This file is indexed.

/usr/share/dynare/matlab/th_autocovariances.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
function [Gamma_y,stationary_vars] = th_autocovariances(dr,ivar,M_,options_,nodecomposition)
% Computes the theoretical auto-covariances, Gamma_y, for an AR(p) process 
% with coefficients dr.ghx and dr.ghu and shock variances Sigma_e_
% for a subset of variables ivar (indices in lgy_)
% Theoretical HPfiltering is available as an option
%    
% INPUTS
%   dr:               [structure]    Reduced form solution of the DSGE model  (decisions rules)
%   ivar:             [integer]      Vector of indices for a subset of variables.
%   M_                [structure]    Global dynare's structure, description of the DSGE model.
%   options_          [structure]    Global dynare's structure.
%   nodecomposition   [integer]      Scalar, if different from zero the variance decomposition is not triggered.  
%    
% OUTPUTS
%   Gamma_y           [cell]         Matlab cell of nar+3 (second order approximation) or nar+2 (first order approximation) arrays, 
%                                    where nar is the order of the autocorrelation function.
%                                      Gamma_y{1}       [double]  Covariance matrix.
%                                      Gamma_y{i+1}     [double]  Autocorrelation function (for i=1,...,options_.nar).
%                                      Gamma_y{nar+2}   [double]  Variance decomposition.  
%                                      Gamma_y{nar+3}   [double]  Expectation of the endogenous variables associated with a second 
%                                                                 order approximation.    
%   stationary_vars   [integer]      Vector of indices of stationary variables (as a subset of 1:length(ivar))
%
% SPECIAL REQUIREMENTS
%   

% Copyright (C) 2001-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

if nargin<5
    nodecomposition = 0;
end

if options_.order >= 3
    error('Theoretical moments not implemented above 2nd order')
end

endo_nbr = M_.endo_nbr;
exo_names_orig_ord  = M_.exo_names_orig_ord;
if isoctave
    warning('off', 'Octave:divide-by-zero')
else
    warning off MATLAB:dividebyzero
end
nar = options_.ar;
Gamma_y = cell(nar+1,1);
if isempty(ivar)
    ivar = [1:endo_nbr]';
end
nvar = size(ivar,1);

ghx = dr.ghx;
ghu = dr.ghu;
nspred = M_.nspred;
nstatic = M_.nstatic;

nx = size(ghx,2);
if options_.block == 0
    %order_var = dr.order_var;
    inv_order_var = dr.inv_order_var;
    kstate = dr.kstate;
    ikx = [nstatic+1:nstatic+nspred];
    k0 = kstate(find(kstate(:,2) <= M_.maximum_lag+1),:);
    i0 = find(k0(:,2) == M_.maximum_lag+1);
    i00 = i0;
    n0 = length(i0);
    AS = ghx(:,i0);
    ghu1 = zeros(nx,M_.exo_nbr);
    ghu1(i0,:) = ghu(ikx,:);
    for i=M_.maximum_lag:-1:2
        i1 = find(k0(:,2) == i);
        n1 = size(i1,1);
        j1 = zeros(n1,1);
        for k1 = 1:n1
            j1(k1) = find(k0(i00,1)==k0(i1(k1),1));
        end
        AS(:,j1) = AS(:,j1)+ghx(:,i1);
        i0 = i1;
    end
else
    ghu1 = zeros(nx,M_.exo_nbr);
    trend = 1:M_.endo_nbr;
    inv_order_var = trend(M_.block_structure.variable_reordered);
    ghu1(1:length(dr.state_var),:) = ghu(dr.state_var,:);
end;
b = ghu1*M_.Sigma_e*ghu1';


if options_.block == 0
    ipred = nstatic+(1:nspred)';
else
    ipred = dr.state_var;
end;
% state space representation for state variables only
[A,B] = kalman_transition_matrix(dr,ipred,1:nx,M_.exo_nbr);
% Compute stationary variables (before HP filtering),
% and compute 2nd order mean correction on stationary variables (in case of
% HP filtering, this mean correction is computed *before* filtering)
if options_.order == 2 || options_.hp_filter == 0
    [vx, u] =  lyapunov_symm(A,B*M_.Sigma_e*B',options_.qz_criterium,options_.lyapunov_complex_threshold);
    if options_.block == 0
        iky = inv_order_var(ivar);
    else
        iky = ivar;
    end;
    stationary_vars = (1:length(ivar))';
    if ~isempty(u)
        x = abs(ghx*u);
        iky = iky(find(all(x(iky,:) < options_.Schur_vec_tol,2)));
        stationary_vars = find(all(x(inv_order_var(ivar(stationary_vars)),:) < options_.Schur_vec_tol,2));
    end
    aa = ghx(iky,:);
    bb = ghu(iky,:);
    if options_.order == 2         % mean correction for 2nd order
        if ~isempty(ikx) 
            Ex = (dr.ghs2(ikx)+dr.ghxx(ikx,:)*vx(:)+dr.ghuu(ikx,:)*M_.Sigma_e(:))/2;
            Ex = (eye(n0)-AS(ikx,:))\Ex;
            Gamma_y{nar+3} = NaN*ones(nvar, 1);
            Gamma_y{nar+3}(stationary_vars) = AS(iky,:)*Ex+(dr.ghs2(iky)+dr.ghxx(iky,:)*vx(:)+...
                                                            dr.ghuu(iky,:)*M_.Sigma_e(:))/2;
        else %no static and no predetermined
            Gamma_y{nar+3} = NaN*ones(nvar, 1);
            Gamma_y{nar+3}(stationary_vars) = (dr.ghs2(iky)+ dr.ghuu(iky,:)*M_.Sigma_e(:))/2;
        end
    end
end
if options_.hp_filter == 0
    v = NaN*ones(nvar,nvar);
    v(stationary_vars,stationary_vars) = aa*vx*aa'+ bb*M_.Sigma_e*bb';
    k = find(abs(v) < 1e-12);
    v(k) = 0;
    Gamma_y{1} = v;
    % autocorrelations
    if nar > 0
        vxy = (A*vx*aa'+ghu1*M_.Sigma_e*bb');    
        sy = sqrt(diag(Gamma_y{1}));
        sy = sy(stationary_vars);
        sy = sy *sy';
        Gamma_y{2} = NaN*ones(nvar,nvar);
        Gamma_y{2}(stationary_vars,stationary_vars) = aa*vxy./sy;
        for i=2:nar
            vxy = A*vxy;
            Gamma_y{i+1} = NaN*ones(nvar,nvar);
            Gamma_y{i+1}(stationary_vars,stationary_vars) = aa*vxy./sy;
        end
    end
    % variance decomposition
    if ~nodecomposition && M_.exo_nbr > 1 && size(stationary_vars, 1) > 0
        Gamma_y{nar+2} = zeros(nvar,M_.exo_nbr);
        SS(exo_names_orig_ord,exo_names_orig_ord)=M_.Sigma_e+1e-14*eye(M_.exo_nbr);
        cs = chol(SS)';
        b1(:,exo_names_orig_ord) = ghu1;
        b1 = b1*cs;
        b2(:,exo_names_orig_ord) = ghu(iky,:);
        b2 = b2*cs;
        vx  = lyapunov_symm(A,b1*b1',options_.qz_criterium,options_.lyapunov_complex_threshold,1);
        vv = diag(aa*vx*aa'+b2*b2');
        vv2 = 0;
        for i=1:M_.exo_nbr
            vx1 = lyapunov_symm(A,b1(:,i)*b1(:,i)',options_.qz_criterium,options_.lyapunov_complex_threshold,2);
            vx2 = abs(diag(aa*vx1*aa'+b2(:,i)*b2(:,i)'));
            Gamma_y{nar+2}(stationary_vars,i) = vx2;
            vv2 = vv2 +vx2;
        end
        if max(abs(vv2-vv)./vv) > 1e-4
            warning(['Aggregate variance and sum of variances by shocks ' ...
                     'differ by more than 0.01 %'])
        end
        for i=1:M_.exo_nbr
            Gamma_y{nar+2}(stationary_vars,i) = Gamma_y{nar+ ...
                                2}(stationary_vars,i)./vv2;
        end
    end
else% ==> Theoretical HP filter.
    % By construction, all variables are stationary when HP filtered
    iky = inv_order_var(ivar);  
    stationary_vars = (1:length(ivar))';
    aa = ghx(iky,:);
    bb = ghu(iky,:);

    lambda = options_.hp_filter;
    ngrid = options_.hp_ngrid;
    freqs = 0 : ((2*pi)/ngrid) : (2*pi*(1 - .5/ngrid)); 
    tpos  = exp( sqrt(-1)*freqs);
    tneg  =  exp(-sqrt(-1)*freqs);
    hp1 = 4*lambda*(1 - cos(freqs)).^2 ./ (1 + 4*lambda*(1 - cos(freqs)).^2);
    mathp_col = [];
    IA = eye(size(A,1));
    IE = eye(M_.exo_nbr);
    for ig = 1:ngrid
        f_omega  =(1/(2*pi))*( [inv(IA-A*tneg(ig))*ghu1;IE]...
                               *M_.Sigma_e*[ghu1'*inv(IA-A'*tpos(ig)) ...
                            IE]); % state variables
        g_omega = [aa*tneg(ig) bb]*f_omega*[aa'*tpos(ig); bb']; % selected variables
        f_hp = hp1(ig)^2*g_omega; % spectral density of selected filtered series
        mathp_col = [mathp_col ; (f_hp(:))'];    % store as matrix row
                                                 % for ifft
    end;
    % Covariance of filtered series
    imathp_col = real(ifft(mathp_col))*(2*pi);
    Gamma_y{1} = reshape(imathp_col(1,:),nvar,nvar);
    % Autocorrelations
    if nar > 0
        sy = sqrt(diag(Gamma_y{1}));
        sy = sy *sy';
        for i=1:nar
            Gamma_y{i+1} = reshape(imathp_col(i+1,:),nvar,nvar)./sy;
        end
    end
    % Variance decomposition
    if ~nodecomposition && M_.exo_nbr > 1
        Gamma_y{nar+2} = zeros(nvar,M_.exo_nbr);
        SS(exo_names_orig_ord,exo_names_orig_ord) = M_.Sigma_e+1e-14*eye(M_.exo_nbr);
        cs = chol(SS)';
        SS = cs*cs';
        b1(:,exo_names_orig_ord) = ghu1;
        b2(:,exo_names_orig_ord) = ghu(iky,:);
        mathp_col = [];
        IA = eye(size(A,1));
        IE = eye(M_.exo_nbr);
        for ig = 1:ngrid
            f_omega  =(1/(2*pi))*( [inv(IA-A*tneg(ig))*b1;IE]...
                                   *SS*[b1'*inv(IA-A'*tpos(ig)) ...
                                IE]); % state variables
            g_omega = [aa*tneg(ig) b2]*f_omega*[aa'*tpos(ig); b2']; % selected variables
            f_hp = hp1(ig)^2*g_omega; % spectral density of selected filtered series
            mathp_col = [mathp_col ; (f_hp(:))'];    % store as matrix row
                                                     % for ifft
        end;  
        imathp_col = real(ifft(mathp_col))*(2*pi);
        vv = diag(reshape(imathp_col(1,:),nvar,nvar));
        for i=1:M_.exo_nbr
            mathp_col = [];
            SSi = cs(:,i)*cs(:,i)';
            for ig = 1:ngrid
                f_omega  =(1/(2*pi))*( [inv(IA-A*tneg(ig))*b1;IE]...
                                       *SSi*[b1'*inv(IA-A'*tpos(ig)) ...
                                    IE]); % state variables
                g_omega = [aa*tneg(ig) b2]*f_omega*[aa'*tpos(ig); b2']; % selected variables
                f_hp = hp1(ig)^2*g_omega; % spectral density of selected filtered series
                mathp_col = [mathp_col ; (f_hp(:))'];    % store as matrix row
                                                         % for ifft
            end;
            imathp_col = real(ifft(mathp_col))*(2*pi);
            Gamma_y{nar+2}(:,i) = abs(diag(reshape(imathp_col(1,:),nvar,nvar)))./vv;
        end
    end
end
if isoctave
    warning('on', 'Octave:divide-by-zero')
else
    warning on MATLAB:dividebyzero
end