/usr/share/calc/help/resource is in apcalc-common 2.12.4.4-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 | Calc standard resource files
----------------------------
To load a resource file, try:
    read filename
You do not need to add the .cal extension to the filename.  Calc
will search along the $CALCPATH (see ``help environment'').
Normally a resource file will simply define some functions.  By default,
most resource files will print out a short message when they are read.
For example:
    ; read lucas
    lucas(h,n) defined
    gen_u0(h,n,v1) defined
    gen_v1(h,n) defined
    ldebug(funct,str) defined
will cause calc to load and execute the 'lucas.cal' resource file.
Executing the resource file will cause several functions to be defined.
Executing the lucas function:
    ; lucas(149,60)
	    1
    ; lucas(146,61)
	    0
shows that 149*2^60-1 is prime whereas 146*2^61-1 is not.
=-=
Calc resource file files are provided because they serve as examples of
how use the calc language, and/or because the authors thought them to
be useful!
If you write something that you think is useful, please send it to:
    calc-contrib at asthe dot com
    [[ NOTE: Replace 'at' with @, 'dot' is with . and remove the spaces ]]
    [[ NOTE: The EMail address uses 'asthe' and the web site URL uses 'isthe' ]]
By convention, a resource file only defines and/or initializes functions,
objects and variables.	(The regress.cal and testxxx.cal regression test
suite is an exception.)	 Also by convention, an additional usage message
regarding important object and functions is printed.
If a resource file needs to load another resource file, it should use
the -once version of read:
    /* pull in needed resource files */
    read -once "surd"
    read -once "lucas"
This will cause the needed resource files to be read once.  If these
files have already been read, the read -once will act as a noop.
The "resource_debug" parameter is intended for controlling the possible
display of special information relating to functions, objects, and
other structures created by instructions in calc resource files.
Zero value of config("resource_debug") means that no such information
is displayed.  For other values, the non-zero bits which currently
have meanings are as follows:
    n		Meaning of bit n of config("resource_debug")
    0	When a function is defined, redefined or undefined at
	interactive level, a message saying what has been done
	is displayed.
    1	When a function is defined, redefined or undefined during
	the reading of a file, a message saying what has been done
	is displayed.
    2	Show func will display more information about a functions
	arguments as well as more argument summary information.
    3	During execution, allow calc standard resource files
	to output additional debugging information.
The value for config("resource_debug") in both oldstd and newstd is 3,
but if calc is invoked with the -d flag, its initial value is zero.
Thus, if calc is started without the -d flag, until config("resource_debug")
is changed, a message will be output when a function is defined
either interactively or during the reading of a file.
Sometimes the information printed is not enough.  In addition to the
standard information, one might want to print:
	* useful obj definitions
	* functions with optional args
	* functions with optional args where the param() interface is used
For these cases we suggest that you place at the bottom of your code
something that prints extra information if config("resource_debug") has
either of the bottom 2 bits set:
	if (config("resource_debug") & 3) {
		print "obj xyz defined";
		print "funcA([val1 [, val2]]) defined";
		print "funcB(size, mass, ...) defined";
	}
If your the resource file needs to output special debugging information,
we recommend that you check for bit 3 of the config("resource_debug")
before printing the debug statement:
	if (config("resource_debug") & 8) {
		print "DEBUG: This a sample debug statement";
	}
=-=
The following is a brief description of some of the calc resource files
that are shipped with calc.  See above for example of how to read in
and execute these files.
alg_config.cal
    global test_time
    mul_loop(repeat,x) defined
    mul_ratio(len) defined
    best_mul2() defined
    sq_loop(repeat,x) defined
    sq_ratio(len) defined
    best_sq2() defined
    pow_loop(repeat,x,ex) defined
    pow_ratio(len) defined
    best_pow2() defined
    These functions search for an optimal value of config("mul2"),
    config("sq2"), and config("pow2").  The calc default values of these
    configuration values were set by running this resource file on a
    1.8GHz AMD 32-bit CPU of ~3406 BogoMIPS.
    The best_mul2() function returns the optimal value of config("mul2").
    The best_sq2() function returns the optimal value of config("sq2").
    The best_pow2() function returns the optimal value of config("pow2").
    The other functions are just support functions.
    By design, best_mul2(), best_sq2(), and best_pow2() take a few
    minutes to run.  These functions increase the number of times a
    given computational loop is executed until a minimum amount of CPU
    time is consumed.  To watch these functions progress, one can set
    the config("user_debug") value.
    Here is a suggested way to use this resource file:
	; read alg_config
	; config("user_debug",2),;
	; best_mul2(); best_sq2(); best_pow2();
	; best_mul2(); best_sq2(); best_pow2();
	; best_mul2(); best_sq2(); best_pow2();
    NOTE: It is perfectly normal for the optimal value returned to differ
    slightly from run to run.  Slight variations due to inaccuracy in
    CPU timings will cause the best value returned to differ slightly
    from run to run.
    One can use a calc startup file to change the initial values of
    config("mul2"), config("sq2"), and config("pow2").  For example one
    can place into ~/.calcrc these lines:
	config("mul2", 1780),;
	config("sq2", 3388),;
	config("pow2", 176),;
    to automatically and silently change these config values.
    See help/config and CALCRC in help/environment for more information.
beer.cal
    Calc's contribution to the 99 Bottles of Beer web page:
	http://www.ionet.net/~timtroyr/funhouse/beer.html#calc
     NOTE: This resource produces a lot of output.  :-)
bernoulli.cal
    B(n)
    Calculate the nth Bernoulli number.
    NOTE: There is now a bernoulli() builtin function.  This file is
    	  left here for backward compatibility and now simply returns
	  the builtin function.
bigprime.cal
    bigprime(a, m, p)
    A prime test, base a, on p*2^x+1 for even x>m.
chi.cal
    Z(x[, eps])
    P(x[, eps])
    chi_prob(chi_sq, v[, eps])
    Computes the Probability, given the Null Hypothesis, that a given
    Chi squared values >= chi_sq with v degrees of freedom.
    The chi_prob() function does not work well with odd degrees of freedom.
    It is reasonable with even degrees of freedom, although one must give
    a sufficiently small error term as the degrees gets large (>100).
    The Z(x) and P(x) are internal statistical functions.
    eps is an optional epsilon() like error term.
chrem.cal
    chrem(r1,m1 [,r2,m2, ...])
    chrem(rlist, mlist)
    Chinese remainder theorem/problem solver.
deg.cal
    deg(deg, min, sec)
    deg_add(a, b)
    deg_neg(a)
    deg_sub(a, b)
    deg_mul(a, b)
    deg_print(a)
    Calculate in degrees, minutes, and seconds.  For a more functional
    version see dms.cal.
dms.cal
    dms(deg, min, sec)
    dms_add(a, b)
    dms_neg(a)
    dms_sub(a, b)
    dms_mul(a, b)
    dms_print(a)
    dms_abs(a)
    dms_norm(a)
    dms_test(a)
    dms_int(a)
    dms_frac(a)
    dms_rel(a,b)
    dms_cmp(a,b)
    dms_inc(a)
    dms_dec(a)
    Calculate in degrees, minutes, and seconds.  Unlike deg.cal, increments
    are on the arc second level.  See also hms.cal.
dotest.cal
    dotest(dotest_file [,dotest_code [,dotest_maxcond]])
    dotest_file
	Search along CALCPATH for dotest_file, which contains lines that
	should evaluate to 1.  Comment lines and empty lines are ignored.
	Comment lines should use ## instead of the multi like /* ... */
	because lines are evaluated one line at a time.
    dotest_code
	Assign the code number that is to be printed at the start of
	each non-error line and after **** in each error line.
	The default code number is 999.
    dotest_maxcond
	The maximum number of error conditions that may be detected.
	An error condition is not a sign of a problem, in some cases
	a line deliberately forces an error condition.	A value of -1,
	the default, implies a maximum of 2147483647.
    Global variables and functions must be declared ahead of time because
    the dotest scope of evaluation is a line at a time.  For example:
	read dotest.cal
	read set8700.cal
	dotest("set8700.line");
ellip.cal
    efactor(iN, ia, B, force)
    Attempt to factor using the elliptic functions: y^2 = x^3 + a*x + b.
gvec.cal
    gvec(function, vector)
    Vectorize any single-input function or trailing operator.
hello.cal
    Calc's contribution to the Hello World! page:
	http://www.latech.edu/~acm/HelloWorld.shtml
	http://www.latech.edu/~acm/helloworld/calc.html
     NOTE: This resource produces a lot of output.  :-)
hms.cal
    hms(hour, min, sec)
    hms_add(a, b)
    hms_neg(a)
    hms_sub(a, b)
    hms_mul(a, b)
    hms_print(a)
    hms_abs(a)
    hms_norm(a)
    hms_test(a)
    hms_int(a)
    hms_frac(a)
    hms_rel(a,b)
    hms_cmp(a,b)
    hms_inc(a)
    hms_dec(a)
    Calculate in hours, minutes, and seconds.  See also dmscal.
intfile.cal
    file2be(filename)
	Read filename and return an integer that is built from the
	octets in that file in Big Endian order.  The first octets
	of the file become the most significant bits of the integer.
    file2le(filename)
	Read filename and return an integer that is built from the
	octets in that file in Little Endian order.  The first octets
	of the file become the most significant bits of the integer.
    be2file(v, filename)
	Write the absolute value of v into filename in Big Endian order.
	The v argument must be on integer.  The most significant bits
	of the integer become the first octets of the file.
    le2file(v, filename)
	Write the absolute value of v into filename in Little Endian order.
	The v argument must be on integer.  The least significant bits
	of the integer become the last octets of the file.
linear.cal
    linear(x0, y0, x1, y1, x)
    Returns the value y such that (x,y) in on the line (x0,y0), (x1,y1).
    Requires x0 != y0.
lucas.cal
    lucas(h, n)
    Perform a primality test of h*2^n-1, with 1<=h<2*n.
lucas_chk.cal
    lucas_chk(high_n)
    Test all primes of the form h*2^n-1, with 1<=h<200 and n <= high_n.
    Requires lucas.cal to be loaded.  The highest useful high_n is 1000.
    Used by regress.cal during the 2100 test set.
lucas_tbl.cal
    Lucasian criteria for primality tables.
mersenne.cal
    mersenne(p)
    Perform a primality test of 2^p-1, for prime p>1.
mfactor.cal
    mfactor(n [, start_k=1 [, rept_loop=10000 [, p_elim=17]]])
    Return the lowest factor of 2^n-1, for n > 0.  Starts looking for factors
    at 2*start_k*n+1.  Skips values that are multiples of primes <= p_elim.
    By default, start_k == 1, rept_loop = 10000 and p_elim = 17.
    The p_elim == 17 overhead takes ~3 minutes on an 200 Mhz r4k CPU and
    requires about ~13 Megs of memory.	The p_elim == 13 overhead
    takes about 3 seconds and requires ~1.5 Megs of memory.
    The value p_elim == 17 is best for long factorizations.  It is the
    fastest even thought the initial startup overhead is larger than
    for p_elim == 13.
mod.cal
    lmod(a)
    mod_print(a)
    mod_one()
    mod_cmp(a, b)
    mod_rel(a, b)
    mod_add(a, b)
    mod_sub(a, b)
    mod_neg(a)
    mod_mul(a, b)
    mod_square(a)
    mod_inc(a)
    mod_dec(a)
    mod_inv(a)
    mod_div(a, b)
    mod_pow(a, b)
    Routines to handle numbers modulo a specified number.
natnumset.cal
    isset(a)
    setbound(n)
    empty()
    full()
    isin(a, b)
    addmember(a, n)
    rmmember(a, n)
    set()
    mkset(s)
    primes(a, b)
    set_max(a)
    set_min(a)
    set_not(a)
    set_cmp(a, b)
    set_rel(a, b)
    set_or(a, b)
    set_and(a, b)
    set_comp(a)
    set_setminus(a, b)
    set_diff(a,b)
    set_content(a)
    set_add(a, b)
    set_sub(a, b)
    set_mul(a, b)
    set_square(a)
    set_pow(a, n)
    set_sum(a)
    set_plus(a)
    interval(a, b)
    isinterval(a)
    set_mod(a, b)
    randset(n, a, b)
    polyvals(L, A)
    polyvals2(L, A, B)
    set_print(a)
    Demonstration of how the string operators and functions may be used
    for defining and working with sets of natural numbers not exceeding a
    user-specified bound.
pell.cal
    pellx(D)
    pell(D)
    Solve Pell's equation; Returns the solution X to: X^2 - D * Y^2 = 1.
    Type the solution to Pell's equation for a particular D.
pi.cal
    qpi(epsilon)
    piforever()
    The qpi() calculate pi within the specified epsilon using the quartic
    convergence iteration.
    The piforever() prints digits of pi, nicely formatted, for as long
    as your free memory space and system up time allows.
    The piforever() function (written by Klaus Alexander Seistrup
    <klaus@seistrup.dk>) was inspired by an algorithm conceived by
    Lambert Meertens.  See also the ABC Programmer's Handbook, by Geurts,
    Meertens & Pemberton, published by Prentice-Hall (UK) Ltd., 1990.
pix.cal
    pi_of_x(x)
    Calculate the number of primes < x using A(n+1)=A(n-1)+A(n-2).  This
    is a SLOW painful method ... the builtin pix(x) is much faster.
    Still, this method is interesting.
pollard.cal
    pfactor(N, N, ai, af)
    Factor using Pollard's p-1 method.
poly.cal
    Calculate with polynomials of one variable.	 There are many functions.
    Read the documentation in the resource file.
prompt.cal
    adder()
    showvalues(str)
    Demonstration of some uses of prompt() and eval().
psqrt.cal
    psqrt(u, p)
    Calculate square roots modulo a prime
qtime.cal
    qtime(utc_hr_offset)
    Print the time as English sentence given the hours offset from UTC.
quat.cal
    quat(a, b, c, d)
    quat_print(a)
    quat_norm(a)
    quat_abs(a, e)
    quat_conj(a)
    quat_add(a, b)
    quat_sub(a, b)
    quat_inc(a)
    quat_dec(a)
    quat_neg(a)
    quat_mul(a, b)
    quat_div(a, b)
    quat_inv(a)
    quat_scale(a, b)
    quat_shift(a, b)
    Calculate using quaternions of the form: a + bi + cj + dk.	In these
    functions, quaternions are manipulated in the form: s + v, where
    s is a scalar and v is a vector of size 3.
randbitrun.cal
    randbitrun([run_cnt])
    Using randbit(1) to generate a sequence of random bits, determine if
    the number and length of identical bits runs match what is expected.
    By default, run_cnt is to test the next 65536 random values.
    This tests the a55 generator.
randmprime.cal
    randmprime(bits, seed [,dbg])
    Find a prime of the form h*2^n-1 >= 2^bits for some given x.  The initial
    search points for 'h' and 'n' are selected by a cryptographic pseudo-random
    number generator.  The optional argument, dbg, if set to 1, 2 or 3
    turn on various debugging print statements.
randombitrun.cal
    randombitrun([run_cnt])
    Using randombit(1) to generate a sequence of random bits, determine if
    the number and length of identical bits runs match what is expected.
    By default, run_cnt is to test the next 65536 random values.
    This tests the Blum-Blum-Shub generator.
randomrun.cal
    randomrun([run_cnt])
    Perform the "G. Run test" (pp. 65-68) as found in Knuth's "Art of
    Computer Programming - 2nd edition", Volume 2, Section 3.3.2 on
    the builtin rand() function.  This function will generate run_cnt
    64 bit values.  By default, run_cnt is to test the next 65536
    random values.
    This tests the Blum-Blum-Shub generator.
randrun.cal
    randrun([run_cnt])
    Perform the "G. Run test" (pp. 65-68) as found in Knuth's "Art of
    Computer Programming - 2nd edition", Volume 2, Section 3.3.2 on
    the builtin rand() function.  This function will generate run_cnt
    64 bit values.  By default, run_cnt is to test the next 65536
    random values.
    This tests the a55 generator.
repeat.cal
    repeat(digit_set, repeat_count)
    Return the value of the digit_set repeated repeat_count times.
    Both digit_set and repeat_count must be integers > 0.
    For example repeat(423,5) returns the value 423423423423423,
    which is the digit_set 423 repeated 5 times.
regress.cal
    Test the correct execution of the calculator by reading this resource file.
    Errors are reported with '****' messages, or worse. :-)
screen.cal
    up
    CUU	/* same as up */
    down = CUD
    CUD	/* same as down */
    forward
    CUF	/* same as forward */
    back = CUB
    CUB	/* same as back */
    save
    SCP	/* same as save */
    restore
    RCP	/* same as restore */
    cls
    home
    eraseline
    off
    bold
    faint
    italic
    blink
    rapidblink
    reverse
    concealed
    /* Lowercase indicates foreground, uppercase background */
    black
    red
    green
    yellow
    blue
    magenta
    cyan
    white
    Black
    Red
    Green
    Yellow
    Blue
    Magenta
    Cyan
    White
    Define ANSI control sequences providing (i.e., cursor movement, changing
    foreground or background color, etc.) for VT100 terminals and terminal
    window emulators (i.e., xterm, Apple OS/X Terminal, etc.) that support them.
    For example:
	read screen
	print green:"This is green. ":red:"This is red.":black
seedrandom.cal
    seedrandom(seed1, seed2, bitsize [,trials])
    Given:
	seed1 - a large random value (at least 10^20 and perhaps < 10^93)
	seed2 - a large random value (at least 10^20 and perhaps < 10^93)
	size - min Blum modulus as a power of 2 (at least 100, perhaps > 1024)
	trials - number of ptest() trials (default 25) (optional arg)
    Returns:
	the previous random state
    Seed the cryptographically strong Blum generator.  This functions allows
    one to use the raw srandom() without the burden of finding appropriate
    Blum primes for the modulus.
set8700.cal
    set8700_getA1() defined
    set8700_getA2() defined
    set8700_getvar() defined
    set8700_f(set8700_x) defined
    set8700_g(set8700_x) defined
    Declare globals and define functions needed by dotest() (see
    dotest.cal) to evaluate set8700.line a line at a time.
set8700.line
    A line-by-line evaluation file for dotest() (see dotest.cal).
    The set8700.cal file (and dotest.cal) should be read first.
solve.cal
    solve(low, high, epsilon)
    Solve the equation f(x) = 0 to within the desired error value for x.
    The function 'f' must be defined outside of this routine, and the low
    and high values are guesses which must produce values with opposite signs.
sumsq.cal
    ss(p)
    Determine the unique two positive integers whose squares sum to the
    specified prime.  This is always possible for all primes of the form
    4N+1, and always impossible for primes of the form 4N-1.
sumtimes.cal
    timematsum(N)
    timelistsum(N)
    timematsort(N)
    timelistsort(N)
    timematreverse(N)
    timelistreverse(N)
    timematssq(N)
    timelistssq(N)
    timehmean(N,M)
    doalltimes(N)
    Give the user CPU time for various ways of evaluating sums, sums of
    squares, etc, for large lists and matrices.  N is the size of
    the list or matrix to use.  The doalltimes() function will run
    all fo the sumtimes tests.  For example:
    	doalltimes(1e6);
surd.cal
    surd(a, b)
    surd_print(a)
    surd_conj(a)
    surd_norm(a)
    surd_value(a, xepsilon)
    surd_add(a, b)
    surd_sub(a, b)
    surd_inc(a)
    surd_dec(a)
    surd_neg(a)
    surd_mul(a, b)
    surd_square(a)
    surd_scale(a, b)
    surd_shift(a, b)
    surd_div(a, b)
    surd_inv(a)
    surd_sgn(a)
    surd_cmp(a, b)
    surd_rel(a, b)
    Calculate using quadratic surds of the form: a + b * sqrt(D).
test1700.cal
    value
    This resource files is used by regress.cal to test the read and use keywords.
test2600.cal
    global defaultverbose
    global err
    testismult(str, n, verbose)
    testsqrt(str, n, eps, verbose)
    testexp(str, n, eps, verbose)
    testln(str, n, eps, verbose)
    testpower(str, n, b, eps, verbose)
    testgcd(str, n, verbose)
    cpow(x, n, eps)
    cexp(x, eps)
    cln(x, eps)
    mkreal()
    mkcomplex()
    mkbigreal()
    mksmallreal()
    testappr(str, n, verbose)
    checkappr(x, y, z, verbose)
    checkresult(x, y, z, a)
    test2600(verbose, tnum)
    This resource files is used by regress.cal to test some of builtin functions
    in terms of accuracy and roundoff.
test2700.cal
    global defaultverbose
    mknonnegreal()
    mkposreal()
    mkreal_2700()
    mknonzeroreal()
    mkposfrac()
    mkfrac()
    mksquarereal()
    mknonsquarereal()
    mkcomplex_2700()
    testcsqrt(str, n, verbose)
    checksqrt(x, y, z, v)
    checkavrem(A, B, X, eps)
    checkrounding(s, n, t, u, z)
    iscomsq(x)
    test2700(verbose, tnum)
    This resource files is used by regress.cal to test sqrt() for real and
    complex values.
test3100.cal
    obj res
    global md
    res_test(a)
    res_sub(a, b)
    res_mul(a, b)
    res_neg(a)
    res_inv(a)
    res(x)
    This resource file is used by regress.cal to test determinants of a matrix
test3300.cal
    global defaultverbose
    global err
    testi(str, n, N, verbose)
    testr(str, n, N, verbose)
    test3300(verbose, tnum)
    This resource file is used by regress.cal to provide for more determinant
    tests.
test3400.cal
    global defaultverbose
    global err
    test1(str, n, eps, verbose)
    test2(str, n, eps, verbose)
    test3(str, n, eps, verbose)
    test4(str, n, eps, verbose)
    test5(str, n, eps, verbose)
    test6(str, n, eps, verbose)
    test3400(verbose, tnum)
    This resource file is used by regress.cal to test trig functions.
    containing objects.
test3500.cal
    global defaultverbose
    global err
    testfrem(x, y, verbose)
    testgcdrem(x, y, verbose)
    testf(str, n, verbose)
    testg(str, n, verbose)
    testh(str, n, N, verbose)
    test3500(verbose, n, N)
    This resource file is used by regress.cal to test the functions frem,
    fcnt, gcdrem.
test4000.cal
    global defaultverbose
    global err
    global BASEB
    global BASE
    global COUNT
    global SKIP
    global RESIDUE
    global MODULUS
    global K1
    global H1
    global K2
    global H2
    global K3
    global H3
    plen(N) defined
    rlen(N) defined
    clen(N) defined
    ptimes(str, N, n, count, skip, verbose) defined
    ctimes(str, N, n, count, skip, verbose) defined
    crtimes(str, a, b, n, count, skip, verbose) defined
    ntimes(str, N, n, count, skip, residue, mod, verbose) defined
    testnextcand(str, N, n, cnt, skip, res, mod, verbose) defined
    testnext1(x, y, count, skip, residue, modulus) defined
    testprevcand(str, N, n, cnt, skip, res, mod, verbose) defined
    testprev1(x, y, count, skip, residue, modulus) defined
    test4000(verbose, tnum) defined
    This resource file is used by regress.cal to test ptest, nextcand and
    prevcand builtins.
test4100.cal
    global defaultverbose
    global err
    global K1
    global K2
    global BASEB
    global BASE
    rlen_4100(N) defined
    olen(N) defined
    test1(x, y, m, k, z1, z2) defined
    testall(str, n, N, M, verbose) defined
    times(str, N, n, verbose) defined
    powtimes(str, N1, N2, n, verbose) defined
    inittimes(str, N, n, verbose) defined
    test4100(verbose, tnum) defined
    This resource file is used by regress.cal to test REDC operations.
test4600.cal
    stest(str [, verbose]) defined
    ttest([m, [n [,verbose]]]) defined
    sprint(x) defined
    findline(f,s) defined
    findlineold(f,s) defined
    test4600(verbose, tnum) defined
    This resource file is used by regress.cal to test searching in files.
test5100.cal
    global a5100
    global b5100
    test5100(x) defined
    This resource file is used by regress.cal to test the new code generator
    declaration scope and order.
test5200.cal
    global a5200
    static a5200
    f5200(x) defined
    g5200(x) defined
    h5200(x) defined
    This resource file is used by regress.cal to test the fix of a
    global/static bug.
test8400.cal
    test8400() defined
    This resource file is used by regress.cal to check for quit-based
    memory leaks.
test8500.cal
    global err_8500
    global L_8500
    global ver_8500
    global old_seed_8500
    global cfg_8500
    onetest_8500(a,b,rnd) defined
    divmod_8500(N, M1, M2, testnum) defined
    This resource file is used by regress.cal to the // and % operators.
test8600.cal
    global min_8600
    global max_8600
    global hash_8600
    global hmean_8600
    This resource file is used by regress.cal to test a change of
    allowing up to 1024 args to be passed to a builtin function.
unitfrac.cal
    unitfrac(x)
    Represent a fraction as sum of distinct unit fractions.
varargs.cal
    sc(a, b, ...)
    Example program to use 'varargs'.  Program to sum the cubes of all
    the specified numbers.
xx_print.cal
    is_octet(a) defined
    list_print(a) defined
    mat_print (a) defined
    octet_print(a) defined
    blk_print(a) defined
    nblk_print (a) defined
    strchar(a) defined
    file_print(a) defined
    error_print(a) defined
    Demo for the xx_print object routines.
## Copyright (C) 2000  David I. Bell and Landon Curt Noll
##
## Primary author: Landon Curt Noll
##
## Calc is open software; you can redistribute it and/or modify it under
## the terms of the version 2.1 of the GNU Lesser General Public License
## as published by the Free Software Foundation.
##
## Calc is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
## or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU Lesser General
## Public License for more details.
##
## A copy of version 2.1 of the GNU Lesser General Public License is
## distributed with calc under the filename COPYING-LGPL.  You should have
## received a copy with calc; if not, write to Free Software Foundation, Inc.
## 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
##
## @(#) $Revision: 30.3 $
## @(#) $Id: README,v 30.3 2011/05/23 22:50:32 chongo Exp $
## @(#) $Source: /usr/local/src/cmd/calc/cal/RCS/README,v $
##
## Under source code control:	1990/02/15 01:50:32
## File existed as early as:	before 1990
##
## chongo <was here> /\oo/\	http://www.isthe.com/chongo/
## Share and enjoy!  :-)	http://www.isthe.com/chongo/tech/comp/calc/
 |