This file is indexed.

/usr/include/wfmath-0.3/wfmath/vector.h is in libwfmath-0.3-dev 0.3.12-3ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// vector.h (Vector<> class definition)
//
//  The WorldForge Project
//  Copyright (C) 2001  The WorldForge Project
//
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with this program; if not, write to the Free Software
//  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
//  For information about WorldForge and its authors, please contact
//  the Worldforge Web Site at http://www.worldforge.org.

// Author: Ron Steinke
// Created: 2001-12-7

// Extensive amounts of this material come from the Vector2D
// and Vector3D classes from stage/math, written by Bryce W.
// Harrington, Kosh, and Jari Sundell (Rakshasa).

#ifndef WFMATH_VECTOR_H
#define WFMATH_VECTOR_H

#include <wfmath/const.h>

#include <iosfwd>

#include <cmath>

namespace WFMath {

template<int dim>
Vector<dim>& operator+=(Vector<dim>& v1, const Vector<dim>& v2);
template<int dim>
Vector<dim>& operator-=(Vector<dim>& v1, const Vector<dim>& v2);
template<int dim>
Vector<dim>& operator*=(Vector<dim>& v, CoordType d);
template<int dim>
Vector<dim>& operator/=(Vector<dim>& v, CoordType d);

template<int dim>
Vector<dim> operator+(const Vector<dim>& v1, const Vector<dim>& v2);
template<int dim>
Vector<dim> operator-(const Vector<dim>& v1, const Vector<dim>& v2);
template<int dim>
Vector<dim> operator-(const Vector<dim>& v); // Unary minus
template<int dim>
Vector<dim> operator*(CoordType d, const Vector<dim>& v);
template<int dim>
Vector<dim> operator*(const Vector<dim>& v, CoordType d);
template<int dim>
Vector<dim> operator/(const Vector<dim>& v, CoordType d);

template<int dim>
CoordType Dot(const Vector<dim>& v1, const Vector<dim>& v2);

template<int dim>
CoordType Angle(const Vector<dim>& v, const Vector<dim>& u);

// The following are defined in rotmatrix_funcs.h
/// returns m * v
template<int dim> // m * v
Vector<dim> Prod(const RotMatrix<dim>& m, const Vector<dim>& v);
/// returns m^-1 * v
template<int dim> // m^-1 * v
Vector<dim> InvProd(const RotMatrix<dim>& m, const Vector<dim>& v);
/// returns v * m
/**
 * This is the function to use to rotate a Vector v using a Matrix m
 **/
template<int dim> // v * m
Vector<dim> Prod(const Vector<dim>& v, const RotMatrix<dim>& m);
/// return v * m^-1
template<int dim> // v * m^-1
Vector<dim> ProdInv(const Vector<dim>& v, const RotMatrix<dim>& m);

///
template<int dim>
Vector<dim> operator*(const RotMatrix<dim>& m, const Vector<dim>& v);
///
template<int dim>
Vector<dim> operator*(const Vector<dim>& v, const RotMatrix<dim>& m);

template<int dim>
Vector<dim> operator-(const Point<dim>& c1, const Point<dim>& c2);
template<int dim>
Point<dim> operator+(const Point<dim>& c, const Vector<dim>& v);
template<int dim>
Point<dim> operator-(const Point<dim>& c, const Vector<dim>& v);
template<int dim>
Point<dim> operator+(const Vector<dim>& v, const Point<dim>& c);

template<int dim>
Point<dim>& operator+=(Point<dim>& p, const Vector<dim>& v);
template<int dim>
Point<dim>& operator-=(Point<dim>& p, const Vector<dim>& v);

template<int dim>
std::ostream& operator<<(std::ostream& os, const Vector<dim>& v);
template<int dim>
std::istream& operator>>(std::istream& is, Vector<dim>& v);

template<typename Shape>
class ZeroPrimitive;

/// A dim dimensional vector
/**
 * This class implements the 'generic' subset of the interface in
 * the fake class Shape.
 **/
template<int dim = 3>
class Vector {
 friend class ZeroPrimitive<Vector<dim> >;
 public:
  /// Construct an uninitialized vector
  Vector() : m_valid(false) {}
  /// Construct a copy of a vector
  Vector(const Vector& v);
  /// Construct a vector from an object passed by Atlas
  explicit Vector(const AtlasInType& a);
  /// Construct a vector from a point.
  explicit Vector(const Point<dim>& point);

  /**
   * @brief Provides a global instance preset to zero.
   */
  static const Vector<dim>& ZERO();
  
  friend std::ostream& operator<< <dim>(std::ostream& os, const Vector& v);
  friend std::istream& operator>> <dim>(std::istream& is, Vector& v);

  /// Create an Atlas object from the vector
  AtlasOutType toAtlas() const;
  /// Set the vector's value to that given by an Atlas object
  void fromAtlas(const AtlasInType& a);

  Vector& operator=(const Vector& v);

  bool isEqualTo(const Vector& v, double epsilon = WFMATH_EPSILON) const;
  bool operator==(const Vector& v) const {return isEqualTo(v);}
  bool operator!=(const Vector& v) const {return !isEqualTo(v);}

  bool isValid() const {return m_valid;}
  /// make isValid() return true if you've initialized the vector by hand
  void setValid(bool valid = true) {m_valid = valid;}

  /// Zero the components of a vector
  Vector& zero();

  // Math operators

  /// Add the second vector to the first
  friend Vector& operator+=<dim>(Vector& v1, const Vector& v2);
  /// Subtract the second vector from the first
  friend Vector& operator-=<dim>(Vector& v1, const Vector& v2);
  /// Multiply the magnitude of v by d
  friend Vector& operator*=<dim>(Vector& v, CoordType d);
  /// Divide the magnitude of v by d
  friend Vector& operator/=<dim>(Vector& v, CoordType d);

  /// Take the sum of two vectors
  friend Vector operator+<dim>(const Vector& v1, const Vector& v2);
  /// Take the difference of two vectors
  friend Vector operator-<dim>(const Vector& v1, const Vector& v2);
  /// Reverse the direction of a vector
  friend Vector operator-<dim>(const Vector& v); // Unary minus
  /// Multiply a vector by a scalar
  friend Vector operator*<dim>(CoordType d, const Vector& v);
  /// Multiply a vector by a scalar
  friend Vector operator*<dim>(const Vector& v, CoordType d);
  /// Divide a vector by a scalar
  friend Vector operator/<dim>(const Vector& v, CoordType d);

  // documented outside the class definition
  friend Vector Prod<dim>(const RotMatrix<dim>& m, const Vector& v);
  friend Vector InvProd<dim>(const RotMatrix<dim>& m, const Vector& v);

  /// Get the i'th element of the vector
  CoordType operator[](const int i) const {return m_elem[i];}
  /// Get the i'th element of the vector
  CoordType& operator[](const int i)      {return m_elem[i];}

  /// Find the vector which gives the offset between two points
  friend Vector operator-<dim>(const Point<dim>& c1, const Point<dim>& c2);
  /// Find the point at the offset v from the point c
  friend Point<dim> operator+<dim>(const Point<dim>& c, const Vector& v);
  /// Find the point at the offset -v from the point c
  friend Point<dim> operator-<dim>(const Point<dim>& c, const Vector& v);
  /// Find the point at the offset v from the point c
  friend Point<dim> operator+<dim>(const Vector& v, const Point<dim>& c);

  /// Shift a point by a vector
  friend Point<dim>& operator+=<dim>(Point<dim>& p, const Vector& rhs);
  /// Shift a point by a vector, in the opposite direction
  friend Point<dim>& operator-=<dim>(Point<dim>& p, const Vector& rhs);

  /// The dot product of two vectors
  friend CoordType Dot<dim>(const Vector& v1, const Vector& v2);
  /// The angle between two vectors
  friend CoordType Angle<dim>(const Vector& v, const Vector& u);

  /// The squared magnitude of a vector
  CoordType sqrMag() const;
  /// The magnitude of a vector
  CoordType mag() const		{return std::sqrt(sqrMag());}
  /// Normalize a vector
  Vector& normalize(CoordType norm = 1.0)
  {CoordType themag = mag(); return (*this *= norm / themag);}

  /// An approximation to the magnitude of a vector
  /**
   * The sloppyMag() function gives a value between
   * the true magnitude and sloppyMagMax multiplied by the
   * true magnitude. sloppyNorm() uses sloppyMag() to normalize
   * the vector. This is currently only implemented for
   * dim = {1, 2, 3}. For all current implementations,
   * sloppyMagMax is greater than or equal to one.
   * The constant sloppyMagMaxSqrt is provided for those
   * who want to most closely approximate the true magnitude,
   * without caring whether it's too low or too high.
   **/
  CoordType sloppyMag() const;
  /// Approximately normalize a vector
  /**
   * Normalize a vector using sloppyMag() instead of the true magnitude.
   * The new length of the vector will be between norm/sloppyMagMax()
   * and norm.
   **/
  Vector& sloppyNorm(CoordType norm = 1.0);

  // Can't seem to implement these as constants, implementing
  // inline lookup functions instead.
  /// The maximum ratio of the return value of sloppyMag() to the true magnitude
  static const CoordType sloppyMagMax();
  /// The square root of sloppyMagMax()
  /**
   * This is provided for people who want to obtain maximum accuracy from
   * sloppyMag(), without caring whether the answer is high or low.
   * The result sloppyMag()/sloppyMagMaxSqrt() will be within sloppyMagMaxSqrt()
   * of the true magnitude.
   **/
  static const CoordType sloppyMagMaxSqrt();

  /// Rotate the vector in the (axis1, axis2) plane by the angle theta
  Vector& rotate(int axis1, int axis2, CoordType theta);

  /// Rotate the vector in the (v1, v2) plane by the angle theta
  /**
   * This throws CollinearVectors if v1 and v2 are parallel.
   **/
  Vector& rotate(const Vector& v1, const Vector& v2, CoordType theta);

  /// Rotate the vector using a matrix
  Vector& rotate(const RotMatrix<dim>&);

  // mirror image functions

  /// Reflect a vector in the direction of the i'th axis
  Vector& mirror(const int i) { m_elem[i] *= -1; return *this;}
  /// Reflect a vector in the direction specified by v
  Vector& mirror(const Vector& v)
  {return operator-=(*this, 2 * v * Dot(v, *this) / v.sqrMag());}
  /// Reflect a vector in all directions simultaneously.
  /**
   * This is a nice way to implement the parity operation if dim is odd.
   **/
  Vector& mirror()		{return operator*=(*this, -1);}

  // Specialized 2D/3D stuff starts here

  // The following functions are defined only for
  // two dimensional (rotate(CoordType), Vector<>(CoordType, CoordType))
  // and three dimensional (the rest of them) vectors.
  // Attempting to call these on any other vector will
  // result in a linker error.

  /// 2D only: construct a vector from (x, y) coordinates
  Vector(CoordType x, CoordType y);
  /// 3D only: construct a vector from (x, y, z) coordinates
  Vector(CoordType x, CoordType y, CoordType z);

  /// 2D only: rotate a vector by an angle theta
  Vector& rotate(CoordType theta);

  /// 3D only: rotate a vector about the x axis by an angle theta
  Vector& rotateX(CoordType theta);
  /// 3D only: rotate a vector about the y axis by an angle theta
  Vector& rotateY(CoordType theta);
  /// 3D only: rotate a vector about the z axis by an angle theta
  Vector& rotateZ(CoordType theta);

  /// 3D only: rotate a vector about the i'th axis by an angle theta
  Vector& rotate(const Vector& axis, CoordType theta);
  /// 3D only: rotate a vector using a Quaternion
  Vector& rotate(const Quaternion& q);

  // Label the first three components of the vector as (x,y,z) for
  // 2D/3D convienience

  /// Access the first component of a vector
  CoordType x() const	{return m_elem[0];}
  /// Access the first component of a vector
  CoordType& x()	{return m_elem[0];}
  /// Access the second component of a vector
  CoordType y() const	{return m_elem[1];}
  /// Access the second component of a vector
  CoordType& y()	{return m_elem[1];}
  /// Access the third component of a vector
  CoordType z() const	{return m_elem[2];}
  /// Access the third component of a vector
  CoordType& z()	{return m_elem[2];}

  /// Flip the x component of a vector
  Vector& mirrorX()	{return mirror(0);}
  /// Flip the y component of a vector
  Vector& mirrorY()	{return mirror(1);}
  /// Flip the z component of a vector
  Vector& mirrorZ()	{return mirror(2);}

  /// 2D only: construct a vector from polar coordinates
  Vector& polar(CoordType r, CoordType theta);
  /// 2D only: convert a vector to polar coordinates
  void asPolar(CoordType& r, CoordType& theta) const;

  /// 3D only: construct a vector from polar coordinates
  Vector& polar(CoordType r, CoordType theta, CoordType z);
  /// 3D only: convert a vector to polar coordinates
  void asPolar(CoordType& r, CoordType& theta, CoordType& z) const;
  /// 3D only: construct a vector from shperical coordinates
  Vector& spherical(CoordType r, CoordType theta, CoordType phi);
  /// 3D only: convert a vector to shperical coordinates
  void asSpherical(CoordType& r, CoordType& theta, CoordType& phi) const;

  // FIXME make Cross() a friend function, and make this private
  double _scaleEpsilon(const Vector& v, double epsilon = WFMATH_EPSILON) const
  {return _ScaleEpsilon(m_elem, v.m_elem, dim, epsilon);}

  const CoordType* elements() const {return m_elem;}

 private:
  CoordType m_elem[dim];
  bool m_valid;
};

/// 2D only: get the z component of the cross product of two vectors
CoordType Cross(const Vector<2>& v1, const Vector<2>& v2);
/// 3D only: get the cross product of two vectors
Vector<3> Cross(const Vector<3>& v1, const Vector<3>& v2);

/// Check if two vectors are parallel
/**
 * Returns true if the vectors are parallel. For parallel
 * vectors, same_dir is set to true if they point the same
 * direction, and false if they point opposite directions
 **/
template<int dim>
bool Parallel(const Vector<dim>& v1, const Vector<dim>& v2, bool& same_dir);

/// Check if two vectors are parallel
/**
 * Convienience wrapper if you don't care about same_dir
 **/
template<int dim>
bool Parallel(const Vector<dim>& v1, const Vector<dim>& v2);

/// Check if two vectors are perpendicular
template<int dim>
bool Perpendicular(const Vector<dim>& v1, const Vector<dim>& v2);

} // namespace WFMath

#endif // WFMATH_VECTOR_H