/usr/share/maxima/5.32.1/src/rat3d.lisp is in maxima-src 5.32.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1981 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module rat3d)
;; THIS IS THE NEW RATIONAL FUNCTION PACKAGE PART 4.
;; IT INCLUDES THE POLYNOMIAL FACTORING ROUTINES.
(declare-top (special *min* *mx* *odr* nn* scanmapp *checkagain adn*))
(declare-top (special $factorflag $intfaclim $dontfactor $algebraic $ratfac))
;;There really do seem to be two such variables...
(declare-top (special alpha *alpha gauss genvar minpoly*))
(defmvar *irreds nil)
(defmvar algfac* nil)
(defmvar low* nil)
(defmvar $intfaclim t)
(defmvar $berlefact t)
(defmfun listovars (q)
(cond ((pcoefp q) nil)
(t (let ((ans nil))
(declare (special ans))
(listovars0 q)))))
(defun listovars0 (q)
(declare (special ans))
(cond ((pcoefp q) ans)
((member (car q) ans :test #'eq) (listovars1 (cdr q)))
(t (push (car q) ans)
(listovars1 (cdr q)))))
(defun listovars1 (ql)
(declare (special ans))
(cond ((null ql) ans)
(t (listovars0 (cadr ql)) (listovars1 (cddr ql)))))
(defun dontfactor (y)
(cond ((or (null $dontfactor) (equal $dontfactor '((mlist)))) nil)
((memalike (pdis (make-poly y)) $dontfactor) t)))
(defun removealg (l)
(loop for var in l
unless (algv var) collect var))
(defun degvecdisrep (degl)
(do ((l degl (cdr l))
(gv genvar (cdr gv))
(ans 1))
((null l) ans)
(and (> (car l) 0)
(setq ans (list (car gv) (car l) ans)))))
(defun ptermcont (p)
(let ((tcont (degvecdisrep (pmindegvec p)))
($algebraic))
(list tcont (pquotient p tcont))))
(defun pmindegvec (p)
(minlist (let ((*odr* (putodr (reverse genvar)))
(nn* (1+ (length genvar)))
(*min* t))
(degvector nil 1 p))))
(defun pdegreevector (p)
(maxlist (let ((*odr* (putodr (reverse genvar)))
(nn* (1+ (length genvar)))
(*mx* t))
(degvector nil 1 p))))
(defun maxlist(l) (maxminl l t))
(defun minlist(l) (maxminl l nil))
(defun maxminl (l switch)
(do ((l1 (copy-list (car l)))
(ll (cdr l) (cdr ll)))
((null ll) l1)
(do ((v1 l1 (cdr v1))
(v2 (car ll) (cdr v2)))
((null v1))
(cond (switch
(cond ((> (car v2) (car v1))
(rplaca v1 (car v2)))))
(t (cond ((< (car v2) (car v1))
(rplaca v1 (car v2)))))))))
(defun quick-sqfr-check (p var)
(let ((gv (delete var (listovars p) :test #'equal))
(modulus (or modulus *alpha))
(l) (p0))
(if $algebraic (setq gv (removealg gv)))
(and gv
(not (pzerop (pcsubsty (setq l (rand (length gv) modulus))
gv (pmod (p-lc p)))))
(not (pcoefp (setq p0 (pcsubsty l gv (pmod p)))))
(pcoefp (pgcd p0 (pderivative p0 (car p0))))
(list l gv p0))))
(defun monom->facl (p)
(cond ((pcoefp p) (if (equal p 1) nil (list p 1)))
(t (list* (pget (car p)) (cadr p) (monom->facl (caddr p))))))
(defun psqfr (p)
(prog (r varl var mult factors)
(cond ((pcoefp p) (return (cfactor p)))
((pminusp p) (return (cons -1 (cons 1 (psqfr (pminus p)))))))
(desetq (factors p) (ptermcont p))
(setq factors (monom->facl factors))
(cond ((pcoefp p) (go end)))
(setq varl (sort (listovars p) 'pointergp))
setvar
(setq var (car varl) varl (cdr varl) mult 0)
(cond ((pointergp var (car p)) (go nextvar))
((dontfactor var)
(setq factors (cons p (cons 1 factors))
p 1)
(go end)))
(cond ((quick-sqfr-check p var) ;QUICK SQFR CHECK BY SUBST.
(setq r (oldcontent p))
(setq p (car r) factors (cons (cadr r)
(cons 1 factors)))
(go nextvar)))
(setq r (pderivative p var))
(cond ((pzerop r) (go nextvar)))
(cond ((and modulus (not (pcoefp r))) (pmonicize (cdr r))))
(setq p (pgcdcofacts p r))
(and algfac* (cadddr p) (setq adn* (ptimes adn* (cadddr p))))
(setq r (cadr p) ; PRODUCT OF P[I]
p (car p))
a (setq r (pgcdcofacts r p)
p (caddr r)
mult (1+ mult))
(and algfac* (cadddr r) (setq adn* (ptimes adn* (cadddr r))))
(cond ((not (pcoefp (cadr r)))
(setq factors
(cons (cadr r)
(cons mult factors)))))
(cond ((not (pcoefp (setq r (car r)))) (go a)))
nextvar
(cond ((pcoefp p) (go end))
(varl (go setvar))
(modulus (setq factors (append (fixmult (psqfr (pmodroot p))
modulus)
factors))
(setq p 1)))
end (setq p (cond ((equal 1 p) nil)
(t (cfactor p))))
(return (append p factors))))
(defun fixmult (l n)
(do ((l l (cddr l)))
((null l))
(rplaca (cdr l) (* n (cadr l))))
l)
(defun pmodroot (p)
(cond ((pcoefp p) p)
((alg p) (pexpt p (expt modulus (1- (car (alg p))))))
(t (cons (car p) (pmodroot1 (cdr p))))))
(defun pmodroot1 (x)
(cond ((null x) x)
(t (cons (truncate (car x) modulus)
(cons (pmodroot (cadr x))
(pmodroot1 (cddr x)))))))
(defmvar $savefactors nil "If t factors of ratreped forms will be saved")
(defvar checkfactors () "List of saved factors")
(defun savefactors (l)
(when $savefactors
(savefactor1 (car l))
(savefactor1 (cdr l)))
l)
(defun savefactor1 (p)
(unless (or (pcoefp p)
(ptzerop (p-red p))
(member p checkfactors :test #'equal))
(push p checkfactors)))
(defun heurtrial1 (poly facs)
(prog (h j)
(setq h (pdegreevector poly))
(cond ((or (member 1 h :test #'equal) (member 2 h :test #'equal)) (return (list poly))))
(cond ((null facs) (return (list poly))))
(setq h (pgcd poly (car facs)))
(return (cond ((pcoefp h) (heurtrial1 poly (cdr facs)))
((pcoefp (setq j (pquotient poly h)))
(heurtrial1 poly (cdr facs)))
(t (heurtrial (list h j) (cdr facs)))))))
(defun heurtrial (x facs)
(cond ((null x) nil)
(t (nconc (heurtrial1 (car x) facs)
(heurtrial (cdr x) facs)))))
(defun pfactorquad (p)
(prog (a b c d $dontfactor l v)
(cond((or (onevarp p)(equal modulus 2))(return (list p))))
(setq l (pdegreevector p))
(cond ((not (member 2 l :test #'equal)) (return (list p))))
(setq l (nreverse l) v (reverse genvar)) ;FIND MOST MAIN VAR
loop (cond ((equal (car l) 2) (setq v (car v)))
(t (setq l (cdr l)) (setq v (cdr v)) (go loop)))
(desetq (a . c) (bothprodcoef (make-poly v 2 1) p))
(desetq (b . c) (bothprodcoef (make-poly v 1 1) c))
(setq d (pgcd (pgcd a b) c))
(cond ((pcoefp d) nil)
(t (setq *irreds (nconc *irreds (pfactor1 d)))
(return (pfactorquad (pquotient p d)))))
(setq d (pplus (pexpt b 2) (ptimes -4 (ptimes a c))))
(return
(cond ((setq c (pnthrootp d 2))
(setq d (ratreduce (pplus b c) (ptimes 2 a)))
(setq d (pabs (pplus (ptimes (make-poly v) (cdr d))
(car d))))
(setq *irreds (nconc *irreds (list d (pquotient p d))))
nil)
(modulus (list p)) ;NEED TO TAKE SQRT(INT. MOD P) LCF.
(t (setq *irreds (nconc *irreds (list p)))nil)))))
(defmfun $isqrt (x) ($inrt x 2))
(defmfun $inrt (x n)
(cond ((not (integerp (setq x (mratcheck x))))
(cond ((equal n 2) (list '($isqrt) x)) (t (list '($inrt) x n))))
((zerop x) x)
((not (integerp (setq n (mratcheck n)))) (list '($inrt) x n))
(t (car (iroot (abs x) n)))))
(defun iroot (a n) ; computes a^(1/n) see Fitch, SIGSAM Bull Nov 74
(cond ((< (integer-length a) n) (list 1 (1- a)))
(t ;assumes integer a>0 n>=2
(do ((x (expt 2 (1+ (truncate (integer-length a) n)))
(- x (truncate (+ n1 bk) n)))
(n1 (1- n)) (xn) (bk))
(nil)
(cond ((signp le (setq bk (- x (truncate a (setq xn (expt x n1))))))
(return (list x (- a (* x xn))))))))))
(defmfun $nthroot (p n)
(if (and (integerp n) (> n 0))
(let ((k (pnthrootp (cadr ($rat p)) n)))
(if k (pdis k) (merror (intl:gettext "nthroot: ~M is not a ~M power") p (format nil "~:r" n))))
(merror (intl::gettext "nthroot: ~M is not a positive integer") n)))
(defun pnthrootp (p n)
(ignore-rat-err (pnthroot p n)))
(defun pnthroot (poly n)
(cond ((equal n 1) poly)
((pcoefp poly) (cnthroot poly n))
(t (let* ((var (p-var poly))
(ans (make-poly var (cquotient (p-le poly) n)
(pnthroot (p-lc poly) n)))
(ae (p-terms (pquotient (pctimes n (leadterm poly)) ans))))
(do ((p (psimp var (p-red poly))
(pdifference poly (pexpt ans n))))
((pzerop p) ans)
(cond ((or (pcoefp p) (not (eq (p-var p) var))
(> (car ae) (p-le p)))
(rat-error "pnthroot error (should have been caught)")))
(setq ans (nconc ans (ptptquotient (cdr (leadterm p)) ae)))
)))))
(defun cnthroot(c n)
(cond ((minusp c)
(cond ((oddp n) (- (cnthroot (- c) n)))
(t (rat-error "cnthroot error (should have been caught"))))
((zerop c) c)
((zerop (cadr (setq c (iroot c n)))) (car c))
(t (rat-error "cnthroot error2 (should have been caught"))))
(defmfun pabs (x) (cond ((pminusp x) (pminus x)) (t x)))
(defun pfactorlin (p l)
(do ((degl l (cdr degl))
(v genvar (cdr v))
(a)(b))
((null degl) nil)
(cond ((and (= (car degl) 1)
(not (algv (car v))))
(desetq (a . b) (bothprodcoef (make-poly (car v)) p))
(setq a (pgcd a b))
(return (cons (pquotientchk p a)
(cond ((equal a 1) nil)
(t (pfactor1 a)))))))))
(defun ffactor (l fn &aux (alpha alpha))
;; (declare (special varlist)) ;i suppose...
(prog (q)
(cond ((and (null $factorflag) (mnump l)) (return l))
((or (atom l) algfac* modulus) nil)
((and (not gauss)(member 'irreducible (cdar l) :test #'eq))(return l))
((and gauss (member 'irreducibleg (cdar l) :test #'eq)) (return l))
((and (not gauss)(member 'factored (cdar l) :test #'eq))(return l))
((and gauss (member 'gfactored (cdar l) :test #'eq)) (return l)))
(newvar l)
(if algfac* (setq varlist (cons alpha (remove alpha varlist :test #'equal))))
(setq q (ratrep* l))
(when algfac*
(setq alpha (cadr (ratrep* alpha)))
(setq minpoly* (subst (car (last genvar))
(car minpoly*)
minpoly*)))
(mapc #'(lambda (y z) (putprop y z (quote disrep)))
genvar
varlist)
(return (retfactor (cdr q) fn l))))
(defun factorout1 (l p)
(do ((gv genvar (cdr gv))
(dl l (cdr dl))
(ans))
((null dl) (list ans p))
(cond ((zerop (car dl)))
(t (setq ans (cons (pget (car gv)) (cons (car dl) ans))
p (pquotient p (list (car gv) (car dl) 1)))))))
(defun factorout (p)
(cond ((and (pcoefp (ptterm (cdr p) 0))
(not (zerop (ptterm (cdr p) 0))))
(list nil p))
(t (factorout1 (pmindegvec p) p))))
(defmfun pfactor (p &aux ($algebraic algfac*))
(cond ((pcoefp p) (cfactor p))
($ratfac (pfacprod p))
(t (setq p (factorout p))
(cond ((equal (cadr p) 1) (car p))
((numberp (cadr p)) (append (cfactor (cadr p)) (car p)))
(t (let ((cont (cond (modulus (list (leadalgcoef (cadr p)) (monize (cadr p))))
(algfac* (algcontent (cadr p)))
(t (pcontent (cadr p))))))
(nconc
(cond ((equal (car cont) 1) nil)
(algfac*
(cond (modulus (list (car cont) 1))
((equal (car cont) '(1 . 1)) nil)
((equal (cdar cont) 1) (list (caar cont) 1))
(t (list (caar cont) 1 (cdar cont) -1))))
(t (cfactor (car cont))))
(pfactor11 (psqfr (cadr cont)))
(car p))))))))
(defun pfactor11 (p)
(cond ((null p) nil)
((numberp (car p))
(cons (car p) (cons (cadr p) (pfactor11 (cddr p)))))
(t (let* ((adn* 1)
(f (pfactor1 (car p))))
(nconc (if (equal adn* 1) nil
(list adn* (- (cadr p))))
(do ((l f (cdr l))
(ans nil (cons (car l) (cons (cadr p) ans))))
((null l) ans))
(pfactor11 (cddr p)))))))
(defun pfactor1 (p) ;ASSUMES P SQFR
(prog (factors *irreds *checkagain)
(cond ((dontfactor (car p)) (return (list p)))
((onevarp p)
(cond ((setq factors (factxn+-1 p))
(if (and (not modulus)
(or gauss (not algfac*)))
(setq *irreds factors
factors nil))
(go out))
((and (not algfac*) (not modulus)
(not (equal (cadr p) 2)) (estcheck (cdr p)))
(return (list p))))))
(and (setq factors (pfactorlin p (pdegreevector p)))
(return factors))
(setq factors(if (or algfac* modulus) (list p) ;SQRT(NUM. CONT OF DISC)
(pfactorquad p)))
(cond ((null factors)(go out)))
(when checkfactors
(setq factors (heurtrial factors checkfactors))
(setq *checkagain (cdr factors)))
out (return (nconc *irreds (mapcan (function pfactorany) factors)))))
(defmvar $homog_hack nil) ; If T tries to eliminate homogeneous vars.
(declare-top (special *hvar *hmat))
(defun pfactorany (p)
(cond (*checkagain (let (checkfactors) (pfactor1 p)))
((and $homog_hack (not algfac*) (not (onevarp p)))
(let ($homog_hack *hvar *hmat)
(mapcar #'hexpand (pfactor (hreduce p)))))
($berlefact (factor1972 p))
(t (pkroneck p))))
(defun retfactor (x fn l &aux (a (ratfact x fn)))
(prog ()
b (cond ((null (cddr a))
(setq a (retfactor1 (car a) (cadr a)))
(return (cond ((and scanmapp (not (atom a)) (not (atom l))
(eq (caar a) (caar l)))
(tagirr l))
(t a))))
((equal (car a) 1) (setq a (cddr a)) (go b))
(t (setq a (map2c #'retfactor1 a))
(return (cond ((member 0 a :test #'eq) 0)
(t (setq a (let (($expop 0) ($expon 0)
$negdistrib)
(muln (sortgreat a) t)))
(cond ((not (mtimesp a)) a)
(t (cons '(mtimes simp factored)
(cdr a)))))))))))
;;; FOR LISTS OF ARBITRARY EXPRESSIONS
(defun retfactor1 (p e)
(power (tagirr (simplify (pdisrep p))) e))
(defun tagirr (x)
(cond ((or (atom x) (member 'irreducible (cdar x) :test #'eq)) x)
(t (cons (append (car x) '(irreducible)) (cdr x)))))
(defun revsign (x)
(cond ((null x) nil)
(t (cons (car x)
(cons (- (cadr x)) (revsign (cddr x)))))))
;; THIS IS THE END OF THE NEW RATIONAL FUNCTION PACKAGE PART 4
|