This file is indexed.

/usr/share/pyshared/cclib/parser/gaussianparser.py is in python-cclib 1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
# This file is part of cclib (http://cclib.sf.net), a library for parsing
# and interpreting the results of computational chemistry packages.
#
# Copyright (C) 2006, the cclib development team
#
# The library is free software, distributed under the terms of
# the GNU Lesser General Public version 2.1 or later. You should have
# received a copy of the license along with cclib. You can also access
# the full license online at http://www.gnu.org/copyleft/lgpl.html.

__revision__ = "$Revision: 1026 $"

import re

import numpy

import logfileparser
import utils


class Gaussian(logfileparser.Logfile):
    """A Gaussian 98/03 log file."""

    def __init__(self, *args, **kwargs):

        # Call the __init__ method of the superclass
        super(Gaussian, self).__init__(logname="Gaussian", *args, **kwargs)
        
    def __str__(self):
        """Return a string representation of the object."""
        return "Gaussian log file %s" % (self.filename)

    def __repr__(self):
        """Return a representation of the object."""
        return 'Gaussian("%s")' % (self.filename)
    
    def normalisesym(self, label):
        """Use standard symmetry labels instead of Gaussian labels.

        To normalise:
        (1) If label is one of [SG, PI, PHI, DLTA], replace by [sigma, pi, phi, delta]
        (2) replace any G or U by their lowercase equivalent

        >>> sym = Gaussian("dummyfile").normalisesym
        >>> labels = ['A1', 'AG', 'A1G', "SG", "PI", "PHI", "DLTA", 'DLTU', 'SGG']
        >>> map(sym, labels)
        ['A1', 'Ag', 'A1g', 'sigma', 'pi', 'phi', 'delta', 'delta.u', 'sigma.g']
        """
        # note: DLT must come after DLTA
        greek = [('SG', 'sigma'), ('PI', 'pi'), ('PHI', 'phi'),
                 ('DLTA', 'delta'), ('DLT', 'delta')]
        for k, v in greek:
            if label.startswith(k):
                tmp = label[len(k):]
                label = v
                if tmp:
                    label = v + "." + tmp
        
        ans = label.replace("U", "u").replace("G", "g") 
        return ans

    def before_parsing(self):

        # Used to index self.scftargets[].
        SCFRMS, SCFMAX, SCFENERGY = range(3)

        # Flag that indicates whether it has reached the end of a geoopt.
        self.optfinished = False
        
        # Flag for identifying Coupled Cluster runs.
        self.coupledcluster = False

        # Fragment number for counterpoise or fragment guess calculations 
        # (normally zero).
        self.counterpoise = 0

        # Flag for identifying ONIOM calculations.
        self.oniom = False

    def after_parsing(self):

        # Correct the percent values in the etsecs in the case of
        # a restricted calculation. The following has the
        # effect of including each transition twice.
        if hasattr(self, "etsecs") and len(self.homos) == 1:
            new_etsecs = [[(x[0], x[1], x[2] * numpy.sqrt(2)) for x in etsec]
                          for etsec in self.etsecs]
            self.etsecs = new_etsecs
        if hasattr(self, "scanenergies"):
            self.scancoords = []
            self.scancoords = self.atomcoords
        if (hasattr(self, 'enthaply') and hasattr(self, 'temperature') 
                and hasattr(self, 'freeenergy')):
            self.entropy = (self.enthaply - self.freeenergy)/self.temperature
            
    def extract(self, inputfile, line):
        """Extract information from the file object inputfile."""

        #Extract PES scan data
        #Summary of the potential surface scan:
        #  N       A          SCF
        #----  ---------  -----------
        #   1   109.0000    -76.43373
        #   2   119.0000    -76.43011
        #   3   129.0000    -76.42311
        #   4   139.0000    -76.41398
        #   5   149.0000    -76.40420
        #   6   159.0000    -76.39541
        #   7   169.0000    -76.38916
        #   8   179.0000    -76.38664
        #   9   189.0000    -76.38833
        #  10   199.0000    -76.39391
        #  11   209.0000    -76.40231
        #----  ---------  -----------
        if "Summary of the potential surface scan:" in line:
            scanenergies = []
            scanparm = []
            colmnames = inputfile.next()
            hyphens = inputfile.next()
            line = inputfile.next()
            while line != hyphens:
                broken = line.split()
                scanenergies.append(float(broken[-1]))
                scanparm.append(map(float, broken[1:-1]))
                line = inputfile.next()
            if not hasattr(self, "scanenergies"):
                self.scanenergies = []
                self.scanenergies = scanenergies
            if not hasattr(self, "scanparm"):
                self.scanparm = []
                self.scanparm = scanparm
            if not hasattr(self, "scannames"):
                self.scannames = colmnames.split()[1:-1]

        #Extract Thermochemistry
        #Temperature   298.150 Kelvin.  Pressure   1.00000 Atm.
        #Zero-point correction=                           0.342233 (Hartree/
        #Thermal correction to Energy=                    0.
        #Thermal correction to Enthalpy=                  0.
        #Thermal correction to Gibbs Free Energy=         0.302940
        #Sum of electronic and zero-point Energies=           -563.649744
        #Sum of electronic and thermal Energies=              -563.636699
        #Sum of electronic and thermal Enthalpies=            -563.635755
        #Sum of electronic and thermal Free Energies=         -563.689037
        if "Sum of electronic and thermal Enthalpies" in line:
            if not hasattr(self, 'enthaply'):
                self.enthaply = float(line.split()[6])
        if "Sum of electronic and thermal Free Energies=" in line:
            if not hasattr(self, 'freeenergy'):
                self.freeenergy = float(line.split()[7])
        if line[1:12] == "Temperature":
            if not hasattr(self, 'temperature'):
                self.temperature = float(line.split()[1])
        
        # Number of atoms.
        if line[1:8] == "NAtoms=":

            self.updateprogress(inputfile, "Attributes", self.fupdate)
                    
            natom = int(line.split()[1])
            if not hasattr(self, "natom"):
                self.natom = natom

        # Catch message about completed optimization.
        if line[1:23] == "Optimization completed":
            self.optfinished = True
            self.optdone = True
        
        # Extract the atomic numbers and coordinates from the input orientation,
        #   in the event the standard orientation isn't available.
        if not self.optfinished and line.find("Input orientation") > -1 or line.find("Z-Matrix orientation") > -1:

            # If this is a counterpoise calculation, this output means that
            #   the supermolecule is now being considered, so we can set:
            self.counterpoise = 0

            self.updateprogress(inputfile, "Attributes", self.cupdate)
            
            if not hasattr(self, "inputcoords"):
                self.inputcoords = []
            self.inputatoms = []
            
            hyphens = inputfile.next()
            colmNames = inputfile.next()
            colmNames = inputfile.next()
            hyphens = inputfile.next()
            
            atomcoords = []
            line = inputfile.next()
            while line != hyphens:
                broken = line.split()
                self.inputatoms.append(int(broken[1]))
                atomcoords.append(map(float, broken[3:6]))
                line = inputfile.next()

            self.inputcoords.append(atomcoords)

            if not hasattr(self, "atomnos"):
                self.atomnos = numpy.array(self.inputatoms, 'i')
                self.natom = len(self.atomnos)

        # Extract the atomic masses.
        # Typical section:
        #                    Isotopes and Nuclear Properties:
        #(Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM)
        # in nuclear magnetons)
        #
        #  Atom         1           2           3           4           5           6           7           8           9          10
        # IAtWgt=          12          12          12          12          12           1           1           1          12          12
        # AtmWgt=  12.0000000  12.0000000  12.0000000  12.0000000  12.0000000   1.0078250   1.0078250   1.0078250  12.0000000  12.0000000
        # NucSpn=           0           0           0           0           0           1           1           1           0           0
        # AtZEff=  -3.6000000  -3.6000000  -3.6000000  -3.6000000  -3.6000000  -1.0000000  -1.0000000  -1.0000000  -3.6000000  -3.6000000
        # NQMom=    0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   0.0000000
        # NMagM=    0.0000000   0.0000000   0.0000000   0.0000000   0.0000000   2.7928460   2.7928460   2.7928460   0.0000000   0.0000000
        # ... with blank lines dividing blocks of ten, and Leave Link 101 at the end.
        # This is generally parsed before coordinates, so atomnos is not defined.
        # Note that in Gaussian03 the comments are not there yet and the labels are different.
        if line.strip() == "Isotopes and Nuclear Properties:":

            if not hasattr(self, "atommasses"):
                self.atommasses = []

            line = inputfile.next()
            while line[1:16] != "Leave Link  101":
                if line[1:8] == "AtmWgt=":
                    self.atommasses.extend(map(float, line.split()[1:]))
                line = inputfile.next()

        # Extract the atomic numbers and coordinates of the atoms.
        if not self.optfinished and line.strip() == "Standard orientation:":

            self.updateprogress(inputfile, "Attributes", self.cupdate)

            # If this is a counterpoise calculation, this output means that
            #   the supermolecule is now being considered, so we can set:
            self.counterpoise = 0

            if not hasattr(self, "atomcoords"):
                self.atomcoords = []
            
            hyphens = inputfile.next()
            colmNames = inputfile.next()
            colmNames = inputfile.next()
            hyphens = inputfile.next()
            
            atomnos = []
            atomcoords = []
            line = inputfile.next()
            while line != hyphens:
                broken = line.split()
                atomnos.append(int(broken[1]))
                atomcoords.append(map(float, broken[-3:]))
                line = inputfile.next()
            self.atomcoords.append(atomcoords)

            if not hasattr(self, "natom"):
                self.atomnos = numpy.array(atomnos, 'i')
                self.natom = len(self.atomnos)

            # make sure atomnos is added for the case where natom has already been set
            elif not hasattr(self, "atomnos"):
                self.atomnos = numpy.array(atomnos, 'i')

        # Find the targets for SCF convergence (QM calcs).
        if line[1:44] == 'Requested convergence on RMS density matrix':

            if not hasattr(self, "scftargets"):
                self.scftargets = []
            # The following can happen with ONIOM which are mixed SCF
            # and semi-empirical
            if type(self.scftargets) == type(numpy.array([])):
                self.scftargets = []

            scftargets = []
            # The RMS density matrix.
            scftargets.append(self.float(line.split('=')[1].split()[0]))
            line = inputfile.next()
            # The MAX density matrix.
            scftargets.append(self.float(line.strip().split('=')[1][:-1]))
            line = inputfile.next()
            # For G03, there's also the energy (not for G98).
            if line[1:10] == "Requested":
                scftargets.append(self.float(line.strip().split('=')[1][:-1]))

            self.scftargets.append(scftargets)

        # Extract SCF convergence information (QM calcs).
        if line[1:10] == 'Cycle   1':
                    
            if not hasattr(self, "scfvalues"):
                self.scfvalues = []

            scfvalues = []
            line = inputfile.next()
            while line.find("SCF Done") == -1:
            
                self.updateprogress(inputfile, "QM convergence", self.fupdate)
                      
                if line.find(' E=') == 0:
                    self.logger.debug(line)

                #  RMSDP=3.74D-06 MaxDP=7.27D-05 DE=-1.73D-07 OVMax= 3.67D-05
                # or
                #  RMSDP=1.13D-05 MaxDP=1.08D-04              OVMax= 1.66D-04
                if line.find(" RMSDP") == 0:

                    parts = line.split()
                    newlist = [self.float(x.split('=')[1]) for x in parts[0:2]]
                    energy = 1.0
                    if len(parts) > 4:
                        energy = parts[2].split('=')[1]
                        if energy == "":
                            energy = self.float(parts[3])
                        else:
                            energy = self.float(energy)
                    if len(self.scftargets[0]) == 3: # Only add the energy if it's a target criteria
                        newlist.append(energy)
                    scfvalues.append(newlist)

                try:
                    line = inputfile.next()
                # May be interupted by EOF.
                except StopIteration:
                    break

            self.scfvalues.append(scfvalues)

        # Extract SCF convergence information (AM1 calcs).
        if line[1:4] == 'It=':
                    
            self.scftargets = numpy.array([1E-7], "d") # This is the target value for the rms
            self.scfvalues = [[]]

            line = inputfile.next()
            while line.find(" Energy") == -1:
            
                if self.progress:
                    step = inputfile.tell()
                    if step != oldstep:
                        self.progress.update(step, "AM1 Convergence")
                        oldstep = step
                        
                if line[1:4] == "It=":
                    parts = line.strip().split()
                    self.scfvalues[0].append(self.float(parts[-1][:-1]))
                line = inputfile.next()

        # Note: this needs to follow the section where 'SCF Done' is used
        #   to terminate a loop when extracting SCF convergence information.
        if line[1:9] == 'SCF Done':

            if not hasattr(self, "scfenergies"):
                self.scfenergies = []

            self.scfenergies.append(utils.convertor(self.float(line.split()[4]), "hartree", "eV"))
        # gmagoon 5/27/09: added scfenergies reading for PM3 case
        # Example line: " Energy=   -0.077520562724 NIter=  14."
        # See regression Gaussian03/QVGXLLKOCUKJST-UHFFFAOYAJmult3Fixed.out
        if line[1:8] == 'Energy=':
            if not hasattr(self, "scfenergies"):
                self.scfenergies = []
            self.scfenergies.append(utils.convertor(self.float(line.split()[1]), "hartree", "eV"))
        
        # Total energies after Moller-Plesset corrections.
        # Second order correction is always first, so its first occurance
        #   triggers creation of mpenergies (list of lists of energies).
        # Further MP2 corrections are appended as found.
        #
        # Example MP2 output line:
        #  E2 =    -0.9505918144D+00 EUMP2 =    -0.28670924198852D+03
        # Warning! this output line is subtly different for MP3/4/5 runs
        if "EUMP2" in line[27:34]:

            if not hasattr(self, "mpenergies"):
                self.mpenergies = []
            self.mpenergies.append([])
            mp2energy = self.float(line.split("=")[2])
            self.mpenergies[-1].append(utils.convertor(mp2energy, "hartree", "eV"))

        # Example MP3 output line:
        #  E3=       -0.10518801D-01     EUMP3=      -0.75012800924D+02
        if line[34:39] == "EUMP3":

            mp3energy = self.float(line.split("=")[2])
            self.mpenergies[-1].append(utils.convertor(mp3energy, "hartree", "eV"))

        # Example MP4 output lines:
        #  E4(DQ)=   -0.31002157D-02        UMP4(DQ)=   -0.75015901139D+02
        #  E4(SDQ)=  -0.32127241D-02        UMP4(SDQ)=  -0.75016013648D+02
        #  E4(SDTQ)= -0.32671209D-02        UMP4(SDTQ)= -0.75016068045D+02
        # Energy for most substitutions is used only (SDTQ by default)
        if line[34:42] == "UMP4(DQ)":

            mp4energy = self.float(line.split("=")[2])
            line = inputfile.next()
            if line[34:43] == "UMP4(SDQ)":
              mp4energy = self.float(line.split("=")[2])
              line = inputfile.next()
              if line[34:44] == "UMP4(SDTQ)":
                mp4energy = self.float(line.split("=")[2])
            self.mpenergies[-1].append(utils.convertor(mp4energy, "hartree", "eV"))

        # Example MP5 output line:
        #  DEMP5 =  -0.11048812312D-02 MP5 =  -0.75017172926D+02
        if line[29:32] == "MP5":
            mp5energy = self.float(line.split("=")[2])
            self.mpenergies[-1].append(utils.convertor(mp5energy, "hartree", "eV"))

        # Total energies after Coupled Cluster corrections.
        # Second order MBPT energies (MP2) are also calculated for these runs,
        # but the output is the same as when parsing for mpenergies.
        # Read the consecutive correlated energies
        # but append only the last one to ccenergies.
        # Only the highest level energy is appended - ex. CCSD(T), not CCSD.
        if line[1:10] == "DE(Corr)=" and line[27:35] == "E(CORR)=":
            self.ccenergy = self.float(line.split()[3])
        if line[1:10] == "T5(CCSD)=":
            line = inputfile.next()
            if line[1:9] == "CCSD(T)=":
                self.ccenergy = self.float(line.split()[1])
        if line[12:53] == "Population analysis using the SCF density":
            if hasattr(self, "ccenergy"):
                if not hasattr(self, "ccenergies"):
                    self.ccenergies = []
                self.ccenergies.append(utils.convertor(self.ccenergy, "hartree", "eV"))
                del self.ccenergy

        # Geometry convergence information.
        if line[49:59] == 'Converged?':

            if not hasattr(self, "geotargets"):
                self.geovalues = []
                self.geotargets = numpy.array([0.0, 0.0, 0.0, 0.0], "d")

            newlist = [0]*4
            for i in range(4):
                line = inputfile.next()
                self.logger.debug(line)
                parts = line.split()
                try:
                    value = self.float(parts[2])
                except ValueError:
                    self.logger.error("Problem parsing the value for geometry optimisation: %s is not a number." % parts[2])
                else:
                    newlist[i] = value
                self.geotargets[i] = self.float(parts[3])

            self.geovalues.append(newlist)

        # Gradients.
        # Read in the cartesian energy gradients (forces) from a block like this:
        # -------------------------------------------------------------------
        # Center     Atomic                   Forces (Hartrees/Bohr)
        # Number     Number              X              Y              Z
        # -------------------------------------------------------------------
        # 1          1          -0.012534744   -0.021754635   -0.008346094
        # 2          6           0.018984731    0.032948887   -0.038003451
        # 3          1          -0.002133484   -0.006226040    0.023174772
        # 4          1          -0.004316502   -0.004968213    0.023174772
        #           -2          -0.001830728   -0.000743108   -0.000196625
        # ------------------------------------------------------------------
        #
        # The "-2" line is for a dummy atom
        #
        # Then optimization is done in internal coordinates, Gaussian also
        # print the forces in internal coordinates, which can be produced from 
        # the above. This block looks like this:
        # Variable       Old X    -DE/DX   Delta X   Delta X   Delta X     New X
        #                                 (Linear)    (Quad)   (Total)
        #   ch        2.05980   0.01260   0.00000   0.01134   0.01134   2.07114
        #   hch        1.75406   0.09547   0.00000   0.24861   0.24861   2.00267
        #   hchh       2.09614   0.01261   0.00000   0.16875   0.16875   2.26489
        #         Item               Value     Threshold  Converged?
        if line[37:43] == "Forces":

            if not hasattr(self, "grads"):
                self.grads = []

            header = inputfile.next()
            dashes = inputfile.next()
            line = inputfile.next()
            forces = []
            while line != dashes:
                broken = line.split()
                Fx, Fy, Fz = broken[-3:]
                forces.append([float(Fx), float(Fy), float(Fz)])
                line = inputfile.next()
            self.grads.append(forces)                

        # Charge and multiplicity.
        # If counterpoise correction is used, multiple lines match.
        # The first one contains charge/multiplicity of the whole molecule.:
        #   Charge =  0 Multiplicity = 1 in supermolecule
        #   Charge =  0 Multiplicity = 1 in fragment  1.
        #   Charge =  0 Multiplicity = 1 in fragment  2.
        if line[1:7] == 'Charge' and line.find("Multiplicity")>=0:

            regex = ".*=(.*)Mul.*=\s*-?(\d+).*"
            match = re.match(regex, line)
            assert match, "Something unusual about the line: '%s'" % line
            
            if not hasattr(self, "charge"):
                self.charge = int(match.groups()[0])
            if not hasattr(self, "mult"):
                self.mult = int(match.groups()[1])

        # Orbital symmetries.
        if line[1:20] == 'Orbital symmetries:' and not hasattr(self, "mosyms"):

            # For counterpoise fragments, skip these lines.
            if self.counterpoise != 0: return

            self.updateprogress(inputfile, "MO Symmetries", self.fupdate)
                    
            self.mosyms = [[]]
            line = inputfile.next()
            unres = False
            if line.find("Alpha Orbitals") == 1:
                unres = True
                line = inputfile.next()
            i = 0
            while len(line) > 18 and line[17] == '(':
                if line.find('Virtual') >= 0:
                    self.homos = numpy.array([i-1], "i") # 'HOMO' indexes the HOMO in the arrays
                parts = line[17:].split()
                for x in parts:
                    self.mosyms[0].append(self.normalisesym(x.strip('()')))
                    i += 1 
                line = inputfile.next()
            if unres:
                line = inputfile.next()
                # Repeat with beta orbital information
                i = 0
                self.mosyms.append([])
                while len(line) > 18 and line[17] == '(':
                    if line.find('Virtual')>=0:
                        # Here we consider beta
                        # If there was also an alpha virtual orbital,
                        #  we will store two indices in the array
                        # Otherwise there is no alpha virtual orbital,
                        #  only beta virtual orbitals, and we initialize
                        #  the array with one element. See the regression
                        #  QVGXLLKOCUKJST-UHFFFAOYAJmult3Fixed.out
                        #  donated by Gregory Magoon (gmagoon).
                        if (hasattr(self, "homos")):
                            # Extend the array to two elements
                            # 'HOMO' indexes the HOMO in the arrays
                            self.homos.resize([2])
                            self.homos[1] = i-1
                        else:
                            # 'HOMO' indexes the HOMO in the arrays
                            self.homos = numpy.array([i-1], "i")
                    parts = line[17:].split()
                    for x in parts:
                        self.mosyms[1].append(self.normalisesym(x.strip('()')))
                        i += 1
                    line = inputfile.next()

        # Alpha/Beta electron eigenvalues.
        if line[1:6] == "Alpha" and line.find("eigenvalues") >= 0:

            # For counterpoise fragments, skip these lines.
            if self.counterpoise != 0: return

            # For ONIOM calcs, ignore this section in order to bypass assertion failure.
            if self.oniom: return

            self.updateprogress(inputfile, "Eigenvalues", self.fupdate)
            self.moenergies = [[]]
            HOMO = -2

            while line.find('Alpha') == 1:
                if line.split()[1] == "virt." and HOMO == -2:

                    # If there aren't any symmetries, this is a good way to find the HOMO.
                    # Also, check for consistency if homos was already parsed.
                    HOMO = len(self.moenergies[0])-1
                    if hasattr(self, "homos"):
                        assert HOMO == self.homos[0]
                    else:
                        self.homos = numpy.array([HOMO], "i")

                # Convert to floats and append to moenergies, but sometimes Gaussian
                #  doesn't print correctly so test for ValueError (bug 1756789).
                part = line[28:]
                i = 0
                while i*10+4 < len(part):
                    s = part[i*10:(i+1)*10]
                    try:
                        x = self.float(s)
                    except ValueError:
                        x = numpy.nan
                    self.moenergies[0].append(utils.convertor(x, "hartree", "eV"))
                    i += 1
                line = inputfile.next()

            # If, at this point, self.homos is unset, then there were not
            # any alpha virtual orbitals
            if not hasattr(self, "homos"):
                HOMO = len(self.moenergies[0])-1
                self.homos = numpy.array([HOMO], "i")
            

            if line.find('Beta') == 2:
                self.moenergies.append([])

            HOMO = -2
            while line.find('Beta') == 2:
                if line.split()[1] == "virt." and HOMO == -2:

                    # If there aren't any symmetries, this is a good way to find the HOMO.
                    # Also, check for consistency if homos was already parsed.
                    HOMO = len(self.moenergies[1])-1
                    if len(self.homos) == 2:
                        assert HOMO == self.homos[1]
                    else:
                        self.homos.resize([2])
                        self.homos[1] = HOMO

                part = line[28:]
                i = 0
                while i*10+4 < len(part):
                    x = part[i*10:(i+1)*10]
                    self.moenergies[1].append(utils.convertor(self.float(x), "hartree", "eV"))
                    i += 1
                line = inputfile.next()

            self.moenergies = [numpy.array(x, "d") for x in self.moenergies]
            
        # Gaussian Rev <= B.0.3 (?)
        # AO basis set in the form of general basis input:
        #  1 0
        # S   3 1.00       0.000000000000
        #      0.7161683735D+02  0.1543289673D+00
        #      0.1304509632D+02  0.5353281423D+00
        #      0.3530512160D+01  0.4446345422D+00
        # SP   3 1.00       0.000000000000
        #      0.2941249355D+01 -0.9996722919D-01  0.1559162750D+00
        #      0.6834830964D+00  0.3995128261D+00  0.6076837186D+00
        #      0.2222899159D+00  0.7001154689D+00  0.3919573931D+00
        if line[1:16] == "AO basis set in":
        
            # For counterpoise fragment calcualtions, skip these lines.
            if self.counterpoise != 0: return
        
            self.gbasis = []
            line = inputfile.next()
            while line.strip():
                gbasis = []
                line = inputfile.next()
                while line.find("*")<0:
                    temp = line.split()
                    symtype = temp[0]
                    numgau = int(temp[1])
                    gau = []
                    for i in range(numgau):
                        temp = map(self.float, inputfile.next().split())
                        gau.append(temp)
                        
                    for i, x in enumerate(symtype):
                        newgau = [(z[0], z[i+1]) for z in gau]
                        gbasis.append((x, newgau))
                    line = inputfile.next() # i.e. "****" or "SP ...."
                self.gbasis.append(gbasis)
                line = inputfile.next() # i.e. "20 0" or blank line

        # Start of the IR/Raman frequency section.
        # Caution is advised here, as additional frequency blocks
        #   can be printed by Gaussian (with slightly different formats),
        #   often doubling the information printed.
        # See, for a non-standard exmaple, regression Gaussian98/test_H2.log
        if line[1:14] == "Harmonic freq":

            self.updateprogress(inputfile, "Frequency Information", self.fupdate)
            removeold = False

            # The whole block should not have any blank lines.
            while line.strip() != "":

                # The line with indices
                if line[1:15].strip() == "" and line[15:22].strip().isdigit():
                    freqbase = int(line[15:22])
                    if freqbase == 1 and hasattr(self, 'vibfreqs'):
                        # This is a reparse of this information
                        removeold = True

                # Lines with symmetries and symm. indices begin with whitespace.
                if line[1:15].strip() == "" and not line[15:22].strip().isdigit():

                    if not hasattr(self, 'vibsyms'):
                        self.vibsyms = []
                    syms = line.split()
                    self.vibsyms.extend(syms)
            
                if line[1:15] == "Frequencies --":
                
                    if not hasattr(self, 'vibfreqs'):
                        self.vibfreqs = []
                        
                    if removeold: # This is a reparse, so throw away the old info
                        if hasattr(self, "vibsyms"):
                            # We have already parsed the vibsyms so don't throw away!
                            self.vibsyms = self.vibsyms[-len(line[15:].split()):]
                        if hasattr(self, "vibirs"):
                            self.vibirs = []
                        if hasattr(self, 'vibfreqs'):
                            self.vibfreqs = []
                        if hasattr(self, 'vibramans'):
                            self.vibramans = []
                        if hasattr(self, 'vibdisps'):
                            self.vibdisps = []
                        removeold = False
                        
                    freqs = [self.float(f) for f in line[15:].split()]
                    self.vibfreqs.extend(freqs)
            
                if line[1:15] == "IR Inten    --":
                
                    if not hasattr(self, 'vibirs'):
                        self.vibirs = []
                    irs = [self.float(f) for f in line[15:].split()]
                    self.vibirs.extend(irs)

                if line[1:15] == "Raman Activ --":
                
                    if not hasattr(self, 'vibramans'):
                        self.vibramans = []
                    ramans = [self.float(f) for f in line[15:].split()]
                    self.vibramans.extend(ramans)
                
                # Block with displacement should start with this.
                if line.strip().split()[0:3] == ["Atom", "AN", "X"]:
                    if not hasattr(self, 'vibdisps'):
                        self.vibdisps = []
                    disps = []
                    for n in range(self.natom):
                        line = inputfile.next()
                        numbers = [float(s) for s in line[10:].split()]
                        N = len(numbers) / 3
                        if not disps:
                            for n in range(N):
                                disps.append([])
                        for n in range(N):
                            disps[n].append(numbers[3*n:3*n+3])
                    self.vibdisps.extend(disps)
                
                line = inputfile.next()

# Below is the old code for the IR/Raman frequency block, can probably be removed.
#            while len(line[:15].split()) == 0:
#                self.logger.debug(line)
#                self.vibsyms.extend(line.split()) # Adding new symmetry
#                line = inputfile.next()
#                # Read in frequencies.
#                freqs = [self.float(f) for f in line.split()[2:]]
#                self.vibfreqs.extend(freqs)
#                line = inputfile.next()
#                line = inputfile.next()
#                line = inputfile.next()
#                irs = [self.float(f) for f in line.split()[3:]]
#                self.vibirs.extend(irs)
#                line = inputfile.next() # Either the header or a Raman line
#                if line.find("Raman") >= 0:
#                    if not hasattr(self, "vibramans"):
#                        self.vibramans = []
#                    ramans = [self.float(f) for f in line.split()[3:]]
#                    self.vibramans.extend(ramans)
#                    line = inputfile.next() # Depolar (P)
#                    line = inputfile.next() # Depolar (U)
#                    line = inputfile.next() # Header
#                line = inputfile.next() # First line of cartesian displacement vectors
#                p = [[], [], []]
#                while len(line[:15].split()) > 0:
#                    # Store the cartesian displacement vectors
#                    broken = map(float, line.strip().split()[2:])
#                    for i in range(0, len(broken), 3):
#                        p[i/3].append(broken[i:i+3])
#                    line = inputfile.next()
#                self.vibdisps.extend(p[0:len(broken)/3])
#                line = inputfile.next() # Should be the line with symmetries
#            self.vibfreqs = numpy.array(self.vibfreqs, "d")
#            self.vibirs = numpy.array(self.vibirs, "d")
#            self.vibdisps = numpy.array(self.vibdisps, "d")
#            if hasattr(self, "vibramans"):
#                self.vibramans = numpy.array(self.vibramans, "d")
                
        # Electronic transitions.
        if line[1:14] == "Excited State":
        
            if not hasattr(self, "etenergies"):
                self.etenergies = []
                self.etoscs = []
                self.etsyms = []
                self.etsecs = []
            # Need to deal with lines like:
            # (restricted calc)
            # Excited State   1:   Singlet-BU     5.3351 eV  232.39 nm  f=0.1695
            # (unrestricted calc) (first excited state is 2!)
            # Excited State   2:   ?Spin  -A      0.1222 eV 10148.75 nm  f=0.0000
            # (Gaussian 09 ZINDO)
            # Excited State   1:      Singlet-?Sym    2.5938 eV  478.01 nm  f=0.0000  <S**2>=0.000
            p = re.compile(":(?P<sym>.*?)(?P<energy>-?\d*\.\d*) eV")
            groups = p.search(line).groups()
            self.etenergies.append(utils.convertor(self.float(groups[1]), "eV", "cm-1"))
            self.etoscs.append(self.float(line.split("f=")[-1].split()[0]))
            self.etsyms.append(groups[0].strip())
            
            line = inputfile.next()

            p = re.compile("(\d+)")
            CIScontrib = []
            while line.find(" ->") >= 0: # This is a contribution to the transition
                parts = line.split("->")
                self.logger.debug(parts)
                # Has to deal with lines like:
                #       32 -> 38         0.04990
                #      35A -> 45A        0.01921
                frommoindex = 0 # For restricted or alpha unrestricted
                fromMO = parts[0].strip()
                if fromMO[-1] == "B":
                    frommoindex = 1 # For beta unrestricted
                fromMO = int(p.match(fromMO).group())-1 # subtract 1 so that it is an index into moenergies
                
                t = parts[1].split()
                tomoindex = 0
                toMO = t[0]
                if toMO[-1] == "B":
                    tomoindex = 1
                toMO = int(p.match(toMO).group())-1 # subtract 1 so that it is an index into moenergies

                percent = self.float(t[1])
                # For restricted calculations, the percentage will be corrected
                # after parsing (see after_parsing() above).
                CIScontrib.append([(fromMO, frommoindex), (toMO, tomoindex), percent])
                line = inputfile.next()
            self.etsecs.append(CIScontrib)

# Circular dichroism data (different for G03 vs G09)

# G03

## <0|r|b> * <b|rxdel|0>  (Au), Rotatory Strengths (R) in
## cgs (10**-40 erg-esu-cm/Gauss)
##       state          X           Y           Z     R(length)
##         1         0.0006      0.0096     -0.0082     -0.4568
##         2         0.0251     -0.0025      0.0002     -5.3846
##         3         0.0168      0.4204     -0.3707    -15.6580
##         4         0.0721      0.9196     -0.9775     -3.3553

# G09

## 1/2[<0|r|b>*<b|rxdel|0> + (<0|rxdel|b>*<b|r|0>)*]
## Rotatory Strengths (R) in cgs (10**-40 erg-esu-cm/Gauss)
##       state          XX          YY          ZZ     R(length)     R(au)
##         1        -0.3893     -6.7546      5.7736     -0.4568     -0.0010
##         2       -17.7437      1.7335     -0.1435     -5.3845     -0.0114
##         3       -11.8655   -297.2604    262.1519    -15.6580     -0.0332

        if (line[1:52] == "<0|r|b> * <b|rxdel|0>  (Au), Rotatory Strengths (R)" or
            line[1:50] == "1/2[<0|r|b>*<b|rxdel|0> + (<0|rxdel|b>*<b|r|0>)*]"):

            self.etrotats = []
            inputfile.next() # Units
            headers = inputfile.next() # Headers
            Ncolms = len(headers.split())
            line = inputfile.next()
            parts = line.strip().split()
            while len(parts) == Ncolms:
                try:
                    R = self.float(parts[4])
                except ValueError:
                    # nan or -nan if there is no first excited state
                    # (for unrestricted calculations)
                    pass
                else:
                    self.etrotats.append(R)
                line = inputfile.next()
                temp = line.strip().split()
                parts = line.strip().split()                
            self.etrotats = numpy.array(self.etrotats, "d")

        # Number of basis sets functions.
        # Has to deal with lines like:
        #  NBasis =   434 NAE=    97 NBE=    97 NFC=    34 NFV=     0
        # and...
        #  NBasis = 148  MinDer = 0  MaxDer = 0
        # Although the former is in every file, it doesn't occur before
        #   the overlap matrix is printed.
        if line[1:7] == "NBasis" or line[4:10] == "NBasis":

            # For counterpoise fragment, skip these lines.
            if self.counterpoise != 0: return

            # For ONIOM calcs, ignore this section in order to bypass assertion failure.
            if self.oniom: return

            # If nbasis was already parsed, check if it changed.
            nbasis = int(line.split('=')[1].split()[0])
            if hasattr(self, "nbasis"):
                assert nbasis == self.nbasis
            else:
                self.nbasis = nbasis
                
        # Number of linearly-independent basis sets.
        if line[1:7] == "NBsUse":

            # For counterpoise fragment, skip these lines.
            if self.counterpoise != 0: return

            # For ONIOM calcs, ignore this section in order to bypass assertion failure.
            if self.oniom: return

            nmo = int(line.split('=')[1].split()[0])
            if hasattr(self, "nmo"):
                assert nmo == self.nmo
            else:
                self.nmo = nmo

        # For AM1 calculations, set nbasis by a second method,
        #   as nmo may not always be explicitly stated.
        if line[7:22] == "basis functions, ":
        
            nbasis = int(line.split()[0])
            if hasattr(self, "nbasis"):
                assert nbasis == self.nbasis
            else:
                self.nbasis = nbasis

        # Molecular orbital overlap matrix.
        # Has to deal with lines such as:
        #   *** Overlap ***
        #   ****** Overlap ******
        # Note that Gaussian sometimes drops basis functions,
        #  causing the overlap matrix as parsed below to not be
        #  symmetric (which is a problem for population analyses, etc.)
        if line[1:4] == "***" and (line[5:12] == "Overlap"
                                 or line[8:15] == "Overlap"):

            # Ensure that this is the main calc and not a fragment
            if self.counterpoise != 0: return

            self.aooverlaps = numpy.zeros( (self.nbasis, self.nbasis), "d")
            # Overlap integrals for basis fn#1 are in aooverlaps[0]
            base = 0
            colmNames = inputfile.next()
            while base < self.nbasis:
                 
                self.updateprogress(inputfile, "Overlap", self.fupdate)
                        
                for i in range(self.nbasis-base): # Fewer lines this time
                    line = inputfile.next()
                    parts = line.split()
                    for j in range(len(parts)-1): # Some lines are longer than others
                        k = float(parts[j+1].replace("D", "E"))
                        self.aooverlaps[base+j, i+base] = k
                        self.aooverlaps[i+base, base+j] = k
                base += 5
                colmNames = inputfile.next()
            self.aooverlaps = numpy.array(self.aooverlaps, "d")                    

        # Molecular orbital coefficients (mocoeffs).
        # Essentially only produced for SCF calculations.
        # This is also the place where aonames and atombasis are parsed.
        if line[5:35] == "Molecular Orbital Coefficients" or line[5:41] == "Alpha Molecular Orbital Coefficients" or line[5:40] == "Beta Molecular Orbital Coefficients":

            # If counterpoise fragment, return without parsing orbital info
            if self.counterpoise != 0: return
            # Skip this for ONIOM calcs
            if self.oniom: return

            if line[5:40] == "Beta Molecular Orbital Coefficients":
                beta = True
                if self.popregular:
                    return
                    # This was continue before refactoring the parsers.
                    #continue # Not going to extract mocoeffs
                # Need to add an extra array to self.mocoeffs
                self.mocoeffs.append(numpy.zeros((self.nmo, self.nbasis), "d"))
            else:
                beta = False
                self.aonames = []
                self.atombasis = []
                mocoeffs = [numpy.zeros((self.nmo, self.nbasis), "d")]

            base = 0
            self.popregular = False
            for base in range(0, self.nmo, 5):
                
                self.updateprogress(inputfile, "Coefficients", self.fupdate)
                         
                colmNames = inputfile.next()   

                if not colmNames.split():
                    self.logger.warning("Molecular coefficients header found but no coefficients.")
                    break;

                if base == 0 and int(colmNames.split()[0]) != 1:
                    # Implies that this is a POP=REGULAR calculation
                    # and so, only aonames (not mocoeffs) will be extracted
                    self.popregular = True
                symmetries = inputfile.next()
                eigenvalues = inputfile.next()
                for i in range(self.nbasis):
                                   
                    line = inputfile.next()
                    if i == 0:
                        # Find location of the start of the basis function name
                        start_of_basis_fn_name = line.find(line.split()[3]) - 1
                    if base == 0 and not beta: # Just do this the first time 'round
                        parts = line[:start_of_basis_fn_name].split()
                        if len(parts) > 1: # New atom
                            if i > 0:
                                self.atombasis.append(atombasis)
                            atombasis = []
                            atomname = "%s%s" % (parts[2], parts[1])
                        orbital = line[start_of_basis_fn_name:20].strip()
                        self.aonames.append("%s_%s" % (atomname, orbital))
                        atombasis.append(i)

                    part = line[21:].replace("D", "E").rstrip()
                    temp = [] 
                    for j in range(0, len(part), 10):
                        temp.append(float(part[j:j+10]))
                    if beta:
                        self.mocoeffs[1][base:base + len(part) / 10, i] = temp
                    else:
                        mocoeffs[0][base:base + len(part) / 10, i] = temp

                if base == 0 and not beta: # Do the last update of atombasis
                    self.atombasis.append(atombasis)
                if self.popregular:
                    # We now have aonames, so no need to continue
                    break
            if not self.popregular and not beta:
                self.mocoeffs = mocoeffs

        # Natural Orbital Coefficients (nocoeffs) - alternative for mocoeffs.
        # Most extensively formed after CI calculations, but not only.
        # Like for mocoeffs, this is also where aonames and atombasis are parsed.
        if line[5:33] == "Natural Orbital Coefficients":

            self.aonames = []
            self.atombasis = []
            nocoeffs = numpy.zeros((self.nmo, self.nbasis), "d")

            base = 0
            self.popregular = False
            for base in range(0, self.nmo, 5):
                
                self.updateprogress(inputfile, "Coefficients", self.fupdate)
                         
                colmNames = inputfile.next()   
                if base == 0 and int(colmNames.split()[0]) != 1:
                    # Implies that this is a POP=REGULAR calculation
                    # and so, only aonames (not mocoeffs) will be extracted
                    self.popregular = True

                # No symmetry line for natural orbitals.
                # symmetries = inputfile.next()
                eigenvalues = inputfile.next()

                for i in range(self.nbasis):
                                   
                    line = inputfile.next()

                    # Just do this the first time 'round.
                    if base == 0:

                        # Changed below from :12 to :11 to deal with Elmar Neumann's example.
                        parts = line[:11].split()
                        # New atom.
                        if len(parts) > 1:
                            if i > 0:
                                self.atombasis.append(atombasis)
                            atombasis = []
                            atomname = "%s%s" % (parts[2], parts[1])
                        orbital = line[11:20].strip()
                        self.aonames.append("%s_%s" % (atomname, orbital))
                        atombasis.append(i)

                    part = line[21:].replace("D", "E").rstrip()
                    temp = [] 

                    for j in range(0, len(part), 10):
                        temp.append(float(part[j:j+10]))

                    nocoeffs[base:base + len(part) / 10, i] = temp

                # Do the last update of atombasis.
                if base == 0:
                    self.atombasis.append(atombasis)

                # We now have aonames, so no need to continue.
                if self.popregular:
                    break

            if not self.popregular:
                self.nocoeffs = nocoeffs

        # For FREQ=Anharm, extract anharmonicity constants
        if line[1:40] == "X matrix of Anharmonic Constants (cm-1)":
            Nvibs = len(self.vibfreqs)
            self.vibanharms = numpy.zeros( (Nvibs, Nvibs), "d")

            base = 0
            colmNames = inputfile.next()
            while base < Nvibs:
                 
                for i in range(Nvibs-base): # Fewer lines this time
                    line = inputfile.next()
                    parts = line.split()
                    for j in range(len(parts)-1): # Some lines are longer than others
                        k = float(parts[j+1].replace("D", "E"))
                        self.vibanharms[base+j, i+base] = k
                        self.vibanharms[i+base, base+j] = k
                base += 5
                colmNames = inputfile.next()

        # Pseudopotential charges.
        if line.find("Pseudopotential Parameters") > -1:

            dashes = inputfile.next()
            label1 = inputfile.next()
            label2 = inputfile.next()
            dashes = inputfile.next()

            line = inputfile.next()
            if line.find("Centers:") < 0:
                return
                # This was continue before parser refactoring.
                # continue

# Needs to handle code like the following:
#
#  Center     Atomic      Valence      Angular      Power                                                       Coordinates
#  Number     Number     Electrons     Momentum     of R      Exponent        Coefficient                X           Y           Z
# ===================================================================================================================================
# Centers:   1
# Centers:  16
# Centers:  21 24
# Centers:  99100101102
#    1         44           16                                                                      -4.012684 -0.696698  0.006750
#                                      F and up 
#                                                     0      554.3796303       -0.05152700                

            centers = []
            while line.find("Centers:") >= 0:
                temp = line[10:]
                for i in range(0, len(temp)-3, 3):
                    centers.append(int(temp[i:i+3]))
                line = inputfile.next()
            centers.sort() # Not always in increasing order
            
            self.coreelectrons = numpy.zeros(self.natom, "i")

            for center in centers:
                front = line[:10].strip()
                while not (front and int(front) == center):
                    line = inputfile.next()
                    front = line[:10].strip()
                info = line.split()
                self.coreelectrons[center-1] = int(info[1]) - int(info[2])
                line = inputfile.next()

        # This will be printed for counterpoise calcualtions only.
        # To prevent crashing, we need to know which fragment is being considered.
        # Other information is also printed in lines that start like this.
        if line[1:14] == 'Counterpoise:':
        
            if line[42:50] == "fragment":
                self.counterpoise = int(line[51:54])

        # This will be printed only during ONIOM calcs; use it to set a flag
        # that will allow assertion failures to be bypassed in the code.
        if line[1:7] == "ONIOM:":
            self.oniom = True

        if (line[1:24] == "Mulliken atomic charges" or
            line[1:22] == "Lowdin Atomic Charges"):
            if not hasattr(self, "atomcharges"):
                self.atomcharges = {}
            ones = inputfile.next()
            charges = []
            nline = inputfile.next()
            while not "Sum of" in nline:
                charges.append(float(nline.split()[2]))
                nline = inputfile.next()
            if "Mulliken" in line:
                self.atomcharges["mulliken"] = charges
            else:
                self.atomcharges["lowdin"] = charges



if __name__ == "__main__":
    import doctest, gaussianparser, sys

    if len(sys.argv) == 1:
        doctest.testmod(gaussianparser, verbose=False)

    if len(sys.argv) >= 2:
        parser = gaussianparser.Gaussian(sys.argv[1])
        data = parser.parse()

    if len(sys.argv) > 2:
        for i in range(len(sys.argv[2:])):
            if hasattr(data, sys.argv[2 + i]):
                print getattr(data, sys.argv[2 + i])