/usr/include/crystalspace-2.0/csutil/array.h is in libcrystalspace-dev 2.0+dfsg-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 | /*
Crystal Space Generic Array Template
Copyright (C) 2003 by Matze Braun
Copyright (C) 2003 by Jorrit Tyberghein
Copyright (C) 2003,2004 by Eric Sunshine
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __CSUTIL_ARRAY_H__
#define __CSUTIL_ARRAY_H__
/**\file
* Generic Array Template
*/
#include "csutil/custom_new_disable.h"
#include <algorithm>
#include "csutil/custom_new_enable.h"
#include "csutil/allocator.h"
#include "csutil/comparator.h"
#include "csutil/customallocated.h"
#include "csutil/util.h"
#include "csutil/custom_new_disable.h"
#if defined(CS_MEMORY_TRACKER)
#include "csutil/memdebug.h"
#include "csutil/snprintf.h"
#include <typeinfo>
#endif
/**\addtogroup util_containers
* @{ */
/**
* A functor template which encapsulates a key and a comparison function for
* use with key-related csArray searching methods, such as FindKey() and
* FindSortedKey(). Being a template instaniated upon two (possibly distinct)
* types, this allows the searching methods to perform type-safe searches even
* when the search key type differs from the contained element type. The
* supplied search function defines the relationship between the search key and
* the contained element.
*/
template <class T, class K>
class csArrayCmp
{
public:
/**
* Type of the comparison function which compares a key against an element
* contained in a csArray. T is the type of the contained element. K is
* the type of the search key.
*/
typedef int(*CF)(T const&, K const&);
/// Construct a functor from a search key and a comparison function.
csArrayCmp(K const& k, CF c = DefaultCompare) : key(k), cmp(c) {}
/// Construct a functor from another functor.
csArrayCmp(csArrayCmp const& o) : key(o.key), cmp(o.cmp) {}
/// Assign another functor to this one.
csArrayCmp& operator=(csArrayCmp const& o)
{ key = o.key; cmp = o.cmp; return *this; }
/**
* Invoke the functor.
* \param r Reference to the element to which the stored key should be
* compared.
* \return Zero if the key matches the element; less-than-zero if the element
* is less than the key; greater-than-zero if the element is greater than
* the key.
*/
int operator()(T const& r) const { return cmp(r, key); }
/// Return the comparison function with which this functor was constructed.
operator CF() const { return cmp; }
/// Return the key with which this functor was constructed.
operator K const&() const { return key; }
/**
* Compare two objects of the same type or different types (T and K).
* \param r Reference to the element to which the key should be compared.
* \param k Reference to the key to which the element should be compared.
* \return Zero if the key matches the element; less-than-zero if the element
* is less than the key; greater-than-zero if the element is greater than
* the key.
* \remarks Assumes the presence of T::operator<(K) and K::operator<(T).
* Default comparison function if client does not supply one.
*/
static int DefaultCompare(T const& r, K const& k)
{ return csComparator<T,K>::Compare(r,k); }
private:
K key;
CF cmp;
};
/**
* The default element handler for csArray.
*/
template <class T>
class csArrayElementHandler
{
public:
/// Construct an element
static void Construct (T* address)
{
new (static_cast<void*> (address)) T();
}
/// Copy-construct an element
static void Construct (T* address, T const& src)
{
new (static_cast<void*> (address)) T(src);
}
/// Destroy an element
static void Destroy (T* address)
{
address->~T();
}
/// Construct a number of elements
static void InitRegion (T* address, size_t count)
{
for (size_t i = 0 ; i < count ; i++)
Construct (address + i);
}
/// Reallocate a region allocated by \p Allocator.
template<typename Allocator>
static T* ResizeRegion (Allocator& alloc, T* mem, size_t relevantcount,
size_t oldcount, size_t newcount)
{
(void)relevantcount;
T* newp = (T*)alloc.Realloc (mem, newcount * sizeof(T));
if (newp != 0) return newp;
// Realloc() failed - allocate a new block
newp = (T*)alloc.Alloc (newcount * sizeof(T));
if (newcount < oldcount)
memcpy (newp, mem, newcount * sizeof(T));
else
memcpy (newp, mem, oldcount * sizeof(T));
alloc.Free (mem);
return newp;
}
/// Move elements inside a region.
static void MoveElements (T* mem, size_t dest, size_t src, size_t count)
{
memmove (mem + dest, mem + src, count * sizeof(T));
}
/**
* Move elements inside a region.
* \warning Only use if you _know_ source and destination regions don't overlap!
*/
static void MoveElementsNoOverlap (T* mem, size_t dest, size_t src, size_t count)
{
memcpy (mem + dest, mem + src, count * sizeof(T));
}
};
/**
* Special element handler for csArray that makes sure that when
* the array is reallocated that the objects are properly constructed
* and destructed at their new position. This is needed for objects
* that can not be safely moved around in memory (like weak references).
* This is of course slower and that is the reason that this is not
* done by default.
*/
template <class T>
class csArraySafeCopyElementHandler
{
public:
static void Construct (T* address)
{
new (static_cast<void*> (address)) T();
}
static void Construct (T* address, T const& src)
{
new (static_cast<void*> (address)) T(src);
}
static void Destroy (T* address)
{
address->~T();
}
static void InitRegion (T* address, size_t count)
{
for (size_t i = 0 ; i < count ; i++)
Construct (address + i);
}
/**
* Reallocate a region allocated by \p Allocator. Ensure that all elements
* are properly moved, ie they are copy-constructed at the new position
* in memory, the old instance is then destroyed.
*/
template<typename Allocator>
static T* ResizeRegion (Allocator& alloc, T* mem, size_t relevantcount,
size_t oldcount, size_t newcount)
{
if (newcount <= oldcount)
{
// Realloc is safe.
T* newmem = (T*)alloc.Realloc (mem, newcount * sizeof (T));
if (newmem != 0)
{
CS_ASSERT (newmem == mem);
return newmem;
}
// else Realloc() failed (probably not supported) - allocate a new block
}
T* newmem = (T*)alloc.Alloc (newcount * sizeof (T));
size_t i;
for (i = 0 ; i < relevantcount ; i++)
{
Construct (newmem + i, mem[i]);
Destroy (mem + i);
}
alloc.Free (mem);
return newmem;
}
/**
* Move elements inside a region. Ensure that all elements
* are properly moved, ie they are copy-constructed at the new position
* in memory, the old instance is then destroyed.
*/
static void MoveElements (T* mem, size_t dest, size_t src, size_t count)
{
size_t i;
if (dest < src)
{
for (i = 0 ; i < count ; i++)
{
Construct (mem + dest + i, mem[src + i]);
Destroy (mem + src + i);
}
}
else
{
i = count;
while (i > 0)
{
i--;
Construct (mem + dest + i, mem[src + i]);
Destroy (mem + src + i);
}
}
}
/// \copydoc MoveElements
static void MoveElementsNoOverlap (T* mem, size_t dest, size_t src, size_t count)
{
MoveElements (mem, dest, src, count);
}
};
/**
* csArray variable threshold for capacity handlers.
* The threshold is variable at run-time object construction.
*/
class csArrayThresholdVariable
{
size_t threshold;
public:
/// Construct with given threshold
csArrayThresholdVariable (size_t in_threshold = 0)
{ threshold = (in_threshold > 0 ? in_threshold : 16); }
/// Return the threshold.
size_t GetThreshold() const { return threshold; }
};
/**
* csArray fixed threshold for capacity handlers.
* The threshold is specified at compile time, hence fixed at runtime.
*/
template<int N>
class csArrayThresholdFixed
{
public:
/// Construct. \a x is ignored.
csArrayThresholdFixed (size_t x = 0)
{ (void)x; }
/// Return the threshold.
size_t GetThreshold() const { return N; }
// Work around VC7 bug apparently incorrectly copying this empty class
csArrayThresholdFixed& operator= (const csArrayThresholdFixed&)
{ return *this; }
};
/**
* csArray capacity handler.
* Different capacity handlers allow to realize different csArray internal
* growth behaviours, if needed. This default "linear" handler will
* result in array capacity growth to multiples of \a Threshold and works
* well enough in most cases.
*/
template<typename Threshold = csArrayThresholdVariable>
class csArrayCapacityLinear : public Threshold
{
public:
//@{
/// Construct capacity handler
csArrayCapacityLinear () : Threshold () {}
csArrayCapacityLinear (const Threshold& threshold) : Threshold (threshold)
{}
//@}
/**
* Construct capacity handler with a given size_t parameter for the
* \a Threshold object. The exact meaning of \a x depends on the \a Threshold
* implementation.
* \remarks Mostly for compatibility with existing code.
*/
csArrayCapacityLinear (const size_t x) : Threshold (x)
{}
/**
* Return "true" if the given capacity is too large for the given count,
* that is, if GetCapacity() would return a value for \a count smaller than
* \a capacity.
*/
bool IsCapacityExcessive (size_t capacity, size_t count) const
{
return (capacity > this->GetThreshold()
&& count < capacity - this->GetThreshold());
}
/**
* Compute the capacity for a given number of items. The capacity will
* commonly be larger than the actual \a count to reduce the number of
* memory allocations when pushing items onto an array.
*/
size_t GetCapacity (size_t count) const
{
return ((count + this->GetThreshold() - 1) / this->GetThreshold()) *
this->GetThreshold();
}
};
// Alias for csArrayCapacityLinear<csArrayThresholdVariable> to keep
// SWIG generated Java classes (and thus filenames) short enough for Windows.
// Note that a typedef wont work because SWIG would expand it.
struct csArrayCapacityVariableGrow :
public csArrayCapacityLinear<csArrayThresholdVariable>
{
csArrayCapacityVariableGrow () :
csArrayCapacityLinear<csArrayThresholdVariable> () {}
csArrayCapacityVariableGrow (const csArrayThresholdVariable& threshold) :
csArrayCapacityLinear<csArrayThresholdVariable> (threshold) {}
csArrayCapacityVariableGrow (const size_t x) :
csArrayCapacityLinear<csArrayThresholdVariable> (x) {}
} ;
// @@@ Deprecate? Name is non-descriptive/misleading
typedef csArrayCapacityVariableGrow csArrayCapacityDefault;
/**
* Shortcut for an array capacity handler with a compile-time fixed rate of
* growth
*/
template<int N>
struct csArrayCapacityFixedGrow :
public csArrayCapacityLinear<csArrayThresholdFixed<N> >
{
csArrayCapacityFixedGrow () :
csArrayCapacityLinear<csArrayThresholdFixed<N> > () {}
};
namespace CS
{
namespace Container
{
typedef CS::Memory::AllocatorMalloc ArrayAllocDefault;
typedef csArrayCapacityFixedGrow<16> ArrayCapacityDefault;
template<int MaxGrow = 1 << 20>
struct ArrayCapacityExponential
{
bool IsCapacityExcessive (size_t capacity, size_t count) const
{
return size_t (csFindNearestPowerOf2 ((int)count)) < (capacity/2);
}
size_t GetCapacity (size_t count) const
{
size_t newCap = (size_t)csFindNearestPowerOf2 ((int)count);
return newCap < MaxGrow ? newCap : MaxGrow;
}
};
} // namespace Container
} // namespace CS
/**
* This value is returned whenever an array item could not be located or does
* not exist.
*/
const size_t csArrayItemNotFound = (size_t)-1;
/**
* A templated array class. The objects in this class are constructed via
* copy-constructor and are destroyed when they are removed from the array or
* the array is destroyed.
* \note If you want to store reference-counted object pointers, such as iFoo*,
* then you should consider csRefArray, which is more idiomatic than
* csArray<csRef<iFoo> >.
*/
template <class T,
class ElementHandler = csArrayElementHandler<T>,
class MemoryAllocator = CS::Container::ArrayAllocDefault,
class CapacityHandler = CS::Container::ArrayCapacityDefault>
class csArray : public CS::Memory::CustomAllocated
{
public:
typedef csArray<T, ElementHandler, MemoryAllocator, CapacityHandler> ThisType;
typedef T ValueType;
typedef ElementHandler ElementHandlerType;
typedef MemoryAllocator AllocatorType;
typedef CapacityHandler CapacityHandlerType;
private:
size_t count;
/**
* Class to eliminate overhead from possibly empty CapacityHandler.
* See http://www.cantrip.org/emptyopt.html for details.
*/
struct ArrayCapacity : public CapacityHandler
{
size_t c;
ArrayCapacity (size_t in_capacity)
{ c = (in_capacity > 0 ? in_capacity : 0); }
ArrayCapacity (size_t in_capacity, const CapacityHandler& ch) :
CapacityHandler (ch)
{ c = (in_capacity > 0 ? in_capacity : 0); }
void CopyFrom (const CapacityHandler& source)
{
CapacityHandler::operator= (source);
}
};
ArrayCapacity capacity;
CS::Memory::AllocatorPointerWrapper<T, MemoryAllocator> root;
protected:
/**
* Initialize a region. This is a dangerous function to use because it
* does not properly destruct the items in the array.
*/
void InitRegion (size_t start, size_t count)
{
ElementHandler::InitRegion (root.p+start, count);
}
/**
* Set the internal pointer to the data.
* \warning This is \em obviously dangerous.
*/
void SetDataVeryUnsafe (T* data) { root.p = data; }
/**
* Set the internal array size.
* \warning This is \em obviously dangerous.
*/
void SetSizeVeryUnsafe (size_t n) { count = n; }
/**
* Set the internal array capacity.
* \warning This is \em obviously dangerous.
*/
void SetCapacityVeryUnsafe (size_t n) { capacity.c = n; }
private:
/// Copy from one array to this one, properly constructing the copied items.
void CopyFrom (const csArray& source)
{
capacity.CopyFrom (source.capacity);
SetSizeUnsafe (source.GetSize ());
for (size_t i=0 ; i<source.GetSize () ; i++)
ElementHandler::Construct (root.p + i, source[i]);
}
/// Set the capacity of the array precisely to \c n elements.
void InternalSetCapacity (size_t n)
{
if (root.p == 0)
{
root.p = (T*)root.Alloc (n * sizeof (T));
}
else
{
root.p = ElementHandler::ResizeRegion (root, root.p, count, capacity.c, n);
}
capacity.c = n;
}
/**
* Adjust capacity of this array to \c n elements rounded up to a multiple of
* \c threshold.
*/
void AdjustCapacity (size_t n)
{
if (n > capacity.c || capacity.IsCapacityExcessive (capacity.c, n))
{
InternalSetCapacity (capacity.GetCapacity (n));
}
}
/**
* Set array length.
* \warning Do not make this public since it does not properly
* construct/destroy elements. To safely truncate the array, use
* Truncate(). To safely set the capacity, use SetCapacity().
*/
void SetSizeUnsafe (size_t n)
{
if (n > capacity.c)
AdjustCapacity (n);
count = n;
}
public:
/**
* Compare two objects of the same type.
* \param r1 Reference to first object.
* \param r2 Reference to second object.
* \return Zero if the objects are equal; less-than-zero if the first object
* is less than the second; or greater-than-zero if the first object is
* greater than the second.
* \remarks Assumes the existence of T::operator<(T). This is the default
* comparison function used by csArray for sorting if the client does not
* provide a custom function.
*/
static int DefaultCompare(T const& r1, T const& r2)
{
return csComparator<T,T>::Compare(r1,r2);
}
/**
* Initialize object to have initial capacity of \c in_capacity elements.
* The storage increase depends on the specified capacity handler. The
* default capacity handler accepts a threshold parameter by which the
* storage is increased each time the upper bound is exceeded.
*/
csArray (size_t in_capacity = 0,
const CapacityHandler& ch = CapacityHandler()) : count (0),
capacity (in_capacity, ch)
{
#ifdef CS_MEMORY_TRACKER
root.SetMemTrackerInfo (typeid(*this).name());
#endif
if (capacity.c != 0)
{
root.p = (T*)root.Alloc (capacity.c * sizeof (T));
}
else
{
root.p = 0;
}
}
/**
* Initialize object to have initial capacity of \c in_capacity elements
* and with specific memory allocator and capacity handler initializations.
*/
csArray (size_t in_capacity,
const MemoryAllocator& alloc,
const CapacityHandler& ch) : count (0),
capacity (in_capacity, ch), root (alloc)
{
#ifdef CS_MEMORY_TRACKER
root.SetMemTrackerInfo (typeid(*this).name());
#endif
if (capacity.c != 0)
{
root.p = (T*)root.Alloc (capacity.c * sizeof (T));
}
else
{
root.p = 0;
}
}
/// Destroy array and all contained elements.
~csArray ()
{
DeleteAll ();
}
/// Copy constructor.
csArray (const csArray& source) : count (0), capacity (0), root (0)
{
#ifdef CS_MEMORY_TRACKER
root.SetMemTrackerInfo (typeid(*this).name());
#endif
CopyFrom (source);
}
/// Assignment operator.
csArray<T,ElementHandler,MemoryAllocator,CapacityHandler>& operator= (
const csArray& other)
{
if (&other != this)
{
DeleteAll ();
CopyFrom (other);
}
return *this;
}
/// Return the number of elements in the array.
size_t GetSize () const
{
return count;
}
/// Query vector capacity. Note that you should rarely need to do this.
size_t Capacity () const
{
return capacity.c;
}
/**
* Transfer the entire contents of one array to the other. The end
* result will be that this array will be completely empty and the
* other array will have all items that originally were in this array.
* This operation is very efficient.
*/
// @@@ FIXME: What about custom allocators?
void TransferTo (csArray& destination)
{
if (&destination != this)
{
destination.DeleteAll ();
destination.root.p = root.p;
destination.count = count;
destination.capacity = capacity;
root.p = 0;
capacity.c = count = 0;
}
}
/**
* Set the actual number of items in this array. This can be used to shrink
* an array (like Truncate()) or to enlarge an array, in which case it will
* properly construct all new items based on the given item.
* \param n New array length.
* \param what Object used as template to construct each newly added object
* using the object's copy constructor when the array size is increased by
* this method.
*/
void SetSize (size_t n, T const& what)
{
if (n <= count)
{
Truncate (n);
}
else
{
size_t old_len = GetSize ();
SetSizeUnsafe (n);
for (size_t i = old_len ; i < n ; i++)
ElementHandler::Construct (root.p + i, what);
}
}
/**
* Set the actual number of items in this array. This can be used to shrink
* an array (like Truncate()) or to enlarge an array, in which case it will
* properly construct all new items using their default (zero-argument)
* constructor.
* \param n New array length.
*/
void SetSize (size_t n)
{
if (n <= count)
{
Truncate (n);
}
else
{
size_t old_len = GetSize ();
SetSizeUnsafe (n);
ElementHandler::InitRegion (root.p + old_len, n-old_len);
}
}
/// Get an element (non-const).
T& Get (size_t n)
{
CS_ASSERT (n < count);
return root.p[n];
}
/// Get an element (const).
T const& Get (size_t n) const
{
CS_ASSERT (n < count);
return root.p[n];
}
/**
* Get an item from the array. If the number of elements in this array is too
* small the array will be automatically extended, and the newly added
* objects will be created using their default (no-argument) constructor.
*/
T& GetExtend (size_t n)
{
if (n >= count)
SetSize (n+1);
return root.p[n];
}
/**
* Get an item from the array. If the number of elements in this array is too
* small the array will be automatically extended, and the newly added
* objects will be constructed based on the given item \a what.
*/
T& GetExtend (size_t n, T const& what)
{
if (n >= count)
SetSize (n+1, what);
return root.p[n];
}
/// Get an element (non-const).
T& operator [] (size_t n)
{
return Get(n);
}
/// Get a const reference.
T const& operator [] (size_t n) const
{
return Get(n);
}
/**
* Insert or reset a copy of the element \c what at the position with index \c n.
* If the size of the array is smaller than \c n then it will be resized.
*/
void Put (size_t n, T const& what)
{
if (n >= count)
SetSize (n+1);
ElementHandler::Destroy (root.p + n);
ElementHandler::Construct (root.p + n, what);
}
/**
* Find an element based upon some arbitrary key, which may be embedded
* within an element, or otherwise derived from it. The incoming key \e
* functor defines the relationship between the key and the array's element
* type.
* \return csArrayItemNotFound if not found, else item index.
*/
template <class K>
size_t FindKey (csArrayCmp<T,K> comparekey) const
{
for (size_t i = 0 ; i < GetSize () ; i++)
if (comparekey (root.p[i]) == 0)
return i;
return csArrayItemNotFound;
}
/**
* Push a copy of an element onto the tail end of the array.
* \return Index of newly added element.
*/
size_t Push (T const& what)
{
if (((&what >= root.p) && (&what < root.p + GetSize())) &&
(capacity.c < count + 1))
{
/*
Special case: An element from this very array is pushed, and a
reallocation is needed. This could cause the passed ref to the
element to be pushed to be read from deleted memory. Work
around this.
*/
size_t whatIndex = &what - root.p;
SetSizeUnsafe (count + 1);
ElementHandler::Construct (root.p + count - 1, root.p[whatIndex]);
}
else
{
SetSizeUnsafe (count + 1);
ElementHandler::Construct (root.p + count - 1, what);
}
return count - 1;
}
/**
* Push a element onto the tail end of the array if not already present.
* \return Index of newly pushed element or index of already present element.
*/
size_t PushSmart (T const& what)
{
size_t const n = Find (what);
return (n == csArrayItemNotFound) ? Push (what) : n;
}
/**
* Push the elements of an array onto the tail end of the array.
*
* \param origin The array to push at the end of this array.
*/
void Merge(const csArray& origin)
{
for(size_t i = 0; i < origin.GetSize(); i++)
Push(origin.Get(i));
}
/**
* Push the elements of an array onto the tail end of the array if its elements aren't already present.
* If an element is found duplicate it's skipped.
*
* \param origin The array to push at the end of this array.
*/
void MergeSmart(const csArray& origin)
{
for(size_t i = 0; i < origin.GetSize(); i++)
PushSmart(origin.Get(i));
}
/// Pop an element from tail end of array.
T Pop ()
{
CS_ASSERT (count > 0);
T ret(root.p [count - 1]);
ElementHandler::Destroy (root.p + count - 1);
SetSizeUnsafe (count - 1);
return ret;
}
/// Return the top element but do not remove it. (const)
T const& Top () const
{
CS_ASSERT (count > 0);
return root.p [count - 1];
}
/// Return the top element but do not remove it. (non-const)
T& Top ()
{
CS_ASSERT (count > 0);
return root.p [count - 1];
}
/// Insert element \c item before element \c n.
bool Insert (size_t n, T const& item)
{
if (n <= count)
{
SetSizeUnsafe (count + 1); // Increments 'count' as a side-effect.
size_t const nmove = (count - n - 1);
if (nmove > 0)
ElementHandler::MoveElements (root.p, n+1, n, nmove);
ElementHandler::Construct (root.p + n, item);
return true;
}
else
return false;
}
/**
* Get the portion of the array between \c low and \c high inclusive.
*/
csArray<T> Section (size_t low, size_t high) const
{
CS_ASSERT (high < count && high >= low);
csArray<T> sect (high - low + 1);
for (size_t i = low; i <= high; i++) sect.Push (root.p[i]);
return sect;
}
/**
* Find an element based on some key, using a comparison function.
* \return csArrayItemNotFound if not found, else the item index.
* \remarks The array must be sorted.
*/
template <class K>
size_t FindSortedKey (csArrayCmp<T,K> comparekey,
size_t* candidate = 0) const
{
size_t m = 0, l = 0, r = GetSize ();
while (l < r)
{
m = (l + r) / 2;
int cmp = comparekey (root.p[m]);
if (cmp == 0)
{
if (candidate) *candidate = csArrayItemNotFound;
return m;
}
else if (cmp < 0)
l = m + 1;
else
r = m;
}
if ((m + 1) == r)
m++;
if (candidate) *candidate = m;
return csArrayItemNotFound;
}
/**
* Insert an element at a sorted position, using an element comparison
* function.
* \param item The item to insert.
* \param compare [optional] Pointer to a function to compare two elements.
* \param equal_index [optional] Returns the index of an element equal to
* the one to be inserted, if one is found. csArrayItemNotFound otherwise.
* \return The index of the inserted item.
* \remarks The array must be sorted.
*/
size_t InsertSorted (const T& item,
int (*compare)(T const&, T const&) = DefaultCompare,
size_t* equal_index = 0)
{
size_t m = 0, l = 0, r = GetSize ();
while (l < r)
{
m = (l + r) / 2;
int cmp = compare (root.p [m], item);
if (cmp == 0)
{
if (equal_index) *equal_index = m;
Insert (++m, item);
return m;
}
else if (cmp < 0)
l = m + 1;
else
r = m;
}
if ((m + 1) == r)
m++;
if (equal_index) *equal_index = csArrayItemNotFound;
Insert (m, item);
return m;
}
/**
* Find an element in this array.
* \return csArrayItemNotFound if not found, else the item index.
* \warning Performs a slow linear search. For faster searching, sort the
* array and then use FindSortedKey().
*/
size_t Find (T const& which) const
{
for (size_t i = 0 ; i < GetSize () ; i++)
if (root.p[i] == which)
return i;
return csArrayItemNotFound;
}
/// An alias for Find() which may be considered more idiomatic by some.
size_t Contains(T const& which) const
{ return Find(which); }
/**
* Given a pointer to an element in the array this function will return
* the index. Note that this function does not check if the returned
* index is actually valid. The caller of this function is responsible
* for testing if the returned index is within the bounds of the array.
*/
size_t GetIndex (const T* which) const
{
CS_ASSERT (which >= root.p);
CS_ASSERT (which < (root.p + count));
return which-root.p;
}
/**
* Sort array using a comparison function.
*/
void Sort (int (*compare)(T const&, T const&) = DefaultCompare)
{
qsort (root.p, GetSize (), sizeof(T),
(int (*)(void const*, void const*))compare);
}
/**
* Sort array using a binary predicate
*/
template<typename Pred>
void Sort (Pred& pred)
{
std::sort (root.p, root.p + GetSize (), pred);
}
/**
* Sort array using a binary predicate and a stable sorting algorithm
*/
template<typename Pred>
void SortStable (Pred& pred)
{
std::stable_sort (root.p, root.p + GetSize (), pred);
}
/**
* Clear the entire array, releasing all allocated memory.
* \sa Empty()
*/
void DeleteAll ()
{
if (root.p)
{
size_t i;
for (i = 0 ; i < count ; i++)
ElementHandler::Destroy (root.p + i);
root.Free (root.p);
root.p = 0;
capacity.c = count = 0;
}
}
/**
* Truncate the array to the specified number of elements. The new number of
* elements cannot exceed the current number of elements.
* \remarks Does not reclaim memory used by the array itself, though the
* removed objects are destroyed. To reclaim the array's memory invoke
* ShrinkBestFit(), or DeleteAll() if you want to release all allocated
* resources.
* <p>
* \remarks The more general-purpose SetSize() method can also enlarge the
* array.
*/
void Truncate (size_t n)
{
CS_ASSERT(n <= count);
if (n < count)
{
for (size_t i = n; i < count; i++)
ElementHandler::Destroy (root.p + i);
SetSizeUnsafe(n);
}
}
/**
* Remove all elements. Similar to DeleteAll(), but does not release memory
* used by the array itself, thus making it more efficient for cases when the
* number of contained elements will fluctuate.
*/
void Empty ()
{
Truncate (0);
}
/**
* Return whether the array is empty or not.
* \return True if the array is empty, false otherwise.
* \remarks Rigidly equivalent to <tt>return GetSize() == 0</tt>, but more
* idiomatic.
*/
bool IsEmpty() const
{
return GetSize() == 0;
}
/**
* Set vector capacity to approximately \c n elements.
* \remarks Never sets the capacity to fewer than the current number of
* elements in the array. See Truncate() or SetSize() if you need to
* adjust the number of actual array elements.
*/
void SetCapacity (size_t n)
{
if (n > GetSize ())
InternalSetCapacity (n);
}
/**
* Set vector capacity to at least \c n elements.
* \remarks Never sets the capacity to fewer than the current number of
* elements in the array. See Truncate() or SetSize() if you need to
* adjust the number of actual array elements. This function will also
* never shrink the current capacity.
*/
void SetMinimalCapacity (size_t n)
{
if (n < Capacity ()) return;
if (n > GetSize ())
InternalSetCapacity (n);
}
/**
* Make the array just as big as it needs to be. This is useful in cases
* where you know the array is not going to be modified anymore in order
* to preserve memory.
*/
void ShrinkBestFit ()
{
if (count == 0)
{
DeleteAll ();
}
else if (count != capacity.c)
{
root.p = ElementHandler::ResizeRegion (root, root.p, count, capacity.c, count);
capacity.c = count;
}
}
/**
* Delete an element from the array.
* \return True if the indicated item index was valid, false otherwise.
* \remarks Deletion speed is proportional to the size of the array and the
* location of the element being deleted. If the order of the elements in
* the array is not important, then you can instead use DeleteIndexFast()
* for constant-time deletion.
*/
bool DeleteIndex (size_t n)
{
if (n < count)
{
size_t const ncount = count - 1;
size_t const nmove = ncount - n;
ElementHandler::Destroy (root.p + n);
if (nmove > 0)
ElementHandler::MoveElements (root.p, n, n+1, nmove);
SetSizeUnsafe (ncount);
return true;
}
else
return false;
}
/**
* Delete an element from the array in constant-time, regardless of the
* array's size.
* \return True if the indicated item index was valid, false otherwise.
* \remarks This is a special version of DeleteIndex() which does not
* preserve the order of the remaining elements. This characteristic allows
* deletions to be performed in constant-time, regardless of the size of
* the array.
*/
bool DeleteIndexFast (size_t n)
{
if (n < count)
{
size_t const ncount = count - 1;
size_t const nmove = ncount - n;
ElementHandler::Destroy (root.p + n);
if (nmove > 0)
ElementHandler::MoveElementsNoOverlap (root.p, n, ncount, 1);
SetSizeUnsafe (ncount);
return true;
}
else
return false;
}
/**
* Delete a given range (inclusive).
* \remarks Will clamp \c start and \c end to the array limits.
* \return false in case the inputs were invalid (csArrayItemNotFound)
* or if the start is greater then the number of items in the array.
*/
bool DeleteRange (size_t start, size_t end)
{
if (start >= count) return false;
// Treat 'csArrayItemNotFound' as invalid indices, do nothing.
if (end == csArrayItemNotFound) return false;
if (start == csArrayItemNotFound) return false;//start = 0;
if (end >= count) end = count - 1;
size_t i;
for (i = start ; i <= end ; i++)
ElementHandler::Destroy (root.p + i);
size_t const range_size = end - start + 1;
size_t const ncount = count - range_size;
size_t const nmove = count - end - 1;
if (nmove > 0)
ElementHandler::MoveElements (root.p, start, start + range_size, nmove);
SetSizeUnsafe (ncount);
return true;
}
/**
* Delete the given element from the array.
* \return True if the item has been found and deleted, false otherwise.
* \remarks Performs a linear search of the array to locate \c item, thus it
* may be slow for large arrays.
*/
bool Delete (T const& item)
{
size_t const n = Find (item);
if (n != csArrayItemNotFound)
return DeleteIndex (n);
return false;
}
/** Iterator for the csArray class */
class Iterator
{
public:
/** Copy constructor. */
Iterator(Iterator const& r) :
currentelem(r.currentelem), array(r.array) {}
/** Assignment operator. */
Iterator& operator=(Iterator const& r)
{ currentelem = r.currentelem; array = r.array; return *this; }
/** Return true if the next Next() call will return an element */
bool HasNext() const
{ return currentelem < array.GetSize (); }
/** Return the next element in the array and increment the iterator. */
T& Next()
{ return array.Get(currentelem++); }
/** Reset the iterator to the first element */
void Reset()
{ currentelem = 0; }
protected:
Iterator(csArray<T, ElementHandler, MemoryAllocator, CapacityHandler>& newarray)
: currentelem(0), array(newarray) {}
friend class csArray<T, ElementHandler, MemoryAllocator, CapacityHandler>;
private:
size_t currentelem;
csArray<T, ElementHandler, MemoryAllocator, CapacityHandler>& array;
};
/** Iterator for the csArray class */
class ConstIterator
{
public:
/** Copy constructor. */
ConstIterator(ConstIterator const& r) :
currentelem(r.currentelem), array(r.array) {}
/** Assignment operator. */
ConstIterator& operator=(ConstIterator const& r)
{ currentelem = r.currentelem; array = r.array; return *this; }
/** Return true if the next Next() call will return an element */
bool HasNext() const
{ return currentelem < array.GetSize (); }
/** Return the next element in the array. */
const T& Next()
{ return array.Get(currentelem++); }
/** Reset the array to the first element */
void Reset()
{ currentelem = 0; }
protected:
ConstIterator(const csArray<T, ElementHandler, MemoryAllocator, CapacityHandler>& newarray)
: currentelem(0), array(newarray) {}
friend class csArray<T, ElementHandler, MemoryAllocator, CapacityHandler>;
private:
size_t currentelem;
const csArray<T, ElementHandler, MemoryAllocator, CapacityHandler>& array;
};
/** Reverse iterator for the csArray class */
class ReverseIterator
{
public:
/** Copy constructor. */
ReverseIterator(ReverseIterator const& r) :
currentelem(r.currentelem), array(r.array) {}
/** Assignment operator. */
ReverseIterator& operator=(ReverseIterator const& r)
{ currentelem = r.currentelem; array = r.array; return *this; }
/** Return true if the next Next() call will return an element */
bool HasNext() const
{ return currentelem > 0 && currentelem <= array.GetSize (); }
/** Return the next element in the array. */
T& Next()
{ return array.Get(--currentelem); }
/** Reset the array to the first element */
void Reset()
{ currentelem = array.GetSize (); }
protected:
ReverseIterator(csArray<T, ElementHandler, MemoryAllocator, CapacityHandler>& newarray)
: currentelem(newarray.GetSize ()), array(newarray) {}
friend class csArray<T, ElementHandler, MemoryAllocator, CapacityHandler>;
private:
size_t currentelem;
csArray<T, ElementHandler, MemoryAllocator, CapacityHandler>& array;
};
/** Reverse iterator for the csArray class */
class ReverseConstIterator
{
public:
/** Copy constructor. */
ReverseConstIterator(ReverseConstIterator const& r) :
currentelem(r.currentelem), array(r.array) {}
/** Assignment operator. */
ReverseConstIterator& operator=(ReverseConstIterator const& r)
{ currentelem = r.currentelem; array = r.array; return *this; }
/** Return true if the next Next() call will return an element */
bool HasNext() const
{ return currentelem > 0 && currentelem <= array.GetSize (); }
/** Return the next element in the array. */
const T& Next()
{ return array.Get(--currentelem); }
/** Reset the array to the first element */
void Reset()
{ currentelem = array.GetSize (); }
protected:
ReverseConstIterator(const csArray<T, ElementHandler, MemoryAllocator, CapacityHandler>& newarray)
: currentelem(newarray.GetSize ()), array(newarray) {}
friend class csArray<T, ElementHandler, MemoryAllocator, CapacityHandler>;
private:
size_t currentelem;
const csArray<T, ElementHandler, MemoryAllocator, CapacityHandler>& array;
};
/** Return an Iterator which traverses the array. */
Iterator GetIterator()
{ return Iterator(*this); }
/** Return an Iterator which traverses the array. */
ConstIterator GetIterator() const
{ return ConstIterator(*this); }
/** Return an ReverseIterator which traverses the array in reverse direction. */
ReverseIterator GetReverseIterator()
{ return ReverseIterator(*this); }
/** Return an Iterator which traverses the array. */
ReverseConstIterator GetReverseIterator() const
{ return ReverseConstIterator(*this); }
/// Check if this array has the exact same contents as \a other.
bool operator== (const csArray& other) const
{
if (other.GetSize() != GetSize()) return false;
for (size_t i = 0; i < GetSize(); i++)
if (!(Get (i) == other[i]))
return false;
return true;
}
bool operator!= (const csArray& other) const { return !(*this==other); }
/// Return a reference to the allocator of this array.
const MemoryAllocator& GetAllocator() const
{
return root;
}
};
/**
* Convenience class to make a version of csArray that does a
* safe-copy in case of reallocation of the array. Useful for weak
* references.
*/
template <class T,
class Allocator = CS::Memory::AllocatorMalloc,
class CapacityHandler = CS::Container::ArrayCapacityDefault>
class csSafeCopyArray
: public csArray<T,
csArraySafeCopyElementHandler<T>,
Allocator, CapacityHandler>
{
public:
/**
* Initialize object to hold initially \c limit elements, and increase
* storage by \c threshold each time the upper bound is exceeded.
*/
csSafeCopyArray (size_t limit = 0,
const CapacityHandler& ch = CapacityHandler())
: csArray<T, csArraySafeCopyElementHandler<T>, Allocator,
CapacityHandler> (limit, ch)
{
}
};
#include "csutil/custom_new_enable.h"
/** @} */
#endif
|