way
Several math operators are overloaded, so that you can compose and
invert functions with expression syntax instead of method syntax (see below).
=head1 EXAMPLE
Coordinate transformations and mappings are a little counterintuitive
at first. Here are some examples of transforms in action:
use PDL::Transform;
$a = rfits('m51.fits'); # Substitute path if necessary!
$ts = t_linear(Scale=>3); # Scaling transform
$w = pgwin(xs);
$w->imag($a);
## Grow m51 by a factor of 3; origin is at lower left.
$b = $ts->map($a,{pix=>1}); # pix option uses direct pixel coord system
$w->imag($b);
## Shrink m51 by a factor of 3; origin still at lower left.
$c = $ts->unmap($a, {pix=>1});
$w->imag($c);
## Grow m51 by a factor of 3; origin is at scientific origin.
$d = $ts->map($a,$a->hdr); # FITS hdr template prevents autoscaling
$w->imag($d);
## Shrink m51 by a factor of 3; origin is still at sci. origin.
$e = $ts->unmap($a,$a->hdr);
$w->imag($e);
## A no-op: shrink m51 by a factor of 3, then autoscale back to size
$f = $ts->map($a); # No template causes autoscaling of output
=head1 OPERATOR OVERLOADS
=over 3
=item '!'
The bang is a unary inversion operator. It binds exactly as
tightly as the normal bang operator.
=item 'x'
By analogy to matrix multiplication, 'x' is the compose operator, so these
two expressions are equivalent:
$f->inverse()->compose($g)->compose($f) # long way
!$f x $g x $f # short way
Both of those expressions are equivalent to the mathematical expression
f^-1 o g o f, or f^-1(g(f(x))).
=item '**'
By analogy to numeric powers, you can apply an operator a positive
integer number of times with the ** operator:
$f->compose($f)->compose($f) # long way
$f**3 # short way
=back
=head1 INTERNALS
Transforms are perl hashes. Here's a list of the meaning of each key:
=over 3
=item func
Ref to a subroutine that evaluates the transformed coordinates. It's
called with the input coordinate, and the "params" hash. This
springboarding is done via explicit ref rather than by subclassing,
for convenience both in coding new transforms (just add the
appropriate sub to the module) and in adding custom transforms at
run-time. Note that, if possible, new C<func>s should support
L<inplace|PDL::Core/inplace> operation to save memory when the data are flagged
inplace. But C<func> should always return its result even when
flagged to compute in-place.
C<func> should treat the 0th dimension of its input as a dimensional
index (running 0..N-1 for R^N operation) and thread over all other input
dimensions.
=item inv
Ref to an inverse method that reverses the transformation. It must
accept the same "params" hash that the forward method accepts. This
key can be left undefined in cases where there is no inverse.
=item idim, odim
Number of useful dimensions for indexing on the input and output sides
(ie the order of the 0th dimension of the coordinates to be fed in or
that come out). If this is set to 0, then as many are allocated as needed.
=item name
A shorthand name for the transformation (convenient for debugging).
You should plan on using UNIVERAL::isa to identify classes of
transformation, e.g. all linear transformations should be subclasses
of PDL::Transform::Linear. That makes it easier to add smarts to,
e.g., the compose() method.
=item itype
An array containing the name of the quantity that is expected from the
input piddle for the transform, for each dimension. This field is advisory,
and can be left blank if there's no obvious quantity associated with
the transform. This is analogous to the CTYPEn field used in FITS headers.
=item oname
Same as itype, but reporting what quantity is delivered for each
dimension.
=item iunit
The units expected on input, if a specific unit (e.g. degrees) is expected.
This field is advisory, and can be left blank if there's no obvious
unit associated with the transform.
=item ounit
Same as iunit, but reporting what quantity is delivered for each dimension.
=item params
Hash ref containing relevant parameters or anything else the func needs to
work right.
=item is_inverse
Bit indicating whether the transform has been inverted. That is useful
for some stringifications (see the PDL::Transform::Linear
stringifier), and may be useful for other things.
=back
Transforms should be inplace-aware where possible, to prevent excessive
memory usage.
If you define a new type of transform, consider generating a new stringify
method for it. Just define the sub "stringify" in the subclass package.
It should call SUPER::stringify to generate the first line (though
the PDL::Transform::Composition bends this rule by tweaking the
top-level line), then output (indented) additional lines as necessary to
fully describe the transformation.
=head1 NOTES
Transforms have a mechanism for labeling the units and type of each
coordinate, but it is just advisory. A routine to identify and, if
necessary, modify units by scaling would be a good idea. Currently,
it just assumes that the coordinates are correct for (e.g.) FITS
scientific-to-pixel transformations.
Composition works OK but should probably be done in a more
sophisticated way so that, for example, linear transformations are
combined at the matrix level instead of just strung together
pixel-to-pixel.
=head1 FUNCTIONS
There are both operators and constructors. The constructors are all
exported, all begin with "t_", and all return objects that are subclasses
of PDL::Transform.
The L<apply|/apply>, L<invert|/invert>, L<map|/map>,
and L<unmap|/unmap> methods are also exported to the C<PDL> package: they
are both Transform methods and PDL methods.
=cut
=head1 FUNCTIONS
=cut
=head2 apply
=for sig
Signature: (data(); PDL::Transform t)
=for usage
$out = $data->apply($t);
$out = $t->apply($data);
=for ref
Apply a transformation to some input coordinates.
In the example, C<$t> is a PDL::Transform and C<$data> is a PDL to
be interpreted as a collection of N-vectors (with index in the 0th
dimension). The output is a similar but transformed PDL.
For convenience, this is both a PDL method and a Transform method.
=cut
use Carp;
*PDL::apply = \&apply;
sub apply {
my($me) = shift;
my($from) = shift;
if(UNIVERSAL::isa($me,'PDL')){
my($a) = $from;
$from = $me;
$me = $a;
}
if(UNIVERSAL::isa($me,'PDL::Transform') && UNIVERSAL::isa($from,'PDL')){
croak "Applying a PDL::Transform with no func! Oops.\n" unless(defined($me->{func}) and ref($me->{func}) eq 'CODE');
my $result = &{$me->{func}}($from,$me->{params});
$result->is_inplace(0); # clear inplace flag, just in case.
return $result;
} else {
croak "apply requires both a PDL and a PDL::Transform.\n";
}
}
=head2 invert
=for sig
Signature: (data(); PDL::Transform t)
=for usage
$out = $t->invert($data);
$out = $data->invert($t);
=for ref
Apply an inverse transformation to some input coordinates.
In the example, C<$t> is a PDL::Transform and C<$data> is a piddle to
be interpreted as a collection of N-vectors (with index in the 0th
dimension). The output is a similar piddle.
For convenience this is both a PDL method and a PDL::Transform method.
=cut
*PDL::invert = \&invert;
sub invert {
my($me) = shift;
my($data) = shift;
if(UNIVERSAL::isa($me,'PDL')){
my($a) = $data;
$data = $me;
$me = $a;
}
if(UNIVERSAL::isa($me,'PDL::Transform') && UNIVERSAL::isa($data,'PDL')){
croak "Inverting a PDL::Transform with no inverse! Oops.\n" unless(defined($me->{inv}) and ref($me->{inv}) eq 'CODE');
my $result = &{$me->{inv}}($data, $me->{params});
$result->is_inplace(0); # make sure inplace flag is clear.
return $result;
} else {
croak("invert requires a PDL and a PDL::Transform (did you want 'inverse' instead?)\n");
}
}
=head2 map
=for sig
Signature: (k0(); SV *in; SV *out; SV *map; SV *boundary; SV *method;
SV *big; SV *blur; SV *sv_min; SV *flux; SV *bv)
=head2 PDL::match
=for usage
$b = $a->match($c); # Match $c's header and size
$b = $a->match([100,200]); # Rescale to 100x200 pixels
$b = $a->match([100,200],{rect=>1}); # Rescale and remove rotation/skew.
=for ref
Resample a scientific image to the same coordinate system as another.
The example above is syntactic sugar for
$b = $a->map(t_identity, $c, ...);
it resamples the input PDL with the identity transformation in
scientific coordinates, and matches the pixel coordinate system to
$c's FITS header.
There is one difference between match and map: match makes the
C<rectify> option to C<map> default to 0, not 1. This only affects
matching where autoscaling is required (i.e. the array ref example
above). By default, that example simply scales $a to the new size and
maintains any rotation or skew in its scientiic-to-pixel coordinate
transform.
=head2 map
=for usage
$b = $a->map($xform,[<template>],[\%opt]); # Distort $a with tranform $xform
$b = $a->map(t_identity,[$pdl],[\%opt]); # rescale $a to match $pdl's dims.
=for ref
Resample an image or N-D dataset using a coordinate transform.
The data are resampled so that the new pixel indices are proportional
to the transformed coordinates rather than the original ones.
The operation uses the inverse transform: each output pixel location
is inverse-transformed back to a location in the original dataset, and
the value is interpolated or sampled appropriately and copied into the
output domain. A variety of sampling options are available, trading
off speed and mathematical correctness.
For convenience, this is both a PDL method and a PDL::Transform method.
C<map> is FITS-aware: if there is a FITS header in the input data,
then the coordinate transform acts on the scientific coordinate system
rather than the pixel coordinate system.
By default, the output coordinates are separated from pixel coordinates
by a single layer of indirection. You can specify the mapping between
output transform (scientific) coordinates to pixel coordinates using
the C<orange> and C<irange> options (see below), or by supplying a
FITS header in the template.
If you don't specify an output transform, then the output is
autoscaled: C<map> transforms a few vectors in the forward direction
to generate a mapping that will put most of the data on the image
plane, for most transformations. The calculated mapping gets stuck in the
output's FITS header.
Autoscaling is especially useful for rescaling images -- if you specify
the identity transform and allow autoscaling, you duplicate the
functionality of L<rescale2d|PDL::Image2D/rescale2d>, but with more
options for interpolation.
You can operate in pixel space, and avoid autoscaling of the output,
by setting the C<nofits> option (see below).
The output has the same data type as the input. This is a feature,
but it can lead to strange-looking banding behaviors if you use
interpolation on an integer input variable.
The C<template> can be one of:
=over 3
=item * a PDL
The PDL and its header are copied to the output array, which is then
populated with data. If the PDL has a FITS header, then the FITS
transform is automatically applied so that $t applies to the output
scientific coordinates and not to the output pixel coordinates. In
this case the NAXIS fields of the FITS header are ignored.
=item * a FITS header stored as a hash ref
The FITS NAXIS fields are used to define the output array, and the
FITS transformation is applied to the coordinates so that $t applies to the
output scientific coordinates.
=item * a list ref
This is a list of dimensions for the output array. The code estimates
appropriate pixel scaling factors to fill the available space. The
scaling factors are placed in the output FITS header.
=item * nothing
In this case, the input image size is used as a template, and scaling
is done as with the list ref case (above).
=back
OPTIONS:
The following options are interpreted:
=over 3
=item b, bound, boundary, Boundary (default = 'truncate')
This is the boundary condition to be applied to the input image; it is
passed verbatim to L<range|PDL::Slices/range> or
L<interpND|PDL::Primitive/interpND> in the sampling or interpolating
stage. Other values are 'forbid','extend', and 'periodic'. You can
abbreviate this to a single letter. The default 'truncate' causes the
entire notional space outside the original image to be filled with 0.
=item pix, Pixel, nf, nofits, NoFITS (default = 0)
If you set this to a true value, then FITS headers and interpretation
are ignored; the transformation is treated as being in raw pixel coordinates.
=item j, J, just, justify, Justify (default = 0)
If you set this to 1, then output pixels are autoscaled to have unit
aspect ratio in the output coordinates. If you set it to a non-1
value, then it is the aspect ratio between the first dimension and all
subsequent dimensions -- or, for a 2-D transformation, the scientific
pixel aspect ratio. Values less than 1 shrink the scale in the first
dimension compared to the other dimensions; values greater than 1
enlarge it compared to the other dimensions. (This is the same sense
as in the L<PGPLOT|PDL::Graphics::PGPLOT>interface.)
=item ir, irange, input_range, Input_Range
This is a way to modify the autoscaling. It specifies the range of
input scientific (not necessarily pixel) coordinates that you want to be
mapped to the output image. It can be either a nested array ref or
a piddle. The 0th dim (outside coordinate in the array ref) is
dimension index in the data; the 1st dim should have order 2.
For example, passing in either [[-1,2],[3,4]] or pdl([[-1,2],[3,4]])
limites the map to the quadrilateral in input space defined by the
four points (-1,3), (-1,4), (2,4), and (2,3).
As with plain autoscaling, the quadrilateral gets sparsely sampled by
the autoranger, so pathological transformations can give you strange
results.
This parameter is overridden by C<orange>, below.
=item or, orange, output_range, Output_Range
This sets the window of output space that is to be sampled onto the
output array. It works exactly like C<irange>, except that it specifies
a quadrilateral in output space. Since the output pixel array is itself
a quadrilateral, you get pretty much exactly what you asked for.
This parameter overrides C<irange>, if both are specified. It forces
rectification of the output (so that scientific axes align with the pixel
grid).
=item r, rect, rectify
This option defaults TRUE and controls how autoscaling is performed. If
it is true or undefined, then autoscaling adjusts so that pixel coordinates
in the output image are proportional to individual scientific coordinates.
If it is false, then autoscaling automatically applies the inverse of any
input FITS transformation *before* autoscaling the pixels. In the special
case of linear transformations, this preserves the rectangular shape of the
original pixel grid and makes output pixel coordinate proportional to input
coordinate.
=item m, method, Method
This option controls the interpolation method to be used.
Interpolation greatly affects both speed and quality of output. For
most cases the option is directly passed to
L<interpND|PDL::Primitive/interpnd> for interpolation. Possible
options, in order from fastest to slowest, are:
=over 3
=item * s, sample (default for ints)
Pixel values in the output plane are sampled from the closest data value
in the input plane. This is very fast but not very accurate for either
magnification or decimation (shrinking). It is the default for templates
of integer type.
=item * l, linear (default for floats)
Pixel values are linearly interpolated from the closest data value in the
input plane. This is reasonably fast but only accurate for magnification.
Decimation (shrinking) of the image causes aliasing and loss of photometry
as features fall between the samples. It is the default for floating-point
templates.
=item * c, cubic
Pixel values are interpolated using an N-cubic scheme from a 4-pixel
N-cube around each coordinate value. As with linear interpolation,
this is only accurate for magnification.
=item * f, fft
Pixel values are interpolated using the term coefficients of the
Fourier transform of the original data. This is the most appropriate
technique for some kinds of data, but can yield undesired "ringing" for
expansion of normal images. Best suited to studying images with
repetitive or wavelike features.
=item * h, hanning
Pixel values are filtered through a spatially-variable filter tuned to
the computed Jacobian of the transformation, with hanning-window
(cosine) pixel rolloff in each dimension. This prevents aliasing in the
case where the image is distorted or shrunk, but allows small amounts
of aliasing at pixel edges wherever the image is enlarged.
=item * g, gaussian, j, jacobian
Pixel values are filtered through a spatially-variable filter tuned to
the computed Jacobian of the transformation, with radial Gaussian
rolloff. This is the most accurate resampling method, in the sense of
introducing the fewest artifacts into a properly sampled data set.
=back
=item blur, Blur (default = 1.0)
This value scales the input-space footprint of each output pixel in
the gaussian and hanning methods. It's retained for historical
reasons. Larger values yield blurrier images; values significantly
smaller than unity cause aliasing.
=item sv, SV (default = 1.0)
This value lets you set the lower limit of the transformation's
singular values in the hanning and gaussian methods, limiting the
minimum radius of influence associated with each output pixel. Large
numbers yield smoother interpolation in magnified parts of the image
but don't affect reduced parts of the image.
=item big, Big (default = 0.2)
This is the largest allowable input spot size which may be mapped to a
single output pixel by the hanning and gaussian methods, in units of
the largest non-thread input dimension. (i.e. the default won't let
you reduce the original image to less than 5 pixels across). This places
a limit on how long the processing can take for pathological transformations.
Smaller numbers keep the code from hanging for a long time; larger numbers
provide for photometric accuracy in more pathological cases. Numbers larer
than 1.0 are silly, because they allow the entire input array to be compressed
into a region smaller than a single pixel.
Wherever an output pixel would require averaging over an area that is too
big in input space, it instead gets NaN or the equivalent (bad values are
not yet supported).
=item phot, photometry, Photometry
This lets you set the style of photometric conversion to be used in the
hanning or gaussian methods. You may choose:
=over 3
=item * 0, s, surf, surface, Surface (default)
(this is the default): surface brightness is preserved over the transformation,
so features maintain their original intensity. This is what the sampling
and interpolation methods do.
=item * 1, f, flux, Flux
Total flux is preserved over the transformation, so that the brightness
integral over image regions is preserved. Parts of the image that are
shrunk wind up brighter; parts that are enlarged end up fainter.
=back
=back
VARIABLE FILTERING:
The 'hanning' and 'gaussian' methods of interpolation give
photometrically accurate resampling of the input data for arbitrary
transformations. At each pixel, the code generates a linear
approximation to the input transformation, and uses that linearization
to estimate the "footprint" of the output pixel in the input space.
The output value is a weighted average of the appropriate input spaces.
A caveat about these methods is that they assume the transformation is
continuous. Transformations that contain discontinuities will give
incorrect results near the discontinuity. In particular, the 180th
meridian isn't handled well in lat/lon mapping transformations (see
L<PDL::Transform::Cartography>) -- pixels along the 180th meridian get
the average value of everything along the parallel occupied by the
pixel. This flaw is inherent in the assumptions that underly creating
a Jacobian matrix. Maybe someone will write code to work around it.
Maybe that someone is you.
=for bad
map does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
sub PDL::match {
# Set default for rectification to 0 for simple matching...
if( ref($_[$#_]) ne 'HASH' ) {
push(@_,{})
}
my @k = grep(m/^r(e(c(t)?)?)?/,keys %{$_[$#_]});
unless(@k) {
$_[$#_]->{rectify} = 0;
}
t_identity()->map(@_);
}
*PDL::map = \↦
sub map {
my($me) = shift;
my($in) = shift;
if(UNIVERSAL::isa($me,'PDL') && UNIVERSAL::isa($in,'PDL::Transform')) {
my($a) = $in;
$in = $me;
$me = $a;
}
barf ("PDL::Transform::map: source is not defined or is not a PDL\n")
unless(defined $in and UNIVERSAL::isa($in,'PDL'));
my($tmp) = shift;
my($opt) = shift;
# Check for options-but-no-template case
if(ref $tmp eq 'HASH' && !(defined $opt)) {
if(!defined($tmp->{NAXIS})) { # FITS headers all have NAXIS.
$opt = $tmp;
$tmp = undef;
}
}
croak("PDL::Transform::map: Option 'p' was ambiguous and has been removed. You probably want 'pix' or 'phot'.") if exists($opt->{'p'});
$tmp = [$in->dims] unless(defined($tmp));
# Generate an appropriate output piddle for values to go in
my($out);
my(@odims);
my($ohdr);
if(UNIVERSAL::isa($tmp,'PDL')) {
@odims = $tmp->dims;
my($a);
if(defined ($a = $tmp->gethdr)) {
my(%b) = %{$a};
$ohdr = \%b;
}
} elsif(ref $tmp eq 'HASH') {
# (must be a fits header -- or would be filtered above)
for my $i(1..$tmp->{NAXIS}){
push(@odims,$tmp->{"NAXIS$i"});
}
# deep-copy fits header into output
my %foo = %{$tmp};
$ohdr = \%foo;
} elsif(ref $tmp eq 'ARRAY') {
@odims = @$tmp;
} else {
barf("map: confused about dimensions of the output array...\n");
}
if(scalar(@odims) < scalar($in->dims)) {
my @idims = $in->dims;
push(@odims, splice(@idims,scalar(@odims)));
}
$out = PDL::new_from_specification('PDL',$in->type,@odims);
$out->sethdr($ohdr) if defined($ohdr);
if($PDL::Bad::Status and $in->badflag()) {
$out->badflag(1);
}
##############################
## Figure out the dimensionality of the
## transform itself (extra dimensions come along for the ride)
my $nd = $me->{odim} || $me->{idim} || 2;
my @sizes = $out->dims;
my @dd = @sizes;
splice @dd,$nd; # Cut out dimensions after the end
# Check that there are elements in the output fields...
barf "map: output has no dims!\n"
unless(@dd);
my $ddtotal = 1;
map {$ddtotal *= $_} @dd;
barf "map: output has no elements (at least one dim is 0)!\n"
unless($ddtotal);
##############################
# If necessary, generate an appropriate FITS header for the output.
my $nofits = _opt($opt, ['nf','nofits','NoFITS','pix','pixel','Pixel']);
##############################
# Autoscale by transforming a subset of the input points' coordinates
# to the output range, and pick a FITS header that fits the output
# coordinates into the given template.
#
# Autoscaling always produces a simple, linear mapping in the FITS header.
# We support more complex mappings (via t_fits) but only to match a pre-existing
# FITS header (which doesn't use autoscaling).
#
# If the rectify option is set (the default) then the image is rectified
# in scientific coordinates; if it is clear, then the existing matrix
# is used, preserving any shear or rotation in the coordinate system.
# Since we eschew CROTA whenever possible, the CDi_j formalism is used instead.
my $f_in = (defined($in->hdr->{NAXIS}) ? t_fits($in,{ignore_rgb=>1}) : t_identity());
unless((defined $out->gethdr && $out->hdr->{NAXIS}) or $nofits) {
print "generating output FITS header..." if($PDL::Transform::debug);
$out->sethdr($in->hdr_copy) # Copy extraneous fields...
if(defined $in->hdr);
my $samp_ratio = 300;
my $orange = _opt($opt, ['or','orange','output_range','Output_Range'],
undef);
my $omin;
my $omax;
my $osize;
my $rectify = _opt($opt,['r','rect','rectify','Rectify'],1);
if (defined $orange) {
# orange always rectifies the coordinates -- the output scientific
# coordinates *must* align with the axes, or orange wouldn't make
# sense.
print "using user's orange..." if($PDL::Transform::debug);
$orange = pdl($orange) unless(UNIVERSAL::isa($orange,'PDL'));
barf "map: orange must be 2xN for an N-D transform"
unless ( (($orange->dim(1)) == $nd )
&& $orange->ndims == 2);
$omin = $orange->slice("(0)");
$omax = $orange->slice("(1)");
$osize = $omax - $omin;
$rectify = 1;
} else {
##############################
# Real autoscaling happens here.
if(!$rectify and ref( $f_in ) !~ /Linear/) {
print STDERR "Warning: map can't preserve nonlinear FITS distortions while autoscaling.\n";
$rectify=1;
}
if(!$rectify and $f_in->{name} eq 'identity') {
$rectify = 1;
}
my $f_tr = ( $rectify ?
$me x $f_in :
( ($me->{name} eq 'identity') ? # Simple optimization for match()
$me : # identity -- just matching
!$f_in x $me x $f_in # common case
)
);
my $samps = (pdl(($in->dims)[0..$nd-1]))->clip(0,$samp_ratio);
my $coords = ndcoords(($samps + 1)->list);
my $t;
my $irange = _opt($opt, ['ir','irange','input_range','Input_Range'],
undef);
# If input range is defined, sample that quadrilateral -- else
# sample the quad defined by the boundaries of the input image.
if(defined $irange) {
print "using user's irange..." if($PDL::Transform::debug);
$irange = pdl($irange) unless(UNIVERSAL::isa($irange,'PDL'));
barf "map: irange must be 2xN for an N-D transform"
unless ( (($irange->dim(1)) == $nd )
&& $irange->ndims == 2);
$coords *= ($irange->slice("(1)") - $irange->slice("(0)")) / $samps;
$coords += $irange->slice("(0)");
$coords -= 0.5; # offset to pixel corners...
$t = $me;
} else {
$coords *= pdl(($in->dims)[0..$nd-1]) / $samps;
$coords -= 0.5; # offset to pixel corners...
$t = $f_tr;
}
my $ocoords = $t->apply($coords)->mv(0,-1)->clump($nd);
# discard non-finite entries
my $oc2 = $ocoords->range(
which(
$ocoords->
xchg(0,1)->
sumover->
isfinite
)
->dummy(0,1)
);
$omin = $oc2->minimum;
$omax = $oc2->maximum;
$osize = $omax - $omin;
my $tosize;
($tosize = $osize->where($osize == 0)) .= 1.0;
}
my ($scale) = $osize / pdl(($out->dims)[0..$nd-1]);
my $justify = _opt($opt,['j','J','just','justify','Justify'],0);
if($justify) {
my $tmp; # work around perl -d "feature"
($tmp = $scale->slice("0")) *= $justify;
$scale .= $scale->max;
$scale->slice("0") /= $justify;
}
print "done with autoscale. Making fits header....\n" if($PDL::Transform::debug);
if( $rectify ) {
# Rectified header generation -- make a simple coordinate header with no
# rotation or skew.
print "rectify\n" if($PDL::Transform::debug);
for my $d(1..$nd) {
$out->hdr->{"CRPIX$d"} = 1 + ($out->dim($d-1)-1)/2 ;
$out->hdr->{"CDELT$d"} = $scale->at($d-1);
$out->hdr->{"CRVAL$d"} = ( $omin->at($d-1) + $omax->at($d-1) ) /2 ;
$out->hdr->{"NAXIS$d"} = $out->dim($d-1);
$out->hdr->{"CTYPE$d"} = ( (defined($me->{otype}) ?
$me->{otype}->[$d-1] : "")
|| $in->hdr->{"CTYPE$d"}
|| "");
$out->hdr->{"CUNIT$d"} = ( (defined($me->{ounit}) ?
$me->{ounit}->[$d-1] : "")
|| $in->hdr->{"CUNIT$d"}
|| $in->hdr->{"CTYPE$d"}
|| "");
}
$out->hdr->{"NAXIS"} = $nd;
$out->hdr->{"SIMPLE"} = 'T';
$out->hdr->{"HISTORY"} .= "Header written by PDL::Transform::Cartography::map";
### Eliminate fancy newfangled output header pointing tags if they exist
### These are the CROTA<n>, PCi_j, and CDi_j.
for $k(keys %{$out->hdr}) {
if( $k=~m/(^CROTA\d*$)|(^(CD|PC)\d+_\d+[A-Z]?$)/ ){
delete $out->hdr->{$k};
}
}
} else {
# Non-rectified output -- generate a CDi_j matrix instead of the simple formalism.
# We have to deal with a linear transformation: we've got: (scaling) x !input x (t x input),
# where input is a linear transformation with offset and scaling is a simple scaling. We have
# the scaling parameters and the matrix for !input -- we have only to merge them and then we
# can write out the FITS header in CDi_j form.
print "non-rectify\n" if($PDL::Transform::debug);
my $midpoint_val = (pdl(($out->dims)[0..$nd-1])/2 * $scale)->apply( $f_in );
print "midpoint_val is $midpoint_val\n" if($PDL::Transform::debug);
# linear transformation
unless(ref($f_in) =~ m/Linear/) {
croak("Whups -- got a nonlinear t_fits transformation. Can't deal with it.");
}
my $inv_sc_mat = zeroes($nd,$nd);
$inv_sc_mat->diagonal(0,1) .= $scale;
my $mat = $f_in->{params}->{matrix} x $inv_sc_mat;
print "scale is $scale; mat is $mat\n" if($PDL::Transform::debug);
print "looping dims 1..$nd: " if($PDL::Transform::debug);
for my $d(1..$nd) {
print "$d..." if($PDL::Transform::debug);
$out->hdr->{"CRPIX$d"} = 1 + ($out->dim($d-1)-1)/2;
$out->hdr->{"CRVAL$d"} = $midpoint_val->at($d-1);
$out->hdr->{"NAXIS$d"} = $out->dim($d-1);
$out->hdr->{"CTYPE$d"} = ( (defined($me->{otype}) ?
$me->{otype}->[$d-1] : "")
|| $in->hdr->{"CTYPE$d"}
|| "");
$out->hdr->{"CUNIT$d"} = ( (defined($me->{ounit}) ?
$me->{ounit}->[$d-1] : "")
|| $in->hdr->{"CUNIT$d"}
|| $in->hdr->{"CTYPE$d"}
|| "");
for my $e(1..$nd) {
$out->hdr->{"CD${d}_${e}"} = $mat->at($d-1,$e-1);
print "setting CD${d}_${e} to ".$mat->at($d-1,$e-1)."\n" if($PDL::Transform::debug);
}
}
## Eliminate competing header pointing tags if they exist
for $k(keys %{$out->hdr}) {
if( $k =~ m/(^CROTA\d*$)|(^(PC)\d+_\d+[A-Z]?$)|(CDELT\d*$)/ ) {
delete $out->hdr->{$k};
}
}
}
}
$out->hdrcpy(1);
##############################
# Sandwich the transform between the input and output plane FITS headers.
unless($nofits) {
$me = !(t_fits($out,{ignore_rgb=>1})) x $me x $f_in;
}
##############################
## Figure out the interpND options
my $method = _opt($opt,['m','method','Method'],undef);
my $bound = _opt($opt,['b','bound','boundary','Boundary'],'t');
##############################
## Rubber meets the road: calculate the inverse transformed points.
my $ndc = PDL::Basic::ndcoords(@dd);
my $idx = $me->invert($ndc->double);
barf "map: Transformation had no inverse\n" unless defined($idx);
##############################
## Integrate ? (Jacobian, Gaussian, Hanning)
my $integrate = ($method =~ m/^[jghJGH]/) if defined($method);
##############################
## Sampling code:
## just transform and interpolate.
## ( Kind of an anticlimax after all that, eh? )
if(!$integrate) {
my $a = $in->interpND($idx,{method=>$method, bound=>$bound});
my $tmp; # work around perl -d "feature"
($tmp = $out->slice(":")) .= $a; # trivial slice prevents header overwrite...
return $out;
}
##############################
## Anti-aliasing code:
## Condition the input and call the pixelwise C interpolator.
##
barf("PDL::Transform::map: Too many dims in transformation\n")
if($in->ndims < $idx->ndims-1);
####################
## Condition the threading -- pixelwise interpolator only threads
## in 1 dimension, so squish all thread dimensions into 1, if necessary
my @iddims = $idx->dims;
if($in->ndims == $#iddims) {
$in2 = $in->dummy(-1,1);
} else {
$in2 = ( $in
->reorder($nd..$in->ndims-1, 0..$nd-1)
->clump($in->ndims - $nd)
->mv(0,-1)
);
}
####################
# Allocate the output array
my $o2 = PDL->new_from_specification($in2->type,
@iddims[1..$#iddims],
$in2->dim(-1)
);
####################
# Pack boundary string if necessary
if(defined $bound) {
if(ref $bound eq 'ARRAY') {
my ($s,$el);
foreach $el(@$bound) {
barf "Illegal boundary value '$el' in range"
unless( $el =~ m/^([0123fFtTeEpPmM])/ );
$s .= $1;
}
$bound = $s;
}
elsif($bound !~ m/^[0123ftepx]+$/ && $bound =~ m/^([0123ftepx])/i ) {
$bound = $1;
}
}
####################
# Get the blur and minimum-sv values
my $blur = _opt($opt,['blur','Blur'],1.0);
my $svmin = _opt($opt,['sv','SV'],1.0);
my $big = _opt($opt,['big','Big'],1.0);
my $flux = _opt($opt,['phot','photometry'],0);
my @idims = $in->dims;
$flux = ($flux =~ m/^[1fF]/);
$big = $big * max(pdl(@idims[0..$nd])) / 2;
$blur = $blur->at(0) if(ref $blur);
$svmin = $svmin->at(0) if(ref $svmin);
my $bv;
if($PDL::Bad::Status and $in->badflag){
$bv = $in->badvalue;
} else {
$bv = 0;
}
### The first argument is a dummy to set $GENERIC.
$idx = double($idx) unless($idx->type == double);
&PDL::_map_int( $in2->flat->index(0),
$in2, $o2, $idx,
$bound, $method, $big, $blur, $svmin, $flux, $bv);
my @rdims = (@iddims[1..$#iddims], @idims[$#iddims..$#idims]);
{
my $tmp; # work around perl -d "feature"
($tmp = $out->slice(":")) .= $o2->reshape(@rdims);
}
return $out;
}
*map = \&PDL::map;
######################################################################
=head2 unmap
=for sig
Signature: (data(); PDL::Transform a; template(); \%opt)
=for usage
$out_image = $in_image->unmap($t,[<options>],[<template>]);
$out_image = $t->unmap($in_image,[<options>],[<template>]);
=for ref
Map an image or N-D dataset using the inverse as a coordinate transform.
This convenience function just inverts $t and calls L<map|/map> on
the inverse; everything works the same otherwise. For convenience, it
is both a PDL method and a PDL::Transform method.
=cut
*PDL::unmap = \&unmap;
sub unmap {
my($me) = shift;
my($data) = shift;
my(@params) = @_;
if(UNIVERSAL::isa($data,'PDL::Transform') && UNIVERSAL::isa($me,'PDL')) {
my $a = $data;
$data = $me;
$me = $a;
}
return $me->inverse->map($data,@params);
}
=head2 t_inverse
=for usage
$t2 = t_inverse($t);
$t2 = $t->inverse;
$t2 = $t ** -1;
$t2 = !$t;
=for ref
Return the inverse of a PDL::Transform. This just reverses the
func/inv, idim/odim, itype/otype, and iunit/ounit pairs. Note that
sometimes you end up with a transform that cannot be applied or
mapped, because either the mathematical inverse doesn't exist or the
inverse func isn't implemented.
You can invert a transform by raising it to a negative power, or by
negating it with '!'.
The inverse transform remains connected to the main transform because
they both point to the original parameters hash. That turns out to be
useful.
=cut
*t_inverse = \&inverse;
sub inverse {
my($me) = shift;
unless(defined($me->{inv})) {
Carp::cluck("PDL::Transform::inverse: got a transform with no inverse.\n");
return undef;
}
my(%out) = %$me; # force explicit copy of top-level
my($out) = \%out;
$out->{inv} = $me->{func};
$out->{func} = $me->{inv};
$out->{idim} = $me->{odim};
$out->{odim} = $me->{idim};
$out->{otype} = $me->{itype};
$out->{itype} = $me->{otype};
$out->{ounit} = $me->{iunit};
$out->{iunit} = $me->{ounit};
$out->{name} = "(inverse ".$me->{name}.")";
$out->{is_inverse} = !($out->{is_inverse});
bless $out,(ref $me);
return $out;
}
=head2 t_compose
=for usage
$f2 = t_compose($f, $g,[...]);
$f2 = $f->compose($g[,$h,$i,...]);
$f2 = $f x $g x ...;
=for ref
Function composition: f(g(x)), f(g(h(x))), ...
You can also compose transforms using the overloaded matrix-multiplication
(nee repeat) operator 'x'.
This is accomplished by inserting a splicing code ref into the C<func>
and C<inv> slots. It combines multiple compositions into a single
list of transforms to be executed in order, fram last to first (in
keeping with standard mathematical notation). If one of the functions is
itself a composition, it is interpolated into the list rather than left
separate. Ultimately, linear transformations may also be combined within
the list.
No checking is done that the itype/otype and iunit/ounit fields are
compatible -- that may happen later, or you can implement it yourself
if you like.
=cut
@PDL::Transform::Composition::ISA = ('PDL::Transform');
sub PDL::Transform::Composition::stringify {
package PDL::Transform::Composition;
my($me) = shift;
my($out) = SUPER::stringify $me;
$out;
}
*t_compose = \&compose;
sub compose {
local($_);
my(@funcs) = @_;
my($me) = PDL::Transform->new;
# No inputs case: return the identity function
return $me
if(!@funcs);
$me->{name} = "";
my($f);
my(@clist);
for $f(@funcs) {
$me->{idim} = $f->{idim} if($f->{idim} > $me->{idim});
$me->{odim} = $f->{odim} if($f->{odim} > $me->{odim});
if(UNIVERSAL::isa($f,"PDL::Transform::Composition")) {
if($f->{is_inverse}) {
for(reverse(@{$f->{params}->{clist}})) {
push(@clist,$_->inverse);
$me->{name} .= " o inverse ( ".$_->{name}." )";
}
} else {
for(@{$f->{params}->{clist}}) {
push(@clist,$_);
$me->{name} .= " o ".$_->{name};
}
}
} else { # Not a composition -- just push the transform onto the list.
push(@clist,$f);
$me->{name} .= " o ".$f->{name};
}
}
$me->{name}=~ s/^ o //; # Get rid of leading composition mark
$me->{otype} = $funcs[0]->{otype};
$me->{ounit} = $funcs[0]->{ounit};
$me->{itype} = $funcs[-1]->{itype};
$me->{iunit} = $funcs[-1]->{iunit};
$me->{params}->{clist} = \@clist;
$me->{func} = sub {
my ($data,$p) = @_;
my ($ip) = $data->is_inplace;
for my $t ( reverse @{$p->{clist}} ) {
croak("Error: tried to apply a PDL::Transform with no function inside a composition!\n offending transform: $t\n")
unless(defined($t->{func}) and ref($t->{func}) eq 'CODE');
$data = $t->{func}($ip ? $data->inplace : $data, $t->{params});
}
$data->is_inplace(0); # clear inplace flag (avoid core bug with inplace)
$data;
};
$me->{inv} = sub {
my($data,$p) = @_;
my($ip) = $data->is_inplace;
for my $t ( @{$p->{clist}} ) {
croak("Error: tried to invert a non-invertible PDL::Transform inside a composition!\n offending transform: $t\n")
unless(defined($t->{inv}) and ref($t->{inv}) eq 'CODE');
$data = &{$t->{inv}}($ip ? $data->inplace : $data, $t->{params});
}
$data;
};
return bless($me,'PDL::Transform::Composition');
}
=head2 t_wrap
=for usage
$g1fg = $f->wrap($g);
$g1fg = t_wrap($f,$g);
=for ref
Shift a transform into a different space by 'wrapping' it with a second.
This is just a convenience function for two
L<t_compose|/t_compose> calls. C<< $a->wrap($b) >> is the same as
C<(!$b) x $a x $b>: the resulting transform first hits the data with
$b, then with $a, then with the inverse of $b.
For example, to shift the origin of rotation, do this:
$im = rfits('m51.fits');
$tf = t_fits($im);
$tr = t_linear({rot=>30});
$im1 = $tr->map($tr); # Rotate around pixel origin
$im2 = $tr->map($tr->wrap($tf)); # Rotate round FITS scientific origin
=cut
*t_wrap = \&wrap;
sub wrap {
my($f) = shift;
my($g) = shift;
return $g->inverse->compose($f,$g);
}
######################################################################
# Composition operator -- handles 'x'.
sub _compose_op {
my($a,$b,$c) = @_;
$c ? compose($b,$a) : compose($a,$b);
}
# Raise-to-power operator -- handles '**'.
sub _pow_op {
my($a,$b,$c) = @_;
barf("%s", "Can't raise anything to the power of a transform")
if($c || UNIVERSAL::isa($b,'PDL::Transform')) ;
$a = $a->inverse
if($b < 0);
return $a if(abs($b) == 1);
return new PDL::Transform if(abs($b) == 0);
my(@l);
for my $i(1..abs($b)) {
push(@l,$a);
}
t_compose(@l);
}
=head2 t_identity
=for usage
my $xform = t_identity
my $xform = new PDL::Transform;
=for ref
Generic constructor generates the identity transform.
This constructor really is trivial -- it is mainly used by the other transform
constructors. It takes no parameters and returns the identity transform.
=cut
sub _identity { return shift; }
sub t_identity { new PDL::Transform(@_) };
sub new {
my($class) = shift;
my $me = {name=>'identity',
idim => 0,
odim => 0,
func=>\&PDL::Transform::_identity,
inv=>\&PDL::Transform::_identity,
params=>{}
};
return bless $me,$class;
}
=head2 t_lookup
=for usage
$f = t_lookup($lookup, {<options>});
=for ref
Transform by lookup into an explicit table.
You specify an N+1-D PDL that is interpreted as an N-D lookup table of
column vectors (vector index comes last). The last dimension has
order equal to the output dimensionality of the transform.
For added flexibility in data space, You can specify pre-lookup linear
scaling and offset of the data. Of course you can specify the
interpolation method to be used. The linear scaling stuff is a little
primitive; if you want more, try composing the linear transform with
this one.
The prescribed values in the lookup table are treated as
pixel-centered: that is, if your input array has N elements per row
then valid data exist between the locations (-0.5) and (N-0.5) in
lookup pixel space, because the pixels (which are numbered from 0 to
N-1) are centered on their locations.
Lookup is done using L<interpND|PDL::Primitive/interpnd>, so the boundary conditions
and threading behaviour follow from that.
The indexed-over dimensions come first in the table, followed by a
single dimension containing the column vector to be output for each
set of other dimensions -- ie to output 2-vectors from 2 input
parameters, each of which can range from 0 to 49, you want an index
that has dimension list (50,50,2). For the identity lookup table
you could use C<cat(xvals(50,50),yvals(50,50))>.
If you want to output a single value per input vector, you still need
that last index threading dimension -- if necessary, use C<dummy(-1,1)>.
The lookup index scaling is: out = lookup[ (scale * data) + offset ].
A simplistic table inversion routine is included. This means that
you can (for example) use the C<map> method with C<t_lookup> transformations.
But the table inversion is exceedingly slow, and not practical for tables
larger than about 100x100. The inversion table is calculated in its
entirety the first time it is needed, and then cached until the object is
destroyed.
Options are listed below; there are several synonyms for each.
=over 3
=item s, scale, Scale
(default 1.0) Specifies the linear amount of scaling to be done before
lookup. You can feed in a scalar or an N-vector; other values may cause
trouble. If you want to save space in your table, then specify smaller
scale numbers.
=item o, offset, Offset
(default 0.0) Specifies the linear amount of offset before lookup.
This is only a scalar, because it is intended to let you switch to
corner-centered coordinates if you want to (just feed in o=-0.25).
=item b, bound, boundary, Boundary
Boundary condition to be fed to L<interpND|PDL::Primitive/interpND>
=item m, method, Method
Interpolation method to be fed to L<interpND|PDL::Primitive/interpND>
=back
EXAMPLE
To scale logarithmically the Y axis of m51, try:
$a = float rfits('m51.fits');
$lookup = xvals(128,128) -> cat( 10**(yvals(128,128)/50) * 256/10**2.55 );
$t = t_lookup($lookup);
$b = $t->map($a);
To do the same thing but with a smaller lookup table, try:
$lookup = 16 * xvals(17,17)->cat(10**(yvals(17,17)/(100/16)) * 16/10**2.55);
$t = t_lookup($lookup,{scale=>1/16.0});
$b = $t->map($a);
(Notice that, although the lookup table coordinates are is divided by 16,
it is a 17x17 -- so linear interpolation works right to the edge of the original
domain.)
NOTES
Inverses are not yet implemented -- the best way to do it might be by
judicious use of map() on the forward transformation.
the type/unit fields are ignored.
=cut
sub t_lookup {
my($class) = 'PDL::Transform';
my($source)= shift;
my($o) = shift;
if(!defined($o) && ((ref $source) eq 'HASH')) {
Carp::cluck("lookup transform called as sub not method; using 'PDL::Transform' as class...\n");
$o = $source;
$source = $class;
$class = "PDL::Transform";
}
$o = {} unless(ref $o eq 'HASH');
my($me) = PDL::Transform::new($class);
my($bound) = _opt($o,['b','bound','boundary','Boundary']);
my($method)= _opt($o,['m','meth','method','Method']);
$me->{idim} = $source->ndims - 1;
$me->{odim} = $source->dim($source->ndims-1);
$me->{params} = {
table => $source,
scale => _opt($o,['s','scale','Scale'],1.0),
offset => _opt($o,['o','off','offset','Offset'],0.0),
interpND_opt => {
method => $method,
bound => $bound,
bad => _opt($o,['bad'],0)
}
};
my $lookup_func = sub {
my($data,$p,$table,$scale,$offset) = @_;
$data = pdl($data)
unless ((ref $data) && (UNIVERSAL::isa($data,'PDL')));
$main::foo = $data;
if($data->dim(0) > $me->{idim}) {
barf("Too many dims (".$data->dim(0).") for your table (".$me->{idim}.")\n");
};
my($a)= ($table
->interpND(float($data) * $scale + $offset,
$p->{interpND_opt}
)
);
# Put the index dimension (and threaded indices) back at the front of
# the dimension list.
my($dnd) = $data->ndims - 1;
return ($a -> ndims > $data->ndims - 1) ?
($a->reorder( $dnd..($dnd + $table->ndims - $data->dim(0)-1)
, 0..$data->ndims-2
)
) : $a;
};
$me->{func} = sub {my($data,$p) = @_; &$lookup_func($data,$p,$p->{table},$p->{scale},$p->{offset})};
#######
## Lazy inverse -- find it if and only if we need it...
$me->{inv} = sub {
my $data = shift;
my $p = shift;
if(!defined($p->{'itable'})) {
if($me->{idim} != $me->{odim}) {
barf("t_lookup: can't calculate an inverse of a projection operation! (idim != odim)");
}
print "t_lookup: Warning, table inversion is only weakly supported. \n I'll try to invert it using a pretty boneheaded algorithm...\n (If it takes too long, consider writing a faster algorithm!)\n Calculating inverse table (will be cached)...\n" if($PDL::verbose || $PDL::debug || $PDL::Transform::debug);
my $itable = zeroes($p->{table});
my $minvals = $p->{table}->clump($me->{idim})->minimum;
my $maxvals = $p->{table}->clump($me->{idim})->maximum;
# Scale so that the range runs from 0 through the top pixel in the table
my $scale = ( pdl( $itable->dims )->slice("0:-2")-1 ) /
(($maxvals - $minvals)+ (($maxvals-$minvals) == 0));
my $offset = - ($minvals * $scale);
$p->{iscale} = $scale;
$p->{ioffset} = $offset;
my $enl_scale = $p->{'enl_scale'} || 10;
my $smallcoords = ndcoords((pdl($enl_scale * 2 + 1)->at(0)) x $me->{idim})/ $enl_scale - 1;
# $oloop runs over (point, index) for all points in the output table, in
# $p->{table} output space
$oloop = ndcoords($itable->mv(-1,0)->slice("(0)"))->
double->
mv(0,-1)->
clump($itable->ndims-1); # oloop: (pixel, index)
{
my $tmp; # work around perl -d "feature"
($tmp = $oloop->mv(-1,0)) -= $offset;
($tmp = $oloop->mv(-1,0)) /= $scale;
}
# The Right Thing to do here is to take the outer product of $itable and $otable, then collapse
# to find minimum distance. But memory demands for that would be HUGE. Instead we do an
# elementwise calculation.
print "t_lookup: inverting ".$oloop->dim(0)." points...\n" if($PDL::verbose || $PDL::debug || $PDL::Transform::debug);
my $pt = $p->{table}->mv(-1,0); # pt runs (index, x,y,...)
my $itable_flattened = zeroes($oloop);
for $i(0..$oloop->dim(0)-1) {
my $olp = $oloop->slice("($i)"); # olp runs (index)
my $diff = ($pt - $olp); # diff runs (index, x, y, ...)
my $r2 = ($diff * $diff)->sumover; # r2 runs (x,y,...)
my $c = whichND($r2==$r2->min)->slice(":,(0)"); # c runs (index)
# Now zero in on the neighborhood around the point of closest approach.
my $neighborhood = $p->{table}->interpND($c + $smallcoords,{method=>'linear',bound=>'t'})->
mv(-1,0); # neighborhood runs (index, dx, dy,...)
$diff = $neighborhood - $olp; # diff runs (index, dx, dy, ...)
$r2 = ($diff * $diff)->sumover; # r2 runs (dx,dy,...)
my $dc = $smallcoords->mv(0,-1)->indexND(0+whichND($r2==$r2->min)->slice(":,(0)"));
my $coord = $c + $dc;
# At last, we've found the best-fit to an enl_scale'th of an input-table pixel.
# Back it out to input-science coordinates, and stuff it in the inverse table.
my $tmp; # work around perl -d "feature"
($tmp = $itable_flattened->slice("($i)")) .= $coord;
print " $i..." if( ($i%1000==0) && ( $PDL::verbose || $PDL::debug || $PDL::Transform::debug));
}
{
my $tmp; # work around perl -d "feature"
($tmp = $itable->clump($itable->ndims-1)) .= $itable_flattened;
($tmp = $itable->mv(-1,0)) -= $p->{offset};
($tmp = $itable->mv(-1,0)) /= $p->{scale};
}
$p->{itable} = $itable;
}
&$lookup_func($data,$p, $p->{itable},$p->{iscale},$p->{ioffset}) ;
};
$me->{name} = 'Lookup';
return $me;
}
=head2 t_linear
=for usage
$f = t_linear({options});
=for ref
Linear (affine) transformations with optional offset
t_linear implements simple matrix multiplication with offset,
also known as the affine transformations.
You specify the linear transformation with pre-offset, a mixing
matrix, and a post-offset. That overspecifies the transformation, so
you can choose your favorite method to specify the transform you want.
The inverse transform is automagically generated, provided that it
actually exists (the transform matrix is invertible). Otherwise, the
inverse transform just croaks.
Extra dimensions in the input vector are ignored, so if you pass a
3xN vector into a 3-D linear transformation, the final dimension is passed
through unchanged.
The options you can usefully pass in are:
=over 3
=item s, scale, Scale
A scaling scalar (heh), vector, or matrix. If you specify a vector
it is treated as a diagonal matrix (for convenience). It gets
left-multiplied with the transformation matrix you specify (or the
identity), so that if you specify both a scale and a matrix the
scaling is done after the rotation or skewing or whatever.
=item r, rot, rota, rotation, Rotation
A rotation angle in degrees -- useful for 2-D and 3-D data only. If
you pass in a scalar, it specifies a rotation from the 0th axis toward
the 1st axis. If you pass in a 3-vector as either a PDL or an array
ref (as in "rot=>[3,4,5]"), then it is treated as a set of Euler
angles in three dimensions, and a rotation matrix is generated that
does the following, in order:
=over 3
=item * Rotate by rot->(2) degrees from 0th to 1st axis
=item * Rotate by rot->(1) degrees from the 2nd to the 0th axis
=item * Rotate by rot->(0) degrees from the 1st to the 2nd axis
=back
The rotation matrix is left-multiplied with the transformation matrix
you specify, so that if you specify both rotation and a general matrix
the rotation happens after the more general operation -- though that is
deprecated.
Of course, you can duplicate this functionality -- and get more
general -- by generating your own rotation matrix and feeding it in
with the C<matrix> option.
=item m, matrix, Matrix
The transformation matrix. It does not even have to be square, if you want
to change the dimensionality of your input. If it is invertible (note:
must be square for that), then you automagically get an inverse transform too.
=item pre, preoffset, offset, Offset
The vector to be added to the data before they get multiplied by the matrix
(equivalent of CRVAL in FITS, if you are converting from scientific to
pixel units).
=item post, postoffset, shift, Shift
The vector to be added to the data after it gets multiplied by the matrix
(equivalent of CRPIX-1 in FITS, if youre converting from scientific to pixel
units).
=item d, dim, dims, Dims
Most of the time it is obvious how many dimensions you want to deal
with: if you supply a matrix, it defines the transformation; if you
input offset vectors in the C<pre> and C<post> options, those define
the number of dimensions. But if you only supply scalars, there is no way
to tell and the default number of dimensions is 2. This provides a way
to do, e.g., 3-D scaling: just set C<{s=><scale-factor>, dims=>3}> and
you are on your way.
=back
NOTES
the type/unit fields are currently ignored by t_linear.
=cut
@PDL::Transform::Linear::ISA = ('PDL::Transform');
sub t_linear { new PDL::Transform::Linear(@_); }
sub PDL::Transform::Linear::new {
my($class) = shift;
my($o) = $_[0];
pop @_ if (($#_ % 2 ==0) && !defined($_[-1]));
#suppresses a warning if @_ has an odd number of elements and the
#last is undef
if(!(ref $o)) {
$o = {@_};
}
my($me) = PDL::Transform::new($class);
$me->{name} = "linear";
$me->{params}->{pre} = _opt($o,['pre','Pre','preoffset','offset',
'Offset','PreOffset','Preoffset'],0);
$me->{params}->{pre} = pdl($me->{params}->{pre})
if(defined $me->{params}->{pre});
$me->{params}->{post} = _opt($o,['post','Post','postoffset','PostOffset',
'shift','Shift'],0);
$me->{params}->{post} = pdl($me->{params}->{post})
if(defined $me->{params}->{post});
$me->{params}->{matrix} = _opt($o,['m','matrix','Matrix','mat','Mat']);
$me->{params}->{matrix} = pdl($me->{params}->{matrix})
if(defined $me->{params}->{matrix});
$me->{params}->{rot} = _opt($o,['r','rot','rota','rotation','Rotation']);
$me->{params}->{rot} = 0 unless defined($me->{params}->{rot});
$me->{params}->{rot} = pdl($me->{params}->{rot});
my $o_dims = _opt($o,['d','dim','dims','Dims']);
$o_dims = pdl($o_dims)
if defined($o_dims);
my $scale = _opt($o,['s','scale','Scale']);
$scale = pdl($scale)
if defined($scale);
# Figure out the number of dimensions to transform, and,
# if necessary, generate a new matrix.
if(defined($me->{params}->{matrix})) {
my $mat = $me->{params}->{matrix} = $me->{params}->{matrix}->slice(":,:");
$me->{idim} = $mat->dim(0);
$me->{odim} = $mat->dim(1);
} else {
if(defined($me->{params}->{rot}) &&
UNIVERSAL::isa($me->{params}->{rot},'PDL')) {
$me->{idim} = $me->{odim} = 2 if($me->{params}->{rot}->nelem == 1);
$me->{idim} = $me->{odim} = 3 if($me->{params}->{rot}->nelem == 3);
}
if(defined($scale) &&
UNIVERSAL::isa($scale,'PDL') &&
$scale->getndims > 0) {
$me->{idim} = $me->{odim} = $scale->dim(0);
$me->{odim} = $scale->dim(0);
} elsif(defined($me->{params}->{pre}) &&
UNIVERSAL::isa($me->{params}->{pre},'PDL') &&
$me->{params}->{pre}->getndims > 0) {
$me->{idim} = $me->{odim} = $me->{params}->{pre}->dim(0);
} elsif(defined($me->{params}->{post}) &&
UNIVERSAL::isa($me->{params}->{post},'PDL') &&
$me->{params}->{post}->getndims > 0) {
$me->{idim} = $me->{odim} = $me->{params}->{post}->dim(0);
} elsif(defined($o_dims)) {
$me->{idim} = $me->{odim} = $o_dims;
} else {
print "PDL::Transform::Linear: assuming 2-D transform (set dims option to change)\n" if($PDL::Transform::debug);
$me->{idim} = $me->{odim} = 2;
}
$me->{params}->{matrix} = PDL->zeroes($me->{idim},$me->{odim});
my $tmp; # work around perl -d "feature"
($tmp = $me->{params}->{matrix}->diagonal(0,1)) .= 1;
}
### Handle rotation option
my $rot = $me->{params}->{rot};
if(defined($rot)) {
# Subrotation closure -- rotates from axis $d->(0) --> $d->(1).
my $subrot = sub {
my($d,$angle,$m)=@_;
my($i) = identity($m->dim(0));
my($subm) = $i->dice($d,$d);
$angle = $angle->at(0)
if(UNIVERSAL::isa($angle,'PDL'));
my($a) = $angle * $DEG2RAD;
$subm .= $subm x pdl([cos($a),-sin($a)],[sin($a),cos($a)]);
$m .= $m x $i;
};
if(UNIVERSAL::isa($rot,'PDL') && $rot->nelem > 1) {
if($rot->ndims == 2) {
$me->{params}->{matrix} x= $rot;
} elsif($rot->nelem == 3) {
my $rm = identity(3);
# Do these in reverse order to make it more like
# function composition!
&$subrot(pdl(0,1),$rot->at(2),$rm);
&$subrot(pdl(2,0),$rot->at(1),$rm);
&$subrot(pdl(1,2),$rot->at(0),$rm);
$me->{params}->{matrix} .= $me->{params}->{matrix} x $rm;
} else {
barf("PDL::Transform::Linear: Got a strange rot option -- giving up.\n");
}
} else {
if($rot != 0 and $me->{params}->{matrix}->dim(0)>1) {
&$subrot(pdl(0,1),$rot,$me->{params}->{matrix});
}
}
}
#
# Apply scaling
#
$me->{params}->{matrix} = $me->{params}->{matrix}->slice(":,:");
my $tmp; # work around perl -d "feature"
($tmp = $me->{params}->{matrix}->diagonal(0,1)) *= $scale
if defined($scale);
#
# Check for an inverse and apply it if possible
#
my($o2);
if($me->{params}->{matrix}->det($o2 = {lu=>undef})) {
$me->{params}->{inverse} = $me->{params}->{matrix}->inv($o2);
} else {
delete $me->{params}->{inverse};
}
$me->{params}->{idim} = $me->{idim};
$me->{params}->{odim} = $me->{odim};
##############################
# The meat -- just shift, matrix-multiply, and shift again.
$me->{func} = sub {
my($in,$opt) = @_;
my($d) = $opt->{matrix}->dim(0)-1;
barf("Linear transform: transform is $d-D; data only ".($in->dim(0))."\n")
if($in->dim(0) < $d);
my($a) = $in->slice("0:$d")->copy + $opt->{pre};
my($out) = $in->is_inplace ? $in : $in->copy;
my $tmp; # work around perl -d "feature"
($tmp = $out->slice("0:$d")) .= $a x $opt->{matrix} + $opt->{post};
return $out;
};
$me->{inv} = (defined $me->{params}->{inverse}) ? sub {
my($in,$opt) = @_;
my($d) = $opt->{inverse}->dim(0)-1;
barf("Linear transform: transform is $d-D; data only ".($in->dim(0))."\n")
if($in->dim(0) < $d);
my($a) = $in->slice("0:$d")->copy - $opt->{post};
my($out) = $in->is_inplace ? $in : $in->copy;
my $tmp; # work around perl -d "feature"
($tmp = $out->slice("0:$d")) .= $a x $opt->{inverse} - $opt->{pre};
$out;
} : undef;
return $me;
}
sub PDL::Transform::Linear::stringify {
package PDL::Transform::Linear;
my($me) = shift; my($out) = SUPER::stringify $me;
my $mp = $me->{params};
if(!($me->{is_inverse})){
$out .= "Pre-add: ".($mp->{pre})."\n"
if(defined $mp->{pre});
$out .= "Post-add: ".($mp->{post})."\n"
if(defined $mp->{post});
$out .= "Forward matrix:".($mp->{matrix})
if(defined $mp->{matrix});
$out .= "Inverse matrix:".($mp->{inverse})
if(defined $mp->{inverse});
} else {
$out .= "Pre-add: ".(-$mp->{post})."\n"
if(defined $mp->{post});
$out .= "Post-add: ".(-$mp->{pre})."\n"
if(defined $mp->{pre});
$out .= "Forward matrix:".($mp->{inverse})
if(defined $mp->{inverse});
$out .= "Inverse matrix:".($mp->{matrix})
if(defined $mp->{matrix});
}
$out =~ s/\n/\n /go;
$out;
}
=head2 t_scale
=for usage
$f = t_scale(<scale>)
=for ref
Convenience interface to L<t_linear|/t_linear>.
t_scale produces a tranform that scales around the origin by a fixed
amount. It acts exactly the same as C<t_linear(Scale=>\<scale\>)>.
=cut
sub t_scale {
my($scale) = shift;
my($b) = shift;
return t_linear(scale=>$scale,%{$b})
if(ref $b eq 'HASH');
t_linear(Scale=>$scale,$b,@_);
}
=head2 t_offset
=for usage
$f = t_offset(<shift>)
=for ref
Convenience interface to L<t_linear|/t_linear>.
t_offset produces a transform that shifts the origin to a new location.
It acts exactly the same as C<t_linear(Pre=>\<shift\>)>.
=cut
sub t_offset {
my($pre) = shift;
my($b) = shift;
return t_linear(pre=>$pre,%{$b})
if(ref $b eq 'HASH');
t_linear(pre=>$pre,$b,@_);
}
=head2 t_rot
=for usage
$f = t_rot(<rotation-in-degrees>)
=for ref
Convenience interface to L<t_linear|/t_linear>.
t_rot produces a rotation transform in 2-D (scalar), 3-D (3-vector), or
N-D (matrix). It acts exactly the same as C<t_linear(Rot=>\<shift\>)>.
=cut
*t_rot = \&t_rotate;
sub t_rotate {
my $rot = shift;
my($b) = shift;
return t_linear(rot=>$rot,%{$b})
if(ref $b eq 'HASH');
t_linear(rot=>$rot,$b,@_);
}
=head2 t_fits
=for usage
$f = t_fits($fits,[option]);
=for ref
FITS pixel-to-scientific transformation with inverse
You feed in a hash ref or a PDL with one of those as a header, and you
get back a transform that converts 0-originated, pixel-centered
coordinates into scientific coordinates via the transformation in the
FITS header. For most FITS headers, the transform is reversible, so
applying the inverse goes the other way. This is just a convenience
subclass of PDL::Transform::Linear, but with unit/type support
using the FITS header you supply.
For now, this transform is rather limited -- it really ought to
accept units differences and stuff like that, but they are just
ignored for now. Probably that would require putting units into
the whole transform framework.
This transform implements the linear transform part of the WCS FITS
standard outlined in Greisen & Calabata 2002 (A&A in press; find it at
"http://arxiv.org/abs/astro-ph/0207407").
As a special case, you can pass in the boolean option "ignore_rgb"
(default 0), and if you pass in a 3-D FITS header in which the last
dimension has exactly 3 elements, it will be ignored in the output
transformation. That turns out to be handy for handling rgb images.
=cut
sub t_fits {
my($class) = 'PDL::Transform::Linear';
my($hdr) = shift;
my($opt) = shift;
if(ref $opt ne 'HASH') {
$opt = defined $opt ? {$opt,@_} : {} ;
}
$hdr = $hdr->gethdr
if(defined $hdr && UNIVERSAL::isa($hdr,'PDL'));
croak('PDL::Transform::FITS::new requires a FITS header hash\n')
if(!defined $hdr || ref $hdr ne 'HASH' || !defined($hdr->{NAXIS}));
my($n) = $hdr->{NAXIS}; $n = $n->at(0) if(UNIVERSAL::isa($n,'PDL'));
$n = 2
if($opt->{ignore_rgb} && $n==3 && $hdr->{NAXIS3} == 3);
my($matrix) = PDL->zeroes($hdr->{NAXIS},$hdr->{NAXIS});
my($pre) = PDL->zeroes($n);
my($post) = PDL->zeroes($n);
##############################
# Scaling: Use CDi_j formalism if present; otherwise use the
# older PCi_j + CDELTi formalism.
my(@hgrab);
if(@hgrab = grep(m/^CD\d{1,3}_\d{1,3}$/,keys %$hdr)) { # assignment
#
# CDi_j formalism
#
for my $h(@hgrab) {
$h =~ m/CD(\d{1,3})_(\d{1,3})/; # Should always match
my $tmp; # work around perl -d "feature"
($tmp = $matrix->slice("(".($1-1)."),(".($2-1).")")) .= $hdr->{$h};
}
print "PDL::Transform::FITS: Detected CDi_j matrix: \n",$matrix,"\n"
if($PDL::Transform::debug);
} else {
#
# PCi_j + CDELTi formalism
# If PCi_j aren't present, and N=2, then try using CROTA or
# CROTA2 to generate a rotation matrix instea.
#
my($cdm) = PDL->zeroes($n,$n);
my($cd) = $cdm->diagonal(0,1);
my($cpm) = PDL->zeroes($n,$n);
my $tmp; # work around perl -d "feature"
($tmp = $cpm->diagonal(0,1)) .= 1; # PC: diagonal defaults to unity
$cd .= 1;
if( @hgrab = grep(m/^PC\d{1,3}_\d{1,3}$/,keys %$hdr) ) { # assignment
for my $h(@hgrab) {
$h =~ m/PC(\d{1,3})_(\d{1,3})$/ || die "t_fits - match failed! This should never happen!";
my $tmp; # work around perl -d "feature"
($tmp = $cpm->slice("(".($1-1)."),(".($2-1).")")) .= $hdr->{$h};
}
print "PDL::Transform::FITS: Detected PCi_j matrix: \n",$cpm,"\n"
if($PDL::Transform::debug && @hgrab);
} elsif($n==2 && ( defined $hdr->{CROTA} || defined $hdr->{CROTA1} || defined $hdr->{CROTA2}) ) {
## CROTA is deprecated; CROTA1 was used for a while but is unofficial;
## CROTA2 is encouraged instead.
my $cr;
$cr = $hdr->{CROTA2} unless defined $cr;
$cr = $hdr->{CROTA} unless defined $cr;
$cr = $hdr->{CROTA1} unless defined $cr;
$cr *= $DEG2RAD;
# Rotation matrix rotates counterclockwise to get from sci to pixel coords
# (detector has been rotated ccw, according to FITS standard)
$cpm .= pdl( [cos($cr), sin($cr)],[-sin($cr),cos($cr)] );
}
for my $i(1..$n) {
my $tmp; # work around perl -d "feature"
($tmp = $cd->slice("(".($i-1).")")) .= $hdr->{"CDELT$i"};
}
#If there are no CDELTs, then we assume they are all 1.0,
#as in PDL::Graphics::PGPLOT::Window::_FITS_tr.
$cd+=1 if (all($cd==0));
$matrix = $cdm x $cpm;
}
my($i1) = 0;
for my $i(1..$n) {
my $tmp; # work around perl -d "feature"
($tmp = $pre->slice("($i1)")) .= 1 - $hdr->{"CRPIX$i"};
($tmp = $post->slice("($i1)")) .= $hdr->{"CRVAL$i"};
$i1++;
}
my($me) = PDL::Transform::Linear::new($class,
{'pre'=>$pre,
'post'=>$post,
'matrix'=>$matrix
});
$me->{name} = 'FITS';
my (@otype,@ounit,@itype,@iunit);
our (@names) = ('X','Y','Z') unless @names;
for my $i(1..$hdr->{NAXIS}) {
push(@otype,$hdr->{"CTYPE$i"});
push(@ounit,$hdr->{"CUNIT$i"});
push(@itype,"Image ". ( ($i-1<=$#names) ? $names[$i-1] : "${i}th dim" ));
push(@iunit,"Pixels");
}
$me->{otype} = \@otype;
$me->{itype} = \@itype;
$me->{ounit} = \@ounit;
$me->{iunit} = \@iunit;
# Check for nonlinear projection...
# if($hdr->{CTYPE1} =~ m/(\w\w\w\w)\-(\w\w\w)/) {
# print "Nonlinear transformation found... ignoring nonlinear part...\n";
# }
return $me;
}
=head2 t_code
=for usage
$f = t_code(<func>,[<inv>],[options]);
=for ref
Transform implementing arbitrary perl code.
This is a way of getting quick-and-dirty new transforms. You pass in
anonymous (or otherwise) code refs pointing to subroutines that
implement the forward and, optionally, inverse transforms. The
subroutines should accept a data PDL followed by a parameter hash ref,
and return the transformed data PDL. The parameter hash ref can be
set via the options, if you want to.
Options that are accepted are:
=over 3
=item p,params
The parameter hash that will be passed back to your code (defaults to the
empty hash).
=item n,name
The name of the transform (defaults to "code").
=item i, idim (default 2)
The number of input dimensions (additional ones should be passed through
unchanged)
=item o, odim (default 2)
The number of output dimensions
=item itype
The type of the input dimensions, in an array ref (optional and advisiory)
=item otype
The type of the output dimension, in an array ref (optional and advisory)
=item iunit
The units that are expected for the input dimensions (optional and advisory)
=item ounit
The units that are returned in the output (optional and advisory).
=back
The code variables are executable perl code, either as a code ref or
as a string that will be eval'ed to produce code refs. If you pass in
a string, it gets eval'ed at call time to get a code ref. If it compiles
OK but does not return a code ref, then it gets re-evaluated with "sub {
... }" wrapped around it, to get a code ref.
Note that code callbacks like this can be used to do really weird
things and generate equally weird results -- caveat scriptor!
=cut
sub t_code {
my($class) = 'PDL::Transform';
my($func, $inv, $o) = @_;
if(ref $inv eq 'HASH') {
$o = $inv;
$inv = undef;
}
my($me) = PDL::Transform::new($class);
$me->{name} = _opt($o,['n','name','Name']) || "code";
$me->{func} = $func;
$me->{inv} = $inv;
$me->{params} = _opt($o,['p','params','Params']) || {};
$me->{idim} = _opt($o,['i','idim']) || 2;
$me->{odim} = _opt($o,['o','odim']) || 2;
$me->{itype} = _opt($o,['itype']) || [];
$me->{otype} = _opt($o,['otype']) || [];
$me->{iunit} = _opt($o,['iunit']) || [];
$me->{ounit} = _opt($o,['ounit']) || [];
$me;
}
=head2 t_cylindrical
=head2 t_radial
=for usage
$f = t_radial(<options>);
=for ref
Convert Cartesian to radial/cylindrical coordinates. (2-D/3-D; with inverse)
Converts 2-D Cartesian to radial (theta,r) coordinates. You can choose
direct or conformal conversion. Direct conversion preserves radial
distance from the origin; conformal conversion preserves local angles,
so that each small-enough part of the image only appears to be scaled
and rotated, not stretched. Conformal conversion puts the radius on a
logarithmic scale, so that scaling of the original image plane is
equivalent to a simple offset of the transformed image plane.
If you use three or more dimensions, the higher dimensions are ignored,
yielding a conversion from Cartesian to cylindrical coordinates, which
is why there are two aliases for the same transform. If you use higher
dimensionality than 2, you must manually specify the origin or you will
get dimension mismatch errors when you apply the transform.
Theta runs B<clockwise> instead of the more usual counterclockwise; that is
to preserve the mirror sense of small structures.
OPTIONS:
=over 3
=item d, direct, Direct
Generate (theta,r) coordinates out (this is the default); incompatible
with Conformal. Theta is in radians, and the radial coordinate is
in the units of distance in the input plane.
=item r0, c, conformal, Conformal
If defined, this floating-point value causes t_radial to generate
(theta, ln(r/r0)) coordinates out. Theta is in radians, and the
radial coordinate varies by 1 for each e-folding of the r0-scaled
distance from the input origin. The logarithmic scaling is useful for
viewing both large and small things at the same time, and for keeping
shapes of small things preserved in the image.
=item o, origin, Origin [default (0,0,0)]
This is the origin of the expansion. Pass in a PDL or an array ref.
=item u, unit, Unit [default 'radians']
This is the angular unit to be used for the azimuth.
=back
EXAMPLES
These examples do transformations back into the same size image as they
started from; by suitable use of the "transform" option to
L<unmap|/unmap> you can send them to any size array you like.
Examine radial structure in M51:
Here, we scale the output to stretch 2*pi radians out to the
full image width in the horizontal direction, and to stretch 1 radius out
to a diameter in the vertical direction.
$a = rfits('m51.fits');
$ts = t_linear(s => [250/2.0/3.14159, 2]); # Scale to fill orig. image
$tu = t_radial(o => [130,130]); # Expand around galactic core
$b = $a->map($ts x $tu);
Examine radial structure in M51 (conformal):
Here, we scale the output to stretch 2*pi radians out to the full image width
in the horizontal direction, and scale the vertical direction by the exact
same amount to preserve conformality of the operation. Notice that
each piece of the image looks "natural" -- only scaled and not stretched.
$a = rfits('m51.fits')
$ts = t_linear(s=> 250/2.0/3.14159); # Note scalar (heh) scale.
$tu = t_radial(o=> [130,130], r0=>5); # 5 pix. radius -> bottom of image
$b = $ts->compose($tu)->unmap($a);
=cut
*t_cylindrical = \&t_radial;
sub t_radial {
my($class) = 'PDL::Transform';
my($o) = $_[0];
if(ref $o ne 'HASH') {
$o = { @_ };
}
my($me) = PDL::Transform::new($class);
$me->{params}->{origin} = _opt($o,['o','origin','Origin']);
$me->{params}->{origin} = pdl(0,0)
unless defined($me->{params}->{origin});
$me->{params}->{origin} = PDL->pdl($me->{params}->{origin});
$me->{params}->{r0} = _opt($o,['r0','R0','c','conformal','Conformal']);
$me->{params}->{origin} = PDL->pdl($me->{params}->{origin});
$me->{params}->{u} = _opt($o,['u','unit','Unit'],'radians');
### Replace this kludge with a units call
$me->{params}->{angunit} = ($me->{params}->{u} =~ m/^d/i) ? $RAD2DEG : 1.0;
print "radial: conversion is $me->{params}->{angunit}\n" if($PDL::Transform::debug);
$me->{name} = "radial (direct)";
$me->{idim} = 2;
$me->{odim} = 2;
if($me->{params}->{r0}) {
$me->{otype} = ["Azimuth", "Ln radius" . ($me->{params}->{r0} != 1.0 ? "/$me->{params}->{r0}" : "")];
$me->{ounit} = [$me->{params}->{u},'']; # true-but-null prevents copying
} else {
$me->{otype} = ["Azimuth","Radius"];
$me->{ounit} = [$me->{params}->{u},'']; # false value copies prev. unit
}
$me->{func} = sub {
my($data,$o) = @_;
my($out) = ($data->new_or_inplace);
my($d) = $data->copy;
my $tmp; # work around perl -d "feature"
($tmp = $d->slice("0:1")) -= $o->{origin};
my($d0) = $d->slice("(0)");
my($d1) = $d->slice("(1)");
# (mod operator on atan2 puts everything in the interval [0,2*PI).)
($tmp = $out->slice("(0)")) .= (atan2(-$d1,$d0) % (2*$PI)) * $me->{params}->{angunit};
($tmp = $out->slice("(1)")) .= (defined $o->{r0}) ?
0.5 * log( ($d1*$d1 + $d0 * $d0) / ($o->{r0} * $o->{r0}) ) :
sqrt($d1*$d1 + $d0*$d0);
$out;
};
$me->{inv} = sub {
my($d,$o) = @_;
my($d0,$d1,$out)=
( ($d->is_inplace) ?
($d->slice("(0)")->copy, $d->slice("(1)")->copy->dummy(0,2), $d) :
($d->slice("(0)"), $d->slice("(1)")->dummy(0,2), $d->copy)
);
$d0 /= $me->{params}->{angunit};
my($os) = $out->slice("0:1");
$os .= append(cos($d0)->dummy(0,1),-sin($d0)->dummy(0,1));
$os *= defined $o->{r0} ? ($o->{r0} * exp($d1)) : $d1;
$os += $o->{origin};
$out;
};
$me;
}
=head2 t_quadratic
=for usage
$t = t_quadratic(<options>);
=for ref
Quadratic scaling -- cylindrical pincushion (n-d; with inverse)
Quadratic scaling emulates pincushion in a cylindrical optical system:
separate quadratic scaling is applied to each axis. You can apply
separate distortion along any of the principal axes. If you want
different axes, use L<t_wrap|/t_wrap> and L<t_linear|/t_linear> to rotate
them to the correct angle. The scaling options may be scalars or
vectors; if they are scalars then the expansion is isotropic.
The formula for the expansion is:
f(a) = ( <a> + <strength> * a^2/<L_0> ) / (abs(<strength>) + 1)
where <strength> is a scaling coefficient and <L_0> is a fundamental
length scale. Negative values of <strength> result in a pincushion
contraction.
Note that, because quadratic scaling does not have a strict inverse for
coordinate systems that cross the origin, we cheat slightly and use
$x * abs($x) rather than $x**2. This does the Right thing for pincushion
and barrel distortion, but means that t_quadratic does not behave exactly
like t_cubic with a null cubic strength coefficient.
OPTIONS
=over 3
=item o,origin,Origin
The origin of the pincushion. (default is the, er, origin).
=item l,l0,length,Length,r0
The fundamental scale of the transformation -- the radius that remains
unchanged. (default=1)
=item s,str,strength,Strength
The relative strength of the pincushion. (default = 0.1)
=item honest (default=0)
Sets whether this is a true quadratic coordinate transform. The more
common form is pincushion or cylindrical distortion, which switches
branches of the square root at the origin (for symmetric expansion).
Setting honest to a non-false value forces true quadratic behavior,
which is not mirror-symmetric about the origin.
=item d, dim, dims, Dims
The number of dimensions to quadratically scale (default is the
dimensionality of your input vectors)
=back
=cut
sub t_quadratic {
my($class) = 'PDL::Transform';
my($o) = $_[0];
if(ref $o ne 'HASH') {
$o = {@_};
}
my($me) = PDL::Transform::new($class);
$me->{params}->{origin} = _opt($o,['o','origin','Origin'],pdl(0));
$me->{params}->{l0} = _opt($o,['r0','l','l0','length','Length'],pdl(1));
$me->{params}->{str} = _opt($o,['s','str','strength','Strength'],pdl(0.1));
$me->{params}->{dim} = _opt($o,['d','dim','dims','Dims']);
$me->{name} = "quadratic";
$me->{func} = sub {
my($data,$o) = @_;
my($dd) = $data->copy - $o->{origin};
my($d) = (defined $o->{dim}) ? $dd->slice("0:".($o->{dim}-1)) : $dd;
$d += $o->{str} * ($d * abs($d)) / $o->{l0};
$d /= (abs($o->{str}) + 1);
$d += $o->{origin};
if($data->is_inplace) {
$data .= $dd;
return $data;
}
$dd;
};
$me->{inv} = sub {
my($data,$opt) = @_;
my($dd) = $data->copy ;
my($d) = (defined $opt->{dim}) ? $dd->slice("0:".($opt->{dim}-1)) : $dd;
my($o) = $opt->{origin};
my($s) = $opt->{str};
my($l) = $opt->{l0};
$d .= ((-1 + sqrt(1 + 4 * $s/$l * abs($d-$o) * (1+abs($s))))
/ 2 / $s * $l) * (1 - 2*($d < $o));
$d += $o;
if($data->is_inplace) {
$data .= $dd;
return $data;
}
$dd;
};
$me;
}
=head2 t_cubic
=for usage
$t = t_cubic(<options>);
=for ref
Cubic scaling - cubic pincushion (n-d; with inverse)
Cubic scaling is a generalization of t_quadratic to a purely
cubic expansion.
The formula for the expansion is:
f(a) = ( a' + st * a'^3/L_0^2 ) / (1 + abs(st)) + origin
where a'=(a-origin). That is a simple pincushion
expansion/contraction that is fixed at a distance of L_0 from the
origin.
Because there is no quadratic term the result is always invertible with
one real root, and there is no mucking about with complex numbers or
multivalued solutions.
OPTIONS
=over 3
=item o,origin,Origin
The origin of the pincushion. (default is the, er, origin).
=item l,l0,length,Length,r0
The fundamental scale of the transformation -- the radius that remains
unchanged. (default=1)
=item d, dim, dims, Dims
The number of dimensions to treat (default is the
dimensionality of your input vectors)
=back
=cut
sub t_cubic {
my ($class) = 'PDL::Transform';
my($o) = $_[0];
if(ref $o ne 'HASH') {
$o = {@_};
}
my($me) = PDL::Transform::new($class);
$me->{params}->{dim} = _opt($o,['d','dim','dims','Dims'],undef);
$me->{params}->{origin} = _opt($o,['o','origin','Origin'],pdl(0));
$me->{params}->{l0} = _opt($o,['r0','l','l0','length','Length'],pdl(1));
$me->{params}->{st} = _opt($o,['s','st','str'],pdl(0));
$me->{name} = "cubic";
$me->{params}->{cuberoot} = sub {
my $a = shift;
my $as = 1 - 2*($a<0);
return $as * ( abs($a) ** (1/3) );
};
$me->{func} = sub {
my($data,$o) = @_;
my($dd) = $data->copy;
my($d) = (defined $o->{dim}) ? $dd->slice("0:".($o->{dim}-1)) : $dd;
$d -= $o->{origin};
my $dl0 = $d / $o->{l0};
# f(x) = x + x**3 * ($o->{st} / $o->{l0}**2):
# A = ($o->{st}/$dl0**2)
# B = 0
# C = 1
# D = -f(x)
$d += $o->{st} * $d * $dl0 * $dl0;
$d /= ($o->{st}**2 + 1);
$d += $o->{origin};
if($data->is_inplace) {
$data .= $dd;
return $data;
}
return $dd;
};
$me->{inv} = sub {
my($data,$o) = @_;
my($l) = $o->{l0};
my($dd) = $data->copy;
my($d) = (defined $o->{dim}) ? $dd->slice("0:".($o->{dim}-1)) : $dd;
$d -= $o->{origin};
$d *= ($o->{st}+1);
# Now we have to solve:
# A x^3 + B X^2 + C x + D dd = 0
# with the assignments above for A,B,C,D.
# Since B is zero, this is greatly simplified - the discriminant is always negative,
# so there is always exactly one real root.
#
# The only real hassle is creating a symmetric cube root; for convenience
# is stashed in the params hash.
# First: create coefficients for mnemonics.
my ($A, $C, $D) = ( $o->{st} / $l / $l, 1, - $d );
my $alpha = 27 * $A * $A * $D;
my $beta = 3 * $A * $C;
my $inner_root = sqrt( $alpha * $alpha + 4 * $beta * $beta * $beta );
$d .= (-1 / (3 * $A)) *
(
+ &{$o->{cuberoot}}( 0.5 * ( $alpha + $inner_root ) )
+ &{$o->{cuberoot}}( 0.5 * ( $alpha - $inner_root ) )
);
$d += $origin;
if($data->is_inplace) {
$data .= $dd;
return $data;
} else {
return $dd;
}
};
$me;
}
=head2 t_quartic
=for usage
$t = t_quartic(<options>);
=for ref
Quartic scaling -- cylindrical pincushion (n-d; with inverse)
Quartic scaling is a generalization of t_quadratic to a quartic
expansion. Only even powers of the input coordinates are retained,
and (as with t_quadratic) sign is preserved, making it an odd function
although a true quartic transformation would be an even function.
You can apply separate distortion along any of the principal axes. If
you want different axes, use L<t_wrap|/t_wrap> and
L<t_linear|/t_linear> to rotate them to the correct angle. The
scaling options may be scalars or vectors; if they are scalars then
the expansion is isotropic.
The formula for the expansion is:
f(a) = ( <a> + <strength> * a^2/<L_0> ) / (abs(<strength>) + 1)
where <strength> is a scaling coefficient and <L_0> is a fundamental
length scale. Negative values of <strength> result in a pincushion
contraction.
Note that, because quadratic scaling does not have a strict inverse for
coordinate systems that cross the origin, we cheat slightly and use
$x * abs($x) rather than $x**2. This does the Right thing for pincushion
and barrel distortion, but means that t_quadratic does not behave exactly
like t_cubic with a null cubic strength coefficient.
OPTIONS
=over 3
=item o,origin,Origin
The origin of the pincushion. (default is the, er, origin).
=item l,l0,length,Length,r0
The fundamental scale of the transformation -- the radius that remains
unchanged. (default=1)
=item s,str,strength,Strength
The relative strength of the pincushion. (default = 0.1)
=item honest (default=0)
Sets whether this is a true quadratic coordinate transform. The more
common form is pincushion or cylindrical distortion, which switches
branches of the square root at the origin (for symmetric expansion).
Setting honest to a non-false value forces true quadratic behavior,
which is not mirror-symmetric about the origin.
=item d, dim, dims, Dims
The number of dimensions to quadratically scale (default is the
dimensionality of your input vectors)
=back
=cut
sub t_quartic {
my($class) = 'PDL::Transform';
my($o) = $_[0];
if(ref $o ne 'HASH') {
$o = {@_};
}
my($me) = PDL::Transform::new($class);
$me->{params}->{origin} = _opt($o,['o','origin','Origin'],pdl(0));
$me->{params}->{l0} = _opt($o,['r0','l','l0','length','Length'],pdl(1));
$me->{params}->{str} = _opt($o,['s','str','strength','Strength'],pdl(0.1));
$me->{params}->{dim} = _opt($o,['d','dim','dims','Dims']);
$me->{name} = "quadratic";
$me->{func} = sub {
my($data,$o) = @_;
my($dd) = $data->copy - $o->{origin};
my($d) = (defined $o->{dim}) ? $dd->slice("0:".($o->{dim}-1)) : $dd;
$d += $o->{str} * ($d * abs($d)) / $o->{l0};
$d /= (abs($o->{str}) + 1);
$d += $o->{origin};
if($data->is_inplace) {
$data .= $dd;
return $data;
}
$dd;
};
$me->{inv} = sub {
my($data,$opt) = @_;
my($dd) = $data->copy ;
my($d) = (defined $opt->{dim}) ? $dd->slice("0:".($opt->{dim}-1)) : $dd;
my($o) = $opt->{origin};
my($s) = $opt->{str};
my($l) = $opt->{l0};
$d .= ((-1 + sqrt(1 + 4 * $s/$l * abs($d-$o) * (1+abs($s))))
/ 2 / $s * $l) * (1 - 2*($d < $o));
$d += $o;
if($data->is_inplace) {
$data .= $dd;
return $data;
}
$dd;
};
$me;
}
=head2 t_spherical
=for usage
$t = t_spherical(<options>);
=for ref
Convert Cartesian to spherical coordinates. (3-D; with inverse)
Convert 3-D Cartesian to spherical (theta, phi, r) coordinates. Theta
is longitude, centered on 0, and phi is latitude, also centered on 0.
Unless you specify Euler angles, the pole points in the +Z direction
and the prime meridian is in the +X direction. The default is for
theta and phi to be in radians; you can select degrees if you want
them.
Just as the L<t_radial|/t_radial> 2-D transform acts like a 3-D
cylindrical transform by ignoring third and higher dimensions,
Spherical acts like a hypercylindrical transform in four (or higher)
dimensions. Also as with L<t_radial|/t_radial>, you must manually specify
the origin if you want to use more dimensions than 3.
To deal with latitude & longitude on the surface of a sphere (rather
than full 3-D coordinates), see
L<t_unit_sphere|PDL::Transform::Cartography/t_unit_sphere>.
OPTIONS:
=over 3
=item o, origin, Origin [default (0,0,0)]
This is the Cartesian origin of the spherical expansion. Pass in a PDL
or an array ref.
=item e, euler, Euler [default (0,0,0)]
This is a 3-vector containing Euler angles to change the angle of the
pole and ordinate. The first two numbers are the (theta, phi) angles
of the pole in a (+Z,+X) spherical expansion, and the last is the
angle that the new prime meridian makes with the meridian of a simply
tilted sphere. This is implemented by composing the output transform
with a PDL::Transform::Linear object.
=item u, unit, Unit (default radians)
This option sets the angular unit to be used. Acceptable values are
"degrees","radians", or reasonable substrings thereof (e.g. "deg", and
"rad", but "d" and "r" are deprecated). Once genuine unit processing
comes online (a la Math::Units) any angular unit should be OK.
=back
=cut
sub t_spherical {
my($class) = 'PDL::Transform';
my($o) = $_[0];
if(ref $o ne 'HASH') {
$o = { @_ } ;
}
my($me) = PDL::Transform::new($class);
$me->{idim}=3;
$me->{odim}=3;
$me->{params}->{origin} = _opt($o,['o','origin','Origin']);
$me->{params}->{origin} = PDL->zeroes(3)
unless defined($me->{params}->{origin});
$me->{params}->{origin} = PDL->pdl($me->{params}->{origin});
$me->{params}->{deg} = _opt($o,['d','degrees','Degrees']);
my $unit = _opt($o,['u','unit','Unit']);
$me->{params}->{angunit} = ($unit =~ m/^d/i) ?
$DEG2RAD : undef;
$me->{name} = "spherical";
$me->{func} = sub {
my($data,$o) = @_;
my($d) = $data->copy - $o->{origin};
my($d0,$d1,$d2) = ($d->slice("(0)"),$d->slice("(1)"),$d->slice("(2)"));
my($out) = ($d->is_inplace) ? $data : $data->copy;
my $tmp; # work around perl -d "feature"
($tmp = $out->slice("(0)")) .= atan2($d1, $d0);
($tmp = $out->slice("(2)")) .= sqrt($d0*$d0 + $d1*$d1 + $d2*$d2);
($tmp = $out->slice("(1)")) .= asin($d2 / $out->slice("(2)"));
($tmp = $out->slice("0:1")) /= $o->{angunit}
if(defined $o->{angunit});
$out;
};
$me->{inv} = sub {
my($d,$o) = @_;
my($theta,$phi,$r,$out) =
( ($d->is_inplace) ?
($d->slice("(0)")->copy, $d->slice("(1)")->copy, $d->slice("(2)")->copy, $d) :
($d->slice("(0)"), $d->slice("(1)"), $d->slice("(2)"), $d->copy)
);
my($x,$y,$z) =
($out->slice("(0)"),$out->slice("(1)"),$out->slice("(2)"));
my($ph,$th);
if(defined $o->{angunit}){
$ph = $o->{angunit} * $phi;
$th = $o->{angunit} * $theta;
} else {
$ph = $phi;
$th = $theta;
}
$z .= $r * sin($ph);
$x .= $r * cos($ph);
$y .= $x * sin($th);
$x *= cos($th);
$out += $o->{origin};
$out;
};
$me;
}
=head2 t_projective
=for usage
$t = t_projective(<options>);
=for ref
Projective transformation
Projective transforms are simple quadratic, quasi-linear
transformations. They are the simplest transformation that
can continuously warp an image plane so that four arbitrarily chosen
points exactly map to four other arbitrarily chosen points. They
have the property that straight lines remain straight after transformation.
You can specify your projective transformation directly in homogeneous
coordinates, or (in 2 dimensions only) as a set of four unique points that
are mapped one to the other by the transformation.
Projective transforms are quasi-linear because they are most easily
described as a linear transformation in homogeneous coordinates
(e.g. (x',y',w) where w is a normalization factor: x = x'/w, etc.).
In those coordinates, an N-D projective transformation is represented
as simple multiplication of an N+1-vector by an N+1 x N+1 matrix,
whose lower-right corner value is 1.
If the bottom row of the matrix consists of all zeroes, then the
transformation reduces to a linear affine transformation (as in
L<t_linear|/t_linear>).
If the bottom row of the matrix contains nonzero elements, then the
transformed x,y,z,etc. coordinates are related to the original coordinates
by a quadratic polynomial, because the normalization factor 'w' allows
a second factor of x,y, and/or z to enter the equations.
OPTIONS:
=over 3
=item m, mat, matrix, Matrix
If specified, this is the homogeneous-coordinate matrix to use. It must
be N+1 x N+1, for an N-dimensional transformation.
=item p, point, points, Points
If specified, this is the set of four points that should be mapped one to the other.
The homogeneous-coordinate matrix is calculated from them. You should feed in a
2x2x4 PDL, where the 0 dimension runs over coordinate, the 1 dimension runs between input
and output, and the 2 dimension runs over point. For example, specifying
p=> pdl([ [[0,1],[0,1]], [[5,9],[5,8]], [[9,4],[9,3]], [[0,0],[0,0]] ])
maps the origin and the point (0,1) to themselves, the point (5,9) to (5,8), and
the point (9,4) to (9,3).
This is similar to the behavior of fitwarp2d with a quadratic polynomial.
=back
=cut
sub t_projective {
my($class) = 'PDL::Transform';
my($o) = $_[0];
if(ref $o ne 'HASH') {
$o = { @_ };
}
my($me) = PDL::Transform::new($class);
$me->{name} = "projective";
### Set options...
$me->{params}->{idim} = $me->{idim} = _opt($o,['d','dim','Dim']);
my $matrix;
if(defined ($matrix=_opt($o,['m','matrix','Matrix']))) {
$matrix = pdl($matrix);
die "t_projective: needs a square matrix"
if($matrix->dims != 2 || $matrix->dim(0) != $matrix->dim(1));
$me->{params}->{idim} = $matrix->dim(0)-1
unless(defined($me->{params}->{idim}));
$me->{idim} = $me->{params}->{idim};
die "t_projective: matrix not compatible with given dimension (should be N+1xN+1)\n"
unless($me->{params}->{idim}==$matrix->dim(0)-1);
my $inv = $matrix->inv;
print STDERR "t_projective: warning - received non-invertible matrix\n"
unless(all($inv*0 == 0));
$me->{params}->{matrix} = $matrix;
$me->{params}->{matinv} = $inv;
} elsif(defined ($p=pdl(_opt($o,['p','point','points','Point','Points'])))) {
die "t_projective: points array should be 2(x,y) x 2(in,out) x 4(point)\n\t(only 2-D points spec is available just now, sorry)\n"
unless($p->dims==3 && all(pdl($p->dims)==pdl(2,2,4)));
# Solve the system of N equations to find the projective transform
my ($p0,$p1,$p2,$p3) = ( $p->slice(":,(0),(0)"), $p->slice(":,(0),(1)"), $p->slice(":,(0),(2)"), $p->slice(":,(0),(3)") );
my ($P0,$P1,$P2,$P3) = ( $p->slice(":,(1),(0)"), $p->slice(":,(1),(1)"), $p->slice(":,(1),(2)"), $p->slice(":,(1),(3)") );
#print "declaring PDL...\n" ;
my $M = pdl( [ [$p0->at(0), $p0->at(1), 1, 0, 0, 0, -$P0->at(0)*$p0->at(0), -$P0->at(0)*$p0->at(1)],
[ 0, 0, 0, $p0->at(0), $p0->at(1), 1, -$P0->at(1)*$p0->at(0), -$P0->at(1)*$p0->at(1)],
[$p1->at(0), $p1->at(1), 1, 0, 0, 0, -$P1->at(0)*$p1->at(0), -$P1->at(0)*$p1->at(1)],
[ 0, 0, 0, $p1->at(0), $p1->at(1), 1, -$P1->at(1)*$p1->at(0), -$P1->at(1)*$p1->at(1)],
[$p2->at(0), $p2->at(1), 1, 0, 0, 0, -$P2->at(0)*$p2->at(0), -$P2->at(0)*$p2->at(1)],
[ 0, 0, 0, $p2->at(0), $p2->at(1), 1, -$P2->at(1)*$p2->at(0), -$P2->at(1)*$p2->at(1)],
[$p3->at(0), $p3->at(1), 1, 0, 0, 0, -$P3->at(0)*$p3->at(0), -$P3->at(0)*$p3->at(1)],
[ 0, 0, 0, $p3->at(0), $p3->at(1), 1, -$P3->at(1)*$p3->at(0), -$P3->at(1)*$p3->at(1)]
] );
#print "ok. Finding inverse...\n";
my $h = ($M->inv x $p->slice(":,(1),:")->flat->slice("*1"))->slice("(0)");
# print "ok\n";
my $matrix = ones(3,3);
my $tmp; # work around perl -d "feature"
($tmp = $matrix->flat->slice("0:7")) .= $h;
$me->{params}->{matrix} = $matrix;
$me->{params}->{matinv} = $matrix->inv;
}
$me->{params}->{idim} = 2 unless defined $me->{params}->{idim};
$me->{params}->{odim} = $me->{params}->{idim};
$me->{idim} = $me->{params}->{idim};
$me->{odim} = $me->{params}->{odim};
$me->{func} = sub {
my($data,$o) = @_;
my($id) = $data->dim(0);
my($d) = $data->glue(0,ones($data->slice("0")));
my($out) = ($o->{matrix} x $d->slice("*1"))->slice("(0)");
return ($out->slice("0:".($id-1))/$out->slice("$id"));
};
$me->{inv} = sub {
my($data,$o) = @_;
my($id) = $data->dim(0);
my($d) = $data->glue(0,ones($data->slice("0")));
my($out) = ($o->{matinv} x $d->slice("*1"))->slice("(0)");
return ($out->slice("0:".($id-1))/$out->slice("$id"));
};
$me;
}
;
=head1 AUTHOR
Copyright 2002, 2003 Craig DeForest. There is no warranty. You are allowed
to redistribute this software under certain conditions. For details,
see the file COPYING in the PDL distribution. If this file is
separated from the PDL distribution, the copyright notice should be
included in the file.
=cut
package PDL::Transform;
use Carp;
use overload '""' => \&_strval;
use overload 'x' => \&_compose_op;
use overload '**' => \&_pow_op;
use overload '!' => \&t_inverse;
use PDL;
use PDL::MatrixOps;
our $PI = 3.1415926535897932384626;
our $DEG2RAD = $PI / 180;
our $RAD2DEG = 180/$PI;
our $E = exp(1);
#### little helper kludge parses a list of synonyms
sub _opt {
my($hash) = shift;
my($synonyms) = shift;
my($alt) = shift; # default is undef -- ok.
local($_);
foreach $_(@$synonyms){
return (UNIVERSAL::isa($alt,'PDL')) ? PDL->pdl($hash->{$_}) : $hash->{$_}
if defined($hash->{$_}) ;
}
return $alt;
}
######################################################################
#
# Stringification hack. _strval just does a method search on stringify
# for the object itself. This gets around the fact that stringification
# overload is a subroutine call, not a method search.
#
sub _strval {
my($me) = shift;
$me->stringify();
}
######################################################################
#
# PDL::Transform overall stringifier. Subclassed stringifiers should
# call this routine first then append auxiliary information.
#
sub stringify {
my($me) = shift;
my($mestr) = (ref $me);
$mestr =~ s/PDL::Transform:://;
my $out = $mestr . " (" . $me->{name} . "): ";
$out .= "fwd ". ((defined ($me->{func})) ? ( (ref($me->{func}) eq 'CODE') ? "ok" : "non-CODE(!!)" ): "missing")."; ";
$out .= "inv ". ((defined ($me->{inv})) ? ( (ref($me->{inv}) eq 'CODE') ? "ok" : "non-CODE(!!)" ):"missing").".\n";
}
# Exit with OK status
1;
|