This file is indexed.

/usr/share/dynare/matlab/osr_obj.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
function [loss,vx,info,exit_flag]=osr_obj(x,i_params,i_var,weights)
% objective function for optimal simple rules (OSR)
% INPUTS
%   x                         vector           values of the parameters
%                                              over which to optimize
%   i_params                  vector           index of optimizing parameters in M_.params
%   i_var                     vector           variables indices
%   weights                   vector           weights in the OSRs
%
% OUTPUTS
%   loss                      scalar           loss function returned to solver
%   vx                        vector           variances of the endogenous variables
%   info                      vector           info vector returned by resol
%   exit_flag                 scalar           exit flag returned to solver
%
% SPECIAL REQUIREMENTS
%   none
% Copyright (C) 2005-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.

global M_ oo_ options_ optimal_Q_ it_
%  global ys_ Sigma_e_ endo_nbr exo_nbr optimal_Q_ it_ ykmin_ options_

junk = [];
exit_flag = 1;
vx = [];
info=0;
loss=[];
% set parameters of the policiy rule
M_.params(i_params) = x;

% don't change below until the part where the loss function is computed
it_ = M_.maximum_lag+1;
[dr,info,M_,options_,oo_] = resol(0,M_,options_,oo_);

switch info(1)
  case 1
    loss = 1e8;
    return
  case 2
    loss = 1e8*min(1e3,info(2));
    return
  case 3
    loss = 1e8*min(1e3,info(2));
    return
  case 4
    loss = 1e8*min(1e3,info(2));
    return
  case 5
    loss = 1e8;
    return
  case 6
    loss = 1e8*min(1e3,info(2));
    return
  case 7
    loss = 1e8*min(1e3);
    return
  case 8
    loss = 1e8*min(1e3,info(2));
    return
  case 9
    loss = 1e8*min(1e3,info(2));
    return   
  case 20
    loss = 1e8*min(1e3,info(2));
    return
    otherwise
  if info(1)~=0
    loss = 1e8;
    return;
  end  
end

vx = get_variance_of_endogenous_variables(dr,i_var);
loss = weights(:)'*vx(:);