This file is indexed.

/usr/include/crystalspace-2.0/csgeom/transfrm.h is in libcrystalspace-dev 2.0+dfsg-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
/*
    Copyright (C) 1998-2001 by Jorrit Tyberghein
    Largely rewritten by Ivan Avramovic <ivan@avramovic.com>

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Library General Public
    License as published by the Free Software Foundation; either
    version 2 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Library General Public License for more details.

    You should have received a copy of the GNU Library General Public
    License along with this library; if not, write to the Free
    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#ifndef __CS_TRANSFORM_H__
#define __CS_TRANSFORM_H__

/**\file
 * Transformation from one coordinate system to another.
 */
/**
 * \addtogroup geom_utils
 * @{ */

#include "csextern.h"


#include "csgeom/matrix3.h"
#include "csgeom/vector3.h"

class csPlane3;
class csSphere;
class csBox3;

class csReversibleTransform;

/**
 * A class which defines a transformation from one coordinate system to
 * another. The two coordinate systems are refered to as 'other'
 * and 'this'. The transform defines a transformation from 'other'
 * to 'this'.
 */
class CS_CRYSTALSPACE_EXPORT csTransform
{
protected:
  /// Transformation matrix from 'other' space to 'this' space.
  csMatrix3 m_o2t;
  /// Location of the origin for 'this' space.
  csVector3 v_o2t;

public:
  // Needed for GCC4. Otherwise emits a flood of "virtual functions but
  // non-virtual destructor" warnings.
  virtual ~csTransform() {}
  /**
   * Initialize with the identity transformation.
   */
  csTransform () : m_o2t (), v_o2t (0, 0, 0) {}

  /**
   * Initialize with the given transformation. The transformation
   * is given as a 3x3 matrix and a vector. The transformation
   * is defined to mean T=M*(O-V) with T the vector in 'this' space,
   * O the vector in 'other' space, M the transformation matrix and
   * V the transformation vector.
   */
  csTransform (const csMatrix3& other2this, const csVector3& origin_pos) :
  	m_o2t (other2this), v_o2t (origin_pos) {}

  /// Return a textual representation of the transform
  csString Description() const;
  
  /**
   * Reset this transform to the identity transform.
   */
  inline void Identity ()
  {
    SetO2TTranslation (csVector3 (0));
    SetO2T (csMatrix3 ());
  }

  /**
   * Returns true if this transform is an identity transform.
   * This tests all fields so don't call this before every operation.
   */
  inline bool IsIdentity () const
  {
    if (ABS (v_o2t.x) >= SMALL_EPSILON) return false;
    if (ABS (v_o2t.y) >= SMALL_EPSILON) return false;
    if (ABS (v_o2t.z) >= SMALL_EPSILON) return false;
    if (ABS (m_o2t.m11-1) >= SMALL_EPSILON) return false;
    if (ABS (m_o2t.m12) >= SMALL_EPSILON) return false;
    if (ABS (m_o2t.m13) >= SMALL_EPSILON) return false;
    if (ABS (m_o2t.m21) >= SMALL_EPSILON) return false;
    if (ABS (m_o2t.m22-1) >= SMALL_EPSILON) return false;
    if (ABS (m_o2t.m23) >= SMALL_EPSILON) return false;
    if (ABS (m_o2t.m31) >= SMALL_EPSILON) return false;
    if (ABS (m_o2t.m32) >= SMALL_EPSILON) return false;
    if (ABS (m_o2t.m33-1) >= SMALL_EPSILON) return false;
    return true;
  }

  /**
   * Get 'other' to 'this' transformation matrix. This is the 3x3
   * matrix M from the transform equation T=M*(O-V).
   */
  inline const csMatrix3& GetO2T () const { return m_o2t; }

  /**
   * Get 'other' to 'this' translation. This is the vector V
   * from the transform equation T=M*(O-V). This is equivalent
   * to calling GetOrigin().
   */
  inline const csVector3& GetO2TTranslation () const { return v_o2t; }

  /**
   * Get origin of transformed coordinate system. In other words, the vector
   * that gets 0,0,0 after transforming with Other2This(). This is equivalent
   * to calling GetO2TTranslation().
   */
  inline const csVector3& GetOrigin () const { return v_o2t; }

  /**
   * Set 'other' to 'this' transformation matrix.
   * This is the 3x3 matrix M from the transform equation T=M*(O-V).
   */
  virtual void SetO2T (const csMatrix3& m) { m_o2t = m; }

  /**
   * Set 'world' to 'this' translation. This is the vector V
   * from the transform equation T=M*(O-V). This is equivalent to
   * calling SetOrigin().
   */
  virtual void SetO2TTranslation (const csVector3& v) { v_o2t = v; }

  /**
   * Set origin of transformed coordinate system. This is equivalent
   * to calling SetO2TTranslation().
   */
  inline void SetOrigin (const csVector3& v) { SetO2TTranslation (v); }

  /**
   * Move the 'other' to 'this' translation by a specified amount.
   * Basically this will add 'v' to the origin or translation of this
   * transform so that the new transform looks like T=M*(O-(V+v)).
   */
  inline void Translate (const csVector3& v) { SetO2TTranslation (v_o2t + v); }

  /**
   * Transform vector in 'other' space v to a vector in 'this' space.
   * This is the basic transform function. This will calculate and return
   * M*(v-V).
   */
  inline csVector3 Other2This (const csVector3& v) const
  {
    return m_o2t * (v - v_o2t);
  }

  /**
   * Convert vector v in 'other' space to a vector in 'this' space.
   * Use the origin of 'other' space. This will calculate and return
   * M*v (so the translation or V of this transform is ignored).
   */
  inline csVector3 Other2ThisRelative (const csVector3& v) const
  { return m_o2t * v; }

  /**
   * Convert a plane in 'other' space to 'this' space. If 'p' is expressed
   * as (N,D) (with N a vector for the A,B,C components of 'p') then this will
   * return a new plane which looks like (M*N,D+(M*N)*(M*V)).
   */
  csPlane3 Other2This (const csPlane3& p) const;

  /**
   * Convert a plane in 'other' space to 'this' space.
   * This version ignores translation. If 'p' is expressed as (N,D) (with
   * N a vector for the A,B,C components of 'p') then this will return a new
   * plane which looks like (M*N,D).
   */
  csPlane3 Other2ThisRelative (const csPlane3& p) const;

  /**
   * Convert a plane in 'other' space to 'this' space. This is an optimized
   * version for which a point on the new plane is known (point). The result
   * is stored in 'result'. If 'p' is expressed as (N,D) (with N a vector
   * for the A,B,C components of 'p') then this will return a new plane
   * in 'result' which looks like (M*N,-(M*N)*point).
   */
  void Other2This (const csPlane3& p, const csVector3& point,
  	csPlane3& result) const;

  /**
   * Convert a sphere in 'other' space to 'this' space.
   */
  csSphere Other2This (const csSphere& s) const;

  /**
   * Convert a box in 'other' space to 'this' space.
   */
  csBox3 Other2This (const csBox3& box) const;

  /**
   * Apply a transformation to a 3D vector. This corresponds exactly
   * to calling t.Other2This (v).
   */
  friend CS_CRYSTALSPACE_EXPORT csVector3 operator* (const csVector3& v, 
    const csTransform& t);

  /**
   * Apply a transformation to a 3D vector. This corresponds exactly
   * to calling t.Other2This (v).
   */
  friend CS_CRYSTALSPACE_EXPORT csVector3 operator* (const csTransform& t, 
    const csVector3& v);

  /**
   * Apply a transformation to a 3D vector. This corresponds exactly
   * to calling v = t.Other2This(v).
   */
  friend CS_CRYSTALSPACE_EXPORT csVector3& operator*= (csVector3& v, 
    const csTransform& t);

  /**
   * Apply a transformation to a Plane. This corresponds exactly
   * to calling t.Other2This(p).
   */
  friend CS_CRYSTALSPACE_EXPORT csPlane3 operator* (const csPlane3& p, 
    const csTransform& t);

  /**
   * Apply a transformation to a Plane. This corresponds exactly
   * to calling t.Other2This(p).
   */
  friend CS_CRYSTALSPACE_EXPORT csPlane3 operator* (const csTransform& t, 
    const csPlane3& p);

  /**
   * Apply a transformation to a Plane. This corresponds exactly
   * to calling p = t.Other2This(p).
   */
  friend CS_CRYSTALSPACE_EXPORT csPlane3& operator*= (csPlane3& p, 
    const csTransform& t);

  /**
   * Apply a transformation to a sphere. This corresponds exactly
   * to calling t.Other2This(p).
   */
  friend CS_CRYSTALSPACE_EXPORT csSphere operator* (const csSphere& p, 
    const csTransform& t);

  /**
   * Apply a transformation to a sphere. This corresponds exactly
   * to calling t.Other2This(p).
   */
  friend CS_CRYSTALSPACE_EXPORT csSphere operator* (const csTransform& t, 
    const csSphere& p);

  /**
   * Apply a transformation to a sphere. This corresponds exactly
   * to calling p = t.Other2This(p).
   */
  friend CS_CRYSTALSPACE_EXPORT csSphere& operator*= (csSphere& p, 
    const csTransform& t);

  /**
   * Apply a transformation to a box. This corresponds exactly
   * to calling t.Other2This(p).
   */
  friend CS_CRYSTALSPACE_EXPORT csBox3 operator* (const csBox3& p, 
    const csTransform& t);

  /**
   * Apply a transformation to a box. This corresponds exactly
   * to calling t.Other2This(p).
   */
  friend CS_CRYSTALSPACE_EXPORT csBox3 operator* (const csTransform& t, 
    const csBox3& p);

  /**
   * Apply a transformation to a box. This corresponds exactly
   * to calling p = t.Other2This(p).
   */
  friend CS_CRYSTALSPACE_EXPORT csBox3& operator*= (csBox3& p, 
    const csTransform& t);

  /**
   * Multiply a matrix with the transformation matrix. This will calculate
   * and return m*M.
   */
  friend CS_CRYSTALSPACE_EXPORT csMatrix3 operator* (const csMatrix3& m, 
    const csTransform& t);

  /**
   * Multiply a matrix with the transformation matrix. This will calculate
   * and return M*m.
   */
  friend CS_CRYSTALSPACE_EXPORT csMatrix3 operator* (const csTransform& t, 
    const csMatrix3& m);

  /**
   * Multiply a matrix with the transformation matrix.
   * This corresponds exactly to m*=M.
   */
  friend CS_CRYSTALSPACE_EXPORT csMatrix3& operator*= (csMatrix3& m, 
    const csTransform& t);

  /**
   * Combine two transforms, rightmost first. Given the following
   * definitions:
   * - 't1' expressed as T=t1.M*(O-t1.V)
   * - 't2' expressed as T=t2.M*(O-t2.V)
   * - t2.Minv is the inverse of t2.M
   *
   * Then this will return a new transform
   * T=(t1.M*t2.M)*(O-(t2.V+t2.Minv*t1.V)).
   */
  friend CS_CRYSTALSPACE_EXPORT csTransform operator* (const csTransform& t1,
                              const csReversibleTransform& t2);

  /**
   * Return a transform that represents a mirroring across a plane.
   * This function will return a csTransform which represents a reflection
   * across the plane pl.
   */
  static csTransform GetReflect (const csPlane3& pl);

  /**
   * Get the front vector in 'other' space. This is basically equivalent
   * to doing: tr.This2OtherRelative (csVector3 (0, 0, 1)) but it is
   * more efficient.
   */
  csVector3 GetFront () const
  { 
    return csVector3 (m_o2t.m31, m_o2t.m32, m_o2t.m33); 
  }
  void SetFront (const csVector3& v)
  {
    m_o2t.m31 = v.x;
    m_o2t.m32 = v.y;
    m_o2t.m33 = v.z;
  }

  /**
   * Get the up vector in 'other' space. This is basically equivalent
   * to doing: tr.This2OtherRelative (csVector3 (0, 1, 0)) but it is
   * more efficient.
   */
  csVector3 GetUp () const
  {
    return csVector3 (m_o2t.m21, m_o2t.m22, m_o2t.m23); 
  }
  void SetUp (const csVector3& v)
  {
    m_o2t.m21 = v.x;
    m_o2t.m22 = v.y;
    m_o2t.m23 = v.z;
  }

  /**
   * Get the right vector in 'other' space. This is basically equivalent
   * to doing: tr.This2OtherRelative (csVector3 (1, 0, 0)) but it is
   * more efficient.
   */
  csVector3 GetRight () const 
  {
    return csVector3 (m_o2t.m11, m_o2t.m12, m_o2t.m13); 
  }
  void SetRight (const csVector3& v)
  {
    m_o2t.m11 = v.x;
    m_o2t.m12 = v.y;
    m_o2t.m13 = v.z;
  }
};

/**
 * A class which defines a reversible transformation from one coordinate
 * system to another by maintaining an inverse transformation matrix.
 * This version is similar to csTransform (in fact, it is a sub-class)
 * but it is more efficient if you plan to do inverse transformations
 * often.
 * \remarks Despite that the superclass csTransform transforms from 'other'
 *   to 'this' space, commonly csReversibleTransform instances are named like
 *   'this2other' - e.g. 'object2world' where 'this' space is object space and
 *   'other' space is world space.
 */
class CS_CRYSTALSPACE_EXPORT csReversibleTransform : public csTransform
{
protected:
  /// Inverse transformation matrix ('this' to 'other' space).
  csMatrix3 m_t2o;

  /**
   * Initialize transform with both transform matrix and inverse tranform.
   */
  csReversibleTransform (const csMatrix3& o2t, const csMatrix3& t2o,
    const csVector3& pos) : csTransform (o2t,pos), m_t2o (t2o) {}

private:
  bool LookAtGeneric (const csVector3 &v, const csVector3 &upNeg,
      csVector3& w1, csVector3& w2, csVector3& w3);

public:
  /**
   * Initialize with the identity transformation.
   */
  csReversibleTransform () : csTransform (), m_t2o () {}

  /**
   * Initialize with the given transformation. The transformation
   * is given as a 3x3 matrix and a vector. The transformation
   * is defined to mean T=M*(O-V) with T the vector in 'this' space,
   * O the vector in 'other' space, M the transformation matrix and
   * V the transformation vector.
   */
  csReversibleTransform (const csMatrix3& o2t, const csVector3& pos) :
    csTransform (o2t,pos) { m_t2o = m_o2t.GetInverse (); }

  /**
   * Initialize with the given transformation.
   */
  csReversibleTransform (const csTransform& t) :
    csTransform (t) { m_t2o = m_o2t.GetInverse (); }

  /**
   * Initialize with the given transformation.
   */
  csReversibleTransform (const csReversibleTransform& t) :
    csTransform (t) { m_t2o = t.m_t2o; }

  /**
   * Get 'this' to 'other' transformation matrix. This corresponds
   * to the inverse of M.
   */
  inline const csMatrix3& GetT2O () const { return m_t2o; }

  /**
   * Get 'this' to 'other' translation. This will calculate
   * and return -(M*V).
   */
  inline csVector3 GetT2OTranslation () const { return -m_o2t*v_o2t; }

  /**
   * Get the inverse of this transform.
   */
  csReversibleTransform GetInverse () const
  { return csReversibleTransform (m_t2o, m_o2t, -m_o2t*v_o2t); }

  /**
   * Set 'other' to 'this' transformation matrix.
   * This is the 3x3 matrix M from the transform equation T=M*(O-V).
   */
  virtual void SetO2T (const csMatrix3& m)
  { m_o2t = m;  m_t2o = m_o2t.GetInverse (); }

  /**
   * Set 'this' to 'other' transformation matrix.
   * This is equivalent to SetO2T() except that you can now give the
   * inverse matrix.
   */
  virtual void SetT2O (const csMatrix3& m)
  { m_t2o = m;  m_o2t = m_t2o.GetInverse (); }

  /**
   * Convert vector v in 'this' space to 'other' space.
   * This is the basic inverse transform operation and it corresponds
   * with the calculation of V+Minv*v (with Minv the inverse of M).
   */
  inline csVector3 This2Other (const csVector3& v) const
  { return v_o2t + m_t2o * v; }

  /**
   * Convert vector v in 'this' space to a vector in 'other' space,
   * relative to local origin. This calculates and returns
   * Minv*v (with Minv the inverse of M).
   */
  inline csVector3 This2OtherRelative (const csVector3& v) const
  { return m_t2o * v; }

  /**
   * Convert a plane in 'this' space to 'other' space. If 'p' is expressed
   * as (N,D) (with N a vector for the A,B,C components of 'p') then this will
   * return a new plane which looks like (Minv*N,D-N*(M*V)) (with Minv
   * the inverse of M).
   */
  csPlane3 This2Other (const csPlane3& p) const;

  /**
   * Convert a plane in 'this' space to 'other' space.
   * This version ignores translation. If 'p' is expressed as (N,D) (with
   * N a vector for the A,B,C components of 'p') then this will return a new
   * plane which looks like (Minv*N,D) (with Minv the inverse of M).
   */
  csPlane3 This2OtherRelative (const csPlane3& p) const;

  /**
   * Convert a plane in 'this' space to 'other' space. This is an optimized
   * version for which a point on the new plane is known (point). The result
   * is stored in 'result'. If 'p' is expressed as (N,D) (with N a vector
   * for the A,B,C components of 'p') then this will return a new
   * plane which looks like (Minv*N,-(Minv*N)*point) (with Minv the inverse
   * of M).
   */
  void This2Other (const csPlane3& p, const csVector3& point,
  	csPlane3& result) const;

  /**
   * Convert a sphere in 'this' space to 'other' space.
   */
  csSphere This2Other (const csSphere& s) const;

  /**
   * Converts a box in 'this' space to 'other' space.
   */
  csBox3 This2Other (const csBox3& box) const;

  /**
   * Rotate the transform by the angle (radians) around the given vector,
   * in other coordinates. Note: this function rotates the transform, not
   * the coordinate system.
   */
  void RotateOther (const csVector3& v, float angle);

  /**
   * Rotate the transform by the angle (radians) around the given vector,
   * in these coordinates. Note: this function rotates the transform,
   * not the coordinate system.
   */
  void RotateThis (const csVector3& v, float angle);

  /**
   * Use the given transformation matrix, in other space,
   * to reorient the transformation. Note: this function rotates the
   * transformation, not the coordinate system. This basically
   * calculates Minv=m*Minv (with Minv the inverse of M). M will be
   * calculated accordingly.
   */
  void RotateOther (const csMatrix3& m) { SetT2O (m * m_t2o); }

  /**
   * Use the given transformation matrix, in this space,
   * to reorient the transformation. Note: this function rotates the
   * transformation, not the coordinate system. This basically
   * calculates Minv=Minv*m (with Minv the inverse of M). M will be
   * calculated accordingly.
   */
  void RotateThis (const csMatrix3& m) { SetT2O (m_t2o * m); }

  /**
   * Let this transform look at the given (x,y,z) point, using up as
   * the up-vector. 'v' should be given relative to the position
   * of the origin of this transform. For example, if the transform is
   * located at pos=(3,1,9) and you want it to look at location
   * loc=(10,2,8) while keeping the orientation so that the up-vector is
   * upwards then you can use: LookAt (loc-pos, csVector3 (0, 1, 0)).
   *
   * Returns false if the lookat couldn't be calculated for some reason.
   * In that case the transform will be reset to identity.
   *
   * This function is equivalent to LookAtZUpY() except that the latter
   * will not modify the transform if the lookat calculation fails.
   */
  bool LookAt (const csVector3& v, const csVector3& up);

  /**
   * Let the Z vector of this transform look into a given direction
   * with the Y vector of this transform as the 'up' orientation.
   * This function will not modify the transform if it returns false.
   */
  bool LookAtZUpY (const csVector3& v, const csVector3& up);
  /**
   * Let the Z vector of this transform look into a given direction
   * with the X vector of this transform as the 'up' orientation.
   * This function will not modify the transform if it returns false.
   */
  bool LookAtZUpX (const csVector3& v, const csVector3& up);
  /**
   * Let the Y vector of this transform look into a given direction
   * with the Z vector of this transform as the 'up' orientation.
   * This function will not modify the transform if it returns false.
   */
  bool LookAtYUpZ (const csVector3& v, const csVector3& up);
  /**
   * Let the Y vector of this transform look into a given direction
   * with the X vector of this transform as the 'up' orientation.
   * This function will not modify the transform if it returns false.
   */
  bool LookAtYUpX (const csVector3& v, const csVector3& up);
  /**
   * Let the X vector of this transform look into a given direction
   * with the Z vector of this transform as the 'up' orientation.
   * This function will not modify the transform if it returns false.
   */
  bool LookAtXUpZ (const csVector3& v, const csVector3& up);
  /**
   * Let the X vector of this transform look into a given direction
   * with the Y vector of this transform as the 'up' orientation.
   * This function will not modify the transform if it returns false.
   */
  bool LookAtXUpY (const csVector3& v, const csVector3& up);

  /**
   * Reverse a transformation on a 3D vector. This corresponds exactly
   * to calling t.This2Other(v).
   */
  friend CS_CRYSTALSPACE_EXPORT csVector3 operator/ (const csVector3& v,
  	const csReversibleTransform& t);

  /**
   * Reverse a transformation on a 3D vector. This corresponds exactly
   * to calling v=t.This2Other(v).
   */
  friend CS_CRYSTALSPACE_EXPORT csVector3& operator/= (csVector3& v, 
    const csReversibleTransform& t);

  /**
   * Reverse a transformation on a Plane. This corresponds exactly
   * to calling t.This2Other(p).
   */
  friend CS_CRYSTALSPACE_EXPORT csPlane3 operator/ (const csPlane3& p, 
    const csReversibleTransform& t);

  /**
   * Reverse a transformation on a Plane. This corresponds exactly to
   * calling p = t.This2Other(p).
   */
  friend CS_CRYSTALSPACE_EXPORT csPlane3& operator/= (csPlane3& p, 
    const csReversibleTransform& t);

  /**
   * Reverse a transformation on a sphere. This corresponds exactly to
   * calling t.This2Other(p).
   */
  friend CS_CRYSTALSPACE_EXPORT csSphere operator/ (const csSphere& p, 
    const csReversibleTransform& t);

  /**
   * Reverse a transformation on a box. This corresponds exactly to
   * calling t.This2Other(p).
   */
  friend CS_CRYSTALSPACE_EXPORT csBox3 operator/ (const csBox3& p, 
    const csReversibleTransform& t);

  /**
   * Combine two transforms, rightmost first. Given the following
   * definitions:
   * - 't1' expressed as T=t1.M*(O-t1.V)
   * - 't2' expressed as T=t2.M*(O-t2.V)
   * - t1.Minv is the inverse of t1.M
   * - t2.Minv is the inverse of t2.M
   *
   * Then this will calculate a new transformation in 't1' as follows:
   * T=(t1.M*t2.M)*(O-(t2.Minv*t1.V+t2.V)).
   */
  friend csReversibleTransform& operator*= (csReversibleTransform& t1,
                                          const csReversibleTransform& t2)
  {
    t1.v_o2t = t2.m_t2o*t1.v_o2t;
    t1.v_o2t += t2.v_o2t;
    t1.m_o2t *= t2.m_o2t;
    t1.m_t2o = t2.m_t2o * t1.m_t2o;
    return t1;
  }

  /**
   * Combine two transforms, rightmost first. Given the following
   * definitions:
   * - 't1' expressed as T=t1.M*(O-t1.V)
   * - 't2' expressed as T=t2.M*(O-t2.V)
   * - t1.Minv is the inverse of t1.M
   * - t2.Minv is the inverse of t2.M
   *
   * Then this will calculate a new transformation in 't1' as follows:
   * T=(t1.M*t2.M)*(O-(t2.Minv*t1.V+t2.V)).
   */
  friend csReversibleTransform operator* (const csReversibleTransform& t1,
                                        const csReversibleTransform& t2)
  {
    return csReversibleTransform (t1.m_o2t*t2.m_o2t, t2.m_t2o*t1.m_t2o,
                             t2.v_o2t + t2.m_t2o*t1.v_o2t);
  }

#if !defined(SWIG) /* Otherwise Swig 1.3.22 thinks this is multiply declared */
  /**
   * Combine two transforms, rightmost first. Given the following
   * definitions:
   * - 't1' expressed as T=t1.M*(O-t1.V)
   * - 't2' expressed as T=t2.M*(O-t2.V)
   * - t1.Minv is the inverse of t1.M
   * - t2.Minv is the inverse of t2.M
   *
   * Then this will calculate a new transformation in 't1' as follows:
   * T=(t1.M*t2.M)*(O-(t2.Minv*t1.V+t2.V)).
   */
  friend CS_CRYSTALSPACE_EXPORT csTransform operator* (const csTransform& t1,
                              const csReversibleTransform& t2);
#endif

  /**
   * Combine two transforms, reversing t2 then applying t1.
   * Given the following definitions:
   * - 't1' expressed as T=t1.M*(O-t1.V)
   * - 't2' expressed as T=t2.M*(O-t2.V)
   * - t1.Minv is the inverse of t1.M
   * - t2.Minv is the inverse of t2.M
   *
   * Then this will calculate a new transformation in 't1' as follows:
   * T=(t1.M*t2.Minv)*(O-(t2.M*(t1.V-t2.V))).
   */
  friend CS_CRYSTALSPACE_EXPORT csReversibleTransform& operator/= (
    csReversibleTransform& t1, const csReversibleTransform& t2);

  /**
   * Combine two transforms, reversing t2 then applying t1.
   * Given the following definitions:
   * - 't1' expressed as T=t1.M*(O-t1.V)
   * - 't2' expressed as T=t2.M*(O-t2.V)
   * - t1.Minv is the inverse of t1.M
   * - t2.Minv is the inverse of t2.M
   *
   * Then this will calculate a new transformation in 't1' as follows:
   * T=(t1.M*t2.Minv)*(O-(t2.M*(t1.V-t2.V))).
   */
  friend CS_CRYSTALSPACE_EXPORT csReversibleTransform operator/ (
    const csReversibleTransform& t1, const csReversibleTransform& t2);
};

/**
 * A class which defines a reversible transformation from one coordinate
 * system to another by maintaining an inverse transformation matrix.
 * This is a variant which only works on orthonormal transformations (like
 * the camera transformation) and is consequently much more optimal.
 */
class csOrthoTransform : public csReversibleTransform
{
public:
  /**
   * Initialize with the identity transformation.
   */
  csOrthoTransform () : csReversibleTransform () {}

  /**
   * Initialize with the given transformation.
   */
  csOrthoTransform (const csMatrix3& o2t, const csVector3& pos) :
    csReversibleTransform (o2t, o2t.GetTranspose (), pos) { }

  /**
   * Initialize with the given transformation.
   */
  csOrthoTransform (const csTransform& t) :
    csReversibleTransform (t.GetO2T (), t.GetO2T ().GetTranspose (),
    	t.GetO2TTranslation ())
  { }

  /**
   * Set 'other' to 'this' transformation matrix.
   * This is the 3x3 matrix M from the transform equation T=M*(O-V).
   */
  virtual void SetO2T (const csMatrix3& m)
  { m_o2t = m;  m_t2o = m_o2t.GetTranspose (); }

  /**
   * Set 'this' to 'other' transformation matrix.
   * This is equivalent to SetO2T() except that you can now give the
   * inverse matrix.
   */
  virtual void SetT2O (const csMatrix3& m)
  { m_t2o = m;  m_o2t = m_t2o.GetTranspose (); }
};

/** @} */

#endif // __CS_TRANSFORM_H__