This file is indexed.

/usr/share/doc/libghc-netwire-doc/html/netwire.txt is in libghc-netwire-doc 5.0.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/


-- | Functional reactive programming library
--   
--   This library provides interfaces for and implements wire arrows useful
--   both for functional reactive programming (FRP) and locally stateful
--   programming (LSP).
@package netwire
@version 5.0.0


module FRP.Netwire.Utils.Timeline

-- | A time line is a non-empty set of samples together with time
--   information.
data Timeline t a

-- | Insert the given data point.
insert :: Ord t => t -> a -> Timeline t a -> Timeline t a

-- | Singleton timeline with the given point.
singleton :: t -> a -> Timeline t a

-- | Union of two time lines. Right-biased.
union :: Ord t => Timeline t a -> Timeline t a -> Timeline t a

-- | Linearly interpolate the points in the time line, integrate the given
--   time interval of the graph, divide by the interval length.
linAvg :: (Fractional a, Fractional t, Real t) => t -> t -> Timeline t a -> a

-- | Cut the timeline at the given point in time <tt>t</tt>, such that all
--   samples up to but not including <tt>t</tt> are forgotten. The most
--   recent sample before <tt>t</tt> is moved and interpolated accordingly.
linCutL :: (Fractional a, Fractional t, Real t) => t -> Timeline t a -> Timeline t a

-- | Cut the timeline at the given point in time <tt>t</tt>, such that all
--   samples later than <tt>t</tt> are forgotten. The most recent sample
--   after <tt>t</tt> is moved and interpolated accordingly.
linCutR :: (Fractional a, Fractional t, Real t) => t -> Timeline t a -> Timeline t a

-- | Look up with linear sampling.
linLookup :: (Fractional a, Fractional t, Real t) => t -> Timeline t a -> a

-- | Integrate the given time interval of the staircase, divide by the
--   interval length.
scAvg :: (Fractional a, Real t) => t -> t -> Timeline t a -> a

-- | Cut the timeline at the given point in time <tt>t</tt>, such that all
--   samples up to but not including <tt>t</tt> are forgotten. The most
--   recent sample before <tt>t</tt> is moved accordingly.
scCutL :: Ord t => t -> Timeline t a -> Timeline t a

-- | Cut the timeline at the given point in time <tt>t</tt>, such that all
--   samples later than <tt>t</tt> are forgotten. The earliest sample after
--   <tt>t</tt> is moved accordingly.
scCutR :: Ord t => t -> Timeline t a -> Timeline t a

-- | Look up on staircase.
scLookup :: Ord t => t -> Timeline t a -> a
instance Typeable2 Timeline
instance (Data t, Data a, Ord t) => Data (Timeline t a)
instance (Eq t, Eq a) => Eq (Timeline t a)
instance (Ord t, Ord a) => Ord (Timeline t a)
instance (Ord t, Read t, Read a) => Read (Timeline t a)
instance (Show t, Show a) => Show (Timeline t a)
instance Functor (Timeline t)


module Control.Wire.Session

-- | State delta types with time deltas.
class (Monoid s, Real t) => HasTime t s | s -> t
dtime :: HasTime t s => s -> t

-- | State delta generators as required for wire sessions, most notably to
--   generate time deltas. These are mini-wires with the sole purpose of
--   generating these deltas.
newtype Session m s
Session :: m (s, Session m s) -> Session m s
stepSession :: Session m s -> m (s, Session m s)

-- | This state delta type denotes time deltas. This is necessary for most
--   FRP applications.
data Timed t s
Timed :: t -> s -> Timed t s

-- | State delta generator for a real time clock.
clockSession :: MonadIO m => Session m (s -> Timed NominalDiffTime s)

-- | Non-extending version of <a>clockSession</a>.
clockSession_ :: (Applicative m, MonadIO m) => Session m (Timed NominalDiffTime ())

-- | State delta generator for a simple counting clock. Denotes a fixed
--   framerate. This is likely more useful than <a>clockSession</a> for
--   simulations and real-time games.
countSession :: Applicative m => t -> Session m (s -> Timed t s)

-- | Non-extending version of <a>countSession</a>.
countSession_ :: (Applicative m, MonadIO m) => t -> Session m (Timed t ())
instance Typeable2 Timed
instance Functor m => Functor (Session m)
instance (Data t, Data s) => Data (Timed t s)
instance (Eq t, Eq s) => Eq (Timed t s)
instance Foldable (Timed t)
instance Functor (Timed t)
instance (Ord t, Ord s) => Ord (Timed t s)
instance (Read t, Read s) => Read (Timed t s)
instance (Show t, Show s) => Show (Timed t s)
instance Traversable (Timed t)
instance (Monoid s, Num t) => Monoid (Timed t s)
instance (Monoid s, Real t) => HasTime t (Timed t s)
instance Applicative m => Applicative (Session m)


module Control.Wire.Core

-- | A wire is a signal function. It maps a reactive value to another
--   reactive value.
data Wire s e m a b
WArr :: (Either e a -> Either e b) -> Wire s e m a b
WConst :: Either e b -> Wire s e m a b
WGen :: (s -> Either e a -> m (Either e b, Wire s e m a b)) -> Wire s e m a b
WId :: Wire s e m a a
WPure :: (s -> Either e a -> (Either e b, Wire s e m a b)) -> Wire s e m a b

-- | Perform one step of the given wire.
stepWire :: Monad m => Wire s e m a b -> s -> Either e a -> m (Either e b, Wire s e m a b)

-- | Construct a stateless wire from the given signal mapping function.
mkConst :: Either e b -> Wire s e m a b

-- | Construct the empty wire, which inhibits forever.
mkEmpty :: Monoid e => Wire s e m a b

-- | Construct a stateful wire from the given transition function.
mkGen :: (Monad m, Monoid s) => (s -> a -> m (Either e b, Wire s e m a b)) -> Wire s e m a b

-- | Construct a stateless wire from the given transition function.
mkGen_ :: Monad m => (a -> m (Either e b)) -> Wire s e m a b

-- | Construct a stateful wire from the given transition function.
mkGenN :: Monad m => (a -> m (Either e b, Wire s e m a b)) -> Wire s e m a b

-- | Construct the identity wire.
mkId :: Wire s e m a a

-- | Construct a pure stateful wire from the given transition function.
mkPure :: Monoid s => (s -> a -> (Either e b, Wire s e m a b)) -> Wire s e m a b

-- | Construct a pure stateless wire from the given transition function.
mkPure_ :: (a -> Either e b) -> Wire s e m a b

-- | Construct a pure stateful wire from the given transition function.
mkPureN :: (a -> (Either e b, Wire s e m a b)) -> Wire s e m a b

-- | Construct a pure stateful wire from the given signal function.
mkSF :: Monoid s => (s -> a -> (b, Wire s e m a b)) -> Wire s e m a b

-- | Construct a pure stateless wire from the given function.
mkSF_ :: (a -> b) -> Wire s e m a b

-- | Construct a pure stateful wire from the given signal function.
mkSFN :: (a -> (b, Wire s e m a b)) -> Wire s e m a b

-- | This wire delays its input signal by the smallest possible
--   (semantically infinitesimal) amount of time. You can use it when you
--   want to use feedback (<a>ArrowLoop</a>): If the user of the feedback
--   depends on <i>now</i>, delay the value before feeding it back. The
--   argument value is the replacement signal at the beginning.
--   
--   <ul>
--   <li>Depends: before now.</li>
--   </ul>
delay :: a -> Wire s e m a a

-- | Evaluate the input signal using the given <a>Strategy</a> here. This
--   wire evaluates only produced values.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
evalWith :: Strategy a -> Wire s e m a a

-- | Force the input signal to WHNF here. This wire forces both produced
--   values and inhibition values.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
force :: Wire s e m a a

-- | Force the input signal to NF here. This wire forces only produced
--   values.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
forceNF :: NFData a => Wire s e m a a

-- | Left-strict version of <a>&amp;&amp;&amp;</a> for functions.
(&&&!) :: (a -> b) -> (a -> c) -> (a -> (b, c))

-- | Left-strict version of <a>***</a> for functions.
(***!) :: (a -> c) -> (b -> d) -> ((a, b) -> (c, d))

-- | Left-strict tuple.
lstrict :: (a, b) -> (a, b)

-- | Apply the given monad morphism to the wire's underlying monad.
mapWire :: (Monad m', Monad m) => (forall a. m' a -> m a) -> Wire s e m' a b -> Wire s e m a b
instance (Monad m, Semigroup b) => Semigroup (Wire s e m a b)
instance (Monad m, Num b) => Num (Wire s e m a b)
instance (Monad m, Monoid b) => Monoid (Wire s e m a b)
instance (Monad m, IsString b) => IsString (Wire s e m a b)
instance Monad m => Functor (Wire s e m a)
instance (Monad m, Fractional b) => Fractional (Wire s e m a b)
instance (Monad m, Floating b) => Floating (Wire s e m a b)
instance Monad m => Category (Wire s e m)
instance (Monad m, Monoid e) => ArrowZero (Wire s e m)
instance (Monad m, Monoid e) => ArrowPlus (Wire s e m)
instance MonadFix m => ArrowLoop (Wire s e m)
instance (Monad m, Monoid e) => ArrowChoice (Wire s e m)
instance Monad m => Arrow (Wire s e m)
instance Monad m => Applicative (Wire s e m a)
instance (Monad m, Monoid e) => Alternative (Wire s e m a)


module Control.Wire.Run

-- | This function runs the given wire using the given state delta
--   generator. It constantly shows the output of the wire on one line on
--   stdout. Press Ctrl-C to abort.
testWire :: (MonadIO m, Show b, Show e) => Session m s -> (forall a. Wire s e Identity a b) -> m c

-- | This function runs the given wire using the given state delta
--   generator. It constantly shows the output of the wire on one line on
--   stdout. Press Ctrl-C to abort.
testWireM :: (Monad m', MonadIO m, Show b, Show e) => (forall a. m' a -> m a) -> Session m s -> (forall a. Wire s e m' a b) -> m c


module Control.Wire.Time

-- | Local time starting from zero.
time :: HasTime t s => Wire s e m a t

-- | Local time starting from zero, converted to your favorite fractional
--   type.
timeF :: (Fractional b, HasTime t s, Monad m) => Wire s e m a b

-- | Local time starting from the given value.
timeFrom :: HasTime t s => t -> Wire s e m a t


module Control.Wire.Unsafe.Event

-- | Denotes a stream of values, each together with time of occurrence.
--   Since <a>Event</a> is commonly used for functional reactive
--   programming it does not define most of the usual instances to protect
--   continuous time and discrete event occurrence semantics.
data Event a
Event :: a -> Event a
NoEvent :: Event a

-- | Fold the given event.
event :: b -> (a -> b) -> Event a -> b

-- | Merge two events using the given function when both occur at the same
--   time.
merge :: (a -> a -> a) -> Event a -> Event a -> Event a

-- | Did the given event occur?
occurred :: Event a -> Bool

-- | Each time the given event occurs, perform the given action with the
--   value the event carries. The resulting event carries the result of the
--   action.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
onEventM :: Monad m => (a -> m b) -> Wire s e m (Event a) (Event b)
instance Typeable1 Event
instance Semigroup a => Semigroup (Event a)
instance NFData a => NFData (Event a)
instance Semigroup a => Monoid (Event a)
instance Functor Event


module Control.Wire.Event

-- | Denotes a stream of values, each together with time of occurrence.
--   Since <a>Event</a> is commonly used for functional reactive
--   programming it does not define most of the usual instances to protect
--   continuous time and discrete event occurrence semantics.
data Event a

-- | At the given point in time.
--   
--   <ul>
--   <li>Depends: now when occurring.</li>
--   </ul>
at :: HasTime t s => t -> Wire s e m a (Event a)

-- | Never occurs.
never :: Wire s e m a (Event b)

-- | Occurs once immediately.
--   
--   <ul>
--   <li>Depends: now when occurring.</li>
--   </ul>
now :: Wire s e m a (Event a)

-- | Periodic occurrence with the given time period. First occurrence is
--   now.
--   
--   <ul>
--   <li>Depends: now when occurring.</li>
--   </ul>
periodic :: HasTime t s => t -> Wire s e m a (Event a)

-- | Periodic occurrence with the given time period. First occurrence is
--   now. The event values are picked one by one from the given list. When
--   the list is exhausted, the event does not occur again.
periodicList :: HasTime t s => t -> [b] -> Wire s e m a (Event b)

-- | Occurs each time the predicate becomes true for the input signal, for
--   example each time a given threshold is reached.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
became :: (a -> Bool) -> Wire s e m a (Event a)

-- | Occurs each time the predicate becomes false for the input signal, for
--   example each time a given threshold is no longer exceeded.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
noLonger :: (a -> Bool) -> Wire s e m a (Event a)

-- | Merge events with the leftmost event taking precedence. Equivalent to
--   using the monoid interface with <tt>First</tt>. Infixl 5.
--   
--   <ul>
--   <li>Depends: now on both.</li>
--   <li>Inhibits: when any of the two wires inhibit.</li>
--   </ul>
(<&) :: Monad m => Wire s e m a (Event b) -> Wire s e m a (Event b) -> Wire s e m a (Event b)

-- | Merge events with the rightmost event taking precedence. Equivalent to
--   using the monoid interface with <tt>Last</tt>. Infixl 5.
--   
--   <ul>
--   <li>Depends: now on both.</li>
--   <li>Inhibits: when any of the two wires inhibit.</li>
--   </ul>
(&>) :: Monad m => Wire s e m a (Event b) -> Wire s e m a (Event b) -> Wire s e m a (Event b)

-- | Forget the first given number of occurrences.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
dropE :: Int -> Wire s e m (Event a) (Event a)

-- | Forget all initial occurrences until the given predicate becomes
--   false.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
dropWhileE :: (a -> Bool) -> Wire s e m (Event a) (Event a)

-- | Forget all occurrences for which the given predicate is false.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
filterE :: (a -> Bool) -> Wire s e m (Event a) (Event a)

-- | Merge two events using the given function when both occur at the same
--   time.
merge :: (a -> a -> a) -> Event a -> Event a -> Event a

-- | Left-biased event merge.
mergeL :: Event a -> Event a -> Event a

-- | Right-biased event merge.
mergeR :: Event a -> Event a -> Event a

-- | Forget the first occurrence.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
notYet :: Wire s e m (Event a) (Event a)

-- | Forget all occurrences except the first.
--   
--   <ul>
--   <li>Depends: now when occurring.</li>
--   </ul>
once :: Wire s e m (Event a) (Event a)

-- | Forget all but the first given number of occurrences.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
takeE :: Int -> Wire s e m (Event a) (Event a)

-- | Forget all but the initial occurrences for which the given predicate
--   is true.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
takeWhileE :: (a -> Bool) -> Wire s e m (Event a) (Event a)

-- | Left scan for events. Each time an event occurs, apply the given
--   function.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
accumE :: (b -> a -> b) -> b -> Wire s e m (Event a) (Event b)

-- | Left scan for events with no initial value. Each time an event occurs,
--   apply the given function. The first event is produced unchanged.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
accum1E :: (a -> a -> a) -> Wire s e m (Event a) (Event a)

-- | On each occurrence, apply the function the event carries.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
iterateE :: a -> Wire s e m (Event (a -> a)) (Event a)

-- | Maximum of all events.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
maximumE :: Ord a => Wire s e m (Event a) (Event a)

-- | Minimum of all events.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
minimumE :: Ord a => Wire s e m (Event a) (Event a)

-- | Product of all events.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
productE :: Num a => Wire s e m (Event a) (Event a)

-- | Sum of all events.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
sumE :: Num a => Wire s e m (Event a) (Event a)


module Control.Wire.Interval

-- | Inhibit forever with the given value.
--   
--   <ul>
--   <li>Inhibits: always.</li>
--   </ul>
inhibit :: e -> Wire s e m a b

-- | After the given time period.
--   
--   <ul>
--   <li>Depends: now after the given time period.</li>
--   <li>Inhibits: for the given time period.</li>
--   </ul>
after :: (HasTime t s, Monoid e) => t -> Wire s e m a a

-- | For the given time period.
--   
--   <ul>
--   <li>Depends: now for the given time period.</li>
--   <li>Inhibits: after the given time period.</li>
--   </ul>
for :: (HasTime t s, Monoid e) => t -> Wire s e m a a

-- | When the given predicate is false for the input signal.
--   
--   <ul>
--   <li>Depends: now.</li>
--   <li>Inhibits: unless the predicate is false.</li>
--   </ul>
unless :: Monoid e => (a -> Bool) -> Wire s e m a a

-- | When the given predicate is true for the input signal.
--   
--   <ul>
--   <li>Depends: now.</li>
--   <li>Inhibits: when the predicate is false.</li>
--   </ul>
when :: Monoid e => (a -> Bool) -> Wire s e m a a

-- | Alias for <a>hold</a>.
asSoonAs :: Monoid e => Wire s e m (Event a) a

-- | Start each time the left event occurs, stop each time the right event
--   occurs.
--   
--   <ul>
--   <li>Depends: now when active.</li>
--   <li>Inhibits: after the right event occurred, before the left event
--   occurs.</li>
--   </ul>
between :: Monoid e => Wire s e m (a, Event b, Event c) a

-- | Start when the event occurs for the first time reflecting its latest
--   value.
--   
--   <ul>
--   <li>Depends: now.</li>
--   <li>Inhibits: until the event occurs for the first time.</li>
--   </ul>
hold :: Monoid e => Wire s e m (Event a) a

-- | Hold each event occurrence for the given time period. Inhibits when no
--   event occurred for the given amount of time. New occurrences override
--   old occurrences, even when they are still held.
--   
--   <ul>
--   <li>Depends: now.</li>
--   <li>Inhibits: when no event occurred for the given amount of
--   time.</li>
--   </ul>
holdFor :: (HasTime t s, Monoid e) => t -> Wire s e m (Event a) a

-- | Produce until the given event occurs. When it occurs, inhibit with its
--   value forever.
--   
--   <ul>
--   <li>Depends: now until event occurs.</li>
--   <li>Inhibits: forever after event occurs.</li>
--   </ul>
until :: Monoid e => Wire s e m (a, Event b) a


module Control.Wire.Switch

-- | Acts like the first wire until it inhibits, then switches to the
--   second wire. Infixr 1.
--   
--   <ul>
--   <li>Depends: like current wire.</li>
--   <li>Inhibits: after switching like the second wire.</li>
--   <li>Switch: now.</li>
--   </ul>
(-->) :: Monad m => Wire s e m a b -> Wire s e m a b -> Wire s e m a b

-- | Route the left input signal based on the current mode. The right input
--   signal can be used to change the current mode. When switching away
--   from a mode and then switching back to it, it will be resumed. Freezes
--   time during inactivity.
--   
--   <ul>
--   <li>Complexity: O(n * log n) space, O(log n) lookup time on switch wrt
--   number of started, inactive modes.</li>
--   <li>Depends: like currently active wire (left), now (right).</li>
--   <li>Inhibits: when active wire inhibits.</li>
--   <li>Switch: now on mode change.</li>
--   </ul>
modes :: (Monad m, Ord k) => k -> (k -> Wire s e m a b) -> Wire s e m (a, Event k) b

-- | Intrinsic switch: Start with the given wire. As soon as its event
--   occurs, switch to the wire in the event's value.
--   
--   <ul>
--   <li>Inhibits: like argument wire until switch, then like the new
--   wire.</li>
--   <li>Switch: once, now, restart state.</li>
--   </ul>
switch :: (Monad m, Monoid s) => Wire s e m a (b, Event (Wire s e m a b)) -> Wire s e m a b

-- | Intrinsic switch: Delayed version of <a>switch</a>.
--   
--   <ul>
--   <li>Inhibits: like argument wire until switch, then like the new
--   wire.</li>
--   <li>Switch: once, after now, restart state.</li>
--   </ul>
dSwitch :: Monad m => Wire s e m a (b, Event (Wire s e m a b)) -> Wire s e m a b

-- | Intrinsic continuable switch: <tt>kSwitch w1 w2</tt> starts with
--   <tt>w1</tt>. Its signal is received by <tt>w2</tt>, which may choose
--   to switch to a new wire. Passes the wire we are switching away from to
--   the new wire, such that it may be reused in it.
--   
--   <ul>
--   <li>Inhibits: like the first argument wire, like the new wire after
--   switch. Inhibition of the second argument wire is ignored.</li>
--   <li>Switch: once, now, restart state.</li>
--   </ul>
kSwitch :: (Monad m, Monoid s) => Wire s e m a b -> Wire s e m (a, b) (Event (Wire s e m a b -> Wire s e m a b)) -> Wire s e m a b

-- | Intrinsic continuable switch: Delayed version of <a>kSwitch</a>.
--   
--   <ul>
--   <li>Inhibits: like the first argument wire, like the new wire after
--   switch. Inhibition of the second argument wire is ignored.</li>
--   <li>Switch: once, after now, restart state.</li>
--   </ul>
dkSwitch :: Monad m => Wire s e m a b -> Wire s e m (a, b) (Event (Wire s e m a b -> Wire s e m a b)) -> Wire s e m a b

-- | Extrinsic switch: Start with the given wire. Each time the input event
--   occurs, switch to the wire it carries.
--   
--   <ul>
--   <li>Inhibits: like the current wire.</li>
--   <li>Switch: recurrent, now, restart state.</li>
--   </ul>
rSwitch :: Monad m => Wire s e m a b -> Wire s e m (a, Event (Wire s e m a b)) b

-- | Extrinsic switch: Delayed version of <a>rSwitch</a>.
--   
--   <ul>
--   <li>Inhibits: like the current wire.</li>
--   <li>Switch: recurrent, after now, restart state.</li>
--   </ul>
drSwitch :: Monad m => Wire s e m a b -> Wire s e m (a, Event (Wire s e m a b)) b

-- | Extrinsic continuable switch. This switch works like <a>rSwitch</a>,
--   except that it passes the wire we are switching away from to the new
--   wire.
--   
--   <ul>
--   <li>Inhibits: like the current wire.</li>
--   <li>Switch: recurrent, now, restart state.</li>
--   </ul>
krSwitch :: Monad m => Wire s e m a b -> Wire s e m (a, Event (Wire s e m a b -> Wire s e m a b)) b

-- | Extrinsic continuable switch. Delayed version of <a>krSwitch</a>.
--   
--   <ul>
--   <li>Inhibits: like the current wire.</li>
--   <li>Switch: recurrent, after now, restart state.</li>
--   </ul>
dkrSwitch :: Monad m => Wire s e m a b -> Wire s e m (a, Event (Wire s e m a b -> Wire s e m a b)) b


module Control.Wire

-- | Pure wires.
type WireP s e = Wire s e Identity

-- | Simple wires with time.
type SimpleWire = Wire (Timed NominalDiffTime ()) () Identity

-- | Identity functor and monad.
newtype Identity a :: * -> *
Identity :: a -> Identity a
runIdentity :: Identity a -> a

-- | This is a length of time, as measured by UTC. Conversion functions
--   will treat it as seconds. It has a precision of 10^-12 s. It ignores
--   leap-seconds, so it's not necessarily a fixed amount of clock time.
--   For instance, 23:00 UTC + 2 hours of NominalDiffTime = 01:00 UTC (+ 1
--   day), regardless of whether a leap-second intervened.
data NominalDiffTime :: *


module FRP.Netwire.Analyze

-- | Calculate the average of the signal over the given interval (from
--   now). This is done by calculating the integral of the corresponding
--   linearly interpolated graph and dividing it by the interval length.
--   See <a>linAvg</a> for details.
--   
--   Linear interpolation can be slow. If you don't need it, you can use
--   the staircase variant <a>sAvg</a>.
--   
--   Example: <tt>lAvg 2</tt>
--   
--   <ul>
--   <li>Complexity: O(s) space, O(s) time wrt number of samples in the
--   interval.</li>
--   <li>Depends: now.</li>
--   </ul>
lAvg :: (Fractional a, Fractional t, HasTime t s) => t -> Wire s e m a a

-- | Produce a linearly interpolated graph for the given points in time,
--   where the magnitudes of the points are distances from <i>now</i>.
--   
--   Linear interpolation can be slow. If you don't need it, you can use
--   the faster staircase variant <a>sGraph</a>.
--   
--   Example: <tt>lGraph [0, 1, 2]</tt> will output the interpolated inputs
--   at <i>now</i>, one second before now and two seconds before now.
--   
--   <ul>
--   <li>Complexity: O(s) space, O(n * log s) time, where s = number of
--   samples in the interval, n = number of requested data points.</li>
--   <li>Depends: now.</li>
--   </ul>
lGraph :: (Fractional a, Fractional t, HasTime t s) => [t] -> Wire s e m a [a]

-- | Graph the given interval from now with the given number of evenly
--   distributed points in time. Convenience interface to <a>lGraph</a>.
--   
--   Linear interpolation can be slow. If you don't need it, you can use
--   the faster staircase variant <a>sGraphN</a>.
--   
--   <ul>
--   <li>Complexity: O(s) space, O(n * log s) time, where s = number of
--   samples in the interval, n = number of requested data points.</li>
--   <li>Depends: now.</li>
--   </ul>
lGraphN :: (Fractional a, Fractional t, HasTime t s) => t -> Int -> Wire s e m a [a]

-- | Calculate the average of the signal over the given interval (from
--   now). This is done by calculating the integral of the corresponding
--   staircase graph and dividing it by the interval length. See
--   <a>scAvg</a> for details.
--   
--   See also <a>lAvg</a>.
--   
--   Example: <tt>sAvg 2</tt>
--   
--   <ul>
--   <li>Complexity: O(s) space, O(s) time wrt number of samples in the
--   interval.</li>
--   <li>Depends: now.</li>
--   </ul>
sAvg :: (Fractional a, Fractional t, HasTime t s) => t -> Wire s e m a a

-- | Produce a staircase graph for the given points in time, where the
--   magnitudes of the points are distances from <i>now</i>.
--   
--   See also <a>lGraph</a>.
--   
--   Example: <tt>sGraph [0, 1, 2]</tt> will output the inputs at
--   <i>now</i>, one second before now and two seconds before now.
--   
--   <ul>
--   <li>Complexity: O(s) space, O(n * log s) time, where s = number of
--   samples in the interval, n = number of requested data points.</li>
--   <li>Depends: now.</li>
--   </ul>
sGraph :: (Fractional t, HasTime t s) => [t] -> Wire s e m a [a]

-- | Graph the given interval from now with the given number of evenly
--   distributed points in time. Convenience interface to <a>sGraph</a>.
--   
--   See also <a>lGraphN</a>.
--   
--   <ul>
--   <li>Complexity: O(s) space, O(n * log s) time, where s = number of
--   samples in the interval, n = number of requested data points.</li>
--   <li>Depends: now.</li>
--   </ul>
sGraphN :: (Fractional t, HasTime t s) => t -> Int -> Wire s e m a [a]

-- | High peak.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
highPeak :: Ord a => Wire s e m a a

-- | High peak with respect to the given comparison function.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
highPeakBy :: (a -> a -> Ordering) -> Wire s e m a a

-- | Low peak.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
lowPeak :: Ord a => Wire s e m a a

-- | Low peak with respect to the given comparison function.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
lowPeakBy :: (a -> a -> Ordering) -> Wire s e m a a

-- | Average framerate over the last given number of samples. One important
--   thing to note is that the value of this wire will generally disagree
--   with <a>sAvg</a> composed with <a>framerate</a>. This is expected,
--   because this wire simply calculates the arithmetic mean, whereas
--   <a>sAvg</a> will actually integrate the framerate graph.
--   
--   Note: This wire is for debugging purposes only, because it exposes
--   discrete time. Do not taint your application with discrete time.
--   
--   <ul>
--   <li>Complexity: O(n) time and space wrt number of samples.</li>
--   </ul>
avgFps :: (RealFloat b, HasTime t s) => Int -> Wire s e m a b

-- | Current framerate.
--   
--   Note: This wire is for debugging purposes only, because it exposes
--   discrete time. Do not taint your application with discrete time.
--   
--   <ul>
--   <li>Inhibits: when the clock stopped ticking.</li>
--   </ul>
framerate :: (Eq b, Fractional b, HasTime t s, Monoid e) => Wire s e m a b


module FRP.Netwire.Move

-- | Time derivative of the input signal.
--   
--   <ul>
--   <li>Depends: now.</li>
--   <li>Inhibits: at singularities.</li>
--   </ul>
derivative :: (RealFloat a, HasTime t s, Monoid e) => Wire s e m a a

-- | Integrate the input signal over time.
--   
--   <ul>
--   <li>Depends: before now.</li>
--   </ul>
integral :: (Fractional a, HasTime t s) => a -> Wire s e m a a

-- | Integrate the left input signal over time, but apply the given
--   correction function to it. This can be used to implement collision
--   detection/reaction.
--   
--   The right signal of type <tt>w</tt> is the <i>world value</i>. It is
--   just passed to the correction function for reference and is not used
--   otherwise.
--   
--   The correction function must be idempotent with respect to the world
--   value: <tt>f w (f w x) = f w x</tt>. This is necessary and sufficient
--   to protect time continuity.
--   
--   <ul>
--   <li>Depends: before now.</li>
--   </ul>
integralWith :: (Fractional a, HasTime t s) => (w -> a -> a) -> a -> Wire s e m (a, w) a


module FRP.Netwire.Noise

-- | Noise events with the given distance between events. Use <a>hold</a>
--   or <a>holdFor</a> to generate a staircase.
noise :: (HasTime t s, Random b, RandomGen g) => t -> g -> Wire s e m a (Event b)

-- | Noise events with the given distance between events. Noise will be in
--   the given range. Use <a>hold</a> or <a>holdFor</a> to generate a
--   staircase.
noiseR :: (HasTime t s, Random b, RandomGen g) => t -> (b, b) -> g -> Wire s e m a (Event b)

-- | Randomly produce or inhibit with the given probability, each time for
--   the given duration.
--   
--   The name <i>Wackelkontakt</i> (German for <i>slack joint</i>) is a
--   Netwire running gag. It makes sure that you revisit the documentation
--   from time to time. =)
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
wackelkontakt :: (HasTime t s, Monad m, Monoid e, RandomGen g) => t -> Double -> g -> Wire s e m a a

-- | Convenience interface to <a>noise</a> for <a>StdGen</a>.
stdNoise :: (HasTime t s, Random b) => t -> Int -> Wire s e m a (Event b)

-- | Convenience interface to <a>noiseR</a> for <a>StdGen</a>.
stdNoiseR :: (HasTime t s, Monad m, Random b) => t -> (b, b) -> Int -> Wire s e m a (Event b)

-- | Convenience interface to <a>wackelkontakt</a> for <a>StdGen</a>.
stdWackelkontakt :: (HasTime t s, Monad m, Monoid e) => t -> Double -> Int -> Wire s e m a a


module FRP.Netwire

-- | A wire is a signal function. It maps a reactive value to another
--   reactive value.
data Wire s e m a b

-- | Pure wires.
type WireP s e = Wire s e Identity

-- | Simple wires with time.
type SimpleWire = Wire (Timed NominalDiffTime ()) () Identity

-- | This wire delays its input signal by the smallest possible
--   (semantically infinitesimal) amount of time. You can use it when you
--   want to use feedback (<a>ArrowLoop</a>): If the user of the feedback
--   depends on <i>now</i>, delay the value before feeding it back. The
--   argument value is the replacement signal at the beginning.
--   
--   <ul>
--   <li>Depends: before now.</li>
--   </ul>
delay :: a -> Wire s e m a a

-- | Evaluate the input signal using the given <a>Strategy</a> here. This
--   wire evaluates only produced values.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
evalWith :: Strategy a -> Wire s e m a a

-- | Force the input signal to WHNF here. This wire forces both produced
--   values and inhibition values.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
force :: Wire s e m a a

-- | Force the input signal to NF here. This wire forces only produced
--   values.
--   
--   <ul>
--   <li>Depends: now.</li>
--   </ul>
forceNF :: NFData a => Wire s e m a a