/usr/include/wfmath-0.3/wfmath/point_funcs.h is in libwfmath-0.3-dev 0.3.12-3ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | // point_funcs.h (point class copied from libCoal, subsequently modified)
//
// The WorldForge Project
// Copyright (C) 2000, 2001, 2002 The WorldForge Project
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// For information about WorldForge and its authors, please contact
// the Worldforge Web Site at http://www.worldforge.org.
//
// Author: Ron Steinke
#ifndef WFMATH_POINT_FUNCS_H
#define WFMATH_POINT_FUNCS_H
#include <wfmath/point.h>
#include <wfmath/vector.h>
#include <wfmath/zero.h>
#include <cmath>
namespace WFMath {
template<int dim>
inline Point<dim>::Point(const Point<dim>& p) : m_valid(p.m_valid)
{
for(int i = 0; i < dim; ++i) {
m_elem[i] = p.m_elem[i];
}
}
template<int dim>
inline Point<dim>::Point(const Vector<dim>& v) : m_valid(v.isValid())
{
for(int i = 0; i < dim; ++i) {
m_elem[i] = v.elements()[i];
}
}
template<int dim>
const Point<dim>& Point<dim>::ZERO()
{
static ZeroPrimitive<Point<dim> > zeroPoint(dim);
return zeroPoint.getShape();
}
template<int dim>
inline Point<dim>& Point<dim>::setToOrigin()
{
for(int i = 0; i < dim; ++i) {
m_elem[i] = 0;
}
m_valid = true;
return *this;
}
template<int dim>
inline bool Point<dim>::isEqualTo(const Point<dim> &p, double epsilon) const
{
CoordType delta = (CoordType) _ScaleEpsilon(m_elem, p.m_elem, dim, epsilon);
for(int i = 0; i < dim; ++i) {
if(fabs(m_elem[i] - p.m_elem[i]) > delta) {
return false;
}
}
return true;
}
template<int dim>
inline Vector<dim> operator-(const Point<dim>& c1, const Point<dim>& c2)
{
Vector<dim> out;
for(int i = 0; i < dim; ++i) {
out.m_elem[i] = c1.m_elem[i] - c2.m_elem[i];
}
out.m_valid = c1.m_valid && c2.m_valid;
return out;
}
template<int dim>
inline Point<dim>& operator+=(Point<dim>& p, const Vector<dim> &rhs)
{
for(int i = 0; i < dim; ++i) {
p.m_elem[i] += rhs.m_elem[i];
}
p.m_valid = p.m_valid && rhs.m_valid;
return p;
}
template<int dim>
inline Point<dim> operator+(const Point<dim>& c, const Vector<dim>& v)
{
Point<dim> out(c);
out += v;
return out;
}
template<int dim>
inline Point<dim> operator+(const Vector<dim>& v, const Point<dim>& c)
{
Point<dim> out(c);
out += v;
return out;
}
template<int dim>
inline Point<dim>& operator-=(Point<dim>& p, const Vector<dim> &rhs)
{
for(int i = 0; i < dim; ++i) {
p.m_elem[i] -= rhs.m_elem[i];
}
p.m_valid = p.m_valid && rhs.m_valid;
return p;
}
template<int dim>
inline Point<dim> operator-(const Point<dim>& c, const Vector<dim>& v)
{
Point<dim> out(c);
out -= v;
return out;
}
template<int dim>
inline Point<dim>& Point<dim>::operator=(const Point<dim>& rhs)
{
// Compare pointer addresses
if (this == &rhs) {
return *this;
}
for(int i = 0; i < dim; ++i) {
m_elem[i] = rhs.m_elem[i];
}
m_valid = rhs.m_valid;
return *this;
}
template<int dim>
inline CoordType SquaredDistance(const Point<dim>& p1, const Point<dim>& p2)
{
CoordType ans = 0;
for(int i = 0; i < dim; ++i) {
CoordType diff = p1.m_elem[i] - p2.m_elem[i];
ans += diff * diff;
}
return (fabs(ans) >= _ScaleEpsilon(p1.m_elem, p2.m_elem, dim)) ? ans : 0;
}
template<int dim, template<class, class> class container,
template<class, class> class container2>
Point<dim> Barycenter(const container<Point<dim>, std::allocator<Point<dim> > >& c,
const container2<CoordType, std::allocator<CoordType> >& weights)
{
// FIXME become friend
typename container<Point<dim>, std::allocator<Point<dim> > >::const_iterator c_i = c.begin(), c_end = c.end();
typename container2<CoordType, std::allocator<CoordType> >::const_iterator w_i = weights.begin(),
w_end = weights.end();
Point<dim> out;
if (c_i == c_end || w_i == w_end) {
return out;
}
bool valid = c_i->isValid();
CoordType tot_weight = *w_i, max_weight = std::fabs(*w_i);
for(int j = 0; j < dim; ++j) {
out[j] = (*c_i)[j] * *w_i;
}
while(++c_i != c_end && ++w_i != w_end) {
tot_weight += *w_i;
CoordType val = std::fabs(*w_i);
if(val > max_weight)
max_weight = val;
if(!c_i->isValid())
valid = false;
for(int j = 0; j < dim; ++j)
out[j] += (*c_i)[j] * *w_i;
}
// Make sure the weights don't add up to zero
if (max_weight <= 0 || fabs(tot_weight) <= max_weight * WFMATH_EPSILON) {
return out;
}
for(int j = 0; j < dim; ++j) {
out[j] /= tot_weight;
}
out.setValid(valid);
return out;
}
template<int dim, template<class, class> class container>
Point<dim> Barycenter(const container<Point<dim>, std::allocator<Point<dim> > >& c)
{
// FIXME become friend
typename container<Point<dim>, std::allocator<Point<dim> > >::const_iterator i = c.begin(), end = c.end();
if (i == end) {
return Point<dim>();
}
Point<dim> out = *i;
float num_points = 1;
bool valid = i->isValid();
while(++i != end) {
++num_points;
if(!i->isValid())
valid = false;
for(int j = 0; j < dim; ++j)
out[j] += (*i)[j];
}
for(int j = 0; j < dim; ++j) {
out[j] /= num_points;
}
out.setValid(valid);
return out;
}
template<int dim>
inline Point<dim> Midpoint(const Point<dim>& p1, const Point<dim>& p2, CoordType dist)
{
Point<dim> out;
CoordType conj_dist = 1 - dist;
for(int i = 0; i < dim; ++i) {
out.m_elem[i] = p1.m_elem[i] * conj_dist + p2.m_elem[i] * dist;
}
out.m_valid = p1.m_valid && p2.m_valid;
return out;
}
template<> Point<2>::Point(CoordType x, CoordType y) : m_valid(true)
{
m_elem[0] = x;
m_elem[1] = y;
}
template<> Point<3>::Point(CoordType x, CoordType y, CoordType z) : m_valid(true)
{
m_elem[0] = x;
m_elem[1] = y;
m_elem[2] = z;
}
template<> Point<2>& Point<2>::polar(CoordType r, CoordType theta);
template<> void Point<2>::asPolar(CoordType& r, CoordType& theta) const;
template<> Point<3>& Point<3>::polar(CoordType r, CoordType theta,
CoordType z);
template<> void Point<3>::asPolar(CoordType& r, CoordType& theta,
CoordType& z) const;
template<> Point<3>& Point<3>::spherical(CoordType r, CoordType theta,
CoordType phi);
template<> void Point<3>::asSpherical(CoordType& r, CoordType& theta,
CoordType& phi) const;
} // namespace WFMath
#endif // WFMATH_POINT_FUNCS_H
|