This file is indexed.

/usr/lib/perl5/PDL/Graphics/Limits.pm is in pdl 1:2.007-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
package PDL::Graphics::Limits;

use strict;
use warnings;

require Exporter;

our @ISA = qw(Exporter);

our %EXPORT_TAGS = ( 'all' => [ qw(
	limits
) ] );

our @EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } );

our @EXPORT = qw(
	limits
);

our $VERSION = '0.01';
$VERSION = eval $VERSION;


# Preloaded methods go here.

use PDL::Core qw( cat pdl );
use PDL::Primitive qw( append );
use PDL::Fit::Polynomial;
use PDL::Options;
use PDL::Bad;
use Carp;
use POSIX qw( log10 );

use strict;
use warnings;

################################################################################
# figure out what's good in a piddle after a possible transformation which could
# generate Infs or NaN's.  If only everyone used PDL::Bad::UseNaN...
sub set_mask
{
  my ( $mask, $data ) = @_;

  if ( $PDL::Bad::Status )
  {
    my $badflag = $data->badflag();
    $data->badflag(1);

    $mask .= $PDL::Bad::UseNaN ? (! $data->isbad ) : ( $data->isfinite & ! $data->isbad );

    $data->badflag($badflag);
  } else
  {
    $mask .= $data->isfinite;
  }
}



{
  package PDL::Graphics::Limits::DSet;

  use PDL::Core qw( cat pdl );

  *set_mask = \*PDL::Graphics::Limits::set_mask;

  sub new
  {
    my $class = shift;
    my $self = bless {}, $class;

    my ( $min, $max ) = splice( @_, 0, 2 );

    $self->{Vectors} = [ @_ ];
    $self->{MinMax} = [ map{ [ $min, $max ] } 1..@{$self->{Vectors}} ];

    $self;
  }

  sub ndim { scalar @{$_[0]->{Vectors}} }

  sub validate
  {
    my ( $self, $attr) = @_;

    my $ivec = 0;
    my $n;
    foreach my $vec ( @{$self->{Vectors}} )
    {
      die( 'vector ', $ivec+1, ": no data?\n" )
	unless defined $vec->{data};

      $n = $vec->{data}->nelem unless defined $n;

      # if a data set vector has no transformation function, use the
      # default in $attr{Trans}
      $vec->{trans} = $attr->{Trans}[$ivec]
	if ! exists $vec->{trans} && exists $attr->{Trans}[$ivec];

      # remove explicitly undefined trans
      delete $vec->{trans}
	if exists $vec->{trans} && ! defined $vec->{trans};

      # ensure that data and errors have the same length.
      die( 'vector ', $ivec+1, ": attribute $_: ",
	   "inconsistent number of elements",
	   "expected $n, got ", $vec->{$_}->nelem, "\n" )
	foreach
	  grep { exists $vec->{$_} &&
		   defined $vec->{$_} &&
		     $vec->{$_}->nelem != $n }
	    qw( data en ep );
    }
    continue
    {
      $ivec++;
    }

  }

  sub vector
  {
    $_[0]->{Vectors}[$_[1]];
  }

  sub set_minmax
  {
    my ( $dset, $min, $max, $axis ) = @_;

    my $mm = $dset->{MinMax}[$axis];

    $mm->[0] = $min if defined $min;
    $mm->[1] = $max if defined $max;
  }

  sub upd_minmax
  {
    my ( $dset, $min, $max, $axis ) = @_;

    my $mm = $dset->{MinMax}[$axis];

    $mm->[0] = $min if $mm->[0] > $min;
    $mm->[1] = $max if $mm->[1] < $max;
  }

  sub get_minmax
  {
    my ( $dset ) = @_;
    cat( map { pdl( $dset->{MinMax}[$_] ) } 0..$dset->ndim-1 );
  }

  sub calc_minmax
  {
    my $dset = shift;

    my @axes = @_ ? ( $_[0] ) : ( 0 ..$dset->ndims-1 );

    $dset->calc_minmax_axis( $_ ) foreach @axes;
  }

  #####################################################################
  # determine the limits for a dataset.
  sub calc_minmax_axis
  {
    my ( $dset, $axis ) = @_;

    my $vec = $dset->{Vectors}[$axis];
    my $data = $vec->{data};

    my $xfrm = defined $vec->{trans};

    # we need the transformed data point min max in case
    # a transformed data + error is out of range of the transform
    # function (e.g. log(0)).

    my @minmax;

    # reuse these as much as possible to reduce memory hit
    my $tmp;
    my $mask = PDL::null;

    # i know of no way of determining whether a function can be applied inplace.
    # assume not.

    # if xfrm is true, $tmp will be an independent piddle, else its an alias for data
    # no need to create a new piddle unless necessary.
    $tmp = $xfrm ? $vec->{trans}->($data) : $data;
    set_mask( $mask, $tmp );
    push @minmax, $tmp->where($mask)->minmax;

    if ( defined $vec->{errn} )
    {
      # worry about not overwriting the original data!
      if ( $xfrm ) { $tmp .= $vec->{trans}->($data - $vec->{errn}) }
      else         { $tmp  = $data - $vec->{errn} }
      set_mask( $mask, $tmp );
      push @minmax, $tmp->where($mask)->minmax;
    }

    if ( defined $vec->{errp} )
    {
      # worry about not overwriting the original data!
      if ( $xfrm ) { $tmp .= $vec->{trans}->($data + $vec->{errp}) }
      else         { $tmp  = $data + $vec->{errp} }
      set_mask( $mask, $tmp );
      push @minmax, $tmp->where($mask)->minmax;
    }

    my ( $min, $max ) = PDL::Core::pdl( @minmax )->minmax;

    $dset->set_minmax( $min, $max, $axis );
  }

}

#####################################################################

# based upon PGPLOT's pgrnge routine.
sub range_frac
{
  my ( $axis, $frac, $zerofix ) = @_;

  my $expand = $frac * ( $axis->[1] - $axis->[0] );
  my $min = $axis->[0] - $expand;
  my $max = $axis->[1] + $expand;

  if ( $zerofix )
  {
    $min = 0.0
      if $min < 0 && $axis->[0] >= 0.0;

    $max = 0.0
      if $max > 0 && $axis->[1] <= 0.0;
  }

  @{$axis} = ( $min, $max );
}

#####################################################################

# based upon PGPLOT's pgrnd routine

#  routine to find the closest "round" number to X, a "round" number
#  being 1, 2 or 5 times a power of 10.

# If X is negative, round_pow(X) = -round_pow(abs(X)).
# If X is zero, the value returned is zero.

# round_pow( direction, $x )
# where direction is up, down, or both i.e.
#  $ub = round ( up => $x );
#  $lb = round ( down => $x );

our @nice = ( 1, 2, 5, 10 );
our %flip = ( 'up' => 'down', 'down' => 'up' );
sub round_pow
{
  my ( $what, $x ) = @_;

  croak( "incorrect number of arguments" )
    unless 2 == @_;

  if ( $x != 0.0 )
  {
    my $xx = abs($x);
    my $xlog = log10($xx);
    my $ilog = int($xlog);

    $what = $flip{$what} if $x < 0 ;

    $ilog--
      if ( $xlog <= 0 && ( 'down' eq $what || $xlog != $ilog ) )
	||
	  ( $xlog >  0 && 'down' eq $what && $xlog == $ilog ) ;

    my $pwr = 10 ** $ilog;
    my $frac = $xx / $pwr;

    my $i;
    if ( 'up' eq $what )
    {
      $i = 3;
      $i = 2 if $frac < $nice[2];
      $i = 1 if $frac < $nice[1];
      $i = 0 if $frac < $nice[0];
      my $t = ( $x < 0 ? -1 : 1 ) * $pwr * $nice[$i];
      if(abs($t - $x) < 0.0000001) {$i++}
    }

    elsif ( 'down' eq $what )
    {
      $i = 0;
      $i = 1 if $frac > $nice[1];
      $i = 2 if $frac > $nice[2];
      $i = 3 if $frac > $nice[3];
    }

    $x = ( $x < 0 ? -1 : 1 ) * $pwr * $nice[$i];
  }

  $x;
}

#####################################################################

sub setup_multi
{
  my ( $common, $dim, $keys ) = @_;

  my @arr;

  if ( 'ARRAY' eq ref $common )
  {
    return $common;
  }

  elsif ( 'HASH' eq ref $common )
  {
    @arr[ 0..($dim-1)] = map { $common->{$_->{data}} } @{$keys};
  }

  else
  {
    my $value = $common;
    @arr = ($value) x $dim;
  }

  \@arr;
}

#####################################################################
# normalize_dsets
#
# transform the user's heterogeneous list of data sets into a regular
# list of data sets, each with the form
#  { Vectors => \@vectors }
# where each vector is a hashref with the following keys:
#   { data => $data,
#     en   => $err_n,
#     ep   => $err_p,
#     trans => $trans }

sub normalize_dsets
{
  my ( $attr, @udsets ) = @_;
  my @dsets;

  while ( @udsets )
  {
    my $ds = shift @udsets;
    my $ref = ref $ds;

    # peek inside the array to see what's there.  we can have the following
    # [ scalar|piddle, scalar|piddle, ... ] -> a zero dimensional data set
    # [ \@a, \@b, \@c, \%d, ...  ]          -> a bunch of data sets
    # [ \%h, @keys ]                        -> a hash with its keys

    # scalar or piddle, turn it into its own data set
    if ( ! $ref || UNIVERSAL::isa($ds, 'PDL') )
    {
      push @dsets,
	PDL::Graphics::Limits::DSet->new( $attr->{Min}, $attr->{Max},
			    { data => PDL::Core::topdl( $ds ) } );
    }

    elsif ( 'ARRAY' eq $ref )
    {
      normalize_array( \@dsets, $attr, $ds );
    }

    else
    {
      die( "data set: ", scalar @dsets + 1,
	   "illegal type in data set list: not an arrayref, scalar, or piddle\n" );
    }

  }

  # ensure data sets have the same dimensions
  my %dim;
  $dim{$_->ndim}++ foreach @dsets;

  # whoops.  only one allowed
  die( "data sets do not all have the same dimensionality\n" )
    if keys %dim > 1;

  ( $attr->{dims} ) = keys %dim;

  # clean up datasets.
  my $idset = -1;
  foreach my $dset ( @dsets )
  {
    $idset++;

    eval { $dset->validate( $attr ) };
    if ( $@ )
    {
      chomp $@;
      die( "data set $idset: $@\n" );
    }
  }

  @dsets;
}

#####################################################################

# array refs in data set lists may be just a plain ol' data set, or
# it may contain a bunch of other stuff.  here we deal with a single
# array ref.  we tear it apart and (re)build data sets.
sub normalize_array
{
  my ( $dsets, $attr, $aref ) = @_;

  # if the first element is a hash, it's either a hash based data set
  # with a bunch of attributes specific to that hash:
  # [ \%h, @keys ]             -> a hash with its keys
  # in which case the rest of the elements are scalars, or its
  # all hashes.

  eval
  {
    if ( 'HASH' eq ref $aref->[0] )
    {

      # all hashes?
      if ( @$aref == grep { 'HASH' eq ref $_ } @$aref )
      {
	# can't do anything unless we've been told which hash keys
	# we should use, as this format doesn't allow local specification
	die( "must specify hash keys for hash based data set spec\n" )
	  unless defined $attr->{KeySpec} && scalar @{$attr->{KeySpec}};

	foreach ( @{$aref} )
	{
	  push @$dsets, normalize_hash_dset($attr, $_, @{$attr->{Keys}} );
	}
      }

      # hash + scalars?
      elsif ( @$aref > 1 && 1 == grep { ref $_ } @$aref )
      {
	push @$dsets, normalize_hash_dset( $attr, @{$aref} )
      }

      # something wrong
      else
      {
	die( "hash based data specification has an unexpected element" );
      }

    }

    # must be a list of vectors as either scalars, piddles, or array
    # refs (vectors with attributes)
    else
    {
      # for array based data sets, we have to accumulate vectors as we iterate
      # through the array. they are stored here
      my @vecs;

      for my $vec ( @$aref )
      {
	my $ref = ref $vec;

	eval
	{
	  # naked scalar or piddle: data vector with no attributes
	  if ( ! $ref || UNIVERSAL::isa($vec, 'PDL') )
	  {
	    push @vecs, { data => PDL::Core::topdl( $vec ) };
	  }

	  # array: data vector with attributes
	  elsif ( 'ARRAY' eq $ref )
	  {
	    push @vecs, normalize_array_vec( $vec );
	  }

	  else
	  {
	    die( 'vector ', @vecs+1, ": unexpected data type ($ref) in list of data sets\n" );
	  }
	};

	if ( $@ )
	{
	  chomp $@;
	  die( 'vector ', @vecs+1, ": $@\n" );
	}
      }

      push @$dsets,
	PDL::Graphics::Limits::DSet->new( $attr->{Min}, $attr->{Max}, @vecs )
	    if @vecs;
    }
  };

  if ( $@ )
  {
    chomp $@;
    die( 'data set ', @$dsets+1, ": $@\n" );
  }
}

#####################################################################

# parse an array based vector
sub normalize_array_vec
{
  my ( $vec ) = @_;

  # we should have
  #  [ $data, [ $err | $err_n, $err_p ], [ \&func ] ]

  my @el = @$vec;

  die( "too few or too many entries in array based data set spec\n" )
    if @el < 1 || @el > 4;

  my %vec;
  $vec{data} = PDL::Core::topdl( shift @el);

  # if last value is CODE, it's a trans
  $vec{trans} = pop @el if 'CODE' eq ref $el[-1];

  if ( exists $el[2] )
  {
    # if we have 3 elements and the last isn't undef, it's an error.
    # it can't be CODE as we'd have stripped it off in the last statement
    die( "illegal value for trans func: $el[2]\n" )
      if defined $el[2];

    # we need to turn off trans for this element
    $vec{trans} = undef;
    pop @el;
  }

  # two values? asymmetric errors
  if ( @el == 2 )
  {
    $vec{errn} = PDL::Core::topdl($el[0]) if defined $el[0];
    $vec{errp} = PDL::Core::topdl($el[1]) if defined $el[1];
  }

  # one value? symmetric errors
  elsif ( @el == 1 )
  {
    $vec{errn} = PDL::Core::topdl($el[0]) if defined $el[0];
    $vec{errp} = $vec{errn} if defined $vec{errn};
  }

  \%vec;
}

#####################################################################

# this takes a hash and a hash key spec and generates a regularized
# data set array of the form
# [ { data => $data, ep => ..., en => ..., trans => }, ... ]
sub normalize_hash_dset
{
  my ( $attr, $ds, @keys ) = @_;

  my $KeySpec = $attr->{KeySpec};

  my @dset;

  die( "too many local VecKeys (", scalar @keys,
       ") and global VecKeys (", scalar @{$KeySpec}, ")\n" )
    if @keys && @{$KeySpec} && @{$KeySpec} <= @keys;

  my @spec;

  # handle local keys
  if ( @keys )
  {
    my $nvec = 0;
    for my $key ( @keys )
    {
      my %spec;


      # parse the specs for this vector
      eval { %spec = parse_vecspec( $key ) };
      do { chomp $@; die( "vector $nvec: $@" ) }
	if $@;


      # now, merge it with the global KeySpecs

      if ( @{$KeySpec} )
      {
	my $Spec = $KeySpec->[$nvec];

	foreach ( keys %{$Spec} )
	{
	  # only copy from Spec if not present in spec
	  $spec{$_} = $Spec->{$_} if ! exists $spec{$_};
	}
      }

      push @spec, \%spec;
    }
    continue
    {
      $nvec++;
    }

    # handle case where local VecKeys are a subst of global VecKeys
    while ( @{$KeySpec} > @spec )
    {
      push @spec, $KeySpec->[$nvec++];
    }
  }

  # no local keys; use global KeySpec
  else
  {
    @spec = @{$KeySpec};
  }

  my $nvec = 0;
  for my $spec ( @spec )
  {
    $nvec++;
    my %vec;

    die( "vector $nvec: no data spec?\n" )
      unless exists $spec->{data};

    for my $el ( qw( data errn errp trans ) )
    {
      if ( exists $spec->{$el} )
      {

	# if not defined, don't bother looking for it in the data set
	unless ( defined $spec->{$el} )
	{
	  # trans is different from the others in that we need to pass
	  # it as undef if $spec->{trans} is undef (as full handling of
	  # trans is done elsewhere.
	  $vec{trans} = undef if 'trans' eq $el;
	}

	elsif ( exists $ds->{$spec->{$el}} )
	{
	  $vec{$el} = $ds->{$spec->{$el}};
	}

	elsif ( $attr->{KeyCroak} )
	{
	  die( "vector $nvec: missing key in data set hash: ", $spec->{$el}, "\n" )
	}
      }

    }

    # missing data; certainly a fatal error.
    die( "vector $nvec: no data for key $spec->{data}\n" )
      unless defined $vec{data};

    push @dset, \%vec;
  }

  PDL::Graphics::Limits::DSet->new( $attr->{Min}, $attr->{Max}, @dset );
}

#####################################################################
# parse specifications for a hash based data set.  These are the elements
# in the VecKeys attribute.  See the docs for more details.
# Returns a hashref with keys data, en, ep, trans

my $colre = qr/[^&<>=]/;

# these are the different specs available.
my %keyre = ( data => qr/^($colre+)/,
	      errn => qr/<($colre*)/,
	      errp => qr/>($colre*)/,
	      err  => qr/=($colre*)/,
	      trans => qr/\&($colre*)/
	      );

my %vecspeckeys = ( data => 1,
		    err  => 1,
		    errn => 1,
		    errp => 1,
		    trans => 1 );

sub parse_vecspec
{
  my ( $ukeys ) = @_;

  my %k;

  # do we get a hash?
  if ( 'HASH' eq ref $ukeys )
  {
    # complain about keys we don't use
    my @badkeys = grep { ! defined $vecspeckeys{$_} } keys %$ukeys;
    die( "illegal keys: ", join(' ,', @badkeys), "\n" )
      if @badkeys;

    # copy keys we need
    do { $k{$_} = $ukeys->{$_} if exists $ukeys->{$_} }
      foreach keys %vecspeckeys;

  }

  # parse the string.
  else
  {

    # make a local copy, as we modify it in place.
    my $keys = $ukeys;

    # deal with a "default" spec
    if ( ! defined $keys )
    {
      $keys = '';
    }
    else
    {
      # spaces and commas are there for human use only
      $keys =~ s/[\s,]//g;
    }


    # extract the known specs.
    my ( $what, $re );
    $keys =~ s/$re// and $k{$what} = $1 while( ($what, $re) = each %keyre);

    # if there's anything left, it's bogus
    die( "illegal key specification: $ukeys\n" )
      unless $keys eq '';

  }

  # check for consistent error bar specs
  die( "can't specify `=' with `<' or `>'\n" )
    if exists $k{err} && ( exists $k{errn} || exists $k{errp} );

  # error bars are always specified as positive and negative; turn a symmetric
  # spec into that
  $k{errn} = $k{errp} = $k{err} if exists $k{err};
  delete $k{err};

  # set empty values to undefined ones
  do { $k{$_} = undef if $k{$_} eq '' } foreach keys %k;

  %k;
}

sub parse_vecspecs
{
  my $keys = shift;
  my @specs;

  push @specs, { parse_vecspec($_) }
    foreach @$keys;

  \@specs;
}

#####################################################################
# normalize user supplied limits

sub parse_limits
{
  my ( $ndim, $spec, $KeySpec ) = @_;

  $spec = [] unless defined $spec;

  my @limits;

  # array containing limits (as arrays or scalars)
  if ( 'ARRAY' eq ref $spec )
  {
    # no limits; just move on
    unless ( @$spec )
    {
    }

    # multi-dimensional data sets
    elsif ( 'ARRAY' eq ref $spec->[0] )
    {
      my $ilim = 0;
      for my $vlim ( @$spec )
      {
	$ilim++;
	die( "Limit spec element $ilim: expected array ref\n" )
	  if 'ARRAY' ne ref $vlim;

	die( "Limit spec element $ilim: too many values\n" )
	  if @$vlim > 2;

	die( "Limit spec element $vlim: values must be scalars\n" )
	  if grep { ref $_ } @$vlim;

	my @lims = @$vlim;
	$lims[0] = undef unless defined $lims[0];
	$lims[1] = undef unless defined $lims[1];

	push @limits, \@lims;
      }
    }

    # one-dimensional data sets
    elsif ( ! ref $spec->[0] )
    {
      die( "unexpected non-scalar element in Limits spec\n" )
	if grep { ref $_ } @$spec;

      my @lims = @$spec;
      $lims[0] = undef unless defined $lims[0];
      $lims[1] = undef unless defined $lims[1];

      push @limits, \@lims;
    }

    push @limits, [ undef, undef ]
      while ( @limits != $ndim );

  }

  # hash containing vector names and limits
  elsif ( 'HASH' eq ref $spec )
  {
    # first ensure that VecKeys has been specified
    die( "cannot use Limits without VecKeys\n" )
      unless @$KeySpec;

    # make sure that we've got common keys.
    my %vecs = map { ( $_->{data} => 1) } @$KeySpec;

    # identify unknown vectors
    my @badvecs = grep { ! defined $vecs{$_} } keys %$spec;
    die( 'unknown vector(s): ', join(', ', @badvecs), "\n" )
      if @badvecs;

    # work our way through the KeySpec's, filling in values from
    # $spec as appropriate.
    for my $kspec ( @$KeySpec )
    {
      my @lims = ( undef, undef );
      if ( exists $spec->{$kspec->{data}} )
      {
	my $lspec = $spec->{$kspec->{data}};
	$lims[0]  = $lspec->{min} if exists $lspec->{min};
	$lims[1]  = $lspec->{max} if exists $lspec->{max};
      }
      push @limits, \@lims;
    }
  }

  # say what?
  else
  {
    die( "Limits attribute value must be a hashref or arrayref\n" );
  }

  map { { calc  => scalar ( grep { !defined $_ } @{$_} ), range => $_ } } @limits;
}



#####################################################################

sub limits
{
  my $attr = 'HASH' eq ref $_[-1] ? pop @_ : {};

  my @udsets = @_;

  my %attr = iparse( {
    Min => -1.8e308,
    Max => +1.8e308,
    Bounds => 'minmax',
    Clean => 'RangeFrac',
    RangeFrac => 0.05,
    ZeroFix => 0,
    VecKeys => [],
    KeyCroak => 1,
    Limits => [],
    Trans => [],
  }, $attr );

  # turn Trans and VecKeys into arrays if necessary; may be scalars for 1D
  # data sets
  $attr{$_} = [ $attr{$_} ]
    foreach grep { defined $attr{$_} && 'ARRAY' ne ref $attr{$_} }
      qw( VecKeys Trans );

  # parse vector key specs
  $attr{KeySpec} = parse_vecspecs( $attr{VecKeys} );

  # normalize data sets to make life easier later. also
  # counts up the number of dimensions and sets $attr{dims}
  my @dsets = normalize_dsets( \%attr, @udsets );

  # set up the Limits
  my @limits = parse_limits( $attr{dims}, $attr{Limits}, $attr{KeySpec} );

  if ( 'minmax' eq lc $attr{Bounds} )
  {
    for my $dim ( 0..$attr{dims}-1 )
    {
      # only calculate minmax values for those dims which need them.
      my $limits = $limits[$dim];

      foreach ( @dsets )
      {
	# calculate min & max
	$_->calc_minmax( $dim )
	  if $limits->{calc};

	# make sure we pay attention to user specified limits
	$_->set_minmax( @{$limits->{range}}, $dim );
      }
    }
  }

  elsif ( 'zscale' eq lc $attr{Bounds} )
  {
    croak( "zscale only good for dim = 2\n" )
      unless $attr{dims} == 2;

    foreach my $dset ( @dsets )
    {
      $dset->calc_minmax( 0 )
	if $limits[0]{calc};


      if ( $limits[1]{calc} )
      {
	my $y = $dset->vector(1)->{data};

	# this is a waste, as we don't care about the evaluated
	# fit values, just the min and max values.  since we
	# get them all anyway, we'll use them.

	my $mask = PDL::null;
	set_mask( $mask, $y );

	my $fit = fitpoly1d( $y->where($mask)->qsort, 2 );
	$dset->set_minmax( $fit->minmax, 1 );
      }

      $dset->set_minmax( @{$limits[$_]{range}}, $_ ) for 0,1;
    }
  }
  else
  {
    die( "unknown Bounds type: $attr{Bounds}\n" );
  }

  # derive union of minmax limits from data sets
  my $minmax = PDL::Core::null;
  $minmax = append( $minmax, $_->get_minmax ) foreach @dsets;

  # get overall minmax limits
  $minmax = cat(($minmax->minmaximum)[0,1])->transpose;

  my @minmax = map{ [ $minmax->slice(":,$_")->list ] } 0..$attr{dims}-1;

  if ( 'rangefrac' eq lc $attr{Clean} )
  {
    my $RangeFrac =
      setup_multi( $attr{RangeFrac}, $attr{dims}, $attr{KeySpec} );

    my $ZeroFix =
      setup_multi( $attr{ZeroFix}, $attr{dims}, $attr{KeySpec} );

    range_frac( $minmax[$_], $RangeFrac->[$_], $ZeroFix->[$_] )
      for 0..$attr{dims}-1;
  }

  elsif ( 'roundpow' eq lc $attr{Clean} )
  {
    $_ = [ round_pow( down => $_->[0] ),
	   round_pow( up   => $_->[1] ) ]
      foreach @minmax;
  }

  elsif ( 'none' eq lc $attr{Clean} )
  {
    # do nothing
  }

  else
  {
    die( "unknown Clean type: $attr{Clean}\n" );
  }

  if ( wantarray )
  {
    return map { ( @{$_} ) } @minmax;
  }
  else
  {
    my @key;
    if ( @{$attr{KeySpec}} )
    {
      @key = map { $_->{data} } @{$attr{KeySpec}};
    }
    else
    {
      @key = map { 'q' . $_ } ( 1 .. $attr{dims} );
    }

    return { map { ( $key[$_] => { min => $minmax[$_][0],
				   max => $minmax[$_][1] } ) }
	       0.. ( @minmax - 1 ) };
  }
}

1;


__END__

=pod

=head1 NAME

PDL::Graphics::Limits - derive limits for display purposes


=head1 DESCRIPTION

Functions to derive limits for data for display purposes

=head1 SYNOPSIS

  use PDL::Graphics::Limits;


=head1 FUNCTIONS

=head2 limits

=for ref

B<limits> derives global limits for one or more multi-dimensional sets
of data for display purposes.  It obtains minimum and maximum limits
for each dimension based upon one of several algorithms.

=for usage

  @limits = limits( @datasets );
  @limits = limits( @datasets, \%attr );
  $limits = limits( @datasets );
  $limits = limits( @datasets, \%attr );

=head3 Data Sets

A data set is represented as a set of one dimensional vectors, one per
dimension. All data sets must have the same dimensions.
Multi-dimensional data sets are packaged as arrays or hashs; one
dimensional data sets need not be.  The different representations may
be mixed, as long as the dimensions are presented in the same order.
Vectors may be either scalars or piddles.

=over 8

=item One dimensional data sets

One dimensional data sets may be passed directly, with no additional packaging:

  limits( $scalar, $piddle );

=item Data sets as arrays

If the data sets are represented by arrays, each vectors in each array
must have the same order:

  @ds1 = ( $x1_pdl, $y1_pdl );
  @ds2 = ( $x2_pdl, $y2_pdl );

They are passed by reference:

  limits( \@ds1, \@ds2 );

=item Data sets as hashes

Hashes are passed by reference as well, but I<must> be further
embedded in arrays (also passed by reference), in order that the last
one is not confused with the optional trailing attribute hash.  For
example:

  limits( [ \%ds4, \%ds5 ], \%attr );

If each hash uses the same keys to identify the data, the keys
should be passed as an ordered array via the C<VecKeys> attribute:

  limits( [ \%h1, \%h2 ], { VecKeys => [ 'x', 'y' ] } );

If the hashes use different keys, each hash must be accompanied by an
ordered listing of the keys, embedded in their own anonymous array:

  [ \%h1 => ( 'x', 'y' ) ], [ \%h2 => ( 'u', 'v' ) ]

Keys which are not explicitly identified are ignored.

=back

=head3 Errors

Error bars must be taken into account when determining limits; care
is especially needed if the data are to be transformed before plotting
(for logarithmic plots, for example).  Errors may be symmetric (a single
value indicates the negative and positive going errors for a data point) or
asymmetric (two values are required to specify the errors).

If the data set is specified as an array of vectors, vectors with
errors should be embedded in an array. For symmetric errors, the error
is given as a single vector (piddle or scalar); for asymmetric errors, there
should be two values (one of which may be C<undef> to indicate
a one-sided error bar):

  @ds1 = ( $x,                  # no errors
           [ $y, $yerr ],       # symmetric errors
           [ $z, $zn, $zp ],    # asymmetric errors
           [ $u, undef, $up ],  # one-sided error bar
           [ $v, $vn, undef ],  # one-sided error bar
         );

If the data set is specified as a hash of vectors, the names of the
error bar keys are appended to the names of the data keys in the
C<VecKeys> designations.  The error bar key names are always prefixed
with a character indicating what kind of error they represent:

	< negative going errors
	> positive going errors
	= symmetric errors

(Column names may be separated by commas or white space.)

For example,

  %ds1 = ( x => $x, xerr => $xerr, y => $y, yerr => $yerr );
  limits( [ \%ds1 ], { VecKeys => [ 'x =xerr', 'y =yerr' ] } );

To specify asymmetric errors, specify both the negative and positive going
errors:

  %ds1 = ( x => $x, xnerr => $xn, xperr => $xp,
           y => $y );
  limits( [ \%ds1 ], { VecKeys => [ 'x <xnerr >xperr', 'y' ] } );

For one-sided error bars, specify a column just for the side to
be plotted:

  %ds1 = ( x => $x, xnerr => $xn,
           y => $y, yperr => $yp );
  limits( [ \%ds1 ], { VecKeys => [ 'x <xnerr', 'y >yperr' ] } );


Data in hashes with different keys follow the same paradigm:

  [ \%h1 => ( 'x =xerr', 'y =yerr' ) ], [ \%h2 => ( 'u =uerr', 'v =verr' ) ]

In this case, the column names specific to a single data set override
those specified via the C<VecKeys> option.

  limits( [ \%h1 => 'x =xerr' ], { VecKeys => [ 'x <xn >xp' ] } )

In the case of a multi-dimensional data set, one must specify
all of the keys:

  limits( [ \%h1 => ( 'x =xerr', 'y =yerr' ) ],
                  { VecKeys => [ 'x <xn >xp', 'y <yp >yp' ] } )

One can override only parts of the specifications:

  limits( [ \%h1 => ( '=xerr', '=yerr' ) ],
                  { VecKeys => [ 'x <xn >xp', 'y <yp >yp' ] } )

Use C<undef> as a placeholder for those keys for which
nothing need by overridden:

  limits( [ \%h1 => undef, 'y =yerr' ],
                  { VecKeys => [ 'x <xn >xp', 'y <yp >yp' ] } )

=head3 Data Transformation

Normally the data passed to B<limits> should be in their final,
transformed, form. For example, if the data will be displayed on a
logarithmic scale, the logarithm of the data should be passed to
B<limits>.  However, if error bars are also to be displayed, the
I<untransformed> data must be passed, as

  log(data) + log(error) != log(data + error)

Since the ranges must be calculated for the transformed values,
B<range> must be given the transformation function.

If all of the data sets will undergo the same transformation, this may
be done with the B<Trans> attribute, which is given a list of
subroutine references, one for each element of a data set.  An
C<undef> value may be used to indicate no transformation is to be
performed.  For example,

  @ds1 = ( $x, $y );

  # take log of $x
  limits( \@ds1, { trans => [ \&log10 ] } );

  # take log of $y
  limits( \@ds1, { trans => [ undef, \&log10 ] } );

If each data set has a different transformation, things are a bit more
complicated.  If the data sets are specified as arrays of vectors, vectors
with transformations should be embedded in an array, with the I<last>
element the subroutine reference:

  @ds1 = ( [ $x, \&log10 ], $y );

With error bars, this looks like this:

  @ds1 = ( [ $x, $xerr, \&log10 ], $y );
  @ds1 = ( [ $x, $xn, $xp, \&log10 ], $y );

If the C<Trans> attribute is used in conjunction with individual data
set transformations, the latter will override it.  To explicitly
indicate that a specific data set element has no transformation
(normally only needed if C<Trans> is used to specify a default) set
the transformation subroutine reference to C<undef>.  In this case,
the entire quad of data element, negative error, positive error, and
transformation subroutine must be specified to avoid confusion:

  [ $x, $xn, $xp, undef ]

Note that $xn and $xp may be undef. For symmetric errors, simply
set both C<$xn> and C<$xp> to the same value.

For data sets passed as hashes, the subroutine reference is an element
in the hashes; the name of the corresponding key is added to the list
of keys, preceded by the C<&> character:

  %ds1 = ( x => $x, xerr => $xerr, xtrans => \&log10,
           y => $y, yerr => $yerr );

  limits( [ \%ds1, \%ds2 ],
         { VecKeys => [ 'x =xerr &xtrans',  'y =yerr' ] });
  limits( [ \%ds1 => 'x =xerr &xtrans', 'y =yerr' ] );

If the C<Trans> attribute is specified, and a key name is also
specified via the C<VecKeys> attribute or individually for a data set
element, the latter will take precedence.  For example,

  $ds1{trans1} = \&log10;
  $ds1{trans2} = \&sqrt;

  # resolves to exp
  limits( [ \%ds1 ], { Trans => [ \&exp ] });

  # resolves to sqrt
  limits( [ \%ds1 ], { Trans => [ \&exp ],
                      VecKeys => [ 'x =xerr &trans2' ] });

  # resolves to log10
  limits( [ \%ds1 => '&trans1' ], { Trans => [ \&exp ],
                                   VecKeys => [ 'x =xerr &trans2' ] });


To indicate that a particular vector should have no transformation,
use a blank key:

  limits( [ \%ds1 => ( 'x =xerr &', 'y =yerr' ) ], [\%ds2],
	   { Trans => [ \&log10 ] } );

or set the hash element to C<undef>:

  $ds1{xtrans} = undef;


=head3 Range Algorithms

Sometimes all you want is to find the minimum and maximum values.  However,
for display purposes, it's often nice to have "clean" range bounds.  To that
end, B<limits> produces a range in two steps.  First it determines the bounds,
then it cleans them up.

To specify the bounding algorithm, set the value of the C<Bounds> key
in the C<%attr> hash to one of the following values:

=over 8

=item MinMax

This indicates the raw minima and maxima should be used.  This is the
default.

=item Zscale

This is valid for two dimensional data only.  The C<Y> values are sorted,
then fit to a line.  The minimum and maximum values of the evaluated
line are used for the C<Y> bounds; the raw minimum and maximum values
of the C<X> data are used for the C<X> bounds.  This method is good
in situations where there are "spurious" spikes in the C<Y> data which
would generate too large a dynamic range in the bounds.  (Note that
the C<Zscale> algorithm is found in IRAF and DS9; its true origin
is unknown to the author).

=back

To specify the cleaning algorithm, set the value of the C<Clean> key
in the C<%attr> hash to one of the following values:

=over 8

=item None

Perform no cleaning of the bounds.

=item RangeFrac

This is based upon the C<PGPLOT> B<pgrnge> function.  It symmetrically expands
the bounds (determined above) by a fractional amount:

    $expand = $frac * ( $axis->{max} - $axis->{min} );
    $min = $axis->{min} - $expand;
    $max = $axis->{max} + $expand;

The fraction may be specified in the C<%attr> hash with the
C<RangeFrac> key.  It defaults to C<0.05>.

Because this is a symmetric expansion, a limit of C<0.0> may be
transformed into a negative number, which may be inappropriate.  If
the C<ZeroFix> key is set to a non-zero value in the C<%attr> hash,
the cleaned boundary is set to C<0.0> if it is on the other side of
C<0.0> from the above determined bounds.  For example, If the minimum
boundary value is C<0.1>, and the cleaned boundary value is C<-0.1>,
the cleaned value will be set to C<0.0>.  Similarly, if the maximum
value is C<-0.1> and the cleaned value is C<0.1>, it will be set to C<0.0>.

This is the default clean algorithm.

=item RoundPow

This is based upon the C<PGPLOT> B<pgrnd> routine.  It determines a
"nice" value, where "nice" is the closest round number to
the boundary value, where a round number is 1, 2, or 5 times a power
of 10.

=back

=head3 User Specified Limits

To fully or partially override the automatically determined limits,
use the B<Limits> attribute.  These values are used as input to the
range algorithms.

The B<Limits> attribute value may be either an array of arrayrefs, or
a hash.

=over

=item Arrays

The B<Limits> value may be a reference to an array of arrayrefs, one
per dimension, which contain the requested limits.

The dimensions should be ordered in the same way as the datasets.
Each arrayref should contain two ordered values, the minimum and
maximum limits for that dimension.  The limits may have the undefined
value if that limit is to be automatically determined.  The limits
should be transformed (or not) in the same fashion as the data.

For example, to specify that the second dimension's maximum limit
should be fixed at a specified value:

  Limits => [ [ undef, undef ], [ undef, $max ] ]

Note that placeholder values are required for leading dimensions which
are to be handled automatically. For convenience, if limits for a
dimension are to be fully automatically determined, the placeholder
arrayref may be empty.  Also, trailing undefined limits may be
omitted.  The above example may be rewritten as:

  Limits => [ [], [ undef, $max ] ]

If the minimum value was specified instead of the maximum, the following
would be acceptable:

  Limits => [ [], [ $min ] ]

If the data has but a single dimension, nested arrayrefs are not required:

  Limits => [ $min, $max ]


=item Hashes

Th B<Limits> attribute value may be a hash; this can only be used in
conjunction with the B<VecKeys> attribute.  If the data sets are
represented by hashes which do not have common keys, then the user
defined limits should be specified with arrays.  The keys in the
B<Limits> hash should be the names of the data vectors in the
B<VecKeys>. Their values should be hashes with keys C<min> and C<max>,
representing the minimum and maximum limits.  Limits which have the value
C<undef> or which are not specified will be determined from the data.
For example,

  Limits => { x => { min => 30 }, y => { max => 22 } }

=back

=head3 Return Values

When called in a list context, it returns the minimum and maximum
bounds for each axis:

  @limits = ( $min_1, $max_1, $min_2, $max_2, ... );

which makes life easier when using the B<env> method:

  $window->env( @limits );

When called in a scalar context, it returns a hashref with the keys

  axis1, ... axisN

where C<axisN> is the name of the Nth axis. If axis names have not
been specified via the C<VecKeys> element of C<%attr>, names are
concocted as C<q1>, C<q2>, etc.  The values are hashes with keys
C<min> and C<max>.  For example:

  { q1 => { min => 1, max => 2},
    q2 => { min => -33, max => 33 } }

=head3 Miscellaneous

Normally B<limits> complains if hash data sets don't contain specific
keys for error bars or transformation functions.  If, however,
you'd like to specify default values using the C<%attr> argument,
but there are data sets which don't have the data and you'd rather
not have to explicitly indicate that, set the C<KeyCroak> attribute
to zero.  For example,

  limits( [ { x => $x }, { x => $x1, xerr => $xerr } ],
         { VecKeys => [ 'x =xerr' ] } );

will generate an error because the first data set does not have
an C<xerr> key.  Resetting C<KeyCroak> will fix this:

  limits( [ { x => $x }, { x => $x1, xerr => $xerr } ],
         { VecKeys => [ 'x =xerr' ], KeyCroak => 0 } );


=head1 AUTHOR

Diab Jerius, E<lt>djerius@cpan.orgE<gt>

=head1 COPYRIGHT AND LICENSE

Copyright (C) 2004 by the Smithsonian Astrophysical Observatory


This software is released under the GNU General Public License.
You may find a copy at L<http://www.fsf.org/copyleft/gpl.html>.

=cut