This file is indexed.

/usr/share/dynare/matlab/cmaes.m is in dynare-common 4.4.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
function [xmin, ...      % minimum search point of last iteration
	  fmin, ...      % function value of xmin
	  counteval, ... % number of function evaluations done
	  stopflag, ...  % stop criterion reached
	  out, ...     % struct with various histories and solutions
	  bestever ... % struct containing overall best solution (for convenience)
	 ] = cmaes( ...
    fitfun, ...    % name of objective/fitness function
    xstart, ...    % objective variables initial point, determines N
    insigma, ...   % initial coordinate wise standard deviation(s)
    inopts, ...    % options struct, see defopts below
    varargin )     % arguments passed to objective function 
% cmaes.m, Version 3.56.beta, last change: February, 2012 
% CMAES implements an Evolution Strategy with Covariance Matrix
% Adaptation (CMA-ES) for nonlinear function minimization.  For
% introductory comments and copyright (GPL) see end of file (type 
% 'type cmaes'). cmaes.m runs with MATLAB (Windows, Linux) and, 
% without data logging and plotting, it should run under Octave 
% (Linux, package octave-forge is needed).
%
% OPTS = CMAES returns default options. 
% OPTS = CMAES('defaults') returns default options quietly.
% OPTS = CMAES('displayoptions') displays options. 
% OPTS = CMAES('defaults', OPTS) supplements options OPTS with default 
% options. 
%
% XMIN = CMAES(FUN, X0, SIGMA[, OPTS]) locates the minimum XMIN of
% function FUN starting from column vector X0 with the initial
% coordinate wise search standard deviation SIGMA.
%
% Input arguments: 
%
%  FUN is a string function name like 'myfun'. FUN takes as argument a
%     column vector of size of X0 and returns a scalar. An easy way to
%     implement a hard non-linear constraint is to return NaN. Then,
%     this function evaluation is not counted and a newly sampled
%     point is tried immediately.
%
%   X0 is a column vector, or a matrix, or a string. If X0 is a matrix,
%     mean(X0, 2) is taken as initial point. If X0 is a string like
%     '2*rand(10,1)-1', the string is evaluated first.
%
%   SIGMA is a scalar, or a column vector of size(X0,1), or a string
%     that can be evaluated into one of these. SIGMA determines the
%     initial coordinate wise standard deviations for the search.
%     Setting SIGMA one third of the initial search region is
%     appropriate, e.g., the initial point in [0, 6]^10 and SIGMA=2
%     means cmaes('myfun', 3*rand(10,1), 2).  If SIGMA is missing and
%     size(X0,2) > 1, SIGMA is set to sqrt(var(X0')'). That is, X0 is
%     used as a sample for estimating initial mean and variance of the
%     search distribution.
%
%   OPTS (an optional argument) is a struct holding additional input
%     options. Valid field names and a short documentation can be
%     discovered by looking at the default options (type 'cmaes'
%     without arguments, see above). Empty or missing fields in OPTS
%     invoke the default value, i.e. OPTS needs not to have all valid
%     field names.  Capitalization does not matter and unambiguous
%     abbreviations can be used for the field names. If a string is
%     given where a numerical value is needed, the string is evaluated
%     by eval, where 'N' expands to the problem dimension
%     (==size(X0,1)) and 'popsize' to the population size. 
%
% [XMIN, FMIN, COUNTEVAL, STOPFLAG, OUT, BESTEVER] = ...
%    CMAES(FITFUN, X0, SIGMA)
% returns the best (minimal) point XMIN (found in the last
% generation); function value FMIN of XMIN; the number of needed
% function evaluations COUNTEVAL; a STOPFLAG value as cell array,
% where possible entries are 'fitness', 'tolx', 'tolupx', 'tolfun',
% 'maxfunevals', 'maxiter', 'stoptoresume', 'manual',
% 'warnconditioncov', 'warnnoeffectcoord', 'warnnoeffectaxis',
% 'warnequalfunvals', 'warnequalfunvalhist', 'bug' (use
% e.g. any(strcmp(STOPFLAG, 'tolx')) or findstr(strcat(STOPFLAG,
% 'tolx')) for further processing); a record struct OUT with some
% more output, where the struct SOLUTIONS.BESTEVER contains the overall
% best evaluated point X with function value F evaluated at evaluation
% count EVALS. The last output argument BESTEVER equals 
% OUT.SOLUTIONS.BESTEVER. Moreover a history of solutions and 
% parameters is written to files according to the Log-options. 
%
% A regular manual stop can be achieved via the file signals.par. The
% program is terminated if the first two non-white sequences in any
% line of this file are 'stop' and the value of the LogFilenamePrefix
% option (by default 'outcmaes'). Also a run can be skipped.
% Given, for example, 'skip outcmaes run 2', skips the second run
% if option Restarts is at least 2, and another run will be started.
% 
% To run the code completely silently set Disp, Save, and Log options
% to 0.  With OPTS.LogModulo > 0 (1 by default) the most important
% data are written to ASCII files permitting to investigate the
% results (e.g. plot with function plotcmaesdat) even while CMAES is
% still running (which can be quite useful on expensive objective
% functions). When OPTS.SaveVariables==1 (default) everything is saved
% in file OPTS.SaveFilename (default 'variablescmaes.mat') allowing to
% resume the search afterwards by using the resume option.
%
% To find the best ever evaluated point load the variables typing
% "es=load('variablescmaes')" and investigate the variable
% es.out.solutions.bestever. 
%
% In case of a noisy objective function (uncertainties) set
% OPTS.Noise.on = 1. This option interferes presumably with some 
% termination criteria, because the step-size sigma will presumably
% not converge to zero anymore. If CMAES was provided with a 
% fifth argument (P1 in the below example, which is passed to the 
% objective function FUN), this argument is multiplied with the 
% factor given in option Noise.alphaevals, each time the detected 
% noise exceeds a threshold. This argument can be used within 
% FUN, for example, as averaging number to reduce the noise level.  
%
% OPTS.DiagonalOnly > 1 defines the number of initial iterations,
% where the covariance matrix remains diagonal and the algorithm has
% internally linear time complexity. OPTS.DiagonalOnly = 1 means
% keeping the covariance matrix always diagonal and this setting
% also exhibits linear space complexity. This can be particularly
% useful for dimension > 100. The default is OPTS.DiagonalOnly = 0. 
% 
% OPTS.CMA.active = 1 turns on "active CMA" with a negative update 
% of the covariance matrix and checks for positive definiteness. 
% OPTS.CMA.active = 2 does not check for pos. def. and is numerically
% faster. Active CMA usually speeds up the adaptation and might 
% become a default in near future. 
%
% The primary strategy parameter to play with is OPTS.PopSize, which
% can be increased from its default value.  Increasing the population
% size (by default linked to increasing parent number OPTS.ParentNumber)
% improves global search properties in exchange to speed. Speed
% decreases, as a rule, at most linearely with increasing population
% size. It is advisable to begin with the default small population
% size. The options Restarts and IncPopSize can be used for an
% automated multistart where the population size is increased by the
% factor IncPopSize (two by default) before each restart. X0 (given as
% string) is reevaluated for each restart. Stopping options
% StopFunEvals, StopIter, MaxFunEvals, and Fitness terminate the
% program, all others including MaxIter invoke another restart, where
% the iteration counter is reset to zero.
%
% Examples: 
%
%   XMIN = cmaes('myfun', 5*ones(10,1), 1.5); starts the search at
%   10D-point 5 and initially searches mainly between 5-3 and 5+3
%   (+- two standard deviations), but this is not a strict bound.
%   'myfun' is a name of a function that returns a scalar from a 10D
%   column vector.
%
%   opts.LBounds = 0; opts.UBounds = 10; 
%   X=cmaes('myfun', 10*rand(10,1), 5, opts);
%   search within lower bound of 0 and upper bound of 10. Bounds can
%   also be given as column vectors. If the optimum is not located
%   on the boundary, use rather a penalty approach to handle bounds. 
%
%   opts=cmaes; opts.StopFitness=1e-10;
%   X=cmaes('myfun', rand(5,1), 0.5, opts); stops the search, if
%   the function value is smaller than 1e-10.
%   
%   [X, F, E, STOP, OUT] = cmaes('myfun2', 'rand(5,1)', 1, [], P1, P2); 
%   passes two additional parameters to the function MYFUN2.
%

% Copyright (C) 2001-2012 Nikolaus Hansen, 
% Copyright (C) 2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare.  If not, see <http://www.gnu.org/licenses/>.


cmaVersion = '3.60.beta'; 

% ----------- Set Defaults for Input Parameters and Options -------------
% These defaults may be edited for convenience
% Input Defaults (obsolete, these are obligatory now)
definput.fitfun = 'felli'; % frosen; fcigar; see end of file for more
definput.xstart = rand(10,1); % 0.50*ones(10,1);
definput.sigma = 0.3;

% Options defaults: Stopping criteria % (value of stop flag)
defopts.StopFitness  = '-Inf % stop if f(xmin) < stopfitness, minimization';
defopts.MaxFunEvals  = 'Inf  % maximal number of fevals';
defopts.MaxIter      = '1e3*(N+5)^2/sqrt(popsize) % maximal number of iterations';
defopts.StopFunEvals = 'Inf  % stop after resp. evaluation, possibly resume later';
defopts.StopIter     = 'Inf  % stop after resp. iteration, possibly resume later';
defopts.TolX         = '1e-11*max(insigma) % stop if x-change smaller TolX';
defopts.TolUpX       = '1e3*max(insigma) % stop if x-changes larger TolUpX';
defopts.TolFun       = '1e-12 % stop if fun-changes smaller TolFun';
defopts.TolHistFun   = '1e-13 % stop if back fun-changes smaller TolHistFun';
defopts.StopOnStagnation = 'on  % stop when fitness stagnates for a long time';
defopts.StopOnWarnings = 'yes  % ''no''==''off''==0, ''on''==''yes''==1 ';
defopts.StopOnEqualFunctionValues = '2 + N/3  % number of iterations';  

% Options defaults: Other
defopts.DiffMaxChange = 'Inf  % maximal variable change(s), can be Nx1-vector';
defopts.DiffMinChange = '0    % minimal variable change(s), can be Nx1-vector';
defopts.WarnOnEqualFunctionValues = ...
    'yes  % ''no''==''off''==0, ''on''==''yes''==1 ';
defopts.LBounds = '-Inf % lower bounds, scalar or Nx1-vector'; 
defopts.UBounds = 'Inf  % upper bounds, scalar or Nx1-vector'; 
defopts.EvalParallel = 'no   % objective function FUN accepts NxM matrix, with M>1?';
defopts.EvalInitialX = 'yes  % evaluation of initial solution';
defopts.Restarts     = '0    % number of restarts ';
defopts.IncPopSize   = '2    % multiplier for population size before each restart';

defopts.PopSize      = '(4 + floor(3*log(N)))  % population size, lambda'; 
defopts.ParentNumber = 'floor(popsize/2)       % AKA mu, popsize equals lambda';
defopts.RecombinationWeights = 'superlinear decrease % or linear, or equal';
defopts.DiagonalOnly = '0*(1+100*N/sqrt(popsize))+(N>=1000)  % C is diagonal for given iterations, 1==always'; 
defopts.Noise.on = '0  % uncertainty handling is off by default'; 
defopts.Noise.reevals  = '1*ceil(0.05*lambda)  % nb. of re-evaluated for uncertainty measurement';
defopts.Noise.theta = '0.5  % threshold to invoke uncertainty treatment'; % smaller: more likely to diverge
defopts.Noise.cum = '0.3  % cumulation constant for uncertainty'; 
defopts.Noise.cutoff = '2*lambda/3  % rank change cutoff for summation';
defopts.Noise.alphasigma  = '1+2/(N+10)  % factor for increasing sigma'; % smaller: slower adaptation
defopts.Noise.epsilon  = '1e-7  % additional relative perturbation before reevaluation';
defopts.Noise.minmaxevals = '[1 inf]  % min and max value of 2nd arg to fitfun, start value is 5th arg to cmaes'; 
defopts.Noise.alphaevals  = '1+2/(N+10)  % factor for increasing 2nd arg to fitfun'; 
defopts.Noise.callback = '[]  % callback function when uncertainty threshold is exceeded';
% defopts.TPA = 0; 
defopts.CMA.cs = '(mueff+2)/(N+mueff+3)  % cumulation constant for step-size'; 
   %qqq cs = (mueff^0.5)/(N^0.5+mueff^0.5) % the short time horizon version
defopts.CMA.damps = '1 + 2*max(0,sqrt((mueff-1)/(N+1))-1) + cs  % damping for step-size';
% defopts.CMA.ccum = '4/(N+4)  % cumulation constant for covariance matrix'; 
defopts.CMA.ccum = '(4 + mueff/N) / (N+4 + 2*mueff/N)  % cumulation constant for pc';
defopts.CMA.ccov1 = '2 / ((N+1.3)^2+mueff)  % learning rate for rank-one update'; 
defopts.CMA.ccovmu = '2 * (mueff-2+1/mueff) / ((N+2)^2+mueff) % learning rate for rank-mu update'; 
defopts.CMA.on     = 'yes'; 
defopts.CMA.active = '0  % active CMA 1: neg. updates with pos. def. check, 2: neg. updates'; 

flg_future_setting = 0;  % testing for possible future variant(s)
if flg_future_setting    
  disp('in the future')

  % damps setting from Brockhoff et al 2010
  %   this damps diverges with popsize 400:
  %   cmaeshtml('benchmarkszero', ones(20,1)*2, 5, o, 15);
  defopts.CMA.damps = '2*mueff/lambda + 0.3 + cs  % damping for step-size';  % cs: for large mueff
  % how about:
  % defopts.CMA.damps = '2*mueff/lambda + 0.3 + 2*max(0,sqrt((mueff-1)/(N+1))-1) + cs  % damping for step-size';

  % ccum adjusted for large mueff, better on schefelmult? 
  % TODO: this should also depend on diagonal option!?  
  defopts.CMA.ccum = '(4 + mueff/N) / (N+4 + 2*mueff/N)  % cumulation constant for pc';

  defopts.CMA.active = '1  % active CMA 1: neg. updates with pos. def. check, 2: neg. updates'; 
end
  
defopts.Resume   = 'no   % resume former run from SaveFile'; 
defopts.Science  = 'on  % off==do some additional (minor) problem capturing, NOT IN USE'; 
defopts.ReadSignals = 'on  % from file signals.par for termination, yet a stumb';
defopts.Seed = 'sum(100*clock)  % evaluated if it is a string';
defopts.DispFinal  = 'on   % display messages like initial and final message';
defopts.DispModulo = '100  % [0:Inf], disp messages after every i-th iteration';
defopts.SaveVariables = 'on   % [on|final|off][-v6] save variables to .mat file';
defopts.SaveFilename = 'variablescmaes.mat  % save all variables, see SaveVariables'; 
defopts.LogModulo = '1    % [0:Inf] if >1 record data less frequently after gen=100';
defopts.LogTime   = '25   % [0:100] max. percentage of time for recording data';
defopts.LogFilenamePrefix = 'outcmaes  % files for output data'; 
defopts.LogPlot = 'off    % plot while running using output data files';

%qqqkkk 
%defopts.varopt1 = ''; % 'for temporary and hacking purposes'; 
%defopts.varopt2 = ''; % 'for temporary and hacking purposes'; 
defopts.UserData = 'for saving data/comments associated with the run';
defopts.UserDat2 = ''; 'for saving data/comments associated with the run';

% ---------------------- Handling Input Parameters ----------------------

if nargin < 1 || isequal(fitfun, 'defaults') % pass default options
  if nargin < 1
    disp('Default options returned (type "help cmaes" for help).');
  end
  xmin = defopts;
  if nargin > 1 % supplement second argument with default options
    xmin = getoptions(xstart, defopts);
  end
  return;
end

if isequal(fitfun, 'displayoptions')
 names = fieldnames(defopts); 
 for name = names'
   disp([name{:} repmat(' ', 1, 20-length(name{:})) ': ''' defopts.(name{:}) '''']); 
 end
 return; 
end

input.fitfun = fitfun; % record used input
if isempty(fitfun)
  % fitfun = definput.fitfun; 
  % warning(['Objective function not determined, ''' fitfun ''' used']);
  error(['Objective function not determined']);
end
if ~ischar(fitfun)
  error('first argument FUN must be a string');
end


if nargin < 2 
  xstart = [];
end

input.xstart = xstart;
if isempty(xstart)
  % xstart = definput.xstart;  % objective variables initial point
  % warning('Initial search point, and problem dimension, not determined');
  error('Initial search point, and problem dimension, not determined');
end

if nargin < 3 
  insigma = [];
end
if isa(insigma, 'struct')
  error(['Third argument SIGMA must be (or eval to) a scalar '...
	   'or a column vector of size(X0,1)']);
end
input.sigma = insigma;
if isempty(insigma)
  if all(size(myeval(xstart)) > 1)
    insigma = std(xstart, 0, 2); 
    if any(insigma == 0)
      error(['Initial search volume is zero, choose SIGMA or X0 appropriate']);
    end
  else
    % will be captured later
    % error(['Initial step sizes (SIGMA) not determined']);
  end
end

% Compose options opts
if nargin < 4 || isempty(inopts) % no input options available
  inopts = []; 
  opts = defopts;
else
  opts = getoptions(inopts, defopts);
end
i = strfind(opts.SaveFilename, ' '); % remove everything after white space
if ~isempty(i)
  opts.SaveFilename = opts.SaveFilename(1:i(1)-1);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
counteval = 0; countevalNaN = 0; 
irun = 0;
while irun <= myeval(opts.Restarts) % for-loop does not work with resume
  irun = irun + 1; 

% ------------------------ Initialization -------------------------------

% Handle resuming of old run
flgresume = myevalbool(opts.Resume);
xmean = myeval(xstart); 
if all(size(xmean) > 1)
   xmean = mean(xmean, 2); % in case if xstart is a population
elseif size(xmean, 2) > 1
  xmean = xmean';
end 
if ~flgresume % not resuming a former run
  % Assign settings from input parameters and options for myeval...
  N = size(xmean, 1); numberofvariables = N; 
  lambda0 = floor(myeval(opts.PopSize) * myeval(opts.IncPopSize)^(irun-1)); 
  % lambda0 = floor(myeval(opts.PopSize) * 3^floor((irun-1)/2)); 
  popsize = lambda0;
  lambda = lambda0;
  insigma = myeval(insigma);
  if all(size(insigma) == [N 2]) 
    insigma = 0.5 * (insigma(:,2) - insigma(:,1));
  end
else % flgresume is true, do resume former run
  tmp = whos('-file', opts.SaveFilename);
  for i = 1:length(tmp)
    if strcmp(tmp(i).name, 'localopts');
      error('Saved variables include variable "localopts", please remove');
    end
  end
  local.opts = opts; % keep stopping and display options
  local.varargin = varargin;
  load(opts.SaveFilename); 
  varargin = local.varargin;
  flgresume = 1;

  % Overwrite old stopping and display options
  opts.StopFitness = local.opts.StopFitness; 
  %%opts.MaxFunEvals = local.opts.MaxFunEvals;
  %%opts.MaxIter = local.opts.MaxIter; 
  opts.StopFunEvals = local.opts.StopFunEvals; 
  opts.StopIter = local.opts.StopIter;  
  opts.TolX = local.opts.TolX;
  opts.TolUpX = local.opts.TolUpX;
  opts.TolFun = local.opts.TolFun;
  opts.TolHistFun = local.opts.TolHistFun;
  opts.StopOnStagnation = local.opts.StopOnStagnation; 
  opts.StopOnWarnings = local.opts.StopOnWarnings; 
  opts.ReadSignals = local.opts.ReadSignals; 
  opts.DispFinal = local.opts.DispFinal;
  opts.LogPlot = local.opts.LogPlot;
  opts.DispModulo = local.opts.DispModulo;
  opts.SaveVariables = local.opts.SaveVariables;
  opts.LogModulo = local.opts.LogModulo;
  opts.LogTime = local.opts.LogTime;
  clear local; % otherwise local would be overwritten during load
end
  
%--------------------------------------------------------------
% Evaluate options
stopFitness = myeval(opts.StopFitness); 
stopMaxFunEvals = myeval(opts.MaxFunEvals);  
stopMaxIter = myeval(opts.MaxIter);  
stopFunEvals = myeval(opts.StopFunEvals);  
stopIter = myeval(opts.StopIter);  
stopTolX = myeval(opts.TolX);
stopTolUpX = myeval(opts.TolUpX);
stopTolFun = myeval(opts.TolFun);
stopTolHistFun = myeval(opts.TolHistFun);
stopOnStagnation = myevalbool(opts.StopOnStagnation); 
stopOnWarnings = myevalbool(opts.StopOnWarnings); 
flgreadsignals = myevalbool(opts.ReadSignals);
flgWarnOnEqualFunctionValues = myevalbool(opts.WarnOnEqualFunctionValues);
flgEvalParallel = myevalbool(opts.EvalParallel);
stopOnEqualFunctionValues = myeval(opts.StopOnEqualFunctionValues);
arrEqualFunvals = zeros(1,10+N);
flgDiagonalOnly = myeval(opts.DiagonalOnly); 
flgActiveCMA = myeval(opts.CMA.active); 
noiseHandling = myevalbool(opts.Noise.on);
noiseMinMaxEvals = myeval(opts.Noise.minmaxevals);
noiseAlphaEvals = myeval(opts.Noise.alphaevals);
noiseCallback = myeval(opts.Noise.callback); 
flgdisplay = myevalbool(opts.DispFinal);
flgplotting = myevalbool(opts.LogPlot);
verbosemodulo = myeval(opts.DispModulo);
flgscience = myevalbool(opts.Science);
flgsaving = [];
strsaving = [];
if strfind(opts.SaveVariables, '-v6') 
  i = strfind(opts.SaveVariables, '%');
  if isempty(i) || i == 0 || strfind(opts.SaveVariables, '-v6') < i
    strsaving = '-v6';
    flgsaving = 1;
    flgsavingfinal = 1;
  end
end
if strncmp('final', opts.SaveVariables, 5)
  flgsaving = 0;
  flgsavingfinal = 1;
end
if isempty(flgsaving)
  flgsaving = myevalbool(opts.SaveVariables);
  flgsavingfinal = flgsaving;
end
savemodulo = myeval(opts.LogModulo);
savetime = myeval(opts.LogTime);

i = strfind(opts.LogFilenamePrefix, ' '); % remove everything after white space
if ~isempty(i)
  opts.LogFilenamePrefix = opts.LogFilenamePrefix(1:i(1)-1);
end

% TODO here silent option? set disp, save and log options to 0 

%--------------------------------------------------------------

if (isfinite(stopFunEvals) || isfinite(stopIter)) && ~flgsaving
  warning('To resume later the saving option needs to be set');
end


% Do more checking and initialization 
if flgresume % resume is on
  time.t0 = clock;
  if flgdisplay
    disp(['  resumed from ' opts.SaveFilename ]); 
  end
  if counteval >= stopMaxFunEvals 
    error(['MaxFunEvals exceeded, use StopFunEvals as stopping ' ...
	  'criterion before resume']);
  end
  if countiter >= stopMaxIter 
    error(['MaxIter exceeded, use StopIter as stopping criterion ' ...
	  'before resume']);
  end
  
else % flgresume
  % xmean = mean(myeval(xstart), 2); % evaluate xstart again, because of irun
  maxdx = myeval(opts.DiffMaxChange); % maximal sensible variable change
  mindx = myeval(opts.DiffMinChange); % minimal sensible variable change 
				      % can both also be defined as Nx1 vectors
  lbounds = myeval(opts.LBounds);		     
  ubounds = myeval(opts.UBounds);
  if length(lbounds) == 1
    lbounds = repmat(lbounds, N, 1);
  end
  if length(ubounds) == 1
    ubounds = repmat(ubounds, N, 1);
  end
  if isempty(insigma) % last chance to set insigma
    if all(lbounds > -Inf) && all(ubounds < Inf)
      if any(lbounds>=ubounds)
	error('upper bound must be greater than lower bound');
      end
      insigma = 0.3*(ubounds-lbounds);
      stopTolX = myeval(opts.TolX);  % reevaluate these
      stopTolUpX = myeval(opts.TolUpX);
    else
      error(['Initial step sizes (SIGMA) not determined']);
    end
  end

  % Check all vector sizes
  if size(xmean, 2) > 1 || size(xmean,1) ~= N
    error(['intial search point should be a column vector of size ' ...
	   num2str(N)]);
  elseif ~(all(size(insigma) == [1 1]) || all(size(insigma) == [N 1]))
    error(['input parameter SIGMA should be (or eval to) a scalar '...
	   'or a column vector of size ' num2str(N)] );
  elseif size(stopTolX, 2) > 1 || ~ismember(size(stopTolX, 1), [1 N])
    error(['option TolX should be (or eval to) a scalar '...
	   'or a column vector of size ' num2str(N)] );
  elseif size(stopTolUpX, 2) > 1 || ~ismember(size(stopTolUpX, 1), [1 N])
    error(['option TolUpX should be (or eval to) a scalar '...
	   'or a column vector of size ' num2str(N)] );
  elseif size(maxdx, 2) > 1 || ~ismember(size(maxdx, 1), [1 N])
    error(['option DiffMaxChange should be (or eval to) a scalar '...
	   'or a column vector of size ' num2str(N)] );
  elseif size(mindx, 2) > 1 || ~ismember(size(mindx, 1), [1 N])
    error(['option DiffMinChange should be (or eval to) a scalar '...
	   'or a column vector of size ' num2str(N)] );
  elseif size(lbounds, 2) > 1 || ~ismember(size(lbounds, 1), [1 N])
    error(['option lbounds should be (or eval to) a scalar '...
	   'or a column vector of size ' num2str(N)] );
  elseif size(ubounds, 2) > 1 || ~ismember(size(ubounds, 1), [1 N])
    error(['option ubounds should be (or eval to) a scalar '...
	   'or a column vector of size ' num2str(N)] );
  end
  
  % Initialize dynamic internal state parameters
  if any(insigma <= 0) 
    error(['Initial search volume (SIGMA) must be greater than zero']);
  end
  if max(insigma)/min(insigma) > 1e6
    error(['Initial search volume (SIGMA) badly conditioned']);
  end
  sigma = max(insigma);              % overall standard deviation
  pc = zeros(N,1); ps = zeros(N,1);  % evolution paths for C and sigma

  if length(insigma) == 1
    insigma = insigma * ones(N,1) ;
  end
  diagD = insigma/max(insigma);      % diagonal matrix D defines the scaling
  diagC = diagD.^2; 
  if flgDiagonalOnly ~= 1            % use at some point full covariance matrix
    B = eye(N,N);                      % B defines the coordinate system
    BD = B.*repmat(diagD',N,1);        % B*D for speed up only
    C = diag(diagC);                   % covariance matrix == BD*(BD)'
  end
  if flgDiagonalOnly
    B = 1; 
  end

  fitness.hist=NaN*ones(1,10+ceil(3*10*N/lambda)); % history of fitness values
  fitness.histsel=NaN*ones(1,10+ceil(3*10*N/lambda)); % history of fitness values
  fitness.histbest=[]; % history of fitness values
  fitness.histmedian=[]; % history of fitness values

  % Initialize boundary handling
  bnd.isactive = any(lbounds > -Inf) || any(ubounds < Inf); 
  if bnd.isactive
    if any(lbounds>ubounds)
      error('lower bound found to be greater than upper bound');
    end
    [xmean ti] = xintobounds(xmean, lbounds, ubounds); % just in case
    if any(ti)
      warning('Initial point was out of bounds, corrected');
    end
    bnd.weights = zeros(N,1);         % weights for bound penalty
    % scaling is better in axis-parallel case, worse in rotated
    bnd.flgscale = 0; % scaling will be omitted if zero 
    if bnd.flgscale ~= 0 
      bnd.scale = diagC/mean(diagC);
    else
      bnd.scale = ones(N,1);
    end
    
    idx = (lbounds > -Inf) | (ubounds < Inf);
    if length(idx) == 1
      idx = idx * ones(N,1);
    end
    bnd.isbounded = zeros(N,1);
    bnd.isbounded(find(idx)) = 1; 
    maxdx = min(maxdx, (ubounds - lbounds)/2);
    if any(sigma*sqrt(diagC) > maxdx)
      fac = min(maxdx ./ sqrt(diagC))/sigma;
      sigma = min(maxdx ./ sqrt(diagC));
      warning(['Initial SIGMA multiplied by the factor ' num2str(fac) ...
	       ', because it was larger than half' ...
	       ' of one of the boundary intervals']);
    end
    idx = (lbounds > -Inf) & (ubounds < Inf);
    dd = diagC;
    if any(5*sigma*sqrt(dd(idx)) < ubounds(idx) - lbounds(idx))
      warning(['Initial SIGMA is, in at least one coordinate, ' ...
	       'much smaller than the '...
	       'given boundary intervals. For reasonable ' ...
	       'global search performance SIGMA should be ' ...
	       'between 0.2 and 0.5 of the bounded interval in ' ...
	       'each coordinate. If all coordinates have ' ... 
	       'lower and upper bounds SIGMA can be empty']);
    end
    bnd.dfithist = 1;              % delta fit for setting weights
    bnd.aridxpoints = [];          % remember complete outside points
    bnd.arfitness = [];            % and their fitness
    bnd.validfitval = 0;
    bnd.iniphase = 1;
  end

  % ooo initial feval, for output only
  if irun == 1 
    out.solutions.bestever.x = xmean;
    out.solutions.bestever.f = Inf;  % for simpler comparison below
    out.solutions.bestever.evals = counteval;
    bestever = out.solutions.bestever;
  end
  if myevalbool(opts.EvalInitialX)
    fitness.hist(1)=feval(fitfun, xmean, varargin{:}); 
    fitness.histsel(1)=fitness.hist(1);
    counteval = counteval + 1;
    if fitness.hist(1) < out.solutions.bestever.f 
	out.solutions.bestever.x = xmean;
	out.solutions.bestever.f = fitness.hist(1);
	out.solutions.bestever.evals = counteval;
	bestever = out.solutions.bestever;
    end
  else
    fitness.hist(1)=NaN; 
    fitness.histsel(1)=NaN; 
  end
    
  % initialize random number generator
% $$$   if ischar(opts.Seed)
% $$$     randn('state', eval(opts.Seed));     % random number generator state
% $$$   else
% $$$     randn('state', opts.Seed);
% $$$   end
  %qqq
%  load(opts.SaveFilename, 'startseed');
%  randn('state', startseed);
%  disp(['SEED RELOADED FROM ' opts.SaveFilename]);
%  startseed = randn('state');         % for retrieving in saved variables

  % Initialize further constants
  chiN=N^0.5*(1-1/(4*N)+1/(21*N^2));  % expectation of 
				      %   ||N(0,I)|| == norm(randn(N,1))
  
  countiter = 0;
  % Initialize records and output
  if irun == 1
    time.t0 = clock;
    
    % TODO: keep also median solution? 
    out.evals = counteval;  % should be first entry
    out.stopflag = {};

    outiter = 0;

    % Write headers to output data files 
    filenameprefix = opts.LogFilenamePrefix; 
    if savemodulo && savetime
      filenames = {};
      filenames(end+1) = {'axlen'};
      filenames(end+1) = {'fit'};
      filenames(end+1) = {'stddev'};
      filenames(end+1) = {'xmean'};
      filenames(end+1) = {'xrecentbest'};
      str = [' (startseed=' num2str(startseed(2)) ...
             ', ' num2str(clock, '%d/%02d/%d %d:%d:%2.2f') ')'];
      for namecell = filenames(:)'
        name = namecell{:};

	[fid, err] = fopen(['./' filenameprefix name '.dat'], 'w');
	if fid < 1 % err ~= 0 
	  warning(['could not open ' filenameprefix name '.dat']);
	  filenames(find(strcmp(filenames,name))) = [];
	else
%	  fprintf(fid, '%s\n', ...
%	      ['<CMAES-OUTPUT version="' cmaVersion '">']);
%	  fprintf(fid, ['  <NAME>' name '</NAME>\n']);
%	  fprintf(fid, ['  <DATE>' date() '</DATE>\n']);
%	  fprintf(fid, '  <PARAMETERS>\n');
%	  fprintf(fid, ['    dimension=' num2str(N) '\n']);
%	  fprintf(fid, '  </PARAMETERS>\n');
	  % different cases for DATA columns annotations here
%	  fprintf(fid, '  <DATA');
	  if strcmp(name, 'axlen')
	     fprintf(fid, ['%%  columns="iteration, evaluation, sigma, ' ...
		 'max axis length, min axis length, ' ...
		 'all principal axes lengths (sorted square roots ' ...
                  'of eigenvalues of C)"' str]);
	  elseif strcmp(name, 'fit')
	    fprintf(fid, ['%%  columns="iteration, evaluation, sigma, axis ratio, bestever,' ...
		' best, median, worst fitness function value,' ...
		' further objective values of best"' str]);
	  elseif strcmp(name, 'stddev')
	    fprintf(fid, ['%%  columns=["iteration, evaluation, sigma, void, void, ' ...
		'stds==sigma*sqrt(diag(C))"' str]);
	  elseif strcmp(name, 'xmean')
	    fprintf(fid, ['%%  columns="iteration, evaluation, void, ' ...
                          'void, void, xmean"' str]);
	  elseif strcmp(name, 'xrecentbest')
	    fprintf(fid, ['%%  columns="iteration, evaluation, fitness, ' ...
                          'void, void, xrecentbest"' str]);
	  end
	  fprintf(fid, '\n'); % DATA
	  if strcmp(name, 'xmean')
	    fprintf(fid, '%ld %ld 0 0 0 ', 0, counteval); 
	    % fprintf(fid, '%ld %ld 0 0 %e ', countiter, counteval, fmean); 
%qqq	    fprintf(fid, msprintf('%e ', genophenotransform(out.genopheno, xmean)) + '\n'); 
	    fprintf(fid, '%e ', xmean);
            fprintf(fid, '\n'); 
	  end
	  fclose(fid); 
          clear fid; % preventing 
	end
      end % for files
    end % savemodulo
  end % irun == 1
  
end % else flgresume 

% -------------------- Generation Loop --------------------------------
stopflag = {};
while isempty(stopflag)
  % set internal parameters
  if countiter == 0 || lambda ~= lambda_last
    if countiter > 0 && floor(log10(lambda)) ~= floor(log10(lambda_last)) ...
          && flgdisplay
      disp(['  lambda = ' num2str(lambda)]);
      lambda_hist(:,end+1) = [countiter+1; lambda];
    else
      lambda_hist = [countiter+1; lambda]; 
    end
    lambda_last = lambda;
    % Strategy internal parameter setting: Selection  
    mu = myeval(opts.ParentNumber); % number of parents/points for recombination
    if strncmp(lower(opts.RecombinationWeights), 'equal', 3)
      weights = ones(mu,1); % (mu_I,lambda)-CMA-ES
    elseif strncmp(lower(opts.RecombinationWeights), 'linear', 3)
      weights = mu+0.5-(1:mu)'; 
    elseif strncmp(lower(opts.RecombinationWeights), 'superlinear', 3)
      weights = log(mu+0.5)-log(1:mu)'; % muXone array for weighted recombination
                                        % qqq mu can be non-integer and
                                        % should become ceil(mu-0.5) (minor correction)
    else
      error(['Recombination weights to be "' opts.RecombinationWeights ...
             '" is not implemented']);
    end
    mueff=sum(weights)^2/sum(weights.^2); % variance-effective size of mu
    weights = weights/sum(weights);     % normalize recombination weights array
    if mueff == lambda
      error(['Combination of values for PopSize, ParentNumber and ' ...
             ' and RecombinationWeights is not reasonable']);
    end
    
    % Strategy internal parameter setting: Adaptation
    cc = myeval(opts.CMA.ccum); % time constant for cumulation for covariance matrix
    cs = myeval(opts.CMA.cs); 

    % old way TODO: remove this at some point
    % mucov = mueff;   % size of mu used for calculating learning rate ccov
    % ccov = (1/mucov) * 2/(N+1.41)^2 ... % learning rate for covariance matrix
    %        + (1-1/mucov) * min(1,(2*mucov-1)/((N+2)^2+mucov)); 

    % new way
    if myevalbool(opts.CMA.on) 
      ccov1 = myeval(opts.CMA.ccov1); 
      ccovmu = min(1-ccov1, myeval(opts.CMA.ccovmu));
    else
      ccov1 = 0;
      ccovmu = 0;
    end
    
    % flgDiagonalOnly = -lambda*4*1/ccov; % for ccov==1 it is not needed
    % 0 : C will never be diagonal anymore
    % 1 : C will always be diagonal
    % >1: C is diagonal for first iterations, set to 0 afterwards
    if flgDiagonalOnly < 1
      flgDiagonalOnly = 0; 
    end
    if flgDiagonalOnly
      ccov1_sep = min(1, ccov1 * (N+1.5) / 3); 
      ccovmu_sep = min(1-ccov1_sep, ccovmu * (N+1.5) / 3); 
    elseif N > 98 && flgdisplay && countiter == 0
      disp('consider option DiagonalOnly for high-dimensional problems');
    end

    % ||ps|| is close to sqrt(mueff/N) for mueff large on linear fitness
    %damps = ... % damping for step size control, usually close to one 
    %    (1 + 2*max(0,sqrt((mueff-1)/(N+1))-1)) ... % limit sigma increase
    %    * max(0.3, ... % reduce damps, if max. iteration number is small
    %          1 - N/min(stopMaxIter,stopMaxFunEvals/lambda)) + cs; 
    damps = myeval(opts.CMA.damps); 
    if noiseHandling
      noiseReevals = min(myeval(opts.Noise.reevals), lambda); 
      noiseAlpha = myeval(opts.Noise.alphasigma); 
      noiseEpsilon = myeval(opts.Noise.epsilon); 
      noiseTheta = myeval(opts.Noise.theta); 
      noisecum = myeval(opts.Noise.cum);
      noiseCutOff = myeval(opts.Noise.cutoff);  % arguably of minor relevance
    else
      noiseReevals = 0; % more convenient in later coding
    end

    %qqq hacking of a different parameter setting, e.g. for ccov or damps,
    %  can be done here, but is not necessary anymore, see opts.CMA. 
    % ccov1 = 0.0*ccov1; disp(['CAVE: ccov1=' num2str(ccov1)]);
    % ccovmu = 0.0*ccovmu; disp(['CAVE: ccovmu=' num2str(ccovmu)]);
    % damps = inf*damps; disp(['CAVE: damps=' num2str(damps)]);
    % cc = 1; disp(['CAVE: cc=' num2str(cc)]);

  end    

  % Display initial message
  if countiter == 0 && flgdisplay 
    if mu == 1
      strw = '100';
    elseif mu < 8
      strw = [sprintf('%.0f', 100*weights(1)) ... 
              sprintf(' %.0f', 100*weights(2:end)')];
    else
      strw = [sprintf('%.2g ', 100*weights(1:2)') ...
              sprintf('%.2g', 100*weights(3)') '...' ...
              sprintf(' %.2g', 100*weights(end-1:end)') ']%, '];      
    end
    if irun > 1
      strrun = [', run ' num2str(irun)];
    else
      strrun = '';
    end
    disp(['  n=' num2str(N) ': (' num2str(mu) ',' ...
          num2str(lambda) ')-CMA-ES(w=[' ...
          strw ']%, ' ...
          'mu_eff=' num2str(mueff,'%.1f') ...
          ') on function ' ...
          (fitfun) strrun]);
    if flgDiagonalOnly == 1
      disp('    C is diagonal');
    elseif flgDiagonalOnly
      disp(['    C is diagonal for ' num2str(floor(flgDiagonalOnly)) ' iterations']);
    end
  end

  flush;

  countiter = countiter + 1; 

  % Generate and evaluate lambda offspring
 
  fitness.raw = repmat(NaN, 1, lambda + noiseReevals);

  % parallel evaluation
  if flgEvalParallel
      arz = randn(N,lambda);

      if ~flgDiagonalOnly
        arx = repmat(xmean, 1, lambda) + sigma * (BD * arz); % Eq. (1)
      else
        arx = repmat(xmean, 1, lambda) + repmat(sigma * diagD, 1, lambda) .* arz; 
      end

      if noiseHandling 
        if noiseEpsilon == 0
          arx = [arx arx(:,1:noiseReevals)]; 
        elseif flgDiagonalOnly
          arx = [arx arx(:,1:noiseReevals) + ...
                 repmat(noiseEpsilon * sigma * diagD, 1, noiseReevals) ...
                 .* randn(N,noiseReevals)]; 
        else 
          arx = [arx arx(:,1:noiseReevals) + ...
                 noiseEpsilon * sigma * ...
                 (BD * randn(N,noiseReevals))]; 
        end
      end

      % You may handle constraints here. You may either resample
      % arz(:,k) and/or multiply it with a factor between -1 and 1
      % (the latter will decrease the overall step size) and
      % recalculate arx accordingly. Do not change arx or arz in any
      % other way.
 
      if ~bnd.isactive
        arxvalid = arx;
      else
        arxvalid = xintobounds(arx, lbounds, ubounds);
      end
      % You may handle constraints here.  You may copy and alter
      % (columns of) arxvalid(:,k) only for the evaluation of the
      % fitness function. arx and arxvalid should not be changed.
      fitness.raw = feval(fitfun, arxvalid, varargin{:}); 
      countevalNaN = countevalNaN + sum(isnan(fitness.raw));
      counteval = counteval + sum(~isnan(fitness.raw)); 
  end

  % non-parallel evaluation and remaining NaN-values
  % set also the reevaluated solution to NaN
  fitness.raw(lambda + find(isnan(fitness.raw(1:noiseReevals)))) = NaN;  
  for k=find(isnan(fitness.raw)), 
    % fitness.raw(k) = NaN; 
    tries = 0;
    % Resample, until fitness is not NaN
    while isnan(fitness.raw(k))
      if k <= lambda  % regular samples (not the re-evaluation-samples)
        arz(:,k) = randn(N,1); % (re)sample

        if flgDiagonalOnly  
          arx(:,k) = xmean + sigma * diagD .* arz(:,k);              % Eq. (1)
        else
          arx(:,k) = xmean + sigma * (BD * arz(:,k));                % Eq. (1)
        end
      else % re-evaluation solution with index > lambda
        if flgDiagonalOnly  
          arx(:,k) = arx(:,k-lambda) + (noiseEpsilon * sigma) * diagD .* randn(N,1);
        else
          arx(:,k) = arx(:,k-lambda) + (noiseEpsilon * sigma) * (BD * randn(N,1));
        end
      end
      
      % You may handle constraints here. You may either resample
      % arz(:,k) and/or multiply it with a factor between -1 and 1
      % (the latter will decrease the overall step size) and
      % recalculate arx accordingly. Do not change arx or arz in any
      % other way.
 
      if ~bnd.isactive
        arxvalid(:,k) = arx(:,k);
      else
        arxvalid(:,k) = xintobounds(arx(:,k), lbounds, ubounds);
      end
      % You may handle constraints here.  You may copy and alter
      % (columns of) arxvalid(:,k) only for the evaluation of the
      % fitness function. arx should not be changed.
      fitness.raw(k) = feval(fitfun, arxvalid(:,k), varargin{:}); 
      tries = tries + 1;
      if isnan(fitness.raw(k))
	countevalNaN = countevalNaN + 1;
      end
      if mod(tries, 100) == 0
	warning([num2str(tries) ...
                 ' NaN objective function values at evaluation ' ...
                 num2str(counteval)]);
      end
    end
    counteval = counteval + 1; % retries due to NaN are not counted
  end

  fitness.sel = fitness.raw; 

  % ----- handle boundaries -----
  if 1 < 3 && bnd.isactive
    % Get delta fitness values
    val = myprctile(fitness.raw, [25 75]);
    % more precise would be exp(mean(log(diagC)))
    val = (val(2) - val(1)) / N / mean(diagC) / sigma^2;
    %val = (myprctile(fitness.raw, 75) - myprctile(fitness.raw, 25)) ...
    %    / N / mean(diagC) / sigma^2;
    % Catch non-sensible values 
    if ~isfinite(val)
      warning('Non-finite fitness range');
      val = max(bnd.dfithist);  
    elseif val == 0 % happens if all points are out of bounds
      val = min(bnd.dfithist(bnd.dfithist>0));  % seems not to make sense, given all solutions are out of bounds
    elseif bnd.validfitval == 0 % flag that first sensible val was found
      bnd.dfithist = [];
      bnd.validfitval = 1;
    end

    % Store delta fitness values
    if length(bnd.dfithist) < 20+(3*N)/lambda
      bnd.dfithist = [bnd.dfithist val];
    else
      bnd.dfithist = [bnd.dfithist(2:end) val];
    end

    [tx ti]  = xintobounds(xmean, lbounds, ubounds);

    % Set initial weights
    if bnd.iniphase 
      if any(ti) 
        bnd.weights(find(bnd.isbounded)) = 2.0002 * median(bnd.dfithist);
	if bnd.flgscale == 0 % scale only initial weights then
	  dd = diagC; 
	  idx = find(bnd.isbounded); 
	  dd = dd(idx) / mean(dd); %  remove mean scaling
	  bnd.weights(idx) = bnd.weights(idx) ./ dd; 
	end
	if bnd.validfitval && countiter > 2
          bnd.iniphase = 0;
	end
      end
    end

    % Increase weights
    if  1 < 3 && any(ti) % any coordinate of xmean out of bounds
      % judge distance of xmean to boundary
      tx = xmean - tx;
      idx = (ti ~= 0 & abs(tx) > 3*max(1,sqrt(N)/mueff) ... 
	     * sigma*sqrt(diagC)) ;
      % only increase if xmean is moving away
      idx = idx & (sign(tx) == sign(xmean - xold));
      if ~isempty(idx) % increase
        % the factor became 1.2 instead of 1.1, because
        % changed from max to min in version 3.52
        bnd.weights(idx) = 1.2^(min(1, mueff/10/N)) * bnd.weights(idx); 
      end
    end

    % Calculate scaling biased to unity, product is one
    if bnd.flgscale ~= 0 
      bnd.scale = exp(0.9*(log(diagC)-mean(log(diagC)))); 
    end

    % Assigned penalized fitness
    bnd.arpenalty = (bnd.weights ./ bnd.scale)' * (arxvalid - arx).^2; 

    fitness.sel = fitness.raw + bnd.arpenalty;

  end % handle boundaries
  % ----- end handle boundaries -----
  
  % compute noise measurement and reduce fitness arrays to size lambda
  if noiseHandling 
    [noiseS] = local_noisemeasurement(fitness.sel(1:lambda), ...
                                      fitness.sel(lambda+(1:noiseReevals)), ...
                                      noiseReevals, noiseTheta, noiseCutOff); 
    if countiter == 1 % TODO: improve this very rude way of initialization
      noiseSS = 0;
      noiseN = 0;  % counter for mean
    end
    noiseSS = noiseSS + noisecum * (noiseS - noiseSS); 

    % noise-handling could be done here, but the original sigma is still needed
    % disp([noiseS noiseSS noisecum])

    fitness.rawar12 = fitness.raw; % just documentary
    fitness.selar12 = fitness.sel; % just documentary
    % qqq refine fitness based on both values
    if 11 < 3  % TODO: in case of outliers this mean is counterproductive 
               % median out of three would be ok 
      fitness.raw(1:noiseReevals) = ... % not so raw anymore
          (fitness.raw(1:noiseReevals) + fitness.raw(lambda+(1:noiseReevals))) / 2; 
      fitness.sel(1:noiseReevals) = ... 
          (fitness.sel(1:noiseReevals) + fitness.sel(lambda+(1:noiseReevals))) / 2; 
    end      
    fitness.raw = fitness.raw(1:lambda); 
    fitness.sel = fitness.sel(1:lambda); 
  end
  
  % Sort by fitness 
  [fitness.raw, fitness.idx] = sort(fitness.raw); 
  [fitness.sel, fitness.idxsel] = sort(fitness.sel);  % minimization
  fitness.hist(2:end) = fitness.hist(1:end-1);    % record short history of
  fitness.hist(1) = fitness.raw(1);               % best fitness values
  if length(fitness.histbest) < 120+ceil(30*N/lambda) || ...
       (mod(countiter, 5) == 0  && length(fitness.histbest) < 2e4)  % 20 percent of 1e5 gen.
    fitness.histbest = [fitness.raw(1) fitness.histbest];          % best fitness values
    fitness.histmedian = [median(fitness.raw) fitness.histmedian]; % median fitness values
  else
    fitness.histbest(2:end) = fitness.histbest(1:end-1); 
    fitness.histmedian(2:end) = fitness.histmedian(1:end-1); 
    fitness.histbest(1) = fitness.raw(1);           % best fitness values
    fitness.histmedian(1) = median(fitness.raw);    % median fitness values
  end
  fitness.histsel(2:end) = fitness.histsel(1:end-1); % record short history of
  fitness.histsel(1) = fitness.sel(1);               % best sel fitness values

  % Calculate new xmean, this is selection and recombination 
  xold = xmean; % for speed up of Eq. (2) and (3)
  xmean = arx(:,fitness.idxsel(1:mu))*weights; 
  zmean = arz(:,fitness.idxsel(1:mu))*weights;%==D^-1*B'*(xmean-xold)/sigma
  if mu == 1
    fmean = fitness.sel(1);
  else
    fmean = NaN; % [] does not work in the latter assignment
    % fmean = feval(fitfun, xintobounds(xmean, lbounds, ubounds), varargin{:});
    % counteval = counteval + 1;
  end
  
  % Cumulation: update evolution paths
  ps = (1-cs)*ps + sqrt(cs*(2-cs)*mueff) * (B*zmean);          % Eq. (4)
  hsig = norm(ps)/sqrt(1-(1-cs)^(2*countiter))/chiN < 1.4 + 2/(N+1);
  if flg_future_setting
    hsig = sum(ps.^2) / (1-(1-cs)^(2*countiter)) / N < 2 + 4/(N+1); % just simplified
  end
%  hsig = norm(ps)/sqrt(1-(1-cs)^(2*countiter))/chiN < 1.4 + 2/(N+1);
%  hsig = norm(ps)/sqrt(1-(1-cs)^(2*countiter))/chiN < 1.5 + 1/(N-0.5);
%  hsig = norm(ps) < 1.5 * sqrt(N);
%  hsig = 1;

  pc = (1-cc)*pc ...
        + hsig*(sqrt(cc*(2-cc)*mueff)/sigma) * (xmean-xold);     % Eq. (2)
  if hsig == 0
    % disp([num2str(countiter) ' ' num2str(counteval) ' pc update stalled']);
  end

  % Adapt covariance matrix
  neg.ccov = 0;  % TODO: move parameter setting upwards at some point
  if ccov1 + ccovmu > 0                                                    % Eq. (3)
    if flgDiagonalOnly % internal linear(?) complexity
      diagC = (1-ccov1_sep-ccovmu_sep+(1-hsig)*ccov1_sep*cc*(2-cc)) * diagC ... % regard old matrix 
          + ccov1_sep * pc.^2 ...               % plus rank one update
          + ccovmu_sep ...                      % plus rank mu update
            * (diagC .* (arz(:,fitness.idxsel(1:mu)).^2 * weights));
%             * (repmat(diagC,1,mu) .* arz(:,fitness.idxsel(1:mu)).^2 * weights);
      diagD = sqrt(diagC); % replaces eig(C)
    else
      arpos = (arx(:,fitness.idxsel(1:mu))-repmat(xold,1,mu)) / sigma;
      % "active" CMA update: negative update, in case controlling pos. definiteness 
      if flgActiveCMA > 0
        % set parameters
        neg.mu = mu;  
        neg.mueff = mueff;
        if flgActiveCMA > 10  % flat weights with mu=lambda/2
          neg.mu = floor(lambda/2);  
          neg.mueff = neg.mu;
        end
        % neg.mu = ceil(min([N, lambda/4, mueff]));  neg.mueff = mu; % i.e. neg.mu <= N 
        % Parameter study: in 3-D lambda=50,100, 10-D lambda=200,400, 30-D lambda=1000,2000 a 
        % three times larger neg.ccov does not work. 
        %   increasing all ccov rates three times does work (probably because of the factor (1-ccovmu))
        %   in 30-D to looks fine

        neg.ccov = (1 - ccovmu) * 0.25 * neg.mueff / ((N+2)^1.5 + 2*neg.mueff);
        neg.minresidualvariance = 0.66;  % keep at least 0.66 in all directions, small popsize are most critical
        neg.alphaold = 0.5;  % where to make up for the variance loss, 0.5 means no idea what to do
                             % 1 is slightly more robust and gives a better "guaranty" for pos. def., 
                             % but does it make sense from the learning perspective for large ccovmu? 

        neg.ccovfinal = neg.ccov;

        % prepare vectors, compute negative updating matrix Cneg and checking matrix Ccheck
        arzneg = arz(:,fitness.idxsel(lambda:-1:lambda - neg.mu + 1));
        % i-th longest becomes i-th shortest
        % TODO: this is not in compliance with the paper Hansen&Ros2010, 
        %       where simply arnorms = arnorms(end:-1:1) ? 
        [arnorms idxnorms] = sort(sqrt(sum(arzneg.^2, 1))); 
        [ignore idxnorms] = sort(idxnorms);  % inverse index 
        arnormfacs = arnorms(end:-1:1) ./ arnorms; 
        % arnormfacs = arnorms(randperm(neg.mu)) ./ arnorms;
        arnorms = arnorms(end:-1:1); % for the record
        if flgActiveCMA < 20
          arzneg = arzneg .* repmat(arnormfacs(idxnorms), N, 1);  % E x*x' is N
          % arzneg = sqrt(N) * arzneg ./ repmat(sqrt(sum(arzneg.^2, 1)), N, 1);  % E x*x' is N
        end
        if flgActiveCMA < 10 && neg.mu == mu  % weighted sum
          if mod(flgActiveCMA, 10) == 1 % TODO: prevent this with a less tight but more efficient check (see below) 
            Ccheck = arzneg * diag(weights) * arzneg';  % in order to check the largest EV
          end
          artmp = BD * arzneg;
          Cneg = artmp * diag(weights) * artmp';
        else  % simple sum
          if mod(flgActiveCMA, 10) == 1
            Ccheck = (1/neg.mu) * arzneg*arzneg';  % in order to check largest EV
          end
          artmp = BD * arzneg;
          Cneg = (1/neg.mu) * artmp*artmp';

        end

        % check pos.def. and set learning rate neg.ccov accordingly, 
        % this check makes the original choice of neg.ccov extremly failsafe 
        % still assuming C == BD*BD', which is only approxim. correct 
        if mod(flgActiveCMA, 10) == 1 && 1 - neg.ccov * arnorms(idxnorms).^2 * weights < neg.minresidualvariance
          % TODO: the simple and cheap way would be to set
          %    fac = 1 - ccovmu - ccov1 OR 1 - mueff/lambda and
          %    neg.ccov = fac*(1 - neg.minresidualvariance) / (arnorms(idxnorms).^2 * weights)
          % this is the more sophisticated way: 
          % maxeigenval = eigs(arzneg * arzneg', 1, 'lm', eigsopts);  % not faster
          maxeigenval = max(eig(Ccheck));  % norm is much slower, because (norm()==max(svd())
          %disp([countiter log10([neg.ccov, maxeigenval, arnorms(idxnorms).^2 * weights, max(arnorms)^2]), ...
           %          neg.ccov * arnorms(idxnorms).^2 * weights])
          % pause
          % remove less than ??34*(1-cmu)%?? of variance in any direction
          %     1-ccovmu is the variance left from the old C
          neg.ccovfinal = min(neg.ccov, (1-ccovmu)*(1-neg.minresidualvariance)/maxeigenval); 
                                        % -ccov1 removed to avoid error message??
          if neg.ccovfinal < neg.ccov
            disp(['active CMA at iteration ' num2str(countiter) ...
                 ': max EV ==', num2str([maxeigenval, neg.ccov, neg.ccovfinal])]);
          end
        end
        % xmean = xold;  % the distribution does not degenerate!? 
        % update C
        C = (1-ccov1-ccovmu+neg.alphaold*neg.ccovfinal+(1-hsig)*ccov1*cc*(2-cc)) * C ... % regard old matrix 
            + ccov1 * pc*pc' ...     % plus rank one update
            + (ccovmu + (1-neg.alphaold)*neg.ccovfinal) ...  % plus rank mu update
              * arpos * (repmat(weights,1,N) .* arpos') ...
              - neg.ccovfinal * Cneg;                        % minus rank mu update
      else  % no active (negative) update
        C = (1-ccov1-ccovmu+(1-hsig)*ccov1*cc*(2-cc)) * C ... % regard old matrix 
            + ccov1 * pc*pc' ...     % plus rank one update
            + ccovmu ...             % plus rank mu update
              * arpos * (repmat(weights,1,N) .* arpos');
        % is now O(mu*N^2 + mu*N), was O(mu*N^2 + mu^2*N) when using diag(weights)
        %   for mu=30*N it is now 10 times faster, overall 3 times faster
      end
      diagC = diag(C);
    end
  end
  
  % the following is de-preciated and will be removed in future
  % better setting for cc makes this hack obsolete
  if 11 < 2 && ~flgscience  
    % remove momentum in ps, if ps is large and fitness is getting worse.
    % this should rarely happen. 
    % this might very well be counterproductive in dynamic environments
    if sum(ps.^2)/N > 1.5 + 10*(2/N)^.5 && ...
        fitness.histsel(1) > max(fitness.histsel(2:3))
      ps = ps * sqrt(N*(1+max(0,log(sum(ps.^2)/N))) / sum(ps.^2));
      if flgdisplay
        disp(['Momentum in ps removed at [niter neval]=' ...
              num2str([countiter counteval]) ']']);
      end
    end
  end

  % Adapt sigma
  if flg_future_setting  % according to a suggestion from Dirk Arnold (2000)
    % exp(1) is still not reasonably small enough
    sigma = sigma * exp(min(1, (sum(ps.^2)/N - 1)/2 * cs/damps));            % Eq. (5)
  else
    % exp(1) is still not reasonably small enough
    sigma = sigma * exp(min(1, (sqrt(sum(ps.^2))/chiN - 1) * cs/damps));             % Eq. (5)
  end
  % disp([countiter norm(ps)/chiN]);
  
  if 11 < 3   % testing with optimal step-size
      if countiter == 1
          disp('*********** sigma set to const * ||x|| ******************');
      end
      sigma = 0.04 * mueff * sqrt(sum(xmean.^2)) / N; % 20D,lam=1000:25e3
      sigma = 0.3 * mueff * sqrt(sum(xmean.^2)) / N; % 20D,lam=(40,1000):17e3
                                                     %      75e3 with def (1.5)
                                                     %      35e3 with damps=0.25
  end
  if 11 < 3 
          if countiter == 1
              disp('*********** xmean set to const ******************');
          end
      xmean = ones(N,1);
  end
  
  % Update B and D from C

  if ~flgDiagonalOnly && (ccov1+ccovmu+neg.ccov) > 0 && mod(countiter, 1/(ccov1+ccovmu+neg.ccov)/N/10) < 1
    C=triu(C)+triu(C,1)'; % enforce symmetry to prevent complex numbers
    [B,tmp] = eig(C);     % eigen decomposition, B==normalized eigenvectors
                          % effort: approx. 15*N matrix-vector multiplications
    diagD = diag(tmp); 

    if any(~isfinite(diagD))
      clear idx; % prevents error under octave 
      save(['tmp' opts.SaveFilename]);
      error(['function eig returned non-finited eigenvalues, cond(C)=' ...
	     num2str(cond(C)) ]);
    end
    if any(any(~isfinite(B)))
      clear idx; % prevents error under octave
      save(['tmp' opts.SaveFilename]);
      error(['function eig returned non-finited eigenvectors, cond(C)=' ...
	     num2str(cond(C)) ]);
    end

    % limit condition of C to 1e14 + 1
    if min(diagD) <= 0
	if stopOnWarnings
	  stopflag(end+1) = {'warnconditioncov'};
	else
	  warning(['Iteration ' num2str(countiter) ...
		   ': Eigenvalue (smaller) zero']);
	  diagD(diagD<0) = 0;
	  tmp = max(diagD)/1e14;
	  C = C + tmp*eye(N,N); diagD = diagD + tmp*ones(N,1); 
	end
    end
    if max(diagD) > 1e14*min(diagD) 
	if stopOnWarnings
	  stopflag(end+1) = {'warnconditioncov'};
	else
	  warning(['Iteration ' num2str(countiter) ': condition of C ' ...
		   'at upper limit' ]);
	  tmp = max(diagD)/1e14 - min(diagD);
	  C = C + tmp*eye(N,N); diagD = diagD + tmp*ones(N,1); 
	end
    end

    diagC = diag(C); 
    diagD = sqrt(diagD); % D contains standard deviations now
    % diagD = diagD / prod(diagD)^(1/N);  C = C / prod(diagD)^(2/N);
    BD = B.*repmat(diagD',N,1); % O(n^2)
  end % if mod

  % Align/rescale order of magnitude of scales of sigma and C for nicer output
  % not a very usual case
  if 1 < 2 && sigma > 1e10*max(diagD)
    fac = sigma / max(diagD);
    sigma = sigma/fac;
    pc = fac * pc;
    diagD = fac * diagD; 
    if ~flgDiagonalOnly
      C = fac^2 * C; % disp(fac);
      BD = B.*repmat(diagD',N,1); % O(n^2), but repmat might be inefficient todo?
    end
    diagC = fac^2 * diagC; 
  end

  if flgDiagonalOnly > 1 && countiter > flgDiagonalOnly 
    % full covariance matrix from now on 
    flgDiagonalOnly = 0; 
    B = eye(N,N);
    BD = diag(diagD);
    C = diag(diagC); % is better, because correlations are spurious anyway
  end

  if noiseHandling 
   if countiter == 1  % assign firstvarargin for noise treatment e.g. as #reevaluations
     if ~isempty(varargin) && length(varargin{1}) == 1 && isnumeric(varargin{1})
       if irun == 1
         firstvarargin = varargin{1};
       else
         varargin{1} =  firstvarargin;  % reset varargin{1}
       end
     else
       firstvarargin = 0;
     end
   end
   if noiseSS < 0 && noiseMinMaxEvals(2) > noiseMinMaxEvals(1) && firstvarargin
     varargin{1} = max(noiseMinMaxEvals(1), varargin{1} / noiseAlphaEvals^(1/4));  % still experimental
   elseif noiseSS > 0
    if ~isempty(noiseCallback)  % to be removed? 
      res = feval(noiseCallback); % should also work without output argument!?
      if ~isempty(res) && res > 1 % TODO: decide for interface of callback
                                  %       also a dynamic popsize could be done here 
        sigma = sigma * noiseAlpha;
      end
    else
      if noiseMinMaxEvals(2) > noiseMinMaxEvals(1) && firstvarargin
        varargin{1} = min(noiseMinMaxEvals(2), varargin{1} * noiseAlphaEvals);
      end
    
      sigma = sigma * noiseAlpha; 
      % lambda = ceil(0.1 * sqrt(lambda) + lambda);
      % TODO: find smallest increase of lambda with log-linear
      %       convergence in iterations
    end
    % qqq experimental: take a mean to estimate the true optimum
    noiseN = noiseN + 1;
    if noiseN == 1
      noiseX = xmean; 
    else
      noiseX = noiseX + (3/noiseN) * (xmean - noiseX); 
    end
   end
  end

  % ----- numerical error management -----
  % Adjust maximal coordinate axis deviations
  if any(sigma*sqrt(diagC) > maxdx)
    sigma = min(maxdx ./ sqrt(diagC));
    %warning(['Iteration ' num2str(countiter) ': coordinate axis std ' ...
    %         'deviation at upper limit of ' num2str(maxdx)]);
    % stopflag(end+1) = {'maxcoorddev'};
  end
  % Adjust minimal coordinate axis deviations
  if any(sigma*sqrt(diagC) < mindx)
    sigma = max(mindx ./ sqrt(diagC)) * exp(0.05+cs/damps); 
    %warning(['Iteration ' num2str(countiter) ': coordinate axis std ' ...
    %         'deviation at lower limit of ' num2str(mindx)]);
    % stopflag(end+1) = {'mincoorddev'};;
  end
  % Adjust too low coordinate axis deviations
  if any(xmean == xmean + 0.2*sigma*sqrt(diagC)) 
    if stopOnWarnings
      stopflag(end+1) = {'warnnoeffectcoord'};
    else
      warning(['Iteration ' num2str(countiter) ': coordinate axis std ' ...
                'deviation too low' ]);
      if flgDiagonalOnly
        diagC = diagC + (ccov1_sep+ccovmu_sep) * (diagC .* ...
                                                  (xmean == xmean + 0.2*sigma*sqrt(diagC)));
      else
        C = C + (ccov1+ccovmu) * diag(diagC .* ...
                                      (xmean == xmean + 0.2*sigma*sqrt(diagC)));
      end
      sigma = sigma * exp(0.05+cs/damps); 
    end
  end
  % Adjust step size in case of (numerical) precision problem 
  if flgDiagonalOnly
    tmp = 0.1*sigma*diagD; 
  else
    tmp = 0.1*sigma*BD(:,1+floor(mod(countiter,N)));
  end
  if all(xmean == xmean + tmp)
    i = 1+floor(mod(countiter,N));
    if stopOnWarnings
	stopflag(end+1) = {'warnnoeffectaxis'};
    else
      warning(['Iteration ' num2str(countiter) ...
	       ': main axis standard deviation ' ...
	       num2str(sigma*diagD(i)) ' has no effect' ]);
	sigma = sigma * exp(0.2+cs/damps); 
    end
  end
  % Adjust step size in case of equal function values (flat fitness)
  % isequalfuncvalues = 0; 
  if fitness.sel(1) == fitness.sel(1+ceil(0.1+lambda/4))
    % isequalfuncvalues = 1; 
    if stopOnEqualFunctionValues
      arrEqualFunvals = [countiter arrEqualFunvals(1:end-1)];
      % stop if this happens in more than 33%
      if arrEqualFunvals(end) > countiter - 3 * length(arrEqualFunvals)
        stopflag(end+1) = {'equalfunvals'}; 
      end
    else
      if flgWarnOnEqualFunctionValues
        warning(['Iteration ' num2str(countiter) ...
		 ': equal function values f=' num2str(fitness.sel(1)) ...
		 ' at maximal main axis sigma ' ...
        num2str(sigma*max(diagD))]);
      end
      sigma = sigma * exp(0.2+cs/damps); 
    end
  end
  % Adjust step size in case of equal function values
  if countiter > 2 && myrange([fitness.hist fitness.sel(1)]) == 0  
    if stopOnWarnings
	stopflag(end+1) = {'warnequalfunvalhist'};
    else
      warning(['Iteration ' num2str(countiter) ...
	       ': equal function values in history at maximal main ' ...
	       'axis sigma ' num2str(sigma*max(diagD))]);
	sigma = sigma * exp(0.2+cs/damps); 
    end
  end
    
  % ----- end numerical error management -----
  
  % Keep overall best solution
  out.evals = counteval;
  out.solutions.evals = counteval;
  out.solutions.mean.x = xmean;
  out.solutions.mean.f = fmean;
  out.solutions.mean.evals = counteval;
  out.solutions.recentbest.x = arxvalid(:, fitness.idx(1));
  out.solutions.recentbest.f = fitness.raw(1);
  out.solutions.recentbest.evals = counteval + fitness.idx(1) - lambda;
  out.solutions.recentworst.x = arxvalid(:, fitness.idx(end));
  out.solutions.recentworst.f = fitness.raw(end);
  out.solutions.recentworst.evals = counteval + fitness.idx(end) - lambda;
  if fitness.hist(1) < out.solutions.bestever.f
    out.solutions.bestever.x = arxvalid(:, fitness.idx(1));
    out.solutions.bestever.f = fitness.hist(1);
    out.solutions.bestever.evals = counteval + fitness.idx(1) - lambda;
    bestever = out.solutions.bestever;
  end

  % Set stop flag
  if fitness.raw(1) <= stopFitness, stopflag(end+1) = {'fitness'}; end
  if counteval >= stopMaxFunEvals, stopflag(end+1) = {'maxfunevals'}; end
  if countiter >= stopMaxIter, stopflag(end+1) = {'maxiter'}; end
  if all(sigma*(max(abs(pc), sqrt(diagC))) < stopTolX) 
    stopflag(end+1) = {'tolx'};
  end
  if any(sigma*sqrt(diagC) > stopTolUpX) 
    stopflag(end+1) = {'tolupx'};
  end
  if sigma*max(diagD) == 0  % should never happen
    stopflag(end+1) = {'bug'};
  end
  if countiter > 2 && myrange([fitness.sel fitness.hist]) <= stopTolFun 
    stopflag(end+1) = {'tolfun'};
  end
  if countiter >= length(fitness.hist) && myrange(fitness.hist) <= stopTolHistFun 
    stopflag(end+1) = {'tolhistfun'};
  end
  l = floor(length(fitness.histbest)/3);
  if 1 < 2 && stopOnStagnation && ...  % leads sometimes early stop on ftablet, fcigtab
      countiter > N * (5+100/lambda) && ...  
      length(fitness.histbest) > 100 && ... 
      median(fitness.histmedian(1:l)) >= median(fitness.histmedian(end-l:end)) && ...
      median(fitness.histbest(1:l)) >= median(fitness.histbest(end-l:end))
    stopflag(end+1) = {'stagnation'};
  end

  if counteval >= stopFunEvals || countiter >= stopIter
    stopflag(end+1) = {'stoptoresume'};
    if length(stopflag) == 1 && flgsaving == 0
      error('To resume later the saving option needs to be set');
    end
  end
  % read stopping message from file signals.par 
  if flgreadsignals
    fid = fopen('./signals.par', 'rt');  % can be performance critical 
    while fid > 0
      strline = fgetl(fid); %fgets(fid, 300);
      if strline < 0 % fgets and fgetl returns -1 at end of file
        break;
      end
      % 'stop filename' sets stopflag to manual
      str = sscanf(strline, ' %s %s', 2);
      if strcmp(str, ['stop' opts.LogFilenamePrefix]) 
        stopflag(end+1) = {'manual'};
        break;
      end
      % 'skip filename run 3' skips a run, but not the last
      str = sscanf(strline, ' %s %s %s', 3);
      if strcmp(str, ['skip' opts.LogFilenamePrefix 'run'])
        i = strfind(strline, 'run');
        if irun == sscanf(strline(i+3:end), ' %d ', 1) && irun <= myeval(opts.Restarts)
          stopflag(end+1) = {'skipped'};
        end      
      end
    end % while, break 
    if fid > 0
      fclose(fid);
      clear fid; % prevents strange error under octave
    end
  end
  
  out.stopflag = stopflag;

  % ----- output generation -----
  if verbosemodulo > 0 && isfinite(verbosemodulo)
    if countiter == 1 || mod(countiter, 10*verbosemodulo) < 1 
      disp(['Iterat, #Fevals:   Function Value    (median,worst) ' ...
	    '|Axis Ratio|' ...
	    'idx:Min SD idx:Max SD']); 
    end
    if mod(countiter, verbosemodulo) < 1 ...
	  || (verbosemodulo > 0 && isfinite(verbosemodulo) && ...
	      (countiter < 3 || ~isempty(stopflag)))
      [minstd minstdidx] = min(sigma*sqrt(diagC));
      [maxstd maxstdidx] = max(sigma*sqrt(diagC));
      % format display nicely
      disp([repmat(' ',1,4-floor(log10(countiter))) ...
	    num2str(countiter) ' , ' ...
	    repmat(' ',1,5-floor(log10(counteval))) ...
	    num2str(counteval) ' : ' ...
            num2str(fitness.hist(1), '%.13e') ...
	    ' +(' num2str(median(fitness.raw)-fitness.hist(1), '%.0e ') ...
	    ',' num2str(max(fitness.raw)-fitness.hist(1), '%.0e ') ...
	    ') | ' ...
	    num2str(max(diagD)/min(diagD), '%4.2e') ' | ' ...
	    repmat(' ',1,1-floor(log10(minstdidx))) num2str(minstdidx) ':' ...
	    num2str(minstd, ' %.1e') ' ' ...
	    repmat(' ',1,1-floor(log10(maxstdidx))) num2str(maxstdidx) ':' ...
	    num2str(maxstd, ' %.1e')]);
    end
  end

  % measure time for recording data
  if countiter < 3 
    time.c = 0.05;
    time.nonoutput = 0;
    time.recording = 0;
    time.saving  = 0.15; % first saving after 3 seconds of 100 iterations
    time.plotting = 0;
  elseif countiter > 300
    % set backward horizon, must be long enough to cover infrequent plotting etc
    % time.c = min(1, time.nonoutput/3 + 1e-9); 
    time.c = max(1e-5, 0.1/sqrt(countiter)); % mean over all or 1e-5
  end
  % get average time per iteration
  time.t1 = clock;
  time.act = max(0,etime(time.t1, time.t0));
  time.nonoutput = (1-time.c) * time.nonoutput ...
      + time.c * time.act; 

  time.recording = (1-time.c) * time.recording;  % per iteration
  time.saving  = (1-time.c) * time.saving;
  time.plotting = (1-time.c) * time.plotting;
  
  % record output data, concerning time issues
  if savemodulo && savetime && (countiter < 1e2 || ~isempty(stopflag) || ...
	countiter >= outiter + savemodulo)
    outiter = countiter; 
      % Save output data to files  
      for namecell = filenames(:)'
        name = namecell{:};

	[fid, err] = fopen(['./' filenameprefix name '.dat'], 'a');
	if fid < 1 % err ~= 0 
	  warning(['could not open ' filenameprefix name '.dat']);
	else
	  if strcmp(name, 'axlen')
	    fprintf(fid, '%d %d %e %e %e ', countiter, counteval, sigma, ...
		max(diagD), min(diagD)); 
            fprintf(fid, '%e ', sort(diagD)); 
            fprintf(fid, '\n');
	  elseif strcmp(name, 'disp') % TODO
	  elseif strcmp(name, 'fit')
	    fprintf(fid, '%ld %ld %e %e %25.18e %25.18e %25.18e %25.18e', ...
                    countiter, counteval, sigma, max(diagD)/min(diagD), ...
                    out.solutions.bestever.f, ...
                    fitness.raw(1), median(fitness.raw), fitness.raw(end)); 
            if ~isempty(varargin) && length(varargin{1}) == 1 && isnumeric(varargin{1}) && varargin{1} ~= 0
              fprintf(fid, ' %f', varargin{1});
            end                    
	    fprintf(fid, '\n');
	  elseif strcmp(name, 'stddev')
	    fprintf(fid, '%ld %ld %e 0 0 ', countiter, counteval, sigma); 
	    fprintf(fid, '%e ', sigma*sqrt(diagC)); 
            fprintf(fid, '\n');
	  elseif strcmp(name, 'xmean')
	    if isnan(fmean)
	      fprintf(fid, '%ld %ld 0 0 0 ', countiter, counteval); 
	    else
	      fprintf(fid, '%ld %ld 0 0 %e ', countiter, counteval, fmean); 
	    end
	    fprintf(fid, '%e ', xmean); 
            fprintf(fid, '\n');
	  elseif strcmp(name, 'xrecentbest')
            % TODO: fitness is inconsistent with x-value
	    fprintf(fid, '%ld %ld %25.18e 0 0 ', countiter, counteval, fitness.raw(1)); 
	    fprintf(fid, '%e ', arx(:,fitness.idx(1))); 
            fprintf(fid, '\n');
	  end
	  fclose(fid); 
	end
      end

    % get average time for recording data
    time.t2 = clock;
    time.recording = time.recording + time.c * max(0,etime(time.t2, time.t1)); 
    
    % plot
    if flgplotting && countiter > 1
      if countiter == 2
        iterplotted = 0;
      end
      if ~isempty(stopflag) || ... 
        ((time.nonoutput+time.recording) * (countiter - iterplotted) > 1 && ...
          time.plotting < 0.05 * (time.nonoutput+time.recording))
        local_plotcmaesdat(324, filenameprefix);
        iterplotted = countiter;  
        %  outplot(out); % outplot defined below
        if time.plotting == 0  % disregard opening of the window
          time.plotting = time.nonoutput+time.recording;
        else
          time.plotting = time.plotting + time.c * max(0,etime(clock, time.t2)); 
        end
      end
    end
    if countiter > 100 + 20 && savemodulo && ...
          time.recording * countiter > 0.1 && ...  % absolute time larger 0.1 second
	  time.recording > savetime * (time.nonoutput+time.recording) / 100 
      savemodulo = floor(1.1 * savemodulo) + 1;
      % disp('++savemodulo'); %qqq
    end
  end % if output

  % save everything
  time.t3 = clock;
  if ~isempty(stopflag) || time.saving < 0.05 * time.nonoutput || countiter == 100
    xmin = arxvalid(:, fitness.idx(1));
    fmin = fitness.raw(1);
    if flgsaving && countiter > 2
      clear idx; % prevents error under octave
      % -v6 : non-compressed non-unicode for version 6 and earlier
      if ~isempty(strsaving) && ~isoctave
	save('-mat', strsaving, opts.SaveFilename); % for inspection and possible restart	
      else 
	save('-mat', opts.SaveFilename); % for inspection and possible restart
      end
      time.saving = time.saving + time.c * max(0,etime(clock, time.t3)); 
    end
  end
  time.t0 = clock;

  % ----- end output generation -----

end % while, end generation loop

% -------------------- Final Procedures -------------------------------

% Evaluate xmean and return best recent point in xmin
fmin = fitness.raw(1);
xmin = arxvalid(:, fitness.idx(1)); % Return best point of last generation.
if length(stopflag) > sum(strcmp(stopflag, 'stoptoresume')) % final stopping
  out.solutions.mean.f = ...
      feval(fitfun, xintobounds(xmean, lbounds, ubounds), varargin{:});
  counteval = counteval + 1;
  out.solutions.mean.evals = counteval;
  if out.solutions.mean.f < fitness.raw(1)
    fmin = out.solutions.mean.f;
    xmin = xintobounds(xmean, lbounds, ubounds); % Return xmean as best point
  end
  if out.solutions.mean.f < out.solutions.bestever.f
    out.solutions.bestever = out.solutions.mean; % Return xmean as bestever point
    out.solutions.bestever.x = xintobounds(xmean, lbounds, ubounds); 
    bestever = out.solutions.bestever;
  end
end

% Save everything and display final message
if flgsavingfinal
  clear idx; % prevents error under octave
  if ~isempty(strsaving) && ~isoctave
    save('-mat', strsaving, opts.SaveFilename); % for inspection and possible restart	
  else 
    save('-mat', opts.SaveFilename);    % for inspection and possible restart
  end
  message = [' (saved to ' opts.SaveFilename ')'];
else
  message = [];
end

if flgdisplay
  disp(['#Fevals:   f(returned x)   |    bestever.f     | stopflag' ...
        message]);
  if isoctave
    strstop = stopflag(:); 
  else
      strcat(stopflag(:), '.');
  end
  strstop = stopflag(:); %strcat(stopflag(:), '.');
  disp([repmat(' ',1,6-floor(log10(counteval))) ...
        num2str(counteval, '%6.0f') ': ' num2str(fmin, '%.11e') ' | ' ...
        num2str(out.solutions.bestever.f, '%.11e') ' | ' ...
	strstop{1:end}]);
  if N < 102
     disp(['mean solution:' sprintf(' %+.1e', xmean)]);
     disp(['std deviation:' sprintf('  %.1e', sigma*sqrt(diagC))]);
     disp(sprintf('use plotcmaesdat.m for plotting the output at any time (option LogModulo must not be zero)'));
  end
  if exist('sfile', 'var') 
    disp(['Results saved in ' sfile]); 
  end
end

  out.arstopflags{irun} = stopflag;
  if any(strcmp(stopflag, 'fitness')) ...
	|| any(strcmp(stopflag, 'maxfunevals')) ...
	|| any(strcmp(stopflag, 'stoptoresume')) ...
	|| any(strcmp(stopflag, 'manual'))
    break; 
  end
end % while irun <= Restarts

% ---------------------------------------------------------------  
% ---------------------------------------------------------------  
function [x, idx] = xintobounds(x, lbounds, ubounds)
%
% x can be a column vector or a matrix consisting of column vectors
%
  if ~isempty(lbounds)
    if length(lbounds) == 1
      idx = x < lbounds;
      x(idx) = lbounds;
    else
      arbounds = repmat(lbounds, 1, size(x,2));
      idx = x < arbounds;
      x(idx) = arbounds(idx);
    end
  else
    idx = 0;
  end
  if ~isempty(ubounds)
    if length(ubounds) == 1
      idx2 = x > ubounds;
      x(idx2) = ubounds;
    else
      arbounds = repmat(ubounds, 1, size(x,2));
      idx2 = x > arbounds;
      x(idx2) = arbounds(idx2);
    end
  else
    idx2 = 0;
  end
  idx = idx2-idx; 
  
% ---------------------------------------------------------------  
% ---------------------------------------------------------------  
function opts=getoptions(inopts, defopts)
% OPTS = GETOPTIONS(INOPTS, DEFOPTS) handles an arbitrary number of
% optional arguments to a function. The given arguments are collected
% in the struct INOPTS.  GETOPTIONS matches INOPTS with a default
% options struct DEFOPTS and returns the merge OPTS.  Empty or missing
% fields in INOPTS invoke the default value.  Fieldnames in INOPTS can
% be abbreviated.
%
% The returned struct OPTS is first assigned to DEFOPTS. Then any
% field value in OPTS is replaced by the respective field value of
% INOPTS if (1) the field unambiguously (case-insensitive) matches
% with the fieldname in INOPTS (cut down to the length of the INOPTS
% fieldname) and (2) the field is not empty.
%
% Example:
%   In the source-code of the function that needs optional
%   arguments, the last argument is the struct of optional
%   arguments:
%
%   function results = myfunction(mandatory_arg, inopts)
%     % Define four default options
%     defopts.PopulationSize = 200;
%     defopts.ParentNumber = 50;
%     defopts.MaxIterations = 1e6;
%     defopts.MaxSigma = 1;
%  
%     % merge default options with input options
%     opts = getoptions(inopts, defopts);
%
%     % Thats it! From now on the values in opts can be used
%     for i = 1:opts.PopulationSize
%       % do whatever
%       if sigma > opts.MaxSigma
%         % do whatever
%       end
%     end
%   
%   For calling the function myfunction with default options:
%   myfunction(argument1, []);
%   For calling the function myfunction with modified options:
%   opt.pop = 100; % redefine PopulationSize option
%   opt.PAR = 10;  % redefine ParentNumber option
%   opt.maxiter = 2; % opt.max=2 is ambiguous and would result in an error 
%   myfunction(argument1, opt);

%
% 04/07/19: Entries can be structs itself leading to a recursive
%           call to getoptions. 
%

if nargin < 2 || isempty(defopts) % no default options available
  opts=inopts;
  return;
elseif isempty(inopts) % empty inopts invoke default options
  opts = defopts;
  return;
elseif ~isstruct(defopts) % handle a single option value
  if isempty(inopts) 
    opts = defopts;
  elseif ~isstruct(inopts)
    opts = inopts;
  else
    error('Input options are a struct, while default options are not');
  end
  return;
elseif ~isstruct(inopts) % no valid input options
  error('The options need to be a struct or empty');
end

  opts = defopts; % start from defopts 
  % if necessary overwrite opts fields by inopts values
  defnames = fieldnames(defopts);
  idxmatched = []; % indices of defopts that already matched
  for name = fieldnames(inopts)'
    name = name{1}; % name of i-th inopts-field
    if isoctave
      for i = 1:size(defnames, 1)
	idx(i) = strncmp(lower(defnames(i)), lower(name), length(name));
      end
    else
	idx = strncmpi(defnames, name, length(name));
    end
    if sum(idx) > 1
      error(['option "' name '" is not an unambigous abbreviation. ' ...
	     'Use opts=RMFIELD(opts, ''' name, ...
	     ''') to remove the field from the struct.']);
    end
    if sum(idx) == 1
      defname  = defnames{find(idx)}; 
      if ismember(find(idx), idxmatched)
	error(['input options match more than ones with "' ...
	       defname '". ' ...
	       'Use opts=RMFIELD(opts, ''' name, ...
	       ''') to remove the field from the struct.']);
      end
      idxmatched = [idxmatched find(idx)];
      val = getfield(inopts, name);
      % next line can replace previous line from MATLAB version 6.5.0 on and in octave
      % val = inopts.(name);
      if isstruct(val) % valid syntax only from version 6.5.0
	opts = setfield(opts, defname, ...
	    getoptions(val, getfield(defopts, defname))); 
      elseif isstruct(getfield(defopts, defname)) 
      % next three lines can replace previous three lines from MATLAB 
      % version 6.5.0 on
      %   opts.(defname) = ...
      %      getoptions(val, defopts.(defname)); 
      % elseif isstruct(defopts.(defname)) 
	warning(['option "' name '" disregarded (must be struct)']); 
      elseif ~isempty(val) % empty value: do nothing, i.e. stick to default
	opts = setfield(opts, defnames{find(idx)}, val);
	% next line can replace previous line from MATLAB version 6.5.0 on
	% opts.(defname) = inopts.(name); 
      end
    else
      warning(['option "' name '" disregarded (unknown field name)']);
    end
  end

% ---------------------------------------------------------------  
% ---------------------------------------------------------------  
function res=myeval(s)
  if ischar(s)
    res = evalin('caller', s);
  else
    res = s;
  end
  
% ---------------------------------------------------------------  
% ---------------------------------------------------------------  
function res=myevalbool(s)
  if ~ischar(s) % s may not and cannot be empty
    res = s;
  else % evaluation string s
    if strncmpi(lower(s), 'yes', 3) || strncmpi(s, 'on', 2) ...
	  || strncmpi(s, 'true', 4) || strncmp(s, '1 ', 2)
      res = 1;
    elseif strncmpi(s, 'no', 2) || strncmpi(s, 'off', 3) ...
	  || strncmpi(s, 'false', 5) || strncmp(s, '0 ', 2)
      res = 0;
    else
      try res = evalin('caller', s); catch
	error(['String value "' s '" cannot be evaluated']);
      end
      try res ~= 0; catch
	error(['String value "' s '" cannot be evaluated reasonably']);
      end
    end
  end
  

% ---------------------------------------------------------------  
% ---------------------------------------------------------------  
function res = isoctave
% any hack to find out whether we are running octave
  s = version;
  res = 0;
  if exist('fflush', 'builtin') && eval(s(1)) < 7
    res = 1;
  end

% ---------------------------------------------------------------  
% ---------------------------------------------------------------  
function flush
  if isoctave
    feval('fflush', stdout);
  end

% ---------------------------------------------------------------  
% ---------------------------------------------------------------  
% ----- replacements for statistic toolbox functions ------------
% ---------------------------------------------------------------  
% ---------------------------------------------------------------  
function res=myrange(x)
  res = max(x) - min(x);
  
% ---------------------------------------------------------------  
% ---------------------------------------------------------------  
function res = myprctile(inar, perc, idx)
%
% Computes the percentiles in vector perc from vector inar
% returns vector with length(res)==length(perc)
% idx: optional index-array indicating sorted order
%

N = length(inar);
flgtranspose = 0;

% sizes 
if size(perc,1) > 1
  perc = perc';
  flgtranspose = 1;
  if size(perc,1) > 1
    error('perc must not be a matrix');
  end
end
if size(inar, 1) > 1 && size(inar,2) > 1
  error('data inar must not be a matrix');
end
 
% sort inar
if nargin < 3 || isempty(idx)
  [sar idx] = sort(inar);
else
  sar = inar(idx);
end

res = [];
for p = perc
  if p <= 100*(0.5/N)
    res(end+1) = sar(1);
  elseif p >= 100*((N-0.5)/N)
    res(end+1) = sar(N);
  else
    % find largest index smaller than required percentile
    availablepercentiles = 100*((1:N)-0.5)/N;
    i = max(find(p > availablepercentiles));
    % interpolate linearly
    res(end+1) = sar(i) ...
	+ (sar(i+1)-sar(i))*(p - availablepercentiles(i)) ...
	/ (availablepercentiles(i+1) - availablepercentiles(i));

  end
end

if flgtranspose
  res = res';
end


% ---------------------------------------------------------------  
% ---------------------------------------------------------------  
% ---------------------------------------------------------------  
% ---------------------------------------------------------------  



function [s ranks rankDelta] = local_noisemeasurement(arf1, arf2, lamreev, theta, cutlimit)
% function [s ranks rankDelta] = noisemeasurement(arf1, arf2, lamreev, theta)
%
% Input: 
%   arf1, arf2 : two arrays of function values. arf1 is of size 1xlambda, 
%       arf2 may be of size 1xlamreev or 1xlambda. The first lamreev values 
%       in arf2 are (re-)evaluations of the respective solutions, i.e. 
%       arf1(1) and arf2(1) are two evaluations of "the first" solution.
%    lamreev: number of reevaluated individuals in arf2 
%    theta : parameter theta for the rank change limit, between 0 and 1, 
%       typically between 0.2 and 0.7. 
%    cutlimit (optional): output s is computed as a mean of rankchange minus 
%       threshold, where rankchange is <=2*(lambda-1). cutlimit limits 
%       abs(rankchange minus threshold) in this calculation to cutlimit. 
%       cutlimit=1 evaluates basically the sign only. cutlimit=2 could be 
%       the rank change with one solution (both evaluations of it). 
% 
% Output: 
%   s : noise measurement, s>0 means the noise measure is above the
%       acceptance threshold
%   ranks : 2xlambda array, corresponding to [arf1; arf2], of ranks 
%       of arf1 and arf2 in the set [arf1 arf2], values are in [1:2*lambda]
%   rankDelta: 1xlambda array of rank movements of arf2 compared to
%       arf1.  rankDelta(i) agrees with the number of values from
%       the set [arf1 arf2] that lie between arf1(i) and arf2(i).
%
% Note: equal function values might lead to somewhat spurious results.
%       For this case a revision is advisable. 

%%% verify input argument sizes
if size(arf1,1) ~= 1
  error('arf1 must be an 1xlambda array');
elseif size(arf2,1) ~= 1
  error('arf2 must be an 1xsomething array');
elseif size(arf1,2) < size(arf2,2)  % not really necessary, but saver
  error('arf2 must not be smaller than arf1 in length');
end
lam = size(arf1, 2);
if size(arf1,2) ~= size(arf2,2)
   arf2(end+1:lam) = arf1((size(arf2,2)+1):lam);
end
if nargin < 5
  cutlimit = inf;
end

%%% capture unusual values
if any(diff(arf1) == 0)
  % this will presumably interpreted as rank change, because
  % sort(ones(...)) returns 1,2,3,...
  warning([num2str(sum(diff(arf1)==0)) ' equal function values']);
end

%%% compute rank changes into rankDelta
% compute ranks
[ignore, idx] = sort([arf1 arf2]);
[ignore, ranks] = sort(idx);
ranks = reshape(ranks, lam, 2)';

rankDelta = ranks(1,:) - ranks(2,:) - sign(ranks(1,:) - ranks(2,:));

%%% compute rank change limits using both ranks(1,...) and ranks(2,...)
for i = 1:lamreev
  sumlim(i) = ...
      0.5 * (...
          myprctile(abs((1:2*lam-1) - (ranks(1,i) - (ranks(1,i)>ranks(2,i)))), ...
                    theta*50) ...      
          + myprctile(abs((1:2*lam-1) - (ranks(2,i) - (ranks(2,i)>ranks(1,i)))), ...
                      theta*50)); 
end

%%% compute measurement
%s = abs(rankDelta(1:lamreev)) - sumlim; % lives roughly in 0..2*lambda

%                               max: 1 rankchange in 2*lambda is always fine
s = abs(rankDelta(1:lamreev)) - max(1, sumlim); % lives roughly in 0..2*lambda

% cut-off limit
idx = abs(s) > cutlimit; 
s(idx) = sign(s(idx)) * cutlimit;
s = mean(s);

% ---------------------------------------------------------------  
% ---------------------------------------------------------------  
% ---------------------------------------------------------------  
% ---------------------------------------------------------------  
% just a "local" copy of plotcmaesdat.m, with manual_mode set to zero
function local_plotcmaesdat(figNb, filenameprefix, filenameextension, objectvarname)
% PLOTCMAESDAT;
% PLOTCMAES(FIGURENUMBER_iBEGIN_iEND, FILENAMEPREFIX, FILENAMEEXTENSION, OBJECTVARNAME);
%   plots output from CMA-ES, e.g. cmaes.m, Java class CMAEvolutionStrategy... 
%   mod(figNb,100)==1 plots versus iterations. 
%
% PLOTCMAES([101 300]) plots versus iteration, from iteration 300. 
% PLOTCMAES([100 150 800]) plots versus function evaluations, between iteration 150 and 800. 
%
% Upper left subplot: blue/red: function value of the best solution in the 
%   recent population, cyan: same function value minus best
%   ever seen function value, green: sigma, red: ratio between 
%   longest and shortest principal axis length which is equivalent
%   to sqrt(cond(C)). 
% Upper right plot: time evolution of the distribution mean (default) or
%   the recent best solution vector. 
% Lower left: principal axes lengths of the distribution ellipsoid, 
%   equivalent with the sqrt(eig(C)) square root eigenvalues of C. 
% Lower right: magenta: minimal and maximal "true" standard deviation 
%   (with sigma included) in the coordinates, other colors: sqrt(diag(C)) 
%   of all diagonal elements of C, if C is diagonal they equal to the
%   lower left. 
%
% Files [FILENAMEPREFIX name FILENAMEEXTENSION] are used, where 
%   name = axlen, OBJECTVARNAME (xmean|xrecentbest), fit, or stddev.
%

manual_mode = 0;

  if nargin < 1 || isempty(figNb)
    figNb = 325;
  end
  if nargin < 2 || isempty(filenameprefix)
    filenameprefix = 'outcmaes';
  end
  if nargin < 3 || isempty(filenameextension)
    filenameextension = '.dat';
  end
  if nargin < 4 || isempty(objectvarname)
    objectvarname = 'xmean';    
    objectvarname = 'xrecentbest';
  end
  % load data
  d.x = load([filenameprefix objectvarname filenameextension]); 
  % d.x = load([filenameprefix 'xmean' filenameextension]); 
  % d.x = load([filenameprefix 'xrecentbest' filenameextension]); 
  d.f = load([filenameprefix 'fit' filenameextension]); 
  d.std = load([filenameprefix 'stddev' filenameextension]);
  d.D = load([filenameprefix 'axlen' filenameextension]);

  % interpret entries in figNb for cutting out some data
  if length(figNb) > 1
    iend = inf;
    istart = figNb(2);
    if length(figNb) > 2
      iend = figNb(3);
    end
    figNb = figNb(1);
    d.x = d.x(d.x(:,1) >= istart & d.x(:,1) <= iend, :);
    d.f = d.f(d.f(:,1) >= istart & d.f(:,1) <= iend, :);
    d.std = d.std(d.std(:,1) >= istart & d.std(:,1) <= iend, :);
    d.D = d.D(d.D(:,1) >= istart & d.D(:,1) <= iend, :);
  end

  % decide for x-axis
  iabscissa = 2; % 1== versus iterations, 2==versus fevals
  if mod(figNb,100) == 1
    iabscissa = 1; % a short hack
  end
  if iabscissa == 1
    xlab ='iterations'; 
  elseif iabscissa == 2
    xlab = 'function evaluations'; 
  end

  if size(d.x, 2) < 1000
    minxend = 1.03*d.x(end, iabscissa);
  else
    minxend = 0;
  end

  % set up figure window
  if manual_mode
    figure(figNb);  % just create and raise the figure window
  else
    if 1 < 3 && evalin('caller', 'iterplotted') == 0 && evalin('caller', 'irun') == 1 
      figure(figNb);  % incomment this, if figure raise in the beginning is not desired
    elseif ismember(figNb, findobj('Type', 'figure'))
      set(0, 'CurrentFigure', figNb);  % prevents raise of existing figure window
    else
      figure(figNb);
    end
  end

  % plot fitness etc
  foffset = 1e-99;
  dfit = d.f(:,6)-min(d.f(:,6)); 
  [ignore idxbest] = min(dfit);
  dfit(dfit<1e-98) = NaN;
  subplot(2,2,1); hold off; 
  dd = abs(d.f(:,7:8)) + foffset; 
  dd(d.f(:,7:8)==0) = NaN;
  semilogy(d.f(:,iabscissa), dd, '-k'); hold on;
  % additional fitness data, for example constraints values
  if size(d.f,2) > 8
    dd = abs(d.f(:,9:end)) + 10*foffset;  % a hack
    % dd(d.f(:,9:end)==0) = NaN; 
    semilogy(d.f(:,iabscissa), dd, '-m'); hold on; 
    if size(d.f,2) > 12
      semilogy(d.f(:,iabscissa),abs(d.f(:,[7 8 11 13]))+foffset,'-k'); hold on;
    end
  end

  idx = find(d.f(:,6)>1e-98);  % positive values
  if ~isempty(idx)  % otherwise non-log plot gets hold
    semilogy(d.f(idx,iabscissa), d.f(idx,6)+foffset, '.b'); hold on; 
  end
  idx = find(d.f(:,6) < -1e-98);  % negative values
  if ~isempty(idx)
    semilogy(d.f(idx, iabscissa), abs(d.f(idx,6))+foffset,'.r'); hold on; 
  end
  semilogy(d.f(:,iabscissa),abs(d.f(:,6))+foffset,'-b'); hold on;
  semilogy(d.f(:,iabscissa),dfit,'-c'); hold on;
  semilogy(d.f(:,iabscissa),(d.f(:,4)),'-r'); hold on; % AR
  semilogy(d.std(:,iabscissa), [max(d.std(:,6:end)')' ...
                      min(d.std(:,6:end)')'], '-m'); % max,min std
  maxval = max(d.std(end,6:end));
  minval = min(d.std(end,6:end));
  text(d.std(end,iabscissa), maxval, sprintf('%.0e', maxval));
  text(d.std(end,iabscissa), minval, sprintf('%.0e', minval));

  semilogy(d.std(:,iabscissa),(d.std(:,3)),'-g'); % sigma
  % plot best f
  semilogy(d.f(idxbest,iabscissa),min(dfit),'*c'); hold on;
  semilogy(d.f(idxbest,iabscissa),abs(d.f(idxbest,6))+foffset,'*r'); hold on;

  ax = axis;
  ax(2) = max(minxend, ax(2)); 
  axis(ax);
  
  yannote = 10^(log10(ax(3)) + 0.05*(log10(ax(4))-log10(ax(3)))); 
  text(ax(1), yannote, ...
       [ 'f=' num2str(d.f(end,6), '%.15g') ]);

  title('blue:abs(f), cyan:f-min(f), green:sigma, red:axis ratio');
  grid on; 

  subplot(2,2,2); hold off; 
  plot(d.x(:,iabscissa), d.x(:,6:end),'-'); hold on;
  ax = axis;
  ax(2) = max(minxend, ax(2)); 
  axis(ax); 

  % add some annotation lines
  [ignore idx] = sort(d.x(end,6:end));
  % choose no more than 25 indices 
  idxs = round(linspace(1, size(d.x,2)-5, min(size(d.x,2)-5, 25))); 
  yy = repmat(NaN, 2, size(d.x,2)-5);
  yy(1,:) = d.x(end, 6:end);
  yy(2,idx(idxs)) = linspace(ax(3), ax(4), length(idxs));
  plot([d.x(end,iabscissa) ax(2)], yy, '-'); 
  plot(repmat(d.x(end,iabscissa),2), [ax(3) ax(4)], 'k-');
  for i = idx(idxs)
    text(ax(2), yy(2,i), ...
         ['x(' num2str(i) ')=' num2str(yy(1,i))]);
  end
  
  lam = 'NA'; 
  if size(d.x, 1) > 1 && d.x(end, 1) > d.x(end-1, 1)
    lam = num2str((d.x(end, 2) - d.x(end-1, 2)) / (d.x(end, 1) - d.x(end-1, 1)));
  end
  title(['Object Variables (' num2str(size(d.x, 2)-5) ...
            '-D, popsize~' lam ')']);grid on;

  subplot(2,2,3); hold off; semilogy(d.D(:,iabscissa), d.D(:,6:end), '-');
  ax = axis;
  ax(2) = max(minxend, ax(2)); 
  axis(ax);
  title('Principal Axes Lengths');grid on;
  xlabel(xlab); 

  subplot(2,2,4); hold off; 
  % semilogy(d.std(:,iabscissa), d.std(:,6:end), 'k-'); hold on; 
  % remove sigma from stds
  d.std(:,6:end) = d.std(:,6:end) ./ (d.std(:,3) * ones(1,size(d.std,2)-5));
  semilogy(d.std(:,iabscissa), d.std(:,6:end), '-'); hold on; 
  if 11 < 3  % max and min std
    semilogy(d.std(:,iabscissa), [d.std(:,3).*max(d.std(:,6:end)')' ...
                        d.std(:,3).*min(d.std(:,6:end)')'], '-m', 'linewidth', 2);
    maxval = max(d.std(end,6:end));
    minval = min(d.std(end,6:end));
    text(d.std(end,iabscissa), d.std(end,3)*maxval, sprintf('max=%.0e', maxval));
    text(d.std(end,iabscissa), d.std(end,3)*minval, sprintf('min=%.0e', minval));
  end
  ax = axis;
  ax(2) = max(minxend, ax(2)); 
  axis(ax);
  % add some annotation lines
  [ignore idx] = sort(d.std(end,6:end));
  % choose no more than 25 indices 
  idxs = round(linspace(1, size(d.x,2)-5, min(size(d.x,2)-5, 25))); 
  yy = repmat(NaN, 2, size(d.std,2)-5);
  yy(1,:) = d.std(end, 6:end);
  yy(2,idx(idxs)) = logspace(log10(ax(3)), log10(ax(4)), length(idxs));
  semilogy([d.std(end,iabscissa) ax(2)], yy, '-'); 
  semilogy(repmat(d.std(end,iabscissa),2), [ax(3) ax(4)], 'k-');
  for i = idx(idxs)
    text(ax(2), yy(2,i), [' ' num2str(i)]);
  end
  title('Standard Deviations in Coordinates divided by sigma');grid on;
  xlabel(xlab);

  if figNb ~= 324
    % zoom on;  % does not work in Octave
  end
  drawnow;

% ---------------------------------------------------------------  
% --------------- TEST OBJECTIVE FUNCTIONS ----------------------  
% ---------------------------------------------------------------  

%%% Unimodal functions

function f=fjens1(x)
%
% use population size about 2*N
%
  f = sum((x>0) .* x.^1, 1);
  if any(any(x<0))
    idx = sum(x < 0, 1) > 0;
    f(idx) = 1e3;
%    f = f + 1e3 * sum(x<0, 1);
%    f = f + 10 * sum((x<0) .* x.^2, 1);
    f(idx) = f(idx) + 1e-3*abs(randn(1,sum(idx)));
%    f(idx) = NaN;
  end

function f=fsphere(x)
  f = sum(x.^2,1);

function f=fmax(x)
  f = max(abs(x), [], 1);

function f=fssphere(x)
  f=sqrt(sum(x.^2, 1));

%  lb = -0.512; ub = 512; 
%  xfeas = x; 
%  xfeas(x<lb) = lb;
%  xfeas(x>ub) = ub; 
%  f=sum(xfeas.^2, 1);
%  f = f + 1e-9 * sum((xfeas-x).^2); 
  
function f=fspherenoise(x, Nevals)
  if nargin < 2 || isempty(Nevals)
    Nevals = 1;
  end
  [N,popsi] = size(x);
%  x = x .* (1 +  0.3e-0 * randn(N, popsi)/(2*N)); % actuator noise
  fsum = 10.^(0*(0:N-1)/(N-1)) * x.^2; 
%  f = 0*rand(1,1) ...
%      + fsum ...
%      + fsum .* (2*randn(1,popsi) ./ randn(1,popsi).^0 / (2*N)) ...
%      + 1*fsum.^0.9 .* 2*randn(1,popsi) / (2*N); % 

%  f = fsum .* exp(0.1*randn(1,popsi));
  f = fsum .* (1 + (10/(N+10)/sqrt(Nevals))*randn(1,popsi));
%  f = fsum .* (1 + (0.1/N)*randn(1,popsi)./randn(1,popsi).^1);

  idx = rand(1,popsi) < 0.0;
  if sum(idx) > 0
    f(idx) = f(idx) + 1e3*exp(randn(1,sum(idx)));
  end
  
function f=fmixranks(x)
  N = size(x,1);
  f=(10.^(0*(0:(N-1))/(N-1))*x.^2).^0.5;
  if size(x, 2) > 1 % compute ranks, if it is a population 
    [ignore, idx] = sort(f);
    [ignore, ranks] = sort(idx);
    k = 9; % number of solutions randomly permuted, lambda/2-1
           % works still quite well (two time slower)
    for i = k+1:k-0:size(x,2)
      idx(i-k+(1:k)) = idx(i-k+randperm(k)); 
    end
    %disp([ranks' f'])
    [ignore, ranks] = sort(idx);
    %disp([ranks' f'])
    %pause
    f = ranks+1e-9*randn(1,1);
  end
  
function f = fsphereoneax(x)
  f = x(1)^2;
  f = mean(x)^2;
  
function f=frandsphere(x)
  N = size(x,1);
  idx = ceil(N*rand(7,1));
  f=sum(x(idx).^2);

function f=fspherelb0(x, M) % lbound at zero for 1:M needed
  if nargin < 2 M = 0; end
  N = size(x,1);
  % M active bounds, f_i = 1 for x = 0
  f = -M + sum((x(1:M) + 1).^2);
  f = f + sum(x(M+1:N).^2);
  
function f=fspherehull(x)
  % Patton, Dexter, Goodman, Punch
  % in -500..500
  % spherical ridge through zeros(N,1)
  % worst case start point seems x = 2*100*sqrt(N)
  % and small step size
  N = size(x,1);
  f = norm(x) + (norm(x-100*sqrt(N)) - 100*N)^2;
  
function f=fellilb0(x, idxM, scal) % lbound at zero for 1:M needed
  N = size(x,1);
  if nargin < 3 || isempty(scal)
    scal = 100;
  end
  scale=scal.^((0:N-1)/(N-1));
  if nargin < 2 || isempty(idxM)
    idxM = 1:N;
  end
  %scale(N) = 1e0;
  % M active bounds
  xopt = 0.1;
  x(idxM) = x(idxM) + xopt;
  f = scale.^2*x.^2;
  f = f - sum((xopt*scale(idxM)).^2); 
%  f = exp(f) - 1;
%  f = log10(f+1e-19) + 19;

  f = f + 1e-19;
  
function f=fcornersphere(x)
  w = ones(size(x,1));
  w(1) = 2.5; w(2)=2.5;
  idx = x < 0;
  f = sum(x(idx).^2);
  idx = x > 0;
  f = f + 2^2*sum(w(idx).*x(idx).^2);
  
function f=fsectorsphere(x, scal)
%
% This is deceptive for cumulative sigma control CSA in large dimension:
% The strategy (initially) diverges for N=50 and popsize = 150.  (Even
% for cs==1 this can be observed for larger settings of N and
% popsize.) The reason is obvious from the function topology. 
% Divergence can be avoided by setting boundaries or adding a
% penalty for large ||x||. Then, convergence can be observed again. 
% Conclusion: for popsize>N cumulative sigma control is not completely
% reasonable, but I do not know better alternatives. In particular:
% TPA takes longer to converge than CSA when the latter still works. 
%
  if nargin < 2 || isempty (scal)
    scal = 1e3;
  end
  f=sum(x.^2,1);
  idx = x<0;
  f = f + (scal^2 - 1) * sum((idx.*x).^2,1);
  if 11 < 3
    idxpen = find(f>1e9);
    if ~isempty(idxpen)
      f(idxpen) = f(idxpen) + 1e8*sum(x(:,idxpen).^2,1);
    end
  end
  
function f=fstepsphere(x, scal)
  if nargin < 2 || isempty (scal)
    scal = 1e0;
  end
  N = size(x,1);
  f=1e-11+sum(scal.^((0:N-1)/(N-1))*floor(x+0.5).^2);
  f=1e-11+sum(floor(scal.^((0:N-1)/(N-1))'.*x+0.5).^2);
%  f=1e-11+sum(floor(x+0.5).^2);

function f=fstep(x)
  % in -5.12..5.12 (bounded)
  N = size(x,1);
  f=1e-11+6*N+sum(floor(x));

function f=flnorm(x, scal, e)
if nargin < 2 || isempty(scal)
  scal = 1;
end
if nargin < 3 || isempty(e)
  e = 1;
end
if e==inf
  f = max(abs(x));
else
  N = size(x,1);
  scale = scal.^((0:N-1)/(N-1))';
  f=sum(abs(scale.*x).^e);
end

function f=fneumaier3(x) 
  % in -n^2..n^2
  % x^*-i = i(n+1-i)
  N = size(x,1);
%  f = N*(N+4)*(N-1)/6 + sum((x-1).^2) - sum(x(1:N-1).*x(2:N));
  f = sum((x-1).^2) - sum(x(1:N-1).*x(2:N));

function f = fmaxmindist(y)
  % y in [-1,1], y(1:2) is first point on a plane, y(3:4) second etc
  % points best
  %   5    1.4142
  %   8    1.03527618 
  %  10    0.842535997 
  %  20    0.5997   
  pop = size(y,2);
  N = size(y,1)/2;
  f = []; 
  for ipop = 1:pop
    if any(abs(y(:,ipop)) > 1)
      f(ipop) = NaN; 
    else
      x = reshape(y(:,ipop), [2, N]);
      f(ipop) = inf;
      for i = 1:N
        f(ipop) = min(f(ipop), min(sqrt(sum((x(:,[1:i-1 i+1:N]) - repmat(x(:,i), 1, N-1)).^2, 1))));
      end
    end
  end
  f = -f;

function f=fchangingsphere(x)
  N = size(x,1);
  global scale_G; global count_G; if isempty(count_G) count_G=-1; end
  count_G = count_G+1;
  if mod(count_G,10) == 0
    scale_G = 10.^(2*rand(1,N));
  end
  %disp(scale(1));
  f = scale_G*x.^2;
  
function f= flogsphere(x)
 f = 1-exp(-sum(x.^2));
  
function f= fexpsphere(x)
 f = exp(sum(x.^2)) - 1;
  
function f=fbaluja(x)
  % in [-0.16 0.16]
  y = x(1);
  for i = 2:length(x)
    y(i) = x(i) + y(i-1);
  end
  f = 1e5 - 1/(1e-5 + sum(abs(y)));

function f=fschwefel(x)
  f = 0;
  for i = 1:size(x,1),
    f = f+sum(x(1:i))^2;
  end

function f=fcigar(x, ar)
  if nargin < 2 || isempty(ar)
    ar = 1e3;
  end
  f = x(1,:).^2 + ar^2*sum(x(2:end,:).^2,1);
  
function f=fcigtab(x)
  f = x(1,:).^2 + 1e8*x(end,:).^2 + 1e4*sum(x(2:(end-1),:).^2, 1);
  
function f=ftablet(x)
  f = 1e6*x(1,:).^2 + sum(x(2:end,:).^2, 1);

function f=felli(x, lgscal, expon, expon2)
  % lgscal: log10(axis ratio)
  % expon: x_i^expon, sphere==2
  N = size(x,1); if N < 2 error('dimension must be greater one'); end

%  x = x - repmat(-0.5+(1:N)',1,size(x,2)); % optimum in 1:N
  if nargin < 2 || isempty(lgscal), lgscal = 3; end
  if nargin < 3 || isempty(expon), expon = 2; end
  if nargin < 4 || isempty(expon2), expon2 = 1; end

  f=((10^(lgscal*expon)).^((0:N-1)/(N-1)) * abs(x).^expon).^(1/expon2);
%  if rand(1,1) > 0.015
%    f = NaN;
%  end
%  f = f + randn(size(f));

function f=fellitest(x)
  beta = 0.9;
  N = size(x,1);
  f = (1e6.^((0:(N-1))/(N-1))).^beta * (x.^2).^beta; 

  
function f=fellii(x, scal)
  N = size(x,1); if N < 2 error('dimension must be greater one'); end
  if nargin < 2
    scal = 1;
  end
  f= (scal*(1:N)).^2 * (x).^2;

function f=fellirot(x)
  N = size(x,1);
  global ORTHOGONALCOORSYSTEM_G
  if isempty(ORTHOGONALCOORSYSTEM_G) ...
	|| length(ORTHOGONALCOORSYSTEM_G) < N ...
	|| isempty(ORTHOGONALCOORSYSTEM_G{N})
    coordinatesystem(N);
  end
  f = felli(ORTHOGONALCOORSYSTEM_G{N}*x);
  
function f=frot(x, fun, varargin)
  N = size(x,1);
  global ORTHOGONALCOORSYSTEM_G
  if isempty(ORTHOGONALCOORSYSTEM_G) ...
	|| length(ORTHOGONALCOORSYSTEM_G) < N ...
	|| isempty(ORTHOGONALCOORSYSTEM_G{N})
    coordinatesystem(N);
  end
  f = feval(fun, ORTHOGONALCOORSYSTEM_G{N}*x, varargin{:});
  
function coordinatesystem(N)
  if nargin < 1 || isempty(N)
    arN = 2:30;
  else
    arN = N;
  end
  global ORTHOGONALCOORSYSTEM_G
  ORTHOGONALCOORSYSTEM_G{1} = 1; 
  for N = arN
    ar = randn(N,N);
    for i = 1:N 
      for j = 1:i-1
	ar(:,i) = ar(:,i) - ar(:,i)'*ar(:,j) * ar(:,j);
      end
      ar(:,i) = ar(:,i) / norm(ar(:,i));
    end
    ORTHOGONALCOORSYSTEM_G{N} = ar; 
  end

function f=fplane(x)
  f=x(1);

function f=ftwoaxes(x)
  f = sum(x(1:floor(end/2),:).^2, 1) + 1e6*sum(x(floor(1+end/2):end,:).^2, 1);

function f=fparabR(x)
  f = -x(1,:) + 100*sum(x(2:end,:).^2,1);

function f=fsharpR(x)
  f = abs(-x(1, :)).^2 + 100 * sqrt(sum(x(2:end,:).^2, 1));
  
function f=frosen(x)
  if size(x,1) < 2 error('dimension must be greater one'); end
  N = size(x,1); 
  popsi = size(x,2); 
  f = 1e2*sum((x(1:end-1,:).^2 - x(2:end,:)).^2,1) + sum((x(1:end-1,:)-1).^2,1);
  % f = f + f^0.9 .* (2*randn(1,popsi) ./ randn(1,popsi).^0 / (2*N)); 

function f=frosenlin(x)
  if size(x,1) < 2 error('dimension must be greater one'); end

  x_org = x;
  x(x>30) = 30;
  x(x<-30) = -30;

  f = 1e2*sum(-(x(1:end-1,:).^2 - x(2:end,:)),1) + ...
      sum((x(1:end-1,:)-1).^2,1);

  f = f + sum((x-x_org).^2,1);
%  f(any(abs(x)>30,1)) = NaN; 

function f=frosenrot(x)
  N = size(x,1);
  global ORTHOGONALCOORSYSTEM_G
  if isempty(ORTHOGONALCOORSYSTEM_G) ...
	|| length(ORTHOGONALCOORSYSTEM_G) < N ...
	|| isempty(ORTHOGONALCOORSYSTEM_G{N})
    coordinatesystem(N);
  end
  f = frosen(ORTHOGONALCOORSYSTEM_G{N}*x);

function f=frosenmodif(x)
  f = 74 + 100*(x(2)-x(1)^2)^2 + (1-x(1))^2 ...
      - 400*exp(-sum((x+1).^2)/2/0.05);
  
function f=fschwefelrosen1(x)
  % in [-10 10] 
  f=sum((x.^2-x(1)).^2 + (x-1).^2);
  
function f=fschwefelrosen2(x)
  % in [-10 10] 
  f=sum((x(2:end).^2-x(1)).^2 + (x(2:end)-1).^2);

function f=fdiffpow(x)
  [N popsi] = size(x); if N < 2 error('dimension must be greater one'); end

  f = sum(abs(x).^repmat(2+10*(0:N-1)'/(N-1), 1, popsi), 1);
  f = sqrt(f); 

function f=fabsprod(x)
  f = sum(abs(x),1) + prod(abs(x),1);

function f=ffloor(x)
  f = sum(floor(x+0.5).^2,1); 

function f=fmaxx(x)
  f = max(abs(x), [], 1);

%%% Multimodal functions 

function f=fbirastrigin(x)
% todo: the volume needs to be a constant 
  N = size(x,1); 
  idx = (sum(x, 1) < 0.5*N); % global optimum
  f = zeros(1,size(x,2));
  f(idx) = 10*(N-sum(cos(2*pi*x(:,idx)),1)) + sum(x(:,idx).^2,1); 
  idx = ~idx;
  f(idx) = 0.1 + 10*(N-sum(cos(2*pi*(x(:,idx)-2)),1)) + sum((x(:,idx)-2).^2,1); 

function f=fackley(x)
  % -32.768..32.768
  % Adding a penalty outside the interval is recommended,  
  % because for large step sizes, fackley imposes like frand
  % 
  N = size(x,1); 
  f = 20-20*exp(-0.2*sqrt(sum(x.^2)/N)); 
  f = f + (exp(1) - exp(sum(cos(2*pi*x))/N));
  % add penalty outside the search interval
  f = f + sum((x(x>32.768)-32.768).^2) + sum((x(x<-32.768)+32.768).^2);
  
function f = fbohachevsky(x)
 % -15..15
  f = sum(x(1:end-1).^2 + 2 * x(2:end).^2 - 0.3 * cos(3*pi*x(1:end-1)) ...
	  - 0.4 * cos(4*pi*x(2:end)) + 0.7);
  
function f=fconcentric(x)
  % in  +-600
  s = sum(x.^2);
  f = s^0.25 * (sin(50*s^0.1)^2 + 1);

function f=fgriewank(x)
  % in [-600 600]
  [N, P] = size(x);
  f = 1 - prod(cos(x'./sqrt(1:N))) + sum(x.^2)/4e3;
  scale = repmat(sqrt(1:N)', 1, P);
  f = 1 - prod(cos(x./scale), 1) + sum(x.^2, 1)/4e3;
  % f = f + 1e4*sum(x(abs(x)>5).^2);
  % if sum(x(abs(x)>5).^2) > 0
  %   f = 1e4 * sum(x(abs(x)>5).^2) + 1e8 * sum(x(x>5)).^2;
  % end

function f=fgriewrosen(x)
% F13 or F8F2
  [N, P] = size(x);
  scale = repmat(sqrt(1:N)', 1, P);
  y = [x(2:end,:); x(1,:)];
  x = 100 * (x.^2 - y) + (x - 1).^2;  % Rosenbrock part
  f = 1 - prod(cos(x./scale), 1) + sum(x.^2, 1)/4e3;
  f = sum(1 - cos(x) + x.^2/4e3, 1);

function f=fspallpseudorastrigin(x, scal, skewfac, skewstart, amplitude)
% by default multi-modal about between -30 and 30
  if nargin < 5 || isempty(amplitude)
    amplitude = 40;
  end
  if nargin < 4 || isempty(skewstart)
    skewstart = 0;
  end
  if nargin < 3 || isempty(skewfac)
    skewfac = 1;
  end
  if nargin < 2 || isempty(scal)
    scal = 1;
  end
  N = size(x,1); 
  scale = 1;
  if N > 1
    scale=scal.^((0:N-1)'/(N-1)); 
  end
  % simple version: 
  % f = amplitude*(N - sum(cos(2*pi*(scale.*x)))) + sum((scale.*x).^2);

  % skew version: 
  y = repmat(scale, 1, size(x,2)) .* x;
  idx = find(x > skewstart);
  if ~isempty(idx)
    y(idx) =  skewfac*y(idx);
  end
  f = amplitude * (0*N-prod(cos((2*pi)^0*y),1)) + 0.05 * sum(y.^2,1) ...
      + randn(1,1);

function f=frastrigin(x, scal, skewfac, skewstart, amplitude)
% by default multi-modal about between -30 and 30
  if nargin < 5 || isempty(amplitude)
    amplitude = 10;
  end
  if nargin < 4 || isempty(skewstart)
    skewstart = 0;
  end
  if nargin < 3 || isempty(skewfac)
    skewfac = 1;
  end
  if nargin < 2 || isempty(scal)
    scal = 1;
  end
  N = size(x,1); 
  scale = 1;
  if N > 1
    scale=scal.^((0:N-1)'/(N-1)); 
  end
  % simple version: 
  % f = amplitude*(N - sum(cos(2*pi*(scale.*x)))) + sum((scale.*x).^2);

  % skew version: 
  y = repmat(scale, 1, size(x,2)) .* x;
  idx = find(x > skewstart);
  % idx = intersect(idx, 2:2:10); 
  if ~isempty(idx)
    y(idx) =  skewfac*y(idx);
  end
  f = amplitude * (N-sum(cos(2*pi*y),1)) + sum(y.^2,1);
  
function f=frastriginmax(x)
  N = size(x,1);
  f = (N/20)*807.06580387678 - (10 * (N-sum(cos(2*pi*x),1)) + sum(x.^2,1));
  f(any(abs(x) > 5.12)) = 1e2*N;

function f = fschaffer(x)
 % -100..100
  N = size(x,1);
  s = x(1:N-1,:).^2 + x(2:N,:).^2;
  f = sum(s.^0.25 .* (sin(50*s.^0.1).^2+1), 1);

function f=fschwefelmult(x)
  % -500..500
  % 
  N = size(x,1); 
  f = - sum(x.*sin(sqrt(abs(x))), 1);
  f = 418.9829*N - 1.27275661e-5*N - sum(x.*sin(sqrt(abs(x))), 1);
  % penalty term 
  f = f + 1e4*sum((abs(x)>500) .* (abs(x)-500).^2, 1);
  
function f=ftwomax(x)
  % Boundaries at +/-5
  N = size(x,1); 
  f = -abs(sum(x)) + 5*N;

function f=ftwomaxtwo(x)
  % Boundaries at +/-10
  N = size(x,1); 
  f = abs(sum(x));
  if f > 30
    f = f - 30;
  end
  f = -f;
  
function f=frand(x)
  f=1./(1-rand(1, size(x,2))) - 1;

% CHANGES
% 12/02/19: "future" setting of ccum, correcting for large mueff, is default now
% 11/11/15: bug-fix: max value for ccovmu_sep setting corrected
% 10/11/11: (3.52.beta) boundary handling: replace max with min in change 
%           rate formula. Active CMA: check of pos.def. improved. 
%           Plotting: value of lambda appears in the title. 
% 10/04/03: (3.51.beta) active CMA cleaned up. Equal fitness detection
%           looks into history now. 
% 10/03/08: (3.50.beta) "active CMA" revised and bug-fix of ambiguous
%           option Noise.alpha -> Noise.alphasigma. 
% 09/10/12: (3.40.beta) a slightly modified version of "active CMA", 
%           that is a negative covariance matrix update, use option
%           CMA.active. In 10;30;90-D the gain on ftablet is a factor 
%           of 1.6;2.5;4.4 (the scaling improves by sqrt(N)). On 
%           Rosenbrock the gain is about 25%. On sharp ridge the 
%           behavior is improved. Cigar is unchanged. 
% 09/08/10: local plotcmaesdat remains in backround  
% 09/08/10: bug-fix in time management for data writing, logtime was not 
%        considered properly (usually not at all). 
% 09/07/05: V3.24: stagnation termination added 
% 08/09/27: V3.23: momentum alignment is out-commented and de-preciated
% 08/09/25: V3.22: re-alignment of sigma and C was buggy
% 08/07/15: V3.20, CMA-parameters are options now. ccov and mucov were replaced
%        by ccov1 \approx ccov/mucov and ccovmu \approx (1-1/mucov)*ccov
% 08/06/30: file name xrecent was change to xrecentbest (compatible with other 
%        versions)
% 08/06/29: time stamp added to output files 
% 08/06/28: bug fixed with resume option, commentary did not work 
% 08/06/28: V3.10, uncertainty (noise) handling added (re-implemented), according
%        to reference "A Method for Handling Uncertainty..." from below.
% 08/06/28: bug fix: file xrecent was empty 
% 08/06/01: diagonalonly clean up. >1 means some iterations. 
% 08/05/05: output is written to file preventing an increasing data
%        array and ease long runs. 
% 08/03/27: DiagonalOnly<0 learns for -DiagonalOnly iterations only the 
%        diagonal with a larger learning rate. 
% 08/03 (2.60): option DiagonalOnly>=1 invokes a time- and space-linear  
%        variant with only diagonal elements of the covariance matrix 
%        updating.  This can be useful for large dimensions, say > 100. 
% 08/02: diag(weights) * ... replaced with repmat(weights,1,N) .* ...
%        in C update, implies O(mu*N^2) instead of O(mu^2*N + mu*N^2). 
% 07/09: tolhistfun as termination criterion added, "<" changed to
%        "<=" also for TolFun to allow for stopping on zero difference. 
%        Name tolfunhist clashes with option tolfun. 
% 07/07: hsig threshold made slighly smaller for large dimension, 
%        useful for lambda < lambda_default. 
% 07/06: boundary handling: scaling in the boundary handling
%        is omitted now, see bnd.flgscale. This seems not to
%        have a big impact. Using the scaling is worse on rotated
%        functions, but better on separable ones. 
% 07/05: boundary handling: weight i is not incremented anymore
%        if xmean(i) moves towards the feasible space. Increment
%        factor changed to 1.2 instead of 1.1. 
% 07/05: boundary handling code simplified not changing the algorithm
% 07/04: bug removed for saving in octave
% 06/11/10: more testing of outcome of eig, fixed max(D) to max(diag(D))
% 06/10/21: conclusive final bestever assignment in the end 
% 06/10/21: restart and incpopsize option implemented for restarts
%        with increasing population size, version 2.50. 
% 06/09/16: output argument bestever inserted again for convenience and
%        backward compatibility
% 06/08: output argument out and struct out reorganized. 
% 06/01: Possible parallel evaluation included as option EvalParallel
% 05/11: Compatibility to octave implemented, package octave-forge
%   is needed. 
% 05/09: Raise of figure and waiting for first plots improved
% 05/01: Function coordinatesystem cleaned up. 
% 05/01: Function prctile, which requires the statistics toolbox,
%        replaced by myprctile. 
% 05/01: Option warnonequalfunctionvalues included. 
% 04/12: Decrease of sigma removed. Problems on fsectorsphere can 
%        be addressed better by adding search space boundaries. 
% 04/12: Boundary handling simpyfied. 
% 04/12: Bug when stopping criteria tolx or tolupx are vectors. 
% 04/11: Three input parameters are obligatory now. 
% 04/11: Bug in boundary handling removed: Boundary weights can decrease now. 
% 04/11: Normalization for boundary weights scale changed. 
% 04/11: VerboseModulo option bug removed. Documentation improved. 
% 04/11: Condition for increasing boundary weights changed.
% 04/10: Decrease of sigma when fitness is getting consistenly
%        worse. Addresses the problems appearing on fsectorsphere for
%        large population size.
% 04/10: VerboseModulo option included. 
% 04/10: Bug for condition for increasing boundary weights removed.
% 04/07: tolx depends on initial sigma to achieve scale invariance
%        for this stopping criterion. 
% 04/06: Objective function value NaN is not counted as function
%        evaluation and invokes resampling of the search point. 
% 04/06: Error handling for eigenvalue beeing zero (never happens
%        with default parameter setting)
% 04/05: damps further tuned for large mueff 
%      o Details for stall of pc-adaptation added (variable hsig 
%        introduced). 
% 04/05: Bug in boundary handling removed: A large initial SIGMA was
%        corrected not until *after* the first iteration, which could
%        lead to a complete failure.
% 04/05: Call of function range (works with stats toolbox only) 
%        changed to myrange. 
% 04/04: Parameter cs depends on mueff now and damps \propto sqrt(mueff)
%        instead of \propto mueff. 
%      o Initial stall to adapt C (flginiphase) is removed and
%        adaptation of pc is stalled for large norm(ps) instead.
%      o Returned default options include documentation. 
%      o Resume part reorganized.
% 04/03: Stopflag becomes cell-array. 

% ---------------------------------------------------------------
% CMA-ES: Evolution Strategy with Covariance Matrix Adaptation for
% nonlinear function minimization. To be used under the terms of the
% GNU General Public License (http://www.gnu.org/copyleft/gpl.html).
% Author (copyright): Nikolaus Hansen, 2001-2008. 
% e-mail: nikolaus.hansen AT inria.fr
% URL:http://www.bionik.tu-berlin.de/user/niko
% References: See below. 
% ---------------------------------------------------------------
%
% GENERAL PURPOSE: The CMA-ES (Evolution Strategy with Covariance
% Matrix Adaptation) is a robust search method which should be
% applied, if derivative based methods, e.g. quasi-Newton BFGS or
% conjucate gradient, (supposably) fail due to a rugged search
% landscape (e.g. noise, local optima, outlier, etc.). On smooth
% landscapes CMA-ES is roughly ten times slower than BFGS. For up to
% N=10 variables even the simplex direct search method (Nelder & Mead)
% is often faster, but far less robust than CMA-ES.  To see the
% advantage of the CMA, it will usually take at least 30*N and up to
% 300*N function evaluations, where N is the search problem dimension.
% On considerably hard problems the complete search (a single run) is
% expected to take at least 30*N^2 and up to 300*N^2 function
% evaluations.
%
% SOME MORE COMMENTS: 
% The adaptation of the covariance matrix (e.g. by the CMA) is
% equivalent to a general linear transformation of the problem
% coding. Nevertheless every problem specific knowlegde about the best
% linear transformation should be exploited before starting the
% search. That is, an appropriate a priori transformation should be
% applied to the problem. This also makes the identity matrix as
% initial covariance matrix the best choice.
%
% The strategy parameter lambda (population size, opts.PopSize) is the
% preferred strategy parameter to play with.  If results with the
% default strategy are not satisfactory, increase the population
% size. (Remark that the crucial parameter mu (opts.ParentNumber) is
% increased proportionally to lambda). This will improve the
% strategies capability of handling noise and local minima. We
% recomment successively increasing lambda by a factor of about three,
% starting with initial values between 5 and 20. Casually, population
% sizes even beyond 1000+100*N can be sensible.
%
%
% ---------------------------------------------------------------
%%% REFERENCES
%
% The equation numbers refer to 
% Hansen, N. and S. Kern (2004). Evaluating the CMA Evolution
% Strategy on Multimodal Test Functions.  Eighth International
% Conference on Parallel Problem Solving from Nature PPSN VIII,
% Proceedings, pp. 282-291, Berlin: Springer. 
% (http://www.bionik.tu-berlin.de/user/niko/ppsn2004hansenkern.pdf)
% 
% Further references:
% Hansen, N. and A. Ostermeier (2001). Completely Derandomized
% Self-Adaptation in Evolution Strategies. Evolutionary Computation,
% 9(2), pp. 159-195.
% (http://www.bionik.tu-berlin.de/user/niko/cmaartic.pdf).
%
% Hansen, N., S.D. Mueller and P. Koumoutsakos (2003). Reducing the
% Time Complexity of the Derandomized Evolution Strategy with
% Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation,
% 11(1).  (http://mitpress.mit.edu/journals/pdf/evco_11_1_1_0.pdf).
%
% Ros, R. and N. Hansen (2008). A Simple Modification in CMA-ES
% Achieving Linear Time and Space Complexity. To appear in Tenth
% International Conference on Parallel Problem Solving from Nature
% PPSN X, Proceedings, Berlin: Springer.
%
% Hansen, N., A.S.P. Niederberger, L. Guzzella and P. Koumoutsakos
% (2009?). A Method for Handling Uncertainty in Evolutionary
% Optimization with an Application to Feedback Control of
% Combustion. To appear in IEEE Transactions on Evolutionary
% Computation.