/usr/include/crystalspace-2.0/csgeom/matrix3.h is in libcrystalspace-dev 2.0+dfsg-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 | /*
Copyright (C) 1998,1999,2000 by Jorrit Tyberghein
Largely rewritten by Ivan Avramovic <ivan@avramovic.com>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __CS_MATRIX3_H__
#define __CS_MATRIX3_H__
/**\file
* 3x3 matrix.
*/
/**
* \addtogroup geom_utils
* @{ */
#include "csextern.h"
#include "csgeom/vector3.h"
class csQuaternion;
/**
* A 3x3 matrix.
*/
class CS_CRYSTALSPACE_EXPORT csMatrix3
{
public:
float m11, m12, m13;
float m21, m22, m23;
float m31, m32, m33;
public:
/// Construct a matrix, initialized to be the identity.
csMatrix3 ()
: m11(1), m12(0), m13(0),
m21(0), m22(1), m23(0),
m31(0), m32(0), m33(1)
{}
/// Construct a matrix and initialize it.
csMatrix3 (float am11, float am12, float am13,
float am21, float am22, float am23,
float am31, float am32, float am33)
: m11(am11), m12(am12), m13(am13),
m21(am21), m22(am22), m23(am23),
m31(am31), m32(am32), m33(am33)
{}
/// Copy constructor.
csMatrix3 (csMatrix3 const& o)
: m11(o.m11), m12(o.m12), m13(o.m13),
m21(o.m21), m22(o.m22), m23(o.m23),
m31(o.m31), m32(o.m32), m33(o.m33)
{}
/// Construct a matrix from axis-angle specifier.
csMatrix3 (float x,float y, float z, float angle);
/// Construct a matrix with a quaternion.
explicit csMatrix3 (const csQuaternion &quat)
{ Set (quat); }
/// Return a textual representation of the matrix
csString Description() const;
/// Get the first row of this matrix as a vector.
inline csVector3 Row1() const { return csVector3 (m11, m12, m13); }
void SetRow1 (const csVector3& r) { m11 = r.x; m12 = r.y; m13 = r.z; }
/// Get the second row of this matrix as a vector.
inline csVector3 Row2() const { return csVector3 (m21, m22, m23); }
void SetRow2 (const csVector3& r) { m21 = r.x; m22 = r.y; m23 = r.z; }
/// Get the third row of this matrix as a vector.
inline csVector3 Row3() const { return csVector3 (m31, m32, m33); }
void SetRow3 (const csVector3& r) { m31 = r.x; m32 = r.y; m33 = r.z; }
/// Get a row from this matrix as a vector.
inline csVector3 Row(size_t n) const
{
return !n ? csVector3 (m11, m12, m13) :
n&1 ? csVector3 (m21, m22, m23) :
csVector3 (m31, m32, m33);
}
void SetRow (size_t n, const csVector3& r)
{
if (n == 0) SetRow1 (r);
else if (n == 1) SetRow2 (r);
else SetRow3 (r);
}
/// Get the first column of this matrix as a vector.
inline csVector3 Col1() const { return csVector3 (m11, m21, m31); }
void SetCol1 (const csVector3& c) { m11 = c.x; m21 = c.y; m31 = c.z; }
/// Get the second column of this matrix as a vector.
inline csVector3 Col2() const { return csVector3 (m12, m22, m32); }
void SetCol2 (const csVector3& c) { m12 = c.x; m22 = c.y; m32 = c.z; }
/// Get the third column of this matrix as a vector.
inline csVector3 Col3() const { return csVector3 (m13, m23, m33); }
void SetCol3 (const csVector3& c) { m13 = c.x; m23 = c.y; m33 = c.z; }
/// Get a column from this matrix as a vector.
inline csVector3 Col(size_t n) const
{
return !n ? csVector3 (m11, m21, m31) :
n&1 ? csVector3 (m12, m22, m32) :
csVector3 (m13, m23, m33);
}
void SetCol (size_t n, const csVector3& c)
{
if (n == 0) SetCol1 (c);
else if (n == 1) SetCol2 (c);
else SetCol3 (c);
}
/// Set matrix values.
inline void Set (float o11, float o12, float o13,
float o21, float o22, float o23,
float o31, float o32, float o33)
{
m11 = o11; m12 = o12; m13 = o13;
m21 = o21; m22 = o22; m23 = o23;
m31 = o31; m32 = o32; m33 = o33;
}
/// Set matrix values.
inline void Set (csMatrix3 const &o)
{
m11 = o.m11; m12 = o.m12; m13 = o.m13;
m21 = o.m21; m22 = o.m22; m23 = o.m23;
m31 = o.m31; m32 = o.m32; m33 = o.m33;
}
/// Initialize matrix with a quaternion.
void Set (const csQuaternion&);
/// Assign another matrix to this one.
inline csMatrix3& operator= (const csMatrix3& o)
{ Set(o); return *this; }
/// Add another matrix to this matrix.
inline csMatrix3& operator+= (const csMatrix3& m)
{
m11 += m.m11; m12 += m.m12; m13 += m.m13;
m21 += m.m21; m22 += m.m22; m23 += m.m23;
m31 += m.m31; m32 += m.m32; m33 += m.m33;
return *this;
}
/// Subtract another matrix from this matrix.
inline csMatrix3& operator-= (const csMatrix3& m)
{
m11 -= m.m11; m12 -= m.m12; m13 -= m.m13;
m21 -= m.m21; m22 -= m.m22; m23 -= m.m23;
m31 -= m.m31; m32 -= m.m32; m33 -= m.m33;
return *this;
}
/// Multiply another matrix with this matrix.
inline csMatrix3& operator*= (const csMatrix3& m)
{
float old_m11 = m11;
m11 = m11 * m.m11 + m12 * m.m21 + m13 * m.m31;
float old_m12 = m12;
m12 = old_m11 * m.m12 + m12 * m.m22 + m13 * m.m32;
m13 = old_m11 * m.m13 + old_m12 * m.m23 + m13 * m.m33;
float old_m21 = m21;
m21 = m21 * m.m11 + m22 * m.m21 + m23 * m.m31;
float old_m22 = m22;
m22 = old_m21 * m.m12 + m22 * m.m22 + m23 * m.m32;
m23 = old_m21 * m.m13 + old_m22 * m.m23 + m23 * m.m33;
float old_m31 = m31;
m31 = m31 * m.m11 + m32 * m.m21 + m33 * m.m31;
float old_m32 = m32;
m32 = old_m31 * m.m12 + m32 * m.m22 + m33 * m.m32;
m33 = old_m31 * m.m13 + old_m32 * m.m23 + m33 * m.m33;
return *this;
}
/// Multiply this matrix with a scalar.
inline csMatrix3& operator*= (float s)
{
m11 *= s; m12 *= s; m13 *= s;
m21 *= s; m22 *= s; m23 *= s;
m31 *= s; m32 *= s; m33 *= s;
return *this;
}
/// Divide this matrix by a scalar.
inline csMatrix3& operator/= (float s)
{
s = 1.0f/s;
m11 *= s; m12 *= s; m13 *= s;
m21 *= s; m22 *= s; m23 *= s;
m31 *= s; m32 *= s; m33 *= s;
return *this;
}
/// Unary + operator.
inline csMatrix3 operator+ () const
{ return *this; }
/// Unary - operator.
inline csMatrix3 operator- () const
{
return csMatrix3(-m11,-m12,-m13,
-m21,-m22,-m23,
-m31,-m32,-m33);
}
/// Transpose this matrix.
inline void Transpose ()
{
float swap;
swap = m12; m12 = m21; m21 = swap;
swap = m13; m13 = m31; m31 = swap;
swap = m23; m23 = m32; m32 = swap;
}
/// Return the transpose of this matrix.
csMatrix3 GetTranspose () const
{
return csMatrix3 (
m11, m21, m31,
m12, m22, m32,
m13, m23, m33);
}
/// Return the inverse of this matrix.
inline csMatrix3 GetInverse () const
{
csMatrix3 C(
(m22*m33 - m23*m32), -(m12*m33 - m13*m32), (m12*m23 - m13*m22),
-(m21*m33 - m23*m31), (m11*m33 - m13*m31), -(m11*m23 - m13*m21),
(m21*m32 - m22*m31), -(m11*m32 - m12*m31), (m11*m22 - m12*m21));
float s = (float)1./(m11*C.m11 + m12*C.m21 + m13*C.m31);
C *= s;
return C;
}
/// Invert this matrix.
inline void Invert()
{ *this = GetInverse (); }
/// Compute the determinant of this matrix.
float Determinant () const
{
return m11 * (m22 * m33 - m23 * m32)
- m12 * (m21 * m33 - m23 * m31)
+ m13 * (m21 * m32 - m22 * m31);
}
/// Set this matrix to the identity matrix.
inline void Identity ()
{
m11 = m22 = m33 = 1.0;
m12 = m13 = m21 = m23 = m31 = m32 = 0.0;
}
/// Check if the matrix is identity
inline bool IsIdentity () const
{
return (m11 == 1.0) && (m12 == 0.0) && (m13 == 0.0) &&
(m21 == 0.0) && (m22 == 1.0) && (m23 == 0.0) &&
(m31 == 0.0) && (m32 == 0.0) && (m33 == 1.0);
}
/// Add two matricies.
inline friend csMatrix3 operator+ (const csMatrix3& m1, const csMatrix3& m2)
{
return csMatrix3 (
m1.m11 + m2.m11, m1.m12 + m2.m12, m1.m13 + m2.m13,
m1.m21 + m2.m21, m1.m22 + m2.m22, m1.m23 + m2.m23,
m1.m31 + m2.m31, m1.m32 + m2.m32, m1.m33 + m2.m33);
}
/// Subtract two matricies.
inline friend csMatrix3 operator- (const csMatrix3& m1, const csMatrix3& m2)
{
return csMatrix3 (
m1.m11 - m2.m11, m1.m12 - m2.m12, m1.m13 - m2.m13,
m1.m21 - m2.m21, m1.m22 - m2.m22, m1.m23 - m2.m23,
m1.m31 - m2.m31, m1.m32 - m2.m32, m1.m33 - m2.m33);
}
/// Multiply two matricies.
inline friend csMatrix3 operator* (const csMatrix3& m1, const csMatrix3& m2)
{
return csMatrix3 (
m1.m11 * m2.m11 + m1.m12 * m2.m21 + m1.m13 * m2.m31,
m1.m11 * m2.m12 + m1.m12 * m2.m22 + m1.m13 * m2.m32,
m1.m11 * m2.m13 + m1.m12 * m2.m23 + m1.m13 * m2.m33,
m1.m21 * m2.m11 + m1.m22 * m2.m21 + m1.m23 * m2.m31,
m1.m21 * m2.m12 + m1.m22 * m2.m22 + m1.m23 * m2.m32,
m1.m21 * m2.m13 + m1.m22 * m2.m23 + m1.m23 * m2.m33,
m1.m31 * m2.m11 + m1.m32 * m2.m21 + m1.m33 * m2.m31,
m1.m31 * m2.m12 + m1.m32 * m2.m22 + m1.m33 * m2.m32,
m1.m31 * m2.m13 + m1.m32 * m2.m23 + m1.m33 * m2.m33);
}
/// Multiply a vector by a matrix (transform it).
inline friend csVector3 operator* (const csMatrix3& m, const csVector3& v)
{
return csVector3 (m.m11*v.x + m.m12*v.y + m.m13*v.z,
m.m21*v.x + m.m22*v.y + m.m23*v.z,
m.m31*v.x + m.m32*v.y + m.m33*v.z);
}
/// Multiply a matrix and a scalar.
inline friend csMatrix3 operator* (const csMatrix3& m, float f)
{
return csMatrix3 (
m.m11 * f, m.m12 * f, m.m13 * f,
m.m21 * f, m.m22 * f, m.m23 * f,
m.m31 * f, m.m32 * f, m.m33 * f);
}
/// Multiply a matrix and a scalar.
inline friend csMatrix3 operator* (float f, const csMatrix3& m)
{
return csMatrix3 (
m.m11 * f, m.m12 * f, m.m13 * f,
m.m21 * f, m.m22 * f, m.m23 * f,
m.m31 * f, m.m32 * f, m.m33 * f);
}
/// Divide a matrix by a scalar.
inline friend csMatrix3 operator/ (const csMatrix3& m, float f)
{
float inv_f = 1 / f;
return csMatrix3 (
m.m11 * inv_f, m.m12 * inv_f, m.m13 * inv_f,
m.m21 * inv_f, m.m22 * inv_f, m.m23 * inv_f,
m.m31 * inv_f, m.m32 * inv_f, m.m33 * inv_f);
}
/// Check if two matricies are equal.
inline friend bool operator== (const csMatrix3& m1, const csMatrix3& m2)
{
if (m1.m11 != m2.m11 || m1.m12 != m2.m12 || m1.m13 != m2.m13)
return false;
if (m1.m21 != m2.m21 || m1.m22 != m2.m22 || m1.m23 != m2.m23)
return false;
if (m1.m31 != m2.m31 || m1.m32 != m2.m32 || m1.m33 != m2.m33)
return false;
return true;
}
/// Check if two matricies are not equal.
inline friend bool operator!= (const csMatrix3& m1, const csMatrix3& m2)
{
if (m1.m11 != m2.m11 || m1.m12 != m2.m12 || m1.m13 != m2.m13) return true;
if (m1.m21 != m2.m21 || m1.m22 != m2.m22 || m1.m23 != m2.m23) return true;
if (m1.m31 != m2.m31 || m1.m32 != m2.m32 || m1.m33 != m2.m33) return true;
return false;
}
/// Test if each component of a matrix is less than a small epsilon value.
inline friend bool operator< (const csMatrix3& m, float f)
{
return fabsf (m.m11) < f && fabsf (m.m12) < f && fabsf (m.m13) < f &&
fabsf (m.m21) < f && fabsf (m.m22) < f && fabsf (m.m23) < f &&
fabsf (m.m31) < f && fabsf (m.m32) < f && fabsf (m.m33) < f;
}
/// Test if each component of a matrix is greater than a small epsilon value.
inline friend bool operator> (float f, const csMatrix3& m)
{
return !(m < f);
}
};
/// An instance of csMatrix3 that is initialized as a rotation about X
class CS_CRYSTALSPACE_EXPORT csXRotMatrix3 : public csMatrix3
{
public:
/**
* Return a rotation matrix around the X axis. 'angle' is given in radians.
* Looking along the X axis with Y pointing to the right and Z pointing up a
* rotation of PI/2 will rotate 90 degrees in anti-clockwise direction (i.e.
* 0,1,0 -> 0,0,1).
*/
csXRotMatrix3 (float angle);
};
/// An instance of csMatrix3 that is initialized as a rotation about Y.
class CS_CRYSTALSPACE_EXPORT csYRotMatrix3 : public csMatrix3
{
public:
/**
* Return a rotation matrix around the Y axis. 'angle' is given in radians.
* Looking along the Y axis with X pointing to the right and Z pointing up a
* rotation of PI/2 will rotate 90 degrees in anti-clockwise direction (i.e.
* 1,0,0 -> 0,0,1).
*/
csYRotMatrix3 (float angle);
};
/// An instance of csMatrix3 that is initialized as a rotation about Z.
class CS_CRYSTALSPACE_EXPORT csZRotMatrix3 : public csMatrix3
{
public:
/**
* Return a rotation matrix around the Z axis. 'angle' is given in radians.
* Looking along the Z axis with X pointing to the right and Y pointing up a
* rotation of PI/2 will rotate 90 degrees in anti-clockwise direction (i.e.
* 1,0,0 -> 0,1,0).
*/
csZRotMatrix3 (float angle);
};
/// An instance of csMatrix3 that is initialized to scale the X dimension.
class CS_CRYSTALSPACE_EXPORT csXScaleMatrix3 : public csMatrix3
{
public:
/**
* Return a matrix which scales in the X dimension.
*/
csXScaleMatrix3 (float scaler)
: csMatrix3(scaler, 0, 0, 0, 1, 0, 0, 0, 1)
{}
};
/// An instance of csMatrix3 that is initialized to scale the Y dimension.
class CS_CRYSTALSPACE_EXPORT csYScaleMatrix3 : public csMatrix3
{
public:
/**
* Return a matrix which scales in the Y dimension.
*/
csYScaleMatrix3 (float scaler)
: csMatrix3(1, 0, 0, 0, scaler, 0, 0, 0, 1)
{}
};
/// An instance of csMatrix3 that is initialized to scale the Z dimension.
class CS_CRYSTALSPACE_EXPORT csZScaleMatrix3 : public csMatrix3
{
public:
/**
* Return a matrix which scales in the Z dimension.
*/
csZScaleMatrix3 (float scaler)
: csMatrix3(1, 0, 0, 0, 1, 0, 0, 0, scaler)
{}
};
/** @} */
#endif // __CS_MATRIX3_H__
|