/usr/share/acl2-6.3/books/quadratic-reciprocity/fermat.lisp is in acl2-books-source 6.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | (in-package "ACL2")
;; This book contains a proof of Fermat's Theorem: if p is a prime and m
;; is not divisible by p, then mod(m^(p-1),p) = 1.
;; The proof depends on Euclid's Theorem:
(include-book "euclid")
;; We shall construct two lists of integers, each of which is a permutation of the other.
(defun perm (a b)
(if (consp a)
(if (member (car a) b)
(perm (cdr a) (remove1 (car a) b))
())
(not (consp b))))
;; The first list is positives(p-1) = (1, 2, ..., p-1):
(defun positives (n)
(if (zp n)
()
(cons n (positives (1- n)))))
;;The second list is mod-prods(p-1,a,p) = (mod(a,p), mod(2*a,p), ..., mod((p-1)*a,p)):
(defun mod-prods (n m p)
(if (zp n)
()
(cons (mod (* m n) p)
(mod-prods (1- n) m p))))
;; The proof is based on the pigeonhole principle.
(defthm not-member-remove1
(implies (not (member x l))
(not (member x (remove1 y l)))))
(defthm perm-member
(implies (and (perm a b)
(member x a))
(member x b)))
(defun distinct-positives (l n)
(if (consp l)
(and (not (zp n))
(not (zp (car l)))
(<= (car l) n)
(not (member (car l) (cdr l)))
(distinct-positives (cdr l) n))
t))
(defthm member-positives
(iff (member x (positives n))
(and (not (zp n))
(not (zp x))
(<= x n))))
(defthm pigeonhole-principle-lemma-1
(implies (and (natp n)
(distinct-positives l (1+ n))
(not (member (1+ n) l)))
(distinct-positives l n)))
(defthm pigeonhole-principle-lemma-2
(implies (and (not (zp n))
(distinct-positives l n)
(member n l))
(distinct-positives (remove1 n l) (+ -1 n))))
(defthm len-remove1
(implies (member x l)
(equal (len (remove1 x l))
(1- (len l)))))
(defun pigeonhole-induction (l)
(declare (xargs :measure (len l)))
(if (consp l)
(if (member (len l) l)
(pigeonhole-induction (remove1 (len l) l))
(pigeonhole-induction (cdr l)))
t))
(defthm pigeonhole-principle
(implies (distinct-positives l (len l))
(perm (positives (len l)) l))
:rule-classes ()
:hints (("Goal" :induct (pigeonhole-induction l))))
;; We must show that mod-prods(p-1,m,p) is a list of length p-1 of distinct
;; integers between 1 and p-1.
(defthm len-mod-prods
(implies (natp n)
(equal (len (mod-prods n m p)) n)))
(defthm mod-distinct-lemma
(implies (and (integerp p)
(not (zp i))
(< i p)
(not (zp j))
(< j p))
(< (abs (- i j)) p))
:rule-classes ())
(defthm mod-distinct
(implies (and (primep p)
(not (zp i))
(< i p)
(not (zp j))
(< j p)
(not (= j i))
(integerp m)
(not (divides p m)))
(not (equal (mod (* m i) p) (mod (* m j) p))))
:hints (("Goal" :in-theory (enable divides)
:use (mod-distinct-lemma
(:instance divides-leq (x p) (y (abs (- i j))))
(:instance mod-equal-int (a (* m i)) (b (* m j)) (n p))
(:instance mod-equal-int (a (* m j)) (b (* m i)) (n p))
(:instance euclid (a (abs (- i j))) (b m))))))
(defthm mod-p-bnds
(implies (and (primep p)
(not (zp i))
(< i p)
(integerp m)
(not (divides p m)))
(and (< 0 (mod (* m i) p))
(> p (mod (* m i) p))))
:rule-classes ()
:hints (("Goal" :in-theory (enable divides)
:use ((:instance mod-bnd-1 (m (* m i)) (n p))
(:instance mod-0-int (m (* m i)) (n p))
(:instance natp-mod-2 (m (* m i)) (n p))
(:instance euclid (a i) (b m))))))
(defthm mod-prods-distinct-positives-lemma
(implies (and (primep p)
(integerp p)
(>= p 2)
(natp n)
(< n p)
(integerp r)
(< r n)
(integerp m)
(not (divides p m)))
(not (member (mod (* m n) p) (mod-prods r m p)))))
(defthm mod-prods-distinct-positives
(implies (and (primep p)
(natp n)
(< n p)
(integerp m)
(not (divides p m)))
(distinct-positives (mod-prods n m p) (1- p)))
:rule-classes ()
:hints (("Subgoal *1/5.1" :use ((:instance mod-p-bnds (i n))))))
(defthm perm-mod-prods
(implies (and (primep p)
(integerp m)
(not (divides p m)))
(perm (positives (1- p))
(mod-prods (1- p) m p)))
:rule-classes ()
:hints (("Goal" :use ((:instance mod-prods-distinct-positives (n (1- p)))
(:instance pigeonhole-principle (l (mod-prods (1- p) m p)))))))
;; The product of the members of a list is invariant under permutation:
(defun times-list (l)
(if (consp l)
(* (ifix (car l))
(times-list (cdr l)))
1))
(defthm times-list-remove1
(implies (and (consp l)
(member x l))
(equal (times-list l)
(* (ifix x) (times-list (remove1 x l)))))
:rule-classes ())
(defthm perm-times-list
(implies (perm l1 l2)
(equal (times-list l1)
(times-list l2)))
:rule-classes ()
:hints (("Subgoal *1/2" :use (:instance times-list-remove1 (x (car l1)) (l l2)))))
;; It follows that the product of the members of mod-prods(p-1,m,p) is (p-1)!.
(defthm times-list-positives
(equal (times-list (positives n))
(fact n)))
(defthm times-list-equal-fact
(implies (perm (positives n) l)
(equal (times-list l) (fact n)))
:hints (("Goal" :use ((:instance perm-times-list (l1 (positives n)) (l2 l))))))
(defthm times-list-mod-prods
(implies (and (primep p)
(integerp m)
(not (divides p m)))
(equal (times-list (mod-prods (1- p) m p))
(fact (1- p))))
:hints (("Goal" :use (perm-mod-prods))))
;; On the other hand, the product mod p may be computed as follows.
(defthm mod-mod-prods-lemma-1
(implies (and (integerp x)
(integerp y)
(integerp z)
(not (zp n))
(= (mod x n) (mod y n)))
(= (mod (* x (mod z n)) n)
(mod (* y z) n)))
:rule-classes ()
:hints (("Goal" :use ((:instance mod-mod-times (a z) (b x))
(:instance mod-mod-times (a x) (b z))
(:instance mod-mod-times (a y) (b z))))))
(defthm mod-mod-prods-lemma-2
(implies (and (not (zp p))
(integerp m)
(not (zp n))
(equal (mod (times-list (mod-prods (+ n -1) m p)) p)
(mod (* (fact (1- n)) (expt m (+ n -1))) p)))
(equal (mod (times-list (mod-prods n m p)) p)
(mod (* (fact n) (expt m n)) p)))
:hints (("Goal" :use ((:instance mod-mod-prods-lemma-1
(n p)
(x (times-list (mod-prods (1- n) m p)))
(y (* (fact (1- n)) (expt m (1- n))))
(z (* m n)))))))
(defthm mod-mod-prods
(implies (and (not (zp p))
(integerp m)
(natp n))
(equal (mod (times-list (mod-prods n m p)) p)
(mod (* (fact n) (expt m n)) p)))
:rule-classes ())
;; Fermat's theorem now follows easily.
(defthm not-divides-p-fact
(implies (and (primep p)
(natp n)
(< n p))
(not (divides p (fact n))))
:rule-classes ()
:hints (("Subgoal *1/5" :use ((:instance euclid (a (fact (1- n))) (b n))
(:instance divides-leq (x p) (y n))))
("Subgoal *1/1" :use ((:instance divides-leq (x p) (y 1))))))
(defthm mod-times-prime
(implies (and (primep p)
(integerp a)
(integerp b)
(integerp c)
(not (divides p a))
(= (mod (* a b) p) (mod (* a c) p)))
(= (mod b p) (mod c p)))
:rule-classes ()
:hints (("Goal" :in-theory (enable divides)
:use ((:instance euclid (b (- b c)))
(:instance mod-equal-int (n p) (a (* a b)) (b (* a c)))
(:instance mod-equal-int-reverse (n p) (a b) (b c))))))
(defthm fermat
(implies (and (primep p)
(integerp m)
(not (divides p m)))
(equal (mod (expt m (1- p)) p)
1))
:rule-classes ()
:hints (("Goal" :use (times-list-mod-prods
(:instance not-divides-p-fact (n (1- p)))
(:instance mod-mod-prods (n (1- p)))
(:instance mod-times-prime (a (fact (1- p))) (b 1) (c (expt m (1- p))))
(:instance mod-does-nothing (m 1) (n p))))))
|