/usr/share/dynare/matlab/cmaes.m is in dynare-common 4.4.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 | function [xmin, ... % minimum search point of last iteration
fmin, ... % function value of xmin
counteval, ... % number of function evaluations done
stopflag, ... % stop criterion reached
out, ... % struct with various histories and solutions
bestever ... % struct containing overall best solution (for convenience)
] = cmaes( ...
fitfun, ... % name of objective/fitness function
xstart, ... % objective variables initial point, determines N
insigma, ... % initial coordinate wise standard deviation(s)
inopts, ... % options struct, see defopts below
varargin ) % arguments passed to objective function
% cmaes.m, Version 3.56.beta, last change: February, 2012
% CMAES implements an Evolution Strategy with Covariance Matrix
% Adaptation (CMA-ES) for nonlinear function minimization. For
% introductory comments and copyright (GPL) see end of file (type
% 'type cmaes'). cmaes.m runs with MATLAB (Windows, Linux) and,
% without data logging and plotting, it should run under Octave
% (Linux, package octave-forge is needed).
%
% OPTS = CMAES returns default options.
% OPTS = CMAES('defaults') returns default options quietly.
% OPTS = CMAES('displayoptions') displays options.
% OPTS = CMAES('defaults', OPTS) supplements options OPTS with default
% options.
%
% XMIN = CMAES(FUN, X0, SIGMA[, OPTS]) locates the minimum XMIN of
% function FUN starting from column vector X0 with the initial
% coordinate wise search standard deviation SIGMA.
%
% Input arguments:
%
% FUN is a string function name like 'myfun'. FUN takes as argument a
% column vector of size of X0 and returns a scalar. An easy way to
% implement a hard non-linear constraint is to return NaN. Then,
% this function evaluation is not counted and a newly sampled
% point is tried immediately.
%
% X0 is a column vector, or a matrix, or a string. If X0 is a matrix,
% mean(X0, 2) is taken as initial point. If X0 is a string like
% '2*rand(10,1)-1', the string is evaluated first.
%
% SIGMA is a scalar, or a column vector of size(X0,1), or a string
% that can be evaluated into one of these. SIGMA determines the
% initial coordinate wise standard deviations for the search.
% Setting SIGMA one third of the initial search region is
% appropriate, e.g., the initial point in [0, 6]^10 and SIGMA=2
% means cmaes('myfun', 3*rand(10,1), 2). If SIGMA is missing and
% size(X0,2) > 1, SIGMA is set to sqrt(var(X0')'). That is, X0 is
% used as a sample for estimating initial mean and variance of the
% search distribution.
%
% OPTS (an optional argument) is a struct holding additional input
% options. Valid field names and a short documentation can be
% discovered by looking at the default options (type 'cmaes'
% without arguments, see above). Empty or missing fields in OPTS
% invoke the default value, i.e. OPTS needs not to have all valid
% field names. Capitalization does not matter and unambiguous
% abbreviations can be used for the field names. If a string is
% given where a numerical value is needed, the string is evaluated
% by eval, where 'N' expands to the problem dimension
% (==size(X0,1)) and 'popsize' to the population size.
%
% [XMIN, FMIN, COUNTEVAL, STOPFLAG, OUT, BESTEVER] = ...
% CMAES(FITFUN, X0, SIGMA)
% returns the best (minimal) point XMIN (found in the last
% generation); function value FMIN of XMIN; the number of needed
% function evaluations COUNTEVAL; a STOPFLAG value as cell array,
% where possible entries are 'fitness', 'tolx', 'tolupx', 'tolfun',
% 'maxfunevals', 'maxiter', 'stoptoresume', 'manual',
% 'warnconditioncov', 'warnnoeffectcoord', 'warnnoeffectaxis',
% 'warnequalfunvals', 'warnequalfunvalhist', 'bug' (use
% e.g. any(strcmp(STOPFLAG, 'tolx')) or findstr(strcat(STOPFLAG,
% 'tolx')) for further processing); a record struct OUT with some
% more output, where the struct SOLUTIONS.BESTEVER contains the overall
% best evaluated point X with function value F evaluated at evaluation
% count EVALS. The last output argument BESTEVER equals
% OUT.SOLUTIONS.BESTEVER. Moreover a history of solutions and
% parameters is written to files according to the Log-options.
%
% A regular manual stop can be achieved via the file signals.par. The
% program is terminated if the first two non-white sequences in any
% line of this file are 'stop' and the value of the LogFilenamePrefix
% option (by default 'outcmaes'). Also a run can be skipped.
% Given, for example, 'skip outcmaes run 2', skips the second run
% if option Restarts is at least 2, and another run will be started.
%
% To run the code completely silently set Disp, Save, and Log options
% to 0. With OPTS.LogModulo > 0 (1 by default) the most important
% data are written to ASCII files permitting to investigate the
% results (e.g. plot with function plotcmaesdat) even while CMAES is
% still running (which can be quite useful on expensive objective
% functions). When OPTS.SaveVariables==1 (default) everything is saved
% in file OPTS.SaveFilename (default 'variablescmaes.mat') allowing to
% resume the search afterwards by using the resume option.
%
% To find the best ever evaluated point load the variables typing
% "es=load('variablescmaes')" and investigate the variable
% es.out.solutions.bestever.
%
% In case of a noisy objective function (uncertainties) set
% OPTS.Noise.on = 1. This option interferes presumably with some
% termination criteria, because the step-size sigma will presumably
% not converge to zero anymore. If CMAES was provided with a
% fifth argument (P1 in the below example, which is passed to the
% objective function FUN), this argument is multiplied with the
% factor given in option Noise.alphaevals, each time the detected
% noise exceeds a threshold. This argument can be used within
% FUN, for example, as averaging number to reduce the noise level.
%
% OPTS.DiagonalOnly > 1 defines the number of initial iterations,
% where the covariance matrix remains diagonal and the algorithm has
% internally linear time complexity. OPTS.DiagonalOnly = 1 means
% keeping the covariance matrix always diagonal and this setting
% also exhibits linear space complexity. This can be particularly
% useful for dimension > 100. The default is OPTS.DiagonalOnly = 0.
%
% OPTS.CMA.active = 1 turns on "active CMA" with a negative update
% of the covariance matrix and checks for positive definiteness.
% OPTS.CMA.active = 2 does not check for pos. def. and is numerically
% faster. Active CMA usually speeds up the adaptation and might
% become a default in near future.
%
% The primary strategy parameter to play with is OPTS.PopSize, which
% can be increased from its default value. Increasing the population
% size (by default linked to increasing parent number OPTS.ParentNumber)
% improves global search properties in exchange to speed. Speed
% decreases, as a rule, at most linearely with increasing population
% size. It is advisable to begin with the default small population
% size. The options Restarts and IncPopSize can be used for an
% automated multistart where the population size is increased by the
% factor IncPopSize (two by default) before each restart. X0 (given as
% string) is reevaluated for each restart. Stopping options
% StopFunEvals, StopIter, MaxFunEvals, and Fitness terminate the
% program, all others including MaxIter invoke another restart, where
% the iteration counter is reset to zero.
%
% Examples:
%
% XMIN = cmaes('myfun', 5*ones(10,1), 1.5); starts the search at
% 10D-point 5 and initially searches mainly between 5-3 and 5+3
% (+- two standard deviations), but this is not a strict bound.
% 'myfun' is a name of a function that returns a scalar from a 10D
% column vector.
%
% opts.LBounds = 0; opts.UBounds = 10;
% X=cmaes('myfun', 10*rand(10,1), 5, opts);
% search within lower bound of 0 and upper bound of 10. Bounds can
% also be given as column vectors. If the optimum is not located
% on the boundary, use rather a penalty approach to handle bounds.
%
% opts=cmaes; opts.StopFitness=1e-10;
% X=cmaes('myfun', rand(5,1), 0.5, opts); stops the search, if
% the function value is smaller than 1e-10.
%
% [X, F, E, STOP, OUT] = cmaes('myfun2', 'rand(5,1)', 1, [], P1, P2);
% passes two additional parameters to the function MYFUN2.
%
% Copyright (C) 2001-2012 Nikolaus Hansen,
% Copyright (C) 2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
cmaVersion = '3.60.beta';
% ----------- Set Defaults for Input Parameters and Options -------------
% These defaults may be edited for convenience
% Input Defaults (obsolete, these are obligatory now)
definput.fitfun = 'felli'; % frosen; fcigar; see end of file for more
definput.xstart = rand(10,1); % 0.50*ones(10,1);
definput.sigma = 0.3;
% Options defaults: Stopping criteria % (value of stop flag)
defopts.StopFitness = '-Inf % stop if f(xmin) < stopfitness, minimization';
defopts.MaxFunEvals = 'Inf % maximal number of fevals';
defopts.MaxIter = '1e3*(N+5)^2/sqrt(popsize) % maximal number of iterations';
defopts.StopFunEvals = 'Inf % stop after resp. evaluation, possibly resume later';
defopts.StopIter = 'Inf % stop after resp. iteration, possibly resume later';
defopts.TolX = '1e-11*max(insigma) % stop if x-change smaller TolX';
defopts.TolUpX = '1e3*max(insigma) % stop if x-changes larger TolUpX';
defopts.TolFun = '1e-12 % stop if fun-changes smaller TolFun';
defopts.TolHistFun = '1e-13 % stop if back fun-changes smaller TolHistFun';
defopts.StopOnStagnation = 'on % stop when fitness stagnates for a long time';
defopts.StopOnWarnings = 'yes % ''no''==''off''==0, ''on''==''yes''==1 ';
defopts.StopOnEqualFunctionValues = '2 + N/3 % number of iterations';
% Options defaults: Other
defopts.DiffMaxChange = 'Inf % maximal variable change(s), can be Nx1-vector';
defopts.DiffMinChange = '0 % minimal variable change(s), can be Nx1-vector';
defopts.WarnOnEqualFunctionValues = ...
'yes % ''no''==''off''==0, ''on''==''yes''==1 ';
defopts.LBounds = '-Inf % lower bounds, scalar or Nx1-vector';
defopts.UBounds = 'Inf % upper bounds, scalar or Nx1-vector';
defopts.EvalParallel = 'no % objective function FUN accepts NxM matrix, with M>1?';
defopts.EvalInitialX = 'yes % evaluation of initial solution';
defopts.Restarts = '0 % number of restarts ';
defopts.IncPopSize = '2 % multiplier for population size before each restart';
defopts.PopSize = '(4 + floor(3*log(N))) % population size, lambda';
defopts.ParentNumber = 'floor(popsize/2) % AKA mu, popsize equals lambda';
defopts.RecombinationWeights = 'superlinear decrease % or linear, or equal';
defopts.DiagonalOnly = '0*(1+100*N/sqrt(popsize))+(N>=1000) % C is diagonal for given iterations, 1==always';
defopts.Noise.on = '0 % uncertainty handling is off by default';
defopts.Noise.reevals = '1*ceil(0.05*lambda) % nb. of re-evaluated for uncertainty measurement';
defopts.Noise.theta = '0.5 % threshold to invoke uncertainty treatment'; % smaller: more likely to diverge
defopts.Noise.cum = '0.3 % cumulation constant for uncertainty';
defopts.Noise.cutoff = '2*lambda/3 % rank change cutoff for summation';
defopts.Noise.alphasigma = '1+2/(N+10) % factor for increasing sigma'; % smaller: slower adaptation
defopts.Noise.epsilon = '1e-7 % additional relative perturbation before reevaluation';
defopts.Noise.minmaxevals = '[1 inf] % min and max value of 2nd arg to fitfun, start value is 5th arg to cmaes';
defopts.Noise.alphaevals = '1+2/(N+10) % factor for increasing 2nd arg to fitfun';
defopts.Noise.callback = '[] % callback function when uncertainty threshold is exceeded';
% defopts.TPA = 0;
defopts.CMA.cs = '(mueff+2)/(N+mueff+3) % cumulation constant for step-size';
%qqq cs = (mueff^0.5)/(N^0.5+mueff^0.5) % the short time horizon version
defopts.CMA.damps = '1 + 2*max(0,sqrt((mueff-1)/(N+1))-1) + cs % damping for step-size';
% defopts.CMA.ccum = '4/(N+4) % cumulation constant for covariance matrix';
defopts.CMA.ccum = '(4 + mueff/N) / (N+4 + 2*mueff/N) % cumulation constant for pc';
defopts.CMA.ccov1 = '2 / ((N+1.3)^2+mueff) % learning rate for rank-one update';
defopts.CMA.ccovmu = '2 * (mueff-2+1/mueff) / ((N+2)^2+mueff) % learning rate for rank-mu update';
defopts.CMA.on = 'yes';
defopts.CMA.active = '0 % active CMA 1: neg. updates with pos. def. check, 2: neg. updates';
flg_future_setting = 0; % testing for possible future variant(s)
if flg_future_setting
disp('in the future')
% damps setting from Brockhoff et al 2010
% this damps diverges with popsize 400:
% cmaeshtml('benchmarkszero', ones(20,1)*2, 5, o, 15);
defopts.CMA.damps = '2*mueff/lambda + 0.3 + cs % damping for step-size'; % cs: for large mueff
% how about:
% defopts.CMA.damps = '2*mueff/lambda + 0.3 + 2*max(0,sqrt((mueff-1)/(N+1))-1) + cs % damping for step-size';
% ccum adjusted for large mueff, better on schefelmult?
% TODO: this should also depend on diagonal option!?
defopts.CMA.ccum = '(4 + mueff/N) / (N+4 + 2*mueff/N) % cumulation constant for pc';
defopts.CMA.active = '1 % active CMA 1: neg. updates with pos. def. check, 2: neg. updates';
end
defopts.Resume = 'no % resume former run from SaveFile';
defopts.Science = 'on % off==do some additional (minor) problem capturing, NOT IN USE';
defopts.ReadSignals = 'on % from file signals.par for termination, yet a stumb';
defopts.Seed = 'sum(100*clock) % evaluated if it is a string';
defopts.DispFinal = 'on % display messages like initial and final message';
defopts.DispModulo = '100 % [0:Inf], disp messages after every i-th iteration';
defopts.SaveVariables = 'on % [on|final|off][-v6] save variables to .mat file';
defopts.SaveFilename = 'variablescmaes.mat % save all variables, see SaveVariables';
defopts.LogModulo = '1 % [0:Inf] if >1 record data less frequently after gen=100';
defopts.LogTime = '25 % [0:100] max. percentage of time for recording data';
defopts.LogFilenamePrefix = 'outcmaes % files for output data';
defopts.LogPlot = 'off % plot while running using output data files';
%qqqkkk
%defopts.varopt1 = ''; % 'for temporary and hacking purposes';
%defopts.varopt2 = ''; % 'for temporary and hacking purposes';
defopts.UserData = 'for saving data/comments associated with the run';
defopts.UserDat2 = ''; 'for saving data/comments associated with the run';
% ---------------------- Handling Input Parameters ----------------------
if nargin < 1 || isequal(fitfun, 'defaults') % pass default options
if nargin < 1
disp('Default options returned (type "help cmaes" for help).');
end
xmin = defopts;
if nargin > 1 % supplement second argument with default options
xmin = getoptions(xstart, defopts);
end
return;
end
if isequal(fitfun, 'displayoptions')
names = fieldnames(defopts);
for name = names'
disp([name{:} repmat(' ', 1, 20-length(name{:})) ': ''' defopts.(name{:}) '''']);
end
return;
end
input.fitfun = fitfun; % record used input
if isempty(fitfun)
% fitfun = definput.fitfun;
% warning(['Objective function not determined, ''' fitfun ''' used']);
error(['Objective function not determined']);
end
if ~ischar(fitfun)
error('first argument FUN must be a string');
end
if nargin < 2
xstart = [];
end
input.xstart = xstart;
if isempty(xstart)
% xstart = definput.xstart; % objective variables initial point
% warning('Initial search point, and problem dimension, not determined');
error('Initial search point, and problem dimension, not determined');
end
if nargin < 3
insigma = [];
end
if isa(insigma, 'struct')
error(['Third argument SIGMA must be (or eval to) a scalar '...
'or a column vector of size(X0,1)']);
end
input.sigma = insigma;
if isempty(insigma)
if all(size(myeval(xstart)) > 1)
insigma = std(xstart, 0, 2);
if any(insigma == 0)
error(['Initial search volume is zero, choose SIGMA or X0 appropriate']);
end
else
% will be captured later
% error(['Initial step sizes (SIGMA) not determined']);
end
end
% Compose options opts
if nargin < 4 || isempty(inopts) % no input options available
inopts = [];
opts = defopts;
else
opts = getoptions(inopts, defopts);
end
i = strfind(opts.SaveFilename, ' '); % remove everything after white space
if ~isempty(i)
opts.SaveFilename = opts.SaveFilename(1:i(1)-1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
counteval = 0; countevalNaN = 0;
irun = 0;
while irun <= myeval(opts.Restarts) % for-loop does not work with resume
irun = irun + 1;
% ------------------------ Initialization -------------------------------
% Handle resuming of old run
flgresume = myevalbool(opts.Resume);
xmean = myeval(xstart);
if all(size(xmean) > 1)
xmean = mean(xmean, 2); % in case if xstart is a population
elseif size(xmean, 2) > 1
xmean = xmean';
end
if ~flgresume % not resuming a former run
% Assign settings from input parameters and options for myeval...
N = size(xmean, 1); numberofvariables = N;
lambda0 = floor(myeval(opts.PopSize) * myeval(opts.IncPopSize)^(irun-1));
% lambda0 = floor(myeval(opts.PopSize) * 3^floor((irun-1)/2));
popsize = lambda0;
lambda = lambda0;
insigma = myeval(insigma);
if all(size(insigma) == [N 2])
insigma = 0.5 * (insigma(:,2) - insigma(:,1));
end
else % flgresume is true, do resume former run
tmp = whos('-file', opts.SaveFilename);
for i = 1:length(tmp)
if strcmp(tmp(i).name, 'localopts');
error('Saved variables include variable "localopts", please remove');
end
end
local.opts = opts; % keep stopping and display options
local.varargin = varargin;
load(opts.SaveFilename);
varargin = local.varargin;
flgresume = 1;
% Overwrite old stopping and display options
opts.StopFitness = local.opts.StopFitness;
%%opts.MaxFunEvals = local.opts.MaxFunEvals;
%%opts.MaxIter = local.opts.MaxIter;
opts.StopFunEvals = local.opts.StopFunEvals;
opts.StopIter = local.opts.StopIter;
opts.TolX = local.opts.TolX;
opts.TolUpX = local.opts.TolUpX;
opts.TolFun = local.opts.TolFun;
opts.TolHistFun = local.opts.TolHistFun;
opts.StopOnStagnation = local.opts.StopOnStagnation;
opts.StopOnWarnings = local.opts.StopOnWarnings;
opts.ReadSignals = local.opts.ReadSignals;
opts.DispFinal = local.opts.DispFinal;
opts.LogPlot = local.opts.LogPlot;
opts.DispModulo = local.opts.DispModulo;
opts.SaveVariables = local.opts.SaveVariables;
opts.LogModulo = local.opts.LogModulo;
opts.LogTime = local.opts.LogTime;
clear local; % otherwise local would be overwritten during load
end
%--------------------------------------------------------------
% Evaluate options
stopFitness = myeval(opts.StopFitness);
stopMaxFunEvals = myeval(opts.MaxFunEvals);
stopMaxIter = myeval(opts.MaxIter);
stopFunEvals = myeval(opts.StopFunEvals);
stopIter = myeval(opts.StopIter);
stopTolX = myeval(opts.TolX);
stopTolUpX = myeval(opts.TolUpX);
stopTolFun = myeval(opts.TolFun);
stopTolHistFun = myeval(opts.TolHistFun);
stopOnStagnation = myevalbool(opts.StopOnStagnation);
stopOnWarnings = myevalbool(opts.StopOnWarnings);
flgreadsignals = myevalbool(opts.ReadSignals);
flgWarnOnEqualFunctionValues = myevalbool(opts.WarnOnEqualFunctionValues);
flgEvalParallel = myevalbool(opts.EvalParallel);
stopOnEqualFunctionValues = myeval(opts.StopOnEqualFunctionValues);
arrEqualFunvals = zeros(1,10+N);
flgDiagonalOnly = myeval(opts.DiagonalOnly);
flgActiveCMA = myeval(opts.CMA.active);
noiseHandling = myevalbool(opts.Noise.on);
noiseMinMaxEvals = myeval(opts.Noise.minmaxevals);
noiseAlphaEvals = myeval(opts.Noise.alphaevals);
noiseCallback = myeval(opts.Noise.callback);
flgdisplay = myevalbool(opts.DispFinal);
flgplotting = myevalbool(opts.LogPlot);
verbosemodulo = myeval(opts.DispModulo);
flgscience = myevalbool(opts.Science);
flgsaving = [];
strsaving = [];
if strfind(opts.SaveVariables, '-v6')
i = strfind(opts.SaveVariables, '%');
if isempty(i) || i == 0 || strfind(opts.SaveVariables, '-v6') < i
strsaving = '-v6';
flgsaving = 1;
flgsavingfinal = 1;
end
end
if strncmp('final', opts.SaveVariables, 5)
flgsaving = 0;
flgsavingfinal = 1;
end
if isempty(flgsaving)
flgsaving = myevalbool(opts.SaveVariables);
flgsavingfinal = flgsaving;
end
savemodulo = myeval(opts.LogModulo);
savetime = myeval(opts.LogTime);
i = strfind(opts.LogFilenamePrefix, ' '); % remove everything after white space
if ~isempty(i)
opts.LogFilenamePrefix = opts.LogFilenamePrefix(1:i(1)-1);
end
% TODO here silent option? set disp, save and log options to 0
%--------------------------------------------------------------
if (isfinite(stopFunEvals) || isfinite(stopIter)) && ~flgsaving
warning('To resume later the saving option needs to be set');
end
% Do more checking and initialization
if flgresume % resume is on
time.t0 = clock;
if flgdisplay
disp([' resumed from ' opts.SaveFilename ]);
end
if counteval >= stopMaxFunEvals
error(['MaxFunEvals exceeded, use StopFunEvals as stopping ' ...
'criterion before resume']);
end
if countiter >= stopMaxIter
error(['MaxIter exceeded, use StopIter as stopping criterion ' ...
'before resume']);
end
else % flgresume
% xmean = mean(myeval(xstart), 2); % evaluate xstart again, because of irun
maxdx = myeval(opts.DiffMaxChange); % maximal sensible variable change
mindx = myeval(opts.DiffMinChange); % minimal sensible variable change
% can both also be defined as Nx1 vectors
lbounds = myeval(opts.LBounds);
ubounds = myeval(opts.UBounds);
if length(lbounds) == 1
lbounds = repmat(lbounds, N, 1);
end
if length(ubounds) == 1
ubounds = repmat(ubounds, N, 1);
end
if isempty(insigma) % last chance to set insigma
if all(lbounds > -Inf) && all(ubounds < Inf)
if any(lbounds>=ubounds)
error('upper bound must be greater than lower bound');
end
insigma = 0.3*(ubounds-lbounds);
stopTolX = myeval(opts.TolX); % reevaluate these
stopTolUpX = myeval(opts.TolUpX);
else
error(['Initial step sizes (SIGMA) not determined']);
end
end
% Check all vector sizes
if size(xmean, 2) > 1 || size(xmean,1) ~= N
error(['intial search point should be a column vector of size ' ...
num2str(N)]);
elseif ~(all(size(insigma) == [1 1]) || all(size(insigma) == [N 1]))
error(['input parameter SIGMA should be (or eval to) a scalar '...
'or a column vector of size ' num2str(N)] );
elseif size(stopTolX, 2) > 1 || ~ismember(size(stopTolX, 1), [1 N])
error(['option TolX should be (or eval to) a scalar '...
'or a column vector of size ' num2str(N)] );
elseif size(stopTolUpX, 2) > 1 || ~ismember(size(stopTolUpX, 1), [1 N])
error(['option TolUpX should be (or eval to) a scalar '...
'or a column vector of size ' num2str(N)] );
elseif size(maxdx, 2) > 1 || ~ismember(size(maxdx, 1), [1 N])
error(['option DiffMaxChange should be (or eval to) a scalar '...
'or a column vector of size ' num2str(N)] );
elseif size(mindx, 2) > 1 || ~ismember(size(mindx, 1), [1 N])
error(['option DiffMinChange should be (or eval to) a scalar '...
'or a column vector of size ' num2str(N)] );
elseif size(lbounds, 2) > 1 || ~ismember(size(lbounds, 1), [1 N])
error(['option lbounds should be (or eval to) a scalar '...
'or a column vector of size ' num2str(N)] );
elseif size(ubounds, 2) > 1 || ~ismember(size(ubounds, 1), [1 N])
error(['option ubounds should be (or eval to) a scalar '...
'or a column vector of size ' num2str(N)] );
end
% Initialize dynamic internal state parameters
if any(insigma <= 0)
error(['Initial search volume (SIGMA) must be greater than zero']);
end
if max(insigma)/min(insigma) > 1e6
error(['Initial search volume (SIGMA) badly conditioned']);
end
sigma = max(insigma); % overall standard deviation
pc = zeros(N,1); ps = zeros(N,1); % evolution paths for C and sigma
if length(insigma) == 1
insigma = insigma * ones(N,1) ;
end
diagD = insigma/max(insigma); % diagonal matrix D defines the scaling
diagC = diagD.^2;
if flgDiagonalOnly ~= 1 % use at some point full covariance matrix
B = eye(N,N); % B defines the coordinate system
BD = B.*repmat(diagD',N,1); % B*D for speed up only
C = diag(diagC); % covariance matrix == BD*(BD)'
end
if flgDiagonalOnly
B = 1;
end
fitness.hist=NaN*ones(1,10+ceil(3*10*N/lambda)); % history of fitness values
fitness.histsel=NaN*ones(1,10+ceil(3*10*N/lambda)); % history of fitness values
fitness.histbest=[]; % history of fitness values
fitness.histmedian=[]; % history of fitness values
% Initialize boundary handling
bnd.isactive = any(lbounds > -Inf) || any(ubounds < Inf);
if bnd.isactive
if any(lbounds>ubounds)
error('lower bound found to be greater than upper bound');
end
[xmean ti] = xintobounds(xmean, lbounds, ubounds); % just in case
if any(ti)
warning('Initial point was out of bounds, corrected');
end
bnd.weights = zeros(N,1); % weights for bound penalty
% scaling is better in axis-parallel case, worse in rotated
bnd.flgscale = 0; % scaling will be omitted if zero
if bnd.flgscale ~= 0
bnd.scale = diagC/mean(diagC);
else
bnd.scale = ones(N,1);
end
idx = (lbounds > -Inf) | (ubounds < Inf);
if length(idx) == 1
idx = idx * ones(N,1);
end
bnd.isbounded = zeros(N,1);
bnd.isbounded(find(idx)) = 1;
maxdx = min(maxdx, (ubounds - lbounds)/2);
if any(sigma*sqrt(diagC) > maxdx)
fac = min(maxdx ./ sqrt(diagC))/sigma;
sigma = min(maxdx ./ sqrt(diagC));
warning(['Initial SIGMA multiplied by the factor ' num2str(fac) ...
', because it was larger than half' ...
' of one of the boundary intervals']);
end
idx = (lbounds > -Inf) & (ubounds < Inf);
dd = diagC;
if any(5*sigma*sqrt(dd(idx)) < ubounds(idx) - lbounds(idx))
warning(['Initial SIGMA is, in at least one coordinate, ' ...
'much smaller than the '...
'given boundary intervals. For reasonable ' ...
'global search performance SIGMA should be ' ...
'between 0.2 and 0.5 of the bounded interval in ' ...
'each coordinate. If all coordinates have ' ...
'lower and upper bounds SIGMA can be empty']);
end
bnd.dfithist = 1; % delta fit for setting weights
bnd.aridxpoints = []; % remember complete outside points
bnd.arfitness = []; % and their fitness
bnd.validfitval = 0;
bnd.iniphase = 1;
end
% ooo initial feval, for output only
if irun == 1
out.solutions.bestever.x = xmean;
out.solutions.bestever.f = Inf; % for simpler comparison below
out.solutions.bestever.evals = counteval;
bestever = out.solutions.bestever;
end
if myevalbool(opts.EvalInitialX)
fitness.hist(1)=feval(fitfun, xmean, varargin{:});
fitness.histsel(1)=fitness.hist(1);
counteval = counteval + 1;
if fitness.hist(1) < out.solutions.bestever.f
out.solutions.bestever.x = xmean;
out.solutions.bestever.f = fitness.hist(1);
out.solutions.bestever.evals = counteval;
bestever = out.solutions.bestever;
end
else
fitness.hist(1)=NaN;
fitness.histsel(1)=NaN;
end
% initialize random number generator
% $$$ if ischar(opts.Seed)
% $$$ randn('state', eval(opts.Seed)); % random number generator state
% $$$ else
% $$$ randn('state', opts.Seed);
% $$$ end
%qqq
% load(opts.SaveFilename, 'startseed');
% randn('state', startseed);
% disp(['SEED RELOADED FROM ' opts.SaveFilename]);
% startseed = randn('state'); % for retrieving in saved variables
% Initialize further constants
chiN=N^0.5*(1-1/(4*N)+1/(21*N^2)); % expectation of
% ||N(0,I)|| == norm(randn(N,1))
countiter = 0;
% Initialize records and output
if irun == 1
time.t0 = clock;
% TODO: keep also median solution?
out.evals = counteval; % should be first entry
out.stopflag = {};
outiter = 0;
% Write headers to output data files
filenameprefix = opts.LogFilenamePrefix;
if savemodulo && savetime
filenames = {};
filenames(end+1) = {'axlen'};
filenames(end+1) = {'fit'};
filenames(end+1) = {'stddev'};
filenames(end+1) = {'xmean'};
filenames(end+1) = {'xrecentbest'};
str = [' (startseed=' num2str(startseed(2)) ...
', ' num2str(clock, '%d/%02d/%d %d:%d:%2.2f') ')'];
for namecell = filenames(:)'
name = namecell{:};
[fid, err] = fopen(['./' filenameprefix name '.dat'], 'w');
if fid < 1 % err ~= 0
warning(['could not open ' filenameprefix name '.dat']);
filenames(find(strcmp(filenames,name))) = [];
else
% fprintf(fid, '%s\n', ...
% ['<CMAES-OUTPUT version="' cmaVersion '">']);
% fprintf(fid, [' <NAME>' name '</NAME>\n']);
% fprintf(fid, [' <DATE>' date() '</DATE>\n']);
% fprintf(fid, ' <PARAMETERS>\n');
% fprintf(fid, [' dimension=' num2str(N) '\n']);
% fprintf(fid, ' </PARAMETERS>\n');
% different cases for DATA columns annotations here
% fprintf(fid, ' <DATA');
if strcmp(name, 'axlen')
fprintf(fid, ['%% columns="iteration, evaluation, sigma, ' ...
'max axis length, min axis length, ' ...
'all principal axes lengths (sorted square roots ' ...
'of eigenvalues of C)"' str]);
elseif strcmp(name, 'fit')
fprintf(fid, ['%% columns="iteration, evaluation, sigma, axis ratio, bestever,' ...
' best, median, worst fitness function value,' ...
' further objective values of best"' str]);
elseif strcmp(name, 'stddev')
fprintf(fid, ['%% columns=["iteration, evaluation, sigma, void, void, ' ...
'stds==sigma*sqrt(diag(C))"' str]);
elseif strcmp(name, 'xmean')
fprintf(fid, ['%% columns="iteration, evaluation, void, ' ...
'void, void, xmean"' str]);
elseif strcmp(name, 'xrecentbest')
fprintf(fid, ['%% columns="iteration, evaluation, fitness, ' ...
'void, void, xrecentbest"' str]);
end
fprintf(fid, '\n'); % DATA
if strcmp(name, 'xmean')
fprintf(fid, '%ld %ld 0 0 0 ', 0, counteval);
% fprintf(fid, '%ld %ld 0 0 %e ', countiter, counteval, fmean);
%qqq fprintf(fid, msprintf('%e ', genophenotransform(out.genopheno, xmean)) + '\n');
fprintf(fid, '%e ', xmean);
fprintf(fid, '\n');
end
fclose(fid);
clear fid; % preventing
end
end % for files
end % savemodulo
end % irun == 1
end % else flgresume
% -------------------- Generation Loop --------------------------------
stopflag = {};
while isempty(stopflag)
% set internal parameters
if countiter == 0 || lambda ~= lambda_last
if countiter > 0 && floor(log10(lambda)) ~= floor(log10(lambda_last)) ...
&& flgdisplay
disp([' lambda = ' num2str(lambda)]);
lambda_hist(:,end+1) = [countiter+1; lambda];
else
lambda_hist = [countiter+1; lambda];
end
lambda_last = lambda;
% Strategy internal parameter setting: Selection
mu = myeval(opts.ParentNumber); % number of parents/points for recombination
if strncmp(lower(opts.RecombinationWeights), 'equal', 3)
weights = ones(mu,1); % (mu_I,lambda)-CMA-ES
elseif strncmp(lower(opts.RecombinationWeights), 'linear', 3)
weights = mu+0.5-(1:mu)';
elseif strncmp(lower(opts.RecombinationWeights), 'superlinear', 3)
weights = log(mu+0.5)-log(1:mu)'; % muXone array for weighted recombination
% qqq mu can be non-integer and
% should become ceil(mu-0.5) (minor correction)
else
error(['Recombination weights to be "' opts.RecombinationWeights ...
'" is not implemented']);
end
mueff=sum(weights)^2/sum(weights.^2); % variance-effective size of mu
weights = weights/sum(weights); % normalize recombination weights array
if mueff == lambda
error(['Combination of values for PopSize, ParentNumber and ' ...
' and RecombinationWeights is not reasonable']);
end
% Strategy internal parameter setting: Adaptation
cc = myeval(opts.CMA.ccum); % time constant for cumulation for covariance matrix
cs = myeval(opts.CMA.cs);
% old way TODO: remove this at some point
% mucov = mueff; % size of mu used for calculating learning rate ccov
% ccov = (1/mucov) * 2/(N+1.41)^2 ... % learning rate for covariance matrix
% + (1-1/mucov) * min(1,(2*mucov-1)/((N+2)^2+mucov));
% new way
if myevalbool(opts.CMA.on)
ccov1 = myeval(opts.CMA.ccov1);
ccovmu = min(1-ccov1, myeval(opts.CMA.ccovmu));
else
ccov1 = 0;
ccovmu = 0;
end
% flgDiagonalOnly = -lambda*4*1/ccov; % for ccov==1 it is not needed
% 0 : C will never be diagonal anymore
% 1 : C will always be diagonal
% >1: C is diagonal for first iterations, set to 0 afterwards
if flgDiagonalOnly < 1
flgDiagonalOnly = 0;
end
if flgDiagonalOnly
ccov1_sep = min(1, ccov1 * (N+1.5) / 3);
ccovmu_sep = min(1-ccov1_sep, ccovmu * (N+1.5) / 3);
elseif N > 98 && flgdisplay && countiter == 0
disp('consider option DiagonalOnly for high-dimensional problems');
end
% ||ps|| is close to sqrt(mueff/N) for mueff large on linear fitness
%damps = ... % damping for step size control, usually close to one
% (1 + 2*max(0,sqrt((mueff-1)/(N+1))-1)) ... % limit sigma increase
% * max(0.3, ... % reduce damps, if max. iteration number is small
% 1 - N/min(stopMaxIter,stopMaxFunEvals/lambda)) + cs;
damps = myeval(opts.CMA.damps);
if noiseHandling
noiseReevals = min(myeval(opts.Noise.reevals), lambda);
noiseAlpha = myeval(opts.Noise.alphasigma);
noiseEpsilon = myeval(opts.Noise.epsilon);
noiseTheta = myeval(opts.Noise.theta);
noisecum = myeval(opts.Noise.cum);
noiseCutOff = myeval(opts.Noise.cutoff); % arguably of minor relevance
else
noiseReevals = 0; % more convenient in later coding
end
%qqq hacking of a different parameter setting, e.g. for ccov or damps,
% can be done here, but is not necessary anymore, see opts.CMA.
% ccov1 = 0.0*ccov1; disp(['CAVE: ccov1=' num2str(ccov1)]);
% ccovmu = 0.0*ccovmu; disp(['CAVE: ccovmu=' num2str(ccovmu)]);
% damps = inf*damps; disp(['CAVE: damps=' num2str(damps)]);
% cc = 1; disp(['CAVE: cc=' num2str(cc)]);
end
% Display initial message
if countiter == 0 && flgdisplay
if mu == 1
strw = '100';
elseif mu < 8
strw = [sprintf('%.0f', 100*weights(1)) ...
sprintf(' %.0f', 100*weights(2:end)')];
else
strw = [sprintf('%.2g ', 100*weights(1:2)') ...
sprintf('%.2g', 100*weights(3)') '...' ...
sprintf(' %.2g', 100*weights(end-1:end)') ']%, '];
end
if irun > 1
strrun = [', run ' num2str(irun)];
else
strrun = '';
end
disp([' n=' num2str(N) ': (' num2str(mu) ',' ...
num2str(lambda) ')-CMA-ES(w=[' ...
strw ']%, ' ...
'mu_eff=' num2str(mueff,'%.1f') ...
') on function ' ...
(fitfun) strrun]);
if flgDiagonalOnly == 1
disp(' C is diagonal');
elseif flgDiagonalOnly
disp([' C is diagonal for ' num2str(floor(flgDiagonalOnly)) ' iterations']);
end
end
flush;
countiter = countiter + 1;
% Generate and evaluate lambda offspring
fitness.raw = repmat(NaN, 1, lambda + noiseReevals);
% parallel evaluation
if flgEvalParallel
arz = randn(N,lambda);
if ~flgDiagonalOnly
arx = repmat(xmean, 1, lambda) + sigma * (BD * arz); % Eq. (1)
else
arx = repmat(xmean, 1, lambda) + repmat(sigma * diagD, 1, lambda) .* arz;
end
if noiseHandling
if noiseEpsilon == 0
arx = [arx arx(:,1:noiseReevals)];
elseif flgDiagonalOnly
arx = [arx arx(:,1:noiseReevals) + ...
repmat(noiseEpsilon * sigma * diagD, 1, noiseReevals) ...
.* randn(N,noiseReevals)];
else
arx = [arx arx(:,1:noiseReevals) + ...
noiseEpsilon * sigma * ...
(BD * randn(N,noiseReevals))];
end
end
% You may handle constraints here. You may either resample
% arz(:,k) and/or multiply it with a factor between -1 and 1
% (the latter will decrease the overall step size) and
% recalculate arx accordingly. Do not change arx or arz in any
% other way.
if ~bnd.isactive
arxvalid = arx;
else
arxvalid = xintobounds(arx, lbounds, ubounds);
end
% You may handle constraints here. You may copy and alter
% (columns of) arxvalid(:,k) only for the evaluation of the
% fitness function. arx and arxvalid should not be changed.
fitness.raw = feval(fitfun, arxvalid, varargin{:});
countevalNaN = countevalNaN + sum(isnan(fitness.raw));
counteval = counteval + sum(~isnan(fitness.raw));
end
% non-parallel evaluation and remaining NaN-values
% set also the reevaluated solution to NaN
fitness.raw(lambda + find(isnan(fitness.raw(1:noiseReevals)))) = NaN;
for k=find(isnan(fitness.raw)),
% fitness.raw(k) = NaN;
tries = 0;
% Resample, until fitness is not NaN
while isnan(fitness.raw(k))
if k <= lambda % regular samples (not the re-evaluation-samples)
arz(:,k) = randn(N,1); % (re)sample
if flgDiagonalOnly
arx(:,k) = xmean + sigma * diagD .* arz(:,k); % Eq. (1)
else
arx(:,k) = xmean + sigma * (BD * arz(:,k)); % Eq. (1)
end
else % re-evaluation solution with index > lambda
if flgDiagonalOnly
arx(:,k) = arx(:,k-lambda) + (noiseEpsilon * sigma) * diagD .* randn(N,1);
else
arx(:,k) = arx(:,k-lambda) + (noiseEpsilon * sigma) * (BD * randn(N,1));
end
end
% You may handle constraints here. You may either resample
% arz(:,k) and/or multiply it with a factor between -1 and 1
% (the latter will decrease the overall step size) and
% recalculate arx accordingly. Do not change arx or arz in any
% other way.
if ~bnd.isactive
arxvalid(:,k) = arx(:,k);
else
arxvalid(:,k) = xintobounds(arx(:,k), lbounds, ubounds);
end
% You may handle constraints here. You may copy and alter
% (columns of) arxvalid(:,k) only for the evaluation of the
% fitness function. arx should not be changed.
fitness.raw(k) = feval(fitfun, arxvalid(:,k), varargin{:});
tries = tries + 1;
if isnan(fitness.raw(k))
countevalNaN = countevalNaN + 1;
end
if mod(tries, 100) == 0
warning([num2str(tries) ...
' NaN objective function values at evaluation ' ...
num2str(counteval)]);
end
end
counteval = counteval + 1; % retries due to NaN are not counted
end
fitness.sel = fitness.raw;
% ----- handle boundaries -----
if 1 < 3 && bnd.isactive
% Get delta fitness values
val = myprctile(fitness.raw, [25 75]);
% more precise would be exp(mean(log(diagC)))
val = (val(2) - val(1)) / N / mean(diagC) / sigma^2;
%val = (myprctile(fitness.raw, 75) - myprctile(fitness.raw, 25)) ...
% / N / mean(diagC) / sigma^2;
% Catch non-sensible values
if ~isfinite(val)
warning('Non-finite fitness range');
val = max(bnd.dfithist);
elseif val == 0 % happens if all points are out of bounds
val = min(bnd.dfithist(bnd.dfithist>0)); % seems not to make sense, given all solutions are out of bounds
elseif bnd.validfitval == 0 % flag that first sensible val was found
bnd.dfithist = [];
bnd.validfitval = 1;
end
% Store delta fitness values
if length(bnd.dfithist) < 20+(3*N)/lambda
bnd.dfithist = [bnd.dfithist val];
else
bnd.dfithist = [bnd.dfithist(2:end) val];
end
[tx ti] = xintobounds(xmean, lbounds, ubounds);
% Set initial weights
if bnd.iniphase
if any(ti)
bnd.weights(find(bnd.isbounded)) = 2.0002 * median(bnd.dfithist);
if bnd.flgscale == 0 % scale only initial weights then
dd = diagC;
idx = find(bnd.isbounded);
dd = dd(idx) / mean(dd); % remove mean scaling
bnd.weights(idx) = bnd.weights(idx) ./ dd;
end
if bnd.validfitval && countiter > 2
bnd.iniphase = 0;
end
end
end
% Increase weights
if 1 < 3 && any(ti) % any coordinate of xmean out of bounds
% judge distance of xmean to boundary
tx = xmean - tx;
idx = (ti ~= 0 & abs(tx) > 3*max(1,sqrt(N)/mueff) ...
* sigma*sqrt(diagC)) ;
% only increase if xmean is moving away
idx = idx & (sign(tx) == sign(xmean - xold));
if ~isempty(idx) % increase
% the factor became 1.2 instead of 1.1, because
% changed from max to min in version 3.52
bnd.weights(idx) = 1.2^(min(1, mueff/10/N)) * bnd.weights(idx);
end
end
% Calculate scaling biased to unity, product is one
if bnd.flgscale ~= 0
bnd.scale = exp(0.9*(log(diagC)-mean(log(diagC))));
end
% Assigned penalized fitness
bnd.arpenalty = (bnd.weights ./ bnd.scale)' * (arxvalid - arx).^2;
fitness.sel = fitness.raw + bnd.arpenalty;
end % handle boundaries
% ----- end handle boundaries -----
% compute noise measurement and reduce fitness arrays to size lambda
if noiseHandling
[noiseS] = local_noisemeasurement(fitness.sel(1:lambda), ...
fitness.sel(lambda+(1:noiseReevals)), ...
noiseReevals, noiseTheta, noiseCutOff);
if countiter == 1 % TODO: improve this very rude way of initialization
noiseSS = 0;
noiseN = 0; % counter for mean
end
noiseSS = noiseSS + noisecum * (noiseS - noiseSS);
% noise-handling could be done here, but the original sigma is still needed
% disp([noiseS noiseSS noisecum])
fitness.rawar12 = fitness.raw; % just documentary
fitness.selar12 = fitness.sel; % just documentary
% qqq refine fitness based on both values
if 11 < 3 % TODO: in case of outliers this mean is counterproductive
% median out of three would be ok
fitness.raw(1:noiseReevals) = ... % not so raw anymore
(fitness.raw(1:noiseReevals) + fitness.raw(lambda+(1:noiseReevals))) / 2;
fitness.sel(1:noiseReevals) = ...
(fitness.sel(1:noiseReevals) + fitness.sel(lambda+(1:noiseReevals))) / 2;
end
fitness.raw = fitness.raw(1:lambda);
fitness.sel = fitness.sel(1:lambda);
end
% Sort by fitness
[fitness.raw, fitness.idx] = sort(fitness.raw);
[fitness.sel, fitness.idxsel] = sort(fitness.sel); % minimization
fitness.hist(2:end) = fitness.hist(1:end-1); % record short history of
fitness.hist(1) = fitness.raw(1); % best fitness values
if length(fitness.histbest) < 120+ceil(30*N/lambda) || ...
(mod(countiter, 5) == 0 && length(fitness.histbest) < 2e4) % 20 percent of 1e5 gen.
fitness.histbest = [fitness.raw(1) fitness.histbest]; % best fitness values
fitness.histmedian = [median(fitness.raw) fitness.histmedian]; % median fitness values
else
fitness.histbest(2:end) = fitness.histbest(1:end-1);
fitness.histmedian(2:end) = fitness.histmedian(1:end-1);
fitness.histbest(1) = fitness.raw(1); % best fitness values
fitness.histmedian(1) = median(fitness.raw); % median fitness values
end
fitness.histsel(2:end) = fitness.histsel(1:end-1); % record short history of
fitness.histsel(1) = fitness.sel(1); % best sel fitness values
% Calculate new xmean, this is selection and recombination
xold = xmean; % for speed up of Eq. (2) and (3)
xmean = arx(:,fitness.idxsel(1:mu))*weights;
zmean = arz(:,fitness.idxsel(1:mu))*weights;%==D^-1*B'*(xmean-xold)/sigma
if mu == 1
fmean = fitness.sel(1);
else
fmean = NaN; % [] does not work in the latter assignment
% fmean = feval(fitfun, xintobounds(xmean, lbounds, ubounds), varargin{:});
% counteval = counteval + 1;
end
% Cumulation: update evolution paths
ps = (1-cs)*ps + sqrt(cs*(2-cs)*mueff) * (B*zmean); % Eq. (4)
hsig = norm(ps)/sqrt(1-(1-cs)^(2*countiter))/chiN < 1.4 + 2/(N+1);
if flg_future_setting
hsig = sum(ps.^2) / (1-(1-cs)^(2*countiter)) / N < 2 + 4/(N+1); % just simplified
end
% hsig = norm(ps)/sqrt(1-(1-cs)^(2*countiter))/chiN < 1.4 + 2/(N+1);
% hsig = norm(ps)/sqrt(1-(1-cs)^(2*countiter))/chiN < 1.5 + 1/(N-0.5);
% hsig = norm(ps) < 1.5 * sqrt(N);
% hsig = 1;
pc = (1-cc)*pc ...
+ hsig*(sqrt(cc*(2-cc)*mueff)/sigma) * (xmean-xold); % Eq. (2)
if hsig == 0
% disp([num2str(countiter) ' ' num2str(counteval) ' pc update stalled']);
end
% Adapt covariance matrix
neg.ccov = 0; % TODO: move parameter setting upwards at some point
if ccov1 + ccovmu > 0 % Eq. (3)
if flgDiagonalOnly % internal linear(?) complexity
diagC = (1-ccov1_sep-ccovmu_sep+(1-hsig)*ccov1_sep*cc*(2-cc)) * diagC ... % regard old matrix
+ ccov1_sep * pc.^2 ... % plus rank one update
+ ccovmu_sep ... % plus rank mu update
* (diagC .* (arz(:,fitness.idxsel(1:mu)).^2 * weights));
% * (repmat(diagC,1,mu) .* arz(:,fitness.idxsel(1:mu)).^2 * weights);
diagD = sqrt(diagC); % replaces eig(C)
else
arpos = (arx(:,fitness.idxsel(1:mu))-repmat(xold,1,mu)) / sigma;
% "active" CMA update: negative update, in case controlling pos. definiteness
if flgActiveCMA > 0
% set parameters
neg.mu = mu;
neg.mueff = mueff;
if flgActiveCMA > 10 % flat weights with mu=lambda/2
neg.mu = floor(lambda/2);
neg.mueff = neg.mu;
end
% neg.mu = ceil(min([N, lambda/4, mueff])); neg.mueff = mu; % i.e. neg.mu <= N
% Parameter study: in 3-D lambda=50,100, 10-D lambda=200,400, 30-D lambda=1000,2000 a
% three times larger neg.ccov does not work.
% increasing all ccov rates three times does work (probably because of the factor (1-ccovmu))
% in 30-D to looks fine
neg.ccov = (1 - ccovmu) * 0.25 * neg.mueff / ((N+2)^1.5 + 2*neg.mueff);
neg.minresidualvariance = 0.66; % keep at least 0.66 in all directions, small popsize are most critical
neg.alphaold = 0.5; % where to make up for the variance loss, 0.5 means no idea what to do
% 1 is slightly more robust and gives a better "guaranty" for pos. def.,
% but does it make sense from the learning perspective for large ccovmu?
neg.ccovfinal = neg.ccov;
% prepare vectors, compute negative updating matrix Cneg and checking matrix Ccheck
arzneg = arz(:,fitness.idxsel(lambda:-1:lambda - neg.mu + 1));
% i-th longest becomes i-th shortest
% TODO: this is not in compliance with the paper Hansen&Ros2010,
% where simply arnorms = arnorms(end:-1:1) ?
[arnorms idxnorms] = sort(sqrt(sum(arzneg.^2, 1)));
[ignore idxnorms] = sort(idxnorms); % inverse index
arnormfacs = arnorms(end:-1:1) ./ arnorms;
% arnormfacs = arnorms(randperm(neg.mu)) ./ arnorms;
arnorms = arnorms(end:-1:1); % for the record
if flgActiveCMA < 20
arzneg = arzneg .* repmat(arnormfacs(idxnorms), N, 1); % E x*x' is N
% arzneg = sqrt(N) * arzneg ./ repmat(sqrt(sum(arzneg.^2, 1)), N, 1); % E x*x' is N
end
if flgActiveCMA < 10 && neg.mu == mu % weighted sum
if mod(flgActiveCMA, 10) == 1 % TODO: prevent this with a less tight but more efficient check (see below)
Ccheck = arzneg * diag(weights) * arzneg'; % in order to check the largest EV
end
artmp = BD * arzneg;
Cneg = artmp * diag(weights) * artmp';
else % simple sum
if mod(flgActiveCMA, 10) == 1
Ccheck = (1/neg.mu) * arzneg*arzneg'; % in order to check largest EV
end
artmp = BD * arzneg;
Cneg = (1/neg.mu) * artmp*artmp';
end
% check pos.def. and set learning rate neg.ccov accordingly,
% this check makes the original choice of neg.ccov extremly failsafe
% still assuming C == BD*BD', which is only approxim. correct
if mod(flgActiveCMA, 10) == 1 && 1 - neg.ccov * arnorms(idxnorms).^2 * weights < neg.minresidualvariance
% TODO: the simple and cheap way would be to set
% fac = 1 - ccovmu - ccov1 OR 1 - mueff/lambda and
% neg.ccov = fac*(1 - neg.minresidualvariance) / (arnorms(idxnorms).^2 * weights)
% this is the more sophisticated way:
% maxeigenval = eigs(arzneg * arzneg', 1, 'lm', eigsopts); % not faster
maxeigenval = max(eig(Ccheck)); % norm is much slower, because (norm()==max(svd())
%disp([countiter log10([neg.ccov, maxeigenval, arnorms(idxnorms).^2 * weights, max(arnorms)^2]), ...
% neg.ccov * arnorms(idxnorms).^2 * weights])
% pause
% remove less than ??34*(1-cmu)%?? of variance in any direction
% 1-ccovmu is the variance left from the old C
neg.ccovfinal = min(neg.ccov, (1-ccovmu)*(1-neg.minresidualvariance)/maxeigenval);
% -ccov1 removed to avoid error message??
if neg.ccovfinal < neg.ccov
disp(['active CMA at iteration ' num2str(countiter) ...
': max EV ==', num2str([maxeigenval, neg.ccov, neg.ccovfinal])]);
end
end
% xmean = xold; % the distribution does not degenerate!?
% update C
C = (1-ccov1-ccovmu+neg.alphaold*neg.ccovfinal+(1-hsig)*ccov1*cc*(2-cc)) * C ... % regard old matrix
+ ccov1 * pc*pc' ... % plus rank one update
+ (ccovmu + (1-neg.alphaold)*neg.ccovfinal) ... % plus rank mu update
* arpos * (repmat(weights,1,N) .* arpos') ...
- neg.ccovfinal * Cneg; % minus rank mu update
else % no active (negative) update
C = (1-ccov1-ccovmu+(1-hsig)*ccov1*cc*(2-cc)) * C ... % regard old matrix
+ ccov1 * pc*pc' ... % plus rank one update
+ ccovmu ... % plus rank mu update
* arpos * (repmat(weights,1,N) .* arpos');
% is now O(mu*N^2 + mu*N), was O(mu*N^2 + mu^2*N) when using diag(weights)
% for mu=30*N it is now 10 times faster, overall 3 times faster
end
diagC = diag(C);
end
end
% the following is de-preciated and will be removed in future
% better setting for cc makes this hack obsolete
if 11 < 2 && ~flgscience
% remove momentum in ps, if ps is large and fitness is getting worse.
% this should rarely happen.
% this might very well be counterproductive in dynamic environments
if sum(ps.^2)/N > 1.5 + 10*(2/N)^.5 && ...
fitness.histsel(1) > max(fitness.histsel(2:3))
ps = ps * sqrt(N*(1+max(0,log(sum(ps.^2)/N))) / sum(ps.^2));
if flgdisplay
disp(['Momentum in ps removed at [niter neval]=' ...
num2str([countiter counteval]) ']']);
end
end
end
% Adapt sigma
if flg_future_setting % according to a suggestion from Dirk Arnold (2000)
% exp(1) is still not reasonably small enough
sigma = sigma * exp(min(1, (sum(ps.^2)/N - 1)/2 * cs/damps)); % Eq. (5)
else
% exp(1) is still not reasonably small enough
sigma = sigma * exp(min(1, (sqrt(sum(ps.^2))/chiN - 1) * cs/damps)); % Eq. (5)
end
% disp([countiter norm(ps)/chiN]);
if 11 < 3 % testing with optimal step-size
if countiter == 1
disp('*********** sigma set to const * ||x|| ******************');
end
sigma = 0.04 * mueff * sqrt(sum(xmean.^2)) / N; % 20D,lam=1000:25e3
sigma = 0.3 * mueff * sqrt(sum(xmean.^2)) / N; % 20D,lam=(40,1000):17e3
% 75e3 with def (1.5)
% 35e3 with damps=0.25
end
if 11 < 3
if countiter == 1
disp('*********** xmean set to const ******************');
end
xmean = ones(N,1);
end
% Update B and D from C
if ~flgDiagonalOnly && (ccov1+ccovmu+neg.ccov) > 0 && mod(countiter, 1/(ccov1+ccovmu+neg.ccov)/N/10) < 1
C=triu(C)+triu(C,1)'; % enforce symmetry to prevent complex numbers
[B,tmp] = eig(C); % eigen decomposition, B==normalized eigenvectors
% effort: approx. 15*N matrix-vector multiplications
diagD = diag(tmp);
if any(~isfinite(diagD))
clear idx; % prevents error under octave
save(['tmp' opts.SaveFilename]);
error(['function eig returned non-finited eigenvalues, cond(C)=' ...
num2str(cond(C)) ]);
end
if any(any(~isfinite(B)))
clear idx; % prevents error under octave
save(['tmp' opts.SaveFilename]);
error(['function eig returned non-finited eigenvectors, cond(C)=' ...
num2str(cond(C)) ]);
end
% limit condition of C to 1e14 + 1
if min(diagD) <= 0
if stopOnWarnings
stopflag(end+1) = {'warnconditioncov'};
else
warning(['Iteration ' num2str(countiter) ...
': Eigenvalue (smaller) zero']);
diagD(diagD<0) = 0;
tmp = max(diagD)/1e14;
C = C + tmp*eye(N,N); diagD = diagD + tmp*ones(N,1);
end
end
if max(diagD) > 1e14*min(diagD)
if stopOnWarnings
stopflag(end+1) = {'warnconditioncov'};
else
warning(['Iteration ' num2str(countiter) ': condition of C ' ...
'at upper limit' ]);
tmp = max(diagD)/1e14 - min(diagD);
C = C + tmp*eye(N,N); diagD = diagD + tmp*ones(N,1);
end
end
diagC = diag(C);
diagD = sqrt(diagD); % D contains standard deviations now
% diagD = diagD / prod(diagD)^(1/N); C = C / prod(diagD)^(2/N);
BD = B.*repmat(diagD',N,1); % O(n^2)
end % if mod
% Align/rescale order of magnitude of scales of sigma and C for nicer output
% not a very usual case
if 1 < 2 && sigma > 1e10*max(diagD)
fac = sigma / max(diagD);
sigma = sigma/fac;
pc = fac * pc;
diagD = fac * diagD;
if ~flgDiagonalOnly
C = fac^2 * C; % disp(fac);
BD = B.*repmat(diagD',N,1); % O(n^2), but repmat might be inefficient todo?
end
diagC = fac^2 * diagC;
end
if flgDiagonalOnly > 1 && countiter > flgDiagonalOnly
% full covariance matrix from now on
flgDiagonalOnly = 0;
B = eye(N,N);
BD = diag(diagD);
C = diag(diagC); % is better, because correlations are spurious anyway
end
if noiseHandling
if countiter == 1 % assign firstvarargin for noise treatment e.g. as #reevaluations
if ~isempty(varargin) && length(varargin{1}) == 1 && isnumeric(varargin{1})
if irun == 1
firstvarargin = varargin{1};
else
varargin{1} = firstvarargin; % reset varargin{1}
end
else
firstvarargin = 0;
end
end
if noiseSS < 0 && noiseMinMaxEvals(2) > noiseMinMaxEvals(1) && firstvarargin
varargin{1} = max(noiseMinMaxEvals(1), varargin{1} / noiseAlphaEvals^(1/4)); % still experimental
elseif noiseSS > 0
if ~isempty(noiseCallback) % to be removed?
res = feval(noiseCallback); % should also work without output argument!?
if ~isempty(res) && res > 1 % TODO: decide for interface of callback
% also a dynamic popsize could be done here
sigma = sigma * noiseAlpha;
end
else
if noiseMinMaxEvals(2) > noiseMinMaxEvals(1) && firstvarargin
varargin{1} = min(noiseMinMaxEvals(2), varargin{1} * noiseAlphaEvals);
end
sigma = sigma * noiseAlpha;
% lambda = ceil(0.1 * sqrt(lambda) + lambda);
% TODO: find smallest increase of lambda with log-linear
% convergence in iterations
end
% qqq experimental: take a mean to estimate the true optimum
noiseN = noiseN + 1;
if noiseN == 1
noiseX = xmean;
else
noiseX = noiseX + (3/noiseN) * (xmean - noiseX);
end
end
end
% ----- numerical error management -----
% Adjust maximal coordinate axis deviations
if any(sigma*sqrt(diagC) > maxdx)
sigma = min(maxdx ./ sqrt(diagC));
%warning(['Iteration ' num2str(countiter) ': coordinate axis std ' ...
% 'deviation at upper limit of ' num2str(maxdx)]);
% stopflag(end+1) = {'maxcoorddev'};
end
% Adjust minimal coordinate axis deviations
if any(sigma*sqrt(diagC) < mindx)
sigma = max(mindx ./ sqrt(diagC)) * exp(0.05+cs/damps);
%warning(['Iteration ' num2str(countiter) ': coordinate axis std ' ...
% 'deviation at lower limit of ' num2str(mindx)]);
% stopflag(end+1) = {'mincoorddev'};;
end
% Adjust too low coordinate axis deviations
if any(xmean == xmean + 0.2*sigma*sqrt(diagC))
if stopOnWarnings
stopflag(end+1) = {'warnnoeffectcoord'};
else
warning(['Iteration ' num2str(countiter) ': coordinate axis std ' ...
'deviation too low' ]);
if flgDiagonalOnly
diagC = diagC + (ccov1_sep+ccovmu_sep) * (diagC .* ...
(xmean == xmean + 0.2*sigma*sqrt(diagC)));
else
C = C + (ccov1+ccovmu) * diag(diagC .* ...
(xmean == xmean + 0.2*sigma*sqrt(diagC)));
end
sigma = sigma * exp(0.05+cs/damps);
end
end
% Adjust step size in case of (numerical) precision problem
if flgDiagonalOnly
tmp = 0.1*sigma*diagD;
else
tmp = 0.1*sigma*BD(:,1+floor(mod(countiter,N)));
end
if all(xmean == xmean + tmp)
i = 1+floor(mod(countiter,N));
if stopOnWarnings
stopflag(end+1) = {'warnnoeffectaxis'};
else
warning(['Iteration ' num2str(countiter) ...
': main axis standard deviation ' ...
num2str(sigma*diagD(i)) ' has no effect' ]);
sigma = sigma * exp(0.2+cs/damps);
end
end
% Adjust step size in case of equal function values (flat fitness)
% isequalfuncvalues = 0;
if fitness.sel(1) == fitness.sel(1+ceil(0.1+lambda/4))
% isequalfuncvalues = 1;
if stopOnEqualFunctionValues
arrEqualFunvals = [countiter arrEqualFunvals(1:end-1)];
% stop if this happens in more than 33%
if arrEqualFunvals(end) > countiter - 3 * length(arrEqualFunvals)
stopflag(end+1) = {'equalfunvals'};
end
else
if flgWarnOnEqualFunctionValues
warning(['Iteration ' num2str(countiter) ...
': equal function values f=' num2str(fitness.sel(1)) ...
' at maximal main axis sigma ' ...
num2str(sigma*max(diagD))]);
end
sigma = sigma * exp(0.2+cs/damps);
end
end
% Adjust step size in case of equal function values
if countiter > 2 && myrange([fitness.hist fitness.sel(1)]) == 0
if stopOnWarnings
stopflag(end+1) = {'warnequalfunvalhist'};
else
warning(['Iteration ' num2str(countiter) ...
': equal function values in history at maximal main ' ...
'axis sigma ' num2str(sigma*max(diagD))]);
sigma = sigma * exp(0.2+cs/damps);
end
end
% ----- end numerical error management -----
% Keep overall best solution
out.evals = counteval;
out.solutions.evals = counteval;
out.solutions.mean.x = xmean;
out.solutions.mean.f = fmean;
out.solutions.mean.evals = counteval;
out.solutions.recentbest.x = arxvalid(:, fitness.idx(1));
out.solutions.recentbest.f = fitness.raw(1);
out.solutions.recentbest.evals = counteval + fitness.idx(1) - lambda;
out.solutions.recentworst.x = arxvalid(:, fitness.idx(end));
out.solutions.recentworst.f = fitness.raw(end);
out.solutions.recentworst.evals = counteval + fitness.idx(end) - lambda;
if fitness.hist(1) < out.solutions.bestever.f
out.solutions.bestever.x = arxvalid(:, fitness.idx(1));
out.solutions.bestever.f = fitness.hist(1);
out.solutions.bestever.evals = counteval + fitness.idx(1) - lambda;
bestever = out.solutions.bestever;
end
% Set stop flag
if fitness.raw(1) <= stopFitness, stopflag(end+1) = {'fitness'}; end
if counteval >= stopMaxFunEvals, stopflag(end+1) = {'maxfunevals'}; end
if countiter >= stopMaxIter, stopflag(end+1) = {'maxiter'}; end
if all(sigma*(max(abs(pc), sqrt(diagC))) < stopTolX)
stopflag(end+1) = {'tolx'};
end
if any(sigma*sqrt(diagC) > stopTolUpX)
stopflag(end+1) = {'tolupx'};
end
if sigma*max(diagD) == 0 % should never happen
stopflag(end+1) = {'bug'};
end
if countiter > 2 && myrange([fitness.sel fitness.hist]) <= stopTolFun
stopflag(end+1) = {'tolfun'};
end
if countiter >= length(fitness.hist) && myrange(fitness.hist) <= stopTolHistFun
stopflag(end+1) = {'tolhistfun'};
end
l = floor(length(fitness.histbest)/3);
if 1 < 2 && stopOnStagnation && ... % leads sometimes early stop on ftablet, fcigtab
countiter > N * (5+100/lambda) && ...
length(fitness.histbest) > 100 && ...
median(fitness.histmedian(1:l)) >= median(fitness.histmedian(end-l:end)) && ...
median(fitness.histbest(1:l)) >= median(fitness.histbest(end-l:end))
stopflag(end+1) = {'stagnation'};
end
if counteval >= stopFunEvals || countiter >= stopIter
stopflag(end+1) = {'stoptoresume'};
if length(stopflag) == 1 && flgsaving == 0
error('To resume later the saving option needs to be set');
end
end
% read stopping message from file signals.par
if flgreadsignals
fid = fopen('./signals.par', 'rt'); % can be performance critical
while fid > 0
strline = fgetl(fid); %fgets(fid, 300);
if strline < 0 % fgets and fgetl returns -1 at end of file
break;
end
% 'stop filename' sets stopflag to manual
str = sscanf(strline, ' %s %s', 2);
if strcmp(str, ['stop' opts.LogFilenamePrefix])
stopflag(end+1) = {'manual'};
break;
end
% 'skip filename run 3' skips a run, but not the last
str = sscanf(strline, ' %s %s %s', 3);
if strcmp(str, ['skip' opts.LogFilenamePrefix 'run'])
i = strfind(strline, 'run');
if irun == sscanf(strline(i+3:end), ' %d ', 1) && irun <= myeval(opts.Restarts)
stopflag(end+1) = {'skipped'};
end
end
end % while, break
if fid > 0
fclose(fid);
clear fid; % prevents strange error under octave
end
end
out.stopflag = stopflag;
% ----- output generation -----
if verbosemodulo > 0 && isfinite(verbosemodulo)
if countiter == 1 || mod(countiter, 10*verbosemodulo) < 1
disp(['Iterat, #Fevals: Function Value (median,worst) ' ...
'|Axis Ratio|' ...
'idx:Min SD idx:Max SD']);
end
if mod(countiter, verbosemodulo) < 1 ...
|| (verbosemodulo > 0 && isfinite(verbosemodulo) && ...
(countiter < 3 || ~isempty(stopflag)))
[minstd minstdidx] = min(sigma*sqrt(diagC));
[maxstd maxstdidx] = max(sigma*sqrt(diagC));
% format display nicely
disp([repmat(' ',1,4-floor(log10(countiter))) ...
num2str(countiter) ' , ' ...
repmat(' ',1,5-floor(log10(counteval))) ...
num2str(counteval) ' : ' ...
num2str(fitness.hist(1), '%.13e') ...
' +(' num2str(median(fitness.raw)-fitness.hist(1), '%.0e ') ...
',' num2str(max(fitness.raw)-fitness.hist(1), '%.0e ') ...
') | ' ...
num2str(max(diagD)/min(diagD), '%4.2e') ' | ' ...
repmat(' ',1,1-floor(log10(minstdidx))) num2str(minstdidx) ':' ...
num2str(minstd, ' %.1e') ' ' ...
repmat(' ',1,1-floor(log10(maxstdidx))) num2str(maxstdidx) ':' ...
num2str(maxstd, ' %.1e')]);
end
end
% measure time for recording data
if countiter < 3
time.c = 0.05;
time.nonoutput = 0;
time.recording = 0;
time.saving = 0.15; % first saving after 3 seconds of 100 iterations
time.plotting = 0;
elseif countiter > 300
% set backward horizon, must be long enough to cover infrequent plotting etc
% time.c = min(1, time.nonoutput/3 + 1e-9);
time.c = max(1e-5, 0.1/sqrt(countiter)); % mean over all or 1e-5
end
% get average time per iteration
time.t1 = clock;
time.act = max(0,etime(time.t1, time.t0));
time.nonoutput = (1-time.c) * time.nonoutput ...
+ time.c * time.act;
time.recording = (1-time.c) * time.recording; % per iteration
time.saving = (1-time.c) * time.saving;
time.plotting = (1-time.c) * time.plotting;
% record output data, concerning time issues
if savemodulo && savetime && (countiter < 1e2 || ~isempty(stopflag) || ...
countiter >= outiter + savemodulo)
outiter = countiter;
% Save output data to files
for namecell = filenames(:)'
name = namecell{:};
[fid, err] = fopen(['./' filenameprefix name '.dat'], 'a');
if fid < 1 % err ~= 0
warning(['could not open ' filenameprefix name '.dat']);
else
if strcmp(name, 'axlen')
fprintf(fid, '%d %d %e %e %e ', countiter, counteval, sigma, ...
max(diagD), min(diagD));
fprintf(fid, '%e ', sort(diagD));
fprintf(fid, '\n');
elseif strcmp(name, 'disp') % TODO
elseif strcmp(name, 'fit')
fprintf(fid, '%ld %ld %e %e %25.18e %25.18e %25.18e %25.18e', ...
countiter, counteval, sigma, max(diagD)/min(diagD), ...
out.solutions.bestever.f, ...
fitness.raw(1), median(fitness.raw), fitness.raw(end));
if ~isempty(varargin) && length(varargin{1}) == 1 && isnumeric(varargin{1}) && varargin{1} ~= 0
fprintf(fid, ' %f', varargin{1});
end
fprintf(fid, '\n');
elseif strcmp(name, 'stddev')
fprintf(fid, '%ld %ld %e 0 0 ', countiter, counteval, sigma);
fprintf(fid, '%e ', sigma*sqrt(diagC));
fprintf(fid, '\n');
elseif strcmp(name, 'xmean')
if isnan(fmean)
fprintf(fid, '%ld %ld 0 0 0 ', countiter, counteval);
else
fprintf(fid, '%ld %ld 0 0 %e ', countiter, counteval, fmean);
end
fprintf(fid, '%e ', xmean);
fprintf(fid, '\n');
elseif strcmp(name, 'xrecentbest')
% TODO: fitness is inconsistent with x-value
fprintf(fid, '%ld %ld %25.18e 0 0 ', countiter, counteval, fitness.raw(1));
fprintf(fid, '%e ', arx(:,fitness.idx(1)));
fprintf(fid, '\n');
end
fclose(fid);
end
end
% get average time for recording data
time.t2 = clock;
time.recording = time.recording + time.c * max(0,etime(time.t2, time.t1));
% plot
if flgplotting && countiter > 1
if countiter == 2
iterplotted = 0;
end
if ~isempty(stopflag) || ...
((time.nonoutput+time.recording) * (countiter - iterplotted) > 1 && ...
time.plotting < 0.05 * (time.nonoutput+time.recording))
local_plotcmaesdat(324, filenameprefix);
iterplotted = countiter;
% outplot(out); % outplot defined below
if time.plotting == 0 % disregard opening of the window
time.plotting = time.nonoutput+time.recording;
else
time.plotting = time.plotting + time.c * max(0,etime(clock, time.t2));
end
end
end
if countiter > 100 + 20 && savemodulo && ...
time.recording * countiter > 0.1 && ... % absolute time larger 0.1 second
time.recording > savetime * (time.nonoutput+time.recording) / 100
savemodulo = floor(1.1 * savemodulo) + 1;
% disp('++savemodulo'); %qqq
end
end % if output
% save everything
time.t3 = clock;
if ~isempty(stopflag) || time.saving < 0.05 * time.nonoutput || countiter == 100
xmin = arxvalid(:, fitness.idx(1));
fmin = fitness.raw(1);
if flgsaving && countiter > 2
clear idx; % prevents error under octave
% -v6 : non-compressed non-unicode for version 6 and earlier
if ~isempty(strsaving) && ~isoctave
save('-mat', strsaving, opts.SaveFilename); % for inspection and possible restart
else
save('-mat', opts.SaveFilename); % for inspection and possible restart
end
time.saving = time.saving + time.c * max(0,etime(clock, time.t3));
end
end
time.t0 = clock;
% ----- end output generation -----
end % while, end generation loop
% -------------------- Final Procedures -------------------------------
% Evaluate xmean and return best recent point in xmin
fmin = fitness.raw(1);
xmin = arxvalid(:, fitness.idx(1)); % Return best point of last generation.
if length(stopflag) > sum(strcmp(stopflag, 'stoptoresume')) % final stopping
out.solutions.mean.f = ...
feval(fitfun, xintobounds(xmean, lbounds, ubounds), varargin{:});
counteval = counteval + 1;
out.solutions.mean.evals = counteval;
if out.solutions.mean.f < fitness.raw(1)
fmin = out.solutions.mean.f;
xmin = xintobounds(xmean, lbounds, ubounds); % Return xmean as best point
end
if out.solutions.mean.f < out.solutions.bestever.f
out.solutions.bestever = out.solutions.mean; % Return xmean as bestever point
out.solutions.bestever.x = xintobounds(xmean, lbounds, ubounds);
bestever = out.solutions.bestever;
end
end
% Save everything and display final message
if flgsavingfinal
clear idx; % prevents error under octave
if ~isempty(strsaving) && ~isoctave
save('-mat', strsaving, opts.SaveFilename); % for inspection and possible restart
else
save('-mat', opts.SaveFilename); % for inspection and possible restart
end
message = [' (saved to ' opts.SaveFilename ')'];
else
message = [];
end
if flgdisplay
disp(['#Fevals: f(returned x) | bestever.f | stopflag' ...
message]);
if isoctave
strstop = stopflag(:);
else
strcat(stopflag(:), '.');
end
strstop = stopflag(:); %strcat(stopflag(:), '.');
disp([repmat(' ',1,6-floor(log10(counteval))) ...
num2str(counteval, '%6.0f') ': ' num2str(fmin, '%.11e') ' | ' ...
num2str(out.solutions.bestever.f, '%.11e') ' | ' ...
strstop{1:end}]);
if N < 102
disp(['mean solution:' sprintf(' %+.1e', xmean)]);
disp(['std deviation:' sprintf(' %.1e', sigma*sqrt(diagC))]);
disp(sprintf('use plotcmaesdat.m for plotting the output at any time (option LogModulo must not be zero)'));
end
if exist('sfile', 'var')
disp(['Results saved in ' sfile]);
end
end
out.arstopflags{irun} = stopflag;
if any(strcmp(stopflag, 'fitness')) ...
|| any(strcmp(stopflag, 'maxfunevals')) ...
|| any(strcmp(stopflag, 'stoptoresume')) ...
|| any(strcmp(stopflag, 'manual'))
break;
end
end % while irun <= Restarts
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function [x, idx] = xintobounds(x, lbounds, ubounds)
%
% x can be a column vector or a matrix consisting of column vectors
%
if ~isempty(lbounds)
if length(lbounds) == 1
idx = x < lbounds;
x(idx) = lbounds;
else
arbounds = repmat(lbounds, 1, size(x,2));
idx = x < arbounds;
x(idx) = arbounds(idx);
end
else
idx = 0;
end
if ~isempty(ubounds)
if length(ubounds) == 1
idx2 = x > ubounds;
x(idx2) = ubounds;
else
arbounds = repmat(ubounds, 1, size(x,2));
idx2 = x > arbounds;
x(idx2) = arbounds(idx2);
end
else
idx2 = 0;
end
idx = idx2-idx;
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function opts=getoptions(inopts, defopts)
% OPTS = GETOPTIONS(INOPTS, DEFOPTS) handles an arbitrary number of
% optional arguments to a function. The given arguments are collected
% in the struct INOPTS. GETOPTIONS matches INOPTS with a default
% options struct DEFOPTS and returns the merge OPTS. Empty or missing
% fields in INOPTS invoke the default value. Fieldnames in INOPTS can
% be abbreviated.
%
% The returned struct OPTS is first assigned to DEFOPTS. Then any
% field value in OPTS is replaced by the respective field value of
% INOPTS if (1) the field unambiguously (case-insensitive) matches
% with the fieldname in INOPTS (cut down to the length of the INOPTS
% fieldname) and (2) the field is not empty.
%
% Example:
% In the source-code of the function that needs optional
% arguments, the last argument is the struct of optional
% arguments:
%
% function results = myfunction(mandatory_arg, inopts)
% % Define four default options
% defopts.PopulationSize = 200;
% defopts.ParentNumber = 50;
% defopts.MaxIterations = 1e6;
% defopts.MaxSigma = 1;
%
% % merge default options with input options
% opts = getoptions(inopts, defopts);
%
% % Thats it! From now on the values in opts can be used
% for i = 1:opts.PopulationSize
% % do whatever
% if sigma > opts.MaxSigma
% % do whatever
% end
% end
%
% For calling the function myfunction with default options:
% myfunction(argument1, []);
% For calling the function myfunction with modified options:
% opt.pop = 100; % redefine PopulationSize option
% opt.PAR = 10; % redefine ParentNumber option
% opt.maxiter = 2; % opt.max=2 is ambiguous and would result in an error
% myfunction(argument1, opt);
%
% 04/07/19: Entries can be structs itself leading to a recursive
% call to getoptions.
%
if nargin < 2 || isempty(defopts) % no default options available
opts=inopts;
return;
elseif isempty(inopts) % empty inopts invoke default options
opts = defopts;
return;
elseif ~isstruct(defopts) % handle a single option value
if isempty(inopts)
opts = defopts;
elseif ~isstruct(inopts)
opts = inopts;
else
error('Input options are a struct, while default options are not');
end
return;
elseif ~isstruct(inopts) % no valid input options
error('The options need to be a struct or empty');
end
opts = defopts; % start from defopts
% if necessary overwrite opts fields by inopts values
defnames = fieldnames(defopts);
idxmatched = []; % indices of defopts that already matched
for name = fieldnames(inopts)'
name = name{1}; % name of i-th inopts-field
if isoctave
for i = 1:size(defnames, 1)
idx(i) = strncmp(lower(defnames(i)), lower(name), length(name));
end
else
idx = strncmpi(defnames, name, length(name));
end
if sum(idx) > 1
error(['option "' name '" is not an unambigous abbreviation. ' ...
'Use opts=RMFIELD(opts, ''' name, ...
''') to remove the field from the struct.']);
end
if sum(idx) == 1
defname = defnames{find(idx)};
if ismember(find(idx), idxmatched)
error(['input options match more than ones with "' ...
defname '". ' ...
'Use opts=RMFIELD(opts, ''' name, ...
''') to remove the field from the struct.']);
end
idxmatched = [idxmatched find(idx)];
val = getfield(inopts, name);
% next line can replace previous line from MATLAB version 6.5.0 on and in octave
% val = inopts.(name);
if isstruct(val) % valid syntax only from version 6.5.0
opts = setfield(opts, defname, ...
getoptions(val, getfield(defopts, defname)));
elseif isstruct(getfield(defopts, defname))
% next three lines can replace previous three lines from MATLAB
% version 6.5.0 on
% opts.(defname) = ...
% getoptions(val, defopts.(defname));
% elseif isstruct(defopts.(defname))
warning(['option "' name '" disregarded (must be struct)']);
elseif ~isempty(val) % empty value: do nothing, i.e. stick to default
opts = setfield(opts, defnames{find(idx)}, val);
% next line can replace previous line from MATLAB version 6.5.0 on
% opts.(defname) = inopts.(name);
end
else
warning(['option "' name '" disregarded (unknown field name)']);
end
end
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function res=myeval(s)
if ischar(s)
res = evalin('caller', s);
else
res = s;
end
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function res=myevalbool(s)
if ~ischar(s) % s may not and cannot be empty
res = s;
else % evaluation string s
if strncmpi(lower(s), 'yes', 3) || strncmpi(s, 'on', 2) ...
|| strncmpi(s, 'true', 4) || strncmp(s, '1 ', 2)
res = 1;
elseif strncmpi(s, 'no', 2) || strncmpi(s, 'off', 3) ...
|| strncmpi(s, 'false', 5) || strncmp(s, '0 ', 2)
res = 0;
else
try res = evalin('caller', s); catch
error(['String value "' s '" cannot be evaluated']);
end
try res ~= 0; catch
error(['String value "' s '" cannot be evaluated reasonably']);
end
end
end
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function res = isoctave
% any hack to find out whether we are running octave
s = version;
res = 0;
if exist('fflush', 'builtin') && eval(s(1)) < 7
res = 1;
end
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function flush
if isoctave
feval('fflush', stdout);
end
% ---------------------------------------------------------------
% ---------------------------------------------------------------
% ----- replacements for statistic toolbox functions ------------
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function res=myrange(x)
res = max(x) - min(x);
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function res = myprctile(inar, perc, idx)
%
% Computes the percentiles in vector perc from vector inar
% returns vector with length(res)==length(perc)
% idx: optional index-array indicating sorted order
%
N = length(inar);
flgtranspose = 0;
% sizes
if size(perc,1) > 1
perc = perc';
flgtranspose = 1;
if size(perc,1) > 1
error('perc must not be a matrix');
end
end
if size(inar, 1) > 1 && size(inar,2) > 1
error('data inar must not be a matrix');
end
% sort inar
if nargin < 3 || isempty(idx)
[sar idx] = sort(inar);
else
sar = inar(idx);
end
res = [];
for p = perc
if p <= 100*(0.5/N)
res(end+1) = sar(1);
elseif p >= 100*((N-0.5)/N)
res(end+1) = sar(N);
else
% find largest index smaller than required percentile
availablepercentiles = 100*((1:N)-0.5)/N;
i = max(find(p > availablepercentiles));
% interpolate linearly
res(end+1) = sar(i) ...
+ (sar(i+1)-sar(i))*(p - availablepercentiles(i)) ...
/ (availablepercentiles(i+1) - availablepercentiles(i));
end
end
if flgtranspose
res = res';
end
% ---------------------------------------------------------------
% ---------------------------------------------------------------
% ---------------------------------------------------------------
% ---------------------------------------------------------------
function [s ranks rankDelta] = local_noisemeasurement(arf1, arf2, lamreev, theta, cutlimit)
% function [s ranks rankDelta] = noisemeasurement(arf1, arf2, lamreev, theta)
%
% Input:
% arf1, arf2 : two arrays of function values. arf1 is of size 1xlambda,
% arf2 may be of size 1xlamreev or 1xlambda. The first lamreev values
% in arf2 are (re-)evaluations of the respective solutions, i.e.
% arf1(1) and arf2(1) are two evaluations of "the first" solution.
% lamreev: number of reevaluated individuals in arf2
% theta : parameter theta for the rank change limit, between 0 and 1,
% typically between 0.2 and 0.7.
% cutlimit (optional): output s is computed as a mean of rankchange minus
% threshold, where rankchange is <=2*(lambda-1). cutlimit limits
% abs(rankchange minus threshold) in this calculation to cutlimit.
% cutlimit=1 evaluates basically the sign only. cutlimit=2 could be
% the rank change with one solution (both evaluations of it).
%
% Output:
% s : noise measurement, s>0 means the noise measure is above the
% acceptance threshold
% ranks : 2xlambda array, corresponding to [arf1; arf2], of ranks
% of arf1 and arf2 in the set [arf1 arf2], values are in [1:2*lambda]
% rankDelta: 1xlambda array of rank movements of arf2 compared to
% arf1. rankDelta(i) agrees with the number of values from
% the set [arf1 arf2] that lie between arf1(i) and arf2(i).
%
% Note: equal function values might lead to somewhat spurious results.
% For this case a revision is advisable.
%%% verify input argument sizes
if size(arf1,1) ~= 1
error('arf1 must be an 1xlambda array');
elseif size(arf2,1) ~= 1
error('arf2 must be an 1xsomething array');
elseif size(arf1,2) < size(arf2,2) % not really necessary, but saver
error('arf2 must not be smaller than arf1 in length');
end
lam = size(arf1, 2);
if size(arf1,2) ~= size(arf2,2)
arf2(end+1:lam) = arf1((size(arf2,2)+1):lam);
end
if nargin < 5
cutlimit = inf;
end
%%% capture unusual values
if any(diff(arf1) == 0)
% this will presumably interpreted as rank change, because
% sort(ones(...)) returns 1,2,3,...
warning([num2str(sum(diff(arf1)==0)) ' equal function values']);
end
%%% compute rank changes into rankDelta
% compute ranks
[ignore, idx] = sort([arf1 arf2]);
[ignore, ranks] = sort(idx);
ranks = reshape(ranks, lam, 2)';
rankDelta = ranks(1,:) - ranks(2,:) - sign(ranks(1,:) - ranks(2,:));
%%% compute rank change limits using both ranks(1,...) and ranks(2,...)
for i = 1:lamreev
sumlim(i) = ...
0.5 * (...
myprctile(abs((1:2*lam-1) - (ranks(1,i) - (ranks(1,i)>ranks(2,i)))), ...
theta*50) ...
+ myprctile(abs((1:2*lam-1) - (ranks(2,i) - (ranks(2,i)>ranks(1,i)))), ...
theta*50));
end
%%% compute measurement
%s = abs(rankDelta(1:lamreev)) - sumlim; % lives roughly in 0..2*lambda
% max: 1 rankchange in 2*lambda is always fine
s = abs(rankDelta(1:lamreev)) - max(1, sumlim); % lives roughly in 0..2*lambda
% cut-off limit
idx = abs(s) > cutlimit;
s(idx) = sign(s(idx)) * cutlimit;
s = mean(s);
% ---------------------------------------------------------------
% ---------------------------------------------------------------
% ---------------------------------------------------------------
% ---------------------------------------------------------------
% just a "local" copy of plotcmaesdat.m, with manual_mode set to zero
function local_plotcmaesdat(figNb, filenameprefix, filenameextension, objectvarname)
% PLOTCMAESDAT;
% PLOTCMAES(FIGURENUMBER_iBEGIN_iEND, FILENAMEPREFIX, FILENAMEEXTENSION, OBJECTVARNAME);
% plots output from CMA-ES, e.g. cmaes.m, Java class CMAEvolutionStrategy...
% mod(figNb,100)==1 plots versus iterations.
%
% PLOTCMAES([101 300]) plots versus iteration, from iteration 300.
% PLOTCMAES([100 150 800]) plots versus function evaluations, between iteration 150 and 800.
%
% Upper left subplot: blue/red: function value of the best solution in the
% recent population, cyan: same function value minus best
% ever seen function value, green: sigma, red: ratio between
% longest and shortest principal axis length which is equivalent
% to sqrt(cond(C)).
% Upper right plot: time evolution of the distribution mean (default) or
% the recent best solution vector.
% Lower left: principal axes lengths of the distribution ellipsoid,
% equivalent with the sqrt(eig(C)) square root eigenvalues of C.
% Lower right: magenta: minimal and maximal "true" standard deviation
% (with sigma included) in the coordinates, other colors: sqrt(diag(C))
% of all diagonal elements of C, if C is diagonal they equal to the
% lower left.
%
% Files [FILENAMEPREFIX name FILENAMEEXTENSION] are used, where
% name = axlen, OBJECTVARNAME (xmean|xrecentbest), fit, or stddev.
%
manual_mode = 0;
if nargin < 1 || isempty(figNb)
figNb = 325;
end
if nargin < 2 || isempty(filenameprefix)
filenameprefix = 'outcmaes';
end
if nargin < 3 || isempty(filenameextension)
filenameextension = '.dat';
end
if nargin < 4 || isempty(objectvarname)
objectvarname = 'xmean';
objectvarname = 'xrecentbest';
end
% load data
d.x = load([filenameprefix objectvarname filenameextension]);
% d.x = load([filenameprefix 'xmean' filenameextension]);
% d.x = load([filenameprefix 'xrecentbest' filenameextension]);
d.f = load([filenameprefix 'fit' filenameextension]);
d.std = load([filenameprefix 'stddev' filenameextension]);
d.D = load([filenameprefix 'axlen' filenameextension]);
% interpret entries in figNb for cutting out some data
if length(figNb) > 1
iend = inf;
istart = figNb(2);
if length(figNb) > 2
iend = figNb(3);
end
figNb = figNb(1);
d.x = d.x(d.x(:,1) >= istart & d.x(:,1) <= iend, :);
d.f = d.f(d.f(:,1) >= istart & d.f(:,1) <= iend, :);
d.std = d.std(d.std(:,1) >= istart & d.std(:,1) <= iend, :);
d.D = d.D(d.D(:,1) >= istart & d.D(:,1) <= iend, :);
end
% decide for x-axis
iabscissa = 2; % 1== versus iterations, 2==versus fevals
if mod(figNb,100) == 1
iabscissa = 1; % a short hack
end
if iabscissa == 1
xlab ='iterations';
elseif iabscissa == 2
xlab = 'function evaluations';
end
if size(d.x, 2) < 1000
minxend = 1.03*d.x(end, iabscissa);
else
minxend = 0;
end
% set up figure window
if manual_mode
figure(figNb); % just create and raise the figure window
else
if 1 < 3 && evalin('caller', 'iterplotted') == 0 && evalin('caller', 'irun') == 1
figure(figNb); % incomment this, if figure raise in the beginning is not desired
elseif ismember(figNb, findobj('Type', 'figure'))
set(0, 'CurrentFigure', figNb); % prevents raise of existing figure window
else
figure(figNb);
end
end
% plot fitness etc
foffset = 1e-99;
dfit = d.f(:,6)-min(d.f(:,6));
[ignore idxbest] = min(dfit);
dfit(dfit<1e-98) = NaN;
subplot(2,2,1); hold off;
dd = abs(d.f(:,7:8)) + foffset;
dd(d.f(:,7:8)==0) = NaN;
semilogy(d.f(:,iabscissa), dd, '-k'); hold on;
% additional fitness data, for example constraints values
if size(d.f,2) > 8
dd = abs(d.f(:,9:end)) + 10*foffset; % a hack
% dd(d.f(:,9:end)==0) = NaN;
semilogy(d.f(:,iabscissa), dd, '-m'); hold on;
if size(d.f,2) > 12
semilogy(d.f(:,iabscissa),abs(d.f(:,[7 8 11 13]))+foffset,'-k'); hold on;
end
end
idx = find(d.f(:,6)>1e-98); % positive values
if ~isempty(idx) % otherwise non-log plot gets hold
semilogy(d.f(idx,iabscissa), d.f(idx,6)+foffset, '.b'); hold on;
end
idx = find(d.f(:,6) < -1e-98); % negative values
if ~isempty(idx)
semilogy(d.f(idx, iabscissa), abs(d.f(idx,6))+foffset,'.r'); hold on;
end
semilogy(d.f(:,iabscissa),abs(d.f(:,6))+foffset,'-b'); hold on;
semilogy(d.f(:,iabscissa),dfit,'-c'); hold on;
semilogy(d.f(:,iabscissa),(d.f(:,4)),'-r'); hold on; % AR
semilogy(d.std(:,iabscissa), [max(d.std(:,6:end)')' ...
min(d.std(:,6:end)')'], '-m'); % max,min std
maxval = max(d.std(end,6:end));
minval = min(d.std(end,6:end));
text(d.std(end,iabscissa), maxval, sprintf('%.0e', maxval));
text(d.std(end,iabscissa), minval, sprintf('%.0e', minval));
semilogy(d.std(:,iabscissa),(d.std(:,3)),'-g'); % sigma
% plot best f
semilogy(d.f(idxbest,iabscissa),min(dfit),'*c'); hold on;
semilogy(d.f(idxbest,iabscissa),abs(d.f(idxbest,6))+foffset,'*r'); hold on;
ax = axis;
ax(2) = max(minxend, ax(2));
axis(ax);
yannote = 10^(log10(ax(3)) + 0.05*(log10(ax(4))-log10(ax(3))));
text(ax(1), yannote, ...
[ 'f=' num2str(d.f(end,6), '%.15g') ]);
title('blue:abs(f), cyan:f-min(f), green:sigma, red:axis ratio');
grid on;
subplot(2,2,2); hold off;
plot(d.x(:,iabscissa), d.x(:,6:end),'-'); hold on;
ax = axis;
ax(2) = max(minxend, ax(2));
axis(ax);
% add some annotation lines
[ignore idx] = sort(d.x(end,6:end));
% choose no more than 25 indices
idxs = round(linspace(1, size(d.x,2)-5, min(size(d.x,2)-5, 25)));
yy = repmat(NaN, 2, size(d.x,2)-5);
yy(1,:) = d.x(end, 6:end);
yy(2,idx(idxs)) = linspace(ax(3), ax(4), length(idxs));
plot([d.x(end,iabscissa) ax(2)], yy, '-');
plot(repmat(d.x(end,iabscissa),2), [ax(3) ax(4)], 'k-');
for i = idx(idxs)
text(ax(2), yy(2,i), ...
['x(' num2str(i) ')=' num2str(yy(1,i))]);
end
lam = 'NA';
if size(d.x, 1) > 1 && d.x(end, 1) > d.x(end-1, 1)
lam = num2str((d.x(end, 2) - d.x(end-1, 2)) / (d.x(end, 1) - d.x(end-1, 1)));
end
title(['Object Variables (' num2str(size(d.x, 2)-5) ...
'-D, popsize~' lam ')']);grid on;
subplot(2,2,3); hold off; semilogy(d.D(:,iabscissa), d.D(:,6:end), '-');
ax = axis;
ax(2) = max(minxend, ax(2));
axis(ax);
title('Principal Axes Lengths');grid on;
xlabel(xlab);
subplot(2,2,4); hold off;
% semilogy(d.std(:,iabscissa), d.std(:,6:end), 'k-'); hold on;
% remove sigma from stds
d.std(:,6:end) = d.std(:,6:end) ./ (d.std(:,3) * ones(1,size(d.std,2)-5));
semilogy(d.std(:,iabscissa), d.std(:,6:end), '-'); hold on;
if 11 < 3 % max and min std
semilogy(d.std(:,iabscissa), [d.std(:,3).*max(d.std(:,6:end)')' ...
d.std(:,3).*min(d.std(:,6:end)')'], '-m', 'linewidth', 2);
maxval = max(d.std(end,6:end));
minval = min(d.std(end,6:end));
text(d.std(end,iabscissa), d.std(end,3)*maxval, sprintf('max=%.0e', maxval));
text(d.std(end,iabscissa), d.std(end,3)*minval, sprintf('min=%.0e', minval));
end
ax = axis;
ax(2) = max(minxend, ax(2));
axis(ax);
% add some annotation lines
[ignore idx] = sort(d.std(end,6:end));
% choose no more than 25 indices
idxs = round(linspace(1, size(d.x,2)-5, min(size(d.x,2)-5, 25)));
yy = repmat(NaN, 2, size(d.std,2)-5);
yy(1,:) = d.std(end, 6:end);
yy(2,idx(idxs)) = logspace(log10(ax(3)), log10(ax(4)), length(idxs));
semilogy([d.std(end,iabscissa) ax(2)], yy, '-');
semilogy(repmat(d.std(end,iabscissa),2), [ax(3) ax(4)], 'k-');
for i = idx(idxs)
text(ax(2), yy(2,i), [' ' num2str(i)]);
end
title('Standard Deviations in Coordinates divided by sigma');grid on;
xlabel(xlab);
if figNb ~= 324
% zoom on; % does not work in Octave
end
drawnow;
% ---------------------------------------------------------------
% --------------- TEST OBJECTIVE FUNCTIONS ----------------------
% ---------------------------------------------------------------
%%% Unimodal functions
function f=fjens1(x)
%
% use population size about 2*N
%
f = sum((x>0) .* x.^1, 1);
if any(any(x<0))
idx = sum(x < 0, 1) > 0;
f(idx) = 1e3;
% f = f + 1e3 * sum(x<0, 1);
% f = f + 10 * sum((x<0) .* x.^2, 1);
f(idx) = f(idx) + 1e-3*abs(randn(1,sum(idx)));
% f(idx) = NaN;
end
function f=fsphere(x)
f = sum(x.^2,1);
function f=fmax(x)
f = max(abs(x), [], 1);
function f=fssphere(x)
f=sqrt(sum(x.^2, 1));
% lb = -0.512; ub = 512;
% xfeas = x;
% xfeas(x<lb) = lb;
% xfeas(x>ub) = ub;
% f=sum(xfeas.^2, 1);
% f = f + 1e-9 * sum((xfeas-x).^2);
function f=fspherenoise(x, Nevals)
if nargin < 2 || isempty(Nevals)
Nevals = 1;
end
[N,popsi] = size(x);
% x = x .* (1 + 0.3e-0 * randn(N, popsi)/(2*N)); % actuator noise
fsum = 10.^(0*(0:N-1)/(N-1)) * x.^2;
% f = 0*rand(1,1) ...
% + fsum ...
% + fsum .* (2*randn(1,popsi) ./ randn(1,popsi).^0 / (2*N)) ...
% + 1*fsum.^0.9 .* 2*randn(1,popsi) / (2*N); %
% f = fsum .* exp(0.1*randn(1,popsi));
f = fsum .* (1 + (10/(N+10)/sqrt(Nevals))*randn(1,popsi));
% f = fsum .* (1 + (0.1/N)*randn(1,popsi)./randn(1,popsi).^1);
idx = rand(1,popsi) < 0.0;
if sum(idx) > 0
f(idx) = f(idx) + 1e3*exp(randn(1,sum(idx)));
end
function f=fmixranks(x)
N = size(x,1);
f=(10.^(0*(0:(N-1))/(N-1))*x.^2).^0.5;
if size(x, 2) > 1 % compute ranks, if it is a population
[ignore, idx] = sort(f);
[ignore, ranks] = sort(idx);
k = 9; % number of solutions randomly permuted, lambda/2-1
% works still quite well (two time slower)
for i = k+1:k-0:size(x,2)
idx(i-k+(1:k)) = idx(i-k+randperm(k));
end
%disp([ranks' f'])
[ignore, ranks] = sort(idx);
%disp([ranks' f'])
%pause
f = ranks+1e-9*randn(1,1);
end
function f = fsphereoneax(x)
f = x(1)^2;
f = mean(x)^2;
function f=frandsphere(x)
N = size(x,1);
idx = ceil(N*rand(7,1));
f=sum(x(idx).^2);
function f=fspherelb0(x, M) % lbound at zero for 1:M needed
if nargin < 2 M = 0; end
N = size(x,1);
% M active bounds, f_i = 1 for x = 0
f = -M + sum((x(1:M) + 1).^2);
f = f + sum(x(M+1:N).^2);
function f=fspherehull(x)
% Patton, Dexter, Goodman, Punch
% in -500..500
% spherical ridge through zeros(N,1)
% worst case start point seems x = 2*100*sqrt(N)
% and small step size
N = size(x,1);
f = norm(x) + (norm(x-100*sqrt(N)) - 100*N)^2;
function f=fellilb0(x, idxM, scal) % lbound at zero for 1:M needed
N = size(x,1);
if nargin < 3 || isempty(scal)
scal = 100;
end
scale=scal.^((0:N-1)/(N-1));
if nargin < 2 || isempty(idxM)
idxM = 1:N;
end
%scale(N) = 1e0;
% M active bounds
xopt = 0.1;
x(idxM) = x(idxM) + xopt;
f = scale.^2*x.^2;
f = f - sum((xopt*scale(idxM)).^2);
% f = exp(f) - 1;
% f = log10(f+1e-19) + 19;
f = f + 1e-19;
function f=fcornersphere(x)
w = ones(size(x,1));
w(1) = 2.5; w(2)=2.5;
idx = x < 0;
f = sum(x(idx).^2);
idx = x > 0;
f = f + 2^2*sum(w(idx).*x(idx).^2);
function f=fsectorsphere(x, scal)
%
% This is deceptive for cumulative sigma control CSA in large dimension:
% The strategy (initially) diverges for N=50 and popsize = 150. (Even
% for cs==1 this can be observed for larger settings of N and
% popsize.) The reason is obvious from the function topology.
% Divergence can be avoided by setting boundaries or adding a
% penalty for large ||x||. Then, convergence can be observed again.
% Conclusion: for popsize>N cumulative sigma control is not completely
% reasonable, but I do not know better alternatives. In particular:
% TPA takes longer to converge than CSA when the latter still works.
%
if nargin < 2 || isempty (scal)
scal = 1e3;
end
f=sum(x.^2,1);
idx = x<0;
f = f + (scal^2 - 1) * sum((idx.*x).^2,1);
if 11 < 3
idxpen = find(f>1e9);
if ~isempty(idxpen)
f(idxpen) = f(idxpen) + 1e8*sum(x(:,idxpen).^2,1);
end
end
function f=fstepsphere(x, scal)
if nargin < 2 || isempty (scal)
scal = 1e0;
end
N = size(x,1);
f=1e-11+sum(scal.^((0:N-1)/(N-1))*floor(x+0.5).^2);
f=1e-11+sum(floor(scal.^((0:N-1)/(N-1))'.*x+0.5).^2);
% f=1e-11+sum(floor(x+0.5).^2);
function f=fstep(x)
% in -5.12..5.12 (bounded)
N = size(x,1);
f=1e-11+6*N+sum(floor(x));
function f=flnorm(x, scal, e)
if nargin < 2 || isempty(scal)
scal = 1;
end
if nargin < 3 || isempty(e)
e = 1;
end
if e==inf
f = max(abs(x));
else
N = size(x,1);
scale = scal.^((0:N-1)/(N-1))';
f=sum(abs(scale.*x).^e);
end
function f=fneumaier3(x)
% in -n^2..n^2
% x^*-i = i(n+1-i)
N = size(x,1);
% f = N*(N+4)*(N-1)/6 + sum((x-1).^2) - sum(x(1:N-1).*x(2:N));
f = sum((x-1).^2) - sum(x(1:N-1).*x(2:N));
function f = fmaxmindist(y)
% y in [-1,1], y(1:2) is first point on a plane, y(3:4) second etc
% points best
% 5 1.4142
% 8 1.03527618
% 10 0.842535997
% 20 0.5997
pop = size(y,2);
N = size(y,1)/2;
f = [];
for ipop = 1:pop
if any(abs(y(:,ipop)) > 1)
f(ipop) = NaN;
else
x = reshape(y(:,ipop), [2, N]);
f(ipop) = inf;
for i = 1:N
f(ipop) = min(f(ipop), min(sqrt(sum((x(:,[1:i-1 i+1:N]) - repmat(x(:,i), 1, N-1)).^2, 1))));
end
end
end
f = -f;
function f=fchangingsphere(x)
N = size(x,1);
global scale_G; global count_G; if isempty(count_G) count_G=-1; end
count_G = count_G+1;
if mod(count_G,10) == 0
scale_G = 10.^(2*rand(1,N));
end
%disp(scale(1));
f = scale_G*x.^2;
function f= flogsphere(x)
f = 1-exp(-sum(x.^2));
function f= fexpsphere(x)
f = exp(sum(x.^2)) - 1;
function f=fbaluja(x)
% in [-0.16 0.16]
y = x(1);
for i = 2:length(x)
y(i) = x(i) + y(i-1);
end
f = 1e5 - 1/(1e-5 + sum(abs(y)));
function f=fschwefel(x)
f = 0;
for i = 1:size(x,1),
f = f+sum(x(1:i))^2;
end
function f=fcigar(x, ar)
if nargin < 2 || isempty(ar)
ar = 1e3;
end
f = x(1,:).^2 + ar^2*sum(x(2:end,:).^2,1);
function f=fcigtab(x)
f = x(1,:).^2 + 1e8*x(end,:).^2 + 1e4*sum(x(2:(end-1),:).^2, 1);
function f=ftablet(x)
f = 1e6*x(1,:).^2 + sum(x(2:end,:).^2, 1);
function f=felli(x, lgscal, expon, expon2)
% lgscal: log10(axis ratio)
% expon: x_i^expon, sphere==2
N = size(x,1); if N < 2 error('dimension must be greater one'); end
% x = x - repmat(-0.5+(1:N)',1,size(x,2)); % optimum in 1:N
if nargin < 2 || isempty(lgscal), lgscal = 3; end
if nargin < 3 || isempty(expon), expon = 2; end
if nargin < 4 || isempty(expon2), expon2 = 1; end
f=((10^(lgscal*expon)).^((0:N-1)/(N-1)) * abs(x).^expon).^(1/expon2);
% if rand(1,1) > 0.015
% f = NaN;
% end
% f = f + randn(size(f));
function f=fellitest(x)
beta = 0.9;
N = size(x,1);
f = (1e6.^((0:(N-1))/(N-1))).^beta * (x.^2).^beta;
function f=fellii(x, scal)
N = size(x,1); if N < 2 error('dimension must be greater one'); end
if nargin < 2
scal = 1;
end
f= (scal*(1:N)).^2 * (x).^2;
function f=fellirot(x)
N = size(x,1);
global ORTHOGONALCOORSYSTEM_G
if isempty(ORTHOGONALCOORSYSTEM_G) ...
|| length(ORTHOGONALCOORSYSTEM_G) < N ...
|| isempty(ORTHOGONALCOORSYSTEM_G{N})
coordinatesystem(N);
end
f = felli(ORTHOGONALCOORSYSTEM_G{N}*x);
function f=frot(x, fun, varargin)
N = size(x,1);
global ORTHOGONALCOORSYSTEM_G
if isempty(ORTHOGONALCOORSYSTEM_G) ...
|| length(ORTHOGONALCOORSYSTEM_G) < N ...
|| isempty(ORTHOGONALCOORSYSTEM_G{N})
coordinatesystem(N);
end
f = feval(fun, ORTHOGONALCOORSYSTEM_G{N}*x, varargin{:});
function coordinatesystem(N)
if nargin < 1 || isempty(N)
arN = 2:30;
else
arN = N;
end
global ORTHOGONALCOORSYSTEM_G
ORTHOGONALCOORSYSTEM_G{1} = 1;
for N = arN
ar = randn(N,N);
for i = 1:N
for j = 1:i-1
ar(:,i) = ar(:,i) - ar(:,i)'*ar(:,j) * ar(:,j);
end
ar(:,i) = ar(:,i) / norm(ar(:,i));
end
ORTHOGONALCOORSYSTEM_G{N} = ar;
end
function f=fplane(x)
f=x(1);
function f=ftwoaxes(x)
f = sum(x(1:floor(end/2),:).^2, 1) + 1e6*sum(x(floor(1+end/2):end,:).^2, 1);
function f=fparabR(x)
f = -x(1,:) + 100*sum(x(2:end,:).^2,1);
function f=fsharpR(x)
f = abs(-x(1, :)).^2 + 100 * sqrt(sum(x(2:end,:).^2, 1));
function f=frosen(x)
if size(x,1) < 2 error('dimension must be greater one'); end
N = size(x,1);
popsi = size(x,2);
f = 1e2*sum((x(1:end-1,:).^2 - x(2:end,:)).^2,1) + sum((x(1:end-1,:)-1).^2,1);
% f = f + f^0.9 .* (2*randn(1,popsi) ./ randn(1,popsi).^0 / (2*N));
function f=frosenlin(x)
if size(x,1) < 2 error('dimension must be greater one'); end
x_org = x;
x(x>30) = 30;
x(x<-30) = -30;
f = 1e2*sum(-(x(1:end-1,:).^2 - x(2:end,:)),1) + ...
sum((x(1:end-1,:)-1).^2,1);
f = f + sum((x-x_org).^2,1);
% f(any(abs(x)>30,1)) = NaN;
function f=frosenrot(x)
N = size(x,1);
global ORTHOGONALCOORSYSTEM_G
if isempty(ORTHOGONALCOORSYSTEM_G) ...
|| length(ORTHOGONALCOORSYSTEM_G) < N ...
|| isempty(ORTHOGONALCOORSYSTEM_G{N})
coordinatesystem(N);
end
f = frosen(ORTHOGONALCOORSYSTEM_G{N}*x);
function f=frosenmodif(x)
f = 74 + 100*(x(2)-x(1)^2)^2 + (1-x(1))^2 ...
- 400*exp(-sum((x+1).^2)/2/0.05);
function f=fschwefelrosen1(x)
% in [-10 10]
f=sum((x.^2-x(1)).^2 + (x-1).^2);
function f=fschwefelrosen2(x)
% in [-10 10]
f=sum((x(2:end).^2-x(1)).^2 + (x(2:end)-1).^2);
function f=fdiffpow(x)
[N popsi] = size(x); if N < 2 error('dimension must be greater one'); end
f = sum(abs(x).^repmat(2+10*(0:N-1)'/(N-1), 1, popsi), 1);
f = sqrt(f);
function f=fabsprod(x)
f = sum(abs(x),1) + prod(abs(x),1);
function f=ffloor(x)
f = sum(floor(x+0.5).^2,1);
function f=fmaxx(x)
f = max(abs(x), [], 1);
%%% Multimodal functions
function f=fbirastrigin(x)
% todo: the volume needs to be a constant
N = size(x,1);
idx = (sum(x, 1) < 0.5*N); % global optimum
f = zeros(1,size(x,2));
f(idx) = 10*(N-sum(cos(2*pi*x(:,idx)),1)) + sum(x(:,idx).^2,1);
idx = ~idx;
f(idx) = 0.1 + 10*(N-sum(cos(2*pi*(x(:,idx)-2)),1)) + sum((x(:,idx)-2).^2,1);
function f=fackley(x)
% -32.768..32.768
% Adding a penalty outside the interval is recommended,
% because for large step sizes, fackley imposes like frand
%
N = size(x,1);
f = 20-20*exp(-0.2*sqrt(sum(x.^2)/N));
f = f + (exp(1) - exp(sum(cos(2*pi*x))/N));
% add penalty outside the search interval
f = f + sum((x(x>32.768)-32.768).^2) + sum((x(x<-32.768)+32.768).^2);
function f = fbohachevsky(x)
% -15..15
f = sum(x(1:end-1).^2 + 2 * x(2:end).^2 - 0.3 * cos(3*pi*x(1:end-1)) ...
- 0.4 * cos(4*pi*x(2:end)) + 0.7);
function f=fconcentric(x)
% in +-600
s = sum(x.^2);
f = s^0.25 * (sin(50*s^0.1)^2 + 1);
function f=fgriewank(x)
% in [-600 600]
[N, P] = size(x);
f = 1 - prod(cos(x'./sqrt(1:N))) + sum(x.^2)/4e3;
scale = repmat(sqrt(1:N)', 1, P);
f = 1 - prod(cos(x./scale), 1) + sum(x.^2, 1)/4e3;
% f = f + 1e4*sum(x(abs(x)>5).^2);
% if sum(x(abs(x)>5).^2) > 0
% f = 1e4 * sum(x(abs(x)>5).^2) + 1e8 * sum(x(x>5)).^2;
% end
function f=fgriewrosen(x)
% F13 or F8F2
[N, P] = size(x);
scale = repmat(sqrt(1:N)', 1, P);
y = [x(2:end,:); x(1,:)];
x = 100 * (x.^2 - y) + (x - 1).^2; % Rosenbrock part
f = 1 - prod(cos(x./scale), 1) + sum(x.^2, 1)/4e3;
f = sum(1 - cos(x) + x.^2/4e3, 1);
function f=fspallpseudorastrigin(x, scal, skewfac, skewstart, amplitude)
% by default multi-modal about between -30 and 30
if nargin < 5 || isempty(amplitude)
amplitude = 40;
end
if nargin < 4 || isempty(skewstart)
skewstart = 0;
end
if nargin < 3 || isempty(skewfac)
skewfac = 1;
end
if nargin < 2 || isempty(scal)
scal = 1;
end
N = size(x,1);
scale = 1;
if N > 1
scale=scal.^((0:N-1)'/(N-1));
end
% simple version:
% f = amplitude*(N - sum(cos(2*pi*(scale.*x)))) + sum((scale.*x).^2);
% skew version:
y = repmat(scale, 1, size(x,2)) .* x;
idx = find(x > skewstart);
if ~isempty(idx)
y(idx) = skewfac*y(idx);
end
f = amplitude * (0*N-prod(cos((2*pi)^0*y),1)) + 0.05 * sum(y.^2,1) ...
+ randn(1,1);
function f=frastrigin(x, scal, skewfac, skewstart, amplitude)
% by default multi-modal about between -30 and 30
if nargin < 5 || isempty(amplitude)
amplitude = 10;
end
if nargin < 4 || isempty(skewstart)
skewstart = 0;
end
if nargin < 3 || isempty(skewfac)
skewfac = 1;
end
if nargin < 2 || isempty(scal)
scal = 1;
end
N = size(x,1);
scale = 1;
if N > 1
scale=scal.^((0:N-1)'/(N-1));
end
% simple version:
% f = amplitude*(N - sum(cos(2*pi*(scale.*x)))) + sum((scale.*x).^2);
% skew version:
y = repmat(scale, 1, size(x,2)) .* x;
idx = find(x > skewstart);
% idx = intersect(idx, 2:2:10);
if ~isempty(idx)
y(idx) = skewfac*y(idx);
end
f = amplitude * (N-sum(cos(2*pi*y),1)) + sum(y.^2,1);
function f=frastriginmax(x)
N = size(x,1);
f = (N/20)*807.06580387678 - (10 * (N-sum(cos(2*pi*x),1)) + sum(x.^2,1));
f(any(abs(x) > 5.12)) = 1e2*N;
function f = fschaffer(x)
% -100..100
N = size(x,1);
s = x(1:N-1,:).^2 + x(2:N,:).^2;
f = sum(s.^0.25 .* (sin(50*s.^0.1).^2+1), 1);
function f=fschwefelmult(x)
% -500..500
%
N = size(x,1);
f = - sum(x.*sin(sqrt(abs(x))), 1);
f = 418.9829*N - 1.27275661e-5*N - sum(x.*sin(sqrt(abs(x))), 1);
% penalty term
f = f + 1e4*sum((abs(x)>500) .* (abs(x)-500).^2, 1);
function f=ftwomax(x)
% Boundaries at +/-5
N = size(x,1);
f = -abs(sum(x)) + 5*N;
function f=ftwomaxtwo(x)
% Boundaries at +/-10
N = size(x,1);
f = abs(sum(x));
if f > 30
f = f - 30;
end
f = -f;
function f=frand(x)
f=1./(1-rand(1, size(x,2))) - 1;
% CHANGES
% 12/02/19: "future" setting of ccum, correcting for large mueff, is default now
% 11/11/15: bug-fix: max value for ccovmu_sep setting corrected
% 10/11/11: (3.52.beta) boundary handling: replace max with min in change
% rate formula. Active CMA: check of pos.def. improved.
% Plotting: value of lambda appears in the title.
% 10/04/03: (3.51.beta) active CMA cleaned up. Equal fitness detection
% looks into history now.
% 10/03/08: (3.50.beta) "active CMA" revised and bug-fix of ambiguous
% option Noise.alpha -> Noise.alphasigma.
% 09/10/12: (3.40.beta) a slightly modified version of "active CMA",
% that is a negative covariance matrix update, use option
% CMA.active. In 10;30;90-D the gain on ftablet is a factor
% of 1.6;2.5;4.4 (the scaling improves by sqrt(N)). On
% Rosenbrock the gain is about 25%. On sharp ridge the
% behavior is improved. Cigar is unchanged.
% 09/08/10: local plotcmaesdat remains in backround
% 09/08/10: bug-fix in time management for data writing, logtime was not
% considered properly (usually not at all).
% 09/07/05: V3.24: stagnation termination added
% 08/09/27: V3.23: momentum alignment is out-commented and de-preciated
% 08/09/25: V3.22: re-alignment of sigma and C was buggy
% 08/07/15: V3.20, CMA-parameters are options now. ccov and mucov were replaced
% by ccov1 \approx ccov/mucov and ccovmu \approx (1-1/mucov)*ccov
% 08/06/30: file name xrecent was change to xrecentbest (compatible with other
% versions)
% 08/06/29: time stamp added to output files
% 08/06/28: bug fixed with resume option, commentary did not work
% 08/06/28: V3.10, uncertainty (noise) handling added (re-implemented), according
% to reference "A Method for Handling Uncertainty..." from below.
% 08/06/28: bug fix: file xrecent was empty
% 08/06/01: diagonalonly clean up. >1 means some iterations.
% 08/05/05: output is written to file preventing an increasing data
% array and ease long runs.
% 08/03/27: DiagonalOnly<0 learns for -DiagonalOnly iterations only the
% diagonal with a larger learning rate.
% 08/03 (2.60): option DiagonalOnly>=1 invokes a time- and space-linear
% variant with only diagonal elements of the covariance matrix
% updating. This can be useful for large dimensions, say > 100.
% 08/02: diag(weights) * ... replaced with repmat(weights,1,N) .* ...
% in C update, implies O(mu*N^2) instead of O(mu^2*N + mu*N^2).
% 07/09: tolhistfun as termination criterion added, "<" changed to
% "<=" also for TolFun to allow for stopping on zero difference.
% Name tolfunhist clashes with option tolfun.
% 07/07: hsig threshold made slighly smaller for large dimension,
% useful for lambda < lambda_default.
% 07/06: boundary handling: scaling in the boundary handling
% is omitted now, see bnd.flgscale. This seems not to
% have a big impact. Using the scaling is worse on rotated
% functions, but better on separable ones.
% 07/05: boundary handling: weight i is not incremented anymore
% if xmean(i) moves towards the feasible space. Increment
% factor changed to 1.2 instead of 1.1.
% 07/05: boundary handling code simplified not changing the algorithm
% 07/04: bug removed for saving in octave
% 06/11/10: more testing of outcome of eig, fixed max(D) to max(diag(D))
% 06/10/21: conclusive final bestever assignment in the end
% 06/10/21: restart and incpopsize option implemented for restarts
% with increasing population size, version 2.50.
% 06/09/16: output argument bestever inserted again for convenience and
% backward compatibility
% 06/08: output argument out and struct out reorganized.
% 06/01: Possible parallel evaluation included as option EvalParallel
% 05/11: Compatibility to octave implemented, package octave-forge
% is needed.
% 05/09: Raise of figure and waiting for first plots improved
% 05/01: Function coordinatesystem cleaned up.
% 05/01: Function prctile, which requires the statistics toolbox,
% replaced by myprctile.
% 05/01: Option warnonequalfunctionvalues included.
% 04/12: Decrease of sigma removed. Problems on fsectorsphere can
% be addressed better by adding search space boundaries.
% 04/12: Boundary handling simpyfied.
% 04/12: Bug when stopping criteria tolx or tolupx are vectors.
% 04/11: Three input parameters are obligatory now.
% 04/11: Bug in boundary handling removed: Boundary weights can decrease now.
% 04/11: Normalization for boundary weights scale changed.
% 04/11: VerboseModulo option bug removed. Documentation improved.
% 04/11: Condition for increasing boundary weights changed.
% 04/10: Decrease of sigma when fitness is getting consistenly
% worse. Addresses the problems appearing on fsectorsphere for
% large population size.
% 04/10: VerboseModulo option included.
% 04/10: Bug for condition for increasing boundary weights removed.
% 04/07: tolx depends on initial sigma to achieve scale invariance
% for this stopping criterion.
% 04/06: Objective function value NaN is not counted as function
% evaluation and invokes resampling of the search point.
% 04/06: Error handling for eigenvalue beeing zero (never happens
% with default parameter setting)
% 04/05: damps further tuned for large mueff
% o Details for stall of pc-adaptation added (variable hsig
% introduced).
% 04/05: Bug in boundary handling removed: A large initial SIGMA was
% corrected not until *after* the first iteration, which could
% lead to a complete failure.
% 04/05: Call of function range (works with stats toolbox only)
% changed to myrange.
% 04/04: Parameter cs depends on mueff now and damps \propto sqrt(mueff)
% instead of \propto mueff.
% o Initial stall to adapt C (flginiphase) is removed and
% adaptation of pc is stalled for large norm(ps) instead.
% o Returned default options include documentation.
% o Resume part reorganized.
% 04/03: Stopflag becomes cell-array.
% ---------------------------------------------------------------
% CMA-ES: Evolution Strategy with Covariance Matrix Adaptation for
% nonlinear function minimization. To be used under the terms of the
% GNU General Public License (http://www.gnu.org/copyleft/gpl.html).
% Author (copyright): Nikolaus Hansen, 2001-2008.
% e-mail: nikolaus.hansen AT inria.fr
% URL:http://www.bionik.tu-berlin.de/user/niko
% References: See below.
% ---------------------------------------------------------------
%
% GENERAL PURPOSE: The CMA-ES (Evolution Strategy with Covariance
% Matrix Adaptation) is a robust search method which should be
% applied, if derivative based methods, e.g. quasi-Newton BFGS or
% conjucate gradient, (supposably) fail due to a rugged search
% landscape (e.g. noise, local optima, outlier, etc.). On smooth
% landscapes CMA-ES is roughly ten times slower than BFGS. For up to
% N=10 variables even the simplex direct search method (Nelder & Mead)
% is often faster, but far less robust than CMA-ES. To see the
% advantage of the CMA, it will usually take at least 30*N and up to
% 300*N function evaluations, where N is the search problem dimension.
% On considerably hard problems the complete search (a single run) is
% expected to take at least 30*N^2 and up to 300*N^2 function
% evaluations.
%
% SOME MORE COMMENTS:
% The adaptation of the covariance matrix (e.g. by the CMA) is
% equivalent to a general linear transformation of the problem
% coding. Nevertheless every problem specific knowlegde about the best
% linear transformation should be exploited before starting the
% search. That is, an appropriate a priori transformation should be
% applied to the problem. This also makes the identity matrix as
% initial covariance matrix the best choice.
%
% The strategy parameter lambda (population size, opts.PopSize) is the
% preferred strategy parameter to play with. If results with the
% default strategy are not satisfactory, increase the population
% size. (Remark that the crucial parameter mu (opts.ParentNumber) is
% increased proportionally to lambda). This will improve the
% strategies capability of handling noise and local minima. We
% recomment successively increasing lambda by a factor of about three,
% starting with initial values between 5 and 20. Casually, population
% sizes even beyond 1000+100*N can be sensible.
%
%
% ---------------------------------------------------------------
%%% REFERENCES
%
% The equation numbers refer to
% Hansen, N. and S. Kern (2004). Evaluating the CMA Evolution
% Strategy on Multimodal Test Functions. Eighth International
% Conference on Parallel Problem Solving from Nature PPSN VIII,
% Proceedings, pp. 282-291, Berlin: Springer.
% (http://www.bionik.tu-berlin.de/user/niko/ppsn2004hansenkern.pdf)
%
% Further references:
% Hansen, N. and A. Ostermeier (2001). Completely Derandomized
% Self-Adaptation in Evolution Strategies. Evolutionary Computation,
% 9(2), pp. 159-195.
% (http://www.bionik.tu-berlin.de/user/niko/cmaartic.pdf).
%
% Hansen, N., S.D. Mueller and P. Koumoutsakos (2003). Reducing the
% Time Complexity of the Derandomized Evolution Strategy with
% Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation,
% 11(1). (http://mitpress.mit.edu/journals/pdf/evco_11_1_1_0.pdf).
%
% Ros, R. and N. Hansen (2008). A Simple Modification in CMA-ES
% Achieving Linear Time and Space Complexity. To appear in Tenth
% International Conference on Parallel Problem Solving from Nature
% PPSN X, Proceedings, Berlin: Springer.
%
% Hansen, N., A.S.P. Niederberger, L. Guzzella and P. Koumoutsakos
% (2009?). A Method for Handling Uncertainty in Evolutionary
% Optimization with an Application to Feedback Control of
% Combustion. To appear in IEEE Transactions on Evolutionary
% Computation.
|