This file is indexed.

/usr/lib/perl5/PDL/Transform.pm is in pdl 1:2.007-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
#
# GENERATED WITH PDL::PP! Don't modify!
#
package PDL::Transform;

@EXPORT_OK  = qw( apply invert map PDL::PP map unmap t_inverse t_compose t_wrap t_identity t_lookup t_linear t_scale t_offset  t_rot t_fits t_code  t_cylindrical t_radial t_quadratic t_cubic t_quadratic t_spherical t_projective );
%EXPORT_TAGS = (Func=>[@EXPORT_OK]);

use PDL::Core;
use PDL::Exporter;
use DynaLoader;



   
   @ISA    = ( 'PDL::Exporter','DynaLoader' );
   push @PDL::Core::PP, __PACKAGE__;
   bootstrap PDL::Transform ;





=head1 NAME

PDL::Transform - Coordinate transforms, image warping, and N-D functions

=head1 SYNOPSIS

use PDL::Transform;

 my $t = new PDL::Transform::<type>(<opt>)

 $out = $t->apply($in)  # Apply transform to some N-vectors (Transform method)
 $out = $in->apply($t)  # Apply transform to some N-vectors (PDL method)

 $im1 = $t->map($im);   # Transform image coordinates (Transform method)
 $im1 = $im->map($t);   # Transform image coordinates (PDL method)

 $t2 = $t->compose($t1);  # compose two transforms
 $t2 = $t x $t1;          # compose two transforms (by analogy to matrix mult.)

 $t3 = $t2->inverse();    # invert a transform
 $t3 = !$t2;              # invert a transform (by analogy to logical "not")

=head1 DESCRIPTION

PDL::Transform is a convenient way to represent coordinate
transformations and resample images.  It embodies functions mapping
R^N -> R^M, both with and without inverses.  Provision exists for
parametrizing functions, and for composing them.  You can use this
part of the Transform object to keep track of arbitrary functions
mapping R^N -> R^M with or without inverses.

The simplest way to use a Transform object is to transform vector
data between coordinate systems.  The L<apply|/apply> method
accepts a PDL whose 0th dimension is coordinate index (all other
dimensions are threaded over) and transforms the vectors into the new
coordinate system.

Transform also includes image resampling, via the L<map|/map> method.
You define a coordinate transform using a Transform object, then use
it to remap an image PDL.  The output is a remapped, resampled image.

You can define and compose several transformations, then apply them
all at once to an image.  The image is interpolated only once, when
all the composed transformations are applied.

In keeping with standard practice, but somewhat counterintuitively,
the L<map|/map> engine uses the inverse transform to map coordinates
FROM the destination dataspace (or image plane) TO the source dataspace;
hence PDL::Transform keeps track of both the forward and inverse transform.

For terseness and convenience, most of the constructors are exported
into the current package with the name C<< t_<transform> >>, so the following
(for example) are synonyms:

  $t = new PDL::Transform::Radial();  # Long way

  $t = t_radial();                    # Short way

Several math operators are overloaded, so that you can compose and
invert functions with expression syntax instead of method syntax (see below).

=head1 EXAMPLE

Coordinate transformations and mappings are a little counterintuitive
at first.  Here are some examples of transforms in action:

   use PDL::Transform;
   $a = rfits('m51.fits');   # Substitute path if necessary!
   $ts = t_linear(Scale=>3); # Scaling transform

   $w = pgwin(xs);
   $w->imag($a);

   ## Grow m51 by a factor of 3; origin is at lower left.
   $b = $ts->map($a,{pix=>1});    # pix option uses direct pixel coord system
   $w->imag($b);

   ## Shrink m51 by a factor of 3; origin still at lower left.
   $c = $ts->unmap($a, {pix=>1});
   $w->imag($c);

   ## Grow m51 by a factor of 3; origin is at scientific origin.
   $d = $ts->map($a,$a->hdr);    # FITS hdr template prevents autoscaling
   $w->imag($d);

   ## Shrink m51 by a factor of 3; origin is still at sci. origin.
   $e = $ts->unmap($a,$a->hdr);
   $w->imag($e);

   ## A no-op: shrink m51 by a factor of 3, then autoscale back to size
   $f = $ts->map($a);            # No template causes autoscaling of output

=head1 OPERATOR OVERLOADS

=over 3

=item '!'

The bang is a unary inversion operator.  It binds exactly as
tightly as the normal bang operator.

=item 'x'

By analogy to matrix multiplication, 'x' is the compose operator, so these
two expressions are equivalent:

  $f->inverse()->compose($g)->compose($f) # long way
  !$f x $g x $f                           # short way

Both of those expressions are equivalent to the mathematical expression
f^-1 o g o f, or f^-1(g(f(x))).

=item '**'

By analogy to numeric powers, you can apply an operator a positive
integer number of times with the ** operator:

  $f->compose($f)->compose($f)  # long way
  $f**3                         # short way

=back

=head1 INTERNALS

Transforms are perl hashes.  Here's a list of the meaning of each key:

=over 3

=item func

Ref to a subroutine that evaluates the transformed coordinates.  It's
called with the input coordinate, and the "params" hash.  This
springboarding is done via explicit ref rather than by subclassing,
for convenience both in coding new transforms (just add the
appropriate sub to the module) and in adding custom transforms at
run-time. Note that, if possible, new C<func>s should support
L<inplace|PDL::Core/inplace> operation to save memory when the data are flagged
inplace.  But C<func> should always return its result even when
flagged to compute in-place.

C<func> should treat the 0th dimension of its input as a dimensional
index (running 0..N-1 for R^N operation) and thread over all other input
dimensions.

=item inv

Ref to an inverse method that reverses the transformation.  It must
accept the same "params" hash that the forward method accepts.  This
key can be left undefined in cases where there is no inverse.

=item idim, odim

Number of useful dimensions for indexing on the input and output sides
(ie the order of the 0th dimension of the coordinates to be fed in or
that come out).  If this is set to 0, then as many are allocated as needed.

=item name

A shorthand name for the transformation (convenient for debugging).
You should plan on using UNIVERAL::isa to identify classes of
transformation, e.g. all linear transformations should be subclasses
of PDL::Transform::Linear.  That makes it easier to add smarts to,
e.g., the compose() method.

=item itype

An array containing the name of the quantity that is expected from the
input piddle for the transform, for each dimension.  This field is advisory,
and can be left blank if there's no obvious quantity associated with
the transform.  This is analogous to the CTYPEn field used in FITS headers.

=item oname

Same as itype, but reporting what quantity is delivered for each
dimension.

=item iunit

The units expected on input, if a specific unit (e.g. degrees) is expected.
This field is advisory, and can be left blank if there's no obvious
unit associated with the transform.

=item ounit

Same as iunit, but reporting what quantity is delivered for each dimension.

=item params

Hash ref containing relevant parameters or anything else the func needs to
work right.

=item is_inverse

Bit indicating whether the transform has been inverted.  That is useful
for some stringifications (see the PDL::Transform::Linear
stringifier), and may be useful for other things.

=back

Transforms should be inplace-aware where possible, to prevent excessive
memory usage.

If you define a new type of transform, consider generating a new stringify
method for it.  Just define the sub "stringify" in the subclass package.
It should call SUPER::stringify to generate the first line (though
the PDL::Transform::Composition bends this rule by tweaking the
top-level line), then output (indented) additional lines as necessary to
fully describe the transformation.

=head1 NOTES

Transforms have a mechanism for labeling the units and type of each
coordinate, but it is just advisory.  A routine to identify and, if
necessary, modify units by scaling would be a good idea.  Currently,
it just assumes that the coordinates are correct for (e.g.)  FITS
scientific-to-pixel transformations.

Composition works OK but should probably be done in a more
sophisticated way so that, for example, linear transformations are
combined at the matrix level instead of just strung together
pixel-to-pixel.

=head1 FUNCTIONS

There are both operators and constructors.  The constructors are all
exported, all begin with "t_", and all return objects that are subclasses
of PDL::Transform.

The L<apply|/apply>, L<invert|/invert>, L<map|/map>,
and L<unmap|/unmap> methods are also exported to the C<PDL> package: they
are both Transform methods and PDL methods.

=cut







=head1 FUNCTIONS



=cut





=head2 apply

=for sig

  Signature: (data(); PDL::Transform t)

=for usage

  $out = $data->apply($t);
  $out = $t->apply($data);

=for ref

Apply a transformation to some input coordinates.

In the example, C<$t> is a PDL::Transform and C<$data> is a PDL to
be interpreted as a collection of N-vectors (with index in the 0th
dimension).  The output is a similar but transformed PDL.

For convenience, this is both a PDL method and a Transform method.

=cut

use Carp;

*PDL::apply = \&apply;
sub apply {
  my($me) = shift;
  my($from) = shift;

  if(UNIVERSAL::isa($me,'PDL')){
      my($a) = $from;
      $from = $me;
      $me = $a;
  }

  if(UNIVERSAL::isa($me,'PDL::Transform') && UNIVERSAL::isa($from,'PDL')){
      croak "Applying a PDL::Transform with no func! Oops.\n" unless(defined($me->{func}) and ref($me->{func}) eq 'CODE');
      my $result = &{$me->{func}}($from,$me->{params});		
      $result->is_inplace(0); # clear inplace flag, just in case.	
      return $result;
  } else {
      croak "apply requires both a PDL and a PDL::Transform.\n";
  }

}




=head2 invert

=for sig

  Signature: (data(); PDL::Transform t)

=for usage

  $out = $t->invert($data);
  $out = $data->invert($t);

=for ref

Apply an inverse transformation to some input coordinates.

In the example, C<$t> is a PDL::Transform and C<$data> is a piddle to
be interpreted as a collection of N-vectors (with index in the 0th
dimension).  The output is a similar piddle.

For convenience this is both a PDL method and a PDL::Transform method.

=cut

*PDL::invert = \&invert;
sub invert {
  my($me) = shift;
  my($data) = shift;

  if(UNIVERSAL::isa($me,'PDL')){
      my($a) = $data;
      $data = $me;
      $me = $a;
  }

  if(UNIVERSAL::isa($me,'PDL::Transform') && UNIVERSAL::isa($data,'PDL')){
      croak "Inverting a PDL::Transform with no inverse! Oops.\n" unless(defined($me->{inv}) and ref($me->{inv}) eq 'CODE');
      my $result = &{$me->{inv}}($data, $me->{params});
      $result->is_inplace(0);  # make sure inplace flag is clear.
      return $result;
  } else {
      croak("invert requires a PDL and a PDL::Transform (did you want 'inverse' instead?)\n");
  }
}





=head2 map

=for sig

  Signature: (k0(); SV *in; SV *out; SV *map; SV *boundary; SV *method;
	            SV *big; SV *blur; SV *sv_min; SV *flux; SV *bv)


=head2 PDL::match

=for usage

  $b = $a->match($c);                  # Match $c's header and size
  $b = $a->match([100,200]);           # Rescale to 100x200 pixels
  $b = $a->match([100,200],{rect=>1}); # Rescale and remove rotation/skew.

=for ref

Resample a scientific image to the same coordinate system as another.

The example above is syntactic sugar for

 $b = $a->map(t_identity, $c, ...);

it resamples the input PDL with the identity transformation in
scientific coordinates, and matches the pixel coordinate system to
$c's FITS header.

There is one difference between match and map: match makes the
C<rectify> option to C<map> default to 0, not 1.  This only affects
matching where autoscaling is required (i.e. the array ref example
above).  By default, that example simply scales $a to the new size and
maintains any rotation or skew in its scientiic-to-pixel coordinate
transform.

=head2 map

=for usage

  $b = $a->map($xform,[<template>],[\%opt]); # Distort $a with tranform $xform
  $b = $a->map(t_identity,[$pdl],[\%opt]); # rescale $a to match $pdl's dims.

=for ref

Resample an image or N-D dataset using a coordinate transform.

The data are resampled so that the new pixel indices are proportional
to the transformed coordinates rather than the original ones.

The operation uses the inverse transform: each output pixel location
is inverse-transformed back to a location in the original dataset, and
the value is interpolated or sampled appropriately and copied into the
output domain.  A variety of sampling options are available, trading
off speed and mathematical correctness.

For convenience, this is both a PDL method and a PDL::Transform method.

C<map> is FITS-aware: if there is a FITS header in the input data,
then the coordinate transform acts on the scientific coordinate system
rather than the pixel coordinate system.

By default, the output coordinates are separated from pixel coordinates
by a single layer of indirection.  You can specify the mapping between
output transform (scientific) coordinates to pixel coordinates using
the C<orange> and C<irange> options (see below), or by supplying a
FITS header in the template.

If you don't specify an output transform, then the output is
autoscaled: C<map> transforms a few vectors in the forward direction
to generate a mapping that will put most of the data on the image
plane, for most transformations.  The calculated mapping gets stuck in the
output's FITS header.

Autoscaling is especially useful for rescaling images -- if you specify
the identity transform and allow autoscaling, you duplicate the
functionality of L<rescale2d|PDL::Image2D/rescale2d>, but with more
options for interpolation.

You can operate in pixel space, and avoid autoscaling of the output,
by setting the C<nofits> option (see below).

The output has the same data type as the input.  This is a feature,
but it can lead to strange-looking banding behaviors if you use
interpolation on an integer input variable.

The C<template> can be one of:

=over 3

=item * a PDL

The PDL and its header are copied to the output array, which is then
populated with data.  If the PDL has a FITS header, then the FITS
transform is automatically applied so that $t applies to the output
scientific coordinates and not to the output pixel coordinates.  In
this case the NAXIS fields of the FITS header are ignored.

=item * a FITS header stored as a hash ref

The FITS NAXIS fields are used to define the output array, and the
FITS transformation is applied to the coordinates so that $t applies to the
output scientific coordinates.

=item * a list ref

This is a list of dimensions for the output array.  The code estimates
appropriate pixel scaling factors to fill the available space.  The
scaling factors are placed in the output FITS header.

=item * nothing

In this case, the input image size is used as a template, and scaling
is done as with the list ref case (above).

=back

OPTIONS:

The following options are interpreted:

=over 3

=item b, bound, boundary, Boundary (default = 'truncate')

This is the boundary condition to be applied to the input image; it is
passed verbatim to L<range|PDL::Slices/range> or
L<interpND|PDL::Primitive/interpND> in the sampling or interpolating
stage.  Other values are 'forbid','extend', and 'periodic'.  You can
abbreviate this to a single letter.  The default 'truncate' causes the
entire notional space outside the original image to be filled with 0.

=item pix, Pixel, nf, nofits, NoFITS (default = 0)

If you set this to a true value, then FITS headers and interpretation
are ignored; the transformation is treated as being in raw pixel coordinates.

=item j, J, just, justify, Justify (default = 0)

If you set this to 1, then output pixels are autoscaled to have unit
aspect ratio in the output coordinates.  If you set it to a non-1
value, then it is the aspect ratio between the first dimension and all
subsequent dimensions -- or, for a 2-D transformation, the scientific
pixel aspect ratio.  Values less than 1 shrink the scale in the first
dimension compared to the other dimensions; values greater than 1
enlarge it compared to the other dimensions.  (This is the same sense
as in the L<PGPLOT|PDL::Graphics::PGPLOT>interface.)

=item ir, irange, input_range, Input_Range

This is a way to modify the autoscaling.  It specifies the range of
input scientific (not necessarily pixel) coordinates that you want to be
mapped to the output image.  It can be either a nested array ref or
a piddle.  The 0th dim (outside coordinate in the array ref) is
dimension index in the data; the 1st dim should have order 2.
For example, passing in either [[-1,2],[3,4]] or pdl([[-1,2],[3,4]])
limites the map to the quadrilateral in input space defined by the
four points (-1,3), (-1,4), (2,4), and (2,3).

As with plain autoscaling, the quadrilateral gets sparsely sampled by
the autoranger, so pathological transformations can give you strange
results.

This parameter is overridden by C<orange>, below.

=item or, orange, output_range, Output_Range

This sets the window of output space that is to be sampled onto the
output array.  It works exactly like C<irange>, except that it specifies
a quadrilateral in output space.  Since the output pixel array is itself
a quadrilateral, you get pretty much exactly what you asked for.

This parameter overrides C<irange>, if both are specified.  It forces
rectification of the output (so that scientific axes align with the pixel
grid).

=item r, rect, rectify

This option defaults TRUE and controls how autoscaling is performed.  If
it is true or undefined, then autoscaling adjusts so that pixel coordinates
in the output image are proportional to individual scientific coordinates.
If it is false, then autoscaling automatically applies the inverse of any
input FITS transformation *before* autoscaling the pixels.  In the special
case of linear transformations, this preserves the rectangular shape of the
original pixel grid and makes output pixel coordinate proportional to input
coordinate.

=item m, method, Method

This option controls the interpolation method to be used.
Interpolation greatly affects both speed and quality of output.  For
most cases the option is directly passed to
L<interpND|PDL::Primitive/interpnd> for interpolation.  Possible
options, in order from fastest to slowest, are:

=over 3


=item * s, sample (default for ints)

Pixel values in the output plane are sampled from the closest data value
in the input plane.  This is very fast but not very accurate for either
magnification or decimation (shrinking).  It is the default for templates
of integer type.

=item * l, linear (default for floats)

Pixel values are linearly interpolated from the closest data value in the
input plane.  This is reasonably fast but only accurate for magnification.
Decimation (shrinking) of the image causes aliasing and loss of photometry
as features fall between the samples.  It is the default for floating-point
templates.

=item * c, cubic

Pixel values are interpolated using an N-cubic scheme from a 4-pixel
N-cube around each coordinate value.  As with linear interpolation,
this is only accurate for magnification.

=item * f, fft

Pixel values are interpolated using the term coefficients of the
Fourier transform of the original data.  This is the most appropriate
technique for some kinds of data, but can yield undesired "ringing" for
expansion of normal images.  Best suited to studying images with
repetitive or wavelike features.

=item * h, hanning

Pixel values are filtered through a spatially-variable filter tuned to
the computed Jacobian of the transformation, with hanning-window
(cosine) pixel rolloff in each dimension.  This prevents aliasing in the
case where the image is distorted or shrunk, but allows small amounts
of aliasing at pixel edges wherever the image is enlarged.

=item * g, gaussian, j, jacobian

Pixel values are filtered through a spatially-variable filter tuned to
the computed Jacobian of the transformation, with radial Gaussian
rolloff.  This is the most accurate resampling method, in the sense of
introducing the fewest artifacts into a properly sampled data set.

=back

=item blur, Blur (default = 1.0)

This value scales the input-space footprint of each output pixel in
the gaussian and hanning methods. It's retained for historical
reasons.  Larger values yield blurrier images; values significantly
smaller than unity cause aliasing.

=item sv, SV (default = 1.0)

This value lets you set the lower limit of the transformation's
singular values in the hanning and gaussian methods, limiting the
minimum radius of influence associated with each output pixel.  Large
numbers yield smoother interpolation in magnified parts of the image
but don't affect reduced parts of the image.

=item big, Big (default = 0.2)

This is the largest allowable input spot size which may be mapped to a
single output pixel by the hanning and gaussian methods, in units of
the largest non-thread input dimension.  (i.e. the default won't let
you reduce the original image to less than 5 pixels across).  This places
a limit on how long the processing can take for pathological transformations.
Smaller numbers keep the code from hanging for a long time; larger numbers
provide for photometric accuracy in more pathological cases.  Numbers larer
than 1.0 are silly, because they allow the entire input array to be compressed
into a region smaller than a single pixel.

Wherever an output pixel would require averaging over an area that is too
big in input space, it instead gets NaN or the equivalent (bad values are
not yet supported).

=item phot, photometry, Photometry

This lets you set the style of photometric conversion to be used in the
hanning or gaussian methods.  You may choose:

=over 3

=item * 0, s, surf, surface, Surface (default)

(this is the default): surface brightness is preserved over the transformation,
so features maintain their original intensity.  This is what the sampling
and interpolation methods do.

=item * 1, f, flux, Flux

Total flux is preserved over the transformation, so that the brightness
integral over image regions is preserved.  Parts of the image that are
shrunk wind up brighter; parts that are enlarged end up fainter.

=back

=back

VARIABLE FILTERING:

The 'hanning' and 'gaussian' methods of interpolation give
photometrically accurate resampling of the input data for arbitrary
transformations.  At each pixel, the code generates a linear
approximation to the input transformation, and uses that linearization
to estimate the "footprint" of the output pixel in the input space.
The output value is a weighted average of the appropriate input spaces.

A caveat about these methods is that they assume the transformation is
continuous.  Transformations that contain discontinuities will give
incorrect results near the discontinuity.  In particular, the 180th
meridian isn't handled well in lat/lon mapping transformations (see
L<PDL::Transform::Cartography>) -- pixels along the 180th meridian get
the average value of everything along the parallel occupied by the
pixel.  This flaw is inherent in the assumptions that underly creating
a Jacobian matrix.  Maybe someone will write code to work around it.
Maybe that someone is you.



=for bad

map does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.


=cut





sub PDL::match {
  # Set default for rectification to 0 for simple matching...
  if( ref($_[$#_]) ne 'HASH' ) {
      push(@_,{})
  }
  my @k = grep(m/^r(e(c(t)?)?)?/,keys %{$_[$#_]});
  unless(@k) {
      $_[$#_]->{rectify} = 0;
  }
  t_identity()->map(@_);
}


*PDL::map = \&map;
sub map {
  my($me) = shift;
  my($in) = shift;

  if(UNIVERSAL::isa($me,'PDL') && UNIVERSAL::isa($in,'PDL::Transform')) {
      my($a) = $in;
      $in = $me;
      $me = $a;
  }

  barf ("PDL::Transform::map: source is not defined or is not a PDL\n")
    unless(defined $in and  UNIVERSAL::isa($in,'PDL'));

  my($tmp) = shift;
  my($opt) = shift;

  # Check for options-but-no-template case
  if(ref $tmp eq 'HASH' && !(defined $opt)) {
    if(!defined($tmp->{NAXIS})) {  # FITS headers all have NAXIS.
      $opt = $tmp;
      $tmp = undef;
    }
  }

  croak("PDL::Transform::map: Option 'p' was ambiguous and has been removed. You probably want 'pix' or 'phot'.") if exists($opt->{'p'});

  $tmp = [$in->dims]  unless(defined($tmp));

  # Generate an appropriate output piddle for values to go in
  my($out);
  my(@odims);
  my($ohdr);
  if(UNIVERSAL::isa($tmp,'PDL')) {
    @odims = $tmp->dims;

    my($a);
    if(defined ($a = $tmp->gethdr)) {
      my(%b) = %{$a};
      $ohdr = \%b;
    }
  } elsif(ref $tmp eq 'HASH') {
    # (must be a fits header -- or would be filtered above)
    for my $i(1..$tmp->{NAXIS}){
      push(@odims,$tmp->{"NAXIS$i"});
    }
    # deep-copy fits header into output
    my %foo = %{$tmp};
    $ohdr = \%foo;
  } elsif(ref $tmp eq 'ARRAY') {
    @odims = @$tmp;
  } else {
    barf("map: confused about dimensions of the output array...\n");
  }

  if(scalar(@odims) < scalar($in->dims)) {
    my @idims = $in->dims;
    push(@odims, splice(@idims,scalar(@odims)));
  }

  $out = PDL::new_from_specification('PDL',$in->type,@odims);
  $out->sethdr($ohdr) if defined($ohdr);

  if($PDL::Bad::Status and $in->badflag()) {
    $out->badflag(1);
  }

  ##############################
  ## Figure out the dimensionality of the
  ## transform itself (extra dimensions come along for the ride)
  my $nd = $me->{odim} || $me->{idim} || 2;
  my @sizes = $out->dims;
  my @dd = @sizes;

  splice @dd,$nd; # Cut out dimensions after the end

  # Check that there are elements in the output fields...
  barf "map: output has no dims!\n"
	unless(@dd);
  my $ddtotal = 1;
  map {$ddtotal *= $_} @dd;
  barf "map: output has no elements (at least one dim is 0)!\n"
     unless($ddtotal);


  ##############################
  # If necessary, generate an appropriate FITS header for the output.

  my $nofits = _opt($opt, ['nf','nofits','NoFITS','pix','pixel','Pixel']);

  ##############################
  # Autoscale by transforming a subset of the input points' coordinates
  # to the output range, and pick a FITS header that fits the output
  # coordinates into the given template.
  #
  # Autoscaling always produces a simple, linear mapping in the FITS header.
  # We support more complex mappings (via t_fits) but only to match a pre-existing
  # FITS header (which doesn't use autoscaling).
  # 
  # If the rectify option is set (the default) then the image is rectified 
  # in scientific coordinates; if it is clear, then the existing matrix 
  # is used, preserving any shear or rotation in the coordinate system. 
  # Since we eschew CROTA whenever possible, the CDi_j formalism is used instead.
  my $f_in = (defined($in->hdr->{NAXIS}) ? t_fits($in,{ignore_rgb=>1}) : t_identity());

  unless((defined $out->gethdr && $out->hdr->{NAXIS})  or  $nofits) {
      print "generating output FITS header..." if($PDL::Transform::debug);

      $out->sethdr($in->hdr_copy) # Copy extraneous fields...
	if(defined $in->hdr);

      my $samp_ratio = 300;

      my $orange = _opt($opt, ['or','orange','output_range','Output_Range'],
			undef);

      my $omin;
      my $omax;
      my $osize;


      my $rectify = _opt($opt,['r','rect','rectify','Rectify'],1);


      if (defined $orange) {
	  # orange always rectifies the coordinates -- the output scientific
	  # coordinates *must* align with the axes, or orange wouldn't make
	  # sense.
	print "using user's orange..." if($PDL::Transform::debug);
	$orange = pdl($orange) unless(UNIVERSAL::isa($orange,'PDL'));
	barf "map: orange must be 2xN for an N-D transform"
	  unless ( (($orange->dim(1)) == $nd )
		   && $orange->ndims == 2);

	$omin = $orange->slice("(0)");
	$omax = $orange->slice("(1)");
	$osize = $omax - $omin;
	
	$rectify = 1;

      } else {

	  ##############################
	  # Real autoscaling happens here.


	  if(!$rectify and ref( $f_in ) !~ /Linear/) {
	      print STDERR "Warning: map can't preserve nonlinear FITS distortions while autoscaling.\n";
	      $rectify=1;
	  }
	  if(!$rectify and $f_in->{name} eq 'identity') {
	      $rectify = 1;
	  }

	  my $f_tr = ( $rectify ? 
		       $me x $f_in :
		       (  ($me->{name} eq 'identity') ?  # Simple optimization for match()
			  $me :                        # identity -- just matching
			  !$f_in x $me x $f_in         # common case
		       )
		       );

	  my $samps = (pdl(($in->dims)[0..$nd-1]))->clip(0,$samp_ratio);
	  
	  my $coords = ndcoords(($samps + 1)->list);
	  
	  my $t;
	  my $irange = _opt($opt, ['ir','irange','input_range','Input_Range'],
			    undef);
	  
	  # If input range is defined, sample that quadrilateral -- else
	  # sample the quad defined by the boundaries of the input image.
	  if(defined $irange) {
	      print "using user's irange..." if($PDL::Transform::debug);
	      $irange = pdl($irange) unless(UNIVERSAL::isa($irange,'PDL'));
	      barf "map: irange must be 2xN for an N-D transform"
		  unless ( (($irange->dim(1)) == $nd )
			   && $irange->ndims == 2);
	      
	      $coords *= ($irange->slice("(1)") - $irange->slice("(0)")) / $samps;
	      $coords += $irange->slice("(0)");
	      $coords -= 0.5; # offset to pixel corners...
	      $t = $me;
	  } else {
	      $coords *= pdl(($in->dims)[0..$nd-1]) / $samps;
	      $coords -= 0.5; # offset to pixel corners...
	      $t = $f_tr;
	  }
	  my $ocoords = $t->apply($coords)->mv(0,-1)->clump($nd);
	  
	  # discard non-finite entries
	  my $oc2  = $ocoords->range(
	      which(
		  $ocoords->
		  xchg(0,1)->
		  sumover->
		  isfinite
	      )
	      ->dummy(0,1)
	      );
	  
	  $omin = $oc2->minimum;
	  $omax = $oc2->maximum;
	  
	  $osize = $omax - $omin;
	  my $tosize;
	  ($tosize = $osize->where($osize == 0)) .= 1.0;
      }
      
      my ($scale) = $osize / pdl(($out->dims)[0..$nd-1]);
      
      my $justify = _opt($opt,['j','J','just','justify','Justify'],0);
      if($justify) {
	  my $tmp; # work around perl -d "feature"
	  ($tmp = $scale->slice("0")) *= $justify;
	  $scale .= $scale->max;
	  $scale->slice("0") /= $justify;
      }

      print "done with autoscale. Making fits header....\n" if($PDL::Transform::debug);
      if( $rectify ) {
	  # Rectified header generation -- make a simple coordinate header with no 
	  # rotation or skew.
	  print "rectify\n" if($PDL::Transform::debug);
	  for my $d(1..$nd) {
	      $out->hdr->{"CRPIX$d"} = 1 + ($out->dim($d-1)-1)/2 ;
	      $out->hdr->{"CDELT$d"} = $scale->at($d-1);
	      $out->hdr->{"CRVAL$d"} = ( $omin->at($d-1) + $omax->at($d-1) ) /2 ;
	      $out->hdr->{"NAXIS$d"} = $out->dim($d-1);
	      $out->hdr->{"CTYPE$d"} = ( (defined($me->{otype}) ?
					  $me->{otype}->[$d-1] : "")
					 || $in->hdr->{"CTYPE$d"}
					 || "");
	      $out->hdr->{"CUNIT$d"} = ( (defined($me->{ounit}) ?
					  $me->{ounit}->[$d-1] : "")
					 || $in->hdr->{"CUNIT$d"}
					 || $in->hdr->{"CTYPE$d"}
					 || "");
	  }
	  $out->hdr->{"NAXIS"} = $nd;
	  
	  $out->hdr->{"SIMPLE"} = 'T';
	  $out->hdr->{"HISTORY"} .= "Header written by PDL::Transform::Cartography::map";
	  
	  ### Eliminate fancy newfangled output header pointing tags if they exist
	  ### These are the CROTA<n>, PCi_j, and CDi_j.
	  for $k(keys %{$out->hdr})	 {
	      if( $k=~m/(^CROTA\d*$)|(^(CD|PC)\d+_\d+[A-Z]?$)/ ){
		  delete $out->hdr->{$k};
	      }
	  }
      } else {
	  # Non-rectified output -- generate a CDi_j matrix instead of the simple formalism.
	  # We have to deal with a linear transformation: we've got:  (scaling) x !input x (t x input),
	  # where input is a linear transformation with offset and scaling is a simple scaling. We have
	  # the scaling parameters and the matrix for !input -- we have only to merge them and then we 
	  # can write out the FITS header in CDi_j form.
	  print "non-rectify\n" if($PDL::Transform::debug);
	  my $midpoint_val = (pdl(($out->dims)[0..$nd-1])/2 * $scale)->apply( $f_in );
	  print "midpoint_val is $midpoint_val\n" if($PDL::Transform::debug);
	  # linear transformation
	  unless(ref($f_in) =~ m/Linear/) {
	      croak("Whups -- got a nonlinear t_fits transformation.  Can't deal with it.");
	  }

	  my $inv_sc_mat = zeroes($nd,$nd);
	  $inv_sc_mat->diagonal(0,1) .= $scale;
	  my $mat = $f_in->{params}->{matrix} x $inv_sc_mat;
	  print "scale is $scale; mat is $mat\n" if($PDL::Transform::debug);

	  print "looping dims 1..$nd: " if($PDL::Transform::debug);
	  for my $d(1..$nd) {
	      print "$d..." if($PDL::Transform::debug);
	      $out->hdr->{"CRPIX$d"} = 1 + ($out->dim($d-1)-1)/2;
	      $out->hdr->{"CRVAL$d"} = $midpoint_val->at($d-1);
	      $out->hdr->{"NAXIS$d"} = $out->dim($d-1);
	      $out->hdr->{"CTYPE$d"} = ( (defined($me->{otype}) ?
					  $me->{otype}->[$d-1] : "")
					 || $in->hdr->{"CTYPE$d"}
					 || "");
	      $out->hdr->{"CUNIT$d"} = ( (defined($me->{ounit}) ?
					  $me->{ounit}->[$d-1] : "")
					 || $in->hdr->{"CUNIT$d"}
					 || $in->hdr->{"CTYPE$d"}
					 || "");
	      for my $e(1..$nd) {
		  $out->hdr->{"CD${d}_${e}"} = $mat->at($d-1,$e-1);
		  print "setting CD${d}_${e} to ".$mat->at($d-1,$e-1)."\n" if($PDL::Transform::debug);
	      }
	  }

	  ## Eliminate competing header pointing tags if they exist
	  for $k(keys %{$out->hdr}) {
	      if( $k =~ m/(^CROTA\d*$)|(^(PC)\d+_\d+[A-Z]?$)|(CDELT\d*$)/ ) {
		  delete $out->hdr->{$k};
	      }
	  }
      }



    }

  $out->hdrcpy(1);

  ##############################
  # Sandwich the transform between the input and output plane FITS headers.
  unless($nofits) {
      $me = !(t_fits($out,{ignore_rgb=>1})) x $me x $f_in;
  }

  ##############################
  ## Figure out the interpND options
  my $method = _opt($opt,['m','method','Method'],undef);
  my $bound = _opt($opt,['b','bound','boundary','Boundary'],'t');


  ##############################
  ## Rubber meets the road: calculate the inverse transformed points.
  my $ndc = PDL::Basic::ndcoords(@dd);
  my $idx = $me->invert($ndc->double);

  barf "map: Transformation had no inverse\n" unless defined($idx);

  ##############################
  ## Integrate ?  (Jacobian, Gaussian, Hanning)
  my $integrate = ($method =~ m/^[jghJGH]/) if defined($method);

  ##############################
  ## Sampling code:
  ## just transform and interpolate.
  ##  ( Kind of an anticlimax after all that, eh? )
  if(!$integrate) {
    my $a = $in->interpND($idx,{method=>$method, bound=>$bound});
    my $tmp; # work around perl -d "feature"
    ($tmp = $out->slice(":")) .= $a; # trivial slice prevents header overwrite...
    return $out;
  }

  ##############################
  ## Anti-aliasing code:
  ## Condition the input and call the pixelwise C interpolator.
  ##

  barf("PDL::Transform::map: Too many dims in transformation\n")
	if($in->ndims < $idx->ndims-1);

  ####################
  ## Condition the threading -- pixelwise interpolator only threads
  ## in 1 dimension, so squish all thread dimensions into 1, if necessary
  my @iddims = $idx->dims;
  if($in->ndims == $#iddims) {
	$in2 = $in->dummy(-1,1);
  } else {
	$in2 = ( $in
	        ->reorder($nd..$in->ndims-1, 0..$nd-1)
		->clump($in->ndims - $nd)
		->mv(0,-1)
	       );
  }

  ####################
  # Allocate the output array
  my $o2 = PDL->new_from_specification($in2->type,
				    @iddims[1..$#iddims],
	 			    $in2->dim(-1)
				   );

  ####################
  # Pack boundary string if necessary
  if(defined $bound) {
    if(ref $bound eq 'ARRAY') {
      my ($s,$el);
      foreach $el(@$bound) {
	barf "Illegal boundary value '$el' in range"
  	  unless( $el =~ m/^([0123fFtTeEpPmM])/ );
	$s .= $1;
      }
      $bound = $s;
    }
    elsif($bound !~ m/^[0123ftepx]+$/  && $bound =~ m/^([0123ftepx])/i ) {
      $bound = $1;
    }
  }

  ####################
  # Get the blur and minimum-sv values
  my $blur  =  _opt($opt,['blur','Blur'],1.0);
  my $svmin =  _opt($opt,['sv','SV'],1.0);
  my $big   =  _opt($opt,['big','Big'],1.0);
  my $flux  =  _opt($opt,['phot','photometry'],0);
  my @idims = $in->dims;

  $flux = ($flux =~ m/^[1fF]/);
  $big = $big * max(pdl(@idims[0..$nd])) / 2;
  $blur = $blur->at(0) if(ref $blur);
  $svmin =  $svmin->at(0)  if(ref $svmin);

  my $bv;
  if($PDL::Bad::Status  and $in->badflag){
      $bv = $in->badvalue;
  } else {
      $bv = 0;
  }

  ### The first argument is a dummy to set $GENERIC.
  $idx = double($idx) unless($idx->type == double);
  &PDL::_map_int( $in2->flat->index(0),
	$in2, $o2, $idx,
	$bound, $method, $big, $blur, $svmin, $flux, $bv);

  my @rdims = (@iddims[1..$#iddims], @idims[$#iddims..$#idims]);
  {
     my $tmp; # work around perl -d "feature"
     ($tmp = $out->slice(":")) .= $o2->reshape(@rdims);
  }
  return $out;
}



*map = \&PDL::map;




######################################################################

=head2 unmap

=for sig

 Signature: (data(); PDL::Transform a; template(); \%opt)

=for usage

  $out_image = $in_image->unmap($t,[<options>],[<template>]);
  $out_image = $t->unmap($in_image,[<options>],[<template>]);

=for ref

Map an image or N-D dataset using the inverse as a coordinate transform.

This convenience function just inverts $t and calls L<map|/map> on
the inverse; everything works the same otherwise.  For convenience, it
is both a PDL method and a PDL::Transform method.

=cut

*PDL::unmap = \&unmap;
sub unmap {
  my($me) = shift;
  my($data) = shift;
  my(@params) = @_;

  if(UNIVERSAL::isa($data,'PDL::Transform') && UNIVERSAL::isa($me,'PDL')) {
      my $a = $data;
      $data = $me;
      $me = $a;
  }

  return $me->inverse->map($data,@params);
}




=head2 t_inverse

=for usage

  $t2 = t_inverse($t);
  $t2 = $t->inverse;
  $t2 = $t ** -1;
  $t2 = !$t;

=for ref

Return the inverse of a PDL::Transform.  This just reverses the
func/inv, idim/odim, itype/otype, and iunit/ounit pairs.  Note that
sometimes you end up with a transform that cannot be applied or
mapped, because either the mathematical inverse doesn't exist or the
inverse func isn't implemented.

You can invert a transform by raising it to a negative power, or by
negating it with '!'.

The inverse transform remains connected to the main transform because
they both point to the original parameters hash.  That turns out to be
useful.

=cut

*t_inverse = \&inverse;

sub inverse {
  my($me) = shift;

  unless(defined($me->{inv})) {
    Carp::cluck("PDL::Transform::inverse:  got a transform with no inverse.\n");
    return undef;
  }

  my(%out) = %$me; # force explicit copy of top-level
  my($out) = \%out;

  $out->{inv}  = $me->{func};
  $out->{func} = $me->{inv};

  $out->{idim} = $me->{odim};
  $out->{odim} = $me->{idim};

  $out->{otype} = $me->{itype};
  $out->{itype} = $me->{otype};

  $out->{ounit} = $me->{iunit};
  $out->{iunit} = $me->{ounit};

  $out->{name} = "(inverse ".$me->{name}.")";

  $out->{is_inverse} = !($out->{is_inverse});

  bless $out,(ref $me);
  return $out;
}




=head2 t_compose

=for usage

  $f2 = t_compose($f, $g,[...]);
  $f2 = $f->compose($g[,$h,$i,...]);
  $f2 = $f x $g x ...;

=for ref

Function composition: f(g(x)), f(g(h(x))), ...

You can also compose transforms using the overloaded matrix-multiplication
(nee repeat) operator 'x'.

This is accomplished by inserting a splicing code ref into the C<func>
and C<inv> slots.  It combines multiple compositions into a single
list of transforms to be executed in order, fram last to first (in
keeping with standard mathematical notation).  If one of the functions is
itself a composition, it is interpolated into the list rather than left
separate.  Ultimately, linear transformations may also be combined within
the list.

No checking is done that the itype/otype and iunit/ounit fields are
compatible -- that may happen later, or you can implement it yourself
if you like.

=cut

@PDL::Transform::Composition::ISA = ('PDL::Transform');
sub PDL::Transform::Composition::stringify {
  package PDL::Transform::Composition;
  my($me) = shift;
  my($out) = SUPER::stringify $me;
  $out;
}

*t_compose = \&compose;

sub compose {
  local($_);
  my(@funcs) = @_;
  my($me) = PDL::Transform->new;

  # No inputs case: return the identity function
  return $me
    if(!@funcs);

  $me->{name} = "";
  my($f);
  my(@clist);

  for $f(@funcs) {

    $me->{idim} = $f->{idim} if($f->{idim} > $me->{idim});
    $me->{odim} = $f->{odim} if($f->{odim} > $me->{odim});

    if(UNIVERSAL::isa($f,"PDL::Transform::Composition")) {
      if($f->{is_inverse}) {
	for(reverse(@{$f->{params}->{clist}})) {
	  push(@clist,$_->inverse);
	  $me->{name} .= " o inverse ( ".$_->{name}." )";
	}
      } else {
	for(@{$f->{params}->{clist}}) {
	  push(@clist,$_);
	  $me->{name} .= " o ".$_->{name};
	}
      }
    } else {  # Not a composition -- just push the transform onto the list.
      push(@clist,$f);
      $me->{name} .= " o ".$f->{name};
    }
  }

  $me->{name}=~ s/^ o //; # Get rid of leading composition mark

  $me->{otype} = $funcs[0]->{otype};
  $me->{ounit} = $funcs[0]->{ounit};

  $me->{itype} = $funcs[-1]->{itype};
  $me->{iunit} = $funcs[-1]->{iunit};

  $me->{params}->{clist} = \@clist;

  $me->{func} = sub {
    my ($data,$p) = @_;
    my ($ip) = $data->is_inplace;
    for my $t ( reverse @{$p->{clist}} ) {
      croak("Error: tried to apply a PDL::Transform with no function inside a composition!\n  offending transform: $t\n")
	  unless(defined($t->{func}) and ref($t->{func}) eq 'CODE');
      $data = $t->{func}($ip ? $data->inplace : $data, $t->{params});
    }
    $data->is_inplace(0); # clear inplace flag (avoid core bug with inplace)
    $data;
  };

  $me->{inv} = sub {
    my($data,$p) = @_;
    my($ip) = $data->is_inplace;
    for my $t ( @{$p->{clist}} ) {
      croak("Error: tried to invert a non-invertible PDL::Transform inside a composition!\n  offending transform: $t\n") 
	  unless(defined($t->{inv}) and ref($t->{inv}) eq 'CODE');
      $data = &{$t->{inv}}($ip ? $data->inplace : $data, $t->{params});
    }
    $data;
  };

  return bless($me,'PDL::Transform::Composition');
}




=head2 t_wrap

=for usage

  $g1fg = $f->wrap($g);
  $g1fg = t_wrap($f,$g);

=for ref

Shift a transform into a different space by 'wrapping' it with a second.

This is just a convenience function for two
L<t_compose|/t_compose> calls. C<< $a->wrap($b) >> is the same as
C<(!$b) x $a x $b>: the resulting transform first hits the data with
$b, then with $a, then with the inverse of $b.

For example, to shift the origin of rotation, do this:

  $im = rfits('m51.fits');
  $tf = t_fits($im);
  $tr = t_linear({rot=>30});
  $im1 = $tr->map($tr);               # Rotate around pixel origin
  $im2 = $tr->map($tr->wrap($tf));    # Rotate round FITS scientific origin

=cut

*t_wrap = \&wrap;

sub wrap {
  my($f) = shift;
  my($g) = shift;

  return $g->inverse->compose($f,$g);
}



######################################################################

# Composition operator -- handles 'x'.
sub _compose_op {
    my($a,$b,$c) = @_;
    $c ? compose($b,$a) : compose($a,$b);
}

# Raise-to-power operator -- handles '**'.

sub _pow_op {
    my($a,$b,$c) = @_;

    barf("%s", "Can't raise anything to the power of a transform")
	if($c || UNIVERSAL::isa($b,'PDL::Transform')) ;

    $a = $a->inverse
	if($b < 0);

    return $a if(abs($b) == 1);
    return new PDL::Transform if(abs($b) == 0);

    my(@l);
    for my $i(1..abs($b)) {
	push(@l,$a);
    }

    t_compose(@l);
}




=head2 t_identity

=for usage

  my $xform = t_identity
  my $xform = new PDL::Transform;

=for ref

Generic constructor generates the identity transform.

This constructor really is trivial -- it is mainly used by the other transform
constructors.  It takes no parameters and returns the identity transform.

=cut

sub _identity { return shift; }
sub t_identity { new PDL::Transform(@_) };

sub new {
  my($class) = shift;
  my $me = {name=>'identity',
	    idim => 0,
	    odim => 0,
	    func=>\&PDL::Transform::_identity,
	    inv=>\&PDL::Transform::_identity,
	    params=>{}
	  };

  return bless $me,$class;
}




=head2 t_lookup

=for usage

  $f = t_lookup($lookup, {<options>});

=for ref

Transform by lookup into an explicit table.

You specify an N+1-D PDL that is interpreted as an N-D lookup table of
column vectors (vector index comes last).  The last dimension has
order equal to the output dimensionality of the transform.

For added flexibility in data space, You can specify pre-lookup linear
scaling and offset of the data.  Of course you can specify the
interpolation method to be used.  The linear scaling stuff is a little
primitive; if you want more, try composing the linear transform with
this one.

The prescribed values in the lookup table are treated as
pixel-centered: that is, if your input array has N elements per row
then valid data exist between the locations (-0.5) and (N-0.5) in
lookup pixel space, because the pixels (which are numbered from 0 to
N-1) are centered on their locations.

Lookup is done using L<interpND|PDL::Primitive/interpnd>, so the boundary conditions
and threading behaviour follow from that.

The indexed-over dimensions come first in the table, followed by a
single dimension containing the column vector to be output for each
set of other dimensions -- ie to output 2-vectors from 2 input
parameters, each of which can range from 0 to 49, you want an index
that has dimension list (50,50,2).  For the identity lookup table
you could use  C<cat(xvals(50,50),yvals(50,50))>.

If you want to output a single value per input vector, you still need
that last index threading dimension -- if necessary, use C<dummy(-1,1)>.

The lookup index scaling is: out = lookup[ (scale * data) + offset ].

A simplistic table inversion routine is included.  This means that
you can (for example) use the C<map> method with C<t_lookup> transformations.
But the table inversion is exceedingly slow, and not practical for tables
larger than about 100x100.  The inversion table is calculated in its
entirety the first time it is needed, and then cached until the object is
destroyed.

Options are listed below; there are several synonyms for each.

=over 3

=item s, scale, Scale

(default 1.0) Specifies the linear amount of scaling to be done before
lookup.  You can feed in a scalar or an N-vector; other values may cause
trouble.  If you want to save space in your table, then specify smaller
scale numbers.

=item o, offset, Offset

(default 0.0) Specifies the linear amount of offset before lookup.
This is only a scalar, because it is intended to let you switch to
corner-centered coordinates if you want to (just feed in o=-0.25).

=item b, bound, boundary, Boundary

Boundary condition to be fed to L<interpND|PDL::Primitive/interpND>

=item m, method, Method

Interpolation method to be fed to L<interpND|PDL::Primitive/interpND>

=back

EXAMPLE

To scale logarithmically the Y axis of m51, try:

  $a = float rfits('m51.fits');
  $lookup = xvals(128,128) -> cat( 10**(yvals(128,128)/50) * 256/10**2.55 );
  $t = t_lookup($lookup);
  $b = $t->map($a);

To do the same thing but with a smaller lookup table, try:

  $lookup = 16 * xvals(17,17)->cat(10**(yvals(17,17)/(100/16)) * 16/10**2.55);
  $t = t_lookup($lookup,{scale=>1/16.0});
  $b = $t->map($a);

(Notice that, although the lookup table coordinates are is divided by 16,
it is a 17x17 -- so linear interpolation works right to the edge of the original
domain.)

NOTES

Inverses are not yet implemented -- the best way to do it might be by
judicious use of map() on the forward transformation.

the type/unit fields are ignored.

=cut

sub t_lookup {
  my($class) = 'PDL::Transform';
  my($source)= shift;
  my($o) = shift;

  if(!defined($o) && ((ref $source) eq 'HASH')) {
    Carp::cluck("lookup transform called as sub not method; using 'PDL::Transform' as class...\n");
    $o = $source;
    $source = $class;
    $class = "PDL::Transform";
  }

  $o = {} unless(ref $o eq 'HASH');

  my($me) = PDL::Transform::new($class);

  my($bound) = _opt($o,['b','bound','boundary','Boundary']);
  my($method)= _opt($o,['m','meth','method','Method']);

  $me->{idim} = $source->ndims - 1;
  $me->{odim} = $source->dim($source->ndims-1);

  $me->{params} = {
      table => $source,
      scale =>  _opt($o,['s','scale','Scale'],1.0),
      offset => _opt($o,['o','off','offset','Offset'],0.0),
      interpND_opt => {
	method => $method,
        bound =>  $bound,
	bad   => _opt($o,['bad'],0)
      }
    };


   my $lookup_func = sub {
     my($data,$p,$table,$scale,$offset) = @_;

    $data = pdl($data)
      unless ((ref $data) && (UNIVERSAL::isa($data,'PDL')));
      $main::foo = $data;

    if($data->dim(0) > $me->{idim}) {
      barf("Too many dims (".$data->dim(0).") for your table (".$me->{idim}.")\n");
    };

    my($a)= ($table
	     ->interpND(float($data) * $scale + $offset,
			$p->{interpND_opt}
			)
	     );


    # Put the index dimension (and threaded indices) back at the front of
    # the dimension list.
    my($dnd) = $data->ndims - 1;
    return ($a -> ndims > $data->ndims - 1) ?
      ($a->reorder( $dnd..($dnd + $table->ndims - $data->dim(0)-1)
		    , 0..$data->ndims-2
		    )
       ) : $a;
  };

  $me->{func} = sub {my($data,$p) = @_;  &$lookup_func($data,$p,$p->{table},$p->{scale},$p->{offset})};

  #######
  ## Lazy inverse -- find it if and only if we need it...
  $me->{inv} = sub {
      my $data = shift;
      my $p = shift;
      if(!defined($p->{'itable'})) {
        if($me->{idim} != $me->{odim}) {
	 barf("t_lookup: can't calculate an inverse of a projection operation! (idim != odim)");
	}
       print "t_lookup: Warning, table inversion is only weakly supported.  \n   I'll try to invert it using a pretty boneheaded algorithm...\n  (If it takes too long, consider writing a faster algorithm!)\n   Calculating inverse table (will be cached)...\n" if($PDL::verbose || $PDL::debug || $PDL::Transform::debug);
        my $itable = zeroes($p->{table});
	my $minvals = $p->{table}->clump($me->{idim})->minimum;
	my $maxvals = $p->{table}->clump($me->{idim})->maximum;

	# Scale so that the range runs from 0 through the top pixel in the table
	my $scale = (  pdl(  $itable->dims  )->slice("0:-2")-1  ) /
	   	    (($maxvals - $minvals)+ (($maxvals-$minvals) == 0));
        my $offset = - ($minvals * $scale);

	$p->{iscale} = $scale;
	$p->{ioffset} = $offset;

     	my $enl_scale = $p->{'enl_scale'} || 10;
	my $smallcoords = ndcoords((pdl($enl_scale * 2 + 1)->at(0)) x $me->{idim})/ $enl_scale - 1;

	# $oloop runs over (point, index) for all points in the output table, in
	# $p->{table} output space
	$oloop = ndcoords($itable->mv(-1,0)->slice("(0)"))->
	    double->
	    mv(0,-1)->
	    clump($itable->ndims-1);  # oloop: (pixel, index)
        {
            my $tmp; # work around perl -d "feature"
	    ($tmp = $oloop->mv(-1,0)) -= $offset;
	    ($tmp = $oloop->mv(-1,0)) /= $scale;
        }

	# The Right Thing to do here is to take the outer product of $itable and $otable, then collapse
	# to find minimum distance.  But memory demands for that would be HUGE.  Instead we do an
	# elementwise calculation.

	print "t_lookup: inverting ".$oloop->dim(0)." points...\n" if($PDL::verbose || $PDL::debug || $PDL::Transform::debug);
	my $pt = $p->{table}->mv(-1,0); # pt runs (index, x,y,...)

	my $itable_flattened = zeroes($oloop);

	for $i(0..$oloop->dim(0)-1) {

	    my $olp = $oloop->slice("($i)");                # olp runs (index)
	    my $diff = ($pt - $olp);                 # diff runs (index, x, y, ...)
	    my $r2 = ($diff * $diff)->sumover;       # r2 runs (x,y,...)
	    my $c = whichND($r2==$r2->min)->slice(":,(0)"); # c runs (index)

	    # Now zero in on the neighborhood around the point of closest approach.
	    my $neighborhood = $p->{table}->interpND($c + $smallcoords,{method=>'linear',bound=>'t'})->
	             mv(-1,0); # neighborhood runs (index, dx, dy,...)
	    $diff = $neighborhood - $olp;        # diff runs (index, dx, dy, ...)
	    $r2 = ($diff * $diff)->sumover;      # r2 runs (dx,dy,...)
	    my $dc = $smallcoords->mv(0,-1)->indexND(0+whichND($r2==$r2->min)->slice(":,(0)"));


	    my $coord = $c + $dc;
	    # At last, we've found the best-fit to an enl_scale'th of an input-table pixel.
	    # Back it out to input-science coordinates, and stuff it in the inverse table.
            my $tmp; # work around perl -d "feature"
	    ($tmp = $itable_flattened->slice("($i)")) .= $coord;

	    print " $i..." if( ($i%1000==0) && ( $PDL::verbose || $PDL::debug || $PDL::Transform::debug));
        }

        {
            my $tmp; # work around perl -d "feature"
	    ($tmp = $itable->clump($itable->ndims-1)) .= $itable_flattened;
	    ($tmp = $itable->mv(-1,0)) -= $p->{offset};
	    ($tmp = $itable->mv(-1,0)) /= $p->{scale};
        }

	$p->{itable} = $itable;
      }
      &$lookup_func($data,$p, $p->{itable},$p->{iscale},$p->{ioffset}) ;
    };


  $me->{name} = 'Lookup';

  return $me;
}




=head2 t_linear

=for usage

$f = t_linear({options});

=for ref

Linear (affine) transformations with optional offset

t_linear implements simple matrix multiplication with offset,
also known as the affine transformations.

You specify the linear transformation with pre-offset, a mixing
matrix, and a post-offset.  That overspecifies the transformation, so
you can choose your favorite method to specify the transform you want.
The inverse transform is automagically generated, provided that it
actually exists (the transform matrix is invertible).  Otherwise, the
inverse transform just croaks.

Extra dimensions in the input vector are ignored, so if you pass a
3xN vector into a 3-D linear transformation, the final dimension is passed
through unchanged.

The options you can usefully pass in are:

=over 3

=item s, scale, Scale

A scaling scalar (heh), vector, or matrix.  If you specify a vector
it is treated as a diagonal matrix (for convenience).  It gets
left-multiplied with the transformation matrix you specify (or the
identity), so that if you specify both a scale and a matrix the
scaling is done after the rotation or skewing or whatever.

=item r, rot, rota, rotation, Rotation

A rotation angle in degrees -- useful for 2-D and 3-D data only.  If
you pass in a scalar, it specifies a rotation from the 0th axis toward
the 1st axis.  If you pass in a 3-vector as either a PDL or an array
ref (as in "rot=>[3,4,5]"), then it is treated as a set of Euler
angles in three dimensions, and a rotation matrix is generated that
does the following, in order:

=over 3

=item * Rotate by rot->(2) degrees from 0th to 1st axis

=item * Rotate by rot->(1) degrees from the 2nd to the 0th axis

=item * Rotate by rot->(0) degrees from the 1st to the 2nd axis

=back

The rotation matrix is left-multiplied with the transformation matrix
you specify, so that if you specify both rotation and a general matrix
the rotation happens after the more general operation -- though that is
deprecated.

Of course, you can duplicate this functionality -- and get more
general -- by generating your own rotation matrix and feeding it in
with the C<matrix> option.

=item m, matrix, Matrix

The transformation matrix.  It does not even have to be square, if you want
to change the dimensionality of your input.  If it is invertible (note:
must be square for that), then you automagically get an inverse transform too.

=item pre, preoffset, offset, Offset

The vector to be added to the data before they get multiplied by the matrix
(equivalent of CRVAL in FITS, if you are converting from scientific to
pixel units).

=item post, postoffset, shift, Shift

The vector to be added to the data after it gets multiplied by the matrix
(equivalent of CRPIX-1 in FITS, if youre converting from scientific to pixel
units).

=item d, dim, dims, Dims

Most of the time it is obvious how many dimensions you want to deal
with: if you supply a matrix, it defines the transformation; if you
input offset vectors in the C<pre> and C<post> options, those define
the number of dimensions.  But if you only supply scalars, there is no way
to tell and the default number of dimensions is 2.  This provides a way
to do, e.g., 3-D scaling: just set C<{s=><scale-factor>, dims=>3}> and
you are on your way.

=back

NOTES

the type/unit fields are currently ignored by t_linear.

=cut

@PDL::Transform::Linear::ISA = ('PDL::Transform');

sub t_linear { new PDL::Transform::Linear(@_); }

sub PDL::Transform::Linear::new {
  my($class) = shift;
  my($o) = $_[0];
  pop @_ if (($#_ % 2 ==0) && !defined($_[-1]));
  #suppresses a warning if @_ has an odd number of elements and the
  #last is undef

  if(!(ref $o)) {
    $o = {@_};
  }

  my($me) = PDL::Transform::new($class);

  $me->{name} = "linear";

  $me->{params}->{pre} = _opt($o,['pre','Pre','preoffset','offset',
				  'Offset','PreOffset','Preoffset'],0);
  $me->{params}->{pre} = pdl($me->{params}->{pre})
    if(defined $me->{params}->{pre});

  $me->{params}->{post} = _opt($o,['post','Post','postoffset','PostOffset',
				   'shift','Shift'],0);
  $me->{params}->{post} = pdl($me->{params}->{post})
    if(defined $me->{params}->{post});

  $me->{params}->{matrix} = _opt($o,['m','matrix','Matrix','mat','Mat']);
  $me->{params}->{matrix} = pdl($me->{params}->{matrix})
    if(defined $me->{params}->{matrix});

  $me->{params}->{rot} = _opt($o,['r','rot','rota','rotation','Rotation']);
  $me->{params}->{rot} = 0 unless defined($me->{params}->{rot});
  $me->{params}->{rot} = pdl($me->{params}->{rot});

  my $o_dims = _opt($o,['d','dim','dims','Dims']);
  $o_dims = pdl($o_dims)
    if defined($o_dims);

  my $scale  = _opt($o,['s','scale','Scale']);
  $scale = pdl($scale)
    if defined($scale);

  # Figure out the number of dimensions to transform, and,
  # if necessary, generate a new matrix.

  if(defined($me->{params}->{matrix})) {
    my $mat = $me->{params}->{matrix} = $me->{params}->{matrix}->slice(":,:");
    $me->{idim} = $mat->dim(0);
    $me->{odim} = $mat->dim(1);

  } else {
    if(defined($me->{params}->{rot}) &&
	UNIVERSAL::isa($me->{params}->{rot},'PDL')) {
	  $me->{idim} = $me->{odim} = 2 if($me->{params}->{rot}->nelem == 1);
	  $me->{idim} = $me->{odim} = 3 if($me->{params}->{rot}->nelem == 3);
    }

    if(defined($scale) &&
       UNIVERSAL::isa($scale,'PDL') &&
       $scale->getndims > 0) {
      $me->{idim} = $me->{odim} = $scale->dim(0);
      $me->{odim} = $scale->dim(0);

    } elsif(defined($me->{params}->{pre}) &&
	    UNIVERSAL::isa($me->{params}->{pre},'PDL') &&
	    $me->{params}->{pre}->getndims > 0) {
      $me->{idim} = $me->{odim} = $me->{params}->{pre}->dim(0);

    } elsif(defined($me->{params}->{post}) &&
	    UNIVERSAL::isa($me->{params}->{post},'PDL') &&
	    $me->{params}->{post}->getndims > 0) {
      $me->{idim} = $me->{odim} = $me->{params}->{post}->dim(0);
    } elsif(defined($o_dims)) {
      $me->{idim} = $me->{odim} = $o_dims;
    } else {
      print "PDL::Transform::Linear: assuming 2-D transform (set dims option to change)\n" if($PDL::Transform::debug);
      $me->{idim} = $me->{odim} = 2;
    }

    $me->{params}->{matrix} = PDL->zeroes($me->{idim},$me->{odim});
    my $tmp; # work around perl -d "feature"
    ($tmp = $me->{params}->{matrix}->diagonal(0,1)) .= 1;

  }

  ### Handle rotation option
  my $rot = $me->{params}->{rot};
  if(defined($rot)) {
    # Subrotation closure -- rotates from axis $d->(0) --> $d->(1).
    my $subrot = sub {
                       my($d,$angle,$m)=@_;
		       my($i) = identity($m->dim(0));
		       my($subm) = $i->dice($d,$d);

		       $angle = $angle->at(0)
			 if(UNIVERSAL::isa($angle,'PDL'));

		       my($a) = $angle * $DEG2RAD;
		       $subm .= $subm x pdl([cos($a),-sin($a)],[sin($a),cos($a)]);
		       $m .= $m x $i;
		     };

    if(UNIVERSAL::isa($rot,'PDL') && $rot->nelem > 1) {
      if($rot->ndims == 2) {
	$me->{params}->{matrix} x= $rot;
      } elsif($rot->nelem == 3) {
	my $rm = identity(3);

	# Do these in reverse order to make it more like
	# function composition!
	&$subrot(pdl(0,1),$rot->at(2),$rm);
	&$subrot(pdl(2,0),$rot->at(1),$rm);
	&$subrot(pdl(1,2),$rot->at(0),$rm);

	$me->{params}->{matrix} .= $me->{params}->{matrix} x $rm;
      } else {
	barf("PDL::Transform::Linear: Got a strange rot option -- giving up.\n");
      }
    } else {
	if($rot != 0  and  $me->{params}->{matrix}->dim(0)>1) {
	  &$subrot(pdl(0,1),$rot,$me->{params}->{matrix});
	}
    }
  }


  #
  # Apply scaling
  #
  $me->{params}->{matrix} = $me->{params}->{matrix}->slice(":,:");
  my $tmp; # work around perl -d "feature"
  ($tmp = $me->{params}->{matrix}->diagonal(0,1)) *= $scale
    if defined($scale);

  #
  # Check for an inverse and apply it if possible
  #
  my($o2);
  if($me->{params}->{matrix}->det($o2 = {lu=>undef})) {
    $me->{params}->{inverse} = $me->{params}->{matrix}->inv($o2);
  } else {
    delete $me->{params}->{inverse};
  }

  $me->{params}->{idim} = $me->{idim};
  $me->{params}->{odim} = $me->{odim};


  ##############################
  # The meat -- just shift, matrix-multiply, and shift again.
  $me->{func} = sub {
    my($in,$opt) = @_;

    my($d) = $opt->{matrix}->dim(0)-1;

    barf("Linear transform: transform is $d-D; data only ".($in->dim(0))."\n")
	if($in->dim(0) < $d);

    my($a) = $in->slice("0:$d")->copy + $opt->{pre};
    my($out) = $in->is_inplace ? $in : $in->copy;

    my $tmp; # work around perl -d "feature"
    ($tmp = $out->slice("0:$d")) .= $a x $opt->{matrix} + $opt->{post};

    return $out;
  };


  $me->{inv} = (defined $me->{params}->{inverse}) ? sub {
    my($in,$opt) = @_;

    my($d) = $opt->{inverse}->dim(0)-1;
    barf("Linear transform: transform is $d-D; data only ".($in->dim(0))."\n")
	if($in->dim(0) < $d);

    my($a) = $in->slice("0:$d")->copy - $opt->{post};
    my($out) = $in->is_inplace ? $in : $in->copy;

    my $tmp; # work around perl -d "feature"
    ($tmp = $out->slice("0:$d")) .= $a x $opt->{inverse} - $opt->{pre};

    $out;
  } : undef;

  return $me;
}

sub PDL::Transform::Linear::stringify {
  package PDL::Transform::Linear;
  my($me) = shift;  my($out) = SUPER::stringify $me;
  my $mp = $me->{params};

  if(!($me->{is_inverse})){
    $out .= "Pre-add: ".($mp->{pre})."\n"
      if(defined $mp->{pre});

    $out .= "Post-add: ".($mp->{post})."\n"
      if(defined $mp->{post});

    $out .= "Forward matrix:".($mp->{matrix})
      if(defined $mp->{matrix});

    $out .= "Inverse matrix:".($mp->{inverse})
      if(defined $mp->{inverse});
  } else {
    $out .= "Pre-add: ".(-$mp->{post})."\n"
      if(defined $mp->{post});

    $out .= "Post-add: ".(-$mp->{pre})."\n"
      if(defined $mp->{pre});

    $out .= "Forward matrix:".($mp->{inverse})
      if(defined $mp->{inverse});

    $out .= "Inverse matrix:".($mp->{matrix})
      if(defined $mp->{matrix});
  }

  $out =~ s/\n/\n  /go;
  $out;
}




=head2 t_scale

=for usage

  $f = t_scale(<scale>)

=for ref

Convenience interface to L<t_linear|/t_linear>.

t_scale produces a tranform that scales around the origin by a fixed
amount.  It acts exactly the same as C<t_linear(Scale=>\<scale\>)>.

=cut

sub t_scale {
    my($scale) = shift;
    my($b) = shift;
    return t_linear(scale=>$scale,%{$b})
	if(ref $b eq 'HASH');
    t_linear(Scale=>$scale,$b,@_);
}




=head2 t_offset

=for usage

  $f = t_offset(<shift>)

=for ref

Convenience interface to L<t_linear|/t_linear>.

t_offset produces a transform that shifts the origin to a new location.
It acts exactly the same as C<t_linear(Pre=>\<shift\>)>.

=cut

sub t_offset {
    my($pre) = shift;
    my($b) = shift;
    return t_linear(pre=>$pre,%{$b})
	if(ref $b eq 'HASH');

    t_linear(pre=>$pre,$b,@_);
}




=head2 t_rot

=for usage

  $f = t_rot(<rotation-in-degrees>)

=for ref

Convenience interface to L<t_linear|/t_linear>.

t_rot produces a rotation transform in 2-D (scalar), 3-D (3-vector), or
N-D (matrix).  It acts exactly the same as C<t_linear(Rot=>\<shift\>)>.

=cut

*t_rot = \&t_rotate;
sub t_rotate    {
    my $rot = shift;
    my($b) = shift;
    return t_linear(rot=>$rot,%{$b})
	if(ref $b eq 'HASH');

    t_linear(rot=>$rot,$b,@_);
}




=head2 t_fits

=for usage

  $f = t_fits($fits,[option]);

=for ref

FITS pixel-to-scientific transformation with inverse

You feed in a hash ref or a PDL with one of those as a header, and you
get back a transform that converts 0-originated, pixel-centered
coordinates into scientific coordinates via the transformation in the
FITS header.  For most FITS headers, the transform is reversible, so
applying the inverse goes the other way.  This is just a convenience
subclass of PDL::Transform::Linear, but with unit/type support
using the FITS header you supply.

For now, this transform is rather limited -- it really ought to
accept units differences and stuff like that, but they are just
ignored for now.  Probably that would require putting units into
the whole transform framework.

This transform implements the linear transform part of the WCS FITS
standard outlined in Greisen & Calabata 2002 (A&A in press; find it at
"http://arxiv.org/abs/astro-ph/0207407").

As a special case, you can pass in the boolean option "ignore_rgb"
(default 0), and if you pass in a 3-D FITS header in which the last
dimension has exactly 3 elements, it will be ignored in the output
transformation.  That turns out to be handy for handling rgb images.

=cut

sub t_fits {
  my($class) = 'PDL::Transform::Linear';
  my($hdr) = shift;
  my($opt) = shift;

  if(ref $opt ne 'HASH') {
    $opt = defined $opt ? {$opt,@_} : {} ;
  }

  $hdr = $hdr->gethdr
    if(defined $hdr && UNIVERSAL::isa($hdr,'PDL'));

  croak('PDL::Transform::FITS::new requires a FITS header hash\n')
    if(!defined $hdr || ref $hdr ne 'HASH' || !defined($hdr->{NAXIS}));

  my($n) = $hdr->{NAXIS}; $n = $n->at(0) if(UNIVERSAL::isa($n,'PDL'));

  $n = 2
    if($opt->{ignore_rgb} && $n==3 && $hdr->{NAXIS3} == 3);

  my($matrix) = PDL->zeroes($hdr->{NAXIS},$hdr->{NAXIS});
  my($pre) = PDL->zeroes($n);
  my($post) = PDL->zeroes($n);

  ##############################
  # Scaling: Use CDi_j formalism if present; otherwise use the 
  # older PCi_j + CDELTi formalism.

  my(@hgrab);

  if(@hgrab = grep(m/^CD\d{1,3}_\d{1,3}$/,keys %$hdr)) {   # assignment
    #
    # CDi_j formalism
    #
    for my $h(@hgrab) {
      $h =~ m/CD(\d{1,3})_(\d{1,3})/;  # Should always match
      my $tmp; # work around perl -d "feature"
      ($tmp = $matrix->slice("(".($1-1)."),(".($2-1).")")) .= $hdr->{$h};
    }
    print "PDL::Transform::FITS: Detected CDi_j matrix: \n",$matrix,"\n"
      if($PDL::Transform::debug);

  } else {

    #
    # PCi_j + CDELTi formalism
    # If PCi_j aren't present, and N=2, then try using CROTA or
    # CROTA2 to generate a rotation matrix instea.
    #

    my($cdm) = PDL->zeroes($n,$n);
    my($cd) = $cdm->diagonal(0,1);

    my($cpm) = PDL->zeroes($n,$n);
    my $tmp; # work around perl -d "feature"
    ($tmp = $cpm->diagonal(0,1)) .= 1;     # PC: diagonal defaults to unity
    $cd .= 1;


    if( @hgrab = grep(m/^PC\d{1,3}_\d{1,3}$/,keys %$hdr) ) {  # assignment

      for my $h(@hgrab) {
	$h =~ m/PC(\d{1,3})_(\d{1,3})$/ || die "t_fits - match failed! This should never happen!";
        my $tmp; # work around perl -d "feature"
	($tmp = $cpm->slice("(".($1-1)."),(".($2-1).")")) .= $hdr->{$h};
      }
      print "PDL::Transform::FITS: Detected PCi_j matrix: \n",$cpm,"\n"
	if($PDL::Transform::debug && @hgrab);

    } elsif($n==2 && ( defined $hdr->{CROTA} || defined $hdr->{CROTA1} || defined $hdr->{CROTA2}) ) {

	## CROTA is deprecated; CROTA1 was used for a while but is unofficial;
	## CROTA2 is encouraged instead.
      my $cr;
      $cr = $hdr->{CROTA2} unless defined $cr;
      $cr = $hdr->{CROTA} unless defined $cr;
      $cr = $hdr->{CROTA1} unless defined $cr;

      $cr *= $DEG2RAD;
	# Rotation matrix rotates counterclockwise to get from sci to pixel coords
	# (detector has been rotated ccw, according to FITS standard)
      $cpm .= pdl( [cos($cr), sin($cr)],[-sin($cr),cos($cr)] );

    }

    for my $i(1..$n) {
      my $tmp; # work around perl -d "feature"
      ($tmp = $cd->slice("(".($i-1).")")) .= $hdr->{"CDELT$i"};
    }
#If there are no CDELTs, then we assume they are all 1.0,
#as in PDL::Graphics::PGPLOT::Window::_FITS_tr.
    $cd+=1 if (all($cd==0));

    $matrix = $cdm x $cpm;
  }

  my($i1) = 0;
  for my $i(1..$n) {
    my $tmp; # work around perl -d "feature"
    ($tmp = $pre->slice("($i1)"))  .= 1 - $hdr->{"CRPIX$i"};
    ($tmp = $post->slice("($i1)")) .= $hdr->{"CRVAL$i"};
    $i1++;
  }

  my($me) = PDL::Transform::Linear::new($class,
					{'pre'=>$pre,
					 'post'=>$post,
					 'matrix'=>$matrix
					 });

  $me->{name} = 'FITS';

  my (@otype,@ounit,@itype,@iunit);
  our (@names) = ('X','Y','Z') unless @names;

  for my $i(1..$hdr->{NAXIS}) {
    push(@otype,$hdr->{"CTYPE$i"});
    push(@ounit,$hdr->{"CUNIT$i"});
    push(@itype,"Image ". ( ($i-1<=$#names) ? $names[$i-1] : "${i}th dim" ));
    push(@iunit,"Pixels");
  }

  $me->{otype} = \@otype;
  $me->{itype} = \@itype;
  $me->{ounit} = \@ounit;
  $me->{iunit} = \@iunit;

  # Check for nonlinear projection...
#  if($hdr->{CTYPE1} =~ m/(\w\w\w\w)\-(\w\w\w)/) {
#      print "Nonlinear transformation found... ignoring nonlinear part...\n";
#  }

  return $me;


}




=head2 t_code

=for usage

  $f = t_code(<func>,[<inv>],[options]);

=for ref

Transform implementing arbitrary perl code.

This is a way of getting quick-and-dirty new transforms.  You pass in
anonymous (or otherwise) code refs pointing to subroutines that
implement the forward and, optionally, inverse transforms.  The
subroutines should accept a data PDL followed by a parameter hash ref,
and return the transformed data PDL.  The parameter hash ref can be
set via the options, if you want to.

Options that are accepted are:

=over 3

=item p,params

The parameter hash that will be passed back to your code (defaults to the
empty hash).

=item n,name

The name of the transform (defaults to "code").

=item i, idim (default 2)

The number of input dimensions (additional ones should be passed through
unchanged)

=item o, odim (default 2)

The number of output dimensions

=item itype

The type of the input dimensions, in an array ref (optional and advisiory)

=item otype

The type of the output dimension, in an array ref (optional and advisory)

=item iunit

The units that are expected for the input dimensions (optional and advisory)

=item ounit

The units that are returned in the output (optional and advisory).

=back

The code variables are executable perl code, either as a code ref or
as a string that will be eval'ed to produce code refs.  If you pass in
a string, it gets eval'ed at call time to get a code ref.  If it compiles
OK but does not return a code ref, then it gets re-evaluated with "sub {
... }" wrapped around it, to get a code ref.

Note that code callbacks like this can be used to do really weird
things and generate equally weird results -- caveat scriptor!

=cut

sub t_code {
  my($class) = 'PDL::Transform';
  my($func, $inv, $o) = @_;
  if(ref $inv eq 'HASH') {
    $o = $inv;
    $inv = undef;
  }

  my($me) = PDL::Transform::new($class);
  $me->{name} = _opt($o,['n','name','Name']) || "code";
  $me->{func} = $func;
  $me->{inv} = $inv;
  $me->{params} = _opt($o,['p','params','Params']) || {};
  $me->{idim} = _opt($o,['i','idim']) || 2;
  $me->{odim} = _opt($o,['o','odim']) || 2;
  $me->{itype} = _opt($o,['itype']) || [];
  $me->{otype} = _opt($o,['otype']) || [];
  $me->{iunit} = _opt($o,['iunit']) || [];
  $me->{ounit} = _opt($o,['ounit']) || [];

  $me;
}




=head2 t_cylindrical

=head2 t_radial

=for usage

  $f = t_radial(<options>);

=for ref

Convert Cartesian to radial/cylindrical coordinates.  (2-D/3-D; with inverse)

Converts 2-D Cartesian to radial (theta,r) coordinates.  You can choose
direct or conformal conversion.  Direct conversion preserves radial
distance from the origin; conformal conversion preserves local angles,
so that each small-enough part of the image only appears to be scaled
and rotated, not stretched.  Conformal conversion puts the radius on a
logarithmic scale, so that scaling of the original image plane is
equivalent to a simple offset of the transformed image plane.

If you use three or more dimensions, the higher dimensions are ignored,
yielding a conversion from Cartesian to cylindrical coordinates, which
is why there are two aliases for the same transform.  If you use higher
dimensionality than 2, you must manually specify the origin or you will
get dimension mismatch errors when you apply the transform.

Theta runs B<clockwise> instead of the more usual counterclockwise; that is
to preserve the mirror sense of small structures.

OPTIONS:

=over 3

=item d, direct, Direct

Generate (theta,r) coordinates out (this is the default); incompatible
with Conformal.  Theta is in radians, and the radial coordinate is
in the units of distance in the input plane.

=item r0, c, conformal, Conformal

If defined, this floating-point value causes t_radial to generate
(theta, ln(r/r0)) coordinates out.  Theta is in radians, and the
radial coordinate varies by 1 for each e-folding of the r0-scaled
distance from the input origin.  The logarithmic scaling is useful for
viewing both large and small things at the same time, and for keeping
shapes of small things preserved in the image.

=item o, origin, Origin [default (0,0,0)]

This is the origin of the expansion.  Pass in a PDL or an array ref.

=item u, unit, Unit [default 'radians']

This is the angular unit to be used for the azimuth.

=back

EXAMPLES

These examples do transformations back into the same size image as they
started from; by suitable use of the "transform" option to
L<unmap|/unmap> you can send them to any size array you like.

Examine radial structure in M51:
Here, we scale the output to stretch 2*pi radians out to the
full image width in the horizontal direction, and to stretch 1 radius out
to a diameter in the vertical direction.

  $a = rfits('m51.fits');
  $ts = t_linear(s => [250/2.0/3.14159, 2]); # Scale to fill orig. image
  $tu = t_radial(o => [130,130]);            # Expand around galactic core
  $b = $a->map($ts x $tu);

Examine radial structure in M51 (conformal):
Here, we scale the output to stretch 2*pi radians out to the full image width
in the horizontal direction, and scale the vertical direction by the exact
same amount to preserve conformality of the operation.  Notice that
each piece of the image looks "natural" -- only scaled and not stretched.

  $a = rfits('m51.fits')
  $ts = t_linear(s=> 250/2.0/3.14159);  # Note scalar (heh) scale.
  $tu = t_radial(o=> [130,130], r0=>5); # 5 pix. radius -> bottom of image
  $b = $ts->compose($tu)->unmap($a);


=cut

*t_cylindrical = \&t_radial;
sub t_radial {
  my($class) = 'PDL::Transform';
  my($o) = $_[0];
  if(ref $o ne 'HASH') {
    $o = { @_ };
  }

  my($me) = PDL::Transform::new($class);

  $me->{params}->{origin} = _opt($o,['o','origin','Origin']);
  $me->{params}->{origin} = pdl(0,0)
    unless defined($me->{params}->{origin});
  $me->{params}->{origin} = PDL->pdl($me->{params}->{origin});


  $me->{params}->{r0} = _opt($o,['r0','R0','c','conformal','Conformal']);
  $me->{params}->{origin} = PDL->pdl($me->{params}->{origin});

  $me->{params}->{u} = _opt($o,['u','unit','Unit'],'radians');
  ### Replace this kludge with a units call
  $me->{params}->{angunit} = ($me->{params}->{u} =~ m/^d/i) ? $RAD2DEG : 1.0;
  print "radial: conversion is $me->{params}->{angunit}\n" if($PDL::Transform::debug);

  $me->{name} = "radial (direct)";

  $me->{idim} = 2;
  $me->{odim} = 2;

  if($me->{params}->{r0}) {
    $me->{otype} = ["Azimuth", "Ln radius" . ($me->{params}->{r0} != 1.0 ? "/$me->{params}->{r0}" : "")];
    $me->{ounit} = [$me->{params}->{u},'']; # true-but-null prevents copying
  } else {
    $me->{otype} = ["Azimuth","Radius"];
    $me->{ounit} = [$me->{params}->{u},''];  # false value copies prev. unit
  }

  $me->{func} = sub {

      my($data,$o) = @_;

      my($out) = ($data->new_or_inplace);

      my($d) = $data->copy;
      my $tmp; # work around perl -d "feature"
      ($tmp = $d->slice("0:1")) -= $o->{origin};

      my($d0) = $d->slice("(0)");
      my($d1) = $d->slice("(1)");

      # (mod operator on atan2 puts everything in the interval [0,2*PI).)
      ($tmp = $out->slice("(0)")) .= (atan2(-$d1,$d0) % (2*$PI)) * $me->{params}->{angunit};

      ($tmp = $out->slice("(1)")) .= (defined $o->{r0}) ?
	      0.5 * log( ($d1*$d1 + $d0 * $d0) / ($o->{r0} * $o->{r0}) ) :
	      sqrt($d1*$d1 + $d0*$d0);

      $out;
  };

  $me->{inv} = sub {

    my($d,$o) = @_;
    my($d0,$d1,$out)=
	( ($d->is_inplace) ?
	  ($d->slice("(0)")->copy, $d->slice("(1)")->copy->dummy(0,2), $d) :
	  ($d->slice("(0)"),       $d->slice("(1)")->dummy(0,2),       $d->copy)
	  );

    $d0 /= $me->{params}->{angunit};

    my($os) = $out->slice("0:1");
    $os .= append(cos($d0)->dummy(0,1),-sin($d0)->dummy(0,1));
    $os *= defined $o->{r0}  ?  ($o->{r0} * exp($d1))  :  $d1;
    $os += $o->{origin};

    $out;
  };


  $me;
}




=head2 t_quadratic

=for usage

  $t = t_quadratic(<options>);

=for ref

Quadratic scaling -- cylindrical pincushion (n-d; with inverse)

Quadratic scaling emulates pincushion in a cylindrical optical system:
separate quadratic scaling is applied to each axis.  You can apply
separate distortion along any of the principal axes.  If you want
different axes, use L<t_wrap|/t_wrap> and L<t_linear|/t_linear> to rotate
them to the correct angle.  The scaling options may be scalars or
vectors; if they are scalars then the expansion is isotropic.

The formula for the expansion is:

    f(a) = ( <a> + <strength> * a^2/<L_0> ) / (abs(<strength>) + 1)

where <strength> is a scaling coefficient and <L_0> is a fundamental
length scale.   Negative values of <strength> result in a pincushion
contraction.

Note that, because quadratic scaling does not have a strict inverse for
coordinate systems that cross the origin, we cheat slightly and use
$x * abs($x)  rather than $x**2.  This does the Right thing for pincushion
and barrel distortion, but means that t_quadratic does not behave exactly
like t_cubic with a null cubic strength coefficient.

OPTIONS

=over 3

=item o,origin,Origin

The origin of the pincushion. (default is the, er, origin).

=item l,l0,length,Length,r0

The fundamental scale of the transformation -- the radius that remains
unchanged.  (default=1)

=item s,str,strength,Strength

The relative strength of the pincushion. (default = 0.1)

=item honest (default=0)

Sets whether this is a true quadratic coordinate transform.  The more
common form is pincushion or cylindrical distortion, which switches
branches of the square root at the origin (for symmetric expansion).
Setting honest to a non-false value forces true quadratic behavior,
which is not mirror-symmetric about the origin.

=item d, dim, dims, Dims

The number of dimensions to quadratically scale (default is the
dimensionality of your input vectors)


=back

=cut

sub t_quadratic {
    my($class) = 'PDL::Transform';
    my($o) = $_[0];
    if(ref $o ne 'HASH') {
	$o = {@_};
    }
    my($me) = PDL::Transform::new($class);

    $me->{params}->{origin} = _opt($o,['o','origin','Origin'],pdl(0));
    $me->{params}->{l0} = _opt($o,['r0','l','l0','length','Length'],pdl(1));
    $me->{params}->{str} = _opt($o,['s','str','strength','Strength'],pdl(0.1));
    $me->{params}->{dim} = _opt($o,['d','dim','dims','Dims']);
    $me->{name} = "quadratic";

    $me->{func} = sub {
	my($data,$o) = @_;
	my($dd) = $data->copy - $o->{origin};
	my($d) =  (defined $o->{dim}) ? $dd->slice("0:".($o->{dim}-1)) : $dd;
	$d += $o->{str} * ($d * abs($d)) / $o->{l0};
	$d /= (abs($o->{str}) + 1);
	$d += $o->{origin};
	if($data->is_inplace) {
	    $data .= $dd;
	    return $data;
	}
	$dd;
    };

    $me->{inv} = sub {
	my($data,$opt) = @_;
	my($dd) = $data->copy ;
	my($d) = (defined $opt->{dim}) ? $dd->slice("0:".($opt->{dim}-1)) : $dd;
	my($o) = $opt->{origin};
	my($s) = $opt->{str};
	my($l) = $opt->{l0};

	$d .= ((-1 + sqrt(1 + 4 * $s/$l * abs($d-$o) * (1+abs($s))))
	    / 2 / $s * $l) * (1 - 2*($d < $o));
	$d += $o;
	if($data->is_inplace) {
	    $data .= $dd;
	    return $data;
	}
	$dd;
    };
    $me;
}




=head2 t_cubic

=for usage

  $t = t_cubic(<options>);

=for ref

Cubic scaling - cubic pincushion (n-d; with inverse)

Cubic scaling is a generalization of t_quadratic to a purely
cubic expansion.

The formula for the expansion is:

    f(a) = ( a' + st * a'^3/L_0^2 ) / (1 + abs(st)) + origin

where a'=(a-origin).  That is a simple pincushion
expansion/contraction that is fixed at a distance of L_0 from the
origin.

Because there is no quadratic term the result is always invertible with
one real root, and there is no mucking about with complex numbers or
multivalued solutions.


OPTIONS

=over 3

=item o,origin,Origin

The origin of the pincushion. (default is the, er, origin).

=item l,l0,length,Length,r0

The fundamental scale of the transformation -- the radius that remains
unchanged.  (default=1)


=item d, dim, dims, Dims

The number of dimensions to treat (default is the
dimensionality of your input vectors)

=back

=cut

sub t_cubic {
    my ($class) = 'PDL::Transform';
    my($o) = $_[0];
    if(ref $o ne 'HASH') {
	$o = {@_};
    }
    my($me) = PDL::Transform::new($class);

    $me->{params}->{dim} = _opt($o,['d','dim','dims','Dims'],undef);
    $me->{params}->{origin} = _opt($o,['o','origin','Origin'],pdl(0));
    $me->{params}->{l0} = _opt($o,['r0','l','l0','length','Length'],pdl(1));
    $me->{params}->{st} = _opt($o,['s','st','str'],pdl(0));
    $me->{name} = "cubic";

    $me->{params}->{cuberoot} = sub {
	my $a = shift;
	my $as = 1 - 2*($a<0);
	return $as * (  abs($a) ** (1/3) );
    };

    $me->{func} = sub {
	my($data,$o) = @_;
	my($dd) = $data->copy;
	my($d) = (defined $o->{dim}) ? $dd->slice("0:".($o->{dim}-1)) : $dd;

	$d -= $o->{origin};

	my $dl0 = $d / $o->{l0};

	# f(x) = x + x**3 * ($o->{st} / $o->{l0}**2):
	#     A = ($o->{st}/$dl0**2)
	#     B = 0
	#     C = 1
	#     D = -f(x)
	$d += $o->{st} * $d * $dl0 * $dl0;
	$d /= ($o->{st}**2 + 1);

	$d += $o->{origin};

	if($data->is_inplace) {
	    $data .= $dd;
	    return $data;
	}
	return $dd;
    };

    $me->{inv} = sub {
	my($data,$o) = @_;
	my($l) = $o->{l0};

	my($dd) = $data->copy;
	my($d) = (defined $o->{dim}) ? $dd->slice("0:".($o->{dim}-1)) : $dd;

	$d -= $o->{origin};
	$d *= ($o->{st}+1);

	# Now we have to solve:
	#  A x^3 + B X^2 + C x + D dd = 0
	# with the assignments above for A,B,C,D.
	# Since B is zero, this is greatly simplified - the discriminant is always negative,
	# so there is always exactly one real root.
	#
	# The only real hassle is creating a symmetric cube root; for convenience
	# is stashed in the params hash.

	# First: create coefficients for mnemonics.
	my ($A, $C, $D) = ( $o->{st} / $l / $l, 1, - $d );
	my $alpha =  27 * $A * $A * $D;
	my $beta =  3 * $A * $C;

	my $inner_root = sqrt( $alpha * $alpha   +   4 * $beta * $beta * $beta );

	$d .= (-1 / (3 * $A)) *
	    (
	      + &{$o->{cuberoot}}( 0.5 * ( $alpha + $inner_root ) )
	      + &{$o->{cuberoot}}( 0.5 * ( $alpha - $inner_root ) )
	    );

	$d += $origin;

	if($data->is_inplace) {
	    $data .= $dd;
	    return $data;
	} else {
	    return $dd;
	}
    };

    $me;
}




=head2 t_quartic

=for usage

  $t = t_quartic(<options>);

=for ref

Quartic scaling -- cylindrical pincushion (n-d; with inverse)

Quartic scaling is a generalization of t_quadratic to a quartic
expansion.  Only even powers of the input coordinates are retained,
and (as with t_quadratic) sign is preserved, making it an odd function
although a true quartic transformation would be an even function.

You can apply separate distortion along any of the principal axes.  If
you want different axes, use L<t_wrap|/t_wrap> and
L<t_linear|/t_linear> to rotate them to the correct angle.  The
scaling options may be scalars or vectors; if they are scalars then
the expansion is isotropic.

The formula for the expansion is:

    f(a) = ( <a> + <strength> * a^2/<L_0> ) / (abs(<strength>) + 1)

where <strength> is a scaling coefficient and <L_0> is a fundamental
length scale.   Negative values of <strength> result in a pincushion
contraction.

Note that, because quadratic scaling does not have a strict inverse for
coordinate systems that cross the origin, we cheat slightly and use
$x * abs($x)  rather than $x**2.  This does the Right thing for pincushion
and barrel distortion, but means that t_quadratic does not behave exactly
like t_cubic with a null cubic strength coefficient.

OPTIONS

=over 3

=item o,origin,Origin

The origin of the pincushion. (default is the, er, origin).

=item l,l0,length,Length,r0

The fundamental scale of the transformation -- the radius that remains
unchanged.  (default=1)

=item s,str,strength,Strength

The relative strength of the pincushion. (default = 0.1)

=item honest (default=0)

Sets whether this is a true quadratic coordinate transform.  The more
common form is pincushion or cylindrical distortion, which switches
branches of the square root at the origin (for symmetric expansion).
Setting honest to a non-false value forces true quadratic behavior,
which is not mirror-symmetric about the origin.

=item d, dim, dims, Dims

The number of dimensions to quadratically scale (default is the
dimensionality of your input vectors)


=back

=cut

sub t_quartic {
    my($class) = 'PDL::Transform';
    my($o) = $_[0];
    if(ref $o ne 'HASH') {
	$o = {@_};
    }
    my($me) = PDL::Transform::new($class);

    $me->{params}->{origin} = _opt($o,['o','origin','Origin'],pdl(0));
    $me->{params}->{l0} = _opt($o,['r0','l','l0','length','Length'],pdl(1));
    $me->{params}->{str} = _opt($o,['s','str','strength','Strength'],pdl(0.1));
    $me->{params}->{dim} = _opt($o,['d','dim','dims','Dims']);
    $me->{name} = "quadratic";

    $me->{func} = sub {
	my($data,$o) = @_;
	my($dd) = $data->copy - $o->{origin};
	my($d) =  (defined $o->{dim}) ? $dd->slice("0:".($o->{dim}-1)) : $dd;
	$d += $o->{str} * ($d * abs($d)) / $o->{l0};
	$d /= (abs($o->{str}) + 1);
	$d += $o->{origin};
	if($data->is_inplace) {
	    $data .= $dd;
	    return $data;
	}
	$dd;
    };

    $me->{inv} = sub {
	my($data,$opt) = @_;
	my($dd) = $data->copy ;
	my($d) = (defined $opt->{dim}) ? $dd->slice("0:".($opt->{dim}-1)) : $dd;
	my($o) = $opt->{origin};
	my($s) = $opt->{str};
	my($l) = $opt->{l0};

	$d .= ((-1 + sqrt(1 + 4 * $s/$l * abs($d-$o) * (1+abs($s))))
	    / 2 / $s * $l) * (1 - 2*($d < $o));
	$d += $o;
	if($data->is_inplace) {
	    $data .= $dd;
	    return $data;
	}
	$dd;
    };
    $me;
}




=head2 t_spherical

=for usage

    $t = t_spherical(<options>);

=for ref

Convert Cartesian to spherical coordinates.  (3-D; with inverse)

Convert 3-D Cartesian to spherical (theta, phi, r) coordinates.  Theta
is longitude, centered on 0, and phi is latitude, also centered on 0.
Unless you specify Euler angles, the pole points in the +Z direction
and the prime meridian is in the +X direction.  The default is for
theta and phi to be in radians; you can select degrees if you want
them.

Just as the L<t_radial|/t_radial> 2-D transform acts like a 3-D
cylindrical transform by ignoring third and higher dimensions,
Spherical acts like a hypercylindrical transform in four (or higher)
dimensions.  Also as with L<t_radial|/t_radial>, you must manually specify
the origin if you want to use more dimensions than 3.

To deal with latitude & longitude on the surface of a sphere (rather
than full 3-D coordinates), see
L<t_unit_sphere|PDL::Transform::Cartography/t_unit_sphere>.

OPTIONS:

=over 3

=item o, origin, Origin [default (0,0,0)]

This is the Cartesian origin of the spherical expansion.  Pass in a PDL
or an array ref.

=item e, euler, Euler [default (0,0,0)]

This is a 3-vector containing Euler angles to change the angle of the
pole and ordinate.  The first two numbers are the (theta, phi) angles
of the pole in a (+Z,+X) spherical expansion, and the last is the
angle that the new prime meridian makes with the meridian of a simply
tilted sphere.  This is implemented by composing the output transform
with a PDL::Transform::Linear object.

=item u, unit, Unit (default radians)

This option sets the angular unit to be used.  Acceptable values are
"degrees","radians", or reasonable substrings thereof (e.g. "deg", and
"rad", but "d" and "r" are deprecated).  Once genuine unit processing
comes online (a la Math::Units) any angular unit should be OK.

=back

=cut

sub t_spherical {
    my($class) = 'PDL::Transform';
    my($o) = $_[0];
    if(ref $o ne 'HASH') {
	$o = { @_ } ;
    }

    my($me) = PDL::Transform::new($class);

    $me->{idim}=3;
    $me->{odim}=3;

    $me->{params}->{origin} = _opt($o,['o','origin','Origin']);
    $me->{params}->{origin} = PDL->zeroes(3)
	unless defined($me->{params}->{origin});
    $me->{params}->{origin} = PDL->pdl($me->{params}->{origin});

    $me->{params}->{deg} = _opt($o,['d','degrees','Degrees']);

    my $unit = _opt($o,['u','unit','Unit']);
    $me->{params}->{angunit} = ($unit =~ m/^d/i) ?
	$DEG2RAD : undef;

    $me->{name} = "spherical";

    $me->{func} = sub {
	my($data,$o) = @_;
	my($d) = $data->copy - $o->{origin};

	my($d0,$d1,$d2) = ($d->slice("(0)"),$d->slice("(1)"),$d->slice("(2)"));
	my($out) =   ($d->is_inplace) ? $data : $data->copy;

        my $tmp; # work around perl -d "feature"
	($tmp = $out->slice("(0)")) .= atan2($d1, $d0);
	($tmp = $out->slice("(2)")) .= sqrt($d0*$d0 + $d1*$d1 + $d2*$d2);
	($tmp = $out->slice("(1)")) .= asin($d2 / $out->slice("(2)"));

	($tmp = $out->slice("0:1")) /= $o->{angunit}
	  if(defined $o->{angunit});

	$out;
      };

    $me->{inv} = sub {
	my($d,$o) = @_;

	my($theta,$phi,$r,$out) =
    ( ($d->is_inplace) ?
	      ($d->slice("(0)")->copy, $d->slice("(1)")->copy, $d->slice("(2)")->copy, $d) :
	      ($d->slice("(0)"),       $d->slice("(1)"),       $d->slice("(2)"),       $d->copy)
	      );


	my($x,$y,$z) =
	    ($out->slice("(0)"),$out->slice("(1)"),$out->slice("(2)"));

	my($ph,$th);
	if(defined $o->{angunit}){
	  $ph = $o->{angunit} * $phi;
	  $th = $o->{angunit} * $theta;
	} else {
	  $ph = $phi;
	  $th = $theta;
	}

	$z .= $r * sin($ph);
	$x .= $r * cos($ph);
	$y .= $x * sin($th);
	$x *= cos($th);
	$out += $o->{origin};

	$out;
      };

    $me;
  }




=head2 t_projective

=for usage

    $t = t_projective(<options>);

=for ref

Projective transformation

Projective transforms are simple quadratic, quasi-linear
transformations.  They are the simplest transformation that
can continuously warp an image plane so that four arbitrarily chosen
points exactly map to four other arbitrarily chosen points.  They
have the property that straight lines remain straight after transformation.

You can specify your projective transformation directly in homogeneous
coordinates, or (in 2 dimensions only) as a set of four unique points that
are mapped one to the other by the transformation.

Projective transforms are quasi-linear because they are most easily
described as a linear transformation in homogeneous coordinates
(e.g. (x',y',w) where w is a normalization factor: x = x'/w, etc.).
In those coordinates, an N-D projective transformation is represented
as simple multiplication of an N+1-vector by an N+1 x N+1 matrix,
whose lower-right corner value is 1.

If the bottom row of the matrix consists of all zeroes, then the
transformation reduces to a linear affine transformation (as in
L<t_linear|/t_linear>).

If the bottom row of the matrix contains nonzero elements, then the
transformed x,y,z,etc. coordinates are related to the original coordinates
by a quadratic polynomial, because the normalization factor 'w' allows
a second factor of x,y, and/or z to enter the equations.

OPTIONS:

=over 3

=item m, mat, matrix, Matrix

If specified, this is the homogeneous-coordinate matrix to use.  It must
be N+1 x N+1, for an N-dimensional transformation.

=item p, point, points, Points

If specified, this is the set of four points that should be mapped one to the other.
The homogeneous-coordinate matrix is calculated from them.  You should feed in a
2x2x4 PDL, where the 0 dimension runs over coordinate, the 1 dimension runs between input
and output, and the 2 dimension runs over point.  For example, specifying

  p=> pdl([ [[0,1],[0,1]], [[5,9],[5,8]], [[9,4],[9,3]], [[0,0],[0,0]] ])

maps the origin and the point (0,1) to themselves, the point (5,9) to (5,8), and
the point (9,4) to (9,3).

This is similar to the behavior of fitwarp2d with a quadratic polynomial.

=back

=cut

sub t_projective {
  my($class) = 'PDL::Transform';
  my($o) = $_[0];
  if(ref $o ne 'HASH') {
    $o = { @_ };
  }

  my($me) = PDL::Transform::new($class);

  $me->{name} = "projective";

  ### Set options...


  $me->{params}->{idim} = $me->{idim} = _opt($o,['d','dim','Dim']);

  my $matrix;
  if(defined ($matrix=_opt($o,['m','matrix','Matrix']))) {
    $matrix = pdl($matrix);
    die "t_projective: needs a square matrix"
      if($matrix->dims != 2 || $matrix->dim(0) != $matrix->dim(1));

    $me->{params}->{idim} = $matrix->dim(0)-1
      unless(defined($me->{params}->{idim}));

    $me->{idim} = $me->{params}->{idim};

    die "t_projective: matrix not compatible with given dimension (should be N+1xN+1)\n"
      unless($me->{params}->{idim}==$matrix->dim(0)-1);

    my $inv = $matrix->inv;
    print STDERR "t_projective: warning - received non-invertible matrix\n"
      unless(all($inv*0 == 0));

    $me->{params}->{matrix} = $matrix;
    $me->{params}->{matinv} = $inv;

  } elsif(defined ($p=pdl(_opt($o,['p','point','points','Point','Points'])))) {
    die "t_projective: points array should be 2(x,y) x 2(in,out) x 4(point)\n\t(only 2-D points spec is available just now, sorry)\n"
      unless($p->dims==3 && all(pdl($p->dims)==pdl(2,2,4)));

    # Solve the system of N equations to find the projective transform
    my ($p0,$p1,$p2,$p3) = ( $p->slice(":,(0),(0)"), $p->slice(":,(0),(1)"), $p->slice(":,(0),(2)"), $p->slice(":,(0),(3)") );
    my ($P0,$P1,$P2,$P3) = ( $p->slice(":,(1),(0)"), $p->slice(":,(1),(1)"), $p->slice(":,(1),(2)"), $p->slice(":,(1),(3)") );
#print "declaring PDL...\n"    ;
    my $M = pdl( [ [$p0->at(0), $p0->at(1), 1,        0,        0, 0,  -$P0->at(0)*$p0->at(0), -$P0->at(0)*$p0->at(1)],
		   [       0,        0, 0, $p0->at(0), $p0->at(1), 1,  -$P0->at(1)*$p0->at(0), -$P0->at(1)*$p0->at(1)],
		   [$p1->at(0), $p1->at(1), 1,        0,        0, 0,  -$P1->at(0)*$p1->at(0), -$P1->at(0)*$p1->at(1)],
		   [       0,        0, 0, $p1->at(0), $p1->at(1), 1,  -$P1->at(1)*$p1->at(0), -$P1->at(1)*$p1->at(1)],
		   [$p2->at(0), $p2->at(1), 1,        0,        0, 0,  -$P2->at(0)*$p2->at(0), -$P2->at(0)*$p2->at(1)],
		   [       0,        0, 0, $p2->at(0), $p2->at(1), 1,  -$P2->at(1)*$p2->at(0), -$P2->at(1)*$p2->at(1)],
		   [$p3->at(0), $p3->at(1), 1,        0,        0, 0,  -$P3->at(0)*$p3->at(0), -$P3->at(0)*$p3->at(1)],
		   [       0,        0, 0, $p3->at(0), $p3->at(1), 1,  -$P3->at(1)*$p3->at(0), -$P3->at(1)*$p3->at(1)]
		   ] );
#print "ok.  Finding inverse...\n";
    my $h = ($M->inv x $p->slice(":,(1),:")->flat->slice("*1"))->slice("(0)");
#    print "ok\n";
    my $matrix = ones(3,3);
    my $tmp; # work around perl -d "feature"
    ($tmp = $matrix->flat->slice("0:7")) .= $h;
    $me->{params}->{matrix} = $matrix;

    $me->{params}->{matinv} = $matrix->inv;
  }


  $me->{params}->{idim} = 2 unless defined $me->{params}->{idim};
  $me->{params}->{odim} = $me->{params}->{idim};
  $me->{idim} = $me->{params}->{idim};
  $me->{odim} = $me->{params}->{odim};

  $me->{func} = sub {
    my($data,$o) = @_;
    my($id) = $data->dim(0);
    my($d) = $data->glue(0,ones($data->slice("0")));
    my($out) = ($o->{matrix} x $d->slice("*1"))->slice("(0)");
    return ($out->slice("0:".($id-1))/$out->slice("$id"));
  };

  $me->{inv} = sub {
    my($data,$o) = @_;
    my($id) = $data->dim(0);
    my($d) = $data->glue(0,ones($data->slice("0")));
    my($out) = ($o->{matinv} x $d->slice("*1"))->slice("(0)");
    return ($out->slice("0:".($id-1))/$out->slice("$id"));
  };

  $me;
}



;


=head1 AUTHOR

Copyright 2002, 2003 Craig DeForest.  There is no warranty.  You are allowed
to redistribute this software under certain conditions.  For details,
see the file COPYING in the PDL distribution.  If this file is
separated from the PDL distribution, the copyright notice should be
included in the file.

=cut

package PDL::Transform;
use Carp;
use overload '""' => \&_strval;
use overload 'x' => \&_compose_op;
use overload '**' => \&_pow_op;
use overload '!'  => \&t_inverse;

use PDL;
use PDL::MatrixOps;

our $PI = 3.1415926535897932384626;
our $DEG2RAD = $PI / 180;
our $RAD2DEG = 180/$PI;
our $E  = exp(1);


#### little helper kludge parses a list of synonyms
sub _opt {
  my($hash) = shift;
  my($synonyms) = shift;
  my($alt) = shift;  # default is undef -- ok.
  local($_);
  foreach $_(@$synonyms){
    return (UNIVERSAL::isa($alt,'PDL')) ? PDL->pdl($hash->{$_}) : $hash->{$_}
    if defined($hash->{$_}) ;
  }
  return $alt;
}

######################################################################
#
# Stringification hack.  _strval just does a method search on stringify
# for the object itself.  This gets around the fact that stringification
# overload is a subroutine call, not a method search.
#

sub _strval {
  my($me) = shift;
  $me->stringify();
}

######################################################################
#
# PDL::Transform overall stringifier.  Subclassed stringifiers should
# call this routine first then append auxiliary information.
#
sub stringify {
  my($me) = shift;
  my($mestr) = (ref $me);
  $mestr =~ s/PDL::Transform:://;
  my $out = $mestr . " (" . $me->{name} . "): ";
  $out .= "fwd ". ((defined ($me->{func})) ? ( (ref($me->{func}) eq 'CODE') ? "ok" : "non-CODE(!!)" ): "missing")."; ";
  $out .= "inv ". ((defined ($me->{inv})) ?  ( (ref($me->{inv}) eq 'CODE') ? "ok" : "non-CODE(!!)" ):"missing").".\n";
}





# Exit with OK status

1;