/usr/lib/python2.7/dist-packages/ufl/constantvalue.py is in python-ufl 1.3.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 | "This module defines classes representing constant values."
# Copyright (C) 2008-2013 Martin Sandve Alnes
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2011.
#
# First added: 2008-11-01
# Last changed: 2011-11-10
from itertools import izip
from ufl.log import warning, error
from ufl.assertions import ufl_assert, expecting_python_scalar
from ufl.expr import Expr
from ufl.terminal import Terminal
from ufl.indexing import Index, FixedIndex
from ufl.common import EmptyDict
#--- "Low level" scalar types ---
# TODO: Using high precision float from numpy if available?
int_type = int
float_type = float
python_scalar_types = (int, float)
#try:
# import numpy
# int_type = numpy.int64
# float_type = numpy.float96
# python_scalar_types += (int_type, float_type)
#except:
# pass
# Precision for float formatting
precision = None
def format_float(x):
"Format float value based on global UFL precision."
if precision is None:
return repr(x)
else:
return ("%%.%dg" % precision) % x
#--- Base classes for constant types ---
class ConstantValue(Terminal):
__slots__ = ()
def __init__(self):
Terminal.__init__(self)
def is_cellwise_constant(self):
"Return whether this expression is spatially constant over each cell."
return True
def __getnewargs__(self):
return (self._dim,)
class IndexAnnotated(ConstantValue):
"""Class to annotate expressions that don't depend on
indices with a set of free indices, used internally to keep
index properties intact during automatic differentiation."""
__slots__ = ("_shape", "_free_indices", "_index_dimensions")
def __init__(self, shape=(), free_indices=(), index_dimensions=None):
ConstantValue.__init__(self)
if not all(isinstance(i, int) for i in shape):
error("Expecting tuple of int.")
if not all(isinstance(i, Index) for i in free_indices):
error("Expecting tuple of Index objects.")
self._shape = shape
self._free_indices = tuple(sorted(free_indices, key=lambda x: x.count()))
self._index_dimensions = dict(index_dimensions) if index_dimensions else EmptyDict
if (set(self._free_indices) ^ set(self._index_dimensions.keys())):
error("Index set mismatch.")
#--- Class for representing zero tensors of different shapes ---
# TODO: Add geometric dimension and Argument dependencies to Zero?
class Zero(IndexAnnotated):
"UFL literal type: Representation of a zero valued expression."
__slots__ = ()
_cache = {}
def __new__(cls, shape=(), free_indices=(), index_dimensions=None):
if free_indices:
self = IndexAnnotated.__new__(cls)
else:
self = Zero._cache.get(shape)
if self is None:
self = IndexAnnotated.__new__(cls)
Zero._cache[shape] = self
return self
def __getnewargs__(self):
return (self._shape, self._free_indices, self._index_dimensions)
def __init__(self, shape=(), free_indices=(), index_dimensions=None):
if not hasattr(self, '_shape'):
ufl_assert(isinstance(free_indices, tuple),
"Expecting tuple of free indices, not %s" % str(free_indices))
IndexAnnotated.__init__(self, shape, free_indices, index_dimensions)
def reconstruct(self, free_indices=None):
if not free_indices:
return self
ufl_assert(len(free_indices) == len(self._free_indices), "Size mismatch between old and new indices.")
new_index_dimensions = dict((b, self._index_dimensions[a]) for (a,b) in izip(self._free_indices, free_indices))
return Zero(self._shape, free_indices, new_index_dimensions)
def shape(self):
return self._shape
def free_indices(self):
return self._free_indices
def index_dimensions(self):
return self._index_dimensions
def evaluate(self, x, mapping, component, index_values):
return 0.0
def __str__(self):
if self._shape == () and self._free_indices == ():
return "0"
return "(0<%r, %r>)" % (self._shape, self._free_indices)
def __repr__(self):
return "Zero(%r, %r, %r)" % (self._shape,
self._free_indices, self._index_dimensions)
def __eq__(self, other):
if not isinstance(other, Zero):
return isinstance(other, (int,float)) and other == 0
if self is other:
return True
return (self._shape == other._shape and
self._free_indices == other._free_indices and
self._index_dimensions == other._index_dimensions)
def __neg__(self):
return self
def __abs__(self):
return self
def __nonzero__(self):
return False
def __float__(self):
return 0.0
def __int__(self):
return 0
def zero(*shape):
"UFL literal constant: Return a zero tensor with the given shape."
if len(shape) == 1 and isinstance(shape[0], tuple):
return Zero(shape[0])
else:
return Zero(shape)
#--- Scalar value types ---
class ScalarValue(IndexAnnotated):
"A constant scalar value."
__slots__ = ("_value",)
def __new__(cls, value, shape=(), free_indices=(), index_dimensions=None):
is_python_scalar(value) or expecting_python_scalar(value)
if value == 0:
return Zero(shape, free_indices, index_dimensions)
return IndexAnnotated.__new__(cls)
def __getnewargs__(self):
return (self._value, self._shape, self._free_indices, self._index_dimensions)
def __init__(self, value, shape=(), free_indices=(), index_dimensions=None):
IndexAnnotated.__init__(self, shape, free_indices, index_dimensions)
self._value = value
def reconstruct(self, free_indices=None):
"Reconstruct with new free indices."
if not free_indices:
return self
ufl_assert(len(free_indices) == len(self._free_indices), "Size mismatch between old and new indices.")
new_index_dimensions = dict((b, self._index_dimensions[a]) for (a,b) in izip(self._free_indices, free_indices))
return self._uflclass(self._value, self._shape, free_indices, new_index_dimensions)
def shape(self):
return self._shape
def free_indices(self):
return self._free_indices
def index_dimensions(self):
return self._index_dimensions
def value(self):
return self._value
def evaluate(self, x, mapping, component, index_values):
return self._value
def __eq__(self, other):
"""This is implemented to allow comparison with python scalars.
Note that this will make IntValue(1) != FloatValue(1.0),
but ufl-python comparisons like
IntValue(1) == 1.0
FloatValue(1.0) == 1
can still succeed. These will however not have the same
hash value and therefore not collide in a dict."""
if not isinstance(other, self._uflclass):
return isinstance(other, (int,float)) and other == self._value
else:
return self._value == other._value
def __str__(self):
return str(self._value)
def __float__(self):
return float(self._value)
def __int__(self):
return int(self._value)
def __neg__(self):
return type(self)(-self._value)
def __abs__(self):
return type(self)(abs(self._value))
class FloatValue(ScalarValue):
"UFL literal type: Representation of a constant scalar floating point value."
__slots__ = ()
def __init__(self, value, shape=(), free_indices=(), index_dimensions=None):
ScalarValue.__init__(self,
float_type(value),
shape,
free_indices,
index_dimensions)
def __repr__(self):
return "%s(%s, %s, %s, %s)" % (type(self).__name__,
format_float(self._value),
repr(self._shape),
repr(self._free_indices),
repr(self._index_dimensions))
class IntValue(ScalarValue):
"UFL literal type: Representation of a constant scalar integer value."
__slots__ = ()
_cache = {}
def __new__(cls, value, shape=(), free_indices=(), index_dimensions=None):
# Check if it is cache-able
if shape or free_indices or index_dimensions or abs(value) > 100:
self = ScalarValue.__new__(cls, value, shape, free_indices, index_dimensions)
else:
self = IntValue._cache.get(value)
if self is None:
self = ScalarValue.__new__(cls, value, shape, free_indices, index_dimensions)
IntValue._cache[value] = self
return self
def __init__(self, value, shape=(), free_indices=(), index_dimensions=None):
if not hasattr(self, '_value'):
ScalarValue.__init__(self, int_type(value), shape, free_indices, index_dimensions)
def __repr__(self):
return "%s(%s, %s, %s, %s)" % (type(self).__name__, repr(self._value),
repr(self._shape), repr(self._free_indices),
repr(self._index_dimensions))
#--- Identity matrix ---
class Identity(ConstantValue):
"UFL literal type: Representation of an identity matrix."
__slots__ = ("_dim",)
def __init__(self, dim):
ConstantValue.__init__(self)
self._dim = dim
def shape(self):
return (self._dim, self._dim)
def evaluate(self, x, mapping, component, index_values):
a, b = component
return 1 if a == b else 0
def __getitem__(self, key):
ufl_assert(len(key) == 2, "Size mismatch for Identity.")
if all(isinstance(k, (int, FixedIndex)) for k in key):
return IntValue(1) if (int(key[0]) == int(key[1])) else Zero()
return Expr.__getitem__(self, key)
def __str__(self):
return "I"
def __repr__(self):
return "Identity(%d)" % self._dim
def __eq__(self, other):
return isinstance(other, Identity) and self._dim == other._dim
#--- Permutation symbol ---
class PermutationSymbol(ConstantValue):
"""UFL literal type: Representation of a permutation symbol.
This is also known as the Levi-Civita symbol, antisymmetric symbol,
or alternating symbol."""
__slots__ = ("_dim",)
def __init__(self, dim):
ConstantValue.__init__(self)
self._dim = dim
def shape(self):
s = ()
for i in range(self._dim):
s += (self._dim,)
return s
def evaluate(self, x, mapping, component, index_values):
return self.__eps(component)
def __getitem__(self, key):
ufl_assert(len(key) == self._dim, "Size mismatch for PermutationSymbol.")
if all(isinstance(k, (int, FixedIndex)) for k in key):
return self.__eps(key)
return Expr.__getitem__(self, key)
def __str__(self):
return "eps"
def __repr__(self):
return "PermutationSymbol(%d)" % self._dim
def __eq__(self, other):
return isinstance(other, PermutationSymbol) and self._dim == other._dim
def __eps(self, x):
"""This function body is taken from
http://www.mathkb.com/Uwe/Forum.aspx/math/29865/N-integer-Levi-Civita"""
result = IntValue(1)
for i, x1 in enumerate(x):
for j in xrange(i + 1, len(x)):
x2 = x[j]
if x1 > x2:
result = -result
elif x1 == x2:
return Zero()
return result
#--- Helper functions ---
def is_python_scalar(expression):
"Return True iff expression is of a Python scalar type."
return isinstance(expression, python_scalar_types)
def is_ufl_scalar(expression):
"""Return True iff expression is scalar-valued,
but possibly containing free indices."""
return isinstance(expression, Expr) and not expression.shape()
def is_true_ufl_scalar(expression):
"""Return True iff expression is scalar-valued,
with no free indices."""
return isinstance(expression, Expr) and \
not (expression.shape() or expression.free_indices())
def as_ufl(expression):
"Converts expression to an Expr if possible."
if isinstance(expression, Expr):
return expression
if isinstance(expression, (int, int_type)):
return IntValue(expression)
if isinstance(expression, (float, float_type)):
return FloatValue(expression)
error(("Invalid type conversion: %s can not be converted to any UFL type.\n"+\
"The representation of the object is:\n%r") % (type(expression), expression))
|