/usr/include/viennacl/misc/cuthill_mckee.hpp is in libviennacl-dev 1.5.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 | #ifndef VIENNACL_MISC_CUTHILL_MCKEE_HPP
#define VIENNACL_MISC_CUTHILL_MCKEE_HPP
/* =========================================================================
Copyright (c) 2010-2014, Institute for Microelectronics,
Institute for Analysis and Scientific Computing,
TU Wien.
Portions of this software are copyright by UChicago Argonne, LLC.
-----------------
ViennaCL - The Vienna Computing Library
-----------------
Project Head: Karl Rupp rupp@iue.tuwien.ac.at
(A list of authors and contributors can be found in the PDF manual)
License: MIT (X11), see file LICENSE in the base directory
============================================================================= */
/** @file viennacl/misc/cuthill_mckee.hpp
* @brief Implementation of several flavors of the Cuthill-McKee algorithm. Experimental.
*
* Contributed by Philipp Grabenweger, interface adjustments and performance tweaks by Karl Rupp.
*/
#include <iostream>
#include <iterator>
#include <fstream>
#include <string>
#include <algorithm>
#include <map>
#include <vector>
#include <deque>
#include <cmath>
#include "viennacl/forwards.h"
namespace viennacl
{
namespace detail
{
// Calculate the bandwidth of a reordered matrix
template <typename IndexT, typename ValueT>
IndexT calc_reordered_bw(std::vector< std::map<IndexT, ValueT> > const & matrix,
std::vector<bool> & dof_assigned_to_node,
std::vector<IndexT> const & permutation)
{
IndexT bw = 0;
for (vcl_size_t i = 0; i < permutation.size(); i++)
{
if (!dof_assigned_to_node[i])
continue;
IndexT min_index = static_cast<IndexT>(matrix.size());
IndexT max_index = 0;
for (typename std::map<IndexT, ValueT>::const_iterator it = matrix[i].begin(); it != matrix[i].end(); it++)
{
if (!dof_assigned_to_node[it->first])
continue;
if (permutation[it->first] > max_index)
max_index = permutation[it->first];
if (permutation[it->first] < min_index)
min_index = permutation[it->first];
}
if (max_index > min_index)
bw = std::max(bw, max_index - min_index);
}
return bw;
}
// function to calculate the increment of combination comb.
// parameters:
// comb: pointer to vector<int> of size m, m <= n
// 1 <= comb[i] <= n for 0 <= i < m
// comb[i] < comb[i+1] for 0 <= i < m - 1
// comb represents an ordered selection of m values out of n
// n: int
// total number of values out of which comb is taken as selection
template <typename IndexT>
bool comb_inc(std::vector<IndexT> & comb, vcl_size_t n)
{
IndexT m;
IndexT k;
m = static_cast<IndexT>(comb.size());
// calculate k as highest possible index such that (*comb)[k-1] can be incremented
k = m;
while ( (k > 0) && ( ((k == m) && (comb[k-1] == static_cast<IndexT>(n)-1)) ||
((k < m) && (comb[k-1] == comb[k] - 1) )) )
{
k--;
}
if (k == 0) // no further increment of comb possible -> return false
return false;
comb[k-1] += 1;
// and all higher index positions of comb are calculated just as directly following integer values
// Example (1, 4, 7) -> (1, 5, 6) -> (1, 5, 7) -> (1, 6, 7) -> done for n=7
for (IndexT i = k; i < m; i++)
comb[i] = comb[k-1] + (i - k);
return true;
}
/** @brief Function to generate a node layering as a tree structure
*
*
*/
// node s
template <typename MatrixT, typename IndexT>
void generate_layering(MatrixT const & matrix,
std::vector< std::vector<IndexT> > & layer_list)
{
std::vector<bool> node_visited_already(matrix.size(), false);
//
// Step 1: Set root nodes to visited
//
for (vcl_size_t i=0; i<layer_list.size(); ++i)
{
for (typename std::vector<IndexT>::iterator it = layer_list[i].begin();
it != layer_list[i].end();
it++)
node_visited_already[*it] = true;
}
//
// Step 2: Fill next layers
//
while (layer_list.back().size() > 0)
{
vcl_size_t layer_index = layer_list.size(); //parent nodes are at layer 0
layer_list.push_back(std::vector<IndexT>());
for (typename std::vector<IndexT>::iterator it = layer_list[layer_index].begin();
it != layer_list[layer_index].end();
it++)
{
for (typename MatrixT::value_type::const_iterator it2 = matrix[*it].begin();
it2 != matrix[*it].end();
it2++)
{
if (it2->first == *it) continue;
if (node_visited_already[it2->first]) continue;
layer_list.back().push_back(it2->first);
node_visited_already[it2->first] = true;
}
}
}
// remove last (empty) nodelist:
layer_list.resize(layer_list.size()-1);
}
// function to generate a node layering as a tree structure rooted at node s
template <typename MatrixType>
void generate_layering(MatrixType const & matrix,
std::vector< std::vector<int> > & l,
int s)
{
vcl_size_t n = matrix.size();
//std::vector< std::vector<int> > l;
std::vector<bool> inr(n, false);
std::vector<int> nlist;
nlist.push_back(s);
inr[s] = true;
l.push_back(nlist);
for (;;)
{
nlist.clear();
for (std::vector<int>::iterator it = l.back().begin();
it != l.back().end();
it++)
{
for (typename MatrixType::value_type::const_iterator it2 = matrix[*it].begin();
it2 != matrix[*it].end();
it2++)
{
if (it2->first == *it) continue;
if (inr[it2->first]) continue;
nlist.push_back(it2->first);
inr[it2->first] = true;
}
}
if (nlist.size() == 0)
break;
l.push_back(nlist);
}
}
/** @brief Fills the provided nodelist with all nodes of the same strongly connected component as the nodes in the node_list
*
* If more than one node is provided, all nodes should be from the same strongly connected component.
*/
template <typename MatrixT, typename IndexT>
void nodes_of_strongly_connected_component(MatrixT const & matrix,
std::vector<IndexT> & node_list)
{
std::vector<bool> node_visited_already(matrix.size(), false);
std::deque<IndexT> node_queue;
//
// Step 1: Push root nodes to queue:
//
for (typename std::vector<IndexT>::iterator it = node_list.begin();
it != node_list.end();
it++)
{
node_queue.push_back(*it);
}
node_list.resize(0);
//
// Step 2: Fill with remaining nodes of strongly connected compontent
//
while (!node_queue.empty())
{
IndexT node_id = node_queue.front();
node_queue.pop_front();
if (!node_visited_already[node_id])
{
node_list.push_back(node_id);
node_visited_already[node_id] = true;
for (typename MatrixT::value_type::const_iterator it = matrix[node_id].begin();
it != matrix[node_id].end();
it++)
{
IndexT neighbor_node_id = it->first;
if (neighbor_node_id == node_id) continue;
if (node_visited_already[neighbor_node_id]) continue;
node_queue.push_back(neighbor_node_id);
}
}
}
}
// comparison function for comparing two vector<int> values by their
// [1]-element
inline bool cuthill_mckee_comp_func(std::vector<int> const & a,
std::vector<int> const & b)
{
return (a[1] < b[1]);
}
template <typename IndexT>
bool cuthill_mckee_comp_func_pair(std::pair<IndexT, IndexT> const & a,
std::pair<IndexT, IndexT> const & b)
{
return (a.second < b.second);
}
/** @brief Runs the Cuthill-McKee algorithm on a strongly connected component of a graph
*
* @param matrix The matrix describing the full graph
* @param node_assignment_queue A queue prepopulated with the root nodes
* @param dof_assigned_to_node Boolean flag array indicating whether a dof got assigned to a certain node
* @param permutation The permutation array to write the result to
* @param current_dof The first dof to be used for assignment
*
* @return The next free dof available
*/
template <typename IndexT, typename ValueT>
vcl_size_t cuthill_mckee_on_strongly_connected_component(std::vector< std::map<IndexT, ValueT> > const & matrix,
std::deque<IndexT> & node_assignment_queue,
std::vector<bool> & dof_assigned_to_node,
std::vector<IndexT> & permutation,
vcl_size_t current_dof)
{
typedef std::pair<IndexT, IndexT> NodeIdDegreePair; //first member is the node ID, second member is the node degree
std::vector< NodeIdDegreePair > local_neighbor_nodes(matrix.size());
while (!node_assignment_queue.empty())
{
// Grab first node from queue
vcl_size_t node_id = node_assignment_queue.front();
node_assignment_queue.pop_front();
// Assign dof if a new dof hasn't been assigned yet
if (!dof_assigned_to_node[node_id])
{
permutation[node_id] = static_cast<IndexT>(current_dof); //TODO: Invert this!
++current_dof;
dof_assigned_to_node[node_id] = true;
//
// Get all neighbors of that node:
//
vcl_size_t num_neighbors = 0;
for (typename std::map<IndexT, ValueT>::const_iterator neighbor_it = matrix[node_id].begin();
neighbor_it != matrix[node_id].end();
++neighbor_it)
{
if (!dof_assigned_to_node[neighbor_it->first])
{
local_neighbor_nodes[num_neighbors] = NodeIdDegreePair(neighbor_it->first, static_cast<IndexT>(matrix[neighbor_it->first].size()));
++num_neighbors;
}
}
// Sort neighbors by increasing node degree
std::sort(local_neighbor_nodes.begin(), local_neighbor_nodes.begin() + num_neighbors, detail::cuthill_mckee_comp_func_pair<IndexT>);
// Push neighbors to queue
for (vcl_size_t i=0; i<num_neighbors; ++i)
node_assignment_queue.push_back(local_neighbor_nodes[i].first);
} // if node doesn't have a new dof yet
} // while nodes in queue
return current_dof;
}
} //namespace detail
//
// Part 1: The original Cuthill-McKee algorithm
//
/** @brief A tag class for selecting the Cuthill-McKee algorithm for reducing the bandwidth of a sparse matrix. */
struct cuthill_mckee_tag {};
/** @brief Function for the calculation of a node number permutation to reduce the bandwidth of an incidence matrix by the Cuthill-McKee algorithm
*
* references:
* Algorithm was implemented similary as described in
* "Tutorial: Bandwidth Reduction - The CutHill-
* McKee Algorithm" posted by Ciprian Zavoianu as weblog at
* http://ciprian-zavoianu.blogspot.com/2009/01/project-bandwidth-reduction.html
* on January 15, 2009
* (URL taken on June 14, 2011)
*
* @param matrix vector of n matrix rows, where each row is a map<int, double> containing only the nonzero elements
* @return permutation vector r. r[l] = i means that the new label of node i will be l.
*
*/
template <typename IndexT, typename ValueT>
std::vector<IndexT> reorder(std::vector< std::map<IndexT, ValueT> > const & matrix, cuthill_mckee_tag)
{
std::vector<IndexT> permutation(matrix.size());
std::vector<bool> dof_assigned_to_node(matrix.size(), false); //flag vector indicating whether node i has received a new dof
std::deque<IndexT> node_assignment_queue;
vcl_size_t current_dof = 0; //the dof to be assigned
while (current_dof < matrix.size()) //outer loop for each strongly connected component (there may be more than one)
{
//
// preprocessing: Determine node degrees for nodes which have not been assigned
//
vcl_size_t current_min_degree = matrix.size();
vcl_size_t node_with_minimum_degree = 0;
bool found_unassigned_node = false;
for (vcl_size_t i=0; i<matrix.size(); ++i)
{
if (!dof_assigned_to_node[i])
{
if (matrix[i].size() == 1) //This is an isolated node, so assign DOF right away
{
permutation[i] = static_cast<IndexT>(current_dof);
dof_assigned_to_node[i] = true;
++current_dof;
continue;
}
if (!found_unassigned_node) //initialize minimum degree on first node without new dof
{
current_min_degree = matrix[i].size();
node_with_minimum_degree = i;
found_unassigned_node = true;
}
if (matrix[i].size() < current_min_degree) //found a node with smaller degree
{
current_min_degree = matrix[i].size();
node_with_minimum_degree = i;
}
}
}
//
// Stage 2: Distribute dofs on this closely connected (sub-)graph in a breath-first manner using one root node
//
if (found_unassigned_node) // there's work to be done
{
node_assignment_queue.push_back(static_cast<IndexT>(node_with_minimum_degree));
current_dof = detail::cuthill_mckee_on_strongly_connected_component(matrix, node_assignment_queue, dof_assigned_to_node, permutation, current_dof);
}
}
return permutation;
}
//
// Part 2: Advanced Cuthill McKee
//
/** @brief Tag for the advanced Cuthill-McKee algorithm (i.e. running the 'standard' Cuthill-McKee algorithm for a couple of different seeds). */
class advanced_cuthill_mckee_tag
{
public:
/** @brief CTOR which may take the additional parameters for the advanced algorithm.
*
* additional parameters for CTOR:
* a: 0 <= a <= 1
* parameter which specifies which nodes are tried as starting nodes
* of generated node layering (tree structure whith one ore more
* starting nodes).
* the relation deg_min <= deg <= deg_min + a * (deg_max - deg_min)
* must hold for node degree deg for a starting node, where deg_min/
* deg_max is the minimal/maximal node degree of all yet unnumbered
* nodes.
* gmax:
* integer which specifies maximum number of nodes in the root
* layer of the tree structure (gmax = 0 means no limit)
*
* @return permutation vector r. r[l] = i means that the new label of node i will be l.
*
*/
advanced_cuthill_mckee_tag(double a = 0.0, vcl_size_t gmax = 1) : starting_node_param_(a), max_root_nodes_(gmax) {}
double starting_node_param() const { return starting_node_param_;}
void starting_node_param(double a) { if (a >= 0) starting_node_param_ = a; }
vcl_size_t max_root_nodes() const { return max_root_nodes_; }
void max_root_nodes(vcl_size_t gmax) { max_root_nodes_ = gmax; }
private:
double starting_node_param_;
vcl_size_t max_root_nodes_;
};
/** @brief Function for the calculation of a node number permutation to reduce the bandwidth of an incidence matrix by the advanced Cuthill-McKee algorithm
*
*
* references:
* see description of original Cuthill McKee implementation, and
* E. Cuthill and J. McKee: "Reducing the Bandwidth of sparse symmetric Matrices".
* Naval Ship Research and Development Center, Washington, D. C., 20007
*/
template <typename IndexT, typename ValueT>
std::vector<IndexT> reorder(std::vector< std::map<IndexT, ValueT> > const & matrix,
advanced_cuthill_mckee_tag const & tag)
{
vcl_size_t n = matrix.size();
double a = tag.starting_node_param();
vcl_size_t gmax = tag.max_root_nodes();
std::vector<IndexT> permutation(n);
std::vector<bool> dof_assigned_to_node(n, false);
std::vector<IndexT> nodes_in_strongly_connected_component;
std::vector<IndexT> parent_nodes;
vcl_size_t deg_min;
vcl_size_t deg_max;
vcl_size_t deg_a;
vcl_size_t deg;
std::vector<IndexT> comb;
nodes_in_strongly_connected_component.reserve(n);
parent_nodes.reserve(n);
comb.reserve(n);
vcl_size_t current_dof = 0;
while (current_dof < matrix.size()) // for all strongly connected components
{
// get all nodes of the strongly connected component:
nodes_in_strongly_connected_component.resize(0);
for (vcl_size_t i = 0; i < n; i++)
{
if (!dof_assigned_to_node[i])
{
nodes_in_strongly_connected_component.push_back(static_cast<IndexT>(i));
detail::nodes_of_strongly_connected_component(matrix, nodes_in_strongly_connected_component);
break;
}
}
// determine minimum and maximum node degree
deg_min = 0;
deg_max = 0;
for (typename std::vector<IndexT>::iterator it = nodes_in_strongly_connected_component.begin();
it != nodes_in_strongly_connected_component.end();
it++)
{
deg = matrix[*it].size();
if (deg_min == 0 || deg < deg_min)
deg_min = deg;
if (deg_max == 0 || deg > deg_max)
deg_max = deg;
}
deg_a = deg_min + static_cast<vcl_size_t>(a * (deg_max - deg_min));
// fill array of parent nodes:
parent_nodes.resize(0);
for (typename std::vector<IndexT>::iterator it = nodes_in_strongly_connected_component.begin();
it != nodes_in_strongly_connected_component.end();
it++)
{
if (matrix[*it].size() <= deg_a)
parent_nodes.push_back(*it);
}
//
// backup current state in order to restore for every new combination of parent nodes below
//
std::vector<bool> dof_assigned_to_node_backup = dof_assigned_to_node;
std::vector<bool> dof_assigned_to_node_best;
std::vector<IndexT> permutation_backup = permutation;
std::vector<IndexT> permutation_best = permutation;
vcl_size_t current_dof_backup = current_dof;
vcl_size_t g = 1;
comb.resize(1);
comb[0] = 0;
IndexT bw_best = 0;
//
// Loop over all combinations of g <= gmax root nodes
//
for (;;)
{
dof_assigned_to_node = dof_assigned_to_node_backup;
permutation = permutation_backup;
current_dof = current_dof_backup;
std::deque<IndexT> node_queue;
// add the selected root nodes according to actual combination comb to q
for (typename std::vector<IndexT>::iterator it = comb.begin(); it != comb.end(); it++)
node_queue.push_back(parent_nodes[*it]);
current_dof = detail::cuthill_mckee_on_strongly_connected_component(matrix, node_queue, dof_assigned_to_node, permutation, current_dof);
// calculate resulting bandwith for root node combination
// comb for current numbered component of the node graph
IndexT bw = detail::calc_reordered_bw(matrix, dof_assigned_to_node, permutation);
// remember best ordering:
if (bw_best == 0 || bw < bw_best)
{
permutation_best = permutation;
bw_best = bw;
dof_assigned_to_node_best = dof_assigned_to_node;
}
// calculate next combination comb, if not existing
// increment g if g stays <= gmax, or else terminate loop
if (!detail::comb_inc(comb, parent_nodes.size()))
{
++g;
if ( (gmax > 0 && g > gmax) || g > parent_nodes.size())
break;
comb.resize(g);
for (vcl_size_t i = 0; i < g; i++)
comb[i] = static_cast<IndexT>(i);
}
}
//
// restore best permutation
//
permutation = permutation_best;
dof_assigned_to_node = dof_assigned_to_node_best;
}
return permutation;
}
} //namespace viennacl
#endif
|