This file is indexed.

/usr/share/acl2-6.3/books/str/strrpos.lisp is in acl2-books-source 6.3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
; ACL2 String Library
; Copyright (C) 2009-2013 Centaur Technology
;
; Contact:
;   Centaur Technology Formal Verification Group
;   7600-C N. Capital of Texas Highway, Suite 300, Austin, TX 78731, USA.
;   http://www.centtech.com/
;
; This program is free software; you can redistribute it and/or modify it under
; the terms of the GNU General Public License as published by the Free Software
; Foundation; either version 2 of the License, or (at your option) any later
; version.  This program is distributed in the hope that it will be useful but
; WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
; FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
; more details.  You should have received a copy of the GNU General Public
; License along with this program; if not, write to the Free Software
; Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA.
;
; Original author: Jared Davis <jared@centtech.com>

(in-package "STR")
(include-book "strprefixp")
(local (include-book "arithmetic"))

; BOZO should probably rewrite this to have a nice listrpos function sort of
; thing.

(defsection strrpos-fast
  :parents (strrpos)
  :short "Fast implementation of @(see strrpos)."

  (defund strrpos-fast (x y n xl yl)
    (declare (type string x y)
             (type (integer 0 *) n xl yl)
             (xargs :guard (and (stringp x)
                                (stringp y)
                                (natp xl)
                                (natp yl)
                                (natp n)
                                (<= n (length y))
                                (= xl (length x))
                                (= yl (length y)))
                    :measure (nfix n)))
    ;; N goes from YL to 0.
    (cond ((mbe :logic (prefixp (explode x)
                                (nthcdr n (explode y)))
                :exec (strprefixp-impl (the string x)
                                       (the string y)
                                       (the integer 0)
                                       (the (integer 0 *) n)
                                       (the (integer 0 *) xl)
                                       (the (integer 0 *) yl)))
           (lnfix n))
          ((zp n)
           nil)
          (t
           (strrpos-fast (the string x)
                         (the string y)
                         (the (integer 0 *) (+ -1 (lnfix n)))
                         (the (integer 0 *) xl)
                         (the (integer 0 *) yl)))))

  (local (in-theory (enable strrpos-fast)))

  (defthm strrpos-fast-type
    (or (and (integerp (strrpos-fast x y n xl yl))
             (<= 0 (strrpos-fast x y n xl yl)))
        (not (strrpos-fast x y n xl yl)))
    :rule-classes :type-prescription)

  (defthm strrpos-fast-upper-bound
    (implies (force (natp n))
             (<= (strrpos-fast x y n xl yl) n))
    :rule-classes :linear)

  (defthm strrpos-fast-when-empty
    (implies (and (not (consp (explode x)))
                  (equal xl (length x))
                  (equal yl (length y))
                  (natp n))
             (equal (strrpos-fast x y n xl yl)
                    n))))

(defsection strrpos
  :parents (substrings)
  :short "Locate the last occurrence of a substring."

  :long "<p>@(call strrpos) searches through the string @('y') for the last
occurrence of the substring @('x').  If @('x') occurs somewhere in @('y'), it
returns the starting index of the last occurrence.  Otherwise, it returns
@('nil') to indicate that @('x') never occurs in @('y').</p>

<p>The function is \"efficient\" in the sense that it does not coerce its
arguments into lists, but rather traverses both strings with @(see char).  On
the other hand, it is a naive string search which operates by repeatedly
calling @(see strprefixp), rather than some better algorithm.</p>

<p>Corner case: we say that the empty string <b>is</b> an prefix of any other
string.  As a consequence, @('(strrpos \"\" x)') is (length x) for all
@('x').</p>"

  (definlined strrpos (x y)
    (declare (type string x y))
    (let ((yl (length (the string y))))
      (declare (type (integer 0 *) yl))
      (strrpos-fast (the string x)
                    (the string y)
                    (the (integer 0 *) yl)
                    (the (integer 0 *) (length (the string x)))
                    (the (integer 0 *) yl))))

  (local (in-theory (enable strrpos strrpos-fast)))

  (defthm strrpos-type
    (or (and (integerp (strrpos x y))
             (<= 0 (strrpos x y)))
        (not (strrpos x y)))
    :rule-classes :type-prescription)

  (encapsulate
    ()
    (local (defthm lemma
             (implies (and (stringp x)
                           (stringp y)
                           (natp xl)
                           (natp yl)
                           (natp n)
                           (<= n (length y))
                           (= xl (length x))
                           (= yl (length y))
                           (strrpos-fast x y n xl yl))
                      (prefixp (explode x)
                               (nthcdr (strrpos-fast x y n xl yl)
                                       (explode y))))
             :hints(("Goal" :induct (strrpos-fast x y n xl yl)))))

    (defthm prefixp-of-strrpos
      (implies (and (strrpos x y)
                    (force (stringp x))
                    (force (stringp y)))
               (prefixp (explode x)
                        (nthcdr (strrpos x y) (explode y))))))

  (encapsulate
    ()
    (local (defun my-induction (x y n m xl yl)
             (declare (xargs :measure (nfix n)))
             (cond ((prefixp (explode x)
                             (nthcdr n (explode y)))
                    nil)
                   ((zp n)
                    (list x y n m xl yl))
                   (t
                    (my-induction x y
                                  (- (nfix n) 1)
                                  (if (= (nfix n) (nfix m))
                                      (- (nfix m) 1)
                                    m)
                                  xl yl)))))

    (local (defthm lemma
             (implies (and (stringp x)
                           (stringp y)
                           (natp xl)
                           (natp yl)
                           (natp n)
                           (natp m)
                           (>= n m)
                           (<= n (length y))
                           (= xl (length x))
                           (= yl (length y))
                           (prefixp (explode x)
                                    (nthcdr m (explode y))))
                      (and (natp (strrpos-fast x y n xl yl))
                           (>= (strrpos-fast x y n xl yl) m)))
             :hints(("Goal"
                     :induct (my-induction x y n m xl yl)
                     :do-not '(generalize fertilize)))))

    (defthm completeness-of-strrpos
      (implies (and (prefixp (explode x)
                             (nthcdr m (explode y)))
                    (<= m (len y))
                    (force (natp m))
                    (force (stringp x))
                    (force (stringp y)))
               (and (natp (strrpos x y))
                    (>= (strrpos x y) m)))))


  (defthm strrpos-upper-bound-weak
    (implies (and (force (stringp x))
                  (force (stringp y)))
             (<= (strrpos x y)
                 (len (explode y))))
    :rule-classes ((:rewrite) (:linear)))

  (encapsulate
    ()
    (local (defthm lemma
             (implies (and (stringp x)
                           (stringp y)
                           (posp xl)
                           (posp yl)
                           (natp n)
                           (<= n (length y))
                           (= xl (length x))
                           (= yl (length y)))
                      (< (strrpos-fast x y n xl yl) yl))
             :hints(("Goal"
                     :induct (strrpos-fast x y n xl yl)))))

    (defthm strrpos-upper-bound-strong
      (implies (and (not (equal y ""))
                    (not (equal x ""))
                    (force (stringp x))
                    (force (stringp y)))
               (< (strrpos x y)
                  (len (explode y))))
      :rule-classes ((:rewrite) (:linear)))))