This file is indexed.

/usr/share/maxima/5.32.1/src/rat3d.lisp is in maxima-src 5.32.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1981 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module rat3d)

;;	THIS IS THE NEW RATIONAL FUNCTION PACKAGE PART 4.
;;	IT INCLUDES THE POLYNOMIAL FACTORING ROUTINES.

(declare-top (special *min* *mx* *odr* nn* scanmapp *checkagain adn*))

(declare-top (special $factorflag $intfaclim $dontfactor $algebraic $ratfac))

;;There really do seem to be two such variables...
(declare-top (special alpha *alpha gauss genvar minpoly*))

(defmvar *irreds nil)
(defmvar algfac* nil)
(defmvar low* nil)

(defmvar $intfaclim t)
(defmvar $berlefact t)

(defmfun listovars (q)
  (cond ((pcoefp q) nil)
	(t (let ((ans nil))
	     (declare (special ans))
	     (listovars0 q)))))

(defun listovars0 (q)
  (declare (special ans))
  (cond ((pcoefp q) ans)
	((member (car q) ans :test #'eq) (listovars1 (cdr q)))
	(t (push (car q) ans)
	   (listovars1 (cdr q)))))

(defun listovars1 (ql)
  (declare (special ans))
  (cond ((null ql) ans)
	(t (listovars0 (cadr ql)) (listovars1 (cddr ql)))))

(defun dontfactor (y)
  (cond ((or (null $dontfactor) (equal $dontfactor '((mlist)))) nil)
	((memalike (pdis (make-poly y)) $dontfactor) t)))

(defun removealg (l)
  (loop for var in l
	 unless (algv var) collect var))

(defun degvecdisrep (degl)
  (do ((l degl (cdr l))
       (gv genvar (cdr gv))
       (ans 1))
      ((null l) ans)
    (and (> (car l) 0)
	 (setq ans (list (car gv) (car l) ans)))))

(defun ptermcont (p)
  (let ((tcont (degvecdisrep (pmindegvec p)))
	($algebraic))
    (list tcont (pquotient p tcont))))

(defun pmindegvec (p)
  (minlist (let ((*odr* (putodr (reverse genvar)))
		 (nn* (1+ (length genvar)))
		 (*min* t))
	     (degvector nil 1 p))))

(defun pdegreevector (p)
  (maxlist (let ((*odr* (putodr (reverse genvar)))
		 (nn* (1+ (length genvar)))
		 (*mx* t))
	     (degvector nil 1 p))))

(defun maxlist(l) (maxminl l t))

(defun minlist(l) (maxminl l nil))

(defun maxminl (l switch)
  (do ((l1 (copy-list (car l)))
       (ll (cdr l) (cdr ll)))
      ((null ll) l1)
    (do ((v1 l1 (cdr v1))
	 (v2 (car ll) (cdr v2)))
	((null v1))
      (cond (switch
	     (cond ((> (car v2) (car v1))
		    (rplaca v1 (car v2)))))
	    (t (cond ((< (car v2) (car v1))
		      (rplaca v1 (car v2)))))))))

(defun quick-sqfr-check (p var)
  (let ((gv (delete var (listovars p) :test #'equal))
	(modulus (or modulus *alpha))
	(l) (p0))
    (if $algebraic (setq gv (removealg gv)))
    (and gv
	 (not (pzerop (pcsubsty (setq l (rand (length gv) modulus))
				gv (pmod (p-lc p)))))
	 (not (pcoefp (setq p0 (pcsubsty l gv (pmod p)))))
	 (pcoefp (pgcd p0 (pderivative p0 (car p0))))
	 (list l gv p0))))

(defun monom->facl (p)
  (cond ((pcoefp p) (if (equal p 1) nil (list p 1)))
	(t (list* (pget (car p)) (cadr p) (monom->facl (caddr p))))))

(defun psqfr (p)
  (prog (r varl var mult factors)
     (cond ((pcoefp p) (return (cfactor p)))
	   ((pminusp p) (return (cons -1 (cons 1 (psqfr (pminus p)))))))
     (desetq (factors p) (ptermcont p))
     (setq factors (monom->facl factors))
     (cond ((pcoefp p) (go end)))
     (setq varl (sort (listovars p) 'pointergp))
     setvar
     (setq var (car varl) varl (cdr varl) mult 0)
     (cond ((pointergp var (car p)) (go nextvar))
	   ((dontfactor var)
	    (setq factors (cons p (cons 1 factors))
		  p 1)
	    (go end)))
     (cond ((quick-sqfr-check p var)	;QUICK SQFR CHECK BY SUBST.
	    (setq r (oldcontent p))
	    (setq p (car r) factors (cons (cadr r)
					  (cons 1 factors)))
	    (go nextvar)))
     (setq r (pderivative p var))
     (cond ((pzerop r) (go nextvar)))
     (cond ((and modulus (not (pcoefp r))) (pmonicize (cdr r))))
     (setq p (pgcdcofacts p r))
     (and algfac* (cadddr p) (setq adn* (ptimes adn* (cadddr p))))
     (setq r (cadr p)			; PRODUCT OF P[I]
	   p (car p))
     a (setq r (pgcdcofacts r p)
	     p (caddr r)
	     mult (1+ mult))
     (and algfac* (cadddr r) (setq adn* (ptimes adn* (cadddr r))))
     (cond ((not (pcoefp (cadr r)))
	    (setq factors
		  (cons (cadr r)
			(cons mult factors)))))
     (cond ((not (pcoefp (setq r (car r)))) (go a)))
     nextvar
     (cond ((pcoefp p) (go end))
	   (varl (go setvar))
	   (modulus (setq factors (append (fixmult (psqfr (pmodroot p))
						   modulus)
					  factors))
		    (setq p 1)))
     end  (setq p (cond ((equal 1 p) nil)
			(t (cfactor p))))
     (return (append p factors))))

(defun fixmult (l n)
  (do ((l l (cddr l)))
      ((null l))
    (rplaca (cdr l) (* n (cadr l))))
  l)

(defun pmodroot (p)
  (cond ((pcoefp p) p)
	((alg p) (pexpt p (expt modulus (1- (car (alg p))))))
	(t (cons (car p) (pmodroot1 (cdr p))))))

(defun pmodroot1 (x)
  (cond ((null x) x)
	(t (cons (truncate (car x) modulus)
		 (cons (pmodroot (cadr x))
		       (pmodroot1 (cddr x)))))))

(defmvar $savefactors nil "If t factors of ratreped forms will be saved")

(defvar checkfactors () "List of saved factors")

(defun savefactors (l)
  (when $savefactors
    (savefactor1 (car l))
    (savefactor1 (cdr l)))
  l)

(defun savefactor1 (p)
  (unless (or (pcoefp p)
	      (ptzerop (p-red p))
	      (member p checkfactors :test #'equal))
    (push p checkfactors)))

(defun heurtrial1 (poly facs)
  (prog (h j)
     (setq h (pdegreevector poly))
     (cond ((or (member 1 h :test #'equal) (member 2 h :test #'equal)) (return (list poly))))
     (cond ((null facs) (return (list poly))))
     (setq h (pgcd poly (car facs)))
     (return (cond ((pcoefp h) (heurtrial1 poly (cdr facs)))
		   ((pcoefp (setq j (pquotient poly h)))
		    (heurtrial1 poly (cdr facs)))
		   (t (heurtrial (list h j) (cdr facs)))))))

(defun heurtrial (x facs)
  (cond ((null x) nil)
	(t (nconc (heurtrial1 (car x) facs)
		  (heurtrial (cdr x) facs)))))


(defun pfactorquad (p)
  (prog (a b c d $dontfactor l v)
     (cond((or (onevarp p)(equal modulus 2))(return (list p))))
     (setq l (pdegreevector p))
     (cond ((not (member 2 l :test #'equal)) (return (list p))))
     (setq l (nreverse l) v (reverse genvar)) ;FIND MOST MAIN VAR
     loop (cond ((equal (car l) 2) (setq v (car v)))
		(t (setq l (cdr l)) (setq v (cdr v)) (go loop)))
     (desetq (a . c) (bothprodcoef (make-poly v 2 1) p))
     (desetq (b . c) (bothprodcoef (make-poly v 1 1) c))
     (setq d (pgcd (pgcd a b) c))
     (cond ((pcoefp d) nil)
	   (t (setq *irreds (nconc *irreds (pfactor1 d)))
	      (return (pfactorquad (pquotient p d)))))
     (setq d (pplus (pexpt b 2) (ptimes -4 (ptimes a c))))
     (return
       (cond ((setq c (pnthrootp d 2))
	      (setq d (ratreduce (pplus b c) (ptimes 2 a)))
	      (setq d (pabs (pplus (ptimes (make-poly v) (cdr d))
				   (car d))))
	      (setq *irreds (nconc *irreds (list d (pquotient p d))))
	      nil)
	     (modulus (list p))    ;NEED TO TAKE SQRT(INT. MOD P) LCF.
	     (t (setq *irreds (nconc *irreds (list p)))nil)))))

(defmfun $isqrt (x) ($inrt x 2))

(defmfun $inrt (x n)
  (cond ((not (integerp (setq x (mratcheck x))))
	 (cond ((equal n 2) (list '($isqrt) x)) (t (list '($inrt) x n))))
	((zerop x) x)
	((not (integerp (setq n (mratcheck n)))) (list '($inrt) x n))
	(t (car (iroot (abs x) n)))))

(defun iroot (a n)   ; computes a^(1/n)  see Fitch, SIGSAM Bull Nov 74
  (cond ((< (integer-length a) n) (list 1 (1- a)))
	(t				;assumes integer a>0 n>=2
	 (do ((x (expt 2 (1+ (truncate (integer-length a) n)))
		 (- x (truncate (+ n1 bk) n)))
	      (n1 (1- n)) (xn) (bk))
	     (nil)
	   (cond ((signp le (setq bk (- x (truncate a (setq xn (expt x n1))))))
		  (return (list x (- a (* x xn))))))))))

(defmfun $nthroot (p n)
  (if (and (integerp n) (> n 0))
      (let ((k (pnthrootp (cadr ($rat p)) n)))
	(if k (pdis k) (merror (intl:gettext "nthroot: ~M is not a ~M power") p (format nil "~:r" n))))
    (merror (intl::gettext "nthroot: ~M is not a positive integer") n)))

(defun pnthrootp (p n)
  (ignore-rat-err (pnthroot p n)))

(defun pnthroot (poly n)
  (cond ((equal n 1) poly)
	((pcoefp poly) (cnthroot poly n))
	(t (let* ((var (p-var poly))
		  (ans (make-poly var (cquotient (p-le poly) n)
				  (pnthroot (p-lc poly) n)))
		  (ae (p-terms (pquotient (pctimes n (leadterm poly)) ans))))
	     (do ((p (psimp var (p-red poly))
		     (pdifference poly (pexpt ans n))))
		 ((pzerop p) ans)
	       (cond ((or (pcoefp p) (not (eq (p-var p) var))
			  (> (car ae) (p-le p)))
                      (rat-error "pnthroot error (should have been caught)")))
	       (setq ans (nconc ans (ptptquotient (cdr (leadterm p)) ae)))
	       )))))

(defun cnthroot(c n)
  (cond ((minusp c)
	 (cond ((oddp n) (- (cnthroot (- c) n)))
	       (t (rat-error "cnthroot error (should have been caught"))))
	((zerop c) c)
	((zerop (cadr (setq c (iroot c n)))) (car c))
	(t (rat-error "cnthroot error2 (should have been caught"))))


(defmfun pabs (x) (cond ((pminusp x) (pminus x)) (t x)))

(defun pfactorlin (p l)
  (do ((degl l (cdr degl))
       (v genvar (cdr v))
       (a)(b))
      ((null degl) nil)
    (cond ((and (= (car degl) 1)
		(not (algv (car v))))
	   (desetq (a . b) (bothprodcoef (make-poly (car v)) p))
	   (setq a (pgcd a b))
	   (return (cons (pquotientchk p a)
			 (cond ((equal a 1) nil)
			       (t (pfactor1 a)))))))))


(defun ffactor (l fn &aux (alpha alpha))
  ;;  (declare (special varlist))		;i suppose...
  (prog (q)
     (cond ((and (null $factorflag) (mnump l)) (return l))
	   ((or (atom l) algfac* modulus) nil)
	   ((and (not gauss)(member 'irreducible (cdar l) :test #'eq))(return l))
	   ((and gauss (member 'irreducibleg (cdar l) :test #'eq)) (return l))
	   ((and (not gauss)(member 'factored (cdar l) :test #'eq))(return l))
	   ((and gauss (member 'gfactored (cdar l) :test #'eq)) (return l)))
     (newvar l)
     (if algfac* (setq varlist (cons alpha (remove alpha varlist :test #'equal))))
     (setq q (ratrep* l))
     (when algfac*
       (setq alpha (cadr (ratrep* alpha)))
       (setq minpoly* (subst (car (last genvar))
			     (car minpoly*)
			     minpoly*)))
     (mapc #'(lambda (y z) (putprop y z (quote disrep)))
	   genvar
	   varlist)
     (return (retfactor (cdr q) fn l))))

(defun factorout1 (l p)
  (do ((gv genvar (cdr gv))
       (dl l (cdr dl))
       (ans))
      ((null dl) (list ans p))
    (cond ((zerop (car dl)))
	  (t (setq ans (cons (pget (car gv)) (cons (car dl) ans))
		   p (pquotient p (list (car gv) (car dl) 1)))))))

(defun factorout (p)
  (cond ((and (pcoefp (ptterm (cdr p) 0))
	      (not (zerop (ptterm (cdr p) 0))))
	 (list nil p))
	(t (factorout1 (pmindegvec p) p))))

(defmfun pfactor (p &aux ($algebraic algfac*))
  (cond ((pcoefp p) (cfactor p))
	($ratfac (pfacprod p))
	(t (setq p (factorout p))
	   (cond ((equal (cadr p) 1) (car p))
		 ((numberp (cadr p)) (append (cfactor (cadr p)) (car p)))
		 (t (let ((cont (cond (modulus (list (leadalgcoef (cadr p)) (monize (cadr p))))
				      (algfac* (algcontent (cadr p)))
				      (t (pcontent (cadr p))))))
		      (nconc
		       (cond ((equal (car cont) 1) nil)
			     (algfac*
			      (cond (modulus (list (car cont) 1))
				    ((equal (car cont) '(1 . 1)) nil)
				    ((equal (cdar cont) 1) (list (caar cont) 1))
				    (t (list (caar cont) 1 (cdar cont) -1))))
			     (t (cfactor (car cont))))
		       (pfactor11 (psqfr (cadr cont)))
		       (car p))))))))

(defun pfactor11 (p)
  (cond ((null p) nil)
	((numberp (car p))
	 (cons (car p) (cons (cadr p) (pfactor11 (cddr p)))))
	(t (let* ((adn* 1)
		  (f (pfactor1 (car p))))
	     (nconc (if (equal adn* 1) nil
			(list adn* (- (cadr p))))
		    (do ((l f (cdr l))
			 (ans nil (cons (car l) (cons (cadr p) ans))))
			((null l) ans))
		    (pfactor11 (cddr p)))))))

(defun pfactor1 (p)			;ASSUMES P SQFR
  (prog (factors *irreds *checkagain)
     (cond ((dontfactor (car p)) (return (list p)))
	   ((onevarp p)
	    (cond ((setq factors (factxn+-1 p))
		   (if (and (not modulus)
			    (or gauss (not algfac*)))
		       (setq *irreds factors
			     factors nil))
		   (go out))
		  ((and (not algfac*) (not modulus)
			(not (equal (cadr p) 2)) (estcheck (cdr p)))
		   (return (list p))))))
     (and (setq factors (pfactorlin p (pdegreevector p)))
	  (return factors))
     (setq factors(if (or algfac* modulus) (list p) ;SQRT(NUM. CONT OF DISC)
		      (pfactorquad p)))
     (cond ((null factors)(go out)))
     (when checkfactors
       (setq factors (heurtrial factors checkfactors))
       (setq *checkagain (cdr factors)))
     out (return (nconc *irreds (mapcan (function pfactorany) factors)))))

(defmvar $homog_hack nil)  ; If T tries to eliminate homogeneous vars.

(declare-top (special *hvar *hmat))

(defun pfactorany (p)
  (cond (*checkagain (let (checkfactors) (pfactor1 p)))
	((and $homog_hack (not algfac*) (not (onevarp p)))
	 (let ($homog_hack *hvar *hmat)
	   (mapcar #'hexpand (pfactor (hreduce p)))))
	($berlefact (factor1972 p))
	(t (pkroneck p))))


(defun retfactor (x fn l &aux (a (ratfact x fn)))
  (prog ()
   b    (cond ((null (cddr a))
	       (setq a (retfactor1 (car a) (cadr a)))
	       (return (cond ((and scanmapp (not (atom a)) (not (atom l))
				   (eq (caar a) (caar l)))
			      (tagirr l))
			     (t a))))
	      ((equal (car a) 1) (setq a (cddr a)) (go b))
	      (t (setq a (map2c #'retfactor1 a))
		 (return (cond ((member 0 a :test #'eq) 0)
			       (t (setq a (let (($expop 0) ($expon 0)
						$negdistrib)
					    (muln (sortgreat a) t)))
				  (cond ((not (mtimesp a)) a)
					(t (cons '(mtimes simp factored)
						 (cdr a)))))))))))

;;; FOR LISTS OF ARBITRARY EXPRESSIONS
(defun retfactor1 (p e)
  (power (tagirr (simplify (pdisrep p))) e))

(defun tagirr (x)
  (cond ((or (atom x) (member 'irreducible (cdar x) :test #'eq)) x)
	(t (cons (append (car x) '(irreducible)) (cdr x)))))

(defun revsign (x)
  (cond ((null x) nil)
	(t (cons (car x)
		 (cons (- (cadr x)) (revsign (cddr x)))))))

;;	THIS IS THE END OF THE NEW RATIONAL FUNCTION PACKAGE PART 4