/usr/share/acl2-6.3/books/tools/bstar.lisp is in acl2-books-source 6.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 | (in-package "ACL2")
;; Contact: Sol Swords <sswords@cs.utexas.edu>
;; This book contains the macro b*, which acts like let* with certain
;; extensions. Some of its features:
;; - Can bind single values and MVs within the same let*-like sequence
;; of assignments, without nesting
;; - Can bind variables using user-defined pattern-matching idioms
;; - Eliminates ignore and ignorable declarations
(defdoc b* ":DOC-SECTION B*
Flexible let*-like macro for variable bindings~/
Usage:
~bv[]
(b* ;; let*-like binding to a single variable:
((x (cons 'a 'b))
;; mv binding
((mv y z) (return-two-values x x))
;; No binding: expression evaluated for side effects
(- (cw \"Hello\")) ;; prints \"Hello\"
;; Binding with type declaration:
((the (integer 0 100) n) (foo z))
;; MV which ignores a value:
((mv & a) (return-garbage-in-first-mv y z))
;; Binds value 0 to C and value 1 to D,
;; declares (ignorable C) and (ignore D)
((mv ?c ?!d) (another-mv a z))
;; Bind V to the middle value of an error triple,
;; quitting if there is an error condition (a la er-let*)
((er v) (trans-eval '(len (list 'a 1 2 3)) 'foo state))
;; The WHEN, IF, and UNLESS constructs insert an IF in the
;; binding stream. The WHEN and IF constructs are equivalent.
((when v) (finish-early-because-of v))
((if v) (finish-early-because-of v))
((unless c) (finish-early-unless c))
;; Pattern-based binding using cons, where D is ignorable
((cons (cons b c) ?d) (must-return-nested-conses a))
;; Alternate form of pattern binding with cons nests, where G is
;; ignored and f has a type declaration:
(`(,e (,(the (signed-byte 8) f) . ,?!g))
(makes-a-list-of-conses b))
;; LIST and LIST* are also supported:
((list a b) '((1 2) (3 4)))
((list* a (the string b) c) '((1 2) \"foo\" 5 6 7))
;; Pattern with user-defined constructor:
((my-tuple foo bar hum) (something-of-type-my-tuple e c g))
;; Don't-cares with pattern bindings:
((my-tuple & (cons carbar &) hum) (something-else foo f hum))
;; Pattern inside an mv:
((mv a (cons & c)) (make-mv-with-cons)))
(some-expression .....))
~ev[]
~/
B* is a macro for binding variables in sequence, like let*. However, it
contains some additional features to allow it to bind multi-values, error
triples, and subtrees of CONS structures, run forms for side-effects, ignore
variables or declare them ignorable. It can also be extended by the user to
support more binding constructs.
Its syntax is
(b* <list-of-bindings> . <list-of-result-forms>)
where a result form is any ACL2 term, and a binding is
(<binder-form> [<expression>]). See below for discussion of binder forms.
Depending on the binder form, it may be that multiple expressions are allowed
or only a single one.
B* expands to multiple nestings of another macro PATBIND, analogously to how
LET* expands to multiple nestings of LET.
-- Basic let*-like usage --
B* can be used exactly like LET*, except that it does not yet support DECLARE
forms. However, IGNORE or IGNORABLE declarations are inserted by B* according
to the syntax of the variables bound\; see below. B* also supports multiple
result expressions after the binding list\; these are run in sequence and the
result of the last such form is returned.
-- Binder Forms --
The following binder forms are supported by this book alone, but support may
be added by the user for other binding forms. In most cases, these binding
forms may be nested. See ~il[b*-binders] for a comprehensive list of available
binder forms.
~c[(mv a b ...)] produces an MV-LET binding
~c[(cons a b)] produces a binding of the CAR and CDR of the corresponding expression
~c[(er a)] produces an ER-LET* binding
~c[(list a b ...)] produces a binding of (car val), (cadr val), etc, where val
is the result of the corresponding expression
~c[(nths a b ...)] produces a binding of (nth 0 val), (nth 1 val), etc, where val
is the result of the corresponding expression
~c[(list* a b)], ~c[`(,a . ,b)] are alternatives to the CONS binder.
~c[(the type-spec var)] produces a binding of var to the result of the
corresponding expression, and a declaration that var is of the given
type-spec. A THE pattern may be nested inside other patterns, but VAR must
itself be a symbol and not a nested pattern, and type-spec must be a type-spec.
~c[(if test)], ~c[(when test)], and ~c[(unless test)] don't actually produce bindings at
all. Instead, they insert an IF where one branch is the rest of the B* form and
the other is the \"bound\" expression. For example,
~bv[]
(b* (((if (atom a)) 0)
(rest (of-bindings)))
final-expr)
~ev[]
expands to something like this:
~bv[]
(if (atom a)
0
(b* ((rest (of-bindings)))
final-expr))
~ev[]
These forms also create an \"implicit progn\" with multiple expressions, like
this:
~bv[]
(b* (((if (atom a)) (cw \"a is an atom, returning 0\") 0)
...)
...)
~ev[]
-- Nesting Binders --
The CONS, LIST, LIST*, and backtick binders may be nested arbitrarily inside
other binders. Often user-defined binders may also be arbitrarily nested. For
example,
~c[((mv (list `(,a . ,b)) (cons c d)) <form>)]
will result in the following (logical) bindings:
~c[a] bound to ~c[(car (nth 0 (mv-nth 0 <form>)))]
~c[b] bound to ~c[(cdr (nth 0 (mv-nth 0 <form>)))]
~c[c] bound to ~c[(car (mv-nth 1 <form>))]
~c[d] bound to ~c[(cdr (mv-nth 1 <form>))].
-- Ignore, Ignorable, and Side-effect Only Bindings --
The following constructs may be used in place of variables:
Dash (-), used as a top-level binding form, will run the corresponding
expressions (in an implicit progn) for side-effects without binding its value.
Used as a lower-level binding form, it will cause the binding to be ignored or
not created.
Ampersand (&), used as a top-level binding form, will cause the corresponding
expression to be ignored and not run at all. Used as a lower-level binding
form, it will cause the binding to be ignored or not created.
Any symbol beginning with ?! works similarly to the & form. It is ignored
or not evaluated at all.
Any symbol beginning with ? but not ?! will make a binding of the symbol
obtained by removing the ?, and will make an IGNORABLE declaration for this
variable.
-- User-Defined Binders --
A new binder form may be created by defining a macro named PATBIND-<name>. We
discuss the detailed interface of user-defined binders below. First,
DEF-PATBIND-MACRO provides a simple way to define certain user binders. For
example, this form is used to define the binder for CONS:
~bv[]
(def-patbind-macro cons (car cdr))
~ev[]
This defines a binder macro ~c[PATBIND-CONS] which enables ~c[(cons a b)] to be used as
a binder form. This binder form must take two arguments since two destructor
functions (car cdr) are given to def-patbind-macro. The destructor functions
are each applied to the form to produce the bindings for the corresponding
arguments of the binder.
There are many cases in which DEF-PATBIND-MACRO is not powerful enough. For
example, a binder produced by DEF-PATBIND-MACRO may only take a fixed number of
arguments. More flexible operations may be defined by hand-defining the binder
macro using the form DEF-B*-BINDER; see ~il[DEF-B*-BINDER].
A binder macro PATBIND-<NAME> must take three arguments ARGS, FORMS,
and REST-EXPR. The form
~bv[]
(b* (((binder arg1 arg2) binding1 binding2))
expr)
~ev[]
translates to a macro call
~bv[]
(patbind-binder (arg1 arg2) (binding1 binding2) expr).
~ev[]
That is, ARGS is the list of arguments given to the binder form, BINDINGS is
the list of expressions bound to them, and EXPR is the result expression to be
run once the bindings are in place. The definition of the patbind-binder macro
determines how this gets further expanded. Some informative examples of these
binder macros may be found in bstar.lisp\; simply search for uses of
DEF-B*-BINDER. Here are some notes on defining binder macros.
Often the simplest way to accomplish the intended effect of a patbind macro is
to have it construct another B* form to be recursively expanded, or to call
other patbind macros. See, for example, the definition of PATBIND-LIST.
Patbind macros for forms that are truly creating bindings should indeed use B*
(or PATBIND, which is what B* expands to) to create these bindings, so that
ignores and nestings are dealt with uniformly. See, for example, the
definition of PATBIND-NTHS.
In order to get good performance, destructuring binders such as are produced by
DEF-PATBIND-MACRO bind a variable to any binding that isn't already a variable
or quoted constant. This is important so that in the following form,
~c[(foo x y)] is run only once:
~bv[]
(b* (((cons a b) (foo x y))) ...)
~ev[]
In these cases, it is good discipline to check the new variables introduced
using the macro CHECK-VARS-NOT-FREE\; since ACL2 does not have gensym, this is
the best option we have. See any definition produced by DEF-PATBIND-MACRO for
examples, and additionally PATBIND-NTHS, PATBIND-ER, and so forth.
")
(include-book "pack")
(defun macro-name-for-patbind (binder)
(intern-in-package-of-symbol
(concatenate 'string
"PATBIND-"
(symbol-name binder))
(if (equal (symbol-package-name binder) "COMMON-LISP")
'acl2::foo
binder)))
(defconst *patbind-special-syms* '(t nil & -))
(defun int-string (n)
(coerce (explode-nonnegative-integer n 10 nil) 'string))
(defun str-num-sym (str n)
(intern (concatenate 'string str (int-string n)) "ACL2"))
(defun ignore-var-name (n)
(str-num-sym "IGNORE-" n))
(defun debuggable-binder-list-p (x)
(declare (xargs :guard t))
(cond ((atom x)
(or (equal x nil)
(cw "; Not a binder list; ends with ~x0, instead of nil.~%" x)))
;; This used to check that the cdar was also a cons and a true-list,
;; but this can be left up to the individual binders.
((consp (car x))
(debuggable-binder-list-p (cdr x)))
(t
(cw "; Not a binder list; first bad entry is ~x0.~%" (car x)))))
(defun debuggable-binders-p (x)
(declare (xargs :guard t))
(cond ((atom x)
(or (equal x nil)
(cw "; Not a binder list; ends with ~x0, instead of nil.~%" x)))
;; This used to check that the cdar was also a cons and a true-list,
;; but this can be left up to the individual binders.
((consp (car x)) t)
(t
(cw "; Not a binder list; first bad entry is ~x0.~%" (car x)))))
(defun decode-varname-for-patbind (pattern)
(let* ((name (symbol-name pattern))
(len (length name))
(?p (and (<= 1 len)
(eql (char name 0) #\?)))
(?!p (and ?p
(<= 2 len)
(eql (char name 1) #\!)))
(sym (cond
(?!p (intern-in-package-of-symbol
(subseq name 2 nil) pattern))
(?p (intern-in-package-of-symbol
(subseq name 1 nil) pattern))
(t pattern)))
(ignorep (cond
(?!p 'ignore)
(?p 'ignorable))))
(mv sym ignorep)))
(defun patbindfn (pattern assign-exprs nested-expr)
(cond ((eq pattern '-)
;; A dash means "run this for side effects." In this case we allow
;; multiple terms; these form an implicit progn, in the common-lisp sense.
`(prog2$ (progn$ . ,assign-exprs)
,nested-expr))
((member pattern *patbind-special-syms*)
;; &, T, NIL mean "don't bother evaluating this."
nested-expr)
((atom pattern)
;; A binding to a single variable. Here we don't allow multiple
;; expressions; we believe it's more readable to use - to run things
;; for side effects, and this might catch some paren errors.
(if (cdr assign-exprs)
(er hard 'b* "~
The B* binding of ~x0 to ~x1 isn't allowed because the binding of a variable must be a
single term." pattern assign-exprs)
(mv-let (sym ignorep)
(decode-varname-for-patbind pattern)
;; Can we just refuse to bind a variable marked ignored?
(if (eq ignorep 'ignore)
nested-expr
`(let ((,sym ,(car assign-exprs)))
,@(and ignorep `((declare (,ignorep ,sym))))
,nested-expr)))))
((eq (car pattern) 'quote)
;; same idea as &, t, nil
nested-expr)
(t ;; Binding macro call.
(let* ((binder (car pattern))
(patbind-macro (macro-name-for-patbind binder))
(args (cdr pattern)))
`(,patbind-macro ,args ,assign-exprs ,nested-expr)))))
(defmacro patbind (pattern assign-exprs nested-expr)
(patbindfn pattern assign-exprs nested-expr))
;; (defun b*-fn1 (bindlist expr)
;; (declare (xargs :guard (debuggable-binders-p bindlist)))
;; (if (atom bindlist)
;; expr
;; `(patbind ,(caar bindlist) ,(cdar bindlist)
;; ,(b*-fn1 (cdr bindlist) expr))))
;; (defun b*-fn (bindlist exprs)
;; (declare (xargs :guard (and (debuggable-binders-p bindlist)
;; (consp exprs))))
;; (b*-fn1 bindlist `(progn$ . ,exprs)))
(defun b*-fn (bindlist exprs)
(declare (xargs :guard (and (debuggable-binders-p bindlist)
(consp exprs))))
(if (atom bindlist)
(cons 'progn$ exprs)
`(patbind ,(caar bindlist) ,(cdar bindlist)
(b* ,(cdr bindlist) . ,exprs))))
(defmacro b* (bindlist expr &rest exprs)
(declare (xargs :guard (debuggable-binders-p bindlist)))
(b*-fn bindlist (cons expr exprs)))
(defdoc b*-binders ":Doc-section b*
B*-BINDERS: List of the available directives usable in B*.~/
~/~/")
(defmacro def-b*-binder (name &rest rest)
(let* ((macro-name (macro-name-for-patbind name))
(decls-and-doc (butlast rest 1))
(body (car (last rest)))
(decls (remove-strings decls-and-doc))
(doc (car (get-string decls-and-doc)))
(doc-sectionp (and doc
(equal (string-upcase (subseq doc 0 12))
":DOC-SECTION"))))
`(progn
(defmacro ,macro-name (args forms rest-expr)
,(if doc
(if doc-sectionp
doc
(concatenate 'string ":DOC-SECTION ACL2::B*-BINDERS
" doc))
(concatenate 'string
":DOC-SECTION ACL2::B*-BINDERS
B* binder form " (symbol-name name) "~/
(placeholder)~/~/"))
,@decls
,body)
(table b*-binder-table ',name ',macro-name))))
(defdoc def-b*-binder
":doc-section b*
DEF-B*-BINDER: Introduce a new form usable inside B*.~/
Usage:
~bv[]
(def-b*-binder <name> <declare> <doc> <body>)
~ev[]
Introduces a B* binder form of the given name. The given body, which may use
the variables args, forms, and rest-expr, is used to
macroexpand a form like the following:
~bv[]
(b* (((<name> . <args>) . <forms>)) <rest-expr>)
~ev[]
The documentation string and declaration forms are optional\; a placeholder doc
string will be produced under :doc-section B*-BINDERS if none is provided. It
is recommended that the string use that :doc-section, since this provides a
single location where the user may see all of the available binder forms. If
no doc-section is provided, B*-BINDERS will be used.~/
This works by introducing a macro named PATBIND-<name>. See ~il[b*] for more
details.~/")
(defmacro destructure-guard (binder args bindings len)
`(and (or (and (true-listp ,args)
. ,(and len `((= (length ,args) ,len))))
(cw "~%~%**** ERROR ****
Pattern constructor ~x0 needs a true-list of ~@1arguments, but was given ~x2~%~%"
',binder ,(if len `(msg "~x0 " ,len) "")
,args))
(or (and (consp ,bindings)
(eq (cdr ,bindings) nil))
(cw "~%~%**** ERROR ****
Pattern constructor ~x0 needs exactly one binding expression, but was given ~x1~%~%"
',binder ,bindings))))
(defun destructor-binding-list (args destructors binding)
(if (atom args)
nil
(cons (list (car args) (list (car destructors) binding))
(destructor-binding-list (cdr args) (cdr destructors) binding))))
(defmacro def-patbind-macro (binder destructors &rest rst)
(let ((len (length destructors))
(doc (get-string rst)))
`(def-b*-binder ,binder ,@doc
(declare (xargs :guard
(destructure-guard ,binder args forms ,len)))
(let* ((binding (car forms))
(computedp (or (atom binding)
(eq (car binding) 'quote)))
(bexpr (if computedp binding (pack binding)))
(binders (destructor-binding-list args ',destructors bexpr)))
(if computedp
`(b* ,binders ,rest-expr)
`(let ((,bexpr ,binding))
(declare (ignorable ,bexpr))
(b* ,binders
(check-vars-not-free (,bexpr) ,rest-expr))))))))
;; The arg might be a plain variable, an ignored or ignorable variable, or a
;; binding expression.
(defun var-ignore-list-for-patbind-mv (args igcount mv-vars binders ignores ignorables freshvars)
(if (atom args)
(mv (reverse mv-vars)
(reverse binders)
(reverse ignores)
(reverse ignorables)
(reverse freshvars))
(mv-let (mv-var binder freshp ignorep)
(cond ((or (member (car args) *patbind-special-syms*)
(quotep (car args))
(and (atom (car args)) (not (symbolp (car args)))))
(let ((var (ignore-var-name igcount)))
(mv var nil nil 'ignore)))
((symbolp (car args))
(mv-let (sym ignorep)
(decode-varname-for-patbind (car args))
(case ignorep
(ignore (mv sym nil nil 'ignore))
(ignorable (mv sym nil nil 'ignorable))
(t (mv sym nil nil nil)))))
(t ;; (and (consp (car args))
;; (not (eq (caar args) 'quote)))
(let ((var (pack (car args))))
(mv var (list (car args) var) t nil))))
(var-ignore-list-for-patbind-mv
(cdr args)
(if (eq ignorep 'ignore) (1+ igcount) igcount)
(cons mv-var mv-vars)
(if binder (cons binder binders) binders)
(if (eq ignorep 'ignore) (cons mv-var ignores) ignores)
(if (eq ignorep 'ignorable) (cons mv-var ignorables) ignorables)
(if freshp (cons mv-var freshvars) freshvars)))))
(def-b*-binder mv
" B* binder for multiple values~/
Usage example:
~bv[]
(b* (((mv a b c) (form-returning-three-values)))
form)
~ev[]
is equivalent to
~bv[]
(mv-let (a b c) (form-returning-three-values)
form).
~ev[]
~l[B*] for background.
The MV binder only makes sense as a top-level binding, but each of its
arguments may be a recursive binding.~/~/"
(declare (xargs :guard (destructure-guard mv args forms nil)))
(mv-let (vars binders ignores ignorables freshvars)
(var-ignore-list-for-patbind-mv args 0 nil nil nil nil nil)
`(mv-let ,vars ,(car forms)
(declare (ignore . ,ignores))
(declare (ignorable . ,ignorables))
(check-vars-not-free
,ignores
(b* ,binders
(check-vars-not-free ,freshvars ,rest-expr))))))
(def-patbind-macro cons (car cdr)
"B* binder for CONS decomposition using CAR/CDR~/
Usage:
~bv[]
(b* (((cons a b) (binding-form))) (result-form))
~ev[]
is equivalent to
~bv[]
(let* ((tmp (binding-form))
(a (car tmp))
(b (cdr tmp)))
(result-form))
~ev[]
~l[B*] for background.
Each of the arguments to the CONS binder may be a recursive binder, and CONS
may be nested inside other bindings.~/~/")
(defun nths-binding-list (args n form)
(if (atom args)
nil
(cons (list (car args) `(nth ,n ,form))
(nths-binding-list (cdr args) (1+ n) form))))
(def-b*-binder nths
"B* binder for list decomposition using NTH~/
Usage:
~bv[]
(b* (((nths a b c) lst)) form)
~ev[]
is equivalent to
~bv[]
(b* ((a (nth 0 lst))
(b (nth 1 lst))
(c (nth 2 lst)))
form).
~ev[]
~l[B*] for background.
Each of the arguments to the NTHS binder may be a recursive binder, and NTHS
may be nested inside other bindings.~/~/"
(declare (xargs :guard (destructure-guard nths args forms nil)))
(let* ((binding (car forms))
(evaledp (or (atom binding) (eq (car binding) 'quote)))
(form (if evaledp binding (pack binding)))
(binders (nths-binding-list args 0 form)))
(if evaledp
`(b* ,binders ,rest-expr)
`(let ((,form ,binding))
(declare (ignorable ,form))
(b* ,binders
(check-vars-not-free (,form) ,rest-expr))))))
(def-b*-binder nths*
"B* binder for list decomposition using NTH, with one final NTHCDR~/
Usage:
~bv[]
(b* (((nths* a b c d) lst)) form)
~ev[]
is equivalent to
~bv[]
(b* ((a (nth 0 lst))
(b (nth 1 lst))
(c (nth 2 lst))
(d (nthcdr 3 lst)))
form).
~ev[]
~l[B*] for background.
Each of the arguments to the NTHS binder may be a recursive binder, and NTHS
may be nested inside other bindings.~/~/"
(declare (xargs :guard (and (destructure-guard nths args forms nil)
(< 0 (len args)))))
(let* ((binding (car forms))
(evaledp (or (atom binding) (eq (car binding) 'quote)))
(form (if evaledp binding (pack binding)))
(binders (append (nths-binding-list (butlast args 1) 0 form)
`((,(car (last args)) (nthcdr ,(1- (len args)) ,form))))))
(if evaledp
`(b* ,binders ,rest-expr)
`(let ((,form ,binding))
(declare (ignorable ,form))
(b* ,binders
(check-vars-not-free (,form) ,rest-expr))))))
(def-b*-binder list
"B* binder for list decomposition using CAR/CDR~/
Usage:
~bv[]
(b* (((list a b c) lst)) form)
~ev[]
is equivalent to
~bv[]
(b* ((a (car lst))
(tmp1 (cdr lst))
(b (car tmp1))
(tmp2 (cdr tmp1))
(c (car tmp2)))
form).
~ev[]
~l[B*] for background.
Each of the arguments to the LIST binder may be a recursive binder, and LIST
may be nested inside other bindings.~/~/"
(declare (xargs :guard (destructure-guard list args forms nil)))
(if (atom args)
rest-expr
`(patbind-cons (,(car args) (list . ,(cdr args))) ,forms ,rest-expr)))
(def-b*-binder list*
"B* binder for list* decomposition using CAR/CDR~/
Usage:
~bv[]
(b* (((list* a b c) lst)) form)
~ev[]
is equivalent to
~bv[]
(b* ((a (car lst))
(tmp1 (cdr lst))
(b (car tmp1))
(c (cdr tmp1)))
form).
~ev[]
~l[B*] for background.
Each of the arguments to the LIST* binder may be a recursive binder, and LIST*
may be nested inside other bindings.~/~/"
(declare (xargs :guard (and (consp args)
(destructure-guard list* args forms nil))))
(if (atom (cdr args))
`(patbind ,(car args) ,forms ,rest-expr)
`(patbind-cons (,(car args) (list* . ,(cdr args))) ,forms ,rest-expr)))
(defun assigns-for-assocs (args alist)
(if (atom args)
nil
(cons (if (consp (car args))
`(,(caar args) (cdr (assoc ,(cadar args) ,alist)))
(mv-let (sym ign)
(decode-varname-for-patbind (car args))
(declare (ignore ign))
`(,(car args) (cdr (assoc ',sym ,alist)))))
(assigns-for-assocs (cdr args) alist))))
(def-b*-binder assocs
"B* binder for alist values~/
Usage:
~bv[]
(b* (((assocs (a akey) b (c 'foo)) alst)) form)
~ev[]
is equivalent to
~bv[]
(b* ((a (cdr (assoc akey alst)))
(b (cdr (assoc 'b alst)))
(c (cdr (assoc 'foo alst))))
form).
~ev[]
~l[B*] for background.
The arguments to the ASSOCS binder should be either single symbols or pairs
~c[(VAR KEY)]. In the pair form, ~c[VAR] is assigned to the associated value
of ~c[KEY] in the bound object, which should be an alist. Note that ~c[KEY]
does not get quoted; it may itself be some expression. An argument consisting
of the single symbol ~c[VAR] is equivalent to the pair ~c[(VAR 'VAR)].
Each of the arguments in the ~c[VAR] position of the pair form may be a
recursive binder, and ASSOCS may be nested inside other bindings.~/~/"
(mv-let (pre-bindings name rest)
(if (and (consp (car forms))
(not (eq (caar forms) 'quote)))
(mv `((?tmp-for-assocs ,(car forms)))
'tmp-for-assocs
`(check-vars-not-free (tmp-for-assocs)
,rest-expr))
(mv nil (car forms) rest-expr))
`(b* (,@pre-bindings
. ,(assigns-for-assocs args name))
,rest)))
(def-b*-binder er
"B* binder for error triples~/
Usage:
~bv[]
(b* (((er x) (error-triple-form))) (result-form))
~ev[]
is equivalent to
~bv[]
(er-let* ((x (error-triple-form))) (result-form)),
~ev[]
which itself is approximately equivalent to
~bv[]
(mv-let (erp x state)
(error-triple-form)
(if erp
(mv erp x state)
(result-form)))
~ev[]
~l[B*] for background.
The ER binder only makes sense as a top-level binding, but its argument may be
a recursive binding.~/~/"
(declare (xargs :guard (destructure-guard er args forms 1)))
`(mv-let (patbind-er-fresh-variable-for-erp
patbind-er-fresh-variable-for-val
state)
,(car forms)
(if patbind-er-fresh-variable-for-erp
(mv patbind-er-fresh-variable-for-erp
patbind-er-fresh-variable-for-val
state)
(patbind ,(car args)
(patbind-er-fresh-variable-for-val)
(check-vars-not-free
(patbind-er-fresh-variable-for-val
patbind-er-fresh-variable-for-erp)
,rest-expr)))))
(def-b*-binder cmp
"B* binder for context-message pairs~/
Usage:
~bv[]
(b* (((cmp x) (cmp-returning-form))) (result-form))
~ev[]
is equivalent to
~bv[]
(er-let*-cmp ((x (cmp-returning-form))) (result-form)),
~ev[]
which itself is approximately equivalent to
~bv[]
(mv-let (ctx x)
(cmp-returning-form)
(if ctx
(mv ctx x)
(result-form)))
~ev[]
~l[B*] for background.
The CMP binder only makes sense as a top-level binding, but its argument may be
a recursive binding.~/~/"
(declare (xargs :guard (destructure-guard cmp args forms 1)))
`(mv-let (patbind-cmp-fresh-variable-for-ctx
patbind-cmp-fresh-variable-for-val)
,(car forms)
(if patbind-cmp-fresh-variable-for-ctx
(mv patbind-cmp-fresh-variable-for-ctx
patbind-cmp-fresh-variable-for-val)
(patbind ,(car args)
(patbind-cmp-fresh-variable-for-val)
(check-vars-not-free
(patbind-cmp-fresh-variable-for-val
patbind-cmp-fresh-variable-for-ctx)
,rest-expr)))))
(def-b*-binder state-global
"B* binder for state globals~/
Usage:
~bv[]
(b* (((state-global x) (value-form))) (result-form))
~ev[]
is equivalent to
~bv[]
(state-global-let* ((x (value-form))) (result-form)).
~ev[]
~l[B*] for background.~/~/"
(declare (xargs :guard
(and (destructure-guard
state-global args forms 1)
(or (symbolp (car args))
(cw "~%~%**** ERROR ****
Pattern constructor ~x0 needs a single argument which is a symbol, but got ~x1~%~%"
'state-global args)))))
`(state-global-let*
((,(car args) ,(car forms)))
,rest-expr))
(def-b*-binder when
"B* control flow operator~/
Usage:
~bv[]
(b* (((when (condition-form))
(early-form1) ... (early-formN))
... rest of bindings ...)
(late-result-form))
~ev[]
is equivalent to
~bv[]
(if (condition-form)
(progn$ (early-form1) ... (early-formN))
(b* (... rest of bindings ...)
(late-result-form)))
~ev[]
~l[B*] for background.
Effectively, this provides a way to exit early from the sequence of
computations represented by a list of B* binders.
In the special case where no early-forms are provided, the condition itself is
returned. I.e.,
~bv[]
(b* (((when (condition-form)))
... rest of bindings)
(late-result-form))
~ev[]
is equivalent to
~bv[]
(or (condition-form)
(b* (... rest of bindings ...)
(late-result-form)))
~ev[]
~/~/"
(declare (xargs :guard (and (consp args) (eq (cdr args) nil))))
(if forms
`(if ,(car args)
(progn$ . , forms)
,rest-expr)
`(or ,(car args) ,rest-expr)))
(def-b*-binder if
"B* control flow operator~/
The B* binders IF and WHEN are exactly equivalent. ~l[PATBIND-WHEN].~/~/"
(declare (xargs :guard (and (consp args) (eq (cdr args) nil))))
`(if ,(car args)
(progn$ . ,forms)
,rest-expr))
(def-b*-binder unless
"B* control flow operator~/
The B* binder UNLESS is exactly like WHEN, but negates the condition so that
the early exit is taken when the condition is false. ~l[PATBIND-WHEN].~/~/"
(declare (xargs :guard (and (consp args) (eq (cdr args) nil))))
`(if ,(car args)
,rest-expr
(progn$ . ,forms)))
(def-b*-binder run-when
"B* conditional execution operator~/
Usage:
~bv[]
(b* (((run-when (condition-form)) (run-form1) ... (run-formn)))
(result-form))
~ev[]
is equivalent to
~bv[]
(prog2$ (and (condition-form)
(progn$ (run-form1) ... (run-formn)))
(result-form)).
~ev[]
~l[B*] for background.~/~/"
(declare (xargs :guard (and (consp args) (eq (cdr args) nil))))
`(prog2$ (and ,(car args)
(progn$ . , forms))
,rest-expr))
(def-b*-binder run-if
"B* conditional execution operator~/
The B* binders RUN-IF and RUN-WHEN are exactly equivalent.
~l[PATBIND-RUN-WHEN].~/~/"
(declare (xargs :guard (and (consp args) (eq (cdr args) nil))))
`(prog2$ (and ,(car args)
(progn$ . ,forms))
,rest-expr))
(def-b*-binder run-unless
"B* control flow operator~/
The B* binder RUN-UNLESS is exactly like RUN-WHEN, but negates the condition so
that the extra forms are run when the condition is false.
~l[PATBIND-RUN-WHEN].~/~/"
(declare (Xargs :guard (and (consp args) (eq (cdr args) nil))))
`(prog2$ (or ,(car args)
(progn$ . ,forms))
,rest-expr))
(def-b*-binder the
"B* type declaration operator~/
Usage:
~bv[]
(b* (((the integer x) (form))) (result-form))
~ev[]
is equivalent to
~bv[]
(let ((x (form)))
(declare (type integer x))
(result-form))
~ev[]
~l[B*] for background.
The THE binder form only makes sense on variables, though those variables may
be prefixed with the ? or ?! operators to make them ignorable or ignored.
However, it may be nested within other binder forms.~/~/"
(declare (xargs :guard
(and (destructure-guard the args forms 2)
(or (translate-declaration-to-guard
(car args) 'var nil)
(cw "~%~%**** ERROR ****
The first argument to pattern constructor ~x0 must be a type-spec, but is ~x1~%~%"
'the (car args)))
(or (symbolp (cadr args))
(cw "~%~%**** ERROR ****
The second argument to pattern constructor ~x0 must be a symbol, but is ~x1~%~%"
'the (cadr args))))))
(mv-let (sym ignorep)
(decode-varname-for-patbind (cadr args))
(if (eq ignorep 'ignore)
rest-expr
`(let ((,sym ,(car forms)))
,@(and ignorep `((declare (ignorable ,sym))))
(declare (type ,(car args) ,sym))
,rest-expr))))
;; Find a pair in the alist whose key is a symbol whose name is str.
(defun b*-assoc-symbol-name (str alist)
(if (atom alist)
nil
(if (and (consp (car alist))
(equal str (symbol-name (caar alist))))
(car alist)
(b*-assoc-symbol-name str (cdr alist)))))
(defun b*-decomp-err (arg binder component-alist)
(er hard? 'b*-decomp-bindings
"Bad ~s0 binding: ~x2.~%For a ~s0 binding you may use the following ~
kinds of arguments: keyword/value list form :field binder ..., ~
name-only where the variable bound is the same as a field name, ~
or parenthseized (binder :field). The possible fields are ~v1."
binder (strip-cars component-alist) arg))
;; Makes b* bindings for a decomposition specified by component-alist.
;; Component-alist binds field names to their accessor functions.
;; Accepts a number of forms of bindings:
(defun b*-decomp-bindings (args binder component-alist var)
(b* (((when (atom args)) nil)
((when (keywordp (car args)))
(b* ((look (b*-assoc-symbol-name (symbol-name (car args))
component-alist))
((unless look)
(b*-decomp-err (car args) binder component-alist))
((unless (consp (cdr args)))
(b*-decomp-err args binder component-alist)))
(cons `(,(cadr args) (,(cdr look) ,var))
(b*-decomp-bindings (cddr args) binder component-alist var))))
((when (symbolp (car args)))
(b* ((look (b*-assoc-symbol-name (symbol-name (car args))
component-alist))
((unless look)
(b*-decomp-err (car args) binder component-alist)))
(cons `(,(car args) (,(cdr look) ,var))
(b*-decomp-bindings (cdr args) binder component-alist var))))
((unless (and (true-listp (car args))
(equal (length (car args)) 2)
(symbolp (cadar args))))
(b*-decomp-err (car args) binder component-alist))
(look (b*-assoc-symbol-name (symbol-name (cadar args)) component-alist))
((unless look)
(b*-decomp-err (car args) binder component-alist)))
(cons `(,(caar args) (,(cdr look) ,var))
(b*-decomp-bindings (cdr args) binder component-alist var))))
(defun b*-decomp-fn (args forms rest-expr binder component-alist)
(b* (((unless (and (true-listp forms)
(= (length forms) 1)))
(er hard? 'b*-decomp-fn
"Too many RHS forms in ~x0 binder: ~x1~%" binder forms))
(rhs (car forms))
(var (if (symbolp rhs) rhs 'b*-decomp-temp-var))
(bindings (b*-decomp-bindings args binder component-alist var)))
`(b* ,(if (symbolp rhs)
bindings
(cons `(,var ,rhs) bindings))
,rest-expr)))
(defmacro def-b*-decomp (name &rest component-alist)
`(def-b*-binder ,name
(b*-decomp-fn args forms rest-expr ',name ',component-alist)))
(defun patbind-local-stobjs-helper (stobjs retvals form)
(declare (xargs :mode :program))
(if (atom stobjs)
form
(let* ((stobj (if (consp (car stobjs))
(caar stobjs)
(car stobjs)))
(rest-retvals (remove-eq stobj retvals)))
(patbind-local-stobjs-helper
(cdr stobjs)
rest-retvals
`(with-local-stobj
,stobj
(mv-let ,retvals
,form
,(if (consp (cdr rest-retvals))
`(mv . ,rest-retvals)
(car rest-retvals)))
. ,(and (consp (car stobjs))
(cdar stobjs)))))))
(defun patbind-local-stobj-arglistp (args)
(declare (xargs :mode :program))
(if (atom args)
(eq args nil)
(and (let ((x (car args)))
(or (symbolp x)
(case-match x
((stobj creator)
(and (symbolp stobj)
(symbolp creator))))))
(patbind-local-stobj-arglistp (cdr args)))))
(defun patbind-local-stobjs-fn (args forms rest-expr)
(declare (xargs :mode :program))
(b* (((unless (patbind-local-stobj-arglistp args))
(er hard? 'patbind-local-stobjs-fn
"In local-stobjs b* binder, arguments must be symbols or
(stobj creator) pairs"))
((unless (and (= (len forms) 1)
(symbol-listp (car forms))
(eq (caar forms) 'mv)))
(er hard? 'patbind-local-stobjs-fn
"In local-stobjs b* binder, bound form must be an MV
of some symbols, giving the return values"))
(retvals (cdar forms)))
(patbind-local-stobjs-helper
args retvals rest-expr)))
(def-b*-binder local-stobjs
(patbind-local-stobjs-fn args forms rest-expr))
(set-state-ok t)
(with-output
:off warning
(local
(progn
(defun return-two-values (a b)
(mv a b))
(defun transl-equal-tests-fn (tests)
(if (atom tests)
`(mv nil state)
`(mv-let (err val state)
(transl-equal ',(caar tests) ',(cadar tests))
(if (or err (not val))
(mv ',(car tests) state)
,(transl-equal-tests-fn (cdr tests))))))
(defmacro transl-equal-tests (&rest tests)
(transl-equal-tests-fn tests))
(defstobj st1 (arr1 :type (array t (0)) :resizable t))
(defstobj st2 (arr2 :type (array t (0)) :resizable t))
(defun patbind-tests-fn (tests state)
(declare (xargs :mode :program))
(if (atom tests)
(value '(value-triple :invisible))
(mv-let (erp val state)
(thm-fn `(equal ,(caar tests) ,(cadar tests))
state '(("goal" :in-theory nil)) nil nil)
(if erp
(mv (msg "~% ****** ERROR ******~%~
Testing of the patbind macro failed on expression ~x0~%~%" (car tests))
val state)
(patbind-tests-fn (cdr tests) state)))))
(defmacro patbind-run-tests (&rest tests)
`(make-event
(patbind-tests-fn ',tests state)))
;; (mv-let (err val state)
;; (transl-equal-tests ,@tests)
;; (declare (ignore val))
;; (if err
;; (mv t
;; (er hard? 'patbind-run-tests
;; "~% ****** ERROR ******~%~
;; Testing of the patbind macro failed on expression ~x0~%~%" err)
;; state)
;; (value (prog2$ (cw "
;; Testing of the patbind macro passed.~%")
;; `(value-triple 'tests-ok)))))
;; :check-expansion (value-triple 'tests-ok)))
(patbind-run-tests
;; TEST CASES
((patbind (cons (cons a b) c) (x) (list a b c))
(let* ((|(CAR X)| (car x))
(c (cdr x)))
(let* ((a (car |(CAR X)|))
(b (cdr |(CAR X)|)))
(list a b c))))
((patbind x ((cons 'a 'b)) x)
(let ((x (cons 'a 'b))) x))
((patbind (mv a b) ((mv 'a 'b)) (list a b))
(mv-let (a b) (mv 'a 'b) (list a b)))
((patbind & ((cw "Hello")) nil)
nil)
((patbind - ((cw "Hello")) nil)
(prog2$ (cw "Hello")
nil))
((patbind (cons a &) ('(a b)) a)
(let ((a (car '(a b))))
a))
((patbind (cons (cons a b) c) (x)
(list a b c))
(let ((|(CONS A B)| (car x))
(c (cdr x)))
(let ((a (car |(CONS A B)|))
(b (cdr |(CONS A B)|)))
(list a b c))))
((patbind (cons (cons a b) c) ((cons x y))
(list a b c))
(let ((|(CONS (CONS A B) C)| (cons x y)))
(let ((|(CONS A B)| (car |(CONS (CONS A B) C)|))
(c (cdr |(CONS (CONS A B) C)|)))
(let ((a (car |(CONS A B)|))
(b (cdr |(CONS A B)|)))
(list a b c)))))
((patbind (cons (cons & b) c) ((cons x y))
(list b c))
(let ((|(CONS (CONS & B) C)| (cons x y)))
(let ((|(CONS & B)| (car |(CONS (CONS & B) C)|))
(c (cdr |(CONS (CONS & B) C)|)))
(let ((b (cdr |(CONS & B)|)))
(list b c)))))
((patbind (cons (cons a &) c) ((cons x y))
(list a c))
(let ((|(CONS (CONS A &) C)| (cons x y)))
(let ((|(CONS A &)| (car |(CONS (CONS A &) C)|))
(c (cdr |(CONS (CONS A &) C)|)))
(let ((a (car |(CONS A &)|)))
(list a c)))))
((patbind (mv (cons a (cons b c)) d)
((return-two-values x y))
(list a b c d))
(mv-let (|(CONS A (CONS B C))| d)
(return-two-values x y)
(let ((a (car |(CONS A (CONS B C))|))
(|(CONS B C)|
(cdr |(CONS A (CONS B C))|)))
(let ((b (car |(CONS B C)|))
(c (cdr |(CONS B C)|)))
(list a b c d)))))
((patbind (mv (cons a (cons b c)) &)
((return-two-values x y))
(list a b c d))
(mv-let (|(CONS A (CONS B C))| ignore-0)
(return-two-values x y)
(declare (ignore ignore-0))
(let ((a (car |(CONS A (CONS B C))|))
(|(CONS B C)|
(cdr |(CONS A (CONS B C))|)))
(let ((b (car |(CONS B C)|))
(c (cdr |(CONS B C)|)))
(list a b c d)))))
((patbind (mv (cons a (cons & c)) &)
((return-two-values x y))
(list a c d))
(mv-let (|(CONS A (CONS & C))| ignore-0)
(return-two-values x y)
(declare (ignore ignore-0))
(let ((a (car |(CONS A (CONS & C))|))
(|(CONS & C)|
(cdr |(CONS A (CONS & C))|)))
(let ((c (cdr |(CONS & C)|)))
(list a c d)))))
((patbind `(,a ,b) ((cons x y)) (list a b))
(let ((|(CONS A (CONS B (QUOTE NIL)))| (cons x y)))
(let ((a (car |(CONS A (CONS B (QUOTE NIL)))|))
(|(CONS B (QUOTE NIL))|
(cdr |(CONS A (CONS B (QUOTE NIL)))|)))
(let ((b (car |(CONS B (QUOTE NIL))|)))
(list a b)))))
)
(defthm len-resize-list
(equal (len (resize-list a b c))
(nfix b)))
(defun localstobjtest (a b c)
(declare (xargs :guard t))
(b* ((d (cons b c))
((local-stobjs st1 st2)
(mv g st2 h st1))
(a (nfix a))
(st1 (resize-arr1 (+ 1 a) st1))
(st2 (resize-arr2 (+ 1 (nfix b)) st2))
(st1 (update-arr1i a d st1))
(st2 (update-arr2i (nfix b) a st2)))
(mv (arr2i (nfix b) st2)
st2
(arr1i a st1)
st1)))
(make-event
(mv-let (res1 res2)
(localstobjtest nil 10 'c)
(if (and (equal res1 0)
(equal res2 '(10 . c)))
'(value-triple :passed)
(er hard 'test-local-stobj
"test failed")))))))
(def-b*-binder fun
"B* binder to produce FLET~/
Usage:
~bv[]
(b* (((fun (foo a b c)) (body-form))) (result-form))
~ev[]
is equivalent to
~bv[]
(flet ((foo (a b c) (body-form))) (result-form)).
~ev[]
~l[B*] for background.~/~/"
(declare (xargs :guard
(and
;; only arg is a symbol-list (foo a b c)
(consp args)
(symbol-listp (car args))
(consp (car args))
(eq (cdr args) nil)
;; body is implicit progn$?
(true-listp forms)
)))
`(flet ((,(caar args) ,(cdar args) (progn$ . ,forms)))
,rest-expr))
|