/usr/lib/swi-prolog/library/MANUAL is in swi-prolog-nox 5.10.4-3ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559 | University of Amsterdam
Kruislaan 419, 1098
VA Amsterdam
VU University Amsterdam
De Boelelaan 1081a,
1081 HV Amsterdam
The Netherlands
SSWWII--PPrroolloogg 55..1100
RReeffeerreennccee MMaannuuaall
_U_p_d_a_t_e_d _f_o_r _v_e_r_s_i_o_n _5_._1_0_._4_, _M_a_r_c_h _2_0_1_1
_J_a_n _W_i_e_l_e_m_a_k_e_r
J.Wielemaker@cs.vu.nl
http://www.swi-prolog.org
SWI-Prolog is a Prolog implementation based on a subset of
the WAM (Warren Abstract Machine). SWI-Prolog was developed
as an _o_p_e_n Prolog environment, providing a powerful and bi-
directional interface to C in an era this was unknown to other
Prolog implementations. This environment is required to deal
with XPCE, an object-oriented GUI system developed at SWI.
XPCE is used at SWI for the development of knowledge-intensive
graphical applications. As SWI-Prolog became more popular,
a large user-community provided requirements that guided
its development. Compatibility, portability, scalability,
stability and providing a powerful development environment
have been the most important requirements. Edinburgh,
Quintus, SICStus and the ISO-standard guide the development of
the SWI-Prolog primitives. This document gives an overview of
the features, system limits and built-in predicates.
Copyright Oc 1990--2011, University of Amsterdam
CChhaapptteerr 11.. IINNTTRROODDUUCCTTIIOONN
11..11 SSWWII--PPrroolloogg
SWI-Prolog started back in 1986 with the requirement for a Prolog that
could handle recursive interaction with the C-language: Prolog calling
C and C calling Prolog recursively. Those days Prolog systems were
very aware of its environment and we needed such a system to support
interactive applications. Since then, SWI-Prolog's development has
been guided by requests from the user community, especially focussing
on (in arbitrary order) interaction with the environment, scalability,
(I/O) performance, standard compliance, teaching and the program
development environment.
SWI-Prolog is based on a very simple Prolog virtual machine
called ZIP [Bowen _e_t _a_l_., 1983, Neumerkel, 1993] which defines only 7
instructions. Prolog can easily be compiled into this language and the
abstract machine code is easily decompiled back into Prolog. As it is
also possible to wire a standard 4-port debugger in the virtual machine
there is no need for a distinction between compiled and interpreted
code. Besides simplifying the design of the Prolog system itself
this approach has advantages for program development: the compiler
is simple and fast, the user does not have to decide in advance
whether debugging is required and the system only runs slightly slower
when in debug mode. The price we have to pay is some performance
degradation (taking out the debugger from the VM interpreter improves
performance by about 20%) and somewhat additional memory usage to help
the decompiler and debugger.
SWI-Prolog extends the minimal set of instructions described in
[Bowen _e_t _a_l_., 1983] to improve performance. While extending this
set care has been taken to maintain the advantages of decompilation
and tracing of compiled code. The extensions include specialised
instructions for unification, predicate invocation, some frequently
used built-in predicates, arithmetic, and control (;/2, |/2), if-then
(->/2) and negation-by-failure (\+/1).
11..11..11 BBooookkss aabboouutt PPrroolloogg
This manual does not describe the full syntax and semantics of Prolog,
nor how one should write a program in Prolog. These subjects have
been described extensively in the literature. See [Bratko, 1986],
[Sterling & Shapiro, 1986], and [Clocksin & Melish, 1987]. For
more advanced Prolog material see [O'Keefe, 1990]. Syntax and
standard operator declarations conform to the `Edinburgh standard'.
Most built-in predicates are compatible with those described in
[Clocksin & Melish, 1987]. SWI-Prolog also offers a number of
primitive predicates compatible with Quintus Prolog [Qui, 1997] and
BIM_Prolog [BIM, 1989].
ISO compliant predicates are based on ``Prolog: The Standard'',
[Deransart _e_t _a_l_., 1996], validated using [Hodgson, 1998].
11..22 SSttaattuuss
This manual describes version 5.10 of SWI-Prolog. SWI-Prolog has been
used now for many years. The application range includes Prolog course
material, meta-interpreters, simulation of parallel Prolog, learning
systems, natural language processing, complex interactive systems,
web-server and web-server components. Although in our experience
rather obvious and critical bugs can remain unnoticed for a remarkable
long period, we assume the basic Prolog system is fairly stable. Bugs
can be expected in infrequently used built-in predicates.
Some bugs are known to the author. They are described as footnotes in
this manual.
11..33 CCoommpplliiaannccee ttoo tthhee IISSOO ssttaannddaarrdd
SWI-Prolog 3.3.0 implements all predicates described in ``Prolog: The
Standard'' [Deransart _e_t _a_l_., 1996].
Exceptions and warning are still weak. Some SWI-Prolog predicates
silently fail on conditions where the ISO specification requires an
exception (functor/3 for example). Some predicates print warnings
rather than raising an exception. All predicates where exceptions may
be caused due to a correct program operating in an imperfect world
(I/O, arithmetic, resource overflows) should behave according to the
ISO standard. In other words: SWI-Prolog should be able to execute
any program conforming to [Deransart _e_t _a_l_., 1996] that does not rely
on exceptions generated by errors in the program.
11..44 SShhoouulldd yyoouu bbee uussiinngg SSWWII--PPrroolloogg??
There are a number of reasons why you better choose a commercial Prolog
system, or another academic product:
o _S_W_I_-_P_r_o_l_o_g _i_s _n_o_t _s_u_p_p_o_r_t_e_d
Although I usually fix bugs shortly after a bug report arrives, I
cannot promise anything. Now that the sources are provided, you
can always dig into them yourself.
o _M_e_m_o_r_y _r_e_q_u_i_r_e_m_e_n_t_s _a_n_d _p_e_r_f_o_r_m_a_n_c_e _a_r_e _y_o_u_r _f_i_r_s_t _c_o_n_c_e_r_n_s
A number of commercial compilers are more keen on memory and
performance than SWI-Prolog. I do not wish to sacrifice some of
the nice features of the system, nor its portability to compete on
raw performance.
o _Y_o_u _n_e_e_d _f_e_a_t_u_r_e_s _n_o_t _o_f_f_e_r_e_d _b_y _S_W_I_-_P_r_o_l_o_g
In this case you may wish to give me suggestions for extensions.
If you have great plans, please contact me (you might have to
implement them yourself however).
On the other hand, SWI-Prolog offers some nice facilities:
o _N_i_c_e _e_n_v_i_r_o_n_m_e_n_t
This includes `Do What I Mean', automatic completion of atom names,
history mechanism and a tracer that operates on single key-strokes.
Interfaces to some standard editors are provided (and can be
extended), as well as a facility to maintain programs (see make/0).
o _V_e_r_y _f_a_s_t _c_o_m_p_i_l_e_r
Even very large applications can be loaded in seconds on most
machines. If this is not enough, there is a Quick Load Format that
is slightly more compact and loading is almost always I/O bound.
o _T_r_a_n_s_p_a_r_e_n_t _c_o_m_p_i_l_e_d _c_o_d_e
SWI-Prolog compiled code can be treated just as interpreted code:
you can list it, trace it, etc. This implies you do not have to
decide beforehand whether a module should be loaded for debugging
or not. Also, performance is much better than the performance of
most interpreters.
o _P_r_o_f_i_l_i_n_g
SWI-Prolog offers tools for performance analysis, which can be very
useful to optimise programs. Unless you are very familiar with
Prolog and Prolog performance considerations this might be more
helpful than a better compiler without these facilities.
o _F_l_e_x_i_b_i_l_i_t_y
SWI-Prolog can easily be integrated with C, supporting non-
determinism in Prolog calling C as well as C calling Prolog (see
section 9). It can also be _e_m_b_e_d_d_e_d embedded in external programs
(see section 9.5). System predicates can be redefined locally to
provide compatibility with other Prolog systems.
o _I_n_t_e_g_r_a_t_i_o_n _w_i_t_h _X_P_C_E
SWI-Prolog offers a tight integration to the Object Ori-
ented Package for User Interface Development, called XPCE
[Anjewierden & Wielemaker, 1989]. XPCE allows you to implement
graphical user interfaces that are source-code compatible over
Unix/X11, Win32 (Windows 95/98/ME and NT/2000/XP) and MacOS X
(darwin).
11..55 TThhee XXPPCCEE GGUUII ssyysstteemm ffoorr PPrroolloogg
The XPCE GUI system for dynamically typed languages has been with
SWI-Prolog for a long time. It is developed by Anjo Anjewierden and
Jan Wielemaker from the department of SWI, University of Amsterdam.
It aims at a high-productive development environment for graphical
applications based on Prolog.
Object oriented technology has proven to be a suitable model for
implementing GUIs, which typically deal with things Prolog is not very
good at: event-driven control and global state. With XPCE, we
designed a system that has similar characteristics that make Prolog
such a powerful tool: dynamic typing, meta-programming and dynamic
modification of the running system.
XPCE is an object-system written in the C-language. It provides for
the implementation of methods in multiple languages. New XPCE classes
may be defined from Prolog using a simple, natural syntax. The body of
the method is executed by Prolog itself, providing a natural interface
between the two systems. Below is a very simple class definition.
________________________________________________________________________| |
|:- pce_begin_class(prolog_lister, frame, |
| "List Prolog predicates"). |
| |
|initialise(Self) :-> |
| "As the C++ constructor":: |
| send_super(Self, initialise, 'Prolog Lister'), |
| send(Self, append, new(D, dialog)), |
| send(D, append, |
| text_item(predicate, message(Self, list, @arg1))), |
| send(new(view), below, D). |
| |
|list(Self, From:name) :-> |
| "List predicates from specification":: |
| ( catch(term_to_atom(Term, From), _, fail) |
| -> get(Self, member, view, V), |
| current_output(Old), |
| pce_open(V, write, Fd), |
| set_output(Fd), |
| listing(Term), |
| close(Fd), |
| set_output(Old) |
| ; send(Self, report, error, 'Syntax error') |
| ). |
| |
|:- pce_end_class. |
| |
|test|:-_send(new(prolog_lister),_open).________________________________ | |
Its 165 built-in classes deal with the meta-environment, data-
representation and---of course---graphics. The graphics classes
concentrate on direct-manipulation of diagrammatic representations.
AAvvaaiillaabbiilliittyy.. XPCE runs on most Unixtm platforms, Windows 95/98/ME,
Windows NT/2000/XP and MacOS X (using X11). In the past, versions for
Quintus- and SICStus Prolog as well as some Lisp dialects have existed.
After discontinuing active Lisp development at SWI the Lisp versions
have died. Active development on the Quintus and SICStus versions has
been stopped due to lack of standardisation in the Prolog community.
If adequate standards emerge we are happy to actively support other
Prolog implementations.
IInnffoo.. further information is available from http://www.swi-
prolog.org/packages/xpce/ or by E-mail to info@www.swi-prolog.org.
11..66 RReelleeaassee NNootteess
Collected release-notes. This section only contains some highlights.
Smaller changes to especially older releases have been removed. For a
complete log, see the file ChangeLog from the distribution.
VVeerrssiioonn 11..88 RReelleeaassee NNootteess
Version 1.8 offers a stack-shifter to provide dynamically expanding
stacks on machines that do not offer operating-system support for
implementing dynamic stacks.
VVeerrssiioonn 11..99 RReelleeaassee NNootteess
Version 1.9 offers better portability including an MS-Windows 3.1
version. Changes to the Prolog system include:
o _R_e_d_e_f_i_n_i_t_i_o_n _o_f _s_y_s_t_e_m _p_r_e_d_i_c_a_t_e_s
Redefinition of system predicates was allowed silently in older
versions. Version 1.9 only allows it if the new definition is
headed by a :- redefine_system_predicate/1 directive.top-level
o _`_A_n_s_w_e_r_' _r_e_u_s_e
The top-level maintains a table of bindings returned by top-level
goals and allows for reuse of these bindings by prefixing the
variables with the $ sign. See section 2.8.
o _B_e_t_t_e_r _s_o_u_r_c_e _c_o_d_e _a_d_m_i_n_i_s_t_r_a_t_i_o_n
Allows for proper updating of multifile predicates and finding the
sources of individual clauses.
VVeerrssiioonn 22..00 RReelleeaassee NNootteess
New features offered:
o _3_2_-_b_i_t _V_i_r_t_u_a_l _M_a_c_h_i_n_e
Removes various limits and improves performance.
o _I_n_l_i_n_e _f_o_r_e_i_g_n _f_u_n_c_t_i_o_n_s
`Simple' foreign predicates no longer build a Prolog stack-frame,
but are directly called from the VM. Notably provides a speedup for
the test predicates such as var/1, etc.
o _V_a_r_i_o_u_s _c_o_m_p_a_t_i_b_i_l_i_t_y _i_m_p_r_o_v_e_m_e_n_t_s
o _S_t_r_e_a_m _b_a_s_e_d _I_/_O _l_i_b_r_a_r_y
All SWI-Prolog's I/O is now handled by the stream-package defined
in the foreign include file SWI-Stream.h. Physical I/O of Prolog
streams may be redefined through the foreign language interface,
facilitating much simpler integration in window environments.
VVeerrssiioonn 22..55 RReelleeaassee NNootteess
Version 2.5 is an intermediate release on the path from 2.1 to
3.0. All changes are to the foreign-language interface, both to
user- and system-predicates implemented in the C-language. The aim is
twofold. First of all to make garbage-collection and stack-expansion
(stack-shifts) possible while foreign code is active without the
C-programmer having to worry about locking and unlocking C-variables
pointing to Prolog terms. The new approach is closely compatible
with the Quintus and SICStus Prolog foreign interface using the +term
argument specification (see their respective manuals). This allows for
writing foreign interfaces that are easily portable over these three
Prolog platforms.
Apart from various bug fixes listed in the ChangeLog file, these are
the main changes since 2.1.0:
o _I_S_O _c_o_m_p_a_t_i_b_i_l_i_t_y
Many ISO compatibility features have been added: open/4,
arithmetic functions, syntax, etc.
o _W_i_n_3_2
Many fixes for the Win32 (NT, '95 and win32s) platforms. Notably
many problems related to pathnames and a problem in the garbage
collector.
o _P_e_r_f_o_r_m_a_n_c_e
Many changes to the clause indexing system: added hash-tables,
lazy computation of the index information, etc.
o _P_o_r_t_a_b_l_e _s_a_v_e_d_-_s_t_a_t_e_s
The predicate qsave_program/[1,2] allows for the creating of
machine independent saved-states that load very quickly.
VVeerrssiioonn 22..66 RReelleeaassee NNootteess
Version 2.6 provides a stable implementation of the features added in
the 2.5.x releases, but at the same time implements a number of new
features that may have impact on the system stability.
o _3_2_-_b_i_t _i_n_t_e_g_e_r _a_n_d _d_o_u_b_l_e _f_l_o_a_t _a_r_i_t_h_m_e_t_i_c
The biggest change is the support for full 32-bit signed integers
and raw machine-format double precision floats. The internal
data representation as well as the arithmetic instruction set and
interface to the arithmetic functions has been changed for this.
o _E_m_b_e_d_d_i_n_g _f_o_r _W_i_n_3_2 _a_p_p_l_i_c_a_t_i_o_n_s
The Win32 version has been reorganised. The Prolog kernel is now
implemented as Win32 DLL that may be embedded in C-applications.
Two front ends are provided, one for window-based operation and one
to run as a Win32 console application.
o _C_r_e_a_t_i_n_g _s_t_a_n_d_-_a_l_o_n_e _e_x_e_c_u_t_a_b_l_e_s
Version 2.6.0 can create stand-alone executables by attaching the
saved-state to the emulator. See qsave_program/2.
VVeerrssiioonn 22..77 RReelleeaassee NNootteess
Version 2.7 reorganises the entire data-representation of the Prolog
data itself. The aim is to remove most of the assumption on the
machine's memory layout to improve portability in general and enable
embedding on systems where the memory layout may depend on invocation
or on how the executable is linked. The latter is notably a problem on
the Win32 platforms. Porting to 64-bit architectures is feasible now.
Furthermore, 2.7 lifts the limits on arity of predicates and number of
variables in a clause considerably and allow for further expansion at
minimal cost.
VVeerrssiioonn 22..88 RReelleeaassee NNootteess
With version 2.8, we declare the data-representation changes of 2.7.x
stable. Version 2.8 exploits the changes of 2.7 to support 64-bit
processors like the DEC Alpha. As of version 2.8.5, the representation
of recorded terms has changed, and terms on the heap are now
represented in a compiled format. SWI-Prolog no longer limits the
use of malloc() or uses assumptions on the addresses returned by this
function.
VVeerrssiioonn 22..99 RReelleeaassee NNootteess
Version 2.9 is the next step towards version 3.0, improving ISO
compliance and introducing ISO compliant exception handling. New
are catch/3, throw/1, abolish/1, write_term/[2,3], write_canonical/[1,2]
and the C-functions PL_exception() and PL_throw(). The predicates
display/[1,2] and displayq/[1,2] have been moved to backcomp, so old
code referring to them will autoload them.
The interface to PL_open_query() has changed. The _d_e_b_u_g argument is
replaced by a bitwise or'ed _f_l_a_g_s argument. The values FALSE and
TRUE have their familiar meaning, making old code using these constants
compatible. Non-zero values other than TRUE (1) will be interpreted
different.
VVeerrssiioonn 33..00 RReelleeaassee NNootteess
Complete redesign of the saved-state mechanism, providing the
possibility of `program resources'. See resource/3, open_resource/3,
and qsave_program/[1,2].
VVeerrssiioonn 33..11 RReelleeaassee NNootteess
Improvements on exception-handling. Allows relating software
interrupts (signals) to exceptions, handling signals in Prolog and C
(see on_signal/3 and PL_signal()). Prolog stack overflows now raise
the resource_error exception and thus can be handled in Prolog using
catch/3.
VVeerrssiioonn 33..33 RReelleeaassee NNootteess
Version 3.3 is a major release, changing many things internally and
externally. The highlights are a complete redesign of the high-level
I/O system, which is now based on explicit streams rather then current
input/output. The old Edinburgh predicates (see/1, tell/1, etc.) are
now defined on top of this layer instead of the other way around. This
fixes various internal problems and removes Prolog limits on the number
of streams.
Much progress has been made to improve ISO compliance: handling
strings as lists of one-character atoms is now supported (next
to character codes as integers). Many more exceptions have
been added and printing of exceptions and messages is rationalised
using Quintus and SICStus Prolog compatible print_message/2,
message_hook/3 and print_message_lines/3. All predicates described in
[Deransart _e_t _a_l_., 1996] are now implemented.
As of version 3.3, SWI-Prolog adheres the ISO _l_o_g_i_c_a_l _u_p_d_a_t_e _v_i_e_w for
dynamic predicates. See section 4.12.1 for details.
SWI-Prolog 3.3 includes garbage collection on atoms, removing the
last serious memory leak especially in text-manipulation applications.
See section 9.4.2.1. In addition, both the user-level and foreign
interface supports atoms holding _0_-_b_y_t_e_s.
Finally, an alpha version of a multi-threaded SWI-Prolog for Linux is
added. This version is still much slower than the single-threaded
version due to frequent access to `thread-local-data' as well as some
too detailed mutex locks. The basic thread API is ready for serious
use and testing however. See section 8.
IInnccoommppaattiibbllee cchhaannggeess
A number of incompatible changes result from this upgrade. They are
all easily fixed however.
o !/0_, call/1
The cut now behaves according to the ISO standard. This implies
it works in compound goals passed to call/1 and is local to the
_c_o_n_d_i_t_i_o_n part of if-then-else as well as the argument of \+/1.
o _a_t_o_m___c_h_a_r_s_/_2
This predicate is now ISO compliant and thus generates a list
of one-character atoms. The behaviour of the old predicate is
available in the ---also ISO compliant--- atom_codes/2 predicate.
Safest repair is a replacement of all atom_chars into atom_codes.
If you do not want to change any source-code, you might want to use
____________________________________________________________________| |
||user:goal_expansion(atom_chars(A,B),_atom_codes(A,B)).____________ ||
o _n_u_m_b_e_r___c_h_a_r_s_/_2
Same applies for number_chars/2 and number_codes/2.
o feature/2_, set_feature/2
These are replaced by the ISO compliant current_prolog_flag/2 and
set_prolog_flag/2. The library backcomp provides definitions for
these predicates, so no source mmuusstt be updated.
o _A_c_c_e_s_s_i_n_g _c_o_m_m_a_n_d_-_l_i_n_e _a_r_g_u_m_e_n_t_s
This used to be provided by the undocumented '$argv'/1 and
Quintus compatible library unix/1. Now there is also documented
current_prolog_flag(_a_r_g_v_, _A_r_g_v).
o _d_u_p___s_t_r_e_a_m_/_2
Has been deleted. New stream-aliases can deal with most of the
problems for which dup_stream/2 was designed and dup/2 from the
_c_l_i_b package can with most others.
o _o_p_/_3
Operators are now llooccaall ttoo mmoodduulleess. This implies any modification
of the operator-table does not influence other modules. This is
consistent with the proposed ISO behaviour and a necessity to have
any usable handling of operators in a multi-threaded environment.
o _s_e_t___p_r_o_l_o_g___f_l_a_g_(_c_h_a_r_a_c_t_e_r___e_s_c_a_p_e_s_, _B_o_o_l_)
This Prolog flag is now an interface to changing attributes on the
current source-module, effectively making this flag module-local as
well. This is required for consistent handling of sources written
with ISO (obligatory) character-escape sequences together with old
Edinburgh code.
o _c_u_r_r_e_n_t___s_t_r_e_a_m_/_3 _a_n_d _s_t_r_e_a_m___p_o_s_i_t_i_o_n
These predicates have been moved to quintus.
VVeerrssiioonn 33..44 RReelleeaassee NNootteess
The 3.4 release is a consolidation release. It consolidates the
improvements and standard conformance of the 3.3 releases. This
version is closely compatible with the 3.3 version except for one
important change:
o _A_r_g_u_m_e_n_t _o_r_d_e_r _i_n select/3
The list-processing predicate select/3 somehow got into a very
early version of SWI-Prolog with the wrong argument order. This
has been fixed in 3.4.0. The correct order is select(?Elem, ?List,
?Rest).
As select/3 has no error conditions, runtime checking cannot be
done. To simplify debugging, the library module checkselect will
print references to select/3 in your source code and install a
version of select that enters the debugger if select is called and
the second argument is not a list.
This library can be loaded explicitly or by calling
check_old_select/0.
VVeerrssiioonn 44..00 RReelleeaassee NNootteess
As of version 4.0 the standard distribution of SWI-Prolog is bundled
with a number of its popular extension packages, among which the now
open source XPCE GUI toolkit (see section 1.5). No significant changes
have been made to the basic SWI-Prolog engine.
Some useful tricks in the integrated environment:
o _R_e_g_i_s_t_e_r _t_h_e _G_U_I _t_r_a_c_e_r
Using a call to guitracer/0, hooks are installed that replace the
normal command-line driven tracer with a graphical front-end.
o _R_e_g_i_s_t_e_r _P_c_e_E_m_a_c_s _f_o_r _e_d_i_t_i_n_g _f_i_l_e_s
From your initialisation file. you can load emacs/swi_prolog that
cause edit/1 to use the built-in PceEmacs editor.
VVeerrssiioonn 55..00 RReelleeaassee NNootteess
Version 5.0 marks a breakpoint in the philosophy, where SWI-Prolog
moves from a dual GPL/proprietary to a uniform LGPL (Lesser GNU
Public Licence) schema, providing a widely usable Free Source Prolog
implementation.
On the technical site the development environment, consisting of
source-level debugger, integrated editor and various analysis and
navigation tools progress steadily towards a mature set of tools.
Many portability issues have been improved, including a port to MacOS X
(Darwin).
For details, please visit the new website at http://www.swi-prolog.org
VVeerrssiioonn 55..11 RReelleeaassee NNootteess
Version 5.1 is a beta-serie introducing portable multi-threading. See
chapter 8. In addition it introduces many new facilities to support
server applications, such as the new rlimit library to limit system
resources and the possibility to set timeouts on input streams.
VVeerrssiioonn 55..22 RReelleeaassee NNootteess
Version 5.2 consolidates the 5.1.x beta series that introduced
threading and many related modifications to the kernel.
VVeerrssiioonn 55..33 RReelleeaassee NNootteess
Version 5.3.x is a development series for adding coroutining,
constraints, global variables, cyclic terms (infinite trees) and other
goodies to the kernel. The package JPL, providing a bidirectional
Java/Prolog interface is added to the common source-tree and common
binary packages.
VVeerrssiioonn 55..44 RReelleeaassee NNootteess
Version 5.4 consolidates the 5.3.x beta series.
VVeerrssiioonn 55..55 RReelleeaassee NNootteess
Version 5.5.x provides support for _w_i_d_e _c_h_a_r_a_c_t_e_r_s with UTF-8 and
UNICODE I/O (section 2.17.1). On both 32 and 64-bit hardware Prolog
integers are now at minimum 64-bit integers. If available, SWI-Prolog
arithmetic uses the GNU GMP library to provided _u_n_b_o_u_n_d_e_d integer
arithmetic as well as rational arithmetic. Adding GMP support is
sponsored by Scientific Software and Systems Limited, www.sss.co.nz.
This version also incorporates clp(r) by Christian Holzbaur, brought to
SWI-Prolog by Tom Schrijvers and Leslie De Koninck (section 11.8).
VVeerrssiioonn 55..66 RReelleeaassee NNootteess
Version 5.6 consolidates the 5.5.x beta series.
VVeerrssiioonn 55..77 RReelleeaassee NNootteess
The aim of the 5.7 series is to cleanup much of the system. Notably,
the virtual machine has a much simpler setup that makes it much
easier to add new instructions. This facility has been exploited to
enhance performance and provide proper support for the meta_predicate/1
directive for enhanced portability.
VVeerrssiioonn 55..1100 RReelleeaassee NNootteess
The 5.9 series has enhanced SWI-Prolog in terms of memory management,
scalability and robustness. Notable, threads are much cheaper and
now limited in count only by the OS. Database and stream-handles have
becomes safe. Compatibility to YAP and SISCtus has been improved.
11..77 DDoonnaattee ttoo tthhee SSWWII--PPrroolloogg pprroojjeecctt
If you are happy with SWI-Prolog, you care it to be around for much
longer while it becomes faster, more stable and with more features you
should consider to donate to the SWI-Prolog foundation. Please visit
the page below.
http://www.swi-prolog.org/donate.html
11..88 AAcckknnoowwlleeddggeemmeennttss
Some small parts of the Prolog code of SWI-Prolog are modified versions
of the corresponding Edinburgh C-Prolog code: grammar rule compilation
and writef/2. Also some of the C-code originates from C-Prolog:
finding the path of the currently running executable and some of the
code underlying absolute_file_name/2. Ideas on programming style and
techniques originate from C-Prolog and Richard O'Keefe's _t_h_i_e_f editor.
An important source of inspiration are the programming techniques
introduced by Anjo Anjewierden in PCE version 1 and 2.
I also would like to thank those who had the fade of using the early
versions of this system, suggested extensions or reported bugs. Among
them are Anjo Anjewierden, Huub Knops, Bob Wielinga, Wouter Jansweijer,
Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.
Martin Jansche (jansche@novell1.gs.uni-heidelberg.de) has been so kind
to reorganise the sources for version 2.1.3 of this manual.
Horst von Brand has been so kind to fix many typos in the 2.7.14
manual. Thanks!
Bart Demoen and Tom Schrijvers have helped me adding coroutining,
constraints, global variables and support for cyclic terms to the
kernel. Tom has provided the integer interval constraint solver, the
CHR compiler and some of the coroutining predicates.
Paul Singleton has integrated Fred Dushin's Java-calls-Prolog side with
his Prolog-calls-Java side into the current bidirectional JPL interface
package.
Richard O'Keefe is gratefully acknowledged for his efforts to educate
beginners as well as valuable comments on proposed new developments.
Scientific Software and Systems Limited, www.sss.co.nz has sponsored
the development if the SSL library as well as unbounded integer and
rational number arithmetic.
Leslie de Koninck has made clp(QR) available to SWI-Prolog.
Markus Triska has contributed to various libraries.
Paulo Moura's great experience in maintaining Logtalk for many
Prolog systems including SWI-Prolog has helped in many places fixing
compatibility issues. He also worked on the MacOS port and fixed many
typos in the 5.6.9 release of the documentation.
CChhaapptteerr 22.. OOVVEERRVVIIEEWW
22..11 GGeettttiinngg ssttaarrtteedd qquuiicckkllyy
22..11..11 SSttaarrttiinngg SSWWII--PPrroolloogg
22..11..11..11 SSttaarrttiinngg SSWWII--PPrroolloogg oonn UUnniixx
By default, SWI-Prolog is installed as `swipl'. The command-line
arguments of SWI-Prolog itself and its utility programs are documented
using standard Unix man pages. SWI-Prolog is normally operated as an
interactive application simply by starting the program:
________________________________________________________________________| |
|machine% swipl |
|Welcome to SWI-Prolog (Version \plversion) |
|... |
| |
|1|?-___________________________________________________________________ | |
After starting Prolog, one normally loads a program into it using
consult/1, which --- for historical reasons --- may be abbreviated by
putting the name of the program file between square brackets. The
following goal loads the file likes.pl containing clauses for the
predicates likes/2:
________________________________________________________________________| |
|?- [likes]. |
|% likes compiled, 0.00 sec, 596 bytes. |
| |
|Yes |
|?-|____________________________________________________________________ | |
After this point, Unix and Windows users unite, so if you are using
Unix please continue at section 2.1.2.
22..11..11..22 SSttaarrttiinngg SSWWII--PPrroolloogg oonn WWiinnddoowwss
After SWI-Prolog has been installed on a Windows system, the following
important new things are available to the user:
o A folder (called _d_i_r_e_c_t_o_r_y in the remainder of this document)
called pl containing the executables, libraries, etc. of the
system. No files are installed outside this directory.
o A program swipl-win.exe, providing a window for interaction with
Prolog. The program swipl.exe is a version of SWI-Prolog that runs
in a DOS-box.
o The file-extension .pl is associated with the program swipl-
win.exe. Opening a .pl file will cause swipl-win.exe to start,
change directory to the directory in which the file-to-open resides
and load this file.
The normal way to start with the likes.pl file mentioned in
section 2.1.1.1 is by simply double-clicking this file in the Windows
explorer.
22..11..22 EExxeeccuuttiinngg aa qquueerryy
After loading a program, one can ask Prolog queries about the program.
The query below asks Prolog what food `sam' likes. The system responds
with X = <_v_a_l_u_e> if it can prove the goal for a certain _X. The user can
type the semi-colon (;) if (s)he wants another solution, or return if
(s)he is satisfied, after which Prolog will say YYeess. If Prolog answers
NNoo, it indicates it cannot find any (more) answers to the query.
Finally, Prolog can answer using an error message to indicate the query
or program contains an error.
________________________________________________________________________| |
|?- likes(sam, X). |
| |
|X = dahl ; |
| |
|X = tandoori ; |
| |
|... |
| |
|X = chips ; |
| |
|No |
|?-|____________________________________________________________________ | |
22..22 TThhee uusseerr''ss iinniittiiaalliissaattiioonn ffiillee
After the necessary system initialisation the system consults (see
consult/1) the user's startup file. The base-name of this file follows
conventions of the operating system. On MS-Windows, it is the file
pl.ini and on Unix systems .plrc. The file is searched using the
file_search_path/2 clauses for user_profile. The table below shows the
default value for this search-path. The phrase <_a_p_p_d_a_t_a> refers to the
Windows CSIDL name for the folder. The actual name depends on the
Windows language. English versions typically use ApplicationData. See
also win_folder/2
___________________________________
|______________|UUnniixx__||WWiinnddoowwss__________________________||
|| llooccaall ||. |. |
|_hhoommee__||~____|<_a_p_p_d_a_t_a>/SWI-Prolog_|
After the first startup file is found it is loaded and Prolog stops
looking for further startup files. The name of the startup file can be
changed with the `-f file' option. If _F_i_l_e denotes an absolute path,
this file is loaded, otherwise the file is searched for using the same
conventions as for the default startup file. Finally, if _f_i_l_e is none,
no file is loaded.
See also the -s (script) and -F (system-wide initialisation) in
section 2.4 and section 2.3.
22..33 IInniittiiaalliissaattiioonn ffiilleess aanndd ggooaallss
Using command-line arguments (see section 2.4), SWI-Prolog can be
forced to load files and execute queries for initialisation purposes
or non-interactive operation. The most commonly used options are
-f file or -s file to make Prolog load a file, -g goal to define an
initialisation goal and -t goal to define the _t_o_p_-_l_e_v_e_l _g_o_a_l. The
following is a typical example for starting an application directly
from the command-line.
________________________________________________________________________| |
|machine%|swipl_-s_load.pl_-g_go_-t_halt________________________________ | |
It tells SWI-Prolog to load load.pl, start the application using
the _e_n_t_r_y_-_p_o_i_n_t go/0 and ---instead of entering the interactive
top-level--- exit after completing go/0. The -q may be used to
suppress all informational messages.
In MS-Windows, the same can be achieved using a short-cut with
appropriately defined command-line arguments. A typically seen
alternative is to write a file run.pl with content as illustrated
below. Double-clicking run.pl will start the application.
________________________________________________________________________| |
|:- [load]. % load program |
|:- go. % run it |
|:-|halt.________________________%_and_exit_____________________________ | |
Section 2.10.2.1 discusses further scripting options and chapter 10
discusses the generation of runtime executables. Runtime executables
are a mean to deliver executables that do not require the Prolog
system.
22..44 CCoommmmaanndd--lliinnee ooppttiioonnss
The full set of command-line options is given below:
--arch
When given as the only option, it prints the architecture
identifier (see Prolog flag arch) and exits. See also
-dump-runtime-variables. Also available as -arch.
--dump-runtime-variables
When given as the only option, it prints a sequence of variable
settings that can be used in shell-scripts to deal with Prolog
parameters. This feature is also used by swipl-ld (see
section 9.5). Below is a typical example of using this feature.
Also available as -dump-runtime-variables.
____________________________________________________________________| |
| eval `swipl --dump-runtime-variables` |
||cc_-I$PLBASE/include_-L$PLBASE/lib/$PLARCH_...____________________ ||
The option can be followed by =sh to dump in POSIX shell format
(default) or cmd to dump in MS-Windows cmd.exe compatible format.
--help
When given as the only option, it summarises the most important
options. Also available as -h and -help.
--home=DIR
Use DIR as home directory. See section 9.6 for details.
--quiet
Set the Prolog flag verbose to silent, suppressing informational
and banner messages. Also available as -q.
--nodebug
Disable debugging. See the current_prolog_flag/2 flag
generate_debug_info for details.
--nosignals
Inhibit any signal handling by Prolog, a property that is sometimes
desirable for embedded applications. This option sets the flag
signals to false. See section 9.4.21.1 for details.
-tty
Unix only. Switches controlling the terminal for allowing
single-character commands to the tracer and get_single_char/1. By
default manipulating the terminal is enabled unless the system
detects it is not connected to a terminal or it is running as a
GNU-Emacs inferior process. This flag is sometimes required for
smooth interaction with other applications.
--version
When given as the only option, it summarises the version and the
architecture identifier. Also available as -v.
--win_app
This option is available only in swipl-win.exe and is used
for the start-menu item. If causes plwin to start in the
folder ...\My Documents\Prolog or local equivalent thereof (see
win_folder/2). The Prolog subdirectory is created if it does not
exist.
--
Stops scanning for more arguments, so you can pass arguments for
your application after this one. See current_prolog_flag/2 using
the flag argv for obtaining the command-line arguments.
22..44..11 CCoonnttrroolllliinngg tthhee ssttaacckk--ssiizzeess
As of SWI-Prolog 5.9.8, the default limit for the stack-sizes is 128Mb
on 32-bit and 256Mb on 64-bit hardware. The 128Mb limit on 32-bit
system is the highest possible value and this option can thus only
be used to lower the limit. On 64-bit systems, the limit can both
be reduced and enlarged. See section 2.18. Here are two examples,
the first reducing the local stack limit to catch unbounded recursion
really quickly and the second using a really big (32Gb) global limit on
a 64-bit machine:
________________________________________________________________________| |
|$ swipl -L8m |
|$|swipl_-G32g__________________________________________________________ | |
-G_s_i_z_e_[_k_m_g_]
Limit for the global stack (sometimes also called _t_e_r_m_-_s_t_a_c_k or
_h_e_a_p). This is where compound terms and large numbers live.
-L_s_i_z_e_[_k_m_g_]
Limit for the local stack ((sometimes also called _e_n_v_i_r_o_n_m_e_n_t_-
_s_t_a_c_k). This is where environments and choice-points
live.
-T_s_i_z_e_[_k_m_g_]
Limit for the trail stack. This is where we keep track of
assignments, so we can rollback on backtracking or exceptions.
22..44..22 RRuunnnniinngg ggooaallss ffrroomm tthhee ccoommmmaannddlliinnee
-g _g_o_a_l
_G_o_a_l is executed just before entering the top level. Default is a
predicate which prints the welcome message. The welcome message
can be be suppressed with --quiet, but also with -g true. _g_o_a_l
can be a complex term. In this case quotes are normally needed to
protect it from being expanded by the shell. A safe way to run a
goal non-interactively is here:
____________________________________________________________________| |
||%_swipl_<options>_-g_go,halt_-t_'halt(1)'_________________________ ||
-t _g_o_a_l
Use _g_o_a_l as interactive top-level instead of the default goal
prolog/0. _g_o_a_l can be a complex term. If the top-level goal
succeeds SWI-Prolog exits with status 0. If it fails the exit
status is 1. If the toplevel raises an exception, this is printed
as an uncaught error and the toplevel is restarted. This flag also
determines the goal started by break/0 and abort/0. If you want to
stop the user from entering interactive mode start the application
with `-g goal' and give `halt' as top-level.
22..44..33 CCoommppiilleerr ooppttiioonnss
-c _f_i_l_e _._._.
Compile files into an `intermediate code file'. See section 2.10.
-o _o_u_t_p_u_t
Used in combination with -c or -b to determine output file for
compilation.
-O
Optimised compilation. See current_prolog_flag/2flag optimise for
details.
-s _f_i_l_e
Use _f_i_l_e as a script-file. The script file is loaded after the
initialisation file specified with the -f file option. Unlike
-f file, using -s does not stop Prolog from loading the personal
initialisation file.
-f _f_i_l_e
Use _f_i_l_e as initialisation file instead of the default .plrc (Unix)
or pl.ini (Windows). `-f none' stops SWI-Prolog from searching for
a startup file. This option can be used as an alternative to
-s file that stops Prolog from loading the personal initialisation
file. See also section 2.2.
-F _s_c_r_i_p_t
Selects a startup-script from the SWI-Prolog home directory. The
script-file is named <_s_c_r_i_p_t>.rc. The default _s_c_r_i_p_t name is
deduced from the executable, taking the leading alphanumerical
characters (letters, digits and underscore) from the program-name.
-F none stops looking for a script. Intended for simple management
of slightly different versions. One could for example write
a script iso.rc and then select ISO compatibility mode using
pl -F iso or make a link from iso-pl to pl.
-x _b_o_o_t_f_i_l_e
Boot from _b_o_o_t_f_i_l_e instead of the system's default boot file. A
bootfile is a file resulting from a Prolog compilation using the -b
or -c option or a program saved using qsave_program/[1,2].
-p _a_l_i_a_s_=_p_a_t_h_1_[_:_p_a_t_h_2 _._._._]
Define a path alias for file_search_path. _a_l_i_a_s is the name of the
alias, _p_a_t_h_1 _._._. is a list of values for the alias. On Windows
the list-separator is ;. On other systems it is :. A value is
either a term of the form alias(value) or pathname. The computed
aliases are added to file_search_path/2 using asserta/1, so they
precede predefined values for the alias. See file_search_path/2
for details on using this file-location mechanism.
22..44..44 MMaaiinntteennaannccee ooppttiioonnss
The following options are for system maintenance. They are given for
reference only.
-b _i_n_i_t_f_i_l_e _._._.-c _f_i_l_e _._._.
Boot compilation. _i_n_i_t_f_i_l_e _._._. are compiled by the C-written
bootstrap compiler, _f_i_l_e _._._. by the normal Prolog compiler.
System maintenance only.
-d _l_e_v_e_l
Set debug level to _l_e_v_e_l. Only has effect if the system is
compiled with the -DO_DEBUG flag. System maintenance only.
22..55 GGNNUU EEmmaaccss IInntteerrffaaccee
The default Prolog mode for GNU-Emacs can be activated by adding the
following rules to your Emacs initialisation file:
________________________________________________________________________| |
|(setq auto-mode-alist |
| (append |
| '(("\\.pl" . prolog-mode)) |
| auto-mode-alist)) |
|(setq prolog-program-name "swipl") |
|(setq prolog-consult-string "[user].\n") |
|;If you want this. Indentation is either poor or I don't use |
|;it as intended. |
|;(setq|prolog-indent-width_8)__________________________________________ | |
Unfortunately the default Prolog mode of GNU-Emacs is not very good.
There are several alternatives though:
o http://turing.ubishops.ca/home/bruda/emacs-prolog/
o http://stud4.tuwien.ac.at/ e0225855/ediprolog/ediprolog.html
o http://stud4.tuwien.ac.at/ e0225855/pceprolog/pceprolog.html
o http://stud4.tuwien.ac.at/ e0225855/etrace/etrace.html
22..66 OOnnlliinnee HHeellpp
Online help provides a fast lookup and browsing facility to this
manual. The online manual can show predicate definitions as well as
entire sections of the manual.
The online help is displayed from the file 'MANUAL'. The file helpidx
provides an index into this file. 'MANUAL' is created from the
LaTeX sources with a modified version of dvitty, using overstrike for
printing bold text and underlining for rendering italic text. XPCE
is shipped with swi_help, presenting the information from the online
help in a hypertext window. The Prolog flag write_help_with_overstrike
controls whether or not help/1 writes its output using overstrike to
realise bold and underlined output or not. If this Prolog flag is
not set it is initialised by the help library to true if the TERM
variable equals xterm and false otherwise. If this default does not
satisfy you, add the following line to your personal startup file (see
section 2.2):
________________________________________________________________________| |
|:-|set_prolog_flag(write_help_with_overstrike,_true).__________________ | |
hheellpp
Equivalent to help(help/1).
hheellpp((_+_W_h_a_t))
Show specified part of the manual. _W_h_a_t is one of:
<_N_a_m_e>/<_A_r_i_t_y> Give help on specified predicate
<_N_a_m_e> Give help on named predicate with any
arity or C interface function with that
name
<_S_e_c_t_i_o_n> Display specified section. Section
numbers are dash-separated numbers: 2-3
refers to section 2.3 of the manual.
Section numbers are obtained using
apropos/1.
Examples:
?- help(assert). Give help on predicate assert
?- help(3-4). Display section 3.4 of the manual
?- help('PL_retry'). Give help on interface function
PL_retry()
See also apropos/1, and the SWI-Prolog home page at http://www.swi-
prolog.org, which provides a FAQ, an HTML version of manual for
online browsing and HTML and PDF versions for downloading.
aapprrooppooss((_+_P_a_t_t_e_r_n))
Display all predicates, functions and sections that have _P_a_t_t_e_r_n in
their name or summary description. Lowercase letters in _P_a_t_t_e_r_n
also match a corresponding uppercase letter. Example:
?- apropos(file). Display predicates, functions and sec-
tions that have `file' (or `File', etc.)
in their summary description.
eexxppllaaiinn((_+_T_o_E_x_p_l_a_i_n))
Give an explanation on the given `object'. The argument may be any
Prolog data object. If the argument is an atom, a term of the
form _N_a_m_e_/_A_r_i_t_y or a term of the form _M_o_d_u_l_e_:_N_a_m_e_/_A_r_i_t_y, explain/1
describes the predicate as well as possible references to it. See
also gxref/0.
eexxppllaaiinn((_+_T_o_E_x_p_l_a_i_n_, _-_E_x_p_l_a_n_a_t_i_o_n))
Unify _E_x_p_l_a_n_a_t_i_o_n with an explanation for _T_o_E_x_p_l_a_i_n. Backtracking
yields further explanations.
22..77 CCoommmmaanndd--lliinnee hhiissttoorryy
SWI-Prolog offers a query substitution mechanism called `history'. The
availability of this feature is controlled by set_prolog_flag/2, using
the history Prolog flag. By default, history is available if the
Prolog flag readline is false. To enable this feature, remembering
the last 50 commands, put the following into your startup file (see
section 2.2):
________________________________________________________________________| |
|:-|set_prolog_flag(history,_50)._______________________________________ | |
The history system allows the user to compose new queries from those
typed before and remembered by the system. The available history
commands are shown in table 2.1. History expansion is not done if
these sequences appear in quoted atoms or strings.
______________________________________________
| !!. |Repeat last query |
| !nr. |Repeat query numbered <_n_r> |
| !str. |Repeat last query starting with <_s_t_r> |
| h. |Show history of commands |
|_!h.___|Show_this_list_______________________ |
Table 2.1: History commands
22..88 RReeuussee ooff ttoopp--lleevveell bbiinnddiinnggss
Bindings resulting from the successful execution of a top-level goal
are asserted in a database. These values may be reused in further
top-level queries as $Var. Only the latest binding is available.
Example:
________________________________________________________________________| |
|1 ?- maplist(plus(1), "hello", X). |
| |
|X = [105,102,109,109,112] |
| |
|Yes |
|2 ?- format('~s~n', [$X]). |
|ifmmp |
| |
|Yes |
|3|?-___________________________________________________________________ | |
Figure 2.1: Reusing top-level bindings
Note that variables may be set by executing =/2:
________________________________________________________________________| |
|6 ?- X = statistics. |
| |
|X = statistics |
| |
|Yes |
|7 ?- $X. |
|28.00 seconds cpu time for 183,128 inferences |
|4,016 atoms, 1,904 functors, 2,042 predicates, 52 modules |
|55,915 byte codes; 11,239 external references |
| |
| Limit Allocated In use |
|Heap : 624,820 Bytes |
|Local stack : 2,048,000 8,192 404 Bytes |
|Global stack : 4,096,000 16,384 968 Bytes |
|Trail stack : 4,096,000 8,192 432 Bytes |
| |
|Yes |
|8|?-___________________________________________________________________ | |
22..99 OOvveerrvviieeww ooff tthhee DDeebbuuggggeerr
SWI-Prolog has a 6-port tracer, extending the standard 4-port Byrd box
model tracer [Byrd, 1980, Clocksin & Melish, 1987] with two additional
ports. The optional _u_n_i_f_y port allows the user to inspect the result
after unification of the head. The _e_x_c_e_p_t_i_o_n port shows exceptions
raised by throw/1 or one of the built-in predicates. See section 4.9.
The standard ports are called call, exit, redo, fail and unify. The
tracer is started by the trace/0 command, when a spy point is reached
and the system is in debugging mode (see spy/1 and debug/0) or when an
exception is raised.
The interactive top-level goal trace/0 means ``trace the next query''.
The tracer shows the port, displaying the port name, the current depth
of the recursion and the goal. The goal is printed using the Prolog
predicate write_term/2. The style is defined by the Prolog flag
debugger_print_options and can be modified using this flag or using the
w, p and d commands of the tracer.
________________________________________________________________________| |
|min_numlist([H|T], Min) :- |
| min_numlist(T, H, Min). |
| |
|min_numlist([], Min, Min). |
|min_numlist([H|T], Min0, Min) :- |
| Min1 is min(H, Min0), |
||_______min_numlist(T,_Min1,_Min)._____________________________________ ||
________________________________________________________________________| |
|1 ?- visible(+all), leash(-exit). |
|true. |
| |
|2 ?- trace, min_numlist([3, 2], X). |
| Call: (7) min_numlist([3, 2], _G0) ? creep |
| Unify: (7) min_numlist([3, 2], _G0) |
| Call: (8) min_numlist([2], 3, _G0) ? creep |
| Unify: (8) min_numlist([2], 3, _G0) |
|^ Call: (9) _G54 is min(2, 3) ? creep |
|^ Exit: (9) 2 is min(2, 3) |
| Call: (9) min_numlist([], 2, _G0) ? creep |
| Unify: (9) min_numlist([], 2, 2) |
| Exit: (9) min_numlist([], 2, 2) |
| Exit: (8) min_numlist([2], 3, 2) |
| Exit: (7) min_numlist([3, 2], 2) |
|X|=_2._________________________________________________________________ | |
Figure 2.2: Example trace of the program above showing all ports.
The lines marked ^ indicate calls to _t_r_a_n_s_p_a_r_e_n_t predicates. See
section 5.
On _l_e_a_s_h_e_d _p_o_r_t_s (set with the predicate leash/1, default are call,
exit, redo and fail) the user is prompted for an action. All actions
are single character commands which are executed wwiitthhoouutt waiting for a
return, unless the command-line option -tty is active. Tracer options:
+ ((SSppyy))
Set a spy point (see spy/1) on the current predicate.
- ((NNoo ssppyy))
Remove the spy point (see nospy/1) from the current predicate.
/ ((FFiinndd))
Search for a port. After the `/', the user can enter a line to
specify the port to search for. This line consists of a set of
letters indicating the port type, followed by an optional term,
that should unify with the goal run by the port. If no term is
specified it is taken as a variable, searching for any port of the
specified type. If an atom is given, any goal whose functor has a
name equal to that atom matches. Examples:
/f Search for any fail port
/fe solve Search for a fail or exit port of
any goal with name solve
/c solve(a, _) Search for a call to solve/2 whose
first argument is a variable or the
atom a
/a member(_, _) Search for any port on member/2.
This is equivalent to setting a spy
point on member/2.
. ((RReeppeeaatt ffiinndd))
Repeat the last find command (see `/').
A ((AAlltteerrnnaattiivveess))
Show all goals that have alternatives.
C ((CCoonntteexxtt))
Toggle `Show Context'. If on, the context module of the goal is
displayed between square brackets (see section 5). Default is off.
L ((LLiissttiinngg))
List the current predicate with listing/1.
a ((AAbboorrtt))
Abort Prolog execution (see abort/0).
b ((BBrreeaakk))
Enter a Prolog break environment (see break/0).
c ((CCrreeeepp))
Continue execution, stop at next port. (Also return, space).
d ((DDiissppllaayy))
Set the max_depth(_D_e_p_t_h) option of debugger_print_options, limiting
the depth to which terms are printed. See also the w and p
options.
e ((EExxiitt))
Terminate Prolog (see halt/0).
f ((FFaaiill))
Force failure of the current goal.
g ((GGooaallss))
Show the list of parent goals (the execution stack). Note that due
to tail recursion optimization a number of parent goals might not
exist any more.
h ((HHeellpp))
Show available options (also `?').
i ((IIggnnoorree))
Ignore the current goal, pretending it succeeded.
l ((LLeeaapp))
Continue execution, stop at next spy point.
n ((NNoo ddeebbuugg))
Continue execution in `no debug' mode.
p ((PPrriinntt))
Set the Prolog flag debugger_print_options to [quoted(true), por-
tray(true), max_depth(10), priority(699)]. This is the default.
r ((RReettrryy))
Undo all actions (except for database and i/o actions) back to the
call port of the current goal and resume execution at the call
port.
s ((SSkkiipp))
Continue execution, stop at the next port of tthhiiss goal (thus
skipping all calls to children of this goal).
u ((UUpp))
Continue execution, stop at the next port of tthhee ppaarreenntt goal (thus
skipping this goal and all calls to children of this goal). This
option is useful to stop tracing a failure driven loop.
w ((WWrriittee))
Set the Prolog flag debugger_print_options to
[quoted(true), attributes(write), priority(699)], bypassing
portray/1, etc.
The ideal 4 port Byrd box model [Byrd, 1980] as described in many
Prolog books [Clocksin & Melish, 1987] is not visible in many Prolog
implementations because code optimisation removes part of the choice-
and exit-points. Backtrack points are not shown if either the goal
succeeded deterministically or its alternatives were removed using
the cut. When running in debug mode (debug/0) choice points are
only destroyed when removed by the cut. In debug mode, last call
optimisation is switched off.
Reference information to all predicates available for manipulating the
debugger is in section 4.37.
22..1100 CCoommppiillaattiioonn
22..1100..11 DDuurriinngg pprrooggrraamm ddeevveellooppmmeenntt
During program development, programs are normally loaded using
consult/1, or the list abbreviation. It is common practice to organise
a project as a collection of source files and a _l_o_a_d_-_f_i_l_e, a Prolog
file containing only use_module/[1,2] or ensure_loaded/1 directives,
possibly with a definition of the _e_n_t_r_y_-_p_o_i_n_t of the program, the
predicate that is normally used to start the program. This file is
often called load.pl. If the entry-point is called _g_o, a typical
session starts as:
________________________________________________________________________| |
|% swipl |
|<banner> |
| |
|1 ?- [load]. |
|<compilation messages> |
| |
|Yes |
|2 ?- go. |
|<program|interaction>__________________________________________________ | |
When using Windows, the user may open load.pl from the Windows
explorer, which will cause swipl-win.exe to be started in the directory
holding load.pl. Prolog loads load.pl before entering the top-level.
22..1100..22 FFoorr rruunnnniinngg tthhee rreessuulltt
There are various options if you want to make your program ready for
real usage. The best choice depends on whether the program is to be
used only on machines holding the SWI-Prolog development system, the
size of the program and the operating system (Unix vs. Windows).
22..1100..22..11 UUssiinngg PPrroollooggSSccrriipptt
New in version 4.0.5 is the possibility to use a Prolog source file
directly as a Unix script-file. The same mechanism is useful to
specify additional parameters for running a Prolog file on Windows.
If the first letter of a Prolog file is #, the first line is treated
as comment. To create a Prolog script, make the first line start like
this:
#!/path/to/pl <_o_p_t_i_o_n_s> -s
Prolog recognises this starting sequence and causes the interpreter to
receive the following argument-list:
/path/to/pl <_o_p_t_i_o_n_s> -s <_s_c_r_i_p_t> -- <_S_c_r_i_p_t_A_r_g_u_m_e_n_t_s>
Instead of -s, the user may use -f to stop Prolog from looking for a
personal initialisation file.
Here is a simple script doing expression evaluation:
________________________________________________________________________| |
|#!/usr/bin/pl -q -t main -f |
| |
|eval :- |
| current_prolog_flag(argv, Argv), |
| append(_, [--|Args], Argv), |
| concat_atom(Args, ' ', SingleArg), |
| term_to_atom(Term, SingleArg), |
| Val is Term, |
| format('~w~n', [Val]). |
| |
|main :- |
| catch(eval, E, (print_message(error, E), fail)), |
| halt. |
|main :- |
||_______halt(1)._______________________________________________________ ||
And here are two example runs:
________________________________________________________________________| |
|% eval 1+2 |
|3 |
|% eval foo |
|ERROR: Arithmetic: `foo/0' is not a function |
|%|_____________________________________________________________________ | |
TThhee WWiinnddoowwss vveerrssiioonn supports the #! construct too, but here it
serves a rather different role. The Windows shell already allows
the user to start Prolog source files directly through the Windows
file-type association. Windows however makes it rather complicated
to provide additional parameters, such as the required stack-size for
an individual Prolog file. The #! line provides for this, providing
a more flexible approach than changing the global defaults. The
following starts Prolog with unlimited stack-size on the given source
file:
________________________________________________________________________| |
|#!/usr/bin/pl -L0 -T0 -G0 -s |
| |
|....|__________________________________________________________________ | |
Note the use of /usr/bin/pl, which specifies the interpreter. This
argument is ignored in the Windows version, but required to ensure best
cross-platform compatibility.
22..1100..22..22 CCrreeaattiinngg aa sshheellll--ssccrriipptt
With the introduction of _P_r_o_l_o_g_S_c_r_i_p_t (see section 2.10.2.1), using
shell-scripts as explained in this section has become redundant for
most applications.
Especially on Unix systems and not-too-large applications, writing
a shell-script that simply loads your application and calls the
entry-point is often a good choice. A skeleton for the script is given
below, followed by the Prolog code to obtain the program arguments.
________________________________________________________________________| |
|#!/bin/sh |
| |
|base=<absolute-path-to-source> |
|PL=pl |
| |
|exec $PL -f none -g "load_files(['$base/load'],[silent(true)])" \ |
||________-t_go_--_$*___________________________________________________ ||
________________________________________________________________________| |
|go :- |
| current_prolog_flag(argv, Arguments), |
| append(_SytemArgs, [--|Args], Arguments), !, |
| go(Args). |
| |
|go(Args) :- |
||_______...____________________________________________________________ ||
On Windows systems, similar behaviour can be achieved by creating a
shortcut to Prolog, passing the proper options or writing a .bat file.
22..1100..22..33 CCrreeaattiinngg aa ssaavveedd--ssttaattee
For larger programs, as well as for programs that are required to
run on systems that do not have the SWI-Prolog development system
installed, creating a saved state is the best solution. A saved state
is created using qsave_program/[1,2] or using the linker swipl-ld(1).
A saved state is a file containing machine-independent intermediate
code in a format dedicated for fast loading. Optionally, the
emulator may be integrated in the saved state, creating a single-file,
but machine-dependent, executable. This process is described in
chapter 10.
22..1100..22..44 CCoommppiillaattiioonn uussiinngg tthhee --cc ccoommmmaanndd--lliinnee ooppttiioonn
This mechanism loads a series of Prolog source files and then creates a
saved-state as qsave_program/2 does. The command syntax is:
________________________________________________________________________| |
|%|swipl_[option_...]_[-o_output]_-c_file_...___________________________ | |
The _o_p_t_i_o_n_s argument are options to qsave_program/2 written in the
format below. The option-names and their values are described with
qsave_program/2.
--_o_p_t_i_o_n_-_n_a_m_e=_o_p_t_i_o_n_-_v_a_l_u_e
For example, to create a stand-alone executable that starts by
executing main/0 and for which the source is loaded through load.pl,
use the command
________________________________________________________________________| |
|%|swipl_--goal=main_--stand_alone=true_-o_myprog_-c_load.pl____________ | |
This performs exactly the same as executing
________________________________________________________________________| |
|% swipl |
|<banner> |
| |
|?- [load]. |
|?- qsave_program(myprog, |
| [ goal(main), |
| stand_alone(true) |
| ]). |
|?-|halt._______________________________________________________________ | |
22..1111 EEnnvviirroonnmmeenntt CCoonnttrrooll ((PPrroolloogg ffllaaggss))
The predicates current_prolog_flag/2 and set_prolog_flag/2 allow the
user to examine and modify the execution environment. It provides
access to whether optional features are available on this version,
operating system, foreign-code environment, command-line arguments,
version, as well as runtime flags to control the runtime behaviour
of certain predicates to achieve compatibility with other Prolog
environments.
ccuurrrreenntt__pprroolloogg__ffllaagg((_?_K_e_y_, _-_V_a_l_u_e)) _[_I_S_O_]
The predicate current_prolog_flag/2defines an interface to instal-
lation features: options compiled in, version, home, etc. With
both arguments unbound, it will generate all defined Prolog flags.
With `Key' instantiated, it unifies the value of the Prolog flag.
Flag values are typed. Flags marked as bool can have the values
true and false. Some Prolog flags are not defined in all versions,
which is normally indicated in the documentation below as _`_`_i_f
_p_r_e_s_e_n_t _a_n_d _t_r_u_e_'_'. A Boolean Prolog flag is true iff the Prolog
flag is present aanndd the _V_a_l_u_e is the atom true. Tests for such
flags should be written as below.
____________________________________________________________________| |
| ( current_prolog_flag(windows, true) |
| -> <Do MS-Windows things> |
| ; <Do normal things> |
||________)_________________________________________________________ ||
aaddddrreessss__bbiittss _(_i_n_t_e_g_e_r_)
Address-size of the hosting machine. Typically 32 or 64.
Except for the maximum stack limit, this has few implications
to the user. See also the Prolog flag arch.
aaggcc__mmaarrggiinn _(_i_n_t_e_g_e_r_, _c_h_a_n_g_e_a_b_l_e_)
If this amount of atoms has been created since the last
atom-garbage collection, perform atom garbage collection at
the first opportunity. Initial value is 10,000. May
be changed. A value of 0 (zero) disables atom garbage
collection. See also PL_register_atom().
aallllooww__vvaarriiaabbllee__nnaammee__aass__ffuunnccttoorr _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default is false), Functor(arg) is read as if it
was written 'Functor'(arg). Some applications use the Prolog
read/1 predicate for reading an application defined script
language. In these cases, it is often difficult to explain
to non-Prolog users of the application that constants and
functions can only start with a lowercase letter. Variables
can be turned into atoms starting with an uppercase atom by
calling read_term/2 using the option variable_names and binding
the variables to their name. Using this feature, F(x) can be
turned into valid syntax for such script languages. Suggested
by Robert van Engelen. SWI-Prolog specific.
aarrggvv _(_l_i_s_t_)
List is a list of atoms representing the command-line ar-
guments used to invoke SWI-Prolog. Please note that aallll
arguments are included in the list returned.
aarrcchh _(_a_t_o_m_)
Identifier for the hardware and operating system SWI-Prolog
is running on. Used to select foreign files for the right
architecture. See also section 9.2.3 and file_search_path/2.
aassssoocciiaattee _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
On Windows systems, this is set to the filename extension
(pl (default) or pro (can be selected in the installer))
associated with swipl-win.exe.
aauuttoollooaadd _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default) autoloading of library functions is enabled.
bbaacckkqquuootteedd__ssttrriinngg _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), read translates text between back-
quotes into a string object (see section 4.22). This flag is
mainly for compatibility with LPA Prolog.
bboouunnddeedd _(_b_o_o_l_)
ISO Prolog flag. If true, integer representation is bound
by min_integer and max_integer. If false integers can be
arbitrarily large and the min_integer and max_integer are not
present. See section 4.25.2.1.
cc__cccc _(_a_t_o_m_)
Name of the C-compiler used to compile SWI-Prolog. Normally
either gcc or cc. See section 9.5.
cc__llddffllaaggss _(_a_t_o_m_)
Special linker flags passed to link SWI-Prolog. See sec-
tion 9.5.
cc__lliibbss _(_a_t_o_m_)
Libraries passed to the C-linker when SWI-Prolog was linked.
May be used to determine the libraries needed to create
statically linked extensions for SWI-Prolog. See section 9.5.
cchhaarr__ccoonnvveerrssiioonn _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Determines whether character-conversion takes place while
reading terms. See also char_conversion/2.
cchhaarraacctteerr__eessccaappeess _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default), read/1 interprets \ escape sequences in
quoted atoms and strings. May be changed. This flag is local
to the module in which it is changed.
ccoommppiilleedd__aatt _(_a_t_o_m_)
Describes when the system has been compiled. Only available
if the C-compiler used to compile SWI-Prolog provides the
__DATE__and __TIME__macros.
ccoonnssoollee__mmeennuu _(_b_o_o_l_)
Set to true in swipl-win.exe to indicate the console supports
menus. See also section 4.33.2.
ccppuu__ccoouunntt _(_i_n_t_e_g_e_r_, _c_h_a_n_g_e_a_b_l_e_)
Number of physical CPUs in the system. Unfortunately there
is no standard to get this number, so on most operating
systems this flag is not available. It is marked read-write
both to allow obtaining this value later and to allow
pretending the system has more or less processors. See also
thread_setconcurrency/2 and the library thread. Currently this
flag is supported in Windows and Linux if /proc is enabled.
If you can provide us with a C-code fragment getting the
number for a specific OS, please submit an enhancement report
at http://gollem.science.uva.nl/bugzilla/
ddddee _(_b_o_o_l_)
Set to true if this instance of Prolog supports DDE as
described in section 4.41.
ddeebbuugg _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Switch debugging mode on/off. If debug mode is activated
the system traps encountered spy-points (see spy/1) and
trace-points (see trace/1). In addition, last-call
optimisation is disabled and the system is more conservative
in destroying choice points to simplify debugging.
Disabling these optimisations can cause the system to run out
of memory on programs that behave correctly if debug mode is
off.
ddeebbuugg__oonn__eerrrroorr _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, start the tracer after an error is detected.
Otherwise just continue execution. The goal that raised the
error will normally fail. See also fileerrors/2 and the
Prolog flag report_error. May be changed. Default is true,
except for the runtime version.
ddeebbuuggggeerr__pprriinntt__ooppttiioonnss _(_t_e_r_m_, _c_h_a_n_g_e_a_b_l_e_)
This argument is given as option-list to write_term/2 for
printing goals by the debugger. Modified by the `w',
`p' and `<_N> d' commands of the debugger. Default is
[quoted(true), portray(true), max_depth(10), attributes(portray)].
ddeebbuuggggeerr__sshhooww__ccoonntteexxtt _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, show the context module while printing a stack-frame
in the tracer. Normally controlled using the `C' option of
the tracer.
ddiiaalleecctt _(_a_t_o_m_)
Fixed to swi. The code below is a reliable and portable way
to detect SWI-Prolog.
_______________________________________________________________| |
|is_dialect(swi) :- |
||_______catch(current_prolog_flag(dialect,_swi),__,_fail).____ ||
ddoouubbllee__qquuootteess _(_c_o_d_e_s_,_c_h_a_r_s_,_a_t_o_m_,_s_t_r_i_n_g_, _c_h_a_n_g_e_a_b_l_e_)
This flag determines how double quoted strings are read by
Prolog and is ---like character_escapes--- maintained for each
module. If codes (default), a list of character-codes is
returned, if chars a list of one-character atoms, if atom
double quotes are the same as single-quotes and finally,
string reads the text into a Prolog string (see section 4.22).
See also atom_chars/2 and atom_codes/2.
eeddiittoorr _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Determines the editor used by edit/1. See section 4.4 for
details on selecting the editor used.
eemmaaccss__iinnffeerriioorr__pprroocceessss _(_b_o_o_l_)
If true, SWI-Prolog is running as an _i_n_f_e_r_i_o_r _p_r_o_c_e_s_s of
(GNU/X-)Emacs. SWI-Prolog assumes this is the case if the
environment variable EMACS is t and INFERIOR is yes.
eennccooddiinngg _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Default encoding used for opening files in text mode. The
initial value is deduced from the environment. See
section 2.17.1 for details.
eexxeeccuuttaabbllee _(_a_t_o_m_)
Path-name of the running executable. Used by qsave_program/2
as default emulator.
ffiillee__nnaammee__vvaarriiaabblleess _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), expand $_v_a_r_n_a_m_e and ~ in ar-
guments of built-in predicates that accept a file name
(open/3, exists_file/1, access_file/2, etc.). The predicate
expand_file_name/2 can be used to expand environment variables
and wildcard patterns. This Prolog flag is intended for
backward compatibility with older versions of SWI-Prolog.
ggcc _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default), the garbage collector is active. If false,
neither garbage-collection, nor stack-shifts will take place,
even not on explicit request. May be changed.
ggeenneerraattee__ddeebbuugg__iinnffoo _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default) generate code that can be debugged using
trace/0, spy/1, etc. Can be set to false using the
-nodebug. The predicate load_files/2 restores the value of
this flag after loading a file, causing modifications to
be local to a source file. Many of the libraries have
:- set_prolog_flag(generate_debug_info, false) to hide their
details from a normal trace.
ggmmpp__vveerrssiioonn _(_i_n_t_e_g_e_r_)
If Prolog is linked with GMP, this flag gives the major
version of the GMP library used. See also section 9.4.8.
gguuii _(_b_o_o_l_)
Set to true if XPCE is around and can be used for graphics.
hhiissttoorryy _(_i_n_t_e_g_e_r_, _c_h_a_n_g_e_a_b_l_e_)
If _i_n_t_e_g_e_r >0, support Unix csh(1) like history as described
in section 2.7. Otherwise, only support reusing commands
through the command-line editor. The default is to set this
Prolog flag to 0 if a command-line editor is provided (see
Prolog flag readline) and 15 otherwise.
hhoommee _(_a_t_o_m_)
SWI-Prolog's notion of the home-directory. SWI-Prolog uses
its home directory to find its startup file as
<_h_o_m_e>/boot32.prc(32-bit machines) or <_h_o_m_e>/boot64.prc (64-bit
machines) and to find its library as <_h_o_m_e>/library.
hhwwnndd _(_i_n_t_e_g_e_r_)
In swipl-win.exe, this refers to the MS-Windows window-handle
of the console window.
iinntteeggeerr__rroouunnddiinngg__ffuunnccttiioonn _(_d_o_w_n_,_t_o_w_a_r_d___z_e_r_o_)
ISO Prolog flag describing rounding by // and rem arithmetic
functions. Value depends on the C-compiler used.
iissoo _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Include some weird ISO compatibility that is incompatible with
normal SWI-Prolog behaviour. Currently it has the following
effect:
o The //2 (float division) _a_l_w_a_y_s return a float, even if
applied to integers that can be divided.
o In the standard order of terms (see section 4.6.1), all
floats are before all integers.
o atom_length/2 yields a type error if the first argument is
a number.
o clause/[2,3] raises a permission error when accessing
static predicates.
o abolish/[1,2] raises a permission error when accessing
static predicates.
o Syntax is closer to the ISO standard.
{{ Unquoted commas and bars appearing as atoms are not
allowed. Instead of f(,,a) now write f(',',a).
Unquoted commas can only be used to separate
arguments in functional notation and list notation,
and as a conjunction operator. Unquoted bars
can only appear within lists to separate head and
tail like [Head|Tail], and as infix operator for
alternation in grammar rules like a --> b | c.
{{ Within functional notation and list notation terms
must have priority below 1000. That means that
rules and control constructs appearing as arguments
need bracketing. A term like [a :- b, c]. must
now be disambiguated to mean [(a :- b), c]. or
[(a :- b, c)].
{{ Operators appearing as operands must be bracketed.
Instead of X == -, true. write X == (-), true.
Currently, this is not entirely enforced.
llaarrggee__ffiilleess _(_b_o_o_l_)
If present and true, SWI-Prolog has been compiled with _l_a_r_g_e
_f_i_l_e _s_u_p_p_o_r_t (LFS) and is capable to access files larger than
2GB on 32-bit hardware. Large file-support is default on
installations built using configure that support it and may be
switched off using the configure option --disable-largefile.
mmaaxx__aarriittyy _(_u_n_b_o_u_n_d_e_d_)
ISO Prolog flag describing there is no maximum arity to
compound terms.
mmaaxx__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Maximum integer value if integers are _b_o_u_n_d_e_d. See also the
flag bounded and section 4.25.2.1.
mmaaxx__ttaaggggeedd__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Maximum integer value represented as a `tagged' value. Tagged
integers require 1 word storage. Larger integers are
represented as `indirect data' and require significantly more
space.
mmiinn__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Minimum integer value if integers are _b_o_u_n_d_e_d. See also the
flag bounded and section 4.25.2.1.
mmiinn__ttaaggggeedd__iinntteeggeerr _(_i_n_t_e_g_e_r_)
Start of the tagged-integer value range.
ooccccuurrss__cchheecckk _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
This flag controls unification that creates an infinite
tree (also called _c_y_c_l_i_c _t_e_r_m) and can have three values.
Using false (default), unification succeeds, creating an
infinite tree. Using true, unification behaves as
unify_with_occurs_check/2, failing silently. Using error, an
attempt to create a cyclic term results in an occurs_check
exception. The latter is intended for debugging unintentional
creations of cyclic terms. Note that this flag is a global
flag modifying fundamental behaviour of Prolog. Changing the
flag from its default may cause libraries to stop functioning
properly.
ooppeenn__sshhaarreedd__oobbjjeecctt _(_b_o_o_l_)
If true, open_shared_object/2 and friends are implemented,
providing access to shared libraries (.so files) or dynamic
link libraries (.DLL files).
ooppttiimmiissee _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, compile in optimised mode. The initial value is true
if Prolog was started with the -O command-line option.
Currently optimise compilation implies compilation of
arithmetic, and deletion of redundant true/0 that may result
from expand_goal/2.
Later versions might imply various other optimisations such as
integrating small predicates into their callers, eliminating
constant expressions and other predictable constructs. Source
code optimisation is never applied to predicates that are
declared dynamic (see dynamic/1).
ppiidd _(_i_n_t_)
Process identifier of the running Prolog process. Existence
of this flag is implementation defined.
ppiippee _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, open(pipe(command), mode, Stream), etc. are sup-
ported. Can be changed to disable the use of pipes in
applications testing this feature. Not recommended.
pprroommpptt__aalltteerrnnaattiivveess__oonn _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Determines prompting for alternatives in the Prolog toplevel.
Default is determinism, which implies the system prompts for
alternatives if the goal succeeded while leaving choicepoints.
Many classical Prolog systems behave as groundness: they
prompt for alternatives if and only if the query contains
variables.
qqccoommppiillee _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
This option provides the default for the qcompile(_+_A_t_o_m)
option of load_files/2.
rreeaaddlliinnee _(_b_o_o_l_)
If true, SWI-Prolog is linked with the readline library. This
is done by default if you have this library installed on
your system. It is also true for the Win32 swipl-win.exe
version of SWI-Prolog, which realises a subset of the readline
functionality.
rreessoouurrccee__ddaattaabbaassee _(_a_t_o_m_)
Set to the absolute-filename of the attached state. Typically
this is the file boot32.prc, the file specified with -x or the
running executable. See also resource/3.
rreeppoorrtt__eerrrroorr _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, print error messages, otherwise suppress them. May
be changed. See also the debug_on_errorProlog flag. Default
is true, except for the runtime version.
rruunnttiimmee _(_b_o_o_l_)
If present and true, SWI-Prolog is compiled with -DO_RUNTIME,
disabling various useful development features (currently the
tracer and profiler).
ssaavveedd__pprrooggrraamm _(_b_o_o_l_)
If present and true, Prolog has been started from a state
saved with qsave_program/[1,2].
sshhaarreedd__oobbjjeecctt__eexxtteennssiioonn _(_a_t_o_m_)
Extension used by the operating system for shared objects.
.so for most Unix systems and .dll for Windows. Used for
locating files using the file_type executable. See also
absolute_file_name/3.
sshhaarreedd__oobbjjeecctt__sseeaarrcchh__ppaatthh _(_a_t_o_m_)
Name of the environment variable used by the system to search
for shared objects.
ssiiggnnaallss _(_b_o_o_l_)
Determine whether Prolog is handling signals (software in-
terrupts). This flag is false if the hosting OS does not
support signal handling or the command-line option -nosignals
is active. See section 9.4.21.1 for details.
ssyysstteemm__tthhrreeaadd__iidd _(_i_n_t_)
Available in multi-threaded version (see section 8) where
the operating system provides system-wide integer thread
identifiers. The integer is the thread-identifier used by
the operating system for the calling thread. See also
thread_self/1.
llaasstt__ccaallll__ooppttiimmiissaattiioonn _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
Determines whether or not last-call optimisation is enabled.
Normally the value of this flag is equal to the debug flag.
As programs may run out of stack if last-call optimisation
is omitted, it is sometimes necessary to enable it during
debugging.
ttiimmeezzoonnee _(_i_n_t_e_g_e_r_)
Offset in seconds west of GMT of the current time-zone. Set
at initialization time from the timezone variable associated
with the POSIX tzset() function. See also convert_time/2.
ttoopplleevveell__pprriinntt__aannoonn _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true, top-level variables starting with an underscore (_)
are printed normally. If false they are hidden. This may be
used to hide bindings in complex queries from the top-level.
ttoopplleevveell__pprriinntt__ffaaccttoorriizzeedd _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false) show the internal sharing of subterms
in the answer substution. The example below reveals internal
sharing of leaf-nodes in _r_e_d_-_b_l_a_c_k _t_r_e_e_s as implemented by the
rbtrees predicate rb_new/1:
_______________________________________________________________| |
|?- set_prolog_flag(toplevel_print_factorized, true). |
|?- rb_new(X). |
|X = t(_S1, _S1), % where |
||____S1_=_black('',__G387,__G388,_'').________________________ ||
If this flag is false, the % where notation is still used to
indicate cycles as illustrated below. This example also shows
that the implementation reveals the internal cycle length, and
_n_o_t the minimal cycle length. Cycles of different length are
indistinguishable in Prolog (as illustrated by S == R).
_______________________________________________________________| |
|?- S = s(S), R = s(s(R)), S == R. |
|S = s(S), |
|R|=_s(s(R)).__________________________________________________ | |
ttoopplleevveell__pprriinntt__ooppttiioonnss _(_t_e_r_m_, _c_h_a_n_g_e_a_b_l_e_)
This argument is given as option-list to write_term/2
for printing results of queries. Default is
[quoted(true), portray(true), max_depth(10), attributes(portray)].
ttoopplleevveell__vvaarr__ssiizzee _(_i_n_t_, _c_h_a_n_g_e_a_b_l_e_)
Maximum size counted in literals of a term returned as a
binding for a variable in a top-level query that is saved for
re-use using the $ variable reference. See section 2.8.
ttrraaccee__ggcc _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (false is the default), garbage collections and
stack-shifts will be reported on the terminal. May be
changed. Values are reported in bytes as G+T, where G is the
global stack value and T the trail stack value. `Gained'
describes the number of bytes reclaimed. `used' the number
of bytes on the stack after GC and `free' the number of bytes
allocated, but not in use. Below is an example output.
_______________________________________________________________| |
|%|GC:_gained_236,416+163,424_in_0.00_sec;_used_13,448+5,808;_free|72,568+47,440|_
ttttyy__ccoonnttrrooll _(_b_o_o_l_)
Determines whether the terminal is switched to raw mode for
get_single_char/1, which also reads the user-actions for the
trace. May be set. See also the +/-tty command-line option.
uunniixx _(_b_o_o_l_)
If present and true, the operating system is some version of
Unix. Defined if the C-compiler used to compile this version
of SWI-Prolog either defines __unix__ or unix. On other
systems this flag is not available.
uunnkknnoowwnn _(_f_a_i_l_,_w_a_r_n_i_n_g_,_e_r_r_o_r_, _c_h_a_n_g_e_a_b_l_e_)
Determines the behaviour if an undefined procedure is en-
countered. If fail, the predicates fails silently. If
warn, a warning is printed, and execution continues as if
the predicate was not defined and if error (default), an
existence_error exception is raised. This flag is local to
each module and inherited from the module's _i_m_p_o_r_t_-_m_o_d_u_l_e.
Using default setup, this implies that normal modules inherit
the flag from user, which in turn inherits the value error
from system. The user may change the flag for module user
to change the default for all application modules or for
a specific module. It is strongly adviced to keep the
error default and use dynamic/1 and/or multifile/1 to specify
possible non-existence of a predicate.
uusseerr__ffllaaggss _(_A_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Define the behaviour of set_prolog_flag/2 if the flag is
not known. Values are silent, warning and error. The
first two create the flag on-the-fly, where warning prints
a message. The value error is consistent with ISO: it
raises an existence error and does not create the flag. See
also create_prolog_flag/3. The default is silent, but future
versions may change that. Developers are encouraged to use
another value and ensure proper use of create_prolog_flag/3 to
create flags for their library.
vveerrbboossee _(_A_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
This flags is used by print_message/2. If its value is silent,
messages of type informational and banner are suppressed. The
-q switches the value from the initial normal to silent.
vveerrbboossee__aauuttoollooaadd _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true the normal consult message will be printed if a
library is autoloaded. By default this message is suppressed.
Intended to be used for debugging purposes.
vveerrbboossee__llooaadd _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If false normal consult messages will be suppressed. Default
is true. The value of this flag is normally controlled by the
option silent(_B_o_o_l) provided by load_files/2.
vveerrbboossee__ffiillee__sseeaarrcchh _(_b_o_o_l_, _c_h_a_n_g_e_a_b_l_e_)
If true (default false), print messages indicating the
progress of absolute_file_name/[2,3] in locating files.
Intended for debugging complicated file-search paths. See
also file_search_path/2.
vveerrssiioonn _(_i_n_t_e_g_e_r_)
The version identifier is an integer with value:
10000_*Major+ 100_*Minor+_P_a_t_c_h
Note that in releases up to 2.7.10 this Prolog flag
yielded an atom holding the three numbers separated by dots.
The current representation is much easier for implementing
version-conditional statements.
vveerrssiioonn__ddaattaa _(_s_w_i_(_M_a_j_o_r_, _M_i_n_o_r_, _P_a_t_c_h_, _E_x_t_r_a_)_)
Part of the dialect compatibility layer, See also the Prolog
flag dialect and section 13. _E_x_t_r_a provides platform specific
version information. Currently it is simply unified to [].
vveerrssiioonn__ggiitt _(_a_t_o_m_)
Available if created from a git repository. See git-describe
for details.
wwiinnddoowwss _(_b_o_o_l_)
If present and true, the operating system is an implementation
of Microsoft Windows (NT/2000/XP, etc.). This flag is only
available on MS-Windows based versions.
wwrriittee__aattttrriibbuutteess _(_a_t_o_m_, _c_h_a_n_g_e_a_b_l_e_)
Defines how write/1 and friends write attributed variables.
The option values are described with the attributes option of
write_term/3. Default is ignore.
wwrriittee__hheellpp__wwiitthh__oovveerrssttrriikkee _(_b_o_o_l_)
Internal flag used by help/1 when writing to a terminal. If
present and true it prints bold and underlined text using
_o_v_e_r_s_t_r_i_k_e.
xxppccee _(_b_o_o_l_)
Available and set to true if the XPCE graphics system is
loaded.
xxppccee__vveerrssiioonn _(_a_t_o_m_)
Available and set to the version of the loaded XPCE system.
sseett__pprroolloogg__ffllaagg((_:_K_e_y_, _+_V_a_l_u_e)) _[_I_S_O_]
Define a new Prolog flag or change its value. _K_e_y is an atom.
If the flag is a system-defined flag that is not marked _c_h_a_n_g_e_a_b_l_e
above, an attempt to modify the flag yields a permission_error.
If the provided _V_a_l_u_e does not match the type of the flag, a
type_error is raised.
Some flags (e.g., unknown) are maintained on a per-module basis.
The addressed module is determined by the _K_e_y argument.
In addition to ISO, SWI-Prolog allows for user-defined Prolog
flags. The type of the flag is determined from the initial value
and cannot be changed afterwards. Defined types are boolean (if
the initial value is one of false, true, on or off), atom if the
initial value is any other atom, integer if the value is an integer
that can be expressed as a 64-bit signed value. Any other initial
value results in an untyped flag that can represent any valid
Prolog term.
Originally, SWI-Prolog's set_prolog_flag/2 created a new Prolog
flag if the flag _K_e_y did not exist. It still does this, but
now prints a warning. New code must use create_prolog_flag/3 to
introduce new flags. Future versions are likely to replace this
printed warning with an existence error.
ccrreeaattee__pprroolloogg__ffllaagg((_+_K_e_y_, _+_V_a_l_u_e_, _+_O_p_t_i_o_n_s)) _[_Y_A_P_]
Create a new Prolog flag. The ISO standard does not foresee
creation of new flags, but many libraries introduce new flags.
_O_p_t_i_o_n_s is a list of the following options:
aacccceessss((_+_A_c_c_e_s_s))
Define access-rights for the flag. Values are read_write and
read_only. The default is read_write.
ttyyppee((_+_A_t_o_m))
Define a type-restriction. Possible values are boolean, atom,
integer, float and term. The default is determined from
the initial value. Note that term restricts the term to be
ground.
This predicate behaves as set_prolog_flag/2 if the flag already
exists. See also user_flags.
22..1122 AAnn oovveerrvviieeww ooff hhooookk pprreeddiiccaatteess
SWI-Prolog provides a large number of hooks, mainly to control handling
messages, debugging, startup, shut-down, macro-expansion, etc. Below
is a summary of all defined hooks with an indication of their
portability.
o _p_o_r_t_r_a_y_/_1
Hook into write_term/3 to alter the way terms are printed (ISO).
o _m_e_s_s_a_g_e___h_o_o_k_/_3
Hook into print_message/2 to alter the way system messages are
printed (Quintus/SICStus).
o _l_i_b_r_a_r_y___d_i_r_e_c_t_o_r_y_/_1
Hook into absolute_file_name/3 to define new library directories.
(most Prolog system).
o _f_i_l_e___s_e_a_r_c_h___p_a_t_h_/_2
Hook into absolute_file_name/3 to define new search-paths
(Quintus/SICStus).
o _t_e_r_m___e_x_p_a_n_s_i_o_n_/_2
Hook into load_files/2 to modify read terms before they are
compiled (macro-processing) (most Prolog system).
o _g_o_a_l___e_x_p_a_n_s_i_o_n_/_2
Same as term_expansion/2 for individual goals (SICStus).
o _p_r_o_l_o_g___l_o_a_d___f_i_l_e_/_2
Hook into load_files/2 to load other data-formats for Prolog
sources from `non-file' resources. The load_files/2 predicate is
the ancestor of consult/1, use_module/1, etc.
o _p_r_o_l_o_g___e_d_i_t_:_l_o_c_a_t_e_/_3
Hook into edit/1 to locate objects (SWI).
o _p_r_o_l_o_g___e_d_i_t_:_e_d_i_t___s_o_u_r_c_e_/_1
Hook into edit/1 to call some internal editor (SWI).
o _p_r_o_l_o_g___e_d_i_t_:_e_d_i_t___c_o_m_m_a_n_d_/_2
Hook into edit/1 to define the external editor to use (SWI).
o _p_r_o_l_o_g___l_i_s_t___g_o_a_l_/_1
Hook into the tracer to list the code associated to a particular
goal (SWI).
o _p_r_o_l_o_g___t_r_a_c_e___i_n_t_e_r_c_e_p_t_i_o_n_/_4
Hook into the tracer to handle trace-events (SWI).
o _p_r_o_l_o_g_:_d_e_b_u_g___c_o_n_t_r_o_l___h_o_o_k_/_1
Hook in spy/1, nospy/1, nospyall/0 and debugging/0 to extend these
control-predicates to higher-level libraries.
o _p_r_o_l_o_g_:_h_e_l_p___h_o_o_k_/_1
Hook in help/0, help/1 and apropos/1 to extend the help-system.
o _r_e_s_o_u_r_c_e_/_3
Defines a new resource (not really a hook, but similar) (SWI).
o _e_x_c_e_p_t_i_o_n_/_3
Old attempt to a generic hook mechanism. Handles undefined
predicates (SWI).
o _a_t_t_r___u_n_i_f_y___h_o_o_k_/_2
Unification hook for attributed variables. Can be defined in any
module. See section 6.1 for details.
22..1133 AAuuttoommaattiicc llooaaddiinngg ooff lliibbrraarriieess
If ---at runtime--- an undefined predicate is trapped the system will
first try to import the predicate from the module's default module. If
this fails the _a_u_t_o _l_o_a_d_e_r is activated. On first activation an index
to all library files in all library directories is loaded in core (see
library_directory/1, file_search_path/2 and reload_library_index/0). If
the undefined predicate can be located in one of the libraries that
library file is automatically loaded and the call to the (previously
undefined) predicate is restarted. By default this mechanism loads the
file silently. The current_prolog_flag/2verbose_autoload is provided
to get verbose loading. The Prolog flag autoload can be used to
enable/disable the auto-load system.
Autoloading only handles (library) source files that use the module
mechanism described in chapter 5. The files are loaded with
use_module/2 and only the trapped undefined predicate will be imported
to the module where the undefined predicate was called. Each library
directory must hold a file INDEX.pl that contains an index to all
library files in the directory. This file consists of lines of the
following format:
________________________________________________________________________| |
|index(Name,|Arity,_Module,_File).______________________________________ | |
The predicate make/0 updates the autoload index. It searches for
all library directories (see library_directory/1 and file_search_path/2)
holding the file MKINDEX.pl or INDEX.pl. If the current user can write
or create the file INDEX.pl and it does not exist or is older than
the directory or one of its files, the index for this directory is
updated. If the file MKINDEX.pl exists updating is achieved by loading
this file, normally containing a directive calling make_library_index/2.
Otherwise make_library_index/1is called, creating an index for all *.pl
files containing a module.
Below is an example creating a completely indexed library directory.
________________________________________________________________________| |
|% mkdir ~/lib/prolog |
|% cd ~/lib/prolog |
|%|swipl_-g_true_-t_'make_library_index(.)'_____________________________ | |
If there are more than one library files containing the desired
predicate the following search schema is followed:
1. If there is a library file that defines the module in which the
undefined predicate is trapped, this file is used.
2. Otherwise library files are considered in the order they appear
in the library_directory/1 predicate and within the directory
alphabetically.
mmaakkee__lliibbrraarryy__iinnddeexx((_+_D_i_r_e_c_t_o_r_y))
Create an index for this directory. The index is written to the
file 'INDEX.pl' in the specified directory. Fails with a warning
if the directory does not exist or is write protected.
mmaakkee__lliibbrraarryy__iinnddeexx((_+_D_i_r_e_c_t_o_r_y_, _+_L_i_s_t_O_f_P_a_t_t_e_r_n_s))
Normally used in MKINDEX.pl, this predicate creates INDEX.pl for
_D_i_r_e_c_t_o_r_y, indexing all files that match one of the file-patterns
in _L_i_s_t_O_f_P_a_t_t_e_r_n_s.
Sometimes library packages consist of one public load file and a
number of files used by this load-file, exporting predicates that
should not be used directly by the end-user. Such a library can be
placed in a sub-directory of the library and the files containing
public functionality can be added to the index of the library.
As an example we give the XPCE library's MKINDEX.pl, including
the public functionality of trace/browse.pl to the autoloadable
predicates for the XPCE package.
____________________________________________________________________| |
| :- make_library_index('.', |
| [ '*.pl', |
| 'trace/browse.pl' |
||______________________])._________________________________________ ||
rreellooaadd__lliibbrraarryy__iinnddeexx
Force reloading the index after modifying the set of library
directories by changing the rules for library_directory/1,
file_search_path/2, adding or deleting INDEX.pl files. This
predicate does _n_o_t update the INDEX.pl files. Check
make_library_index/[1,2] and make/0 for updating the index files.
Normally, the index is reloaded automatically if a predicate cannot
be found in the index and the set of library directories has
changed. Using reload_library_index/0 is necessary if directories
are removed or the order of the library directories is changed.
22..1144 GGaarrbbaaggee CCoolllleeccttiioonn
SWI-Prolog provides garbage-collection, last-call optimization and atom
garbage collection. These features are controlled using Prolog flags
(see current_prolog_flag/2).
22..1155 SSyynnttaaxx NNootteess
SWI-Prolog syntax is close to ISO-Prolog standard syntax, which is
closely compatible with Edinburgh Prolog syntax. A description of this
syntax can be found in the Prolog books referenced in the introduction.
Below are some non-standard or non-common constructs that are accepted
by SWI-Prolog:
o /* .../* ...*/ ...*/
The /* ...*/ comment statement can be nested. This is useful
if some code with /* ...*/ comment statements in it should be
commented out.
22..1155..11 IISSOO SSyynnttaaxx SSuuppppoorrtt
SWI-Prolog offers ISO compatible extensions to the Edinburgh syntax.
22..1155..11..11 PPrroocceessssoorr CChhaarraacctteerr SSeett
The processor character set specifies the class of each character used
for parsing Prolog source text. Character classification is fixed to
use UCS/Unicode as provided by the C-library wchar_t based primitives.
See also section 2.17.
22..1155..11..22 CChhaarraacctteerr EEssccaappee SSyynnttaaxx
Within quoted atoms (using single quotes: '<atom>') special characters
are represented using escape-sequences. An escape sequence is lead
in by the backslash (\) character. The list of escape sequences
is compatible with the ISO standard, but contains one extension and
the interpretation of numerically specified characters is slightly more
flexible to improve compatibility.
\a
Alert character. Normally the ASCII character 7 (beep).
\b
Backspace character.
\c
No output. All input characters up to but not including the
first non-layout character are skipped. This allows for the
specification of pretty-looking long lines. For compatibility with
Quintus Prolog. Not supported by ISO. Example:
____________________________________________________________________| |
| format('This is a long line that looks better if it was \c |
||_______split_across_multiple_physical_lines_in_the_input')________ ||
\<RETURN>
No output. Skips input to the next non-layout character or to the
end of the next line. ISO demands skipping only the newline. We
advice to use \c or put the layout _b_e_f_o_r_e the \, as shown below.
Using \c is supported by various other Prolog implementations and
will remain supported by SWI-Prolog. The style shown below is the
most compatible solution.
____________________________________________________________________| |
| format('This is a long line that looks better if it was \ |
||split_across_multiple_physical_lines_in_the_input')_______________ ||
instead of
____________________________________________________________________| |
| format('This is a long line that looks better if it was\ |
||_split_across_multiple_physical_lines_in_the_input')______________ ||
\e
Escape character (ASCII 27).
\f
Form-feed character.
\n
Next-line character.
\r
Carriage-return only (i.e., go back to the start of the line).
\t
Horizontal tab-character.
\v
Vertical tab-character (ASCII 11).
\xXX..\
Hexadecimal specification of a character. The closing \ is
obligatory according to the ISO standard, but optional in
SWI-Prolog to enhance compatibility with the older Edinburgh
standard. The code \xa\3 emits the character 10 (hexadecimal `a')
followed by `3'. Characters specified this way are interpreted as
Unicode characters. See also \u.
\uXXXX
Unicode character specification where the character is specified
using _e_x_a_c_t_l_y 4 hexadecimal digits. This is an extension to the
ISO standard fixing two problems. First of all, where \x defines
a numeric character code, it doesn't specify the character set in
which the character should be interpreted. Second, it is not
needed to use the idiosyncratic closing \ ISO Prolog syntax.
\UXXXXXXXX
Same as \uXXXX, but using 8 digits to cover the whole Unicode set.
\40
Octal character specification. The rules and remarks for
hexadecimal specifications apply to octal specifications as well.
\<_c_h_a_r_a_c_t_e_r>
Any character immediately preceded by a \ and not covered by the
above escape sequences is copied verbatim. Thus, '\\' is an atom
consisting of a single \ and '\'' and '''' both describe the atom
with a single '.
Character escaping is only available if the
current_prolog_flag(character_escapes, true) is active (default). See
current_prolog_flag/2. Character escapes conflict with writef/2 in two
ways: \40 is interpreted as decimal 40 by writef/2, but character
escapes handling by read has already interpreted as 32 (40 octal).
Also, \l is translated to a single `l'. It is advised to use the more
widely supported format/[2,3] predicate instead. If you insist upon
using writef/2, either switch character_escapes to false, or use double
\\, as in writef('\\l').
22..1155..11..33 SSyynnttaaxx ffoorr nnoonn--ddeecciimmaall nnuummbbeerrss
SWI-Prolog implements both Edinburgh and ISO representations for
non-decimal numbers. According to Edinburgh syntax, such numbers are
written as <_r_a_d_i_x>'<number>, where <_r_a_d_i_x> is a number between 2 and 36.
ISO defines binary, octal and hexadecimal numbers using 0[bxo]<_n_u_m_b_e_r>.
For example: A is 0b100 \/ 0xf00 is a valid expression. Such numbers
are always unsigned.
22..1155..11..44 UUnniiccooddee PPrroolloogg ssoouurrccee
The ISO standard specifies the Prolog syntax in ASCII characters. As
SWI-Prolog supports Unicode in source files we must extend the syntax.
This section describes the implication for the source files, while
writing international source files is described in section 3.1.3.
The SWI-Prolog Unicode character classification is based on version
6.0.0 of the Unicode standard. Please note that char_type/2 and
friends, intended to be used with all text except Prolog source code is
based on the C-library locale-based classification routines.
o _Q_u_o_t_e_d _a_t_o_m_s _a_n_d _s_t_r_i_n_g_s
Any character of any script can be used in quoted atoms and
strings. The escape sequences \uXXXX and \UXXXXXXXX (see
section 2.15.1.2) were introduced to specify Unicode code points in
ASCII files.
o _A_t_o_m_s _a_n_d _V_a_r_i_a_b_l_e_s
We handle them in one item as they are closely related. The
Unicode standard defines a syntax for identifiers in computer
languages. In this syntax identifiers start with ID_Start followed
by a sequence of ID_Continue codes. Such sequences are handled as
a single token in SWI-Prolog. The token is a _v_a_r_i_a_b_l_e iff it
starts with an uppercase character or an underscore (_). Otherwise
it is an atom. Note that many languages do not have the notion
of character-case. In such languages variables _m_u_s_t be written as
_name.
o _W_h_i_t_e _s_p_a_c_e
All characters marked as separators (Z*) in the Unicode tables are
handled as layout characters.
o _C_o_n_t_r_o_l _a_n_d _u_n_a_s_s_i_g_n_e_d _c_h_a_r_a_c_t_e_r_s
Control and unassigned (C*) characters produce a syntax error if
encountered outside quoted atoms/strings and outside comments.
o _O_t_h_e_r _c_h_a_r_a_c_t_e_r_s
The first 128 characters follow the ISO Prolog standard. Unicode
symbol and punctuation characters (general category S* and P*) act
as glueing symbol characters (i.e., just like ==: an unquoted
sequence of symbol characters are combined into an atom).
Other characters (this is mainly No: _a _n_u_m_e_r_i_c _c_h_a_r_a_c_t_e_r _o_f _o_t_h_e_r
_t_y_p_e) are currently handled as `solo'.
22..1155..11..55 SSiinngglleettoonn vvaarriiaabbllee cchheecckkiinngg
A _s_i_n_g_l_e_t_o_n _v_a_r_i_a_b_l_e is a variable that appears only one time in a
clause. It can always be replaced by _, the _a_n_o_n_y_m_o_u_s variable. In
some cases however people prefer to give the variable a name. As
mistyping a variable is a common mistake, Prolog systems generally give
a warning (controlled by style_check/1) if a variable is used only
once. The system can be informed a variable is known to appear once
by _s_t_a_r_t_i_n_g it with an underscore. E.g. _Name. Please note that
any variable, except plain _ shares with variables of the same name.
The term t(_X, _X) is equivalent to t(X, X), which is _d_i_f_f_e_r_e_n_t from
t(_, _).
As Unicode requires variables to start with an underscore in many
languages this schema needs to be extended. First we define the two
classes of named variables.
o _N_a_m_e_d _s_i_n_g_l_e_t_o_n _v_a_r_i_a_b_l_e_s
Named singletons start with a double underscore (__) or a single
underscore followed by an uppercase letter. E.g. __var or _Var.
o _N_o_r_m_a_l _v_a_r_i_a_b_l_e_s
All other variables are `normal' variables. Note this makes _var a
normal variable.
Any normal variable appearing exactly once in the clause _a_n_d any named
singleton variables appearing more than once are reported. Below are
some examples with warnings in the right column. Singleton messages
can be suppressed using the style_check/1 directive.
___________________________________________________________________________
| test(_). | |
| test(_a). |Singleton variables: [_a] |
| test(_12). |Singleton variables: [_12] |
| test(A). |Singleton variables: [A] |
| test(_A). | |
| test(__a). | |
| test(_, _). | |
| test(_a, _a). | |
| test(__a, __a).S|ingleton-marked variables appearing more than once: [__a] |
| test(_A, _A). |Singleton-marked variables appearing more than once: [_A] |
|_test(A,_A).__|__________________________________________________________|_
22..1166 IInnffiinniittee ttrreeeess ((ccyycclliicc tteerrmmss))
SWI-Prolog has limited support for infinite trees, also known as
cyclic terms. Full support requires special code in all built-in
predicates that require recursive exploration of a term. The current
version supports cyclic terms in the pure Prolog kernel including
the garbage collector and in the following predicates: =../2,
==/2, =@=/2, =/2, @</2 , @=</2, @>=/2, @>/2, \==/2, \=@=/2, \=/2,
acyclic_term/1, bagof/3, compare/3, copy_term/2, cyclic_term/1, dif/2,
duplicate_term/2, findall/3, ground/1, term_hash/2, numbervars/[3,4],
recorda/3, recordz/3, setof/3, term_variables/2, throw/1, when/2,
write/1 (incomplete) .
22..1177 WWiiddee cchhaarraacctteerr ssuuppppoorrtt
SWI-Prolog supports _w_i_d_e _c_h_a_r_a_c_t_e_r_s, characters with character codes
above 255 that cannot be represented in a single _b_y_t_e. _U_n_i_v_e_r_s_a_l
_C_h_a_r_a_c_t_e_r _S_e_t (UCS) is the ISO/IEC 10646 standard that specifies a
unique 31-bits unsigned integer for any character in any language.
It is a superset of 16-bit Unicode, which in turn is a superset
of ISO 8859-1 (ISO Latin-1), a superset of US-ASCII. UCS can handle
strings holding characters from multiple languages and character
classification (uppercase, lowercase, digit, etc.) and operations such
as case-conversion are unambiguously defined.
For this reason SWI-Prolog has two representations for atoms and string
objects (see section 4.22). If the text fits in ISO Latin-1, it is
represented as an array of 8-bit characters. Otherwise the text is
represented as an array of 32-bit numbers. This representational issue
is completely transparent to the Prolog user. Users of the foreign
language interface as described in section 9 sometimes need to be aware
of these issues though.
Character coding comes into view when characters of strings need to be
read from or written to file or when they have to be communicated to
other software components using the foreign language interface. In
this section we only deal with I/O through streams, which includes file
I/O as well as I/O through network sockets.
22..1177..11 WWiiddee cchhaarraacctteerr eennccooddiinnggss oonn ssttrreeaammss
Although characters are uniquely coded using the UCS standard
internally, streams and files are byte (8-bit) oriented and there are
a variety of ways to represent the larger UCS codes in an 8-bit octet
stream. The most popular one, especially in the context of the web,
is UTF-8. Bytes 0 ... 127 represent simply the corresponding US-ASCII
character, while bytes 128 ... 255 are used for multi-byte encoding of
characters placed higher in the UCS space. Especially on MS-Windows
the 16-bit Unicode standard, represented by pairs of bytes is also
popular.
Prolog I/O streams have a property called _e_n_c_o_d_i_n_g which specifies the
used encoding that influence get_code/2 and put_code/2 as well as all
the other text I/O predicates.
The default encoding for files is derived from the Prolog flag
encoding, which is initialised from the environment. If the
environment variable LANG ends in "UTF-8", this encoding is assumed.
Otherwise the default is text and the translation is left to the
wide-character functions of the C-library. The encoding can
be specified explicitly in load_files/2 for loading Prolog source
with an alternative encoding, open/4 when opening files or using
set_stream/2 on any open stream. For Prolog source files we also
provide the encoding/1 directive that can be used to switch between
encodings that are compatible with US-ASCII (ascii, iso_latin_1, utf8
and many locales). See also section 3.1.3 for writing Prolog
files with non-US-ASCII characters and section 2.15.1.4 for syntax
issues. For additional information and Unicode resources, please visit
http://www.unicode.org/.
SWI-Prolog currently defines and supports the following encodings:
oocctteett
Default encoding for binary streams. This causes the stream to be
read and written fully untranslated.
aasscciiii
7-bit encoding in 8-bit bytes. Equivalent to iso_latin_1, but
generates errors and warnings on encountering values above 127.
iissoo__llaattiinn__11
8-bit encoding supporting many western languages. This causes the
stream to be read and written fully untranslated.
tteexxtt
C-library default locale encoding for text files. Files are read
and written using the C-library functions mbrtowc() and wcrtomb().
This may be the same as one of the other locales, notably it may be
the same as iso_latin_1 for western languages and utf8 in a UTF-8
context.
uuttff88
Multi-byte encoding of full UCS, compatible with ascii. See above.
uunniiccooddee__bbee
Unicode _B_i_g _E_n_d_i_a_n. Reads input in pairs of bytes, most
significant byte first. Can only represent 16-bit characters.
uunniiccooddee__llee
Unicode _L_i_t_t_l_e _E_n_d_i_a_n. Reads input in pairs of bytes, least
significant byte first. Can only represent 16-bit characters.
Note that not all encodings can represent all characters. This implies
that writing text to a stream may cause errors because the stream
cannot represent these characters. The behaviour of a stream on these
errors can be controlled using set_stream/2. Initially the terminal
stream write the characters using Prolog escape sequences while other
streams generate an I/O exception.
22..1177..11..11 BBOOMM:: BByyttee OOrrddeerr MMaarrkk
From section 2.17.1, you may have got the impression text-files
are complicated. This section deals with a related topic, making
live often easier for the user, but providing another worry to the
programmer. BBOOMM or _B_y_t_e _O_r_d_e_r _M_a_r_k_e_r is a technique for identifying
Unicode text-files as well as the encoding they use. Such files start
with the Unicode character 0xFEFF, a non-breaking, zero-width space
character. This is a pretty unique sequence that is not likely to be
the start of a non-Unicode file and uniquely distinguishes the various
Unicode file formats. As it is a zero-width blank, it even doesn't
produce any output. This solves all problems, or ...
Some formats start of as US-ASCII and may contain some encoding mark to
switch to UTF-8, such as the encoding="UTF-8" in an XML header. Such
formats often explicitly forbid the use of a UTF-8 BOM. In other cases
there is additional information telling the encoding making the use of
a BOM redundant or even illegal.
The BOM is handled by SWI-Prolog open/4 predicate. By default,
text-files are probed for the BOM when opened for reading. If a BOM
is found, the encoding is set accordingly and the property bom(_t_r_u_e) is
available through stream_property/2. When opening a file for writing,
writing a BOM can be requested using the option bom(_t_r_u_e) with open/4.
22..1188 SSyysstteemm lliimmiittss
22..1188..11 LLiimmiittss oonn mmeemmoorryy aarreeaass
SWI-Prolog has a number of memory areas which are only enlarged to a
certain limit. The default sizes for these areas should suffice for
most applications, but big applications may require larger ones. They
are modified by command-line options. The table below shows these
areas. The first column gives the option name to modify the size of
the area. The option character is immediately followed by a number and
optionally by a k or m. With k or no unit indicator, the value is
interpreted in Kbytes (1024 bytes), with m, the value is interpreted in
Mbytes (10241* 024 bytes).
The local-, global- and trail-stack are limited to 128 Mbytes on 32
bit processors, or more generally to 2 to the power bits-per-long - 5
bytes.
The PrologScript facility described in section 2.10.2.1 provides a
mechanism for specifying options with the load-file. On Windows the
default stack-sizes are controlled using the Windows registry on the
key HKEY_CURRENT_USER\Software\SWI\Prolog using the names localSize,
globalSize and trailSize. The value is a DWORD expressing the default
stack size in Kbytes. A GUI for modifying these values is provided
using the XPCE package. To use this, start the XPCE manual tools using
manpce/0, after which you find _P_r_e_f_e_r_e_n_c_e_s in the _F_i_l_e menu.
___________________________________________________________
|_Option_|Default_|Area_name______|Description____________|_||-L||16Mlloocc||aallTssttaacckkhe|l||||ocal|stack is used
| | to store the execu- | | ||
| | tion environments of | | ||
| | procedure invocations. | | ||
| | The space for an en- | | ||
| | vironment is reclaimed | | ||
| | when it fails, exits | | ||
| | without leaving choice | | ||
| | points, the alterna- | | ||
| | tives are cut off with | | ||
| | | | ||
| | the !/0 predicate or | | ||
| | no choice points have | | ||
| | been created since the | | ||
| | invocation and the last | | ||
| | subclause is started | | ||
| | (last call optimisa- | | ||
|| || | ||tion). || | ||
| -G | 32M |gglloobbaall ssttaacckk ||Theusglobaled stacktois store| terms
| | | ||created during Prolog's |
| | | ||execution. Terms on |
| | | || |
| | | ||this stack will be re- |
| | | ||claimed by backtracking |
| | | ||to a point before the |
| | | ||term was created or |
| | | ||by garbage collection |
| | | ||(provided the term is |
|| || || ||no||longer referenced). ||
| -T | 32M |ttrraaiill ssttaacckk ||Theusetraild stackto isstore| as-
| | | ||signments during execu- |
| | | || |
| | | ||tion. Entries on this |
| | | ||stack remain alive un- |
| | | ||til backtracking before |
| | | ||the point of creation |
| | | ||or the garbage collec- |
|| || || ||tor determines||they are ||
||| -A |||1M |||aarrgguummeenntt ssttaacc||norkkneeded||any||longer.Th|e||argument stack is
| | | used || to store one |
| | | of ||the intermediate|
| | | code ||interpreter's reg-|
| | | ister||s. The amount|
| | | of sp||ace needed on this|
| | | stack||is determined en- |
| | | tirel||y by the depth in|
| | | which||terms are nested |
| | | in t||he clauses that|
| | | const||itute the program.|
| | | Overf||low is most likely|
| | | when ||using long strings|
| | | in a ||clause. |
| | | In ad||dition, this stack|
| | | is us||ed by some built-|
| | | || |
| | | in pr||edicates to handle|
| | | cycli||c terms. Its de-|
| | | fault|| size limit is |
| | | propo||rtional to the|
| | | globa||l stack limit such|
| | | that || it will never |
|________|________|_______________overf||low.______________|_
Table 2.2: Memory areas
22..1188..11..11 TThhee hheeaapp
With the heap, we refer to the memory area used by malloc() and
friends. SWI-Prolog uses the area to store atoms, functors, predicates
and their clauses, records and other dynamic data. As of SWI-Prolog
2.8.5, no limits are imposed on the addresses returned by malloc() and
friends.
On some machines, the runtime stacks described above are allocated
using `sparse allocation'. Virtual space up to the limit is claimed
at startup and committed and released while the area grows and shrinks.
On Win32 platform this is realised using VirtualAlloc() and friends.
On Unix systems this is realised using mmap().
22..1188..22 OOtthheerr LLiimmiittss
CCllaauusseess The only limit on clauses is their arity (the number of
arguments to the head), which is limited to 1024. Raising this
limit is easy and relatively cheap, removing it is harder.
AAttoommss aanndd SSttrriinnggss SWI-Prolog has no limits on the sizes of atoms
and strings. read/1 and its derivatives however normally limit
the number of newlines in an atom or string to 5 to improve
error detection and recovery. This can be switched off with
style_check/1.
The number of atoms is limited to 16777216 (16M) on 32-bit
machines. On 64-bit machines this is virtually unlimited. See
also section 9.4.2.1.
MMeemmoorryy aarreeaass On 32-bit hardware, SWI-Prolog data is packed in a 32-bit
word, which contains both type and value information. The size
of the various memory areas is limited to 128 Mb for each of the
areas, except for the program heap, which is not limited. On
64-bit hardware there are no meaningful limits.
NNeessttiinngg ooff tteerrmmss Many build-in predicates process nested terms using
recursive C functions. Too deeply nested terms generally cause a
fatal crash. All these functions avoid recursion on the right-most
argument and therefore terms are not limited on the nesting level
of the last argument. This notably covers long lists. Most
functions use a stack for correct handling of rational trees
(cyclic terms). This stack is segmented, where different segments
are allocated using malloc(). Overflow causes a non-graceful exit.
IInntteeggeerrss On most systems SWI-Prolog is compiled with support for
unbounded integers by means of the GNU GMP library. In practice
this means that integers are bound by the global stack size. Too
large integers cause a resource_error. On systems that lack GMP,
integers are 64-bit on 32 as well as 64-bit machines.
Integers up to the value of the max_tagged_integerProlog flag are
represented more efficiently on the stack. For clauses and records
the difference is much smaller.
FFllooaattiinngg ppooiinntt nnuummbbeerrss Floating point numbers are represented as
C-native double precision floats, 64 bit IEEE on most machines.
22..1188..33 RReesseerrvveedd NNaammeess
The boot compiler (see -b option) does not support the module system.
As large parts of the system are written in Prolog itself we need some
way to avoid name clashes with the user's predicates, database keys,
etc. Like Edinburgh C-Prolog [Pereira, 1986] all predicates, database
keys, etc. that should be hidden from the user start with a dollar ($)
sign (see style_check/1).
22..1199 SSWWII--PPrroolloogg aanndd 6644--bbiitt mmaacchhiinneess
SWI-Prolog support for 64-bit machines started with version 2.8 on DEC
Alpha CPUs running Linux. Initially 64-bit hardware was developed
to deal with the addressing demands of large databases, running
primarily on expensive server hardware. Recently (2007) we see CPUs
that support 64-bit addressing become commonplace, even in low-budget
desktop hardware. Most todays 64-bit platforms are capable of running
both 32-bit and 64-bit applications. This asks for some clarifications
on the advantages and drawbacks of 64-bit addressing for (SWI-)Prolog.
22..1199..11 SSuuppppoorrtteedd ppllaattffoorrmmss
On Unix systems, 64-bit addressing is configured using configure.
Traditionally, both long and void* are 64-bits on these machines.
Version 5.6.26 introduces support for 64-bit MS-Windows (Windows XP
and Vista 64-bit editions) on amd64 (x64) hardware. Win64 uses long
integers of only 32-bits. Version 5.6.26 introduces support for such
platforms.
22..1199..22 CCoommppaarriinngg 3322-- aanndd 6644--bbiittss PPrroolloogg
Most of Prolog's memory-usage consists of pointers. This indicates the
primary drawback: Prolog memory usage almost doubles when using the
64 bit addressing model. Using more memory means copying more data
between CPU and main memory, slowing down the system.
What than are the advantages? First of all, SWI-Prolog's addressing
of the Prolog stacks does not cover the whole address space due to
the use of _t_y_p_e _t_a_g _b_i_t_s and _g_a_r_b_a_g_e _c_o_l_l_e_c_t_i_o_n _f_l_a_g_s. On 32-bit
hardware the stacks are limited to 128MB each. This tends to be too
low for demanding applications on modern hardware. On 64-bit hardware
the limit is 232 times higher, exceeding the addressing capabilities of
todays CPUs and operating systems. This implies Prolog can be started
with stacks sizes that use the full capabilities of your hardware.
Multi-threaded applications profit much more. SWI-Prolog threads claim
the full stacksize limit in _v_i_r_t_u_a_l _a_d_d_r_e_s_s _s_p_a_c_e and each thread comes
with its own set of stacks. This approach quickly exhaust virtual
memory on 32-bit systems but poses no problems when using 64-bit
addresses.
The implications theoretical performance loss due to increased memory
bandwidth implied by exchanging wider pointers depend on the design of
the hardware. We only have data for the popular IA32 vs. AMD64
architectures. Here is appears that the loss is compensated for by a
an instruction set that has been optimized for modern programming. In
particular, the AMD64 has more registers and the relative addressing
capabilities have been improved. Where we see a 10% performance
degradation when placing the SWI-Prolog kernel in a Unix shared object,
we cannot find a measurable difference on AMD64. Current SWI-Prolog
(5.6.26) runs at practically the same speed on IA32 and AMD64.
22..1199..33 CChhoooossiinngg bbeettwweeeenn 3322-- aanndd 6644--bbiittss PPrroolloogg
For those cases where we can choose between 32- and 64-bits, either
because the hardware and OS support both or because we can still choose
the hardware and OS, we give guidelines for this decision.
First of all, if SWI-Prolog needs to be linked against 32- or 64-bit
native libraries, there is no choice as it is not possible to link
32- and 64-bit code into a single executable. Only if all required
libraries are available in both sizes and there is no clear reason to
use either the different characteristics of Prolog become important.
Prolog applications that require more than the 128MB stack limit
provided in 32-bit addressing mode must use the 64-bit edition. Note
however that the limits must be doubled to accommodate the same Prolog
application.
If the system is tight on physical memory, 32-bit Prolog has the clear
advantage to use only slightly more than half of the memory of 64-bit
Prolog. This argument applies as long as the application fits in
the _v_i_r_t_u_a_l _a_d_d_r_e_s_s _s_p_a_c_e of the machine. The virtual address space
of 32-bit hardware is 4GB, but in many cases the operating system
provides less to user applications. Virtual memory usage of SWI-Prolog
is roughly the program size (_h_e_a_p) plus the sum of the stack-limits.
If there are multiple threads, each thread has its own stacks and the
stack-limits must be summed over the running threads.
The only standard SWI-Prolog library adding significantly to this
calculation is the RDF database provided by the _s_e_m_w_e_b package. It
uses approximately 80 bytes per triple on 32-bit hardware and 150 bytes
on 64-bit hardware. Details depend on how many different resources and
literals appear in the dataset as well as desired additional literal
indexes.
Summarizing, if applications are small enough to fit comfortably in
virtual and physical memory simply take the model used by most of
the applications on the OS. If applications require more than 128MB
per stack, use the 64-bit edition. If applications approach the
size of physical memory, fit in the 128MB stack limit and fit in
virtual memory, the 32-bit version has clear advantages. For demanding
applications on 64-bit hardware with more than about 6GB physical
memory the 64-bit model is the model of choice.
CChhaapptteerr 33.. IINNIITTIIAALLIISSIINNGG AANNDD MMAANNAAGGIINNGG AA PPRROOLLOOGG PPRROOJJEECCTT
Prolog text-books give you an overview of the Prolog language. The
manual tells you what predicates are provided in the system and what
they do. This chapter wants to explain how to run a project. There is
no ultimate `right' way to do this. Over the years we developed some
practice in this area and SWI-Prolog's commands are there to support
this practice. This chapter describes the conventions and supporting
commands.
The first two sections (section 3.1 and section 3.2 only require plain
Prolog. The remainder discusses the use of the built-in graphical
tools that require the XPCE graphical library installed on your system.
33..11 TThhee pprroojjeecctt ssoouurrccee--ffiilleess
Organisation of source-files depends largely on the size of your
project. If you are doing exercises for a Prolog course you'll
normally use one file for each exercise. If you have a small project
you'll work work with one directory holding a couple of files and some
files to link it all together. Even bigger projects will be organised
in sub-projects each using their own directory.
33..11..11 FFiillee NNaammeess aanndd LLooccaattiioonnss
33..11..11..11 FFiillee NNaammee EExxtteennssiioonnss
The first consideration is what extension to use for the source-files.
Tradition calls for .pl, but conflicts with Perl force the use of
another extension on systems where extensions have global meaning, such
as MS-Windows. On such systems .pro is the common alternative.
All versions of SWI-Prolog load files with the extension .pl as well as
with the registered alternative extension without explicitly specifying
the extension. For portability reasons we propose the following
convention:
IIff tthheerree iiss nnoo ccoonnfflliicctt because you do not use a conflicting
application or the system does not force a unique relation between
extension and application, use .pl.
WWiitthh aa ccoonnfflliicctt choose .pro and use this extension for the files you
want to load through your file-manager. Use .pl for all other
files for maximal portability.
33..11..11..22 PPrroojjeecctt DDiirreeccttoorriieess
Large projects are generally composed of sub-projects, each using their
own directory or directory-structure. If nobody else will ever touch
your files and you use only one computer there is little to worry
about, but this is rarely the case with a large project.
To improve portability, SWI-Prolog uses the POSIX notation for
filenames, which uses the forward slash (/) to separate directories.
Just before hitting the file-system it uses prolog_to_os_filename/2 to
convert the filename to the conventions used by the hosting operating
system. It is _s_t_r_o_n_g_l_y advised to write paths using the /, especially
on systems using the \ for this purpose (MS-Windows). Using \ violates
the portability rules and requires you to _d_o_u_b_l_e the \ due to the
Prolog quoted-atom escape rules.
Portable code should use prolog_to_os_filename/2to convert computed
paths into system-paths when constructing commands for shell/1 and
friends.
33..11..11..33 SSuubb--pprroojjeeccttss uussiinngg sseeaarrcchh--ppaatthhss
Thanks to Quintus, Prolog adapted an extensible mechanism for searching
files using file_search_path/2. This mechanism allows for comfortable
and readable specifications.
Suppose you have extensive library packages on graph-algorithms,
set-operations and GUI-primitives. These sub-projects are likely
candidates for re-use in future projects. A good choice is to create a
directory with sub-directories for each of these sub-projects.
Next, there are three options. One is to add the sub-projects to
the directory-hierarchy of the current project. Another is to use
a completely dislocated directory and finally the sub-project can be
added to the SWI-Prolog hierarchy. Using local installation, a typical
file_search_path/2is:
________________________________________________________________________| |
|:- prolog_load_context(directory, Dir), |
| asserta(user:file_search_path(myapp, Dir)). |
| |
|user:file_search_path(graph, myapp(graph)). |
|user:file_search_path(ui,|___myapp(ui))._______________________________ | |
For using sub-projects in the SWI-Prolog hierarchy one should use
the path-alias swi as basis. For a system-wide installation use an
absolute-path.
Extensive sub-projects with a small well-defined API should define
a load-file using use_module/1 calls to import the various
library-components and export the API.
33..11..22 PPrroojjeecctt SSppeecciiaall FFiilleess
There are a number of tasks you typically carry out on your project,
such as loading it, creating a saved-state, debugging it, etc. Good
practice on large projects is to define small files that hold the
commands to execute such a task, name this file after the task and give
it a file-extension that makes starting easy (see section 3.1.1.1).
The task _l_o_a_d is generally central to these tasks. Here is a tentative
list.
o load.pl
Use this file to set up the environment (Prolog flags and file
search paths) and load the sources. Quite commonly this file also
provides convenient predicates to parse command-line options and
start the application.
o run.pl
Use this file to start the application. Normally it loads load.pl
in silent-mode, and calls one of the starting predicates from
load.pl.
o save.pl
Use this file to create a saved-state of the application by loading
load.pl and call qsave_program/2to generate a saved-state with the
proper options.
o debug.pl
Loads the program for debugging. In addition to loading load.pl
this file defines rules for portray/1 to modify printing rules for
complex terms and customisation rules for the debugger and editing
environment. It may start some of these tools.
33..11..33 IInntteerrnnaattiioonnaall ssoouurrccee ffiilleess
As discussed in section 2.17, SWI-Prolog supports international
character handling. Its internal encoding is UNICODE. I/O streams
convert to/from this internal format. This sections discusses the
options for source-files not in US-ASCII.
SWI-Prolog can read files in any of the encodings described in
section 2.17. Two encodings are of particular interest. The text
encoding deals with the current _l_o_c_a_l_e, the default used by this
computer for representing text files. The encodings utf8, unicode_le
and unicode_be are _U_N_I_C_O_D_E encodings: they can represent---in the same
file---characters of virtually any known language. In addition, they
do so unambiguously.
If one wants to represent non US-ASCII text as Prolog terms in a
source-file there are several options:
o _U_s_e _e_s_c_a_p_e _s_e_q_u_e_n_c_e_s
This approach describes NON-ASCII as sequences of the form \_o_c_t_a_l\.
The numerical argument is interpreted as a UNICODE character. The
resulting Prolog file is strict 7-bit US-ASCII, but if there are
many NON-ASCII characters it becomes very unreadable.
o _U_s_e _l_o_c_a_l _c_o_n_v_e_n_t_i_o_n_s
Alternatively the file may be specified using local conventions,
such as the EUC encoding for Japanese text. The disadvantage is
portability. If the file is moved to another machine this machine
must be using the same _l_o_c_a_l_e or the file is unreadable. There
is no elegant if files from multiple locales must be united in one
application using this technique. In other words, it is fine for
local projects in countries with uniform locale conventions.
o _U_s_i_n_g _U_T_F_-_8 _f_i_l_e_s
The best way to specify source files with many NON-ASCII characters
is definitely the use of UTF-8 encoding. Prolog can be notified
two ways of this encoding, using a UTF-8 _B_O_M (see section 2.17.1.1)
or using the directive :- encoding(utf8).. Many todays text
editors, including PceEmacs, are capable of editing UTF-8 files.
Projects that started using local conventions can be be re-coded
using the Unix iconv tool or often using a commands offered by the
editor.
33..22 UUssiinngg mmoodduulleess
Modules have been debated fiercely in the Prolog world. Despite all
counter-arguments we feel they are extremely useful because
o _T_h_e_y _h_i_d_e _l_o_c_a_l _p_r_e_d_i_c_a_t_e_s
This is the reason they have been invented in the first place.
Hiding provides two features. They allow for short predicate
names without worrying about conflicts. Given the flat name-space
introduced by modules, they still require meaningful module names
as well as meaningful names for exported predicates.
o _T_h_e_y _d_o_c_u_m_e_n_t _t_h_e _i_n_t_e_r_f_a_c_e
Possibly more important then avoiding name-conflicts is their role
in documenting which part of the file is for public usage and
which is private. When editing a module you may assume you can
reorganise anything but the name and semantics of the exported
predicates without worrying.
o _T_h_e_y _h_e_l_p _t_h_e _e_d_i_t_o_r
The PceEmacs built-in editor does on-the-fly cross-referencing of
the current module, colouring predicates based on their origin and
usage. Using modules, the editor can quickly find out what is
provided by the imported modules by reading just the first term.
This allows it to indicate real-time which predicates are not used
or not defined.
Using modules is generally easy. Only if you write meta-predicates
(predicates reasoning about other predicates) that are exported from a
module good understanding of resolution of terms to predicates inside a
module is required. Here is a typical example from readutil.
________________________________________________________________________| |
|:- module(read_util, |
| [ read_line_to_codes/2, % +Fd, -Codes |
| read_line_to_codes/3, % +Fd, -Codes, ?Tail |
| read_stream_to_codes/2, % +Fd, -Codes |
| read_stream_to_codes/3, % +Fd, -Codes, ?Tail |
| read_file_to_codes/3, % +File, -Codes, +Options |
| read_file_to_terms/3 % +File, -Terms, +Options |
||_________]).__________________________________________________________ ||
33..33 TThhee tteesstt--eeddiitt--rreellooaadd ccyyccllee
SWI-Prolog does not enforce the use of a particular editor for writing
down Prolog source code. Editors are complicated programs that
must be mastered in detail for real productive programming and if
you are familiar with a specific editor you should not be forced
to change. You may specify your favourite editor using the Prolog
flag editor, the environment variable EDITOR or by defining rules for
prolog_edit:edit_source/1 (see section 4.4).
The use of a built-in editor, which is selected by setting the Prolog
flag editor to pce_emacs, has advantages. The XPCE _e_d_i_t_o_r object
around which the built-in PceEmacs is built can be opened as a Prolog
stream allowing analysis of your source by the real Prolog system.
33..33..11 LLooccaattiinngg tthhiinnggss ttoo eeddiitt
The central predicate for editing something is edit/1, an extensible
front-end that searches for objects (files, predicates, modules as well
as XPCE classes and methods) in the Prolog database. If multiple
matches are found it provides a choice. Together with the built-in
completion on atoms bound to the TAB key this provides a quick way to
edit objects:
________________________________________________________________________| |
|?- edit(country). |
|Please select item to edit: |
| |
| 1 chat:country/10 '/staff/jan/lib/prolog/chat/countr.pl':16 |
| 2 chat:country/1 '/staff/jan/lib/prolog/chat/world0.pl':72 |
| |
|Your|choice?___________________________________________________________ | |
33..33..22 EEddiittiinngg aanndd iinnccrreemmeennttaall ccoommppiillaattiioonn
One of the nice features of Prolog is that the code can be modified
while the program is running. Using pure Prolog you can trace a
program, find it is misbehaving, enter a _b_r_e_a_k _e_n_v_i_r_o_n_m_e_n_t, modify
the source code, reload it and finally do _r_e_t_r_y on the misbehaving
predicate and try again. This sequence is not uncommon for
long-running programs. For faster programs one normally aborts after
understanding the misbehaviour, edit the source, reload it and try
again.
One of the nice features of SWI-Prolog is the availability of make/0, a
simple predicate that checks all loaded source files to see which ones
you have modified. It then reloads these files, considering the module
from which the file was loaded originally. This greatly simplifies the
trace-edit-verify development cycle. After the tracer reveals there is
something wrong with prove/3, you do:
________________________________________________________________________| |
|?-|edit(prove).________________________________________________________ | |
Now edit the source, possibly switching to other files and making
multiple changes. After finishing invoke make/0, either through the
editor UI (Compile/Make (Control-C Control-M)) or on the top-level and
watch the files being reloaded.
________________________________________________________________________| |
|?- make. |
|%|show_compiled_into_photo_gallery_0.03_sec,_3,360_bytes_______________ | |
33..44 UUssiinngg tthhee PPcceeEEmmaaccss bbuuiilltt--iinn eeddiittoorr
33..44..11 AAccttiivvaattiinngg PPcceeEEmmaaccss
Initially edit/1 uses the editor specified in the EDITOR environment
variable. There are two ways to force it to use the built-in editor.
One is to set the Prolog flag editor to pce_emacs and the other is by
starting the editor explicitly using the emacs/[0,1] predicates.
33..44..22 BBlluuffffiinngg tthhrroouugghh PPcceeEEmmaaccss
PceEmacs closely mimics Richard Stallman's GNU-Emacs commands, adding
features from modern window-based editors to make it more acceptable
for beginners.
At the basis, PceEmacs maps keyboard sequences to methods defined on
the extended _e_d_i_t_o_r object. Some frequently used commands are, with
their key-binding, presented in the menu-bar above each editor window.
A complete overview of the bindings for the current _m_o_d_e is provided
through Help/Show key bindings (Control-h Control-b).
33..44..22..11 EEddiitt mmooddeess
Modes are the heart of (Pce)Emacs. Modes define dedicated editing
support for a particular kind of (source-)text. For our purpose we
want _P_r_o_l_o_g _m_o_d_e. Their are various ways to make PceEmacs use Prolog
mode for a file.
o _U_s_i_n_g _t_h_e _p_r_o_p_e_r _e_x_t_e_n_s_i_o_n
If the file ends in .pl or the selected alternative (e.g. .pro)
extension, Prolog mode is selected.
o _U_s_i_n_g #!/path/to/pl
If the file is a _P_r_o_l_o_g _S_c_r_i_p_t file, starting with the line
#!/path/to/pl options -s, Prolog mode is selected regardless of the
extension
o _U_s_i_n_g -*- Prolog -*-
If the above sequence appears in the first line of the file (inside
a Prolog comment) Prolog mode is selected.
o _E_x_p_l_i_c_i_t _s_e_l_e_c_t_i_o_n
Finally, using File/Mode/Prolog (y)ou can switch to Prolog mode
explicitly.
33..44..22..22 FFrreeqquueennttllyy uusseedd eeddiittoorr ccoommmmaannddss
Below we list a few important commands and how to activate them.
o _C_u_t_/_C_o_p_y_/_P_a_s_t_e
These commands follow Unix/X11 traditions. You're best suited
with a three-button mouse. After selecting using the left-mouse
(double-click uses word-mode and triple line-mode), the selected
text is _a_u_t_o_m_a_t_i_c_a_l_l_y copied to the clipboard (X11 primary
selection on Unix). _C_u_t is achieved using the DEL key or by
typing something else at the location. _P_a_s_t_e is achieved using
the middle-mouse (or wheel) button. If you don't have a middle
mouse-button, pressing the left- and right-button at the same time
is interpreted as a middle-button click. If nothing helps there is
the Edit/Paste menu-entry. Text is pasted at the caret-location.
o _U_n_d_o
Undo is bound to the GNU-Emacs Control-_ as well as the MS-Windows
Control-Z sequence.
o _A_b_o_r_t
Multi-key sequences can be aborted at any stage using Control-G.
o _F_i_n_d
Find (Search) is started using Control-S (forward) or Control-R
(backward). PceEmacs implements _i_n_c_r_e_m_e_n_t_a_l _s_e_a_r_c_h. This
is difficult to use for novices, but very powerful once you
get the clue. After one of the above start-keys the system
indicates search mode in the status line. As you are typing the
search-string, the system searches for it, extending the search
with every character you type. It illustrates the current match
using a green background.
If the target cannot be found, PceEmacs warns you and no longer
extends the search-string. During search some characters have
special meaning. Typing anything but these characters commits the
search, re-starting normal edit mode. Special commands are:
Control-S
Search for next forwards.
Control-R
Search for next backwards.
Control-W
Extend search to next word-boundary.
Control-G
Cancel search, go back to where it started.
ESC
Commit search, leaving caret at found location.
Backspace
Remove a character from the search string.
o _D_y_n_a_m_i_c _A_b_b_r_e_v_i_a_t_i_o_n
Also called _d_a_b_b_r_e_v is an important feature of Emacs clones to
support programming. After typing the first few letters of an
identifier you may hit Alt-/, causing PceEmacs to search backwards
for identifiers that start the same and using it to complete the
text you typed. A second Alt-/ searches further backwards. If
there are no hits before the caret it starts searching forwards.
With some practice, this system allows for very fast entering code
with nice and readable identifiers (or other difficult long words).
o _O_p_e_n _(_a _f_i_l_e_)
Is called File/Find file (Control-x Control-f). By default the
file is loaded into the current window. If you want to keep this
window, Hit Alt-s or click the little icon at the bottom-left to
make the window _s_t_i_c_k_y.
o _S_p_l_i_t _v_i_e_w
Sometimes you want to look at two places of the same file. To do
this, use Control-x 2 to create a new window pointing to the same
file. Do not worry, you can edit as well as move around in both.
Control-x 1 kills all other windows running on the same file.
These were the most commonly used commands. In section section 3.4.3
we discuss specific support for dealing with Prolog source code.
33..44..33 PPrroolloogg MMooddee
In the previous section (section 3.4.2) we explained the basics of
PceEmacs. Here we continue with Prolog specific functionality.
Possibly the most interesting is _S_y_n_t_a_x _h_i_g_h_l_i_g_h_t_i_n_g. Unlike most
editors where this is based on simple patterns, PceEmacs syntax
highlighting is achieved by Prolog itself actually reading and
interpreting the source as you type it. There are three moments at
which PceEmacs checks (part of) the syntax.
o _A_f_t_e_r _t_y_p_i_n_g _a .
After typing a . that is not preceded by a _s_y_m_b_o_l character the
system assumes you completed a clause, tries to find the start of
this clause and verifies the syntax. If this process succeeds it
colours the elements of the clause according to the rules given
below. Colouring is done using information from the last full
check on this file. If it fails, the syntax error is displayed in
the status line and the clause is not coloured.
o _A_f_t_e_r _t_h_e _c_o_m_m_a_n_d Control-c Control-s
Acronym for CCcheck SSyntax it performs the same checks as above for
the clause surrounding the caret. On a syntax error however, the
caret is moved to the expected location of the error.
o _A_f_t_e_r _p_a_u_s_i_n_g _f_o_r _t_w_o _s_e_c_o_n_d_s
After a short pause (2 seconds), PceEmacs opens the edit-buffer
and reads it as a whole, creating an index of defined, called,
dynamic, imported and exported predicates. After completing this,
it re-reads the file and colours all clauses and calls with valid
syntax.
o _A_f_t_e_r _t_y_p_i_n_g Control-l Control-l
The Control-l commands re-centers the window (scrolls the window to
make the caret the center of the window). Hitting this command
twice starts the same process as above.
TThhee ccoolloouurr sscchheemmaa
itself is defined in emacs/prolog_colour. The colouring can be
extended and modified using multifile predicates. Please check this
source-file for details. In general, underlined objects have a popup
(right-mouse button) associated for common commands such as viewing the
documentation or source. BBoolldd text is used to indicate the definition
of objects (typically predicates when using plain Prolog). Other
colours follow intuitive conventions. See table 3.4.3.
_____________________________________________________
|______________________Clauses_______________________|
| Blue bold |Head of an exported predicate |
| Red bold |Head of a predicate that is not called |
|_Black_Bold_|Head_of_remaining_predicates___________|
|______________Calls_in_the_clause-body______________|
| Blue |Call to built-in or imported predicate |
| Red |Call to not-defined predicate |
|_Purple_____|Call_to_dynamic_predicate______________|
|___________________Other_entities___________________|
| Dark green |Comment |
| Dark blue |Quoted atom or string |
|_Brown______|Variable_______________________________|
Table 3.1: Colour conventions
LLaayyoouutt ssuuppppoorrtt Layout is not `just nice', it is _e_s_s_e_n_t_i_a_l for writing
readable code. There is much debate on the proper layout of Prolog.
PceEmacs, being a rather small project supports only one particular
style for layout. Below are examples of typical constructs.
________________________________________________________________________| |
|head(arg1, arg2). |
| |
|head(arg1, arg2) :- !. |
| |
|head(Arg1, arg2) :- !, |
| call1(Arg1). |
| |
|head(Arg1, arg2) :- |
| ( if(Arg1) |
| -> then |
| ; else |
| ). |
| |
|head(Arg1) :- |
| ( a |
| ; b |
| ). |
| |
|head :- |
| a(many, |
| long, |
| arguments(with, |
| many, |
| more), |
| and([ a, |
| long, |
| list, |
| with, |
| a, |
| | tail |
||_____________]))._____________________________________________________ ||
PceEmacs uses the same conventions as GNU-Emacs. The TAB key indents
the current line according to the syntax rules. Alt-q indents all
lines of the current clause. It provides support for head, calls
(indented 1 tab), if-then-else, disjunction and argument-lists broken
across multiple lines as illustrated above.
33..44..33..11 FFiinnddiinngg yyoouurr wwaayy aarroouunndd
The command Alt-. extracts name and arity from the caret location and
jumps (after conformation or edit) to the definition of the predicate.
It does so based on the source-location database of loaded predicates
also used by edit/1. This makes locating predicates reliable if all
sources are loaded and up-to-date (see make/0).
In addition, references to files in use_module/[1,2], consult/1, etc.
are red if the file cannot be found and underlined blue if the file can
be loaded. A popup allows for opening the referenced file.
33..55 TThhee GGrraapphhiiccaall DDeebbuuggggeerr
SWI-Prolog offers two debuggers. One is the traditional text-console
based 4-port Prolog tracer and the other is a window-based source-level
debugger. The window-based debugger requires XPCE installed. It
operates based on the prolog_trace_interception/4 hook and other
low-level functionality described in chapter 12.
Window-based tracing provides much better overview due to the eminent
relation to your source-code, a clear list of named variables and their
bindings as well as a graphical overview of the call and choice-point
stack. There are some drawbacks though. Using a textual trace on the
console one can scroll back and examine the past, while the graphical
debugger just presents a (much better) overview of the current state.
33..55..11 IInnvvookkiinngg tthhee wwiinnddooww--bbaasseedd ddeebbuuggggeerr
Whether the text-based or window-based debugger is used is controlled
using the predicates guitracer/0 and noguitracer/0. Entering debug
mode is controlled using the normal predicates for this: trace/0
and spy/1. In addition, PceEmacs prolog mode provides the command
Prolog/Break at (Control-c b) to insert a break-point at a specific
location in the source-code.
The graphical tracer is particulary useful for debugging threads. The
tracer must be loaded from the main thread before it can be used from a
background thread.
gguuiittrraacceerr
This predicate installs the above-mentioned hooks that redirect
tracing to the window-based environment. No window appears.
The debugger window appears as actual tracing is started through
trace/0, by hitting a spy-point defined by spy/1 or a break-point
defined using PceEmacs command Prolog/Break at (Control-c b).
nnoogguuiittrraacceerr
Disable the hooks installed by guitracer/0, reverting to normal
text-console based tracing.
ggttrraaccee
Utility defined as guitracer,trace.
ggddeebbuugg
Utility defined as guitracer,debug.
ggssppyy((_+_P_r_e_d_i_c_a_t_e))
Utility defined as guitracer,spy(Predicate).
33..66 TThhee PPrroolloogg NNaavviiggaattoorr
Another tool is the _P_r_o_l_o_g _N_a_v_i_g_a_t_o_r. This tool can be started
from PceEmacs using the command Browse/Prolog navigator, from the
GUI debugger or using the programmatic IDE interface described in
section 3.8.
33..77 CCrroossss rreeffeerreenncceerr
A cross-referencers is a tool examining the caller-callee relation
between predicates and using this information to explicate dependency
relations between source files, find calls to non-existing predicates
and predicates for which no callers can be found. Cross-referencing
is useful during program development, reorganisation, cleanup, porting
and other program maintenance tasks. The dynamic nature of Prolog
makes the task non-trivial. Goals can be created dynamically call/1
after construction of a goal term. Abtract interpretation can find
some of such calls, but the ultimately they can come from external
communication, making it completely impossible to predict the callee.
In other words, the cross-referencer has only partial understanding of
the program and its results are necessarily incomplete. Still, it
provides valuable information to the developer.
SWI-Prolog's cross-referencer is split into two parts. The standard
Prolog library prolog_xref is an extensible library for information
gathering described in section 11.19 and the XPCE
library pce_xref provides a graphical frontend for the cross-referencer
described here. We demonstrate the tool on CHAT80, a natural language
question and answer system by Fernando C.N. Pereira and David H.D.
Warren.
ggxxrreeff
Run cross-referencer on all currently loaded files and present a
graphical overview of the result. As the predicate operates on
the currently loaded application it must be run after loading the
application.
The lleefftt wwiinnddooww (see figure ???? provides browsers for loaded files and
predicates. To avoid long file paths the file hierarchy has three main
branches. The first is the current directory holding the sources. The
second is marked alias and below it are the file-search-path aliases
(see file_search_path/2 and absolute_file_name/3). Here you find files
loaded from the system as well as modules of the program loaded from
other locations using file search path. All loaded files that fall
outside these categories are below the last branch called /. File
where the system found suspicious dependencies are marked with an
exclamation mark. This also holds for directories holding such files.
Clicking on a file opens a _F_i_l_e _i_n_f_o window in the right pane.
The FFiillee iinnffoo window shows a file, its main properties, its undefined
and not-called predicates and its import- and export relations to other
files in the project. Both predicates and files can be opened by
clicking on them. The number of callers in a file for a certain
predicate is indicated with a blue underlined number. A left-click
will open a list and allows to edit the calling predicate.
The DDeeppeennddeenncciieess (see figure ????) window displays a graphical overview
of dependencies between files. Using the background menu a complete
graph of the project can be created. It is also possible to drag files
onto the graph window and use the menu on the nodes to incrementally
expand the graph. The underlined blue text indicates the number of
predicates used in the destination file. Left-clicking opens a menu to
open the definition or select one of the callers.
MMoodduullee aanndd nnoonn--mmoodduullee ffiilleess The cross-referencer threads module and
non-module project files differently. Module files have explicit
import and export relations and the tool shows the usage and
consistency of the relations. Using the menu-command Header the tool
creates a consistent import list for the module that can be included
in the file. The tool computes the dependency relations between the
non-module files. If the user wishes to convert the project into
a module-based one the Header command generates an appropriate module
header and import list. Note that the cross-referencer may have missed
dependencies and does not deal with meta-predicates defined in one
module and called in another. Such problems must be resolved manually.
SSeettttiinnggss The following settings can be controlled from the settings
menu:
WWaarrnn aauuttoollooaadd
By default disabled. If enabled, modules that require predicates
to be autoloaded are flagged with a warning and the file info
window of a module shows the required autoload predicates.
WWaarrnn nnoott ccaalllleedd
If enabled (default), the file-overview shows an alert icon for
files that have predicates that are not called.
33..88 AAcccceessssiinngg tthhee IIDDEE ffrroomm yyoouurr pprrooggrraamm
Over the years a collection of IDE components have been developed,
each with their own interface. In addition, some of these components
require each other and loading IDE components must be on demand to
avoid the IDE being part of a saved-state (see qsave_program/2). For
this reason, access to the IDE will be concentrated on a single
interface called prolog_ide/1:
pprroolloogg__iiddee((_+_A_c_t_i_o_n))
This predicate ensures the IDE enabling XPCE component is loaded,
creates the XPCE class _p_r_o_l_o_g___i_d_e and sends _A_c_t_i_o_n to its one and
only instance \index{@prolog_ide}\objectname{prolog_ide}. _A_c_t_i_o_n
is one of the following:
ooppeenn__nnaavviiggaattoorr((_+_D_i_r_e_c_t_o_r_y))
Open the Prolog Navigator (see section 3.6) in the given
_D_i_r_e_c_t_o_r_y.
ooppeenn__ddeebbuugg__ssttaattuuss
Open a window to edit spy- and trace-points.
ooppeenn__qquueerryy__wwiinnddooww
Opens a little window to run Prolog queries from a GUI
component.
tthhrreeaadd__mmoonniittoorr
Open a graphical window indicating existing threads and their
status.
ddeebbuugg__mmoonniittoorr
Open a graphical front-end for the debug library that provides
an overview of the topics and catches messages.
xxrreeff
Open a graphical front-end for the cross-referencer that
provides an overview of predicates and their callers.
33..99 SSuummmmaarryy ooff tthhee IIDDEE
The SWI-Prolog development environment consists of a number of
interrelated but not (yet) integrated tools. Here is a list of the
most important features and tips.
o _A_t_o_m _c_o_m_p_l_e_t_i_o_n
The console completes a partial atom on the TAB key and shows
alternatives on the command Alt-?.
o _U_s_e edit/1 _t_o _f_i_n_d_i_n_g _l_o_c_a_t_i_o_n_s
The command edit/1 takes the name of a file, module, predicate or
other entity registered through extensions and starts the users
preferred editor at the right location.
o _S_e_l_e_c_t _e_d_i_t_o_r
External editors are selected using the EDITOR environment
variable, by setting the Prolog flag editor or by defining the hook
prolog_edit:edit_source/1.
o _U_p_d_a_t_e _P_r_o_l_o_g _a_f_t_e_r _e_d_i_t_i_n_g
Using make/0, all files you have edited are re-loaded.
o _P_c_e_E_m_a_c_s
Offers syntax-highlighting and checking based on real-time parsing
of the editor's buffer, layout-support and navigation support.
o _U_s_i_n_g _t_h_e _g_r_a_p_h_i_c_a_l _d_e_b_u_g_g_e_r
The predicates guitracer/0 and noguitracer/0 switch between
traditional text-based and window-based debugging. The tracer is
activated using the trace/0, spy/1 or menu-items from PceEmacs or
the PrologNavigator.
o _T_h_e _P_r_o_l_o_g _N_a_v_i_g_a_t_o_r
Shows the file-structure and structure inside the file. It allows
for loading files, editing, setting spy-points, etc.
CChhaapptteerr 44.. BBUUIILLTT--IINN PPRREEDDIICCAATTEESS
44..11 NNoottaattiioonn ooff PPrreeddiiccaattee DDeessccrriippttiioonnss
We have tried to keep the predicate descriptions clear and concise.
First the predicate name is printed in bold face, followed by the
arguments in italics. Arguments are preceded by a mode indicator There
is no complete agreement on mode indicators in the Prolog community.
We use the following definitions:
________________________________________________________+Argument must be fully instantiated to a term that
satisfies the required argument type. Think of
the argument as _i_n_p_u_t.
- Argument must be unbound. Think of the argument
as _o_u_t_p_u_t.
? Argument must be bound to a _p_a_r_t_i_a_l _t_e_r_m of the
indicated type. Note that a variable is a partial
term for any type. Think of the argument as
either _i_n_p_u_t or _o_u_t_p_u_t or _b_o_t_h input and output.
E.g. In stream_property(S, reposition(Bool)), the
reposition part of the term is input and the
uninstantiated _B_o_o_l is output.
: Argument is a meta-argument. Implies +. See
section 5 for more information on module-handing.
@ Argument is not further instantiated. Typically
used for type-tests.
! Argument contains a mutable structure that may be
____modified_using_setarg/3_or_nb_setarg/3._____________
Referring to a predicate in running text is done using a _p_r_e_d_i_c_a_t_e
_i_n_d_i_c_a_t_o_r. The canonical and most generic form of a predicate
indicator is a term <_m_o_d_u_l_e>:<_n_a_m_e>/<_a_r_i_t_y>. If the module is irrelevant
(built-in predicate) or can be inferred from the context it is
often omitted. Compliant to the ISO standard draft on DCG (see
section 4.11), SWI-Prolog also allows for [<_m_o_d_u_l_e>]:<_n_a_m_e>//<_a_r_i_t_y> to
refer to a grammar rule. For all non-negative arity, <_n_a_m_e>//<_a_r_i_t_y>
is the same as <_n_a_m_e>/<arity+2>, regardless on whether or not the
referenced predicate is defined or can be used as a grammar rule. The
//-notation can be used in all places that traditionally allow for a
predicate indicator, e.g. the module declaration, spy/1, and dynamic/1.
44..22 CChhaarraacctteerr rreepprreesseennttaattiioonn
In traditional (Edinburgh-) Prolog, characters are represented using
_c_h_a_r_a_c_t_e_r_-_c_o_d_e_s. Character codes are integer indices into a specific
character set. Traditionally the character set was 7-bits US-ASCII.
8-bit character sets have been allowed for a long time, providing
support for national character sets, of which iso-latin-1 (ISO 8859-1)
is applicable to many western languages.
ISO Prolog introduces three types, two of which are used for characters
and one for accessing binary streams (see open/4). These types are:
o _c_o_d_e
A _c_h_a_r_a_c_t_e_r_-_c_o_d_e is an integer representing a single character.
As files may use multi-byte encoding for supporting different
character sets (utf-8 encoding for example), reading a code from a
text-file is in general not the same as reading a byte.
o _c_h_a_r
Alternatively, characters may be represented as _o_n_e_-_c_h_a_r_a_c_t_e_r_-
_a_t_o_m_s. This is a natural representation, hiding encoding problems
from the programmer as well as providing much easier debugging.
o _b_y_t_e
Bytes are used for accessing binary-streams.
In SWI-Prolog, character-codes are _a_l_w_a_y_s the Unicode equivalent of
the encoding. I.e., if get_code/1 reads from a stream encoded as
KOI8-R (used for the Cyrillic alphabet), it returns the corresponding
Unicode code-points. Similar, assembling or deassembling atoms
using atom_codes/2 interprets the codes as Unicode points. See
section 2.17.1 for details.
To ease the pain of the two character representations (code and char),
SWI-Prolog's built-in predicates dealing with character-data work as
flexible as possible: they accept data in any of these formats as
long as the interpretation is unambiguous. In addition, for output
arguments that are instantiated, the character is extracted before
unification. This implies that the following two calls are identical,
both testing whether the next input characters is an a.
________________________________________________________________________| |
|peek_code(Stream, a). |
|peek_code(Stream,|97)._________________________________________________ | |
The two character representations are handled by a large number of
built-in predicates, all of which are ISO-compatible. For converting
between code and character there is char_code/2. For breaking
atoms and numbers into characters are are atom_chars/2, atom_codes/2,
number_codes/2 and number_chars/2. For character I/O on streams there
is get_char/[1,2], get_code/[1,2], get_byte/[1,2], peek_char/[1,2],
peek_code/[1,2], peek_byte/[1,2], put_code/[1,2], put_char/[1,2] and
put_byte/[1,2]. The Prolog flag double_quotes controls how text between
double-quotes is interpreted.
44..33 LLooaaddiinngg PPrroolloogg ssoouurrccee ffiilleess
This section deals with loading Prolog source-files. A Prolog source
file is a plain text file containing a Prolog program or part thereof.
Prolog source files come in three flavours:
AA ttrraaddiittiioonnaall Prolog source file contains Prolog clauses and
directives, but no _m_o_d_u_l_e_-_d_e_c_l_a_r_a_t_i_o_n. They are normally loaded
using consult/1 or ensure_loaded/1.
AA mmoodduullee Prolog source file starts with a module declaration. The
subsequent Prolog code is loaded into the specified module and only
the _p_u_b_l_i_c predicates are made available to the context loading the
module. Module files are normally loaded using use_module/[1,2].
See chapter 5 for details.
AAnn iinncclluuddee Prolog source file is loaded using the include/1 directive
and normally contains only directives.
Prolog source-files are located using absolute_file_name/3 with the
following options:
________________________________________________________________________| |
|locate_prolog_file(Spec, Path) :- |
| absolute_file_name(Spec, |
| [ file_type(prolog), |
| access(read) |
| ], |
||__________________________Path).______________________________________ ||
The file_type(_p_r_o_l_o_g) option is used to determine the extension of the
file using prolog_file_type/2. The default extension is .pl. _S_p_e_c
allows for the _p_a_t_h_-_a_l_i_a_s construct defined by absolute_file_name/3.
The most commonly used path-alias is library(_L_i_b_r_a_r_y_F_i_l_e). The example
below loads the library file ordsets.pl (containing predicates for
manipulating ordered sets).
________________________________________________________________________| |
|:-|use_module(library(ordsets))._______________________________________ | |
SWI-Prolog recognises grammar rules (DCG) as defined in
[Clocksin & Melish, 1987]. The user may define additional compilation
of the source file by defining the dynamic predicates term_expansion/2
and goal_expansion/2. Transformations by term_expansion/2 overrule
the systems grammar rule transformations. It is not allowed to use
assert/1, retract/1 or any other database predicate in term_expansion/2
other than for local computational purposes.
Directives may be placed anywhere in a source file, invoking any
predicate. They are executed when encountered. If the directive
fails, a warning is printed. Directives are specified by :-/1 or ?-/1.
There is no difference between the two.
SWI-Prolog does not have a separate reconsult/1 predicate.
Reconsulting is implied automatically by the fact that a file is
consulted which is already loaded.
llooaadd__ffiilleess((_:_F_i_l_e_s_, _+_O_p_t_i_o_n_s))
The predicate load_files/2 is the parent of all the other loading
predicates except for include/1. It currently supports a subset
of the options of Quintus load_files/2. _F_i_l_e_s is either a single
source-file, or a list of source-files. The specification for a
source-file is handed to absolute_file_name/2. See this predicate
for the supported expansions. _O_p_t_i_o_n_s is a list of options using
the format
_O_p_t_i_o_n_N_a_m_e(_O_p_t_i_o_n_V_a_l_u_e)
The following options are currently supported:
aauuttoollooaadd((_B_o_o_l))
If true (default false), indicate this load is a _d_e_m_a_n_d
load. This implies that, depending on the setting of the
Prolog flag verbose_autoload the load-action is printed at
level informational or silent. See also print_message/2 and
current_prolog_flag/2.
ddeerriivveedd__ffrroomm((_F_i_l_e))
Indicate that the loaded file is derived from _F_i_l_e. Used by
make/0 to time-check and load the original file rather than
the derived file.
eennccooddiinngg((_E_n_c_o_d_i_n_g))
Specify the way characters are encoded in the file. Default
is taken from the Prolog flag encoding. See section 2.17.1
for details.
eexxppaanndd((_B_o_o_l))
If true, run the filenames through expand_file_name/2 and load
the returned files. Default is false, except for consult/1
which is intended for interactive use. Flexible location of
files is defined by file_search_path/2.
ffoorrmmaatt((_+_F_o_r_m_a_t))
Used to specify the file format if data is loaded from a
stream using the stream(_S_t_r_e_a_m) option. Default is source,
loading Prolog source text. If qlf, load QLF data (see
qcompile/1).
iiff((_C_o_n_d_i_t_i_o_n))
Load the file only if the specified condition is satisfied.
The value true loads the file unconditionally, changed loads
the file if it was not loaded before, or has been modified
since it was loaded the last time, not_loaded loads the file if
it was not loaded before.
iimmppoorrttss((_I_m_p_o_r_t))
Specify what to import from the loaded module. The default
for use_module/1 is all. _I_m_p_o_r_t is passed from the second
argument of use_module/2. Traditionally it is a list of
predicate indicators to import. As part of the SWI-Prolog/YAP
integration, we also support _P_r_e_d as _N_a_m_e to import a
predicate under another name. Finally, _I_m_p_o_r_t can be a term
except(_E_x_c_e_p_t_i_o_n_s), where _E_x_c_e_p_t_i_o_n_s is a list of predicate
indicators that specify predicates that are _n_o_t imported or
_P_r_e_d as _N_a_m_e terms to denote renamed predicates. See also
reexport/2 and use_module/2.
If _I_m_p_o_r_t equals all, all operators are imported as well.
Otherwise, operators are _n_o_t imported. Operators can be
imported selectively by adding terms op(_P_r_i_,_A_s_s_o_c_,_N_a_m_e) to the
_I_m_p_o_r_t_s list. If such a term is encountered, all exported
operators that unify with this term are imported. Typically,
this construct will be used with all arguments unbound to
import all operators or with only _N_a_m_e bound to import a
particular operator.
mmuusstt__bbee__mmoodduullee((_B_o_o_l))
If true, raise an error if the file is not a module file.
Used by use_module/[1,2].
qqccoommppiillee((_A_t_o_m))
How to deal with quick-load-file compilation by qcompile/1.
Values are
nneevveerr
Default. Do not use qcompile, unless called explicitely
aauuttoo
Use qcompile for all writeable files. See comment below.
llaarrggee
Use qcompile if the file is `large'. Currently, files
larger than 100 Kbytes are considered large.
ppaarrtt
If this load_file/2 appears in a directive of a file that
is compiled into Quick Load Format using qcompile/1, the
contents of the argument files are included in the .qlf
file instead of the loading directive.
If this option is not present, it used the value of the prolog
flag qcompile as default.
rreeddeeffiinnee__mmoodduullee((_+_A_c_t_i_o_n))
Defines what to do if a file is loaded that provides a module
that is already loaded from another file. _A_c_t_i_o_n is one of
false (default), which prints an error and refuses to load the
file, or true, which uses unload_file/1 on the old file and
then proceeds loading the new file. Finally, there is ask
that starts interaction with the user. Ask is only provided
if user_input is associated with a terminal.
rreeeexxppoorrtt((_B_o_o_l))
If true re-export the imported predicate. Used by reexport/1
and reexport/2.
ssiilleenntt((_B_o_o_l))
If true, load the file without printing a message. The
specified value is the default for all files loaded as a
result of loading the specified files. This option writes the
Prolog flag verbose_load with the negation of _B_o_o_l.
ssttrreeaamm((_I_n_p_u_t))
This SWI-Prolog extension compiles the data from the stream
_I_n_p_u_t. If this option is used, _F_i_l_e_s must be a single
atom which is used to identify the source-location of the
loaded clauses as well as remove all clauses if the data is
re-consulted.
This option is added to allow compiling from non-file
locations such as databases, the web, the _u_s_e_r (see consult/1)
or other servers. It can be combined with format(_q_l_f) to load
QLF data from a stream.
The load_files/2 predicate can be hooked to load other data or
data from other objects than files. See prolog_load_file/2for a
description and http_load for an example.
ccoonnssuulltt((_:_F_i_l_e))
Read _F_i_l_e as a Prolog source file. _F_i_l_e may be a list of files, in
which case all members are consulted in turn. _F_i_l_e may start with
the Unix shell special sequences ~, <_u_s_e_r> and $<_v_a_r>. _F_i_l_e may
also be library(Name), in which case the libraries are searched for
a file with the specified name. See also library_directory/1 and
file_search_path/2. consult/1 may be abbreviated by just typing a
number of file names in a list. Examples:
?- consult(load). % consult load or load.pl
?- [library(quintus)]. % load Quintus compatibility library
?- [user].
The predicate consult/1 is equivalent to load_files(Files, []),
except for handling the special file user, which reads clauses from
the terminal. See also the stream(_I_n_p_u_t) option of load_files/2.
eennssuurree__llooaaddeedd((_:_F_i_l_e))
If the file is not already loaded, this is equivalent to consult/1.
Otherwise, if the file defines a module, import all public
predicates. Finally, if the file is already loaded, is not a
module file and the context module is not the global user module,
ensure_loaded/1 will call consult/1.
With the semantics, we hope to get as closely possible to the clear
semantics without the presence of a module system. Applications
using modules should consider using use_module/[1,2].
Equivalent to load_files(Files, [if(not_loaded)]).
iinncclluuddee((_+_F_i_l_e))
Pretend the terms in _F_i_l_e are in the source-file in which
:- include(File) appears. The include construct is only honoured
if it appears as a directive in a source-file. Normally _F_i_l_e
contains a sequence of directives.
rreeqquuiirree((_+_L_i_s_t_O_f_N_a_m_e_A_n_d_A_r_i_t_y))
Declare that this file/module requires the specified predicates
to be defined ``with their commonly accepted definition''. This
predicate originates from the Prolog portability layer for XPCE.
It is intended to provide a portable mechanism for specifying that
this module requires the specified predicates.
The implementation normally first verifies whether the predicate is
already defined. If not, it will search the libraries and load the
required library.
SWI-Prolog, having autoloading, does nnoott load the library. Instead
it creates a procedure header for the predicate if it does not
exist. This will flag the predicate as `undefined'. See also
check/0 and autoload/0.
eennccooddiinngg((_+_E_n_c_o_d_i_n_g))
This directive can appear anywhere in a source file to define how
characters are encoded in the remainder of the file. It can
be used in files that are encoded with a superset of US-ASCII,
currently UTF-8 and ISO Latin-1. See also section 2.17.1.
mmaakkee
Consult all source files that have been changed since they were
consulted. It checks _a_l_l loaded source files: files loaded
into a compiled state using pl -c ... and files loaded using
consult or one of its derivatives. The predicate make/0 is called
after edit/1, automatically reloading all modified files. If the
user uses an external editor (in a separate window), make/0 is
normally used to update the program after editing. In addition,
make/0 updates the autoload indices (see section 2.13) and runs
list_undefined/0 from the check library to report on undefined
predicates.
lliibbrraarryy__ddiirreeccttoorryy((_?_A_t_o_m))
Dynamic predicate used to specify library directories. Default
./lib, ~/lib/prolog and the system's library (in this order) are
defined. The user may add library directories using assert/1,
asserta/1 or remove system defaults using retract/1.
ffiillee__sseeaarrcchh__ppaatthh((_+_A_l_i_a_s_, _?_P_a_t_h))
Dynamic predicate used to specify `path-aliases'. This feature is
best described using an example. Given the definition
____________________________________________________________________| |
||file_search_path(demo,_'/usr/lib/prolog/demo').___________________ ||
the file specification demo(myfile) will be expanded to /usr/lib/
prolog/demo/myfile. The second argument of file_search_path/2 may
be another alias.
Below is the initial definition of the file search path. This
path implies swi(<_P_a_t_h>) refers to a file in the SWI-Prolog
home directory. The alias foreign(<_P_a_t_h>) is intended for
storing shared libraries (.so or .DLL files). See also
load_foreign_library/[1,2].
____________________________________________________________________| |
| user:file_search_path(library, X) :- |
| library_directory(X). |
| user:file_search_path(swi, Home) :- |
| current_prolog_flag(home, Home). |
| user:file_search_path(foreign, swi(ArchLib)) :- |
| current_prolog_flag(arch, Arch), |
| atom_concat('lib/', Arch, ArchLib). |
||user:file_search_path(foreign,_swi(lib))._________________________ ||
The file_search_path/2expansion is used by all loading predicates
as well as by absolute_file_name/[2,3].
The Prolog flag verbose_file_search can be set to true to help
debugging Prolog's search for files.
eexxppaanndd__ffiillee__sseeaarrcchh__ppaatthh((_+_S_p_e_c_, _-_P_a_t_h))
Unifies _P_a_t_h with all possible expansions of the file name
specification _S_p_e_c. See also absolute_file_name/3.
pprroolloogg__ffiillee__ttyyppee((_?_E_x_t_e_n_s_i_o_n_, _?_T_y_p_e))
This dynamic multifile predicate defined in module user determines
the extensions considered by file_search_path/2. _E_x_t_e_n_s_i_o_n is the
filename extension without the leading dot, _T_y_p_e denotes the type
as used by the file_type(_T_y_p_e) option of file_search_path/2. Here
is the initial definition of prolog_file_type/2:
____________________________________________________________________| |
| user:prolog_file_type(pl, prolog). |
| user:prolog_file_type(Ext, prolog) :- |
| current_prolog_flag(associate, Ext), |
| Ext \== pl. |
| user:prolog_file_type(qlf, qlf). |
| user:prolog_file_type(Ext, executable) :- |
||________current_prolog_flag(shared_object_extension,_Ext).________ ||
Users can add extensions used for Prolog source files to avoid
conflicts (for example with perl) as well as to be compatible with
another Prolog implementation. We suggest using .pro for avoiding
conflicts with perl. Overriding the system definitions can stop
the system from finding libraries.
ssoouurrccee__ffiillee((_?_F_i_l_e))
True if _F_i_l_e is a loaded Prolog source file. _F_i_l_e is the absolute
and canonical path to the source-file.
ssoouurrccee__ffiillee((_?_P_r_e_d_, _?_F_i_l_e))
Is true if the predicate specified by _P_r_e_d was loaded from
file _F_i_l_e, where _F_i_l_e is an absolute path name (see
absolute_file_name/2). Can be used with any instantiation pattern,
but the database only maintains the source file for each predicate.
See also clause_property/2.
uunnllooaadd__ffiillee((_+_F_i_l_e))
Remove all clauses loaded from _F_i_l_e. If _F_i_l_e loaded a module,
clear the module's export-list and disassociates it from the
file. _F_i_l_e is a canonical file-name. See source_file/1,
module_property/2 and absolute_file_name/3.
This predicare shall be used with care. The multi-threaded nature
of SWI-Prolog makes removing static code unsafe. Attempts to do
this should be reserved to development or situations where the
application can guarantee that none of the clauses associated to
_F_i_l_e are active.
pprroolloogg__llooaadd__ccoonntteexxtt((_?_K_e_y_, _?_V_a_l_u_e))
Obtain context information during compilation. This predicate
can be used from directives appearing in a source file to
get information about the file being loaded. See also
source_location/2 and if/1. The following keys are defined:
________________________________________________________________
|__KKeeyy______________________||DDeessccrriippttiioonn________________________________________________________________________||
|| module |Module into which file is loaded |
| source |File loaded. Returns the original Prolog file|
| |when loading a .qlf file. Compatible with|
| |SICStus Prolog. |
| file |Currently equivalent to source. In future|
| |versions it may report a different values for|
| |files being loaded using include/1. |
| stream |Stream identifier (see current_input/1) |
| directory |Directory in which source lives. |
| dialect |Compatibility mode. See expects_dialect/1. |
| term_position |Position of last term read. Term of the form|
| |'$stream_position'(0,<_L_i_n_e>,0,0,0). See also|
| |stream_position_data/3. |
| script |Boolean that indicates whether the file is|
|_______________|loaded_as_a_script_file_(see_-s).______________|
The directory is commonly used add rules to file_search_path/2,
setting up a search-path for finding files with
absolute_file_name/3. E.g.,
____________________________________________________________________| |
| :- dynamic user:file_search_path/2. |
| :- multifile user:file_search_path/2. |
| |
| :- prolog_load_context(directory, Dir), |
| asserta(user:file_search_path(my_program_home, Dir)). |
| |
| ... |
| absolute_file_name(my_program_home('README.TXT'), ReadMe, |
| [ access(read) ]), |
||________..._______________________________________________________ ||
ssoouurrccee__llooccaattiioonn((_-_F_i_l_e_, _-_L_i_n_e))
If the last term has been read from a physical file (i.e., not from
the file user or a string), unify _F_i_l_e with an absolute path to the
file and _L_i_n_e with the line-number in the file. New code should
use prolog_load_context/2.
aatt__hhaalltt((_:_G_o_a_l))
Register _G_o_a_l to be run from PL_cleanup(), which is called when
the system halts. The hooks are run in the reverse order they
were registered (FIFO). Success or failure executing a hook is
ignored. If the hook raises an exception this is printed using
print_message/2. An attempt to call halt/[0,1] from a hook is
ignored.
::-- iinniittiiaalliizzaattiioonn((_:_G_o_a_l)) _[_I_S_O_]
Call _G_o_a_l _a_f_t_e_r loading the source-file in which this directive
appears has been completed. In addition, _G_o_a_l is executed if a
saved-state created using qsave_program/1 is restored.
The ISO standard only allows for using :- Term if _T_e_r_m is a
_d_i_r_e_c_t_i_v_e. This means that arbitrary goals can only be called from
a directive by means of the initialization/1 directive. SWI-Prolog
does not enforce this rule.
The initialization/1 directive must be used to do program
initialization in saved-states (see qsave_program/1). A saved
state contains the predicates, Prolog flags and operators present
at the moment the state was created. Other resources (records,
foreign resources, etc.) must be recreated using initialization/1
directives or from the entry-goal of the saved-state.
Upto SWI-Prolog 5.7.11, _G_o_a_l was executed immediately rather than
after loading the program-text in which the directive appears
as dictated by the ISO standard. In many cases the exact
moment of execution is irrelevant, but there are exceptions.
For example, load_foreign_library/1 must be executed immediately
to make the loaded foreign predicates available for exporting.
SWI-Prolog now provides the directive use_foreign_library/1 to
ensure immediate loading as well as loading after restoring
a saved state. If the system encounters a directive
:- initialization(load_foreign_library(...)), it will load the
foreign library immediately and issue a warning to update your
code. This behaviour can be extended by providing clauses for
the multifile hook predicate prolog:initialize_now(_T_e_r_m_, _A_d_v_i_c_e),
where _A_d_v_i_c_e is an atom that gives advice how to resolve the
compatibility issue.
iinniittiiaalliizzaattiioonn((_:_G_o_a_l_, _+_W_h_e_n))
Similar to initialization/1, but allows for specifying when _G_o_a_l is
executed while loading the program-text:
nnooww
Execute _G_o_a_l immediately.
aafftteerr__llooaadd
Execute _G_o_a_l after loading program-text. This is the same as
initialization/1.
rreessttoorree
Do not execute _G_o_a_l while loading the program, but _o_n_l_y when
restoring a state.
ccoommppiilliinngg
True if the system is compiling source files with the -c option or
qcompile/1 into an intermediate code file. Can be used to perform
conditional code optimisations in term_expansion/2(see also the -O
option) or to omit execution of directives during compilation.
44..33..11 CCoonnddiittiioonnaall ccoommppiillaattiioonn aanndd pprrooggrraamm ttrraannssffoorrmmaattiioonn
ISO Prolog defines no way for program transformations such as
macro expansion or conditional compilation. Expansion through
term_expansion/2 and expand_term/2 can be seen as part of the de-facto
standard. This mechanism can do arbitrary translation between valid
Prolog terms read from the source file to Prolog terms handed to the
compiler. As term_expansion/2 can return a list, the transformation
does not need to be term-to-term.
Various Prolog dialects provide the analogous goal_expansion/2 and
expand_goal/2, that allow for translation of individual body terms,
freeing the user of the task to disassemble each clause.
tteerrmm__eexxppaannssiioonn((_+_T_e_r_m_1_, _-_T_e_r_m_2))
Dynamic and multifile predicate, normally not defined. When
defined by the user all terms read during consulting are given to
this predicate. If the predicate succeeds Prolog will assert _T_e_r_m_2
in the database rather then the read term (_T_e_r_m_1). _T_e_r_m_2 may be a
term of the form `?- _G_o_a_l' or `:- _G_o_a_l'. _G_o_a_l is then treated as a
directive. If _T_e_r_m_2 is a list all terms of the list are stored
in the database or called (for directives). If _T_e_r_m_2 is of the
form below, the system will assert _C_l_a_u_s_e and record the indicated
source-location with it.
'$source_location'(<_F_i_l_e>, <_L_i_n_e>):<_C_l_a_u_s_e>
When compiling a module (see chapter 5 and the directive module/2),
expand_term/2 will first try term_expansion/2 in the module being
compiled to allow for term-expansion rules that are local to
a module. If there is no local definition, or the local
definition fails to translate the term, expand_term/2 will try
term_expansion/2 in module user. For compatibility with SICStus
and Quintus Prolog, this feature should not be used. See also
expand_term/2, goal_expansion/2 and expand_goal/2.
eexxppaanndd__tteerrmm((_+_T_e_r_m_1_, _-_T_e_r_m_2))
This predicate is normally called by the compiler on terms read
from the input to perform preprocessing. It consists of three
steps, where each step processes the output of the previous step.
1. Test conditional compilation directives and translate all
input to [] if we are in a `false-branch' of the conditional
compilation. See section 4.3.1.1.
2. Call term_expansion/2. This predicate is first tried in the
module that is being compiled and then in the module user.
3. Call DGC expansion (dcg_translate_rule/2)
4. Call expand_goal/2 on each body-term that appears in the output
of the previous steps.
ggooaall__eexxppaannssiioonn((_+_G_o_a_l_1_, _-_G_o_a_l_2))
Like term_expansion/2, goal_expansion/2 provides for macro-
expansion of Prolog source-code. Between expand_term/2 and the
actual compilation, the body of clauses analysed and the goals are
handed to expand_goal/2, which uses the goal_expansion/2 hook to do
user-defined expansion.
The predicate goal_expansion/2 is first called in the module that
is being compiled, and then on the user module. If _G_o_a_l is of the
form _M_o_d_u_l_e:_G_o_a_l where _M_o_d_u_l_e is instantiated, goal_expansion/2 is
called on _G_o_a_l using rules from module _M_o_d_u_l_e followed by user.
Only goals appearing in the body of clauses when reading a
source-file are expanded using this mechanism, and only if they
appear literally in the clause, or as an argument to a defined
meta-predicate that is annotated using `0' (see meta_predicate/1).
Other cases need a real predicate definition.
eexxppaanndd__ggooaall((_+_G_o_a_l_1_, _-_G_o_a_l_2))
This predicate is normally called by the compiler to perform
preprocessing using goal_expansion/2. The predicate computes a
fixed-point by applying transformations until there are no more
changes. If optimisation is enabled (see -O and optimise),
expand_goal/2 simplifies the result by removing unneeded calls to
true/0 and fail/0 as well as unreachable branches.
ccoommppiillee__aauuxx__ccllaauusseess((_+_C_l_a_u_s_e_s))
Compile clauses on behalf of goal_expansion/2. This predicate
compiled the argument clauses into static predicates, associating
the predicates with the current file but avoid changing the notion
of current predicate and therefore discontiguous warnings.
ddccgg__ttrraannssllaattee__rruullee((_+_I_n_, _-_O_u_t))
This predicate performs the translation of a term Head-->Body into
a normal Prolog clause. Normally this functionality should be
accessed using expand_term/2.
pprreepprroocceessssoorr((_-_O_l_d_, _+_N_e_w))
Read the input file via an external process that acts as
preprocessor. A preprocessor is specified as an atom. The first
occurrence of the string `%f' is replaced by the name of the file
to be loaded. The standard output of resulting command is loaded.
To use the Unix C preprocessor one should define:
____________________________________________________________________| |
| ?- preprocessor(Old, '/lib/cpp -C -P %f'), consult(...). |
| |
||Old_=_none________________________________________________________ ||
Using cpp for Prolog preprocessing is not ideal as the tokenization
rules for comment and quoted strings differ between C and Prolog.
Another problem is availability and compatibility with regard to
option processing of cpp.
44..33..11..11 CCoonnddiittiioonnaall ccoommppiillaattiioonn
Conditional compilation builds on the same principle as
term_expansion/2, goal_expansion/2 and the expansion of grammar
rules to compile sections of the source-code conditionally. One of the
reasons for introducing conditional compilation is to simplify writing
portable code. See section 13 for more information. Here is a simple
example:
________________________________________________________________________| |
|:- if(\+source_exports(library(lists), suffix/2)). |
| |
|suffix(Suffix, List) :- |
| append(_, Suffix, List). |
| |
|:-|endif.______________________________________________________________ | |
Note that these directives can only appear as separate terms in the
input. Typical usage scenarios include:
o Load different libraries on different dialects
o Define a predicate if it is missing as a system predicate
o Realise totally different implementations for a particular part of
the code due to different capabilities.
o Realise different configuration options for your software.
::-- iiff((_:_G_o_a_l))
Compile subsequent code only if _G_o_a_l succeeds. For enhanced
portability, _G_o_a_l is processed by expand_goal/2 before execution.
If an error occurs, the error is printed and processing proceeds as
if _G_o_a_l has failed.
::-- eelliiff((_:_G_o_a_l))
Equivalent to :- else. :-if(Goal) ... :- endif. In a sequence as
below, the section below the first matching elif is processed, If
no test succeeds the else branch is processed.
____________________________________________________________________| |
| :- if(test1). |
| section_1. |
| :- elif(test2). |
| section_2. |
| :- elif(test3). |
| section_3. |
| :- else. |
| section_else. |
||:-_endif._________________________________________________________ ||
::-- eellssee
Start `else' branch.
::-- eennddiiff
End of conditional compilation.
44..33..22 LLooaaddiinngg ffiilleess,, aaccttiivvee ccooddee aanndd tthhrreeaaddss
Traditionally, Prolog environments allow for reloading files holding
currently active code. In particular, the following sequence is valid
use of the development environment:
o Trace a goal
o Find unexpected behaviour of a predicate
o Enter a _b_r_e_a_k using the bb command
o Fix the sources and reload them using make/0
o Exit the break, _r_e_t_r_y using the rr command
Goals running during the reload keep running on the old definition,
while new goals use the reloaded definition, which is why the _r_e_t_r_y
must be used _a_f_t_e_r the reload. This implies that clauses of predicates
that are active during the reload cannot be reclaimed. Normally a
small amount of dead clauses should not be an issue during development.
Such clauses can be reclaimed with garbage_collect_clauses/0.
ggaarrbbaaggee__ccoolllleecctt__ccllaauusseess
Cleanup all _d_i_r_t_y predicates, where dirty predicates are defined
to be predicates that have both old and new definitions due to
reloading a source file while the predicate was active. Of
course, predicates that are active using garbage_collect_clauses/0
cannot be reclaimed and remain _d_i_r_t_y. Predicate are -like atoms-
shared resources and therefore all threads are suspended during the
execution of this predicate.
44..33..22..11 TThhrreeaaddss aanndd rreellooaaddiinngg rruunnnniinngg ccooddee
As of version 5.5.30, there is basic thread-safety for reloading source
files while other threads are executing code defined in these source
files. Reloading a file freezes all threads after marking the active
predicates originating from the file being reloaded. The threads are
resumed after the file has been loaded. In addition, after completing
loading the outermost file, the system runs garbage_collect_clauses/0.
What does that mean? Unfortunately it does _n_o_t mean we can `hot-swap'
modules. Consider the case where thread A is executing the recursive
predicate P. We `fix' P and reload. The already running goals for
P continue to run the old definition, but new recursive calls will
use the new definition! Many similar cases can be constructed with
dependent predicates.
It provides some basic security for reloading files in multi-threaded
applications during development. In the above scenarios the system
does not crash uncontrolled, but behaves like any broken program: it
may return the wrong bindings, wrong truth value or raise an exception.
Future versions may have an `update now' facility. Such a facility
can be implemented on top of the _l_o_g_i_c_a_l _u_p_d_a_t_e _v_i_e_w. It would allow
threads to do a controlled update between processing independent jobs.
44..33..33 QQuuiicckk llooaadd ffiilleess
SWI-Prolog supports compilation of individual or multiple Prolog source
files into `Quick Load Files'. A `Quick Load Files' (.qlf file) stores
the contents of the file in a precompiled format.
These files load considerably faster than source files and are normally
more compact. They are machine independent and may thus be loaded
on any implementation of SWI-Prolog. Note however that clauses are
stored as virtual machine instructions. Changes to the compiler will
generally make old compiled files unusable.
Quick Load Files are created using qcompile/1. They are loaded using
consult/1 or one of the other file-loading predicates described in
section 4.3. If consult is given the explicit .pl file, it will load
the Prolog source. When given the .qlf file, it will load the file.
When no extension is specified, it will load the .qlf file when present
and the .pl file otherwise.
qqccoommppiillee((_:_F_i_l_e))
Takes a file specification as consult/1, etc. and, in addition to
the normal compilation, creates a _Q_u_i_c_k _L_o_a_d _F_i_l_e from _F_i_l_e. The
file-extension of this file is .qlf. The base name of the Quick
Load File is the same as the input file.
If the file contains `:- consult(_+_F_i_l_e)', `:- [_+_F_i_l_e]' or
:- load_files(_+_F_i_l_e, [qcompile(true), ...]) statements, the re-
ferred files are compiled into the same .qlf file. Other
directives will be stored in the .qlf file and executed in the same
fashion as when loading the .pl file.
For term_expansion/2, the same rules as described in section 2.10
apply.
Conditional execution or optimisation may test the predicate
compiling/0.
Source references (source_file/2) in the Quick Load File refer to
the Prolog source file from which the compiled code originates.
qqccoommppiillee((_:_F_i_l_e_, _+_O_p_t_i_o_n_s))
As qcompile/1, but processes additional options as defined by
load_files/2.
44..44 LLiissttiinngg aanndd EEddiittoorr IInntteerrffaaccee
SWI-Prolog offers an extensible interface which allows the user to
edit objects of the program: predicates, modules, files, etc. The
editor interface is implemented by edit/1 and consists of three parts:
_l_o_c_a_t_i_n_g, _s_e_l_e_c_t_i_n_g and _s_t_a_r_t_i_n_g _t_h_e _e_d_i_t_o_r.
Any of these parts may be extended or redefined by adding clauses to
various multi-file (see multifile/1) predicates defined in the module
prolog_edit.
The built-in edit specifications for edit/1 (see prolog_edit:locate/3)
are described below.
___________________________________________________________________
|__________________________________________FFuullllyy__ssppeecciiffiieedd__oobbjjeeccttss____________________________________________||
|| <_M_o_d_u_l_e>:<_N_a_m_e>/<_A_r_i_t_y>R|efers a predicate |
| module(<_M_o_d_u_l_e>) |Refers to a module |
| file(<_P_a_t_h>) |Refers to a file |
|_source_file(<_P_a_t_h>)___R|efers_to_a_loaded_source-file___________|_
|__________________________________________AAmmbbiigguuoouuss__ssppeecciiffiiccaattiioonnss__________________________________________||
|| <_N_a_m_e>/<_A_r_i_t_y> R|efers this predicate in any module |
| <_N_a_m_e> |Refers to (1) named predicate in any|
| |module with any arity, (2) a (source)|
|_______________________|file_or_(3)_a_module.____________________|_
eeddiitt((_+_S_p_e_c_i_f_i_c_a_t_i_o_n))
First exploits prolog_edit:locate/3 to translate _S_p_e_c_i_f_i_c_a_t_i_o_n into
a list of _L_o_c_a_t_i_o_n_s. If there is more than one `hit', the
user is asked to select from the locations found. Finally,
prolog_edit:edit_source/1 is used to invoke the user's preferred
editor. Typically, edit/1 can be handed the name of a predicate,
module, basename of a file, XPCE class, XPCE method, etc.
eeddiitt
Edit the `default' file using edit/1. The default file is the file
loaded with the command-line option -s or, in windows, the file
loaded by double-clicking from the Windows shell.
pprroolloogg__eeddiitt::llooccaattee((_+_S_p_e_c_, _-_F_u_l_l_S_p_e_c_, _-_L_o_c_a_t_i_o_n))
Where _S_p_e_c is the specification provided through edit/1. This
multifile predicate is used to enumerate locations at with an
object satisfying the given _S_p_e_c can be found. _F_u_l_l_S_p_e_c is unified
with the complete specification for the object. This distinction
is used to allow for ambiguous specifications. For example, if
_S_p_e_c is an atom, which appears as the base-name of a loaded
file and as the name of a predicate, _F_u_l_l_S_p_e_c will be bound to
file(_P_a_t_h) or _N_a_m_e/_A_r_i_t_y.
_L_o_c_a_t_i_o_n is a list of attributes of the location. Normally, this
list will contain the term file(_F_i_l_e) and ---if available--- the
term line(_L_i_n_e).
pprroolloogg__eeddiitt::llooccaattee((_+_S_p_e_c_, _-_L_o_c_a_t_i_o_n))
Same as prolog_edit:locate/3, but only deals with fully-specified
objects.
pprroolloogg__eeddiitt::eeddiitt__ssoouurrccee((_+_L_o_c_a_t_i_o_n))
Start editor on _L_o_c_a_t_i_o_n. See prolog_edit:locate/3 for the format
of a location term. This multi-file predicate is normally not
defined. If it succeeds, edit/1 assumes the editor is started.
If it fails, edit/1 uses its internal defaults, which are defined
by the Prolog flag editor and/or the environment variable EDITOR.
The following rules apply. If the Prolog flag editor is of
the format $<_n_a_m_e>, the editor is determined by the environment
variable <_n_a_m_e>. Else, if this flag is pce_emacs or built_in _a_n_d
XPCE is loaded or can be loaded, the built-in Emacs clone is
used. Else, if the environment EDITOR is set, this editor is used.
Finally, vi is used as default on Unix systems and notepad on
Windows.
See the default user preferences file dotfiles/dotplrc for
examples.
pprroolloogg__eeddiitt::eeddiitt__ccoommmmaanndd((_+_E_d_i_t_o_r_, _-_C_o_m_m_a_n_d))
Determines how _E_d_i_t_o_r is to be invoked using shell/1. _E_d_i_t_o_r is
the determined editor (see edit_source/1), without the full path
specification, and without possible (exe) extension. _C_o_m_m_a_n_d is
an atom describing the command. The pattern %f is replaced by
the full file-name of the location, and %d by the line number.
If the editor can deal with starting at a specified line, two
clauses should be provided, one holding only the %f pattern, and
one holding both patterns.
The default contains definitions for vi, emacs, emacsclient, vim
and notepad (latter without line-number version).
Please contribute your specifications to jan@swi.psy.uva.nl.
pprroolloogg__eeddiitt::llooaadd
Normally not-defined multifile predicate. This predicate may
be defined to provide loading hooks for user-extensions to the
edit module. For example, XPCE provides the code below to load
swi_edit, containing definitions to locate classes and methods as
well as to bind this package to the PceEmacs built-in editor.
____________________________________________________________________| |
| :- multifile prolog_edit:load/0. |
| |
| prolog_edit:load :- |
||________ensure_loaded(library(swi_edit))._________________________ ||
lliissttiinngg((_+_P_r_e_d))
List specified predicates (when an atom is given all predicates
with this name will be listed). The listing is produced on the
basis of the internal representation, thus losing user's layout and
variable name information. See also portray_clause/1.
lliissttiinngg
List all predicates of the database using listing/1.
ppoorrttrraayy__ccllaauussee((_+_C_l_a_u_s_e))
Pretty print a clause. A clause should be specified as a term
`<_H_e_a_d> :- <_B_o_d_y>'. Facts are represented as `<_H_e_a_d> :- true' or
simply <_H_e_a_d>. Variables in the clause are written as A, B, ....
Singleton variables are written as _. See also portray_clause/2.
ppoorrttrraayy__ccllaauussee((_+_S_t_r_e_a_m_, _+_C_l_a_u_s_e))
Pretty print a clause to _S_t_r_e_a_m. See portray_clause/1 for details.
44..55 VVeerriiffyy TTyyppee ooff aa TTeerrmm
vvaarr((_+_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m currently is a free variable.
nnoonnvvaarr((_+_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m currently is not a free variable.
iinntteeggeerr((_+_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to an integer.
ffllooaatt((_+_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to a floating point number.
rraattiioonnaall((_+_T_e_r_m))
True if _T_e_r_m is bound to a rational number. Rational numbers
include integers.
rraattiioonnaall((_+_T_e_r_m_, _-_N_u_m_e_r_a_t_o_r_, _-_D_e_n_o_m_i_n_a_t_o_r))
True if _T_e_r_m is a rational number with given _N_u_m_e_r_a_t_o_r and
_D_e_n_o_m_i_n_a_t_o_r. The _N_u_m_e_r_a_t_o_r and _D_e_n_o_m_i_n_a_t_o_r are in canonical form,
which means _D_e_n_o_m_i_n_a_t_o_r is a positive integer and there are no
common divisors between _N_u_m_e_r_a_t_o_r and _D_e_n_o_m_i_n_a_t_o_r.
nnuummbbeerr((_+_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to an integer or floating point number.
aattoomm((_+_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to an atom.
bblloobb((_@_T_e_r_m_, _?_T_y_p_e))
True if _T_e_r_m is a _b_l_o_b of type _T_y_p_e. See section 9.4.7.
ssttrriinngg((_+_T_e_r_m))
True if _T_e_r_m is bound to a string. Note that string here refers to
the built-in atomic type string as described in section 4.22, Text
in double quotes such as "hello" creates a _l_i_s_t of _c_h_a_r_a_c_t_e_r _c_o_d_e_s.
We illustrate the issues in the example queries below.
____________________________________________________________________| |
| ?- write("hello"). |
| [104, 101, 108, 108, 111] |
| ?- string("hello"). |
| No |
| ?- is_list("hello"). |
||Yes_______________________________________________________________ ||
aattoommiicc((_+_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to an atom, string, integer or floating
point number. Note that string refers to the built-in type. See
string/1. Strings in the classical Prolog sense are lists and
therefore compound.
ccoommppoouunndd((_+_T_e_r_m)) _[_I_S_O_]
True if _T_e_r_m is bound to a compound term. See also functor/3 and
=../2.
ccaallllaabbllee((_+_T_e_r_m))
True if _T_e_r_m is bound to an atom or a compound term, so it can be
handed without type-error to call/1, functor/3 and =../2.
ggrroouunndd((_+_T_e_r_m))
True if _T_e_r_m holds no free variables.
ccyycclliicc__tteerrmm((_+_T_e_r_m))
True if _T_e_r_m contains cycles, i.e. is an infinite term. See also
acyclic_term/1 and section 2.16.
aaccyycclliicc__tteerrmm((_+_T_e_r_m))
True if _T_e_r_m does not contain cycles, i.e. can be processed
recursively in finite time. See also cyclic_term/1 and
section 2.16.
44..66 CCoommppaarriissoonn aanndd UUnniiffiiccaattiioonn ooff TTeerrmmss
Although unification is mostly done implicitly while matching the head
of a predicate, it is also provided by the predicate =/2.
_+_T_e_r_m_1 = _+_T_e_r_m_2 _[_I_S_O_]
Unify _T_e_r_m_1 with _T_e_r_m_2. True if the unification succeeds. For
behaviour on cyclic terms see the Prolog flag occurs_check. It
acts as if defined by the following fact.
____________________________________________________________________| |
||=(Term,_Term).____________________________________________________ ||
_+_T_e_r_m_1 \= _+_T_e_r_m_2 _[_I_S_O_]
Equivalent to \+Term1 = Term2. See also dif/2.
44..66..11 SSttaannddaarrdd OOrrddeerr ooff TTeerrmmss
Comparison and unification of arbitrary terms. Terms are ordered in
the so called ``standard order''. This order is defined as follows:
1. _V_a_r_i_a_b_l_e_s <_N_u_m_b_e_r_s <_A_t_o_m_s <_S_t_r_i_n_g_s <_C_o_m_p_o_u_n_d _T_e_r_m_s
2. Variables are sorted by address. Attaching attributes (see
section 6.1) does not affect the ordering.
3. _A_t_o_m_s are compared alphabetically.
4. _S_t_r_i_n_g_s are compared alphabetically.
5. _N_u_m_b_e_r_s are compared by value. Mixed integer/float are compared as
floats. If the comparison is equal, the float is considered the
smaller value. If the Prolog flag iso is defined, all floating
point numbers precede all integers.
6. _C_o_m_p_o_u_n_d terms are first checked on their arity, then on their
functor-name (alphabetically) and finally recursively on their
arguments, leftmost argument first.
_+_T_e_r_m_1 == _+_T_e_r_m_2 _[_I_S_O_]
True if _T_e_r_m_1 is equivalent to _T_e_r_m_2. A variable is only identical
to a sharing variable.
_+_T_e_r_m_1 \== _+_T_e_r_m_2 _[_I_S_O_]
Equivalent to \+Term1 == Term2.
_+_T_e_r_m_1 @< _+_T_e_r_m_2 _[_I_S_O_]
True if _T_e_r_m_1 is before _T_e_r_m_2 in the standard order of terms.
_+_T_e_r_m_1 @=< _+_T_e_r_m_2 _[_I_S_O_]
True if both terms are equal (==/2) or _T_e_r_m_1 is before _T_e_r_m_2 in the
standard order of terms.
_+_T_e_r_m_1 @> _+_T_e_r_m_2 _[_I_S_O_]
True if _T_e_r_m_1 is after _T_e_r_m_2 in the standard order of terms.
_+_T_e_r_m_1 @>= _+_T_e_r_m_2 _[_I_S_O_]
True if both terms are equal (==/2) or _T_e_r_m_1 is after _T_e_r_m_2 in the
standard order of terms.
ccoommppaarree((_?_O_r_d_e_r_, _+_T_e_r_m_1_, _+_T_e_r_m_2))
Determine or test the _O_r_d_e_r between two terms in the standard order
of terms. _O_r_d_e_r is one of <, > or =, with the obvious meaning.
44..66..22 SSppeecciiaall uunniiffiiccaattiioonn aanndd ccoommppaarriissoonn pprreeddiiccaatteess
This section describes special purpose variations on Prolog
unification. The predicate unify_with_occurs_check/2 provides sound
unification and is part of the ISO standard. The predicate
subsumes_term/2 defines `one-sided-unification' and is part of the ISO
proposal established in Edinburgh (2010). Finally, unifiable/3 is a
`what-if' version of unification that is often used as a building block
in constraint reasoners.
uunniiffyy__wwiitthh__ooccccuurrss__cchheecckk((_+_T_e_r_m_1_, _+_T_e_r_m_2)) _[_I_S_O_]
As =/2, but using _s_o_u_n_d_-_u_n_i_f_i_c_a_t_i_o_n. That is, a variable only
unifies to a term if this term does not contain the variable
itself. To illustrate this, consider the two goals below:
____________________________________________________________________| |
| 1 ?- A = f(A). |
| |
| A = f(f(f(f(f(f(f(f(f(f(...)))))))))) |
| 2 ?- unify_with_occurs_check(A, f(A)). |
| |
||No________________________________________________________________ ||
I.e. the first creates a _c_y_c_l_i_c_-_t_e_r_m, which is printed as
an infinitely nested f/1 term (see the max_depth option of
write_term/2). The second executes logically sound unification and
thus fails. Note that the behaviour of unification through =/2 as
well as implicit unification in the head can be changed using the
Prolog flag occurs_check.
_+_T_e_r_m_1 =@= _+_T_e_r_m_2
True if _T_e_r_m_1 is a _v_a_r_i_a_n_t of (or _s_t_r_u_c_t_u_r_a_l_l_y _e_q_u_i_v_a_l_e_n_t to)
_T_e_r_m_2. Testing for a variant is weaker than equivalence (==/2),
but stronger than unification (=/2). Two terms A and B are
variants iff there exists a renaming of the variables in A that
makes A equivalent (==) to B and visa-versa. Examples:
1 a =@= A false
2 A =@= B true
3 x(A,A) =@= x(B,C) false
4 x(A,A) =@= x(B,B) true
5 x(A,A) =@= x(A,B) false
6 x(A,B) =@= x(C,D) true
7 x(A,B) =@= x(B,A) true
8 x(A,B) =@= x(C,A) true
A term is always a variant of a copy of itself. Term copying takes
place in e.g., copy_term/2, findall/3 or proving a clause added
with asserta/1. In the pure Prolog world (i.e., without attributed
variables), =@=/2 behaves as if defined below. With attributed
variables, variant of the attributes is tested rather than trying
to satisfy the constraints.
____________________________________________________________________| |
| A =@= B :- |
| copy_term(A, Ac), |
| copy_term(B, Bc), |
| numbervars(Ac, 0, N), |
| numbervars(Bc, 0, N), |
||________Ac_==_Bc._________________________________________________ ||
The SWI-Prolog implementation is cycle-safe and can deal with
variables that are shared between the left and right argument. Its
performance is comparable to ==/2, both on success and (early)
failure. Unlike ==, the variant implementation does not benefit
from sharing subterms.
This predicate is known by the name variant/2 in some other Prolog
systems. Be aware of possible differences in semantics if the
arguments contain attributed variables or share variables.
_+_T_e_r_m_1 \=@= _+_T_e_r_m_2
Equivalent to `\+Term1 =@= Term2'. See =@=/2 for details.
ssuubbssuummeess__tteerrmm((_@_G_e_n_e_r_i_c_, _@_S_p_e_c_i_f_i_c)) _[_I_S_O_]
True if _G_e_n_e_r_i_c can be made equivalent to _S_p_e_c_i_f_i_c by only binding
variables in _G_e_n_e_r_i_c. The current implementation performs the
unification and ensures that the variable set of _S_p_e_c_i_f_i_c is not
changed by the unification. On success, the bindings are undone.
tteerrmm__ssuubbssuummeerr((_+_S_p_e_c_i_a_l_1_, _+_S_p_e_c_i_a_l_2_, _-_G_e_n_e_r_a_l))
_G_e_n_e_r_a_l is the most specific term that is a generalisation of
_S_p_e_c_i_a_l_1 and _S_p_e_c_i_a_l_2. The implementation can handle cyclic terms.
uunniiffiiaabbllee((_@_X_, _@_Y_, _-_U_n_i_f_i_e_r))
If _X and _Y can unify, unify _U_n_i_f_i_e_r with a list of _V_a_r = _V_a_l_u_e,
representing the bindings required to make _X and _Y equivalent.
This predicate can handle cyclic terms. Attributed variables are
handles as normal variables. Associated hooks are _n_o_t executed.
??==((_@_T_e_r_m_1_, _@_T_e_r_m_2))
Succeeds, if the syntactic equality of _T_e_r_m_1 and _T_e_r_m_2 can be
decided safely, i.e. if the result of Term1 == Term2 will not
change due to further instantiation of either term. It behaves as
if defined by ?=(X,Y) :- \+ unifiable(X,Y,[_|_]).
44..77 CCoonnttrrooll PPrreeddiiccaatteess
The predicates of this section implement control structures. Normally
the constructs in this section, except for repeat/0, are translated by
the compiler. Please note that complex goals passed as arguments to
meta-predicates such as findall/3 below cause the goal to be compiled
to a temporary location before execution. It is faster to define a
sub-predicate (i.e. one_character_atom/1 in the example below) and make
a call to this simple predicate.
________________________________________________________________________| |
|one_character_atoms(As) :- |
||_______findall(A,_(current_atom(A),_atom_length(A,_1)),_As).__________ ||
ffaaiill _[_I_S_O_]
Always fail. The predicate fail/0 is translated into a single
virtual machine instruction.
ffaallssee
Same as fail, but the name has a more declarative connotation.
ttrruuee _[_I_S_O_]
Always succeed. The predicate true/0 is translated into a single
virtual machine instruction.
rreeppeeaatt _[_I_S_O_]
Always succeed, provide an infinite number of choice points.
! _[_I_S_O_]
Cut. Discard choice points of parent frame and frames created
after the parent frame. As of SWI-Prolog 3.3, the semantics of the
cut are compliant with the ISO standard. This implies that the
cut is transparent to ;/2, ->/2 and *->/2. Cuts appearing in the
_c_o_n_d_i_t_i_o_n part of ->/2 and *->/2 as well as in \+/1 are local to
the condition.
t1 :- (a, !, fail ; b). % cuts a/0 and t1/0
t2 :- (a -> b, ! ; c). % cuts b/0 and t2/0
t3 :- call((a, !, fail ; b)). % cuts a/0
t4 :- \+(a, !, fail ; b). % cuts a/0
_:_G_o_a_l_1 , _:_G_o_a_l_2 _[_I_S_O_]
Conjunction. True if both `Goal1' and `Goal2' can be proved. It
is defined as (this definition does not lead to a loop as the
second comma is handled by the compiler):
____________________________________________________________________| |
||Goal1,_Goal2_:-_Goal1,_Goal2._____________________________________ ||
_:_G_o_a_l_1 ; _:_G_o_a_l_2 _[_I_S_O_]
The `or' predicate is defined as:
____________________________________________________________________| |
| Goal1 ; _Goal2 :- Goal1. |
||_Goal1_;_Goal2_:-_Goal2.__________________________________________ ||
_:_G_o_a_l_1 | _:_G_o_a_l_2
Equivalent to ;/2. Retained for compatibility only. New code
should use ;/2.
_:_C_o_n_d_i_t_i_o_n -> _:_A_c_t_i_o_n _[_I_S_O_]
If-then and If-Then-Else. The ->/2 construct commits to the
choices made at its left-hand side, destroying choice-points
created inside the clause (by ;/2), or by goals called by this
clause. Unlike !/0, the choice-point of the predicate as a whole
(due to multiple clauses) is nnoott destroyed. The combination ;/2
and ->/2 acts as if defines by:
____________________________________________________________________| |
| If -> Then; _Else :- If, !, Then. |
| If -> _Then; Else :- !, Else. |
||If_->_Then_:-_If,_!,_Then.________________________________________ ||
Please note that (If -> Then) acts as (If -> Then ; ffaaiill), making
the construct _f_a_i_l if the condition fails. This unusual semantics
is part of the ISO and all de-facto Prolog standards.
_:_C_o_n_d_i_t_i_o_n *-> _:_A_c_t_i_o_n _; _:_E_l_s_e
This construct implements the so-called `soft-cut'. The control
is defined as follows: If _C_o_n_d_i_t_i_o_n succeeds at least once, the
semantics is the same as (_C_o_n_d_i_t_i_o_n, _A_c_t_i_o_n). If _C_o_n_d_i_t_i_o_n does
not succeed, the semantics is that of (\+ _C_o_n_d_i_t_i_o_n, _E_l_s_e). In
other words, If _C_o_n_d_i_t_i_o_n succeeds at least once, simply behave as
the conjunction of _C_o_n_d_i_t_i_o_n and _A_c_t_i_o_n, otherwise execute _E_l_s_e.
The construct _A *-> _B, i.e. without an _E_l_s_e branch, is translated
as the normal conjunction _A, _B.
\+ _:_G_o_a_l _[_I_S_O_]
True if `Goal' cannot be proven (mnemonic: + refers to _p_r_o_v_a_b_l_e
and the backslash (\) is normally used to indicate negation in
Prolog).
44..88 MMeettaa--CCaallll PPrreeddiiccaatteess
Meta-call predicates are used to call terms constructed at run time.
The basic meta-call mechanism offered by SWI-Prolog is to use variables
as a subclause (which should of course be bound to a valid goal at
runtime). A meta-call is slower than a normal call as it involves
actually searching the database at runtime for the predicate, while for
normal calls this search is done at compile time.
ccaallll((_:_G_o_a_l)) _[_I_S_O_]
Invoke _G_o_a_l as a goal. Note that clauses may have variables as
subclauses, which is identical to call/1.
ccaallll((_:_G_o_a_l_, _+_E_x_t_r_a_A_r_g_1_, _._._.))
Append _E_x_t_r_a_A_r_g_1_, _E_x_t_r_a_A_r_g_2_, _._._. to the argument list of _G_o_a_l
and call the result. For example, call(plus(1), 2, X) will call
plus(1, 2, X), binding _X to 3.
The call/[2..] construct is handled by the compiler, which implies
that redefinition as a predicate has no effect. The predicates
call/[2-6] are defined as real predicates, so they can be handled
by interpreted code.
aappppllyy((_:_G_o_a_l_, _+_L_i_s_t))
Append the members of _L_i_s_t to the arguments of _G_o_a_l and call the
resulting term. For example: apply(plus(1), [2, X]) will call
plus(1, 2, X). apply/2 is incorporated in the virtual machine of
SWI-Prolog. This implies that the overhead can be compared to the
overhead of call/1. New code should use call/[2..] if the length
of _L_i_s_t is fixed, which is more widely supported and faster because
there is no need to build and examine the argument list.
nnoott((_:_G_o_a_l))
True if _G_o_a_l cannot be proven. Retained for compatibility only.
New code should use \+/1.
oonnccee((_:_G_o_a_l)) _[_I_S_O_]
Defined as:
____________________________________________________________________| |
| once(Goal) :- |
||________Goal,_!.__________________________________________________ ||
once/1 can in many cases be replaced with ->/2. The only
difference is how the cut behaves (see !/0). The following two
clauses are identical:
____________________________________________________________________| |
| 1) a :- once((b, c)), d. |
||2)_a_:-_b,_c_->_d.________________________________________________ ||
iiggnnoorree((_:_G_o_a_l))
Calls _G_o_a_l as once/1, but succeeds, regardless of whether _G_o_a_l
succeeded or not. Defined as:
____________________________________________________________________| |
| ignore(Goal) :- |
| Goal, !. |
||ignore(_).________________________________________________________ ||
ccaallll__wwiitthh__ddeepptthh__lliimmiitt((_:_G_o_a_l_, _+_L_i_m_i_t_, _-_R_e_s_u_l_t))
If _G_o_a_l can be proven without recursion deeper than _L_i_m_i_t levels,
call_with_depth_limit/3 succeeds, binding _R_e_s_u_l_t to the deepest
recursion level used during the proof. Otherwise, _R_e_s_u_l_t is
unified with depth_limit_exceeded if the limit was exceeded during
the proof, or the entire predicate fails if _G_o_a_l fails without
exceeding _L_i_m_i_t.
The depth-limit is guarded by the internal machinery. This may
differ from the depth computed based on a theoretical model. For
example, true/0 is translated into an inlined virtual machine
instruction. Also, repeat/0 is not implemented as below, but as a
non-deterministic foreign predicate.
____________________________________________________________________| |
| repeat. |
| repeat :- |
||________repeat.___________________________________________________ ||
As a result, call_with_depth_limit/3may still loop infinitely on
programs that should theoretically finish in finite time. This
problem can be cured by using Prolog equivalents to such built-in
predicates.
This predicate may be used for theorem-provers to realise
techniques like _i_t_e_r_a_t_i_v_e _d_e_e_p_e_n_i_n_g. It was implemented after
discussion with Steve Moyle smoyle@ermine.ox.ac.uk.
sseettuupp__ccaallll__cclleeaannuupp((_:_S_e_t_u_p_, _:_G_o_a_l_, _:_C_l_e_a_n_u_p))
Calls (once(Setup), Goal). If _S_e_t_u_p succeeds, _C_l_e_a_n_u_p will
be called exactly once after _G_o_a_l is finished: either on
failure, deterministic success, commit, or an exception. The
execution of _S_e_t_u_p is protected from asynchronous interrupts like
call_with_time_limit/2 (package clib) or thread_signal/2. In most
uses, _S_e_t_u_p will perform temporary side-effects required by _G_o_a_l
that are finally undone by _C_l_e_a_n_u_p.
Success or failure of _C_l_e_a_n_u_p is ignored and choice-points it
created are destroyed (as once/1). If _C_l_e_a_n_u_p throws an exception,
this is executed as normal.
Typically, this predicate is used to cleanup permanent data storage
required to execute _G_o_a_l, close file-descriptors, etc. The example
below provides a non-deterministic search for a term in a file,
closing the stream as needed.
____________________________________________________________________| |
| term_in_file(Term, File) :- |
| setup_call_cleanup(open(File, read, In), |
| term_in_stream(Term, In), |
| close(In) ). |
| |
| term_in_stream(Term, In) :- |
| repeat, |
| read(In, T), |
| ( T == end_of_file |
| -> !, fail |
| ; T = Term |
||________).________________________________________________________ ||
Note that it is impossible to implement this predicate in Prolog.
The closest approximation would be to read all terms into a list,
close the file and call member/2. Without setup_call_cleanup/3
there is no way to gain control if the choice-point left by repeat
is removed by a cut or an exception.
setup_call_cleanup/3 can also be used to test determinism of a
goal, providing a portable alternative to deterministic/1:
____________________________________________________________________| |
| ?- setup_call_cleanup(true,(X=1;X=2), Det=yes). |
| |
| X = 1 ; |
| |
| X = 2, |
||Det_=_yes_;_______________________________________________________ ||
This predicate is under consideration for inclusion into the ISO
standard. For compatibility with other Prolog implementations see
call_cleanup/2.
sseettuupp__ccaallll__ccaattcchheerr__cclleeaannuupp((_:_S_e_t_u_p_, _:_G_o_a_l_, _+_C_a_t_c_h_e_r_, _:_C_l_e_a_n_u_p))
Similar to setup_call_cleanup(_S_e_t_u_p_, _G_o_a_l_, _C_l_e_a_n_u_p) with additional
information on the reason of calling _C_l_e_a_n_u_p. Prior to calling
_C_l_e_a_n_u_p, _C_a_t_c_h_e_r unifies with the termination code (see below). If
this unification fails, _C_l_e_a_n_u_p is _n_o_t called.
eexxiitt
_G_o_a_l succeeded without leaving any choice-points.
ffaaiill
_G_o_a_l failed.
!
_G_o_a_l succeeded with choice-points and these are now discarded
by the execution of a cut (or other pruning of the search tree
such as if-then-else).
eexxcceeppttiioonn((_E_x_c_e_p_t_i_o_n))
_G_o_a_l raised the given _E_x_c_e_p_t_i_o_n.
eexxtteerrnnaall__eexxcceeppttiioonn((_E_x_c_e_p_t_i_o_n))
_G_o_a_l succeeded with choice-points and these are now discarded
due to an exception. For example:
_______________________________________________________________| |
|?- setup_call_catcher_cleanup(true, (X=1;X=2), |
| Catcher, writeln(Catcher)), |
| throw(ball). |
|external_exception(ball) |
|ERROR:|Unhandled_exception:_Unknown_message:_ball_____________ | |
ccaallll__cclleeaannuupp((_:_G_o_a_l_, _:_C_l_e_a_n_u_p))
Same as setup_call_cleanup(_t_r_u_e_, _G_o_a_l_, _C_l_e_a_n_u_p). This is provided
for compatibility with a number of other Prolog implementations
only. Do not use call_cleanup/2, if you perform side-effects
prior to calling, that will be undone by _C_l_e_a_n_u_p. Instead, use
setup_call_cleanup/3 with an appropriate first argument to perform
those side-effects.
ccaallll__cclleeaannuupp((_:_G_o_a_l_, _+_C_a_t_c_h_e_r_, _:_C_l_e_a_n_u_p))
Same as setup_call_catcher_cleanup(_t_r_u_e_, _G_o_a_l_, _C_a_t_c_h_e_r_, _C_l_e_a_n_u_p).
The same warning as for call_cleanup/2 applies.
44..99 IISSOO ccoommpplliiaanntt EExxcceeppttiioonn hhaannddlliinngg
SWI-Prolog defines the predicates catch/3 and throw/1 for ISO compliant
raising and catching of exceptions. In the current implementation
(4.0.6), most of the built-in predicates generate exceptions, but some
obscure predicates merely print a message, start the debugger and fail,
which was the normal behaviour before the introduction of exceptions.
ccaattcchh((_:_G_o_a_l_, _+_C_a_t_c_h_e_r_, _:_R_e_c_o_v_e_r)) _[_I_S_O_]
Behaves as call/1 if no exception is raised when executing _G_o_a_l.
If an exception is raised using throw/1 while _G_o_a_l executes, and
the _G_o_a_l is the innermost goal for which _C_a_t_c_h_e_r unifies with the
argument of throw/1, all choice-points generated by _G_o_a_l are cut,
the system backtracks to the start of catch/3 while preserving the
thrown exception term and _R_e_c_o_v_e_r is called as in call/1.
The overhead of calling a goal through catch/3 is very comparable
to call/1. Recovery from an exception is much slower, especially
if the exception-term is large due to the copying thereof.
tthhrrooww((_+_E_x_c_e_p_t_i_o_n)) _[_I_S_O_]
Raise an exception. The system looks for the innermost catch/3
ancestor for which _E_x_c_e_p_t_i_o_n unifies with the _C_a_t_c_h_e_r argument of
the catch/3 call. See catch/3 for details.
ISO demands throw/1 to make a copy of _E_x_c_e_p_t_i_o_n, walk up the stack
to a catch/3 call, backtrack and try to unify the copy of _E_x_c_e_p_t_i_o_n
with _C_a_t_c_h_e_r. SWI-Prolog delays making a copy of _E_x_c_e_p_t_i_o_n and
backtracking until it actually found a matching catch/3 goal. The
advantage is that we can start the debugger at the first possible
location while preserving the entire exception context if there is
no matching catch/3 goal. This approach can lead to different
behaviour if _G_o_a_l and _C_a_t_c_h_e_r of catch/3 call share variables. We
assume this to be highly unlikely and could not think of a scenario
where this is useful.
If an exception is raised in a callback from C (see chapter 9) and
not caught in the same call-back, PL_next_solution()fails and the
exception context can be retrieved using PL_exception().
44..99..11 DDeebbuuggggiinngg aanndd eexxcceeppttiioonnss
Before the introduction of exceptions in SWI-Prolog a runtime error
was handled by printing an error message, after which the predicate
failed. If the Prolog flag debug_on_errorwas in effect (default), the
tracer was switched on. The combination of the error message and trace
information is generally sufficient to locate the error.
With exception handling, things are different. A programmer may wish
to trap an exception using catch/3 to avoid it reaching the user. If
the exception is not handled by user-code, the interactive top-level
will trap it to prevent termination.
If we do not take special precautions, the context information
associated with an unexpected exception (i.e., a programming error) is
lost. Therefore, if an exception is raised, which is not caught using
catch/3 and the top-level is running, the error will be printed, and
the system will enter trace mode.
If the system is in an non-interactive callback from foreign code and
there is no catch/3 active in the current context, it cannot determine
whether or not the exception will be caught by the external routine
calling Prolog. It will then base its behaviour on the Prolog flag
debug_on_error:
o _c_u_r_r_e_n_t___p_r_o_l_o_g___f_l_a_g_(_d_e_b_u_g___o_n___e_r_r_o_r_, _f_a_l_s_e_)
The exception does not trap the debugger and is returned to the
foreign routine calling Prolog, where it can be accessed using
PL_exception(). This is the default.
o _c_u_r_r_e_n_t___p_r_o_l_o_g___f_l_a_g_(_d_e_b_u_g___o_n___e_r_r_o_r_, _t_r_u_e_)
If the exception is not caught by Prolog in the current context, it
will trap the tracer to help analysing the context of the error.
While looking for the context in which an exception takes place, it is
advised to switch on debug mode using the predicate debug/0. The hook
prolog_exception_hook/4 can be used to add more debugging facilities to
exceptions. An example is the library http/http_error, generating a
full stack trace on errors in the HTTP server library.
44..99..22 TThhee eexxcceeppttiioonn tteerrmm
Built-in predicates generates exceptions using a term error(_F_o_r_m_a_l_,
_C_o_n_t_e_x_t). The first argument is the `formal' description of the
error, specifying the class and generic defined context information.
When applicable, the ISO error-term definition is used. The second
part describes some additional context to help the programmer while
debugging. In its most generic form this is a term of the form
context(_N_a_m_e_/_A_r_i_t_y_, _M_e_s_s_a_g_e), where _N_a_m_e/_A_r_i_t_y describes the built-in
predicate that raised the error, and _M_e_s_s_a_g_e provides an additional
description of the error. Any part of this structure may be a variable
if no information was present.
44..99..33 PPrriinnttiinngg mmeessssaaggeess
The predicate print_message/2 may be used to print a message term in a
human readable format. The other predicates from this section allow
the user to refine and extend the message system. The most common
usage of print_message/2 is to print error messages from exceptions.
The code below prints errors encountered during the execution of _G_o_a_l,
without further propagating the exception and without starting the
debugger.
________________________________________________________________________| |
| ..., |
| catch(Goal, E, |
| ( print_message(error, E), |
| fail |
| )), |
||_______...____________________________________________________________ ||
Another common use is to defined message_hook/3 for printing messages
that are normally _s_i_l_e_n_t, suppressing messages, redirecting messages or
make something happen in addition to printing the message.
pprriinntt__mmeessssaaggee((_+_K_i_n_d_, _+_T_e_r_m))
The predicate print_message/2 is used to print messages, notably
from exceptions in a human-readable format. _K_i_n_d is one of
informational, banner, warning, error, help or silent. A
human-readable message is printed to the stream user_error.
If the Prolog flag verbose is silent, messages with _K_i_n_d
informational, or banner are treated as silent. See -q.
This predicate first translates the _T_e_r_m into a list of `message
lines' (see print_message_lines/3for details). Next it will call
the hook message_hook/3to allow the user intercepting the message.
If message_hook/3 fails it will print the message unless _K_i_n_d is
silent.
The print_message/2 predicate and its rules are in the file
<_p_l_h_o_m_e>/boot/messages.pl, which may be inspected for more
information on the error messages and related error terms. If you
need to report errors from your own predicates, we advise you to
stick to the existing error terms if you can; but should you need
to invent new ones, you can define corresponding error messages by
asserting clauses for prolog:message. You will need to declare the
predicate as multifile.
See also message_to_string/2.
pprriinntt__mmeessssaaggee__lliinneess((_+_S_t_r_e_a_m_, _+_P_r_e_f_i_x_, _+_L_i_n_e_s))
Print a message (see print_message/2) that has been translated to a
list of message elements. The elements of this list are:
<_F_o_r_m_a_t>--<_A_r_g_s>
Where _F_o_r_m_a_t is an atom and _A_r_g_s is a list of format argument.
Handed to format/3.
flush
If this appears as the last element, _S_t_r_e_a_m is flushed (see
flush_output/1) and no final newline is generated.
at_same_line
If this appears as first element, no prefix is printed for
the first line and the line-position is not forced to 0 (see
format/1, ~N).
<_F_o_r_m_a_t>
Handed to format/3 as format(Stream, Format, []).
nnll
A new line is started and if the message is not complete the
_P_r_e_f_i_x is printed too.
See also print_message/2 and message_hook/3.
mmeessssaaggee__hhooookk((_+_T_e_r_m_, _+_K_i_n_d_, _+_L_i_n_e_s))
Hook predicate that may be defined in the module user to intercept
messages from print_message/2. _T_e_r_m and _K_i_n_d are the same as
passed to print_message/2. _L_i_n_e_s is a list of format statements as
described with print_message_lines/3. See also message_to_string/2.
This predicate should be defined dynamic and multifile to allow
other modules defining clauses for it too.
mmeessssaaggee__ttoo__ssttrriinngg((_+_T_e_r_m_, _-_S_t_r_i_n_g))
Translates a message-term into a string object (see section 4.22).
Primarily intended to write messages to Windows in XPCE (see
section 1.5) or other GUI environments.
44..99..33..11 PPrriinnttiinngg ffrroomm lliibbrraarriieess
Libraries should _n_o_t use format/3 or other output predicates directly.
Libraries that print informational output directory to the console are
hard to use from code that depend on your textual output, such as a GI
script. The predicates in section 4.9.3 define the API for dealing
with messages. The idea behind this is that a library that wants
to provide information about its status, progress, events or problems
calls print_message/2. The first argument is the _l_e_v_e_l. The supported
levels are described with print_message/2. Libraries typically use
informational and warning, while libraries should use exceptions for
errors (see throw/1, type_error/2, etc.).
The second argument is an arbitrary Prolog term that carries te
information of the message, but _n_o_t the precise text. The text
is defined by the grammar rule prolog:message//1. This distinction
is made to allow for translations and to allow hooks processing the
information in a different way (e.g., translate progress messages into
a progress-bar).
For example, suppose we have a library that must download data from
the internet (e.g., based on http_open/3). The library wants to print
the progress after each downloaded file. The code below is a good
skeleton:
________________________________________________________________________| |
|download_urls(List) :- |
| length(List, Total), |
| forall(nth1(I, List, URL), |
| ( download_url(URL), |
| print_message(informational, |
||________________________________download_url(URL,_I,_Total))))._______ ||
The programmer can now specify the default textual output using the
rule below. Note that this rule may be in the same file or anywhere
else. Notably, the application may come with several rule-sets for
different languages. This, and the user-hook example below are the
reason to represent the message as a compound term rather than a
string. This is similar to using message-numbers in non-symbolic
languages. The documentation of print_message_lines/3 describes the
elements that may appear in the output list.
________________________________________________________________________| |
|:- multifile |
| prolog:message//1. |
| |
|prolog:message(download_url(URL, I, Total)) --> |
| { Perc is round(I*100/Total) }, |
||_______[_'Downloaded_~w;_~D_from_~D_(~d%)'-[URL,_I,_Total,_Perc]_].___ ||
A _u_s_e_r of the library may define rules for message_hook/3. The rule
below acts on the message-content. Other applications can act on the
message-level and, for example, popup a message-box for warnings and
errors.
________________________________________________________________________| |
|:- multifile user:message_hook/3. |
| |
|message_hook(download_url(URL, I, Total), _Kind, _Lines) :- |
||_______<send_this_information_to_a_GUI_component>_____________________ ||
In addition, using the commandline option -q, the user can disable all
_i_n_f_o_r_m_a_t_i_o_n_a_l messages.
44..1100 HHaannddlliinngg ssiiggnnaallss
As of version 3.1.0, SWI-Prolog is capable to handle software
interrupts (signals) in Prolog as well as in foreign (C) code (see
section 9.4.13).
Signals are used to handle internal errors (execution of a non-existing
CPU instruction, arithmetic domain errors, illegal memory access,
resource overflow, etc.), as well as for dealing asynchronous
inter-process communication.
Signals are defined by the POSIX standard and part of all Unix
machines. The MS-Windows Win32 provides a subset of the signal
handling routines, lacking the vital functionality to raise a
signal in another thread for achieving asynchronous inter-process (or
inter-thread) communication (Unix kill() function).
oonn__ssiiggnnaall((_+_S_i_g_n_a_l_, _-_O_l_d_, _:_N_e_w))
Determines the reaction on _S_i_g_n_a_l. _O_l_d is unified with the old
behaviour, while the behaviour is switched to _N_e_w. As with similar
environment-control predicates, the current value is retrieved
using on_signal(Signal, Current, Current).
The action description is an atom denoting the name of the
predicate that will be called if _S_i_g_n_a_l arrives. on_signal/3
is a meta-predicate, which implies that <_M_o_d_u_l_e>:<_N_a_m_e> refers the
<_N_a_m_e>/1 in the module <_M_o_d_u_l_e>. The handler is called with a
single argument: the name of the signal as an atom. The Prolog
names for signals is explained below.
Two predicate-names have special meaning. throw implies Prolog
will map the signal onto a Prolog exception as described in
section 4.9. default resets the handler to the settings active
before SWI-Prolog manipulated the handler.
Signals bound to a foreign function through PL_signal() are
reported using the term $foreign_function(_A_d_d_r_e_s_s).
After receiving a signal mapped to throw, the exception raised has
the structure
error(signal(<_S_i_g_N_a_m_e>, <_S_i_g_N_u_m>), <_C_o_n_t_e_x_t>)
The signal names are defined by the POSIX standard as symbols
of the form SIG<_S_I_G_N_A_M_E>. The Prolog name for a signal is the
lowercase version of <_S_I_G_N_A_M_E>. The predicate current_signal/3 may
be used to map between names and signals.
Initially, some signals are mapped to throw, while all other
signals are default. The following signals throw an exception:
fpe, alrm, xcpu, xfsz and vtalrm.
ccuurrrreenntt__ssiiggnnaall((_?_N_a_m_e_, _?_I_d_, _?_H_a_n_d_l_e_r))
Enumerate the currently defined signal handling. _N_a_m_e is the
signal name, _I_d is the numerical identifier and _H_a_n_d_l_e_r is the
currently defined handler (see on_signal/3).
44..1100..11 NNootteess oonn ssiiggnnaall hhaannddlliinngg
Before deciding to deal with signals in your application, please
consider the following:
o _P_o_r_t_a_b_i_l_i_t_y
On MS-Windows, the signal interface is severely limited. Different
Unix brands support different sets of signals, and the relation
between signal name and number may vary. Currently, the system
only supports signals numbered 1 to 32. Installing a signal
outside the limited set of supported signals in MS-Windows crashes
the application.
o _S_a_f_e_t_y
Immediately delivered signals (see below) are unsafe. This implies
that foreign functions called from a handler cannot safely use
the SWI-Prolog API and cannot use C longjmp(). Handlers defined
as throw are unsafe. Handlers defined to call a predicate are
safe. Note that the predicate can call throw/1, but the delivery
is delayed until Prolog is in a safe state.
The C-interface described in section 9.4.13 provides the option
PL_SIGSYNC to select either safe synchronous or unsafe asynchronous
delivery.
o _T_i_m_e _o_f _d_e_l_i_v_e_r_y
Using throw or a foreign handler, signals are delivered immediately
(as defined by the OS). When using a Prolog predicate, delivery is
delayed to a safe moment. Blocking system calls or foreign loops
may cause long delays. Foreign code can improve on that by calling
PL_handle_signals().
Signals are blocked when the garbage collector is active.
44..1111 DDCCGG GGrraammmmaarr rruulleess
Grammar rules form a comfortable interface to _d_i_f_f_e_r_e_n_c_e_-_l_i_s_t_s. They
are designed both to support writing parsers that build a parse-tree
from a list as for generating a flat list from a term. Unfortunately,
Definite Clause Grammar (DCG) handling is not part of the Prolog
standard. Most Prolog engines implement DCG, but the details differ
slightly.
Grammar rules look like ordinary clauses using -->/2 for separating
the head and body rather than :-/2. Expanding grammar rules is done
by expand_term/2, which adds two additional argument to each term for
representing the difference list. We will illustrate the behaviour by
defining a rule-set for parsing an integer.
________________________________________________________________________| |
|integer(I) --> |
| digit(D0), |
| digits(D), |
| { number_chars(I, [D0|D]) |
| }. |
| |
|digits([D|T]) --> |
| digit(D), !, |
| digits(T). |
|digits([]) --> |
| []. |
| |
|digit(D) --> |
| [D], |
| { code_type(D, digit) |
||_______}._____________________________________________________________ ||
The body of a grammar rule can contain three types of terms. A
compound term interpreted as a reference to a grammar-rule. Code
between {...} is interpreted as a reference to ordinary Prolog code
and finally, a list is interpreted as a sequence of literals. The
Prolog control-constructs (\+/1, ->/2, ;//2, ,/2 and !/0) can be used
in grammar rules.
Grammar rule-sets are called using the built-in predicates phrase/2 and
phrase/3:
pphhrraassee((_+_R_u_l_e_S_e_t_, _+_I_n_p_u_t_L_i_s_t))
Equivalent to phrase(_R_u_l_e_S_e_t, _I_n_p_u_t_L_i_s_t, []).
pphhrraassee((_+_R_u_l_e_S_e_t_, _+_I_n_p_u_t_L_i_s_t_, _-_R_e_s_t))
Activate the rule-set with given name. `InputList' is the list of
tokens to parse, `Rest' is unified with the remaining tokens if the
sentence is parsed correctly. The example below calls the rule-set
`integer' defined above.
____________________________________________________________________| |
| ?- phrase(integer(X), "42 times", Rest). |
| |
| X = 42 |
||Rest_=_[32,_116,_105,_109,_101,_115]______________________________ ||
44..1122 DDaattaabbaassee
SWI-Prolog offers three different database mechanisms. The first one
is the common assert/retract mechanism for manipulating the clause
database. As facts and clauses asserted using assert/1 or one of
its derivatives become part of the program these predicates compile
the term given to them. retract/1 and retractall/1 have to unify a
term and therefore have to decompile the program. For these reasons
the assert/retract mechanism is expensive. On the other hand, once
compiled, queries to the database are faster than querying the recorded
database discussed below. See also dynamic/1.
The second way of storing arbitrary terms in the database is using the
`recorded database'. In this database terms are associated with a _k_e_y.
A key can be an atom, small integer or term. In the last case only the
functor and arity determine the key. Each key has a chain of terms
associated with it. New terms can be added either at the head or at
the tail of this chain.
Following the Edinburgh tradition, SWI-Prolog provides database keys to
clauses and records in the recorded database. As of 5.9.10, these
keys are represented by non-textual atoms (`blobs', see section 9.4.7),
which makes accessing the database through references safe.
The third mechanism is a special purpose one. It associates an integer
or atom with a key, which is an atom, integer or term. Each key can
only have one atom or integer associated with it.
aabboolliisshh((_:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r)) _[_I_S_O_]
Removes all clauses of a predicate with functor _F_u_n_c_t_o_r and arity
_A_r_i_t_y from the database. All predicate attributes (dynamic,
multifile, index, etc.) are reset to their defaults. Abolishing
an imported predicate only removes the import link; the predicate
will keep its old definition in its definition module.
According to the ISO standard, abolish/1 can only be applied to
dynamic procedures. This is odd, as for dealing with dynamic
procedures there is already retract/1 and retractall/1. The
abolish/1 predicate has been introduced in DEC-10 Prolog precisely
for dealing with static procedures. In SWI-Prolog, abolish/1 works
on static procedures, unless the prolog flag iso is set to true.
It is advised to use retractall/1 for erasing all clauses of a
dynamic predicate.
aabboolliisshh((_+_N_a_m_e_, _+_A_r_i_t_y))
Same as abolish(_N_a_m_e_/_A_r_i_t_y). The predicate abolish/2 conforms to
the Edinburgh standard, while abolish/1 is ISO compliant.
rreeddeeffiinnee__ssyysstteemm__pprreeddiiccaattee((_+_H_e_a_d))
This directive may be used both in module user and in normal
modules to redefine any system predicate. If the system definition
is redefined in module user, the new definition is the default
definition for all sub-modules. Otherwise the redefinition is
local to the module. The system definition remains in the module
system.
Redefining system predicate facilitates the definition of
compatibility packages. Use in other context is discouraged.
rreettrraacctt((_+_T_e_r_m)) _[_I_S_O_]
When _T_e_r_m is an atom or a term it is unified with the first
unifying fact or clause in the database. The fact or clause is
removed from the database.
rreettrraaccttaallll((_+_H_e_a_d))
All facts or clauses in the database for which the _h_e_a_d unifies
with _H_e_a_d are removed. If _H_e_a_d refers to a predicate that is not
defined, it is implicitly created as a dynamic predicate. See also
dynamic/1.
aasssseerrttaa((_+_T_e_r_m)) _[_I_S_O_]
Assert a fact or clause in the database. _T_e_r_m is asserted as the
firsr fact or clause of the corresponding predicate. Equivalent
to assert/1, but _T_e_r_m is asserted as first clause or fact of the
predicate.
aasssseerrttzz((_+_T_e_r_m)) _[_I_S_O_]
Equivalent to asserta/1, but _T_e_r_m is asserted as the last clause or
fact of the predicate.
aasssseerrtt((_+_T_e_r_m))
Equivalent to assertz/1. Deprecated: new code should use
assertz/1.
aasssseerrttaa((_+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Asserts a clause as asserta/1 and unifies _R_e_f_e_r_e_n_c_e with a handle
to this clause. The handle can be used to access this specific
clause using clause/3 and erase/1.
aasssseerrttzz((_+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Equivalent to asserta/1, asserting the new clause as the last
clause of the predicate.
aasssseerrtt((_+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Equivalent to assertz/2.
rreeccoorrddaa((_+_K_e_y_, _+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Assert _T_e_r_m in the recorded database under key _K_e_y. _K_e_y is a
small integer (range min_tagged_integer ...max_tagged_integer, atom
or compound term. If the key is a compound term, only the name and
arity define the key. _R_e_f_e_r_e_n_c_e is unified with an opaque handle
to the record (see erase/1).
rreeccoorrddaa((_+_K_e_y_, _+_T_e_r_m))
Equivalent to recorda(_K_e_y, _V_a_l_u_e, _).
rreeccoorrddzz((_+_K_e_y_, _+_T_e_r_m_, _-_R_e_f_e_r_e_n_c_e))
Equivalent to recorda/3, but puts the _T_e_r_m at the tail of the terms
recorded under _K_e_y.
rreeccoorrddzz((_+_K_e_y_, _+_T_e_r_m))
Equivalent to recordz(_K_e_y, _V_a_l_u_e, _).
rreeccoorrddeedd((_?_K_e_y_, _?_V_a_l_u_e_, _?_R_e_f_e_r_e_n_c_e))
True if _V_a_l_u_e is recorded under _K_e_y and has the given database
_R_e_f_e_r_e_n_c_e. If _R_e_f_e_r_e_n_c_e is given, this predicate is semi-
deterministic. Otherwise, it must be considered non-deterministic.
If neither _R_e_f_e_r_e_n_c_e nor _K_e_y is given, the triples are generated as
in the code snippet below.
____________________________________________________________________| |
| current_key(Key), |
||________recorded(Key,_Value,_Reference)___________________________ ||
rreeccoorrddeedd((_+_K_e_y_, _-_V_a_l_u_e))
Equivalent to recorded(_K_e_y, _V_a_l_u_e, _).
eerraassee((_+_R_e_f_e_r_e_n_c_e))
Erase a record or clause from the database. _R_e_f_e_r_e_n_c_e is
an db-reference returned by recorda/3 or recorded/3, clause/3,
assert/2, asserta/2 or assertz/2. Fail silently if the referenced
object no longer exists.
iinnssttaannccee((_+_R_e_f_e_r_e_n_c_e_, _-_T_e_r_m))
Unify _T_e_r_m with the referenced clause or database record. Unit
clauses are represented as _H_e_a_d :- _B_o_d_y.
ffllaagg((_+_K_e_y_, _-_O_l_d_, _+_N_e_w))
_K_e_y is an atom, integer or term. As with the recorded database, if
_K_e_y is a term, only the name and arity are used to locate the flag.
Unify _O_l_d with the old value associated with _K_e_y. If the key is
used for the first time _O_l_d is unified with the integer 0. Then
store the value of _N_e_w, which should be an integer, float, atom
or arithmetic expression, under _K_e_y. flag/3 is a fast mechanism
for storing simple facts in the database. The flag database is
shared between threads and updates are atomic, making it suitable
for generating unique integer counters.
44..1122..11 UUppddaattee vviieeww
Traditionally, Prolog systems used the _i_m_m_e_d_i_a_t_e _u_p_d_a_t_e _v_i_e_w: new
clauses became visible to predicates backtracking over dynamic
predicates immediately and retracted clauses became invisible
immediately.
Starting with SWI-Prolog 3.3.0 we adhere the _l_o_g_i_c_a_l _u_p_d_a_t_e _v_i_e_w,
where backtrackable predicates that enter the definition of a predicate
will not see any changes (either caused by assert/1 or retract/1) to
the predicate. This view is the ISO standard, the most commonly
used and the most `safe'. Logical updates are realised by keeping
reference-counts on predicates and _g_e_n_e_r_a_t_i_o_n information on clauses.
Each change to the database causes an increment of the generation of
the database. Each goal is tagged with the generation in which it was
started. Each clause is flagged with the generation it was created as
well as the generation it was erased. Only clauses with `created'
...`erased' interval that encloses the generation of the current goal
are considered visible.
44..1122..22 IInnddeexxiinngg ddaattaabbaasseess
By default, SWI-Prolog, as most other implementations, indexes
predicates on their first argument. SWI-Prolog allows indexing on
other and multiple arguments using the declaration index/1. Dedicated
index schemas can be built using term_hash/2 or term_hash/4.
tteerrmm__hhaasshh((_+_T_e_r_m_, _-_H_a_s_h_K_e_y)) _[_d_e_t_]
If _T_e_r_m is a ground term (see ground/1), _H_a_s_h_K_e_y is unified with
a positive integer value that may be used as a hash-key to the
value. If _T_e_r_m is not ground, the predicate leaves _H_a_s_h_K_e_y an
unbound variable. Hash keys are in the range 0:::16;777; 215, the
maximal integer that can be stored efficiently on both 32 and 64
bit platforms.
This predicate may be used to build hash-tables as well as to
exploit argument-indexing to find complex terms more quickly.
The hash-key does not rely on temporary information like addresses
of atoms and may be assumed constant over different invocations
and versions of SWI-Prolog. Hashes differ between big and little
endian machines. The term_hash/2 predicate is cycle-safe.
tteerrmm__hhaasshh((_+_T_e_r_m_, _+_D_e_p_t_h_, _+_R_a_n_g_e_, _-_H_a_s_h_K_e_y)) _[_d_e_t_]
As term_hash/2, but only considers _T_e_r_m to the specified _D_e_p_t_h.
The toplevel term has depth 1, its arguments have depth 2, etc.
I.e. _D_e_p_t_h = 0 hashes nothing; _D_e_p_t_h =1 hashes atomic values
or the functor and arity of a compound term, not its arguments;
_D_e_p_t_h =2 also indexes the immediate arguments, etc.
_H_a_s_h_K_e_y is in the range [0:::_R_a_n_g_e-1]. _R_a_n_g_e must be in the range
[1:::2147483647]
vvaarriiaanntt__sshhaa11((_+_T_e_r_m_, _-_S_H_A_1)) _[_d_e_t_]
Compute an SHA1-hash from _T_e_r_m. The hash is represented as a
40-byte hexadecimal atom. Unlike term_hash/2 and friends, this
predicate produces a hash-key for non-ground terms. The hash is
invariant over variable-renaming (see =@=/2) and constants over
different invocations of Prolog.
This predicate raises an exeption when trying to compute the hash
on a cyclic term or attributed term. Attributed terms are not
handled because subsumes_chk/2 is not considered well defined for
attributed terms. Cyclic terms are not supported because this
would require establishing a canonical cycle. I.e., given A=[a_A]
and B=[a,a_B], _A and _B should produce the same hash. This is not
(yet) implemented.
This hash was developed for lookup of solutions to a goal stored
in a table. By using a cryptographic hash, heuristic algorithms
can often ignore the possibility of hash-colisions and thus avoid
storing the goal-term itself as well as testing using =@=/2.
44..1133 DDeeccllaarriinngg pprreeddiiccaatteess pprrooppeerrttiieess
This section describes directives which manipulate attributes of
predicate definitions. The functors dynamic/1, multifile/1 and
discontiguous/1 are operators of priority 1150 (see op/3), which
implies the list of predicates they involve can just be a comma
separated list:
________________________________________________________________________| |
|:- dynamic |
| foo/0, |
||_______baz/2._________________________________________________________ ||
On SWI-Prolog all these directives are just predicates. This implies
they can also be called by a program. Do not rely on this feature if
you want to maintain portability to other Prolog implementations.
ddyynnaammiicc _:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._. _[_I_S_O_]
Informs the interpreter that the definition of the predicate(s)
may change during execution (using assert/1 and/or retract/1). In
the multi-threaded version, the clauses of dynamic predicates are
shared between the threads. The directive thread_local/1 provides
an alternative where each threads has its own clause-list for the
predicate. Dynamic predicates can be turned into static ones using
compile_predicates/1.
ccoommppiillee__pprreeddiiccaatteess((_:_L_i_s_t_O_f_N_a_m_e_A_r_i_t_y))
Compile a list of specified dynamic predicates (see dynamic/1 and
assert/1) into normal static predicates. This call tells the
Prolog environment the definition will not change anymore and
further calls to assert/1 or retract/1 on the named predicates
raise a permission error. This predicate is designed to deal with
parts of the program that is generated at runtime but does not
change during the remainder of the program execution.
mmuullttiiffiillee _:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._. _[_I_S_O_]
Informs the system that the specified predicate(s) may be defined
over more than one file. This stops consult/1 from redefining a
predicate when a new definition is found.
ddiissccoonnttiigguuoouuss _:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._. _[_I_S_O_]
Informs the system that the clauses of the specified predicate(s)
might not be together in the source file. See also style_check/1.
ppuubblliicc _:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._.
Instructs the cross-referencer that the predicate can be called.
It has no semantics.
iinnddeexx((_+_H_e_a_d))
Index the clauses of the predicate with the same name and arity
as _H_e_a_d on the specified arguments. _H_e_a_d is a term of which
all arguments are either `1' (denoting `index this argument')
or `0' (denoting `do not index this argument'). Indexing has
no implications for the semantics of a predicate, only on its
performance. If indexing is enabled on a predicate a special
purpose algorithm is used to select candidate clauses based on
the actual arguments of the goal. This algorithm checks whether
indexed arguments might unify in the clause head. Only atoms,
integers and compound terms are considered. Compound terms are
indexed on the combination of their name and arity. Indexing is
very useful for predicates with many clauses representing facts.
Due to the representation technique used at most 4 arguments can be
indexed. All indexed arguments should be in the first 32 arguments
of the predicate. If more than 4 arguments are specified for
indexing only the first 4 will be accepted. Arguments above 32 are
ignored for indexing.
Indexing as specified by this predicate uses a quick but
linear scan. Without explicit specification the system uses
an algorithm depending on the structure of the first argument
and number of clauses, In particular, for predicates that can
be indexed on the first argument and have many clauses, the
system will use an automatically resizing hash-table to provide
access time independent from the number of clauses. If---for
example---one wants to represents sub-types using a fact list
`sub_type(Sub, Super)' that should be used both to determine sub-
and super types one should declare sub_type/2 as follows:
____________________________________________________________________| |
| :- index(sub_type(1, 1)). |
| |
| sub_type(horse, animal). |
| ... |
||..._______________________________________________________________ ||
Note that this type of indexing makes selecting clauses much faster
but remains _l_i_n_e_a_r with respect to the number of clauses, while
hashing as described with hash/1 provides constant access time.
See also hash/1 and term_hash/2.
hhaasshh((_+_H_e_a_d))
Index the given predicate by hashing on the first argument. This
is done by default on any predicate with more than 5 clauses having
a first argument that can be indexed and at most two that can
not be indexed. On dynamic predicates the hash-table is resized
as the number of clauses grows, providing roughly constant-time
access regardless of the number of clauses predicates that can be
indexed on the first argument. See also index/1, term_hash/2 and
predicate_property/2.
44..1144 EExxaammiinniinngg tthhee pprrooggrraamm
ccuurrrreenntt__aattoomm((_-_A_t_o_m))
Successively unifies _A_t_o_m with all atoms known to the system. Note
that current_atom/1 always succeeds if _A_t_o_m is instantiated to an
atom.
ccuurrrreenntt__bblloobb((_?_B_l_o_b_, _?_T_y_p_e))
Examine the type or enumerate blobs of the given _T_y_p_e. Typed blobs
are supported through the foreign language interface for storing
arbitrary BLOBS (Binary Large Object) or handles to external
entities. See section 9.4.7 for details.
ccuurrrreenntt__ffuunnccttoorr((_?_N_a_m_e_, _?_A_r_i_t_y))
Successively unifies _N_a_m_e with the name and _A_r_i_t_y with the arity of
functors known to the system.
ccuurrrreenntt__ffllaagg((_-_F_l_a_g_K_e_y))
Successively unifies _F_l_a_g_K_e_y with all keys used for flags (see
flag/3).
ccuurrrreenntt__kkeeyy((_-_K_e_y))
Successively unifies _K_e_y with all keys used for records (see
recorda/3, etc.).
ccuurrrreenntt__pprreeddiiccaattee((_:_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r)) _[_I_S_O_]
True if _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r is a currently defined predicate. A
predicate is considered defined if it exists in the specified
module, is imported into the module or is defined in one of
the modules from which the predicate will be imported if it is
called (see section 5.9). Note that current_predicate/1 does
_n_o_t succeed for predicates that can be _a_u_t_o_l_o_a_d_e_d. See also
current_predicate/2 and predicate_property/2.
If _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r is not fully specified, the predicate only
generates values that are defined in or already imported into
the target module. Generating all callable predicates therefore
requires enumerating modules using current_module/1. Generating
predicates callable in a given module requires enumerating
the import modules using import_module/2 and the auto-loadable
predicates using the predicate_property/2 autoload.
ccuurrrreenntt__pprreeddiiccaattee((_?_N_a_m_e_, _:_H_e_a_d))
Classical pre-ISO implementation of current_predicate/1, where the
predicate is represented by the head-term. The advantage is that
this can be used for checking existence of a predicate before
calling it without the need for functor/3:
____________________________________________________________________| |
| call_if_exists(G) :- |
| current_predicate(_, G), |
||________call(G).__________________________________________________ ||
Because of this intended usage, current_predicate/2 also succeeds
if the predicate can be autoloaded. Unfortunately, checking the
autoloader makes this predicate relatively slow; in particular
because a failed lookup of the autoloader will cause the autoloader
to verify that its index is up-to-date.
pprreeddiiccaattee__pprrooppeerrttyy((_:_H_e_a_d_, _?_P_r_o_p_e_r_t_y))
True if _H_e_a_d refers to a predicate that has property _P_r_o_p_e_r_t_y.
With sufficiently instantiated _H_e_a_d, predicate_property/2 tries to
resolve the predicate the same way as calling it would do: if
the predicate is not defined it scans the auto-import modules
and finally tries the autoloader. Unlike calling, failure to
find the target predicate causes predicate_property/2 to fail
silently. If _H_e_a_d is not sufficiently bound, only currently
locally defined and already imported predicates are enumerated.
See current_predicate/1 for enumerating all predicates. A common
issue concerns _g_e_n_e_r_a_t_i_n_g all built-in predicates. This can be
achieved using the code below.
____________________________________________________________________| |
| generate_built_in(Name/Arity) :- |
| predicate_property(system:Head, built_in), |
| functor(Head, Name, Arity), |
||________\+_sub_atom(Name,_0,__,__,_$).__%_discard_reserved_names__ ||
_P_r_o_p_e_r_t_y is one of:
aauuttoollooaadd((_F_i_l_e))
Is true if the predicate can be autoloaded from the file _F_i_l_e.
Like undefined, this property is _n_o_t generated.
bbuuiilltt__iinn
Is true if the predicate is locked as a built-in predicate.
This implies it cannot be redefined in its definition module
and it can normally not be seen in the tracer.
ddyynnaammiicc
Is true if assert/1 and retract/1 may be used to modify the
predicate. This property is set using dynamic/1.
eexxppoorrtteedd
Is true if the predicate is in the public list of the context
module.
iimmppoorrtteedd__ffrroomm((_M_o_d_u_l_e))
Is true if the predicate is imported into the context module
from module _M_o_d_u_l_e.
ffiillee((_F_i_l_e_N_a_m_e))
Unify _F_i_l_e_N_a_m_e with the name of the source file in which the
predicate is defined. See also source_file/2.
ffoorreeiiggnn
Is true if the predicate is defined in the C language.
iinnddeexxeedd((_H_e_a_d))
Predicate is indexed (see index/1) according to _H_e_a_d. _H_e_a_d is
a term whose name and arity are identical to the predicate.
The arguments are unified with `1' for indexed arguments, `0'
otherwise.
iinntteerrpprreetteedd
Is true if the predicate is defined in Prolog. We return true
on this because, although the code is actually compiled, it is
completely transparent, just like interpreted code.
iissoo
Is true if the predicate is covered by the ISO standard
(ISO/IEC 13211-1).
lliinnee__ccoouunntt((_L_i_n_e_N_u_m_b_e_r))
Unify _L_i_n_e_N_u_m_b_e_r with the line number of the first clause of
the predicate. Fails if the predicate is not associated with
a file. See also source_file/2.
mmuullttiiffiillee
Is true there may be multiple (or no) file providing clauses
for the predicate. This property is set using multifile/1.
mmeettaa__pprreeddiiccaattee((_H_e_a_d))
If the predicate is declared as a meta-predicate using
meta_predicate/1, Unify _H_e_a_d with the head-pattern. The
head-pattern is a compound term with the same name and arity
as the predicate where each argument of the term is a meta
predicate specifier. See meta_predicate/1 for details.
nnooddeebbuugg
Details of the predicate are not shown by the debugger. This
is the default for built-in predicates. User predicates can
be compiled this way using the Prolog flag generate_debug_info.
nnoottrraaccee
Do not show ports of this predicate in the debugger.
nnuummbbeerr__ooff__ccllaauusseess((_C_l_a_u_s_e_C_o_u_n_t))
Unify _C_l_a_u_s_e_C_o_u_n_t to the number of clauses associated with the
predicate. Fails for foreign predicates.
ppuubblliicc
Predicate is declared public using public/1. Note that
without further definition, public predicates are considered
undefined and this property is _n_o_t reported.
tthhrreeaadd__llooccaall
If true (only possible on the multi-threaded version) each
thread has its own clauses for the predicate. This property
is set using thread_local/1.
ttrraannssppaarreenntt
Is true if the predicate is declared transparent using the
module_transparent/1 or meta_predicate/1 declaration. In the
latter case the property meta is also provided. See chapter 5
for details.
uunnddeeffiinneedd
Is true if a procedure definition block for the predicate
exists, but there are no clauses for it and it is not declared
dynamic or multifile. This is true if the predicate occurs in
the body of a loaded predicate, an attempt to call it has been
made via one of the meta-call predicates or the predicate had
a definition in the past. See the library package check for
example usage.
vvoollaattiillee
If true, the clauses are not saved into a saved-state by
qsave_program/[1,2]. This property is set using volatile/1.
ddwwiimm__pprreeddiiccaattee((_+_T_e_r_m_, _-_D_w_i_m))
`Do What I Mean' (`dwim') support predicate. _T_e_r_m is a term,
which name and arity are used as a predicate specification. _D_w_i_m
is instantiated with the most general term built from _N_a_m_e and the
arity of a defined predicate that matches the predicate specified
by _T_e_r_m in the `Do What I Mean' sense. See dwim_match/2 for `Do
What I Mean' string matching. Internal system predicates are not
generated, unless style_check(+dollar) is active. Backtracking
provides all alternative matches.
ccllaauussee((_:_H_e_a_d_, _?_B_o_d_y)) _[_I_S_O_]
True if _H_e_a_d can be unified with a clause head and _B_o_d_y with
the corresponding clause body. Gives alternative clauses on
backtracking. For facts _B_o_d_y is unified with the atom _t_r_u_e.
ccllaauussee((_:_H_e_a_d_, _?_B_o_d_y_, _?_R_e_f_e_r_e_n_c_e))
Equivalent to clause/2, but unifies _R_e_f_e_r_e_n_c_e with a unique
reference to the clause (see also assert/2, erase/1). If _R_e_f_e_r_e_n_c_e
is instantiated to a reference the clause's head and body will be
unified with _H_e_a_d and _B_o_d_y.
nntthh__ccllaauussee((_?_P_r_e_d_, _?_I_n_d_e_x_, _?_R_e_f_e_r_e_n_c_e))
Provides access to the clauses of a predicate using their index
number. Counting starts at 1. If _R_e_f_e_r_e_n_c_e is specified it
unifies _P_r_e_d with the most general term with the same name/arity
as the predicate and _I_n_d_e_x with the index-number of the clause.
Otherwise the name and arity of _P_r_e_d are used to determine the
predicate. If _I_n_d_e_x is provided _R_e_f_e_r_e_n_c_e will be unified with
the clause reference. If _I_n_d_e_x is unbound, backtracking will
yield both the indices and the references of all clauses of the
predicate. The following example finds the 2nd clause of member/2:
____________________________________________________________________| |
| ?- nth_clause(member(_,_), 2, Ref), clause(Head, Body, Ref). |
| |
| Ref = 160088 |
| Head = system : member(G575, [G578|G579]) |
||Body_=_member(G575,_G579)_________________________________________ ||
ccllaauussee__pprrooppeerrttyy((_+_C_l_a_u_s_e_R_e_f_, _-_P_r_o_p_e_r_t_y))
Queries properties of a clause. _C_l_a_u_s_e_R_e_f is a reference
to a clause as produced by clause/3, nth_clause/3 or
prolog_frame_attribute/3. _P_r_o_p_e_r_t_y is one of the following:
ffiillee((_F_i_l_e_N_a_m_e))
Unify _F_i_l_e_N_a_m_e with the name of the source file in which the
clause is defined. Fails if the clause is not associated to a
file.
lliinnee__ccoouunntt((_L_i_n_e_N_u_m_b_e_r))
Unify _L_i_n_e_N_u_m_b_e_r with the line number of the clause. Fails if
the clause is not associated to a file.
ffaacctt
True if the clause has no body.
eerraasseedd
True if the clause has been erased, but not yet reclaimed
because it is referenced.
44..1155 IInnppuutt aanndd oouuttppuutt
SWI-Prolog provides two different packages for input and output. The
native I/O system is based on the ISO standard predicates open/3,
close/1 and friends. Being more widely portable and equipped with a
clearer and more robust specification, new code is encouraged to use
these predicates for manipulation of I/O streams.
Section 4.15.2 describes tell/1, see/1 and friends, providing I/O in
the spirit of the traditional Edinburgh standard. These predicates
are layered on top of the ISO predicates. Both packages are fully
integrated; the user may switch freely between them.
44..1155..11 IISSOO IInnppuutt aanndd OOuuttppuutt SSttrreeaammss
The predicates described in this section provide ISO compliant I/O,
where streams are explicitly created using the predicate open/3. The
resulting stream identifier is then passed as a parameter to the
reading and writing predicates to specify the source or destination of
the data.
This schema is not vulnerable to filename and stream ambiguities as
well as changes to the working directory. On the other hand, using the
notion of current-I/O simplifies reusability of code without the need
to pass arguments around. E.g., see with_output_to/2.
SWI-Prolog streams are, compatible to the ISO standard, either input or
output streams. To accomodate portability to other systems, a pair
of streams can be packed into a _s_t_r_e_a_m_-_p_a_i_r. See stream_pair/3 for
details.
SWI-Prolog stream-handles are unique symbols that have no syntactical
representation. They are written as \bnfmeta{stream}(hex-number),
which is not valid input for read/1. They are realised using a _b_l_o_b of
type stream (see blob/2 and section 9.4.7).
ooppeenn((_+_S_r_c_D_e_s_t_, _+_M_o_d_e_, _-_S_t_r_e_a_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
ISO compliant predicate to open a stream. _S_r_c_D_e_s_t is either an
atom, specifying a file, or a term `pipe(_C_o_m_m_a_n_d)', like see/1 and
tell/1. _M_o_d_e is one of read, write, append or update. Mode
append opens the file for writing, positioning the file-pointer at
the end. Mode update opens the file for writing, positioning the
file-pointer at the beginning of the file without truncating the
file. _S_t_r_e_a_m is either a variable, in which case it is bound to an
integer identifying the stream, or an atom, in which case this atom
will be the stream identifier. The _O_p_t_i_o_n_s list can contain the
following options:
ttyyppee((_T_y_p_e))
Using type text (default), Prolog will write a text-file in an
operating-system compatible way. Using type binary the bytes
will be read or written without any translation. See also the
option encoding.
aalliiaass((_A_t_o_m))
Gives the stream a name. Below is an example. Be careful
with this option as stream-names are global. See also
set_stream/2.
_______________________________________________________________| |
|?- open(data, read, Fd, [alias(input)]). |
| |
| ..., |
| read(input, Term), |
||_______...___________________________________________________ ||
eennccooddiinngg((_E_n_c_o_d_i_n_g))
Define the encoding used for reading and writing text to this
stream. The default encoding for type text is derived from
the Prolog flag encoding. For binary streams the default
encoding is octet. For details on encoding issues, see
section 2.17.1.
bboomm((_B_o_o_l))
Check for a BOM (_B_y_t_e _O_r_d_e_r _M_a_r_k_e_r) or write one. If omitted,
the default is true for mode read and false for mode write.
See also stream_property/2 and especially section 2.17.1.1 for
a discussion on this feature.
eeooff__aaccttiioonn((_A_c_t_i_o_n))
Defines what happens if the end of the input stream is
reached. Action eof_code makes get0/1 and friends return -1
and read/1 and friends return the atom end_of_file. Repetitive
reading keeps yielding the same result. Action error is like
eof_code, but repetitive reading will raise an error. With
action reset, Prolog will examine the file again and return
more data if the file has grown.
bbuuffffeerr((_B_u_f_f_e_r_i_n_g))
Defines output buffering. The atom full (default) defines
full buffering, line buffering by line, and false implies the
stream is fully unbuffered. Smaller buffering is useful if
another process or the user is waiting for the output as it is
being produced. See also flush_output/[0,1]. This option is
not an ISO option.
cclloossee__oonn__aabboorrtt((_B_o_o_l))
If true (default), the stream is closed on an abort (see
abort/0). If false, the stream is not closed. If it is
an output stream, it will be flushed however. Useful for
logfiles and if the stream is associated to a process (using
the pipe/1 construct).
lloocckk((_L_o_c_k_i_n_g_M_o_d_e))
Try to obtain a lock on the open file. Default is none, which
does not lock the file. The value read or shared means other
processes may read the file, but not write it. The value
write or exclusive means no other process may read or write
the file.
Locks are acquired through the POSIX function fcntl() using
the command F_SETLKW, which makes a blocked call wait for the
lock to be released. Please note that fcntl() locks are
_a_d_v_i_s_o_r_y and therefore only other applications using the same
advisory locks honour your lock. As there are many issues
around locking in Unix, especially related to NFS (network
file system), please study the fcntl() manual page before
trusting your locks!
The lock option is a SWI-Prolog extension.
wwaaiitt((_B_o_o_l))
This option can be combined with the lock option. If false
(default true), the open call returns immediately with an
exception if the file is locked. The exception has the format
permission_error(_l_o_c_k_, _s_o_u_r_c_e___s_i_n_k_, _S_r_c_D_e_s_t).
The option reposition is not supported in SWI-Prolog. All streams
connected to a file may be repositioned.
ooppeenn((_+_S_r_c_D_e_s_t_, _+_M_o_d_e_, _?_S_t_r_e_a_m)) _[_I_S_O_]
Equivalent to open/4 with an empty option-list.
ooppeenn__nnuullll__ssttrreeaamm((_?_S_t_r_e_a_m))
Open an output stream that produces no output. All counting
functions are enabled on such a stream. It can be used to discard
output (like Unix /dev/null) or exploit the counting properties.
The initial encoding of _S_t_r_e_a_m is utf8, enabling arbitrary Unicode
output. The encoding can be changed to determine byte-counts of
the output in a particular encoding or validate output is possible
in a particular encoding. For example, the code below determines
the number of characters emitted when writing _T_e_r_m.
____________________________________________________________________| |
| write_length(Term, Len) :- |
| open_null_stream(Out), |
| write(Out, Term), |
| character_count(Out, Len0), |
| close(Out), |
||________Len_=_Len0._______________________________________________ ||
cclloossee((_+_S_t_r_e_a_m)) _[_I_S_O_]
Close the specified stream. If _S_t_r_e_a_m is not open, an existence
error is raised. However, closing a stream multiple times may
crash Prolog. This is particularly true for multi-threaded
applications.
If the closed stream is the current input or output stream, the
terminal is made the current input or output.
cclloossee((_+_S_t_r_e_a_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
Provides close(_S_t_r_e_a_m_, _[_f_o_r_c_e_(_t_r_u_e_)_]) as the only option. Called
this way, any resource error (such as write-errors while flushing
the output buffer) are ignored.
ssttrreeaamm__pprrooppeerrttyy((_?_S_t_r_e_a_m_, _?_S_t_r_e_a_m_P_r_o_p_e_r_t_y)) _[_I_S_O_]
ISO compatible predicate for querying status of open I/O streams.
_S_t_r_e_a_m_P_r_o_p_e_r_t_y is one of:
aalliiaass((_A_t_o_m))
If _A_t_o_m is bound, test of the stream has the specified alias.
Otherwise unify _A_t_o_m with the first alias of the stream.
bbuuffffeerr((_B_u_f_f_e_r_i_n_g))
SWI-Prolog extension to query the buffering mode of this
stream. _B_u_f_f_e_r_i_n_g is one of full, line or false. See also
open/4.
bbuuffffeerr__ssiizzee((_I_n_t_e_g_e_r))
SWI-Prolog extension to query the size of the I/O buffer
associated to a stream in bytes. Fails of the stream is not
buffered.
bboomm((_B_o_o_l))
If present and true, a BOM (_B_y_t_e _O_r_d_e_r _M_a_r_k) was detected
while opening the file for reading or a BOM was written while
opening the stream. See section 2.17.1.1 for details.
cclloossee__oonn__aabboorrtt((_B_o_o_l))
Determine whether or not the stream is closed by abort/0. By
default streams are closed.
cclloossee__oonn__eexxeecc((_B_o_o_l))
Determine whether or not the stream is closed when executing
a new process (exec() in Unix, CreateProcess() in Windows).
Default is to close streams. This maps to fcntl()
F_SETFD using the flag FD_CLOEXEC on Unix and (negated)
HANDLE_FLAG_INHERIT on Windows.
eennccooddiinngg((_E_n_c_o_d_i_n_g))
Query the encoding used for text. See section 2.17.1 for an
overview of wide character and encoding issues in SWI-Prolog.
eenndd__ooff__ssttrreeaamm((_E))
If _S_t_r_e_a_m is an input stream, unify _E with one of the atoms
not, at or past. See also at_end_of_stream/[0,1].
eeooff__aaccttiioonn((_A))
Unify _A with one of eof_code, reset or error. See open/4 for
details.
ffiillee__nnaammee((_A_t_o_m))
If _S_t_r_e_a_m is associated to a file, unify _A_t_o_m to the name of
this file.
ffiillee__nnoo((_I_n_t_e_g_e_r))
If the stream is associated with a POSIX file-descriptor,
unify _I_n_t_e_g_e_r with the descriptor number. SWI-Prolog
extension used primarily for integration with foreign code.
See also Sfileno() from SWI-Stream.h.
iinnppuutt
True if _S_t_r_e_a_m has mode read.
mmooddee((_I_O_M_o_d_e))
Unify _I_O_M_o_d_e to the mode given to open/4 for opening the
stream. Values are: read, write, append and the SWI-Prolog
extension update.
nneewwlliinnee((_N_e_w_l_i_n_e_M_o_d_e))
One of posix or dos. If dos, text-streams will emit \r\n for
\n and discard \r from input streams. Default depends on the
operating system.
nnlliinnkk((_-_C_o_u_n_t))
Number of hard links to the file. This expresses the number
of `names' the file has. Not supported on all operating
systems and the value might be bogus. See the documentation
of fstat() for your OS and the value st_nlink.
oouuttppuutt
True if _S_t_r_e_a_m has mode write, append or update.
ppoossiittiioonn((_T_e_r_m))
Unify _T_e_r_m with the current stream-position. A stream-
position is an opaque term whose fields can be extracted using
stream_position_data/3. See also set_stream_position/2.
rreeppoossiittiioonn((_B_o_o_l))
Unify _B_o_o_l with _t_r_u_e if the position of the stream can be
set (see seek/4). It is assumed the position can be set if
the stream has a _s_e_e_k_-_f_u_n_c_t_i_o_n and is not based on a POSIX
file-descriptor that is not associated to a regular file.
rreepprreesseennttaattiioonn__eerrrroorrss((_M_o_d_e))
Determines behaviour of character output if the stream cannot
represent a character. For example, an ISO Latin-1 stream
cannot represent Cyrillic characters. The behaviour is one of
error (throw and I/O error exception), prolog (write \...\
escape code or xml (write &#...; XML character entity). The
initial mode is prolog for the user streams and error for all
other streams. See also section 2.17.1 and set_stream/2.
ttiimmeeoouutt((_-_T_i_m_e))
_T_i_m_e is the timeout currently associated with the stream. See
set_stream/2 with the same option. If no timeout is specified,
_T_i_m_e is unified to the atom infinite.
ttyyppee((_T))
Unify _B_o_o_l with text or binary.
ttttyy((_B_o_o_l))
This property is reported with _B_o_o_l equals true if the stream
is associated with a terminal. See also set_stream/2.
ccuurrrreenntt__ssttrreeaamm((_?_O_b_j_e_c_t_, _?_M_o_d_e_, _?_S_t_r_e_a_m))
The predicate current_stream/3 is used to access the status of a
stream as well as to generate all open streams. _O_b_j_e_c_t is the name
of the file opened if the stream refers to an open file, an integer
file-descriptor if the stream encapsulates an operating-system
stream or the atom [] if the stream refers to some other object.
_M_o_d_e is one of read or write.
iiss__ssttrreeaamm((_+_T_e_r_m))
True if _T_e_r_m is a stream name or valid stream handle. This
predicate realises a safe test for the existence of a stream alias
or handle.
ssttrreeaamm__ppaaiirr((_?_S_t_r_e_a_m_P_a_i_r_, _?_R_e_a_d_, _?_W_r_i_t_e))
This predicate can be used in mode (-,+,+) to create a _s_t_r_e_a_m_-_p_a_i_r
from an input stream and an output stream. Stream-pairs can be
used by all I/O operations on streams, where the operation selects
the appropriate member of the pair. The predicate close/1 closes
both streams of the pair. Mode (+,-,-) can be used to get access
to the underlying streams.
sseett__ssttrreeaamm__ppoossiittiioonn((_+_S_t_r_e_a_m_, _+_P_o_s)) _[_I_S_O_]
Set the current position of _S_t_r_e_a_m to _P_o_s. _P_o_s is a term as
returned by stream_property/2 using the position(_P_o_s) property.
See also seek/4.
ssttrreeaamm__ppoossiittiioonn__ddaattaa((_?_F_i_e_l_d_, _+_P_o_s_i_t_i_o_n_, _-_D_a_t_a))
Extracts information from the opaque stream position term as
returned by stream_property/2 requesting the position(_P_o_s_i_t_i_o_n)
property. _F_i_e_l_d is one of line_count, line_position, char_count
or byte_count. See also line_count/2, line_position/2,
character_count/2 and byte_count/2.
sseeeekk((_+_S_t_r_e_a_m_, _+_O_f_f_s_e_t_, _+_M_e_t_h_o_d_, _-_N_e_w_L_o_c_a_t_i_o_n))
Reposition the current point of the given _S_t_r_e_a_m. _M_e_t_h_o_d is one of
bof, current or eof, indicating positioning relative to the start,
current point or end of the underlying object. _N_e_w_L_o_c_a_t_i_o_n is
unified with the new offset, relative to the start of the stream.
Positions are counted in `units'. A unit is 1 byte, except
for text-files using 2-byte Unicode encoding (2 bytes) or _w_c_h_a_r
encoding (sizeof(wchar_t)). The latter guarantees comfortable
interaction with wide-character text-objects. Otherwise, the
use of seek/4 on non-binary files (see open/4) is of limited
use, especially when using multi-byte text-encodings (e.g.
UTF-8) or multi-byte newline files (e.g. DOS/Windows). On
text-files, SWI-Prolog offers reliable backup to an old position
using stream_property/2 and set_stream_position/2. Skipping N
character codes is achieved calling get_code/2 N times or using
copy_stream_data/3, directing the output to a null-stream (see
open_null_stream/1). If the seek modifies the current location,
the line number and character position in the line are set to 0.
If the stream cannot be repositioned, a permission_error is raised.
If applying the offset would result in a file-position less then
zero, a domain_error is raised. Behaviour when seeking to
positions beyond the size of the underlying object depend on the
object and possibly the operating system. The predicate seek/4
is compatible with Quintus Prolog, though the error conditions
and signalling is ISO compliant. See also stream_property/2 and
set_stream_position/2.
sseett__ssttrreeaamm((_+_S_t_r_e_a_m_, _+_A_t_t_r_i_b_u_t_e))
Modify an attribute of an existing stream. _A_t_t_r_i_b_u_t_e specifies the
stream property to set. See also stream_property/2 and open/4.
aalliiaass((_A_l_i_a_s_N_a_m_e))
Set the alias of an already created stream. If _A_l_i_a_s_N_a_m_e is
the name of one of the standard streams is used, this stream
is rebound. Thus, set_stream(S, current_input)is the same as
set_input/1 and by setting the alias of a stream to user_input,
etc. all user terminal input is read from this stream. See
also interactor/0.
bbuuffffeerr((_B_u_f_f_e_r_i_n_g))
Set the buffering mode of an already created stream. Buffer-
ing is one of full, line or false.
bbuuffffeerr__ssiizzee((_+_S_i_z_e))
Set the size of the I/O buffer of the underlying stream to
_S_i_z_e bytes.
cclloossee__oonn__aabboorrtt((_B_o_o_l))
Determine whether or not the stream is closed by abort/0. By
default streams are closed.
cclloossee__oonn__eexxeecc((_B_o_o_l))
Set the close_on_exec property. See stream_property/2.
eennccooddiinngg((_A_t_o_m))
Defines the mapping between bytes and character codes used for
the stream. See section 2.17.1 for supported encodings.
eeooff__aaccttiioonn((_A_c_t_i_o_n))
Set end-of-file handling to one of eof_code, reset or error.
nneewwlliinnee((_N_e_w_l_i_n_e_M_o_d_e))
Set input or output translation for newlines. See correspond-
ing stream_property/2 for details. In addition to the detected
modes, an input stream can be set in mode detect. It will be
set to dos if a \r character was removed.
ttiimmeeoouutt((_S_e_c_o_n_d_s))
This option can be used to make streams generate an exception
if it takes longer than _S_e_c_o_n_d_s before any new data arrives
at the stream. The value _i_n_f_i_n_i_t_e (default) makes the
stream block indefinitely. Like wait_for_input/3, this call
only applies to streams that support the select() system
call. For further information about timeout handling, see
wait_for_input/3. The exception is of the form
error(timeout_error_(_r_e_a_d_, _S_t_r_e_a_m_)_, __)
ttyyppee((_T_y_p_e))
Set the type of the stream to one of text or binary. See also
open/4 and the encoding property of streams.
rreeccoorrdd__ppoossiittiioonn((_B_o_o_l))
Do/do not record the line-count and line-position (see
line_count/2 and line_position/2).
rreepprreesseennttaattiioonn__eerrrroorrss((_M_o_d_e))
Change the behaviour when writing characters to the stream
that cannot be represented by the encoding. See also
stream_property/2 and section 2.17.1.
ffiillee__nnaammee((_F_i_l_e_N_a_m_e))
Set the file name associated to this stream. This call can be
used to set the file for error-locations if _S_t_r_e_a_m corresponds
to _F_i_l_e_N_a_m_e and is not obtained by opening the file directly
but, for example, through a network service.
ttttyy((_B_o_o_l))
Modify whether Prolog thinks there is a terminal (i.e. human
interaction) connected to this stream. On Unix systems the
initial value comes from isatty(). On Windows, the initial
user streams are supposed to be associated to a terminal. See
also stream_property/2.
sseett__pprroolloogg__IIOO((_+_I_n_, _+_O_u_t_, _+_E_r_r_o_r))
Prepare the given streams for interactive behaviour normally
associated to the terminal. _I_n becomes the user_input and
current_input of the calling thread. _O_u_t becomes user_output
and current_output. If _E_r_r_o_r equals _O_u_t an unbuffered stream
is associated to the same destination and linked to user_error.
Otherwise _E_r_r_o_r is used for user_error. Output buffering for _O_u_t
is set to line and buffering on _E_r_r_o_r is disabled. See also
prolog/0 and set_stream/2. The _c_l_i_b package provides the library
prolog_server creating a TCP/IP server for creating an interactive
session to Prolog.
44..1155..22 EEddiinnbbuurrgghh--ssttyyllee II//OO
The package for implicit input and output destination is (almost)
compatible with Edinburgh DEC-10 and C-Prolog. The reading and writing
predicates refer to resp. the _c_u_r_r_e_n_t input- and output stream.
Initially these streams are connected to the terminal. The current
output stream is changed using tell/1 or append/1. The current input
stream is changed using see/1. The streams current value can be
obtained using telling/1 for output- and seeing/1 for input streams.
Source and destination are either a file, user, or a term
`pipe(_C_o_m_m_a_n_d)'. The reserved stream name user refers to the terminal.
In the predicate descriptions below we will call the source/destination
argument `_S_r_c_D_e_s_t'. Below are some examples of source/destination
specifications.
?- see(data). % Start reading from file `data'.
?- tell(user). % Start writing to the terminal.
?- tell(pipe(lpr)). % Start writing to the printer.
Another example of using the pipe/1 construct is shown below. Note
that the pipe/1 construct is not part of Prolog's standard I/O
repertoire.
________________________________________________________________________| |
|getwd(Wd) :- |
| seeing(Old), see(pipe(pwd)), |
| collect_wd(String), |
| seen, see(Old), |
| atom_codes(Wd, String). |
| |
|collect_wd([C|R]) :- |
| get0(C), C \== -1, !, |
| collect_wd(R). |
|collect_wd([]).|_______________________________________________________ | |
CCoommppaattiibbiilliittyy nnootteess
Unlike Edinburgh Prolog systems, telling/1 and seeing/1 do not return
the filename of the current input/output, but the stream-identifier, to
ensure the design pattern below works under all circumstances.
________________________________________________________________________| |
| ..., |
| telling(Old), tell(x), |
| ..., |
| told, tell(Old), |
||_______...,___________________________________________________________ ||
The predicates tell/1 and see/1 first check for user, the pipe(_c_o_m_m_a_n_d)
and a stream-handle. Otherwise, if the argument is an atom it is
first compared to open streams associated to a file with _e_x_a_c_t_l_y the
same name. If such a stream, created using tell/1 or see/1 exists,
output (input) is switch to the open stream. Otherwise a file with the
specified name is opened.
The behaviour is compatible with Edinburgh Prolog. This is not
without problems. Changing directory, non-file streams, multiple names
referring to the same file easily lead to unexpected behaviour. New
code, especially when managing multiple I/O channels should consider
using the ISO I/O predicates defined in section 4.15.1.
sseeee((_+_S_r_c_D_e_s_t))
Open _S_r_c_D_e_s_t for reading and make it the current input (see
set_input/1). If _S_r_c_D_e_s_t is a stream-handle, just makes this
stream the current input. See the introduction of section 4.15.2
for details.
tteellll((_+_S_r_c_D_e_s_t))
Open _S_r_c_D_e_s_t for writing and make it the current output (see
set_output/1). If _S_r_c_D_e_s_t is a stream-handle, just makes this
stream the current output. See the introduction of section 4.15.2
for details.
aappppeenndd((_+_F_i_l_e))
Similar to tell/1, but positions the file pointer at the end of
_F_i_l_e rather than truncating an existing file. The pipe construct
is not accepted by this predicate.
sseeeeiinngg((_?_S_r_c_D_e_s_t))
Same as current_input/1, except that user is returned if the
current input is the stream user_input to improve compatibility
with traditional Edinburgh I/O. See the introduction of
section 4.15.2 for details.
tteelllliinngg((_?_S_r_c_D_e_s_t))
Same as current_output/1, except that user is returned if the
current output is the stream user_output to improve compatibility
with traditional Edinburgh I/O. See the introduction of
section 4.15.2 for details.
sseeeenn
Close the current input stream. The new input stream becomes
_u_s_e_r___i_n_p_u_t.
ttoolldd
Close the current output stream. The new output stream becomes
_u_s_e_r___o_u_t_p_u_t.
44..1155..33 SSwwiittcchhiinngg BBeettwweeeenn EEddiinnbbuurrgghh aanndd IISSOO II//OO
The predicates below can be used for switching between the implicit-
and the explicit stream based I/O predicates.
sseett__iinnppuutt((_+_S_t_r_e_a_m)) _[_I_S_O_]
Set the current input stream to become _S_t_r_e_a_m. Thus, open(file,
read, Stream), set_input(Stream) is equivalent to see(file).
sseett__oouuttppuutt((_+_S_t_r_e_a_m)) _[_I_S_O_]
Set the current output stream to become _S_t_r_e_a_m. See also
with_output_to/2.
ccuurrrreenntt__iinnppuutt((_-_S_t_r_e_a_m)) _[_I_S_O_]
Get the current input stream. Useful to get access to the status
predicates associated with streams.
ccuurrrreenntt__oouuttppuutt((_-_S_t_r_e_a_m)) _[_I_S_O_]
Get the current output stream.
44..1155..44 WWrriittee oonnttoo aattoommss,, ccooddee--lliissttss,, eettcc..
wwiitthh__oouuttppuutt__ttoo((_+_O_u_t_p_u_t_, _:_G_o_a_l))
Run _G_o_a_l as once/1, while characters written to the current
output is sent to _O_u_t_p_u_t. The predicate is SWI-Prolog specific,
inspired by various posts to the mailinglist. It provides a
flexible replacement for predicates such as sformat/3, swritef/3,
term_to_atom/2, atom_number/2 converting numbers to atoms, etc. The
predicate format/3 accepts the same terms as output argument.
Applications should generally avoid creating atoms by breaking
and concatenating other atoms as the creation of large numbers
of intermediate atoms generally leads to poor performance, even
more so in multi-threaded applications. This predicate supports
creating difference-lists from character data efficiently. The
example below defines the DCG rule term//1 to insert a term in the
output:
____________________________________________________________________| |
| term(Term, In, Tail) :- |
| with_output_to(codes(In, Tail), write(Term)). |
| |
| ?- phrase(term(hello), X). |
| |
||X_=_[104,_101,_108,_108,_111]_____________________________________ ||
AA SSttrreeaamm hhaannddllee oorr aalliiaass
Temporary switch current output to the given stream. Redirec-
tion using with_output_to/2guarantees the original output is
restored, also if _G_o_a_l fails or raises an exception. See also
call_cleanup/2.
aattoomm((_-_A_t_o_m))
Create an atom from the emitted characters. Please note the
remark above.
ssttrriinngg((_-_S_t_r_i_n_g))
Create a string-object as defined in section 4.22.
ccooddeess((_-_C_o_d_e_s))
Create a list of character codes from the emitted characters,
similar to atom_codes/2.
ccooddeess((_-_C_o_d_e_s_, _-_T_a_i_l))
Create a list of character codes as a difference-list.
cchhaarrss((_-_C_h_a_r_s))
Create a list of one-character-atoms codes from the emitted
characters, similar to atom_chars/2.
cchhaarrss((_-_C_h_a_r_s_, _-_T_a_i_l))
Create a list of one-character-atoms as a difference-list.
44..1166 SSttaattuuss ooff ssttrreeaammss
wwaaiitt__ffoorr__iinnppuutt((_+_L_i_s_t_O_f_S_t_r_e_a_m_s_, _-_R_e_a_d_y_L_i_s_t_, _+_T_i_m_e_O_u_t))
Wait for input on one of the streams in _L_i_s_t_O_f_S_t_r_e_a_m_s and return
a list of streams on which input is available in _R_e_a_d_y_L_i_s_t.
wait_for_input/3 waits for at most _T_i_m_e_O_u_t seconds. _T_i_m_e_o_u_t may
be specified as a floating point number to specify fractions of
a second. If _T_i_m_e_o_u_t equals infinite, wait_for_input/3 waits
indefinitely.
This predicate can be used to implement timeout while reading and
to handle input from multiple sources. The following example
will wait for input from the user and an explicitly opened second
terminal. On return, _I_n_p_u_t_s may hold user or _P_4 or both.
____________________________________________________________________| |
| ?- open('/dev/ttyp4', read, P4), |
||___wait_for_input([user,_P4],_Inputs,_0)._________________________ ||
This predicate relies on the select() call on most operating
systems. On Unix this call is implemented for any stream referring
to a file-handle, which implies all OS-based streams: sockets,
terminals, pipes, etc. On non-Unix systems select() is generally
only implemented for socket-based streams. See also socket from
the clib package.
Note that wait_for_input/3 returns streams that have data waiting.
This does not mean you can, for example, call read/2 on the stream
without blocking as the stream might hold an incomplete term. The
predicate set_stream/2 using the option timeout(_S_e_c_o_n_d_s) can be
used to make the stream generate an exception if no new data
arrives for within the timeout. Suppose two processes communicate
by exchanging Prolog terms. The following code makes the server
immune for clients that write an incomplete term:
____________________________________________________________________| |
| ..., |
| tcp_accept(Server, Socket, _Peer), |
| tcp_open(Socket, In, Out), |
| set_stream(In, timeout(10)), |
| catch(read(In, Term), _, (close(Out), close(In), fail)), |
||________...,______________________________________________________ ||
bbyyttee__ccoouunntt((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Byte-position in _S_t_r_e_a_m. For binary streams this is the same as
character_count/2. For text files the number may be different due
to multi-byte encodings or additional record separators (such as
Control-M in Windows).
cchhaarraacctteerr__ccoouunntt((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Unify _C_o_u_n_t with the current character index. For input streams
this is the number of characters read since the open, for output
streams this is the number of characters written. Counting starts
at 0.
lliinnee__ccoouunntt((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Unify _C_o_u_n_t with the number of lines read or written. Counting
starts at 1.
lliinnee__ppoossiittiioonn((_+_S_t_r_e_a_m_, _-_C_o_u_n_t))
Unify _C_o_u_n_t with the position on the current line. Note that this
assumes the position is 0 after the open. Tabs are assumed to be
defined on each 8-th character and backspaces are assumed to reduce
the count by one, provided it is positive.
44..1177 PPrriimmiittiivvee cchhaarraacctteerr II//OO
See section 4.2 for an overview of supported character representations.
nnll _[_I_S_O_]
Write a newline character to the current output stream. On Unix
systems nl/0 is equivalent to put(10).
nnll((_+_S_t_r_e_a_m)) _[_I_S_O_]
Write a newline to _S_t_r_e_a_m.
ppuutt((_+_C_h_a_r))
Write _C_h_a_r to the current output stream, _C_h_a_r is either an
integer-expression evaluating to a character code or an atom of
one character. Depreciated. New code should use put_char/1 or
put_code/1.
ppuutt((_+_S_t_r_e_a_m_, _+_C_h_a_r))
Write _C_h_a_r to _S_t_r_e_a_m. See put/1 for details.
ppuutt__bbyyttee((_+_B_y_t_e)) _[_I_S_O_]
Write a single byte to the output. _B_y_t_e must be an integer between
0 and 255.
ppuutt__bbyyttee((_+_S_t_r_e_a_m_, _+_B_y_t_e)) _[_I_S_O_]
Write a single byte to a stream. _B_y_t_e must be an integer between 0
and 255.
ppuutt__cchhaarr((_+_C_h_a_r)) _[_I_S_O_]
Write a character to the current output, obeying the encoding
defined for the current output stream. Note that this may raise an
exception if the encoding of _S_t_r_e_a_m cannot represent _C_h_a_r.
ppuutt__cchhaarr((_+_S_t_r_e_a_m_, _+_C_h_a_r)) _[_I_S_O_]
Write a character to _S_t_r_e_a_m, obeying the encoding defined for
_S_t_r_e_a_m. Note that this may raise an exception if the encoding of
_S_t_r_e_a_m cannot represent _C_h_a_r.
ppuutt__ccooddee((_+_C_o_d_e)) _[_I_S_O_]
Similar to put_char/1, but using a _c_h_a_r_a_c_t_e_r _c_o_d_e. _C_o_d_e is a
non-negative integer. Note that this may raise an exception if the
encoding of _S_t_r_e_a_m cannot represent _C_o_d_e.
ppuutt__ccooddee((_+_S_t_r_e_a_m_, _+_C_o_d_e)) _[_I_S_O_]
Same as put_code/1 but directing _C_o_d_e to _S_t_r_e_a_m.
ttaabb((_+_A_m_o_u_n_t))
Writes _A_m_o_u_n_t spaces on the current output stream. _A_m_o_u_n_t
should be an expression that evaluates to a positive integer (see
section 4.25).
ttaabb((_+_S_t_r_e_a_m_, _+_A_m_o_u_n_t))
Writes _A_m_o_u_n_t spaces to _S_t_r_e_a_m.
fflluusshh__oouuttppuutt _[_I_S_O_]
Flush pending output on current output stream. flush_output/0 is
automatically generated by read/1 and derivatives if the current
input stream is user and the cursor is not at the left margin.
fflluusshh__oouuttppuutt((_+_S_t_r_e_a_m)) _[_I_S_O_]
Flush output on the specified stream. The stream must be open for
writing.
ttttyyfflluusshh
Flush pending output on stream _u_s_e_r. See also flush_output/[0,1].
ggeett__bbyyttee((_-_B_y_t_e)) _[_I_S_O_]
Read the current input stream and unify the next byte with _B_y_t_e (an
integer between 0 and 255. _B_y_t_e is unified with -1 on end of file.
ggeett__bbyyttee((_+_S_t_r_e_a_m_, _-_B_y_t_e)) _[_I_S_O_]
Read the next byte from _S_t_r_e_a_m, returning an integer between 0 and
255.
ggeett__ccooddee((_-_C_o_d_e)) _[_I_S_O_]
Read the current input stream and unify _C_o_d_e with the character
code of the next character. _C_o_d_e is unified with -1 on end of
file. See also get_char/1.
ggeett__ccooddee((_+_S_t_r_e_a_m_, _-_C_o_d_e)) _[_I_S_O_]
Read the next character-code from _S_t_r_e_a_m.
ggeett__cchhaarr((_-_C_h_a_r)) _[_I_S_O_]
Read the current input stream and unify _C_h_a_r with the next
character as a one-character-atom. See also atom_chars/2. On
end-of-file, _C_h_a_r is unified to the atom end_of_file.
ggeett__cchhaarr((_+_S_t_r_e_a_m_, _-_C_h_a_r)) _[_I_S_O_]
Unify _C_h_a_r with the next character from _S_t_r_e_a_m as a one-character-
atom. See also get_char/2, get_byte/2 and get_code/2.
ggeett00((_-_C_h_a_r))
Edinburgh version of the ISO get_code/1 predicate. Note that
Edinburgh prolog didn't support wide characters and therefore
technically speaking get0/1 should have been mapped to get_byte/1.
The intention of get0/1 however is to read character codes.
ggeett00((_+_S_t_r_e_a_m_, _-_C_h_a_r))
Edinburgh version of the ISO get_code/2 predicate. See also
get0/1.
ggeett((_-_C_h_a_r))
Read the current input stream and unify the next non-blank
character with _C_h_a_r. _C_h_a_r is unified with -1 on end of file.
ggeett((_+_S_t_r_e_a_m_, _-_C_h_a_r))
Read the next non-blank character from _S_t_r_e_a_m.
ppeeeekk__bbyyttee((_-_B_y_t_e)) _[_I_S_O_]
ppeeeekk__bbyyttee((_+_S_t_r_e_a_m_, _-_B_y_t_e)) _[_I_S_O_]
ppeeeekk__ccooddee((_-_C_o_d_e)) _[_I_S_O_]
ppeeeekk__ccooddee((_+_S_t_r_e_a_m_, _-_C_o_d_e)) _[_I_S_O_]
ppeeeekk__cchhaarr((_-_C_h_a_r)) _[_I_S_O_]
ppeeeekk__cchhaarr((_+_S_t_r_e_a_m_, _-_C_h_a_r)) _[_I_S_O_]
Read the next byte/code/char from the input without removing
it. These predicates do not modify the stream's position or
end-of-file status. These predicates require a buffered stream
(see set_stream/2) and raise a permission_error if the stream is
unbuffered or the buffer is too small to hold the longest multibyte
sequence that might need to be buffered.
sskkiipp((_+_C_o_d_e))
Read the input until _C_h_a_r or the end of the file is encountered. A
subsequent call to get_code/1 will read the first character after
_C_o_d_e.
sskkiipp((_+_S_t_r_e_a_m_, _+_C_o_d_e))
Skip input (as skip/1) on _S_t_r_e_a_m.
ggeett__ssiinnggllee__cchhaarr((_-_C_o_d_e))
Get a single character from input stream `user' (regardless of the
current input stream). Unlike get_code/1 this predicate does not
wait for a return. The character is not echoed to the user's
terminal. This predicate is meant for keyboard menu selection etc.
If SWI-Prolog was started with the -tty option this predicate reads
an entire line of input and returns the first non-blank character
on this line, or the character code of the newline (10) if the
entire line consisted of blank characters.
aatt__eenndd__ooff__ssttrreeaamm _[_I_S_O_]
Succeeds after the last character of the current input stream has
been read. Also succeeds if there is no valid current input
stream.
aatt__eenndd__ooff__ssttrreeaamm((_+_S_t_r_e_a_m)) _[_I_S_O_]
Succeeds after the last character of the named stream is read, or
_S_t_r_e_a_m is not a valid input stream. The end-of-stream test is only
available on buffered input stream (unbuffered input streams are
rarely used, see open/4).
sseett__eenndd__ooff__ssttrreeaamm((_+_S_t_r_e_a_m))
Sets the size of the file opened as _S_t_r_e_a_m to the current
file-position. This is typically used in combination with the
open-mode update.
ccooppyy__ssttrreeaamm__ddaattaa((_+_S_t_r_e_a_m_I_n_, _+_S_t_r_e_a_m_O_u_t_, _+_L_e_n))
Copy _L_e_n codes from stream _S_t_r_e_a_m_I_n to _S_t_r_e_a_m_O_u_t. Note that the
copy is done using the semantics of get_code/2 and put_code/2,
taking care of possibly recoding that needs take place between two
text files. See section 2.17.1.
ccooppyy__ssttrreeaamm__ddaattaa((_+_S_t_r_e_a_m_I_n_, _+_S_t_r_e_a_m_O_u_t))
Copy data all (remaining) data from stream _S_t_r_e_a_m_I_n to _S_t_r_e_a_m_O_u_t.
rreeaadd__ppeennddiinngg__iinnppuutt((_+_S_t_r_e_a_m_I_n_, _-_C_o_d_e_s_, _?_T_a_i_l))
Read input pending in the input buffer of _S_t_r_e_a_m_I_n and return it
in the difference list _C_o_d_e_s-_T_a_i_l. I.e. the available characters
codes are used to create the list _C_o_d_e_s ending in the tail _T_a_i_l.
This predicate is intended for efficient unbuffered copying and
filtering of input coming from network connections or devices.
The following code fragment realises efficient non-blocking copy of
data from an input- to an output stream. The at_end_of_stream/1
call checks for end-of-stream and fills the input buffer. Note
that the use of a get_code/2 and put_code/2 based loop requires a
flush_output/1 call after _e_a_c_h put_code/2. The copy_stream_data/2
does not allow for inspection of the copied data and suffers from
the same buffering issues.
____________________________________________________________________| |
| copy(In, Out) :- |
| repeat, |
| ( at_end_of_stream(In) |
| -> ! |
| ; read_pending_input(In, Chars, []), |
| format(Out, '~s', [Chars]), |
| flush_output(Out), |
| fail |
||____________).____________________________________________________ ||
44..1188 TTeerrmm rreeaaddiinngg aanndd wwrriittiinngg
This section describes the basic term reading and writing predicates.
The predicates format/[1,2] and writef/2 provide formatted output.
Writing to Prolog datastructures such as atoms or code-lists is
supported by with_output_to/2and format/3.
Reading is sensitive to the Prolog flag character_escapes, which
controls the interpretation of the \ character in quoted atoms and
strings.
wwrriittee__tteerrmm((_+_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
The predicate write_term/2 is the generic form of all Prolog
term-write predicates. Valid options are:
aattttrriibbuutteess((_A_t_o_m))
Define how attributed variables (see section 6.1) are written.
The default is determined by the Prolog flag write_attributes.
Defined values are ignore (ignore the attribute), dots (write
the attributes as {...}), write (simply hand the attributes
recursively to write_term/2) and portray (hand the attributes
to attr_portray_hook/2).
bbaacckkqquuootteedd__ssttrriinngg((_B_o_o_l))
If true, write a string object (see section 4.22) as `...`.
The default depends on the Prolog flag backquoted_string.
bblloobbss((_A_t_o_m))
Define how non-text blobs are handled. By default, this is
left to the write-handler specified with the blob-type. Using
portray, portray/1 is called for each blob encountered. See
section 9.4.7.
cchhaarraacctteerr__eessccaappeess((_B_o_o_l))
If true, and quoted(_t_r_u_e) is active, special characters in
quoted atoms and strings are emitted as ISO escape-sequences.
Default is taken from the reference module (see below).
iiggnnoorree__ooppss((_B_o_o_l))
If true, the generic term-representation (<_f_u_n_c_t_o_r>(<_a_r_g_s> ...))
will be used for all terms, Otherwise (default), operators,
list-notation and {}/1 will be written using their special
syntax.
mmaaxx__ddeepptthh((_I_n_t_e_g_e_r))
If the term is nested deeper than _I_n_t_e_g_e_r, print the remainder
as ellipses (...). A 0 (zero) value (default) imposes no
depth limit. This option also delimits the number of printed
for a list. Example:
_______________________________________________________________| |
|?- write_term(a(s(s(s(s(0)))), [a,b,c,d,e,f]), [max_depth(3)]).|
|a(s(s(...)), [a, b|...]) |
| |
|Yes|__________________________________________________________ | |
Used by the top-level and debugger to limit screen
output. See also the Prolog flags toplevel_print_options and
debugger_print_options.
mmoodduullee((_M_o_d_u_l_e))
Define the reference module (default user). This defines the
default value for the character_escapes option as well as the
operator definitions to use. See also op/3.
nnuummbbeerrvvaarrss((_B_o_o_l))
If true, terms of the format $VAR(N), where <_N> is a positive
integer, will be written as a variable name. If _N is an
atom it is written without quotes. This extension allows for
writing variables with user-provided names. The default is
false. See also numbervars/3.
ppaarrttiiaall((_B_o_o_l))
If true (default false), do not reset the logic that inserts
extra spaces that separate tokens where needed. This is
intended to solve the problems with the code below. Calling
write_value(.) writes .., which cannot be read. By adding
partial(_t_r_u_e) to the option, it correctly emits . .. Similar
problems appear when emitting operators using multiple calls
to write_term/3.
_______________________________________________________________| |
|write_value(Value) :- |
| write_term(Value, [quoted(true)]), |
||_______write('.'),_nl._______________________________________ ||
ppoorrttrraayy((_B_o_o_l))
If true, the hook portray/1 is called before printing a term
that is not a variable. If portray/1 succeeds, the term is
considered printed. See also print/1. The default is false.
This option is an extension to the ISO write_term options.
pprriioorriittyy((_I_n_t_e_g_e_r))
An integer between 0 and 1200 representing the `context
priority'. Default is 1200. Can be used to write partial
terms appearing as the argument to an operator. For example:
_______________________________________________________________| |
| format('~w = ', [VarName]), |
||_______write_term(Value,_[quoted(true),_priority(699)])______ ||
qquuootteedd((_B_o_o_l))
If true, atoms and functors that needs quotes will be quoted.
The default is false.
ssppaacciinngg((_+_S_p_a_c_i_n_g))
Determines whether and where extra white-space is added to
enhance readability. The default is standard, adding only
space where needed for proper tokenization by read_term/3.
Currently, the only other value is next_argument, adding a
space after a comma used to separate arguments in a term or
list.
wwrriittee__tteerrmm((_+_S_t_r_e_a_m_, _+_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
As write_term/2, but output is sent to _S_t_r_e_a_m rather than the
current output.
wwrriittee__ccaannoonniiccaall((_+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m on the current output stream using standard paren-
thesised prefix notation (i.e., ignoring operator declarations).
Atoms that need quotes are quoted. Terms written with this
predicate can always be read back, regardless of current operator
declarations. Equivalent to write_term/2 using the options
ignore_ops, quoted and numbervars after numbervars/4 using the
singletons option.
Note that due to the use of numbervars/4, non-ground terms must be
written using a _s_i_n_g_l_e write_canonical/1 call. This used to be
the case anyhow, as garbage collection between multiple calls to
one of the write predicates can change the _G<_N_N_N> identity of the
variables.
wwrriittee__ccaannoonniiccaall((_+_S_t_r_e_a_m_, _+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m in canonical form on _S_t_r_e_a_m.
wwrriittee((_+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m to the current output, using brackets and operators
where appropriate.
wwrriittee((_+_S_t_r_e_a_m_, _+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m to _S_t_r_e_a_m.
wwrriitteeqq((_+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m to the current output, using brackets and operators
where appropriate. Atoms that need quotes are quoted. Terms
written with this predicate can be read back with read/1 provided
the currently active operator declarations are identical.
wwrriitteeqq((_+_S_t_r_e_a_m_, _+_T_e_r_m)) _[_I_S_O_]
Write _T_e_r_m to _S_t_r_e_a_m, inserting quotes.
pprriinntt((_+_T_e_r_m))
Prints _T_e_r_m on the current output stream similar to write/1, but
for each (sub)term of _T_e_r_m first the dynamic predicate portray/1 is
called. If this predicate succeeds _p_r_i_n_t assumes the (sub)term has
been written. This allows for user defined term writing. See also
portray_text.
pprriinntt((_+_S_t_r_e_a_m_, _+_T_e_r_m))
Print _T_e_r_m to _S_t_r_e_a_m.
ppoorrttrraayy((_+_T_e_r_m))
A dynamic predicate, which can be defined by the user to change the
behaviour of print/1 on (sub)terms. For each subterm encountered
that is not a variable print/1 first calls portray/1 using the term
as argument. For lists only the list as a whole is given to
portray/1. If portray succeeds print/1 assumes the term has been
written.
rreeaadd((_-_T_e_r_m)) _[_I_S_O_]
Read the next Prolog term from the current input stream and unify
it with _T_e_r_m. On a syntax error read/1 displays an error message,
attempts to skip the erroneous term and fails. On reaching
end-of-file _T_e_r_m is unified with the atom end_of_file.
rreeaadd((_+_S_t_r_e_a_m_, _-_T_e_r_m)) _[_I_S_O_]
Read _T_e_r_m from _S_t_r_e_a_m.
rreeaadd__ccllaauussee((_-_T_e_r_m))
Equivalent to read/1, but warns the user for variables only occur-
ring once in a term (singleton variables, see section 2.15.1.5)
which do not start with an underscore if style_check(singleton)
is active (default). Used to read Prolog source files (see
consult/1). New code should use read_term/2 with the option
singletons(warning).
rreeaadd__ccllaauussee((_+_S_t_r_e_a_m_, _-_T_e_r_m))
Read a clause from _S_t_r_e_a_m. See read_clause/1.
rreeaadd__tteerrmm((_-_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
Read a term from the current input stream and unify the term
with _T_e_r_m. The reading is controlled by options from the list
of _O_p_t_i_o_n_s. If this list is empty, the behaviour is the same
as for read/1. The options are upward compatible with Quintus
Prolog. The argument order is according to the ISO standard.
Syntax-errors are always reported using exception-handling (see
catch/3). Options:
bbaacckkqquuootteedd__ssttrriinngg((_B_o_o_l))
If true, read `...` to a string object (see section 4.22).
The default depends on the Prolog flag backquoted_string.
cchhaarraacctteerr__eessccaappeess((_B_o_o_l))
Defines how to read \ escape-sequences in quoted atoms.
See the Prolog flags character_escapes, current_prolog_flag/2.
(SWI-Prolog).
ccoommmmeennttss((_-_C_o_m_m_e_n_t_s))
Unify _C_o_m_m_e_n_t_s with a list of _P_o_s_i_t_i_o_n-_C_o_m_m_e_n_t, where _P_o_s_i_t_i_o_n
is a stream-position object (see stream_position_data/3)
indicating the start of a comment and _C_o_m_m_e_n_t is a
string-object containing the text including delimiters of a
comment. It returns all comments from where the read_term/2
call started up to the end of the term read.
ddoouubbllee__qquuootteess((_B_o_o_l))
Defines how to read "..." strings. See the Prolog flag
double_quotes. (SWI-Prolog).
mmoodduullee((_M_o_d_u_l_e))
Specify _M_o_d_u_l_e for operators, character_escapes flag and
double_quotes flag. The value of the latter two is overruled
if the corresponding read_term/3 option is provided. If
no module is specified, the current `source-module' is used.
(SWI-Prolog).
ssiinngglleettoonnss((_V_a_r_s))
As variable_names, but only reports the variables occurring
only once in the _T_e_r_m read. Variables starting with an
underscore (`_') are not included in this list. (ISO). If
_V_a_r_s is the constant warning, singleton variables are reported
using print_message/2.
ssyynnttaaxx__eerrrroorrss((_A_t_o_m))
If error (default), throw and exception on a syntax error.
Other values are fail, which causes a message to be printed
using print_message/2, after which the predicate fails, quiet
which causes the predicate to fail silently and dec10 which
causes syntax errors to be printed, after which read_term/[2,3]
continues reading the next term. Using dec10, read_term/[2,3]
never fails. (Quintus, SICStus).
ssuubbtteerrmm__ppoossiittiioonnss((_T_e_r_m_P_o_s))
Describes the detailed layout of the term. The formats for
the various types of terms is given below. All positions are
character positions. If the input is related to a normal
stream, these positions are relative to the start of the
input, when reading from the terminal, they are relative to
the start of the term.
_F_r_o_m--_T_o
Used for primitive types (atoms, numbers, variables).
ssttrriinngg__ppoossiittiioonn((_F_r_o_m_, _T_o))
Used to indicate the position of a string enclosed in
double quotes (").
bbrraaccee__tteerrmm__ppoossiittiioonn((_F_r_o_m_, _T_o_, _A_r_g))
Term of the form {...}, as used in DCG rules. _A_r_g
describes the argument.
lliisstt__ppoossiittiioonn((_F_r_o_m_, _T_o_, _E_l_m_s_, _T_a_i_l))
A list. _E_l_m_s describes the positions of the elements. If
the list specifies the tail as |<_T_a_i_l_T_e_r_m>, _T_a_i_l is unified
with the term-position of the tail, otherwise with the
atom none.
tteerrmm__ppoossiittiioonn((_F_r_o_m_, _T_o_, _F_F_r_o_m_, _F_T_o_, _S_u_b_P_o_s))
Used for a compound term not matching one of the above.
_F_F_r_o_m and _F_T_o describe the position of the functor.
_S_u_b_P_o_s is a list, each element of which describes the
term-position of the corresponding subterm.
tteerrmm__ppoossiittiioonn((_P_o_s))
Unifies _P_o_s with the starting position of the term read. _P_o_s
if of the same format as use by stream_property/2.
vvaarriiaabblleess((_V_a_r_s))
Unify _V_a_r_s with a list of variables in the term. The
variables appear in the order they have been read. See also
term_variables/2. (ISO).
vvaarriiaabbllee__nnaammeess((_V_a_r_s))
Unify _V_a_r_s with a list of `_N_a_m_e = _V_a_r', where _N_a_m_e is an atom
describing the variable name and _V_a_r is a variable that shares
with the corresponding variable in _T_e_r_m. (ISO).
rreeaadd__tteerrmm((_+_S_t_r_e_a_m_, _-_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_I_S_O_]
Read term with options from _S_t_r_e_a_m. See read_term/2.
rreeaadd__hhiissttoorryy((_+_S_h_o_w_, _+_H_e_l_p_, _+_S_p_e_c_i_a_l_, _+_P_r_o_m_p_t_, _-_T_e_r_m_, _-_B_i_n_d_i_n_g_s))
Similar to read_term/2 using the option variable_names, but allows
for history substitutions. read_history/6is used by the top level
to read the user's actions. _S_h_o_w is the command the user should
type to show the saved events. _H_e_l_p is the command to get an
overview of the capabilities. _S_p_e_c_i_a_l is a list of commands that
are not saved in the history. _P_r_o_m_p_t is the first prompt given.
Continuation prompts for more lines are determined by prompt/2.
A %w in the prompt is substituted by the event number. See
section 2.7 for available substitutions.
SWI-Prolog calls read_history/6 as follows:
____________________________________________________________________| |
||read_history(h,_'!h',_[trace],_'%w_?-_',_Goal,_Bindings)__________ ||
pprroommpptt((_-_O_l_d_, _+_N_e_w))
Set prompt associated with read/1 and its derivatives. _O_l_d is
first unified with the current prompt. On success the prompt will
be set to _N_e_w if this is an atom. Otherwise an error message is
displayed. A prompt is printed if one of the read predicates is
called and the cursor is at the left margin. It is also printed
whenever a newline is given and the term has not been terminated.
Prompts are only printed when the current input stream is _u_s_e_r.
pprroommpptt11((_+_P_r_o_m_p_t))
Sets the prompt for the next line to be read. Continuation lines
will be read using the prompt defined by prompt/2.
44..1199 AAnnaallyyssiinngg aanndd CCoonnssttrruuccttiinngg TTeerrmmss
ffuunnccttoorr((_?_T_e_r_m_, _?_N_a_m_e_, _?_A_r_i_t_y)) _[_I_S_O_]
True when _T_e_r_m is a term with functor _N_a_m_e/_A_r_i_t_y. If Term is a
variable it is unified with a new term whose arguments are all
different variables (such a term is called a skeleton). If Term is
atomic, Arity will be unified with the integer 0, and Name will be
unified with Term. Raises instantiation_error if term is unbound
and _N_a_m_e/_A_r_i_t_y is insufficiently instantiated.
aarrgg((_?_A_r_g_, _+_T_e_r_m_, _?_V_a_l_u_e)) _[_I_S_O_]
_T_e_r_m should be instantiated to a term, _A_r_g to an integer between
1 and the arity of _T_e_r_m. _V_a_l_u_e is unified with the _A_r_g-th
argument of _T_e_r_m. _A_r_g may also be unbound. In this case _V_a_l_u_e
will be unified with the successive arguments of the term. On
successful unification, _A_r_g is unified with the argument number.
Backtracking yields alternative solutions. The predicate arg/3
fails silently if _A_r_g= 0 or _A_r_g > _a_r_i_t_y and raises the exception
domain_error(not_less_then_zero, _A_r_g)if _A_r_g <0.
_?_T_e_r_m =.. _?_L_i_s_t _[_I_S_O_]
_L_i_s_t is a list which head is the functor of _T_e_r_m and the remaining
arguments are the arguments of the term. Each of the arguments
may be a variable, but not both. This predicate is called `Univ'.
Examples:
____________________________________________________________________| |
| ?- foo(hello, X) =.. List. |
| |
| List = [foo, hello, X] |
| |
| ?- Term =.. [baz, foo(1)] |
| |
||Term_=_baz(foo(1))________________________________________________ ||
nnuummbbeerrvvaarrss((_+_T_e_r_m_, _+_S_t_a_r_t_, _-_E_n_d))
Unify the free variables of _T_e_r_m with a term $VAR(_N), where _N is
the number of the variable. Counting starts at _S_t_a_r_t. _E_n_d is
unified with the number that should be given to the next variable.
Example:
____________________________________________________________________| |
| ?- numbervars(foo(A, B, A), 0, End). |
| |
| A = '$VAR'(0) |
| B = '$VAR'(1) |
||End_=_2___________________________________________________________ ||
See also the numbervars option to write_term/3 and numbervars/4.
nnuummbbeerrvvaarrss((_+_T_e_r_m_, _+_S_t_a_r_t_, _-_E_n_d_, _+_O_p_t_i_o_n_s))
As numbervars/3, but providing the following options:
ffuunnccttoorr__nnaammee((_+_A_t_o_m))
Name of the functor to use instead of $VAR.
aattttvvaarr((_+_A_c_t_i_o_n))
What to do if an attributed variable is encountered. Options
are skip, which causes numbervars/3 to ignore the attributed
variable, bind which causes it to thread it as a normal
variable and assign the next '$VAR'(N) term to it or (default)
error which raises the a type_error exception.
ssiinngglleettoonnss((_+_B_o_o_l))
If true (default false), numbervars/4 does singleton detec-
tion. Singleton variables are unified with '$VAR'('_'),
causing them to be printed as _ by write_term/2 using
the numbervars option. This option is exploited by
portray_clause/2 and write_canonical/2.
tteerrmm__vvaarriiaabblleess((_+_T_e_r_m_, _-_L_i_s_t))
Unify _L_i_s_t with a list of variables, each sharing with a unique
variable of _T_e_r_m. The variables in _L_i_s_t are ordered in order of
appearance traversing _T_e_r_m depth-first and left-to-right. See also
term_variables/3. For example:
____________________________________________________________________| |
| ?- term_variables(a(X, b(Y, X), Z), L). |
| |
| L = [G367, G366, G371] |
| X = G367 |
| Y = G366 |
||Z_=_G371__________________________________________________________ ||
tteerrmm__vvaarriiaabblleess((_+_T_e_r_m_, _-_L_i_s_t_, _?_T_a_i_l))
Difference list version of term_variables/2. I.e. _T_a_i_l is the tail
of the variable-list _L_i_s_t.
ccooppyy__tteerrmm((_+_I_n_, _-_O_u_t)) _[_I_S_O_]
Create a version if _I_n with renamed (fresh) variables and unify
it to _O_u_t. Attributed variables (see section 6.1) have their
attributed copied. The implementation of copy_term/2 can deal
with infinite trees (cyclic terms). As pure Prolog cannot
distinguish a ground term from another ground term with exactly the
same structure, ground sub-terms are _s_h_a_r_e_d between _I_n and _O_u_t.
Sharing ground terms does affect setarg/3. SWI-Prolog provides
duplicate_term/2 to create a true copy of a term.
44..1199..11 NNoonn--llooggiiccaall ooppeerraattiioonnss oonn tteerrmmss
Prolog is not capable to _m_o_d_i_f_y instantiated parts of a term. Lacking
that capability makes that language much safer, but unfortunately there
are problems that suffer severely in terms of time and/or memory usage.
Always try hard to avoid the use of these primitives, but they can be a
good alternative to using dynamic predicates. See also section 6.3,
discussing the use of global variables.
sseettaarrgg((_+_A_r_g_, _+_T_e_r_m_, _+_V_a_l_u_e))
Extra-logical predicate. Assigns the _A_r_g-th argument of the
compound term _T_e_r_m with the given _V_a_l_u_e. The assignment is undone
if backtracking brings the state back into a position before the
setarg/3 call. See also nb_setarg/3.
This predicate may be used for destructive assignment to terms,
using them as an extra-logical storage bin. Always try hard to
avoid the use of setarg/3 as it is not supported by many Prolog
systems and one has to be very careful about unexpected copying
as well as unexpected not copying of terms. A good practice to
improve somewhat on this situation is to make sure that terms whose
arguments are subject to setarg/3 have one unused and unshared
variable in addition to the used arguments. This variable avoids
unwanted sharing in e.g., copy_term/2 and causes the term to be
considered as non-ground.
nnbb__sseettaarrgg((_+_A_r_g_, _+_T_e_r_m_, _+_V_a_l_u_e))
Assigns the _A_r_g-th argument of the compound term _T_e_r_m with the
given _V_a_l_u_e as setarg/3, but on backtracking the assignment
is _n_o_t reversed. If _T_e_r_m is not atomic, it is duplicated
using duplicate_term/2. This predicate uses the same technique
as nb_setval/2. We therefore refer to the description of
nb_setval/2 for details on non-backtrackable assignment of terms.
This predicate is compatible with GNU-Prolog setarg(_A_,_T_,_V_,_f_a_l_s_e),
removing the type-restriction on _V_a_l_u_e. See also nb_linkarg/3.
Below is an example for counting the number of solutions of a
goal. Note that this implementation is thread-safe, reentrant
and capable of handling exceptions. Realising these features with
a traditional implementation based on assert/retract or flag/3 is
much more complicated.
____________________________________________________________________| |
| :- meta_predicate |
| succeeds_n_times(0, -). |
| |
| succeeds_n_times(Goal, Times) :- |
| Counter = counter(0), |
| ( Goal, |
| arg(1, Counter, N0), |
| N is N0 + 1, |
| nb_setarg(1, Counter, N), |
| fail |
| ; arg(1, Counter, Times) |
||________).________________________________________________________ ||
nnbb__lliinnkkaarrgg((_+_A_r_g_, _+_T_e_r_m_, _+_V_a_l_u_e))
As nb_setarg/3, but like nb_linkval/2 it does _n_o_t duplicate _V_a_l_u_e.
Use with extreme care and consult the documentation of nb_linkval/2
before use.
dduupplliiccaattee__tteerrmm((_+_I_n_, _-_O_u_t))
Version of copy_term/2 that also copies ground terms and therefore
ensures destructive modification using setarg/3 does not affect
the copy. See also nb_setval/2, nb_linkval/2, nb_setarg/3 and
nb_linkarg/3.
ssaammee__tteerrmm((_@_T_1_, _@_T_2)) _[_s_e_m_i_d_e_t_]
True if _T_1 and _T_2 are the equivalent and will remain the
equivalent, even if setarg/3 is used on either of them. This
means _T_1 and _T_2 are the same variable, equivalent atomic data or a
compound term allocated at the same address.
44..2200 AAnnaallyyssiinngg aanndd CCoonnssttrruuccttiinngg AAttoommss
These predicates convert between Prolog constants and lists of
character codes. The predicates atom_codes/2, number_codes/2 and name/2
behave the same when converting from a constant to a list of character
codes. When converting the other way around, atom_codes/2 will
generate an atom, number_codes/2 will generate a number or exception
and name/2 will return a number if possible and an atom otherwise.
The ISO standard defines atom_chars/2 to describe the `broken-up'
atom as a list of one-character atoms instead of a list of codes.
Up-to version 3.2.x, SWI-Prolog's atom_chars/2behaved, compatible with
Quintus and SICStus Prolog, like atom_codes. As of 3.3.x SWI-Prolog
atom_codes/2 and atom_chars/2are compliant to the ISO standard.
To ease the pain of all variations in the Prolog community, all
SWI-Prolog predicates behave as flexible as possible. This implies
the `list-side' accepts either a code-list or a char-list and the
`atom-side' accept all atomic types (atom, number and string).
aattoomm__ccooddeess((_?_A_t_o_m_, _?_S_t_r_i_n_g)) _[_I_S_O_]
Convert between an atom and a list of character codes. If _A_t_o_m is
instantiated, if will be translated into a list of character codes
and the result is unified with _S_t_r_i_n_g. If _A_t_o_m is unbound and
_S_t_r_i_n_g is a list of character codes, it will _A_t_o_m will be unified
with an atom constructed from this list.
aattoomm__cchhaarrss((_?_A_t_o_m_, _?_C_h_a_r_L_i_s_t)) _[_I_S_O_]
As atom_codes/2, but _C_h_a_r_L_i_s_t is a list of one-character atoms
rather than a list of character codes.
____________________________________________________________________| |
| ?- atom_chars(hello, X). |
| |
||X_=_[h,_e,_l,_l,_o]_______________________________________________ ||
cchhaarr__ccooddee((_?_A_t_o_m_, _?_C_o_d_e)) _[_I_S_O_]
Convert between character and character code for a single charac-
ter.
nnuummbbeerr__cchhaarrss((_?_N_u_m_b_e_r_, _?_C_h_a_r_L_i_s_t)) _[_I_S_O_]
Similar to atom_chars/2, but converts between a number and its
representation as a list of one-character atoms. Fails with a
syntax_error if _N_u_m_b_e_r is unbound and _C_h_a_r_L_i_s_t does not describe a
number. Following the ISO standard, it allows for _l_e_a_d_i_n_g white
space (including newlines) and does not allow for _t_r_a_i_l_i_n_g white
space.
nnuummbbeerr__ccooddeess((_?_N_u_m_b_e_r_, _?_C_o_d_e_L_i_s_t)) _[_I_S_O_]
As number_chars/2, but converts to a list of character codes rather
than one-character atoms. In the mode -, +, both predicates behave
identically to improve handling of non-ISO source.
aattoomm__nnuummbbeerr((_?_A_t_o_m_, _?_N_u_m_b_e_r))
Realises the popular combination of atom_codes/2 and number_codes/2
to convert between atom and number (integer or float) in one
predicate, avoiding the intermediate list. Calling in mode +,-
to convert numbers represented as atoms is often good style.
Converting numbers to atoms, which in turn are assembled into
larger units before communication them to the outside world is bad
style. Consider using streams or with_output_to/2 to reduce the
number of expensive intermediate atoms.
nnaammee((_?_A_t_o_m_O_r_I_n_t_, _?_S_t_r_i_n_g))
_S_t_r_i_n_g is a list of character codes representing the same text as
_A_t_o_m. Each of the arguments may be a variable, but not both. When
_S_t_r_i_n_g is bound to an character code list describing an integer
and _A_t_o_m is a variable _A_t_o_m will be unified with the integer
value described by _S_t_r_i_n_g (e.g., `name(N, "300"), 400 is N + 100'
succeeds). New code should consider using the ISO predicates
atom_codes/2 or number_codes/2.
tteerrmm__ttoo__aattoomm((_?_T_e_r_m_, _?_A_t_o_m))
True if _A_t_o_m describes a term that unifies with _T_e_r_m. When _A_t_o_m is
instantiated _A_t_o_m is converted and then unified with _T_e_r_m. If _A_t_o_m
has no valid syntax, a syntax_errorexception is raised. Otherwise
_T_e_r_m is ``written'' on _A_t_o_m using write_term/2 with the option
quoted(_t_r_u_e). See also format/3 and with_output_to/2.
aattoomm__ttoo__tteerrmm((_+_A_t_o_m_, _-_T_e_r_m_, _-_B_i_n_d_i_n_g_s))
Use _A_t_o_m as input to read_term/2 using the option variable_names
and return the read term in _T_e_r_m and the variable bindings in
_B_i_n_d_i_n_g_s. _B_i_n_d_i_n_g_s is a list of _N_a_m_e =_V_a_r couples, thus providing
access to the actual variable names. See also read_term/2. If
_A_t_o_m has no valid syntax, a syntax_error exception is raised.
aattoomm__ccoonnccaatt((_?_A_t_o_m_1_, _?_A_t_o_m_2_, _?_A_t_o_m_3)) _[_I_S_O_]
_A_t_o_m_3 forms the concatenation of _A_t_o_m_1 and _A_t_o_m_2. At least two
of the arguments must be instantiated to atoms. This predicate
also allows for the mode (-,-,+), non-deterministically splitting
the 3-th argument into two parts (as append/3 does for lists).
SWI-Prolog allows for atomic arguments. Portable code must use
atomic_concat/3 if non-atom arguments are involved.
aattoommiicc__ccoonnccaatt((_+_A_t_o_m_i_c_1_, _+_A_t_o_m_i_c_2_, _-_A_t_o_m))
_A_t_o_m represents the text after converting _A_t_o_m_i_c_1 and _A_t_o_m_i_c_2 to
text and concatenating the result:
____________________________________________________________________| |
| ?- atomic_concat(name, 42, X). |
||X_=_name42._______________________________________________________ ||
aattoommiicc__lliisstt__ccoonnccaatt((_+_L_i_s_t_, _-_A_t_o_m)) _[_c_o_m_m_o_n_s_]
_L_i_s_t is a list of atoms, integers or floating point numbers.
Succeeds if _A_t_o_m can be unified with the concatenated elements of
_L_i_s_t.
aattoommiicc__lliisstt__ccoonnccaatt((_+_L_i_s_t_, _+_S_e_p_a_r_a_t_o_r_, _?_A_t_o_m)) _[_c_o_m_m_o_n_s_]
Creates an atom just like atomic_list_concat/2, but inserts _S_e_p_a_r_a_-
_t_o_r between each pair of atoms. For example:
____________________________________________________________________| |
| ?- atomic_list_concat([gnu, gnat], ', ', A). |
| |
||A_=_'gnu,_gnat'___________________________________________________ ||
The SWI-Prolog version of this predicate can also be used to split
atoms by instantiating _S_e_p_a_r_a_t_o_r and _A_t_o_m as shown below. We kept
this functionality to simplify porting old SWI-Prolog code where
this predicate was called concat_atom/3.
____________________________________________________________________| |
| ?- atomic_list_concat(L, -, 'gnu-gnat'). |
| |
||L_=_[gnu,_gnat]___________________________________________________ ||
aattoomm__lleennggtthh((_+_A_t_o_m_, _-_L_e_n_g_t_h)) _[_I_S_O_]
True if _A_t_o_m is an atom of _L_e_n_g_t_h characters long. This predicate
also works for strings (see section 4.22). If the prolog flag
iso is _n_o_t set, it also accepts integers and floats, expressing
the number of characters output when given to write/1 as well as
code-lists and character-lists, expressing the length of the list.
aattoomm__pprreeffiixx((_+_A_t_o_m_, _+_P_r_e_f_i_x))
True if _A_t_o_m starts with the characters from _P_r_e_f_i_x. Its behaviour
is equivalent to ?- sub_atom(_A_t_o_m, 0, _, _, _P_r_e_f_i_x). Depreciated.
ssuubb__aattoomm((_+_A_t_o_m_, _?_B_e_f_o_r_e_, _?_L_e_n_, _?_A_f_t_e_r_, _?_S_u_b)) _[_I_S_O_]
ISO predicate for breaking atoms. It maintains the following
relation: _S_u_b is a sub-atom of _A_t_o_m that starts at _B_e_f_o_r_e, has _L_e_n
characters and _A_t_o_m contains _A_f_t_e_r characters after the match.
____________________________________________________________________| |
| ?- sub_atom(abc, 1, 1, A, S). |
| |
||A_=_1,_S_=_b______________________________________________________ ||
The implementation minimises non-determinism and creation of atoms.
This is a very flexible predicate that can do search, prefix- and
suffix-matching, etc.
44..2211 CChhaarraacctteerr pprrooppeerrttiieess
SWI-Prolog offers two comprehensive predicates for classifying
characters and character-codes. These predicates are defined as built-
in predicates to exploit the C-character classification's handling of
_l_o_c_a_l_e (handling of local character-sets). These predicates are fast,
logical and deterministic if applicable.
In addition, there is the library ctype providing compatibility with
some other Prolog systems. The predicates of this library are defined
in terms of code_type/2.
cchhaarr__ttyyppee((_?_C_h_a_r_, _?_T_y_p_e))
Tests or generates alternative _T_y_p_es or _C_h_a_rs. The character-types
are inspired by the standard C <ctype.h> primitives.
aallnnuumm
_C_h_a_r is a letter (upper- or lowercase) or digit.
aallpphhaa
_C_h_a_r is a letter (upper- or lowercase).
ccssyymm
_C_h_a_r is a letter (upper- or lowercase), digit or the un-
derscore (_). These are valid C- and Prolog symbol
characters.
ccssyymmff
_C_h_a_r is a letter (upper- or lowercase) or the underscore (_).
These are valid first characters for C- and Prolog symbols
aasscciiii
_C_h_a_r is a 7-bits ASCII character (0..127).
wwhhiittee
_C_h_a_r is a space or tab. E.i. white space inside a line.
ccnnttrrll
_C_h_a_r is an ASCII control-character (0..31).
ddiiggiitt
_C_h_a_r is a digit.
ddiiggiitt((_W_e_i_g_t_h))
_C_h_a_r is a digit with value _W_e_i_g_t_h. I.e. char_type(X, digit(6)
yields _X = '6'. Useful for parsing numbers.
xxddiiggiitt((_W_e_i_g_t_h))
_C_h_a_r is a hexa-decimal digit with value _W_e_i_g_t_h. I.e.
char_type(a, xdigit(X) yields _X = '10'. Useful for parsing
numbers.
ggrraapphh
_C_h_a_r produces a visible mark on a page when printed. Note
that the space is not included!
lloowweerr
_C_h_a_r is a lower-case letter.
lloowweerr((_U_p_p_e_r))
_C_h_a_r is a lower-case version of _U_p_p_e_r. Only true if _C_h_a_r is
lowercase and _U_p_p_e_r uppercase.
ttoo__lloowweerr((_U_p_p_e_r))
_C_h_a_r is a lower-case version of _U_p_p_e_r. For non-letters, or
letter without case, _C_h_a_r and _L_o_w_e_r are the same. See also
upcase_atom/2 and downcase_atom/2.
uuppppeerr
_C_h_a_r is an upper-case letter.
uuppppeerr((_L_o_w_e_r))
_C_h_a_r is an upper-case version of _L_o_w_e_r. Only true if _C_h_a_r is
uppercase and _L_o_w_e_r lowercase.
ttoo__uuppppeerr((_L_o_w_e_r))
_C_h_a_r is an upper-case version of _L_o_w_e_r. For non-letters, or
letter without case, _C_h_a_r and _L_o_w_e_r are the same. See also
upcase_atom/2 and downcase_atom/2.
ppuunncctt
_C_h_a_r is a punctuation character. This is a graph character
that is not a letter or digit.
ssppaaccee
_C_h_a_r is some form of layout character (tab, vertical-tab,
newline, etc.).
eenndd__ooff__ffiillee
_C_h_a_r is -1.
eenndd__ooff__lliinnee
_C_h_a_r ends a line (ASCII: 10..13).
nneewwlliinnee
_C_h_a_r is a the newline character (10).
ppeerriioodd
_C_h_a_r counts as the end of a sentence (.,!,?).
qquuoottee
_C_h_a_r is a quote-character (", ', `).
ppaarreenn((_C_l_o_s_e))
_C_h_a_r is an open-parenthesis and _C_l_o_s_e is the corresponding
close-parenthesis.
ccooddee__ttyyppee((_?_C_o_d_e_, _?_T_y_p_e))
As char_type/2, but uses character-codes rather than one-character
atoms. Please note that both predicates are as flexible as
possible. They handle either representation if the argument is
instantiated and only will instantiate with an integer code or
one-character atom depending of the version used. See also the
Prolog flag double_quotes, atom_chars/2 and atom_codes/2.
44..2211..11 CCaassee ccoonnvveerrssiioonn
There is nothing in the Prolog standard for converting case in textual
data. The SWI-Prolog predicates code_type/2 and char_type/2 can be
used to test and convert individual characters. We have started some
additional support:
ddoowwnnccaassee__aattoomm((_+_A_n_y_C_a_s_e_, _-_L_o_w_e_r_C_a_s_e))
Converts the characters of _A_n_y_C_a_s_e into lowercase as char_type/2
does (i.e. based on the defined _l_o_c_a_l_e if Prolog provides locale
support on the hosting platform) and unifies the lowercase atom
with _L_o_w_e_r_C_a_s_e.
uuppccaassee__aattoomm((_+_A_n_y_C_a_s_e_, _-_U_p_p_e_r_C_a_s_e))
Converts, similar to downcase_atom/2, an atom to upper-case.
44..2211..22 WWhhiittee ssppaaccee nnoorrmmaalliizzaattiioonn
nnoorrmmaalliizzee__ssppaaccee((_-_O_u_t_, _+_I_n))
Normalize white space in _I_n. All leading and trailing white
space is removed. All non-empty sequences for Unicode white space
characters are replaces by a single space (\u0020) character. _O_u_t
uses the same conventions as with_output_to/2 and format/3.
44..2211..33 LLaanngguuaaggee ssppeecciiffiicc ccoommppaarriissoonn
This section deals with predicates for language specific string
comparison operations.
ccoollllaattiioonn__kkeeyy((_+_A_t_o_m_, _-_K_e_y))
Create a _K_e_y from _A_t_o_m for locale specific comparison. The key is
defined such that if the key of atom A precedes the key of atom B
in the standard order of terms, A is alphabetically smaller than B
using the sort order of the current locale.
The predicate collation_key/2 is used by locale_sort/2 from
library(sort). Please examine the implementation of locale_sort/2
as an example of using this call.
The _K_e_y is an implementation defined and generally unreadable
string. On systems that do not support locale-handling, _K_e_y is
simply unified with _A_t_o_m.
llooccaallee__ssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d))
Sort a list of atoms using the current locale. _L_i_s_t is a list of
atoms or string objects (see section 4.22). _S_o_r_t_e_d is unified with
a list containing all atoms of _L_i_s_t, sorted to the rules of the
current locale. See also collation_key/2 and setlocale/3.
44..2222 RReepprreesseennttiinngg tteexxtt iinn ssttrriinnggss
SWI-Prolog supports the data type _s_t_r_i_n_g. Strings are a time and
space efficient mechanism to handle text in Prolog. Strings are stored
as a byte array on the global (term) stack and thus destroyed on
backtracking and reclaimed by the garbage collector.
Strings were added to SWI-Prolog based on an early draft of the ISO
standard, offering a mechanism to represent temporary character data
efficiently. As SWI-Prolog strings can handle 0-bytes, they are
frequently used through the foreign language interface (section 9) for
storing arbitrary byte-sequences.
Starting with version 3.3, SWI-Prolog offers garbage collection on the
atom-space as well as representing 0-bytes in atoms. Although strings
and atoms still have different features, new code should consider
using atoms to avoid too many representations for text as well as for
compatibility with other Prolog implementations. Below are some of the
differences:
o _c_r_e_a_t_i_o_n
Creating strings is fast, as the data is simply copied to the
global stack. Atoms are unique and therefore more expensive in
terms of memory and time to create. On the other hand, if the
same text has to be represented multiple times, atoms are more
efficient.
o _d_e_s_t_r_u_c_t_i_o_n
Backtracking destroys strings at no cost. They are cheap to handle
by the garbage collector, but it should be noted that extensive
use of strings will cause many garbage collections. Atom garbage
collection is generally faster.
String objects by default have no lexical representation and thus can
only be created using the predicates below or through the foreign
language interface (See chapter 9. There are two ways to make read/1
read text into strings, both controlled through Prolog flags. One is
by setting the double_quotes flag to string and the other is by setting
the backquoted_string flag to true. In latter case, `Hello world` is
read into a string and write_term/2 prints strings between back-quotes
if quoted is true. This flag provides compatibility with LPA Prolog
string handling.
ssttrriinngg__ttoo__aattoomm((_?_S_t_r_i_n_g_, _?_A_t_o_m))
Logical conversion between a string and an atom. At least one
of the two arguments must be instantiated. _A_t_o_m can also be an
integer or floating point number.
ssttrriinngg__ttoo__lliisstt((_?_S_t_r_i_n_g_, _?_L_i_s_t))
Logical conversion between a string and a list of character
codes characters. At least one of the two arguments must be
instantiated.
ssttrriinngg__lleennggtthh((_+_S_t_r_i_n_g_, _-_L_e_n_g_t_h))
Unify _L_e_n_g_t_h with the number of characters in _S_t_r_i_n_g. This
predicate is functionally equivalent to atom_length/2 and also
accepts atoms, integers and floats as its first argument.
ssttrriinngg__ccoonnccaatt((_?_S_t_r_i_n_g_1_, _?_S_t_r_i_n_g_2_, _?_S_t_r_i_n_g_3))
Similar to atom_concat/3, but the unbound argument will be unified
with a string object rather than an atom. Also, if both _S_t_r_i_n_g_1
and _S_t_r_i_n_g_2 are unbound and _S_t_r_i_n_g_3 is bound to text, it breaks
_S_t_r_i_n_g_3, unifying the start with _S_t_r_i_n_g_1 and the end with _S_t_r_i_n_g_2
as append does with lists. Note that this is not particularly fast
on long strings as for each redo the system has to create two
entirely new strings, while the list equivalent only creates a
single new list-cell and moves some pointers around.
ssuubb__ssttrriinngg((_+_S_t_r_i_n_g_, _?_S_t_a_r_t_, _?_L_e_n_g_t_h_, _?_A_f_t_e_r_, _?_S_u_b))
_S_u_b is a substring of _S_t_r_i_n_g starting at _S_t_a_r_t, with length _L_e_n_g_t_h
and _S_t_r_i_n_g has _A_f_t_e_r characters left after the match. See also
sub_atom/5.
44..2233 OOppeerraattoorrss
Operators are defined to improve the readability of source-code.
For example, without operators, to write 2*3+4*5 one would have to
write +(*(2,3),*(4,5)). In Prolog, a number of operators have been
predefined. All operators, except for the comma (,) can be redefined
by the user.
Some care has to be taken before defining new operators. Defining
too many operators might make your source `natural' looking, but at
the same time lead to hard to understand the limits of your syntax.
To ease the pain, as of SWI-Prolog 3.3.0, operators are local to the
module in which they are defined. Operators can be exported from
modules using a term op(_P_r_e_c_e_d_e_n_c_e_, _T_y_p_e_, _N_a_m_e) in the export list as
specified by module/2. This is an extension specific to SWI-Prolog and
the recommended mechanism if portability is not an important concern.
The module-table of the module user acts as default table for all
modules and can be modified explicitly from inside a module to achieve
compatibility with other Prolog systems:
________________________________________________________________________| |
|:- module(prove, |
| [ prove/1 |
| ]). |
| |
|:-|op(900,_xfx,_user:(=>)).____________________________________________ | |
Unlike what many users think, operators and quoted atoms have no
relation: defining an atom as an operator does nnoott influence parsing
characters into atoms and quoting an atom does nnoott stop it from acting
as an operator. To stop an atom acting as an operator, enclose it in
braces like this: (myop).
oopp((_+_P_r_e_c_e_d_e_n_c_e_, _+_T_y_p_e_, _:_N_a_m_e)) _[_I_S_O_]
Declare _N_a_m_e to be an operator of type _T_y_p_e with precedence
_P_r_e_c_e_d_e_n_c_e. _N_a_m_e can also be a list of names, in which case
all elements of the list are declared to be identical operators.
_P_r_e_c_e_d_e_n_c_e is an integer between 0 and 1200. Precedence 0 removes
the declaration. _T_y_p_e is one of: xf, yf, xfx, xfy, yfx, fy or
fx. The `f' indicates the position of the functor, while x and y
indicate the position of the arguments. `y' should be interpreted
as ``on this position a term with precedence lower or equal to the
precedence of the functor should occur''. For `x' the precedence
of the argument must be strictly lower. The precedence of a term
is 0, unless its principal functor is an operator, in which case
the precedence is the precedence of this operator. A term enclosed
in brackets (...) has precedence 0.
The predefined operators are shown in table 4.1. Operators can
be redefined, unless prohibited by one of the limitations below.
Applications must be careful with (re-)defining operators because
changing operators may cause (other) files to be interpreted
ddiiffffeerreennttllyy. Often this will lead to a syntax error. In other
cases, text is read silently into a different term which may lead
to subtle and difficult to track errors.
o It is not allowed to redefine the comma (',').
o The bar (|) can only be (re-)defined as infix operator with
priority not less than 1001.
o It is not allowed to define the empty list ([]) or the
curly-bracket-pair ({}) as operators.
In SWI-Prolog, operators are _l_o_c_a_l to a module (see also
section 5.8). Keeping operators in modules and using controlled
import/export of operators as described with the module/2 directive
keep the issues manageable. The module system provides the
operators from table 4.1 and these operators cannot be modified.
Files that are loaded from the SWI-Prolog directories resolve
operators and predicates from this system module rather than user
which makes the semantics of the library and development system
modules independent from operator changes to the user module.
______________________________________________________________
| 1200 |xfx |-->, :- |
| 1200 | fx |:-, ?- |
| 1150 | fx |dynamic, discontiguous, initialization, |
| | |meta_predicate, module_transparent, multifile,|
| | |thread_local, volatile |
| 1100 |xfy |;, | |
| 1050 |xfy |->, op*-> |
| 1000 |xfy |, |
| 900 | fy |\+ |
| 900 | fx |~ |
| 700 |xfx |<, =, =.., =@=, =:=, =<, ==, =\=, >, >=, @<, |
| | |@=<, @>, @>=, \=, \==, is |
| 600 |xfy |: |
| 500 | yfx |+, -, /\, \/, xor |
| 500 | fx |? |
| 400 | yfx |*, /, //, rdiv, <<, >>, mod, rem |
| 200 |xfx |** |
| 200 |xfy |^ |
|__200_|_fy__|+,_-,_\________________________________________|_
Table 4.1: System operators
ccuurrrreenntt__oopp((_?_P_r_e_c_e_d_e_n_c_e_, _?_T_y_p_e_, _?_:_N_a_m_e)) _[_I_S_O_]
True if _N_a_m_e is currently defined as an operator of type _T_y_p_e with
precedence _P_r_e_c_e_d_e_n_c_e. See also op/3.
44..2244 CChhaarraacctteerr CCoonnvveerrssiioonn
Although I wouldn't really know for what you would like to use these
features, they are provided for ISO compliance.
cchhaarr__ccoonnvveerrssiioonn((_+_C_h_a_r_I_n_, _+_C_h_a_r_O_u_t)) _[_I_S_O_]
Define that term-input (see read_term/3) maps each character read
as _C_h_a_r_I_n to the character _C_h_a_r_O_u_t. Character conversion is only
executed if the Prolog flag char_conversion is set to true and
not inside quoted atoms or strings. The initial table maps each
character onto itself. See also current_char_conversion/2.
ccuurrrreenntt__cchhaarr__ccoonnvveerrssiioonn((_?_C_h_a_r_I_n_, _?_C_h_a_r_O_u_t)) _[_I_S_O_]
Queries the current character conversion-table. See
char_conversion/2 for details.
44..2255 AArriitthhmmeettiicc
Arithmetic can be divided into some special purpose integer predicates
and a series of general predicates for integer, floating point and
rational arithmetic as appropriate. The general arithmetic predicates
all handle _e_x_p_r_e_s_s_i_o_n_s. An expression is either a simple number or a
_f_u_n_c_t_i_o_n. The arguments of a function are expressions. The functions
are described in section 4.25.2.3.
44..2255..11 SSppeecciiaall ppuurrppoossee iinntteeggeerr aarriitthhmmeettiicc
The predicates in this section provide more logical operations between
integers. They are not covered by the ISO standard, although they are
`part of the community' and found as either library or built-in in many
other Prolog systems.
bbeettwweeeenn((_+_L_o_w_, _+_H_i_g_h_, _?_V_a_l_u_e))
_L_o_w and _H_i_g_h are integers, _H_i_g_h >=_L_o_w. If _V_a_l_u_e is an integer,
_L_o_w=< _V_a_l_u_e=< _H_i_g_h. When _V_a_l_u_e is a variable it is successively
bound to all integers between _L_o_w and _H_i_g_h. If _H_i_g_h is inf
or infinite between/3 is true iff _V_a_l_u_e>= _L_o_w, a feature that is
particularly interesting for generating integers from a certain
value.
ssuucccc((_?_I_n_t_1_, _?_I_n_t_2))
True if _I_n_t_2= _I_n_t_1+1 and _I_n_t_1>=0. At least one of the arguments
must be instantiated to a natural number. This predicate raises
the domain-error not_less_than_zero if called with a negative
integer. E.g. succ(_X_, _0) fails silently and succ(_X_, _-_1) raises a
domain-error.
pplluuss((_?_I_n_t_1_, _?_I_n_t_2_, _?_I_n_t_3))
True if _I_n_t_3 =_I_n_t_1 +_I_n_t_2. At least two of the three arguments
must be instantiated to integers.
44..2255..22 GGeenneerraall ppuurrppoossee aarriitthhmmeettiicc
The general arithmetic predicates are optionally compiled (see
set_prolog_flag/2 and the -O command line option). Compiled
arithmetic reduces global stack requirements and improves performance.
Unfortunately compiled arithmetic cannot be traced, which is why it is
optional.
_+_E_x_p_r_1 > _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a larger number than _E_x_p_r_2.
_+_E_x_p_r_1 < _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a smaller number than _E_x_p_r_2.
_+_E_x_p_r_1 =< _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a smaller or equal number to
_E_x_p_r_2.
_+_E_x_p_r_1 >= _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a larger or equal number to
_E_x_p_r_2.
_+_E_x_p_r_1 =\= _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a number non-equal to _E_x_p_r_2.
_+_E_x_p_r_1 =:= _+_E_x_p_r_2 _[_I_S_O_]
True if expression _E_x_p_r_1 evaluates to a number equal to _E_x_p_r_2.
_-_N_u_m_b_e_r iiss _+_E_x_p_r _[_I_S_O_]
True when _N_u_m_b_e_r is the value to which _E_x_p_r evaluates. Typically,
is/2 should be used with unbound left operand. If equality is to
be tested, =:=/2 should be used. For example:
?- 1 is sin(pi/2). Fails!. sin(pi/2) evaluates
to the float 1.0, which does
not unify with the integer 1.
?- 1 =:= sin(pi/2). Succeeds as expected.
44..2255..22..11 AArriitthhmmeettiicc ttyyppeess
SWI-Prolog defines the following numeric types:
o _i_n_t_e_g_e_r
If SWI-Prolog is built using the _G_N_U _m_u_l_t_i_p_l_e _p_r_e_c_i_s_i_o_n _a_r_i_t_h_m_e_t_i_c
_l_i_b_r_a_r_y (GMP), integer arithmetic is _u_n_b_o_u_n_d_e_d, which means that
the size of integers is limited by available memory only. Without
GMP, SWI-Prolog integers are 64-bits, regardless of the native
integer size of the platform. The type of integer support
can be detected using the Prolog flags bounded, min_integer and
max_integer. As the use of GMP is default, most of the following
descriptions assume unbounded integer arithmetic.
Internally, SWI-Prolog has three integer representations. Small
integers (defined by the Prolog flag max_tagged_integer) are
encoded directly. Larger integers are represented as 64-bit value
on the global stack. Integers that do not fit in 64-bit are
represented as serialised GNU MPZ structures on the global stack.
o _r_a_t_i_o_n_a_l _n_u_m_b_e_r
Rational numbers (Q) are quotients of two integers. Rational
arithmetic is only provided if GMP is used (see above). Rational
numbers are currently not supported by a Prolog type. They are
represented by the compound term rdiv(_N_,_M). Rational numbers that
are returned from is/2 are _c_a_n_o_n_i_c_a_l, which means M is positive
and N and M have no common divisors. Rational numbers are
introduced in the computation using the rational/1, rationalize/1
or the rdiv/2 (rational division) function. Using the same
functor for rational division and representing rational numbers
allow for passing rational numbers between computations as well as
to format/3 for printing.
On the long term it is likely that rational numbers will become
_a_t_o_m_i_c as well as subtype of _n_u_m_b_e_r. User code that creates
or inspects the rdiv(_M_,_N) terms will not be portable to future
versions. Rationals are created using one of the functions
mentioned above and inspected using rational/3.
o _f_l_o_a_t
Floating point numbers are represented using the C-type double. On
most today platforms these are 64-bit IEEE floating point numbers.
Arithmetic functions that require integer arguments accept, in addition
to integers, rational numbers with (canonical) denominator `1'. If
the required argument is a float the argument is converted to float.
Note that conversion of integers to floating point numbers may raise an
overflow exception. In all other cases, arguments are converted to the
same type using the order below.
integer ! rational number ! floating point number
44..2255..22..22 RRaattiioonnaall nnuummbbeerr eexxaammpplleess
The use of rational numbers with unbounded integers allows for exact
integer or _f_i_x_e_d _p_o_i_n_t arithmetic under the addition, subtraction,
multiplication and division. To exploit rational arithmetic rdiv/2
should be used instead of `/' and floating point numbers must be
converted to rational using rational/1. Omitting the rational/1 on
floats will convert a rational operand to float and continue the
arithmetic using floating point numbers. Here are some examples.
A is 2 rdiv 6 A = 1 rdiv 3
A is 4 rdiv 3 + 1 A = 7 rdiv 3
A is 4 rdiv 3 + 1.5 A = 2.83333
A is 4 rdiv 3 + rational(1.5) A = 17 rdiv 6
Note that floats cannot represent all decimal numbers exactly. The
function rational/1 creates an _e_x_a_c_t equivalent of the float, while
rationalize/1 creates a rational number that is within the float
rounding error from the original float. Please check the documentation
of these functions for details and examples.
Rational numbers can be printed as decimal numbers with arbitrary
precision using the format/3 floating point conversion:
________________________________________________________________________| |
|?- A is 4 rdiv 3 + rational(1.5), |
| format('~50f~n', [A]). |
|2.83333333333333333333333333333333333333333333333333 |
| |
|A|=_17_rdiv_6__________________________________________________________ | |
44..2255..22..33 AArriitthhmmeettiicc FFuunnccttiioonnss
Arithmetic functions are terms which are evaluated by the arithmetic
predicates described in section 4.25.2. There are four types of
arguments to functions:
_E_x_p_r Arbitrary expression, returning either a
floating point value or an integer.
_I_n_t_E_x_p_r Arbitrary expression that must evaluate into
an integer.
_R_a_t_E_x_p_r Arbitrary expression that must evaluate into a
rational number.
_F_l_o_a_t_E_x_p_r Arbitrary expression that must evaluate into a
floating point.
For systems using bounded integer arithmetic (default is unbounded,
see section 4.25.2.1 for details), integer operations that would cause
overflow automatically convert to floating point arithmetic.
- _+_E_x_p_r _[_I_S_O_]
_R_e_s_u_l_t =-_E_x_p_r
+ _+_E_x_p_r
_R_e_s_u_l_t = _E_x_p_r. Note that if + is followed by a number the parser
discards the +. I.e. ?- integer(+1) succeeds.
_+_E_x_p_r_1 + _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t =_E_x_p_r_1 +_E_x_p_r_2
_+_E_x_p_r_1 - _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t =_E_x_p_r_1 -_E_x_p_r_2
_+_E_x_p_r_1 * _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t =_E_x_p_r_1_*Expr2
_+_E_x_p_r_1 / _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t = _E_x_p_r_1=_E_x_p_r_2 The the flag iso is true, both arguments are
converted to float and the return value is a float. Otherwise
(default), if both arguments are integers the operation returns an
integer if the division is exact. If at least one of the arguments
is rational and the other argument is integer, the operation
returns a rational number. In all other cases the return value is
a float. See also ///2 and rdiv/2.
_+_I_n_t_E_x_p_r_1 mmoodd _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Modulo, defined as _R_e_s_u_l_t = _I_n_t_E_x_p_r_1 - (_I_n_t_E_x_p_r_1 div _I_n_t_E_x_p_r_2) * _I_n_t_E_x_p_r_2,
where div is _f_l_o_o_r_e_d division.
_+_I_n_t_E_x_p_r_1 rreemm _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Remainder of integer division. Behaves as if defined by
_R_e_s_u_l_t is _I_n_t_E_x_p_r_1 - (_I_n_t_E_x_p_r_1 // _I_n_t_E_x_p_r_2) * _I_n_t_E_x_p_r_2
_+_I_n_t_E_x_p_r_1 // _+_I_n_t_E_x_p_r_2 _[_I_S_O_]
Integer division, defined as _R_e_s_u_l_t is rndI(_E_x_p_r_1/_E_x_p_r_2). The
function rndI is the default rounding used by the C-compiler and
available through the Prolog flag integer_rounding_function. In
the C99 standard, C-rounding is defined as towards_zero.
ddiivv((_+_I_n_t_E_x_p_r_1_, _+_I_n_t_E_x_p_r_2)) _[_I_S_O_]
Integer division, defined as
_R_e_s_u_l_t is (IntExpr1 -IntExpr1modIntExpr2)==IntExpr2. In other
words, this is integer division that rounds towards -infinity.
This function guarantees behaviour that is consistent with mod/2,
i.e., the following holds for every pair of integers X;Y where
Y =\= 0.
____________________________________________________________________| |
| Q is div(X, Y), |
| M is mod(X, Y), |
||________X_=:=_Y*Q+M.______________________________________________ ||
_+_R_a_t_E_x_p_r rrddiivv _+_R_a_t_E_x_p_r
Rational number division. This function is only available if
SWI-Prolog has been compiled with rational number support. See
section 4.25.2.2 for details.
_+_I_n_t_E_x_p_r_1 ggccdd _+_I_n_t_E_x_p_r_2
Result is the greatest common divisor of _I_n_t_E_x_p_r_1, _I_n_t_E_x_p_r_2.
aabbss((_+_E_x_p_r)) _[_I_S_O_]
Evaluate _E_x_p_r and return the absolute value of it.
ssiiggnn((_+_E_x_p_r)) _[_I_S_O_]
Evaluate to -1 if _E_x_p_r <0, 1 if _E_x_p_r >0 and 0 if _E_x_p_r =0.
mmaaxx((_+_E_x_p_r_1_, _+_E_x_p_r_2))
Evaluates to the largest of both _E_x_p_r_1 and _E_x_p_r_2. Both arguments
are compared after converting to the same type, but the return
value is in the original type. For example, max(2.5, 3) compares
the two values after converting to float, but returns the integer
3.
mmiinn((_+_E_x_p_r_1_, _+_E_x_p_r_2))
Evaluates to the smallest of both _E_x_p_r_1 and _E_x_p_r_2. See max/2 for a
description of type-handling.
.((_+_I_n_t_, _[_]))
A list of one element evaluates to the element. This implies "a"
evaluates to the character code of the letter `a' (97). This
option is available for compatibility only. It will not work if
`style_check(+string)' is active as "a" will then be transformed
into a string object. The recommended way to specify the character
code of the letter `a' is 0'a.
rraannddoomm((_+_I_n_t_E_x_p_r))
Evaluates to a random integer _i for which 0=< i <_I_n_t_E_x_p_r. The
system has two implementations. If it is compiled with support
for unbounded arithmetic (default) it uses the GMP-library random
functions. In this case, each thread keeps its own random state.
The default algorithm is the _M_e_r_s_e_n_n_e _T_w_i_s_t_e_r algorithm. The seed
is set when the first random number in a thread is generated. If
available, it is set from /dev/random. Otherwise it is set from
the system clock. If unbounded arithmetic is not supported, random
numbers are shared between threads and the seed is initialised from
the clock when SWI-Prolog was started. The predicate set_random/1
can be used to control the random number generator.
rroouunndd((_+_E_x_p_r)) _[_I_S_O_]
Evaluates _E_x_p_r and rounds the result to the nearest integer.
iinntteeggeerr((_+_E_x_p_r))
Same as round/1 (backward compatibility).
ffllooaatt((_+_E_x_p_r)) _[_I_S_O_]
Translate the result to a floating point number. Normally, Prolog
will use integers whenever possible. When used around the 2nd
argument of is/2, the result will be returned as a floating point
number. In other contexts, the operation has no effect.
rraattiioonnaall((_+_E_x_p_r))
Convert the _E_x_p_r to a rational number or integer. The function
returns the input on integers and rational numbers. For floating
point numbers, the returned rational number _e_x_a_c_t_l_y represents the
float. As floats cannot exactly represent all decimal numbers
the results may be surprising. In the examples below, doubles
can represent 0.25 and the result is as expected, in contrast to
the result of rational(_0_._1). The function rationalize/1 remedies
this. See section 4.25.2.2 for more information on rational number
support.
____________________________________________________________________| |
| ?- A is rational(0.25). |
| |
| A is 1 rdiv 4 |
| ?- A is rational(0.1). |
||A_=_3602879701896397_rdiv_36028797018963968_______________________ ||
rraattiioonnaalliizzee((_+_E_x_p_r))
Convert the _E_x_p_r to a rational number or integer. The function
is similar to rational/1, but the result is only accurate within
the rounding error of floating point numbers, generally producing a
much smaller denominator.
____________________________________________________________________| |
| ?- A is rationalize(0.25). |
| |
| A = 1 rdiv 4 |
| ?- A is rationalize(0.1). |
| |
||A_=_1_rdiv_10_____________________________________________________ ||
ffllooaatt__ffrraaccttiioonnaall__ppaarrtt((_+_E_x_p_r)) _[_I_S_O_]
Fractional part of a floating-point number. Negative if _E_x_p_r
is negative, rational if _E_x_p_r is rational and 0 if _E_x_p_r
is integer. The following relation is always true:
Xisfloatfractionalpart(X)+ floatintegerpart(X).
ffllooaatt__iinntteeggeerr__ppaarrtt((_+_E_x_p_r)) _[_I_S_O_]
Integer part of floating-point number. Negative if _E_x_p_r is
negative, _E_x_p_r if _E_x_p_r is integer.
ttrruunnccaattee((_+_E_x_p_r)) _[_I_S_O_]
Truncate _E_x_p_r to an integer. If _E_x_p_r>= 0 this is the same as
floor(_E_x_p_r). For _E_x_p_r< 0 this is the same as ceil(_E_x_p_r). E.i.
truncate rounds towards zero.
fflloooorr((_+_E_x_p_r)) _[_I_S_O_]
Evaluates _E_x_p_r and returns the largest integer smaller or equal to
the result of the evaluation.
cceeiilliinngg((_+_E_x_p_r)) _[_I_S_O_]
Evaluates _E_x_p_r and returns the smallest integer larger or equal to
the result of the evaluation.
cceeiill((_+_E_x_p_r))
Same as ceiling/1 (backward compatibility).
_+_I_n_t_E_x_p_r >> _+_I_n_t_E_x_p_r _[_I_S_O_]
Bitwise shift _I_n_t_E_x_p_r_1 by _I_n_t_E_x_p_r_2 bits to the right. The
operation performs _a_r_i_t_h_m_e_t_i_c _s_h_i_f_t, which implies that the
inserted most significant bits are copies of the original most
significant bit.
_+_I_n_t_E_x_p_r << _+_I_n_t_E_x_p_r _[_I_S_O_]
Bitwise shift _I_n_t_E_x_p_r_1 by _I_n_t_E_x_p_r_2 bits to the left.
_+_I_n_t_E_x_p_r \/ _+_I_n_t_E_x_p_r _[_I_S_O_]
Bitwise `or' _I_n_t_E_x_p_r_1 and _I_n_t_E_x_p_r_2.
_+_I_n_t_E_x_p_r /\ _+_I_n_t_E_x_p_r _[_I_S_O_]
Bitwise `and' _I_n_t_E_x_p_r_1 and _I_n_t_E_x_p_r_2.
_+_I_n_t_E_x_p_r xxoorr _+_I_n_t_E_x_p_r _[_I_S_O_]
Bitwise `exclusive or' _I_n_t_E_x_p_r_1 and _I_n_t_E_x_p_r_2.
\ _+_I_n_t_E_x_p_r _[_I_S_O_]
Bitwise negation. The returned value is the one's complement of
_I_n_t_E_x_p_r.
ssqqrrtt((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =square root of _E_x_p_r
ssiinn((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =sine of _E_x_p_r. _E_x_p_r is the angle in radians.
ccooss((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =cosine of _E_x_p_r. _E_x_p_r is the angle in radians.
ttaann((_+_E_x_p_r))
_R_e_s_u_l_t =tangus of _E_x_p_r. _E_x_p_r is the angle in radians.
aassiinn((_+_E_x_p_r))
_R_e_s_u_l_t =inverse sine of _E_x_p_r. _R_e_s_u_l_t is the angle in radians.
aaccooss((_+_E_x_p_r))
_R_e_s_u_l_t =inverse cosine of _E_x_p_r. _R_e_s_u_l_t is the angle in radians.
aattaann((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =inverse tangus of _E_x_p_r. _R_e_s_u_l_t is the angle in radians.
aattaann22((_+_Y_E_x_p_r_, _+_X_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t = inverse tangus of _Y_E_x_p_r / _X_E_x_p_r. _R_e_s_u_l_t is the angle in
radians. The return value is in the range [-pi:::pi]. Used to
convert between rectangular and polar coordinate system.
aattaann((_+_Y_E_x_p_r_, _+_X_E_x_p_r))
Same as atan2/2 (backward compatibility).
lloogg((_+_E_x_p_r)) _[_I_S_O_]
Natural logarithm. _R_e_s_u_l_t =natural logarithm of _E_x_p_r
lloogg1100((_+_E_x_p_r))
Base-10 logarithm. _R_e_s_u_l_t =10 base logarithm of _E_x_p_r
eexxpp((_+_E_x_p_r)) _[_I_S_O_]
_R_e_s_u_l_t =e to the power _E_x_p_r
_+_E_x_p_r_1 ** _+_E_x_p_r_2 _[_I_S_O_]
_R_e_s_u_l_t =_E_x_p_r_1 to the power _E_x_p_r_2. With unbounded integers and in-
teger values for _E_x_p_r_1 and a non-negative integer _E_x_p_r_2, the result
is always integer. The integer expressions 0 to the power I,
1 to the power I and -1 to the power I are guaranteed to work for
any integer I. Other integer base values generate a resource error
if the result does not fit in memory.
ppoowwmm((_+_I_n_t_E_x_p_r_B_a_s_e_, _+_I_n_t_E_x_p_r_E_x_p_, _+_I_n_t_E_x_p_r_M_o_d))
_R_e_s_u_l_t = (_I_n_t_E_x_p_r_B_a_s_e to the power _I_n_t_E_x_p_r_E_x_p) modulo _I_n_t_E_x_p_r_M_o_d.
Only available when compiled with unbounded integer support. This
formula is required for Diffie-Hellman key-exchange, a technique
where two parties can establish a secret key over a public network.
_+_E_x_p_r_1 ^ _+_E_x_p_r_2
Same as **/2 (backward compatibility).
ppii
Evaluates to the mathematical constant pi (3.14159...).
ee
Evaluates to the mathematical constant e (2.71828...).
eeppssiilloonn
Evaluates to the the difference between the float 1.0 and the first
larger floating point number.
ccppuuttiimmee
Evaluates to a floating point number expressing the cpu time (in
seconds) used by Prolog up till now. See also statistics/2 and
time/1.
eevvaall((_+_E_x_p_r))
Evaluate _E_x_p_r. Although ISO standard dictates that A=1+2, B is
A works and unifies B to 3, it is widely felt that source-level
variables in arithmetic expressions should have been limited to
numbers. In this view the eval function can be used to evaluate
arbitrary expressions.
BBiittvveeccttoorr ffuunnccttiioonnss
The functions below are not covered by the standard. The msb/1
function is compatible with hProlog. The others are private extensions
that improve handling of ---unbounded--- integers as bit-vectors.
mmssbb((_+_I_n_t_E_x_p_r))
Return the largest integer N such that (IntExpr >> N) /\ 1 =:= 1.
This is the (zero-origin) index of the most significant 1 bit in
the value of _I_n_t_E_x_p_r, which must evaluate to a positive integer.
Errors for 0, negative integers, and non-integers.
llssbb((_+_I_n_t_E_x_p_r))
Return the smallest integer N such that (IntExpr >> N) /\ 1 =:= 1.
This is the (zero-origin) index of the least significant 1 bit in
the value of IntExpr, which must evaluate to a positive integer.
Errors for 0, negative integers, and non-integers.
ppooppccoouunntt((_+_I_n_t_E_x_p_r))
Return the number of 1s in the binary representation of the
non-negative integer _I_n_t_E_x_p_r.
44..2266 AAddddiinngg AArriitthhmmeettiicc FFuunnccttiioonnss
Prolog predicates can be given the role of arithmetic function. The
last argument is used to return the result, the arguments before
the last are the inputs. Arithmetic functions are added using the
predicate arithmetic_function/1, which takes the head as its argument.
Arithmetic functions are module sensitive, that is they are only
visible from the module in which the function is defined and declared.
Global arithmetic functions should be defined and registered from
module user. Global definitions can be overruled locally in modules.
The built-in functions described above can be redefined as well.
aarriitthhmmeettiicc__ffuunnccttiioonn((_:_H_e_a_d))
Register a Prolog predicate as an arithmetic function (see is/2,
>/2 , etc.). The Prolog predicate should have one more argument
than specified by _H_e_a_d, which it either a term _N_a_m_e_/_A_r_i_t_y, an atom
or a complex term. This last argument is an unbound variable at
call time and should be instantiated to an integer or floating
point number. The other arguments are the parameters. This
predicate is module sensitive and will declare the arithmetic
function only for the context module, unless declared from module
user. Example:
____________________________________________________________________| |
| 1 ?- [user]. |
| :- arithmetic_function(mean/2). |
| |
| mean(A, B, C) :- |
| C is (A+B)/2. |
| user compiled, 0.07 sec, 440 bytes. |
| |
| Yes |
| 2 ?- A is mean(4, 5). |
| |
||A_=_4.500000______________________________________________________ ||
ccuurrrreenntt__aarriitthhmmeettiicc__ffuunnccttiioonn((_:_H_e_a_d))
True if _H_e_a_d is a function that is visible from the current module.
Built-in functions are visible from all modules, while user-defined
functions (see arithmetic_function/1) obey the module visibility
rules. E.g.,
____________________________________________________________________| |
| ?- current_arithmetic_function(sin(_)). |
||true._____________________________________________________________ ||
44..2277 MMiisscc aarriitthhmmeettiicc ssuuppppoorrtt pprreeddiiccaatteess
sseett__rraannddoomm((_+_O_p_t_i_o_n))
Controls the random number generator that accessible through the
_f_u_n_c_t_i_o_n random/1. Note that the library random provides distinct
support for random numbers that is not affected by set_random/1.
sseeeedd((_+_S_e_e_d))
Set the seed of the random generator for this thread. _S_e_e_d
is an integer or the atom random. If random, repeat the
initialization procedure described with the function random/1.
Here is an example:
_______________________________________________________________| |
|?- set_random(seed(111)), A is random(6). |
|A = 5. |
|?- set_random(seed(111)), A is random(6). |
|A|=_5.________________________________________________________ | |
44..2288 BBuuiilltt--iinn lliisstt ooppeerraattiioonnss
Most list operations are defined in the library lists described in
section ????. Some that are implemented with more low-level primitives
are built-in and described here.
iiss__lliisstt((_+_T_e_r_m))
True if _T_e_r_m is bound to the empty list ([]) or a term with functor
`.' and arity 2 and the second argument is a list. This predicate
acts as if defined by the definition below on _a_c_y_c_l_i_c terms. The
implementation _f_a_i_l_s safely if _T_e_r_m represents a cyclic list.
____________________________________________________________________| |
| is_list(X) :- |
| var(X), !, |
| fail. |
| is_list([]). |
| is_list([_|T]) :- |
||________is_list(T)._______________________________________________ ||
mmeemmbbeerrcchhkk((_?_E_l_e_m_, _+_L_i_s_t))
Same as once(member(_E_l_e_m, _L_i_s_t)). See member/2.
lleennggtthh((_?_L_i_s_t_, _?_I_n_t))
True if _I_n_t represents the number of elements of list _L_i_s_t. This
predicate is a true relation and can be used to find the length
of a list or produce a list (holding variables) of length _I_n_t.
The predicate is non-deterministic, producing lists of increasing
length if _L_i_s_t is a _p_a_r_t_i_a_l _l_i_s_t and _I_n_t is unbound. It raises
errors if _L_i_s_t is not a list or partial list or _I_n_t is not an
integer or unbound.
ssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d))
True if _S_o_r_t_e_d can be unified with a list holding the elements of
_L_i_s_t, sorted to the standard order of terms (see section 4.6).
Duplicates are removed. The implementation is in C, using _n_a_t_u_r_a_l
_m_e_r_g_e _s_o_r_t. The sort/2 predicate can sort a cyclic list, returning
a non-cyclic version with the same elements.
mmssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d))
Equivalent to sort/2, but does not remove duplicates. Raises a
type_error if _L_i_s_t is a cyclic list or not a list.
kkeeyyssoorrtt((_+_L_i_s_t_, _-_S_o_r_t_e_d))
List is a proper list whose elements are _K_e_y-_V_a_l_u_e, that is, terms
whose principal functor is (-)/2, whose first argument is the
sorting key, and whose second argument is the satellite data to be
carried along with the key. keysort/2 sorts _L_i_s_t like msort/2,
but only compares the keys. It is used to sort terms not on
standard order, but on any criterion that can be expressed on a
multi-dimensional scale. Sorting on more than one criterion can be
done using terms as keys, putting the first criterion as argument
1, the second as argument 2, etc. The order of multiple elements
that have the same _K_e_y is not changed. The implementation is in C,
using _n_a_t_u_r_a_l _m_e_r_g_e _s_o_r_t. Fails with a type_error if _L_i_s_t is a
cyclic list or not a list or one of the elements of _L_i_s_t is not a
_p_a_i_r.
pprreeddssoorrtt((_+_P_r_e_d_, _+_L_i_s_t_, _-_S_o_r_t_e_d))
Sorts similar to sort/2, but determines the order of two terms by
calling _P_r_e_d(-_D_e_l_t_a, +_E_1, +_E_2). This call must unify _D_e_l_t_a with
one of <, > or =. If built-in predicate compare/3 is used, the
result is the same as sort/2. See also keysort/2.
44..2299 FFiinnddiinngg aallll SSoolluuttiioonnss ttoo aa GGooaall
ffiinnddaallll((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_B_a_g)) _[_I_S_O_]
Creates a list of the instantiations _T_e_m_p_l_a_t_e gets successively on
backtracking over _G_o_a_l and unifies the result with _B_a_g. Succeeds
with an empty list if _G_o_a_l has no solutions. findall/3 is
equivalent to bagof/3 with all free variables bound with the
existential operator (^), except that bagof/3 fails when goal has
no solutions.
ffiinnddaallll((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_B_a_g_, _+_T_a_i_l))
As findall/3, but returns the result as the difference-list
_B_a_g-_T_a_i_l. The 3-argument version is defined as
____________________________________________________________________| |
| findall(Templ, Goal, Bag) :- |
||________findall(Templ,_Goal,_Bag,_[])_____________________________ ||
bbaaggooff((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_B_a_g)) _[_I_S_O_]
Unify _B_a_g with the alternatives of _T_e_m_p_l_a_t_e, if _G_o_a_l has free
variables besides the one sharing with _T_e_m_p_l_a_t_e bagof will
backtrack over the alternatives of these free variables, unifying
_B_a_g with the corresponding alternatives of _T_e_m_p_l_a_t_e. The construct
+_V_a_r^_G_o_a_l tells bagof not to bind _V_a_r in _G_o_a_l. bagof/3 fails if
_G_o_a_l has no solutions.
The example below illustrates bagof/3 and the ^ operator. The
variable bindings are printed together on one line to save paper.
____________________________________________________________________| |
| 2 ?- listing(foo). |
| |
| foo(a, b, c). |
| foo(a, b, d). |
| foo(b, c, e). |
| foo(b, c, f). |
| foo(c, c, g). |
| |
| Yes |
| 3 ?- bagof(C, foo(A, B, C), Cs). |
| |
| A = a, B = b, C = G308, Cs = [c, d] ; |
| A = b, B = c, C = G308, Cs = [e, f] ; |
| A = c, B = c, C = G308, Cs = [g] ; |
| |
| No |
| 4 ?- bagof(C, A^foo(A, B, C), Cs). |
| |
| A = G324, B = b, C = G326, Cs = [c, d] ; |
| A = G324, B = c, C = G326, Cs = [e, f, g] ; |
| |
| No |
||5_?-______________________________________________________________ ||
sseettooff((_+_T_e_m_p_l_a_t_e_, _+_G_o_a_l_, _-_S_e_t)) _[_I_S_O_]
Equivalent to bagof/3, but sorts the result using sort/2 to get a
sorted list of alternatives without duplicates.
44..3300 FFoorraallll
ffoorraallll((_:_C_o_n_d_, _:_A_c_t_i_o_n)) _[_s_e_m_i_d_e_t_]
For all alternative bindings of _C_o_n_d _A_c_t_i_o_n can be proven. The
example verifies that all arithmetic statements in the list _L are
correct. It does not say which is wrong if one proves wrong.
____________________________________________________________________| |
| ?- forall(member(Result = Formula, [2 = 1 + 1, 4 = 2 * 2]), |
||_________________Result_=:=_Formula)._____________________________ ||
44..3311 FFoorrmmaatttteedd WWrriittee
The current version of SWI-Prolog provides two formatted write
predicates. The first is writef/[1,2], which is compatible with
Edinburgh C-Prolog. The second is format/[1,2], which is compatible
with Quintus Prolog. We hope the Prolog community will once define
a standard formatted write predicate. If you want performance use
format/[1,2] as this predicate is defined in C. Otherwise compatibility
reasons might tell you which predicate to use.
44..3311..11 WWrriitteeff
wwrriitteellnn((_+_T_e_r_m))
Equivalent to write(Term), nl.
wwrriitteeff((_+_A_t_o_m))
Equivalent to writef(Atom, []).
wwrriitteeff((_+_F_o_r_m_a_t_, _+_A_r_g_u_m_e_n_t_s))
Formatted write. _F_o_r_m_a_t is an atom whose characters will be
printed. _F_o_r_m_a_t may contain certain special character sequences
which specify certain formatting and substitution actions.
_A_r_g_u_m_e_n_t_s then provides all the terms required to be output.
Escape sequences to generate a single special character:
__________________________________________________
| \n |Output a newline character (see also |
| |nl/[0,1]) |
| \l |Output a line separator (same as \n) |
| \r |Output a carriage-return character |
| |(ASCII 13) |
| \t |Output the ASCII character TAB (9) |
| \\ |The character \ is output |
| \% |The character % is output |
| \nnn |where <_n_n_n> is an integer (1-3 digits) |
| |the character with character code <_n_n_n> |
|______|is_output_(NB_:_<_n_n_n>_is_read_as_ddeecciimmaall)_|
Note that \l, \nnn and \\ are interpreted differently when
character-escapes are in effect. See section 2.15.1.2.
Escape sequences to include arguments from _A_r_g_u_m_e_n_t_s. Each time
a % escape sequence is found in _F_o_r_m_a_t the next argument from
_A_r_g_u_m_e_n_t_s is formatted according to the specification.
_________________________________________________%t
| %w print/1 the next item (mnemonic: term) | |
| %q |write/1the next item |
| |writeq/1the next item |
| %d |Write the term, ignoring operators. See|
| |also write_term/2. Mnemonic: old|
| %p |Edinburgh display/1. |
| |print/1the next item (identical to %t) |
| %n |Put the next item as a character (i.e.,|
| |it is a character code) |
| %r |Write the next item N times where N is|
| |the second item (an integer) |
| %s |Write the next item as a String (so it|
| |must be a list of characters) |
| %f |Perform a ttyflush/0 (no items used) |
| %Nc |Write the next item Centered in N |
| |columns. |
| %Nl |Write the next item Left justified in N |
| |columns. |
| %Nr |Write the next item Right justified in N |
| |columns. N is a decimal number with at|
| |least one digit. The item must be an|
|_____|atom,_integer,_float_or_string.__________|_
sswwrriitteeff((_-_S_t_r_i_n_g_, _+_F_o_r_m_a_t_, _+_A_r_g_u_m_e_n_t_s))
Equivalent to writef/2, but ``writes'' the result on _S_t_r_i_n_g instead
of the current output stream. Example:
____________________________________________________________________| |
| ?- swritef(S, '%15L%w', ['Hello', 'World']). |
| |
||S_=_"Hello__________World"________________________________________ ||
sswwrriitteeff((_-_S_t_r_i_n_g_, _+_F_o_r_m_a_t))
Equivalent to swritef(String, Format, []).
44..3311..22 FFoorrmmaatt
The format-family of predicates is the most versatile and portable way
to produce textual output.
ffoorrmmaatt((_+_F_o_r_m_a_t))
Defined as `format(Format) :- format(Format, []).'
ffoorrmmaatt((_+_F_o_r_m_a_t_, _+_A_r_g_u_m_e_n_t_s))
_F_o_r_m_a_t is an atom, list of character codes, or a Prolog string.
_A_r_g_u_m_e_n_t_s provides the arguments required by the format
specification. If only one argument is required and this single
argument is not a list the argument need not be put in a list.
Otherwise the arguments are put in a list.
Special sequences start with the tilde (~), followed by an optional
numeric argument, followed by a character describing the action to
be undertaken. A numeric argument is either a sequence of digits,
representing a positive decimal number, a sequence `<_c_h_a_r_a_c_t_e_r>,
representing the character code value of the character (only useful
for ~t) or a asterisk (*), in which case the numeric argument is
taken from the next argument of the argument list, which should be
a positive integer. E.g., the following three examples all pass 46
(.) to ~t:
____________________________________________________________________| |
| ?- format('~w ~46t ~w~72|~n', ['Title', 'Page']). |
| ?- format('~w ~`.t ~w~72|~n', ['Title', 'Page']). |
||?-_format('~w_~*t_~w~72|~n',_['Title',_46,_'Page']).______________ ||
Numeric conversion (d, D, e, E, f, g and G) accept an arithmetic
expression as argument. This is introduced to handle rational
numbers transparently (see section 4.25.2.2. The floating point
conversions allow for unlimited precision for printing rational
numbers in decimal form. E.g., the following will write as many
3-s as you want by changing the `70'.
____________________________________________________________________| |
| ?- format('~70f', [10 rdiv 3]). |
||3.3333333333333333333333333333333333333333333333333333333333333333333333||_
~ Output the tilde itself.
a Output the next argument, which must be an atom. This option
is equivalent to ww, except for that it requires the argument
to be an atom.
c Interpret the next argument as an character code and add it to
the output. This argument should be an integer in the range
[0, ..., 255] (including 0 and 255).
d Output next argument as a decimal number. It should be
an integer. If a numeric argument is specified a dot is
inserted _a_r_g_u_m_e_n_t positions from the right (useful for doing
fixed point arithmetic with integers, such as handling amounts
of money).
D Same as dd, but makes large values easier to read by inserting
a comma every three digits left to the dot or right.
e Output next argument as a floating point number in exponential
notation. The numeric argument specifies the precision.
Default is 6 digits. Exact representation depends on the C
library function printf(). This function is invoked with the
format %.<_p_r_e_c_i_s_i_o_n>e.
E Equivalent to ee, but outputs a capital E to indicate the
exponent.
f Floating point in non-exponential notation. See C library
function printf().
g Floating point in ee or ff notation, whichever is shorter.
G Floating point in EE or ff notation, whichever is shorter.
i Ignore next argument of the argument list. Produces no
output.
k Give the next argument to (write_canonical/1).
n Output a newline character.
N Only output a newline if the last character output on this
stream was not a newline. Not properly implemented yet.
p Give the next argument to print/1.
q Give the next argument to writeq/1.
r Print integer in radix the numeric argument notation. Thus
~16r prints its argument hexadecimal. The argument should be
in the range [2; :::;36]. Lower case letters are used for digits
above 9.
R Same as rr, but uses upper case letters for digits above 9.
s Output text from a list of character codes or a string (see
string/1 and section 4.22) from the next argument.
@ Interpret the next argument as a goal and execute it. Output
written to the current_output stream is inserted at this place.
Goal is called in the module calling format/3. This option
is not present in the original definition by Quintus, but
supported by some other Prolog systems.
t All remaining space between 2 tab stops is distributed equally
over ~t statements between the tab stops. This space is
padded with spaces by default. If an argument is supplied
this is taken to be the character code of the character used
for padding. This can be used to do left or right alignment,
centering, distributing, etc. See also ~| and ~+ to set tab
stops. A tab stop is assumed at the start of each line.
| Set a tab stop on the current position. If an argument is
supplied set a tab stop on the position of that argument.
This will cause all ~t's to be distributed between the
previous and this tab stop.
+ Set a tab stop relative to the current position. Further the
same as ~|.
w Give the next argument to write/1.
W Give the next two argument to write_term/2. E.g.
format(' W', [Term, [numbervars(true)]]). This option is
SWI-Prolog specific.
Example:
____________________________________________________________________| |
| simple_statistics :- |
| <obtain statistics> % left to the user |
| format('~tStatistics~t~72|~n~n'), |
| format('Runtime: ~`.t ~2f~34| Inferences: ~`.t ~D~72|~n', |
| [RunT, Inf]), |
||____....__________________________________________________________ ||
Will output
____________________________________________________________________| |
| Statistics |
| |
||Runtime:_.................._3.45__Inferences:_.........._60,345___ ||
ffoorrmmaatt((_+_O_u_t_p_u_t_, _+_F_o_r_m_a_t_, _+_A_r_g_u_m_e_n_t_s))
As format/2, but write the output on the given _O_u_t_p_u_t. The de-
facto standard only allows _O_u_t_p_u_t to be a stream. The SWI-Prolog
implementation allows all valid arguments for with_output_to/2.
For example:
____________________________________________________________________| |
| ?- format(atom(A), '~D', [1000000]). |
||A_=_'1,000,000'___________________________________________________ ||
44..3311..33 PPrrooggrraammmmiinngg FFoorrmmaatt
ffoorrmmaatt__pprreeddiiccaattee((_+_C_h_a_r_, _+_H_e_a_d))
If a sequence ~c (tilde, followed by some character) is found, the
format derivatives will first check whether the user has defined a
predicate to handle the format. If not, the built in formatting
rules described above are used. _C_h_a_r is either an ascii value,
or a one character atom, specifying the letter to be (re)defined.
_H_e_a_d is a term, whose name and arity are used to determine the
predicate to call for the redefined formatting character. The
first argument to the predicate is the numeric argument of the
format command, or the atom default if no argument is specified.
The remaining arguments are filled from the argument list. The
example below redefines ~n to produce _A_r_g times return followed by
linefeed (so a (Grr.) DOS machine is happy with the output).
____________________________________________________________________| |
| :- format_predicate(n, dos_newline(_Arg)). |
| |
| dos_newline(default) :- !, |
| dos_newline(1). |
| dos_newline(N) :- |
| ( N > 0 |
| -> write('\r\n'), |
| N2 is N - 1, |
| dos_newline(N2) |
| ; true |
||________).________________________________________________________ ||
ccuurrrreenntt__ffoorrmmaatt__pprreeddiiccaattee((_?_C_o_d_e_, _?_:_H_e_a_d))
Enumerates all user-defined format predicates. _C_o_d_e is the
character code of the format character. _H_e_a_d is unified with a
term with the same name and arity as the predicate. If the
predicate does not reside in module user, _H_e_a_d is qualified with
the definition module of the predicate.
44..3322 TTeerrmmiinnaall CCoonnttrrooll
The following predicates form a simple access mechanism to the
Unix termcap library to provide terminal independent I/O for screen
terminals. These predicates are only available on Unix machines. The
SWI-Prolog Windows consoles accepts the ANSI escape sequences.
ttttyy__ggeett__ccaappaabbiilliittyy((_+_N_a_m_e_, _+_T_y_p_e_, _-_R_e_s_u_l_t))
Get the capability named _N_a_m_e from the termcap library. See
termcap(5) for the capability names. _T_y_p_e specifies the type of
the expected result, and is one of string, number or bool. String
results are returned as an atom, number result as an integer and
bool results as the atom on or off. If an option cannot be found
this predicate fails silently. The results are only computed once.
Successive queries on the same capability are fast.
ttttyy__ggoottoo((_+_X_, _+_Y))
Goto position (_X, _Y) on the screen. Note that the predicates
line_count/2 and line_position/2 will not have a well defined
behaviour while using this predicate.
ttttyy__ppuutt((_+_A_t_o_m_, _+_L_i_n_e_s))
Put an atom via the termcap library function tputs(). This
function decodes padding information in the strings returned by
tty_get_capability/3 and should be used to output these strings.
_L_i_n_e_s is the number of lines affected by the operation, or 1 if not
applicable (as in almost all cases).
sseett__ttttyy((_-_O_l_d_S_t_r_e_a_m_, _+_N_e_w_S_t_r_e_a_m))
Set the output stream, used by tty_put/2 and tty_goto/2 to a
specific stream. Default is user_output.
ttttyy__ssiizzee((_-_R_o_w_s_, _-_C_o_l_u_m_n_s))
Determine the size of the terminal. Platforms:
UUnniixx If the system provides _i_o_c_t_l calls for this, these are
used and tty_size/2 properly reflects the actual size after a
user resize of the window. As a fallback, the system uses
tty_get_capability/3 using li and co capabilities. In this
case the reported size reflects the size at the first call and
is not updated after a user-initiated resize of the terminal.
WWiinnddoowwss Getting the size of the terminal is provided for
swipl-win.exe. The requested value reflects the current size.
For the multi-threaded version the console that is associated
with the user_input stream is used.
44..3333 OOppeerraattiinngg SSyysstteemm IInntteerraaccttiioonn
sshheellll((_+_C_o_m_m_a_n_d_, _-_S_t_a_t_u_s))
Execute _C_o_m_m_a_n_d on the operating system. _C_o_m_m_a_n_d is given to the
Bourne shell (/bin/sh). _S_t_a_t_u_s is unified with the exit status of
the command.
On _W_i_n_3_2 systems, shell/[1,2] executes the command using the
CreateProcess() API and waits for the command to terminate. If
the command ends with a & sign, the command is handed to the
WinExec() API, which does not wait for the new task to terminate.
See also win_exec/2 and win_shell/2. Please note that the
CreateProcess() API does nnoott imply the Windows command interpreter
(command.exe on Windows 95/98 and cmd.exe on Windows-NT) and
therefore commands built-in to the command-interpreter can only
be activated using the command interpreter. For example:
'command.exe /C copy file1.txt file2.txt'
sshheellll((_+_C_o_m_m_a_n_d))
Equivalent to `shell(Command, 0)'.
sshheellll
Start an interactive Unix shell. Default is /bin/sh, the
environment variable SHELL overrides this default. Not available
for Win32 platforms.
wwiinn__eexxeecc((_+_C_o_m_m_a_n_d_, _+_S_h_o_w))
Win32 systems only. Spawns a Windows task without waiting for
its completion. _S_h_o_w is one of the Win32 SW_* constants written
in lowercase without the SW_*: hide maximize minimize restore
show showdefault showmaximized showminimized showminnoactive showna
shownoactive shownormal. In addition, iconic is a synonym for
minimize and normal for shownormal
wwiinn__sshheellll((_+_O_p_e_r_a_t_i_o_n_, _+_F_i_l_e_, _+_S_h_o_w))
Win32 systems only. Opens the document _F_i_l_e using the windows
shell-rules for doing so. _O_p_e_r_a_t_i_o_n is one of open, print or
explore or another operation registered with the shell for the
given document-type. On modern systems it is also possible to pass
a URL as _F_i_l_e, opening the URL in Windows default browser. This
call interfaces to the Win32 API ShellExecute(). The _S_h_o_w argument
determines the initial state of the opened window (if any). See
win_exec/2 for defined values.
wwiinn__sshheellll((_+_O_p_e_r_a_t_i_o_n_, _+_F_i_l_e))
Same as win_shell(_O_p_e_r_a_t_i_o_n_, _F_i_l_e_, _n_o_r_m_a_l)
wwiinn__rreeggiissttrryy__ggeett__vvaalluuee((_+_K_e_y_, _+_N_a_m_e_, _-_V_a_l_u_e))
Win32 systems only. Fetches the value of a Win32 registry key.
_K_e_y is an atom formed as a path-name describing the desired
registry key. _N_a_m_e is the desired attribute name of the key.
_V_a_l_u_e is unified with the value. If the value is of type DWORD,
the value is returned as an integer. If the value is a string
it is returned as a Prolog atom. Other types are currently not
supported. The default `root' is HKEY_CURRENT_USER. Other roots
can be specified explicitly as HKEY_CLASSES_ROOT, HKEY_CURRENT_USER,
HKEY_LOCAL_MACHINE or HKEY_USERS. The example below fetches the
extension to use for Prolog files (see README.TXT on the Windows
version):
____________________________________________________________________| |
| ?- win_registry_get_value('HKEY_LOCAL_MACHINE/Software/SWI/Prolog',|
| fileExtension, |
| Ext). |
| |
||Ext_=_pl__________________________________________________________ ||
wwiinn__ffoollddeerr((_?_N_a_m_e_, _-_D_i_r_e_c_t_o_r_y))
Is true if _N_a_m_e is the Windows `CSIDL' of _D_i_r_e_c_t_o_r_y. If _N_a_m_e
is unbound all known Windows special paths are generated. _N_a_m_e
is the CSIDL after deleting the leading CSIDL_ and mapping the
constant to lowercase. Check the Windows documentation for the
function SHGetSpecialFolderPath() for a description of the defined
constants. This example extracts the `My Documents' folder:
____________________________________________________________________| |
| ?- win_folder(personal, MyDocuments). |
| |
||MyDocuments_=_'C:/Documents_and_Settings/jan/My_Documents'________ ||
ggeetteennvv((_+_N_a_m_e_, _-_V_a_l_u_e))
Get environment variable. Fails silently if the variable does
not exist. Please note that environment variable names are
case-sensitive on Unix systems and case-insensitive on Windows.
sseetteennvv((_+_N_a_m_e_, _+_V_a_l_u_e))
Set an environment variable. _N_a_m_e and _V_a_l_u_e must be instantiated
to atoms or integers. The environment variable will be passed
to shell/[0-2] and can be requested using getenv/2. They also
influence expand_file_name/2. Environment variables are shared
between threads. Depending on the underlying C library, setenv/2
and unsetenv/1 may not be thread-safe and may cause memory leaks.
Only changing the environment once and before starting threads is
safe in all versions of SWI-Prolog.
uunnsseetteennvv((_+_N_a_m_e))
Remove an environment variable from the environment. Some systems
lack the underlying unsetenv() library function. On these systems
unsetenv/1 sets the variable to the empty string.
sseettllooccaallee((_+_C_a_t_e_g_o_r_y_, _-_O_l_d_, _+_N_e_w))
Set/Query the _l_o_c_a_l_e setting which tells the C-library how to
interpret text-files, write numbers, dates, etc. Category is
one of all, collate, ctype, messages, monetary, numeric or time.
For details, please consult the C-library locale documentation.
See also section 2.17.1. Please note that the locale is shared
between all threads and thread-safe usage of setlocale/3 is in
general not possible. Do locale operations before starting
threads or thoroughly study threading aspects of locale support
in your environment before use in multi-threaded environments.
Locale settings are used by format_time/3, collation_key/2 and
locale_sort/2.
uunniixx((_+_C_o_m_m_a_n_d))
This predicate comes from the Quintus compatibility library and
provides a partial implementation thereof. It provides access to
some operating system features and unlike the name suggests, is not
operating system specific. Defined _C_o_m_m_a_n_d's are below.
ssyysstteemm((_+_C_o_m_m_a_n_d))
Equivalent to calling shell/1. Use for compatibility only.
sshheellll((_+_C_o_m_m_a_n_d))
Equivalent to calling shell/1. Use for compatibility only.
sshheellll
Equivalent to calling shell/0. Use for compatibility only.
ccdd
Equivalent to calling working_directory/2 to the expansion (see
expand_file_name/2) of ~. For compatibility only.
ccdd((_+_D_i_r_e_c_t_o_r_y))
Equivalent to calling working_directory/2. Use for compatibil-
ity only.
aarrggvv((_-_A_r_g_v))
Unify _A_r_g_v with the list of command-line arguments provides to
this Prolog run. Please note that Prolog system-arguments and
application arguments are separated by --. Integer arguments
are passed as Prolog integers, float arguments and Prolog
floating point numbers and all other arguments as Prolog
atoms. New applications should use the Prolog flag argv. See
also prolog Prolog flag argv.
A stand-alone program could use the following skeleton to
handle command-line arguments. See also section 2.10.2.4.
_______________________________________________________________| |
|main :- |
| current_prolog_flag(argv, Argv), |
| append(_PrologArgs, [--|AppArgs], Argv), !, |
||_______main(AppArgs).________________________________________ ||
44..3333..11 DDeeaalliinngg wwiitthh ttiimmee aanndd ddaattee
Representing time in a computer system is surprisingly complicated.
There are a large number of time representations in use and the correct
choice depends on factors such as compactness, resolution and desired
operations. Humans tend to think about time in hours, days, months,
years or centuries. Physicists think about time in seconds. But,
a month does not have a defined number of seconds. Even a day
does not have a defined number of seconds as sometimes a leap-second
is introduced to synchronise properly with our earth's rotation. At
the same time, resolution demands range from better then pico-seconds
to millions of years. Finally, civilizations have a wide range of
calendars. Although there exist libraries dealing with most if this
complexity, our desire to keep Prolog clean and lean stops us from
fully supporting these.
For human-oriented tasks, time can be broken into years, months, days,
hours, minutes, seconds and a timezone. Physicists prefer to have
time in an arithmetic type representing seconds or fraction thereof, so
basic arithmetic deal with comparison and durations. An additional
advantage of the physicists approach is that it requires much less
space. For these reasons, SWI-Prolog uses an arithmetic type as its
prime time representation.
Many C libraries deal with time using fixed-point arithmetic, dealing
with a large but finite time interval at constant resolution. In our
opinion using a floating point number is a more natural choice as we
can use a natural unit and the interface does not need to be changed if
a higher resolution is required in the future. Our unit of choice is
the second as it is the scientific unit. We have placed our origin at
1970-1-1T0:0:0Z for compatibility with the POSIX notion of time as well
as with older time support provided by SWI-Prolog.
Where older versions of SWI-Prolog relied on the POSIX conversion
functions, the current implementation uses libtai to realise conversion
between time-stamps and calendar dates for a period of 10 million
years.
44..3333..11..11 TTiimmee aanndd ddaattee ddaattaa--ssttrruuccttuurreess
We use the following time representations
TTiimmeeSSttaammpp
A TimeStamp is a floating point number expression the time in
seconds since the Epoch at 1970-1-1.
ddaattee((_Y_,_M_,_D_,_H_,_M_n_,_S_,_O_f_f_,_T_Z_,_D_S_T))
We call this term a _d_a_t_e_-_t_i_m_e structure. The first 5 fields are
integers expressing the year, month (1..12), day (1..31), hour
(0..23), Minute (0..59). The _S field holds the seconds as a
floating point number between 0.0 and 60.0. _O_f_f is an integer
representing the offset relative to UTC in seconds where positive
values are west of Greenwich. If converted from local time (see
stamp_date_time/3, _T_Z holds the name of the local timezone. If the
timezone is not known _T_Z is the atom -. _D_S_T is true if daylight
saving time applies to the current time, false if daylight saving
time is relevant but not effective and - if unknown or the timezone
has no daylight saving time.
ddaattee((_Y_,_M_._D))
Date using the same values as described above. Extracted using
date_time_value/3.
ttiimmee((_H_,_M_n_,_S))
Time using the same values as described above. Extracted using
date_time_value/3.
44..3333..11..22 TTiimmee aanndd ddaattee pprreeddiiccaatteess
ggeett__ttiimmee((_-_T_i_m_e_S_t_a_m_p))
Return the current time as a _T_i_m_e_S_t_a_m_p. The granularity is system
dependent. See section 4.33.1.1.
ssttaammpp__ddaattee__ttiimmee((_+_T_i_m_e_S_t_a_m_p_, _-_D_a_t_e_T_i_m_e_, _+_T_i_m_e_Z_o_n_e))
Convert a _T_i_m_e_S_t_a_m_p to a _D_a_t_e_T_i_m_e in the given time zone. See
section 4.33.1.1 for details on the data-types. _T_i_m_e_Z_o_n_e describes
the timezone for the conversion. It is one of local to extract the
local time, 'UTC' to extract at UTC time or an integer describing
the seconds west of Greenwich.
ddaattee__ttiimmee__ssttaammpp((_+_D_a_t_e_T_i_m_e_, _-_T_i_m_e_S_t_a_m_p))
Compute the timestamp from a date/9 term. Values for month, day,
hour, minute or second need not be normalized. This flexibility
allows for easy computation of the time at any given number of
these units from a given timestamp. Normalization can be achieved
following this call with stamp_date_time/3. This example computes
the date 200 days after 2006-7-14:
____________________________________________________________________| |
| ?- date_time_stamp(date(2006,7,214,0,0,0,0,-,-), Stamp), |
| stamp_date_time(Stamp, D, 0), |
| date_time_value(date, D, Date). |
||Date_=_date(2007,_1,_30)__________________________________________ ||
ddaattee__ttiimmee__vvaalluuee((_?_K_e_y_, _+_D_a_t_e_T_i_m_e_, _?_V_a_l_u_e))
Extract values from a date/9 term. Provided keys are:
______________________________________________________________kkeeyyvvaalluuee
____________________________________________________________________________________________________________________________yearCalendar year as an integer
month Calendar month as an integer 1..12
day Calendar day as an integer 1..31
hour Clock hour as an integer 0..23
minute Clock minute as an integer 0..59
second Clock second as a float 0.0..60.0
utc_offset Offset to UTC in seconds (positive is west)
time_zone Name of timezone; fails if unknown
daylight_saving Bool (true) if dst is effective
date Term date(_Y_,_M_,_D)
_time_____________Term_time(_H_,_M_,_S)____________________________
ffoorrmmaatt__ttiimmee((_+_O_u_t_, _+_F_o_r_m_a_t_, _+_S_t_a_m_p_O_r_D_a_t_e_T_i_m_e))
Modelled after POSIX strftime(), using GNU extensions. _O_u_t is
a destination as specified with with_output_to/2. _F_o_r_m_a_t is
an atom or string with the following conversions. Conversions
start with a tilde (%) character. _S_t_a_m_p_O_r_D_a_t_e_T_i_m_e is either a
(numeric time-stamp, a term date(_Y_,_M_,_D_,_H_,_M_,_S_,_O_,_T_Z_,_D_S_T) or a term
date(_Y_,_M_,_D).
a The abbreviated weekday name according to the current locale.
Use format_time/4 for POSIX locale.
A The full weekday name according to the current locale. Use
format_time/4 for POSIX locale.
b The abbreviated month name according to the current locale.
Use format_time/4 for POSIX locale.
B The full month name according to the current locale. Use
format_time/4 for POSIX locale.
c The preferred date and time representation for the current
locale.
C The century number (year/100) as a 2-digit integer.
d The day of the month as a decimal number (range 01 to 31).
D Equivalent to %m/%d/%y. (Yecch for Americans only.
Americans should note that in other countries %d/%m/%y is
rather common. This means that in international context this
format is ambiguous and should not be used.)
e Like %d, the day of the month as a decimal number, but a
leading zero is replaced by a space.
E Modifier. Not implemented.
f Number of microseconds. The f can be prefixed by an integer
to print the desired number of digits. E.g., %3f prints
milliseconds. This format is not covered by any standard,
but available with different format-specifiers in various
incarnations of the strftime() function.
F Equivalent to %Y-%m-%d (the ISO 8601 date format).
g Like %G, but without century, i.e., with a 2-digit year
(00-99).
G The ISO 8601 year with century as a decimal number. The
4-digit year corresponding to the ISO week number (see %V).
This has the same format and value as %y, except that if the
ISO week number belongs to the previous or next year, that
year is used instead.
V The ISO 8601:1988 week number of the current year as a decimal
number, range 01 to 53, where week 1 is the first week that
has at least 4 days in the current year, and with Monday as
the first day of the week. See also %U and %W.
h Equivalent to %b.
H The hour as a decimal number using a 24-hour clock (range 00
to 23).
I The hour as a decimal number using a 12-hour clock (range 01
to 12).
j The day of the year as a decimal number (range 001 to 366).
k The hour (24-hour clock) as a decimal number (range 0 to 23);
single digits are preceded by a blank. (See also %H.)
l The hour (12-hour clock) as a decimal number (range 1 to 12);
single digits are preceded by a blank. (See also %I.)
m The month as a decimal number (range 01 to 12).
M The minute as a decimal number (range 00 to 59).
n A newline character.
O Modifier to select locale-specific output. Not implemented.
p Either `AM' or `PM' according to the given time value, or the
corresponding strings for the current locale. Noon is treated
as `pm' and midnight as `am'.
P Like %p but in lowercase: `am' or `pm' or a corresponding
string for the current locale.
r The time in a.m. or p.m. notation. In the POSIX locale this
is equivalent to `%I:%M:%S %p'.
R The time in 24-hour notation (%H:%M). For a version including
the seconds, see %T below.
s The number of seconds since the Epoch, i.e., since 1970-01-01
00:00:00 UTC.
S The second as a decimal number (range 00 to 60). (The range
is up to 60 to allow for occasional leap seconds.)
t A tab character.
T The time in 24-hour notation (%H:%M:%S).
u The day of the week as a decimal, range 1 to 7, Monday being
1. See also %w.
U The week number of the current year as a decimal number, range
00 to 53, starting with the first Sunday as the first day of
week 01. See also %V and %W.
w The day of the week as a decimal, range 0 to 6, Sunday being
0. See also %u.
W The week number of the current year as a decimal number, range
00 to 53, starting with the first Monday as the first day of
week 01.
x The preferred date representation for the current locale
without the time.
X The preferred time representation for the current locale
without the date.
y The year as a decimal number without a century (range 00 to
99).
Y The year as a decimal number including the century.
z The time-zone as hour offset from GMT using the format
HHmm. Required to emit RFC822-conforming dates (using
'%a, %d %b %Y %T %z'). Our implementation supports %:z, which
modifies the output to HH:mm as required by XML-Schema. Note
that both notations are valid in ISO8601. The sequence %:z is
compatible to the GNU date(1) command.
Z The time zone or name or abbreviation.
+ The date and time in date(1) format.
% A literal `%' character.
The table below, gives some format strings for popular time
representations. RFC1123 is used by HTTP. The full implementation
of http_timestamp/2 as available from http/http_header is here.
____________________________________________________________________| |
| http_timestamp(Time, Atom) :- |
| stamp_date_time(Time, Date, 'UTC'), |
| format_time(atom(Atom), |
| '%a, %d %b %Y %T GMT', |
||____________________Date,_posix)._________________________________ ||
__________________________________SSttaannddaarrddFFoorrmmaatt ssttrriinngg
____________________________________________________________________xxssdd'%FT%T%:z'
IISSOO88660011 '%FT%T%z'
RRFFCC882222 '%a, %d %b %Y %T %z'
_RRFFCC11112233___'%a,_%d_%b_%Y_%T_GMT'__
ffoorrmmaatt__ttiimmee((_+_O_u_t_, _+_F_o_r_m_a_t_, _+_S_t_a_m_p_O_r_D_a_t_e_T_i_m_e_, _+_L_o_c_a_l_e))
Format time given a specified _L_o_c_a_l_e. This predicate is a
work-around for lacking proper portable and thread-safe time
and locale handling in current C libraries. In its current
implementation the only value allowed for _L_o_c_a_l_e is posix, which
currently only modifies the behaviour or the a, A, b and B format
specifiers. The predicate is used to be able to emit POSIX locale
week and month names for emitting standardised time-stamps such as
RFC1123.
ppaarrssee__ttiimmee((_+_T_e_x_t_, _-_S_t_a_m_p))
Same as parse_time(_T_e_x_t_, ___F_o_r_m_a_t_, _S_t_a_m_p). See parse_time/3.
ppaarrssee__ttiimmee((_+_T_e_x_t_, _?_F_o_r_m_a_t_, _-_S_t_a_m_p))
Parse a textual time representation, producing a time-stamp.
Supported formats for _T_e_x_t are in the table below. If the
format is known, it may be given to reduce parse-time and avoid
ambiguities. Otherwise, _F_o_r_m_a_t is unified with the format
encountered.
_________________________________________
|__NNaammee________||EExxaammppllee______________________________________________||
||_rfc_1123F|ri,_08_Dec_2006_15:29:44_GMT_|
| iso_86012|006-12-08T17:29:44+02:00 |
| |20061208T172944+0200 |
| |2006-12-08T15:29Z |
| |2006-12-08 |
| |20061208 |
| |2006-12 |
| |2006-W49-5 |
|_________|2006-342______________________|
ddaayy__ooff__tthhee__wweeeekk((_+_D_a_t_e_,_-_D_a_y_O_f_T_h_e_W_e_e_k))
Computes the day of the week for a given date.
_D_a_t_e = date(_Y_e_a_r,_M_o_n_t_h,_D_a_y), Days of the week are numbered
from one to seven: monday = 1, tuesday = 2, ..., sunday = 7.
44..3333..22 CCoonnttrroolllliinngg tthhee swipl-win.exe ccoonnssoollee wwiinnddooww
The Windows executable swipl-win.exe console has a number of predicates
to control the appearance of the console. Being totally non-portable,
we do not advice using it for your own application, but use XPCE or
another portable GUI platform instead. We give the predicates for
reference here.
wwiinnddooww__ttiittllee((_-_O_l_d_, _+_N_e_w))
Unify _O_l_d with the title displayed in the console and change the
title to _N_e_w.
wwiinn__wwiinnddooww__ppooss((_+_L_i_s_t_O_f_O_p_t_i_o_n_s))
Interface to the MS-Windows SetWindowPos() function, controlling
size, position and stacking order of the window. _L_i_s_t_O_f_O_p_t_i_o_n_s is
a list that may hold any number of the terms below.
ssiizzee((_W_, _H))
Change the size of the window. _W and _H are expressed in
character-units.
ppoossiittiioonn((_X_, _Y))
Change the top-left corner of the window. The values are
expressed in pixel units.
zzoorrddeerr((_Z_O_r_d_e_r))
Change the location in the window stacking order. Values
are bottom, top, topmost and notopmost. _T_o_p_m_o_s_t windows are
displayed above all other windows.
sshhooww((_B_o_o_l))
If true, show the window, if false hide the window.
aaccttiivvaattee
If present, activate the window.
wwiinn__hhaass__mmeennuu
True if win_insert_menu/2 and win_insert_menu_item/4are present.
wwiinn__iinnsseerrtt__mmeennuu((_+_L_a_b_e_l_, _+_B_e_f_o_r_e))
Insert a new entry (pulldown) in the menu. If the menu already
contains this entry, nothing is done. The _L_a_b_e_l is the label
and using the Windows conventions, a letter prefixed with & is
underlined and defines the associated accelerator key. _B_e_f_o_r_e is
the label before which this one must be inserted. Using - adds the
new entry at the end (right). For example, the call below adds a
Application entry just before the Help menu.
____________________________________________________________________| |
||win_insert_menu('&Application',_'&Help')__________________________ ||
wwiinn__iinnsseerrtt__mmeennuu__iitteemm((_+_P_u_l_l_d_o_w_n_, _+_L_a_b_e_l_, _+_B_e_f_o_r_e_, _:_G_o_a_l))
Add an item to the named _P_u_l_l_d_o_w_n menu. _L_a_b_e_l and _B_e_f_o_r_e
are handled as in win_insert_menu/2, but the label - inserts a
_s_e_p_a_r_a_t_o_r. _G_o_a_l is called if the user selects the item.
44..3344 FFiillee SSyysstteemm IInntteerraaccttiioonn
aacccceessss__ffiillee((_+_F_i_l_e_, _+_M_o_d_e))
True if _F_i_l_e exists and can be accessed by this prolog process
under mode _M_o_d_e. _M_o_d_e is one of the atoms read, write, append,
exist, none or execute. _F_i_l_e may also be the name of a directory.
Fails silently otherwise. access_file(File, none)simply succeeds
without testing anything.
If `Mode' is write or append, this predicate also succeeds if the
file does not exist and the user has write-access to the directory
of the specified location.
eexxiissttss__ffiillee((_+_F_i_l_e))
True if _F_i_l_e exists and is a regular file. This does not imply the
user has read and/or write permission for the file.
ffiillee__ddiirreeccttoorryy__nnaammee((_+_F_i_l_e_, _-_D_i_r_e_c_t_o_r_y))
Extracts the directory-part of _F_i_l_e. The returned _D_i_r_e_c_t_o_r_y
name does not end in /. There are two special cases. The
directory-name of / is / itself and the directory-name if _F_i_l_e does
not contain any / characters is ..
ffiillee__bbaassee__nnaammee((_+_F_i_l_e_, _-_B_a_s_e_N_a_m_e))
Extracts the filename part from a path specification. If _F_i_l_e does
not contain any directory separators, _F_i_l_e is returned.
ssaammee__ffiillee((_+_F_i_l_e_1_, _+_F_i_l_e_2))
True if both filenames refer to the same physical file. That
is, if _F_i_l_e_1 and _F_i_l_e_2 are the same string or both names exist
and point to the same file (due to hard or symbolic links and/or
relative vs. absolute paths).
eexxiissttss__ddiirreeccttoorryy((_+_D_i_r_e_c_t_o_r_y))
True if _D_i_r_e_c_t_o_r_y exists and is a directory. This does not
imply the user has read, search and or write permission for the
directory.
ddeelleettee__ffiillee((_+_F_i_l_e))
Remove _F_i_l_e from the file system.
rreennaammee__ffiillee((_+_F_i_l_e_1_, _+_F_i_l_e_2))
Rename _F_i_l_e_1 into _F_i_l_e_2. The semantics is compatible to the POSIX
semantics of the rename() system call as far as the operating
system allows. if _F_i_l_e_2 exists, the operation succeeds (except
for possible permission errors) and is _a_t_o_m_i_c (meaning there is no
window where _F_i_l_e_2 does not exist).
ssiizzee__ffiillee((_+_F_i_l_e_, _-_S_i_z_e))
Unify _S_i_z_e with the size of _F_i_l_e in bytes.
ttiimmee__ffiillee((_+_F_i_l_e_, _-_T_i_m_e))
Unify the last modification time of _F_i_l_e with _T_i_m_e. _T_i_m_e is a
floating point number expressing the seconds elapsed since Jan 1,
1970. See also convert_time/[2,8] and get_time/1.
aabbssoolluuttee__ffiillee__nnaammee((_+_F_i_l_e_, _-_A_b_s_o_l_u_t_e))
Expand a local file-name into an absolute path. The absolute
path is canonised: references to . and .. are deleted. This
predicate ensures that expanding a file-name it returns the same
absolute path regardless of how the file is addressed. SWI-Prolog
uses absolute file names to register source files independent of
the current working directory. See also absolute_file_name/3. See
also absolute_file_name/3 and expand_file_name/2.
aabbssoolluuttee__ffiillee__nnaammee((_+_S_p_e_c_, _+_O_p_t_i_o_n_s_, _-_A_b_s_o_l_u_t_e))
Converts the given file specification into an absolute path.
_O_p_t_i_o_n is a list of options to guide the conversion:
eexxtteennssiioonnss((_L_i_s_t_O_f_E_x_t_e_n_s_i_o_n_s))
List of file-extensions to try. Default is ''. For each
extension, absolute_file_name/3 will first add the extension
and then verify the conditions imposed by the other options.
If the condition fails, the next extension of the list is
tried. Extensions may be specified both as ..ext or plain
ext.
rreellaattiivvee__ttoo((_+_F_i_l_e_O_r_D_i_r))
Resolve the path relative to the given directory or directory
the holding the given file. Without this option,
paths are resolved relative to the working directory
(see working_directory/2) or, if _S_p_e_c is atomic and
absolute_file_name/[2,3] is executed in a directive, it uses
the current source-file as reference.
aacccceessss((_M_o_d_e))
Imposes the condition access_file(_F_i_l_e, _M_o_d_e). _M_o_d_e is on of
read, write, append, exist or none. See also access_file/2.
ffiillee__ttyyppee((_T_y_p_e))
Defines extensions. Current mapping: txt implies [''],
prolog implies ['.pl', ''], executable implies ['.so', ''],
qlf implies ['.qlf', ''] and directory implies ['']. The
file-type source is an alias for prolog for compatibility
with SICStus Prolog. See also prolog_file_type/2. This
predicate only returns non-directories, unless the option
file_type(_d_i_r_e_c_t_o_r_y) is specified.
ffiillee__eerrrroorrss((_f_a_i_l_/_e_r_r_o_r))
If error (default), throw and existence_error exception if the
file cannot be found. If fail, stay silent.
ssoolluuttiioonnss((_f_i_r_s_t_/_a_l_l))
If first (default), the predicates leaves no choice-point.
Otherwise a choice-point will be left and backtracking may
yield more solutions.
eexxppaanndd((_t_r_u_e_/_f_a_l_s_e))
If true (default is false) and _S_p_e_c is atomic, call
expand_file_name/2 followed by member/2 on _S_p_e_c before
proceeding. This is a SWI-Prolog extension.
The Prolog flag verbose_file_search can be set to true to help
debugging Prolog's search for files.
Compatibility considerations with common argument-order in ISO as
well as SICStus absolute_file_name/3forced us to be flexible here.
If the last argument is a list and the 2nd not, the arguments are
swapped, making the call absolute_file_name(_+_S_p_e_c_, _-_P_a_t_h_, _+_O_p_t_i_o_n_s)
valid as well.
iiss__aabbssoolluuttee__ffiillee__nnaammee((_+_F_i_l_e))
True if _F_i_l_e specifies and absolute path-name. On Unix systems,
this implies the path starts with a `/'. For Microsoft
based systems this implies the path starts with <_l_e_t_t_e_r>:.
This predicate is intended to provide platform-independent
checking for absolute paths. See also absolute_file_name/2 and
prolog_to_os_filename/2.
ffiillee__nnaammee__eexxtteennssiioonn((_?_B_a_s_e_, _?_E_x_t_e_n_s_i_o_n_, _?_N_a_m_e))
This predicate is used to add, remove or test filename extensions.
The main reason for its introduction is to deal with different
filename properties in a portable manner. If the file system
is case-insensitive, testing for an extension will be done
case-insensitive too. _E_x_t_e_n_s_i_o_n may be specified with or without a
leading dot (.). If an _E_x_t_e_n_s_i_o_n is generated, it will not have a
leading dot.
ddiirreeccttoorryy__ffiilleess((_+_D_i_r_e_c_t_o_r_y_, _-_E_n_t_r_i_e_s))
Unifies _E_n_t_r_i_e_s with a list of entries in _D_i_r_e_c_t_o_r_y. Each member
of _E_n_t_r_i_e_s is an atom denoting an entry relative to _D_i_r_e_c_t_o_r_y.
_E_n_t_r_i_e_s contains all entries, including hidden files and, if
supplied by the OS, the special entries . and ... See also
expand_file_name/2.
eexxppaanndd__ffiillee__nnaammee((_+_W_i_l_d_C_a_r_d_, _-_L_i_s_t))
Unify _L_i_s_t with a sorted list of files or directories matching
_W_i_l_d_C_a_r_d. The normal Unix wildcard constructs `?', `*', `[...]'
and `{...}' are recognised. The interpretation of `{...}' is
interpreted slightly different from the C shell (csh(1)). The
comma separated argument can be arbitrary patterns, including
`{...}' patterns. The empty pattern is legal as well: `\{.pl,\}'
matches either `.pl' or the empty string.
If the pattern contains wildcard characters, only existing files
and directories are returned. Expanding a `pattern' without
wildcard characters returns the argument, regardless on whether or
not it exists.
Before expanding wildcards, the construct $_v_a_r is expanded to the
value of the environment variable _v_a_r and a possible leading ~
character is expanded to the user's home directory..
pprroolloogg__ttoo__ooss__ffiilleennaammee((_?_P_r_o_l_o_g_P_a_t_h_, _?_O_s_P_a_t_h))
Converts between the internal Prolog pathname conventions and the
operating-system pathname conventions. The internal conventions
are Unix and this predicates is equivalent to =/2 (unify) on Unix
systems. On DOS systems it will change the directory-separator,
limit the filename length map dots, except for the last one, onto
underscores.
rreeaadd__lliinnkk((_+_F_i_l_e_, _-_L_i_n_k_, _-_T_a_r_g_e_t))
If _F_i_l_e points to a symbolic link, unify _L_i_n_k with the value of the
link and _T_a_r_g_e_t to the file the link is pointing to. _T_a_r_g_e_t points
to a file, directory or non-existing entry in the file system, but
never to a link. Fails if _F_i_l_e is not a link. Fails always on
systems that do not support symbolic links.
ttmmpp__ffiillee((_+_B_a_s_e_, _-_T_m_p_N_a_m_e)) _[_d_e_p_r_e_c_a_t_e_d_]
Create a name for a temporary file. _B_a_s_e is an identifier for the
category of file. The _T_m_p_N_a_m_e is guaranteed to be unique. If the
system halts, it will automatically remove all created temporary
files. _B_a_s_e is used as part of the final filename. Portable
applications should limit themselves to alphanumerical characters.
Because it is possible to guess the generated filename, attackers
may create the filesystem entry as a link and possibly create a
security issue. New code should use tmp_file_stream/3.
ttmmpp__ffiillee__ssttrreeaamm((_+_E_n_c_o_d_i_n_g_, _-_F_i_l_e_N_a_m_e_, _-_S_t_r_e_a_m))
Create a temporary file name _F_i_l_e_N_a_m_e and open it for writing
in the given _E_n_c_o_d_i_n_g. _E_n_c_o_d_i_n_g is a text-encoding name or
binary. _S_t_r_e_a_m is the output stream. If the OS supports it,
the created file is only accessible to the current user. If the
OS supports it, the file is created using the open()-flag O_EXCL,
which guarantees that the file did not exist before this call.
This predicate is a safe replacement of tmp_file/2. Note that in
those cases where the temporary file is needed to store output from
an external command, the file must be closed first. E.g., the
following downloads a file from a URL to a temporary file and opens
the file for reading (On Unix systems you can delete the file after
opening it for reading for cleanup):
____________________________________________________________________| |
| open_url(URL, In) :- |
| tmp_file_stream(text, File, Stream), |
| close(Stream), |
| process_create(curl, ['-o', File, URL], []), |
| open(File, read, In), |
||________delete_file(File).______________%_Unix-only_______________ ||
Temporary files created using this call are removed if the
Prolog process terminates. Calling delete_file/1 using _F_i_l_e_N_a_m_e
removes the file and removes the entry from the administration of
files-to-be-deleted.
mmaakkee__ddiirreeccttoorryy((_+_D_i_r_e_c_t_o_r_y))
Create a new directory (folder) on the filesystem. Raises an
exception on failure. On Unix systems, the directory is created
with default permissions (defined by the process _u_m_a_s_k setting).
ddeelleettee__ddiirreeccttoorryy((_+_D_i_r_e_c_t_o_r_y))
Delete directory (folder) from the filesystem. Raises an exception
on failure. Please note that in general it will not be possible to
delete a non-empty directory.
wwoorrkkiinngg__ddiirreeccttoorryy((_-_O_l_d_, _+_N_e_w))
Unify _O_l_d with an absolute path to the current working directory
and change working directory to _N_e_w. Use the pattern
working_directory(_C_W_D_, _C_W_D) to get the current directory. See also
absolute_file_name/2 and chdir/1. Note that the working directory
is shared between all threads.
cchhddiirr((_+_P_a_t_h))
Compatibility predicate. New code should use working_directory/2.
44..3355 UUsseerr TToopp--lleevveell MMaanniippuullaattiioonn
bbrreeaakk
Recursively start a new Prolog top level. This Prolog top level
has its own stacks, but shares the heap with all break environments
and the top level. Debugging is switched off on entering a break
and restored on leaving one. The break environment is terminated
by typing the system's end-of-file character (control-D). If the
-t toplevel command line option is given this goal is started
instead of entering the default interactive top level (prolog/0).
aabboorrtt
Abort the Prolog execution and restart the top level. If the
-t toplevel command line options is given this goal is started
instead of entering the default interactive top level.
Aborting is implemented by throwing the reserved exception
$aborted. This exception can be caught using catch/3, but
the recovery goal is wrapped with a predicate that prunes the
choice-points of the recovery goal (i.e., as once/1) and re-throws
the exception. This is illustrated in the example below, where we
press control-C and `a'.
____________________________________________________________________| |
| ?- catch((repeat,fail), E, true). |
| ^CAction (h for help) ? abort |
||%_Execution_Aborted_______________________________________________ ||
hhaalltt _[_I_S_O_]
Terminate Prolog execution. Open files are closed and if the
command line option -tty is not active the terminal status (see
Unix stty(1)) is restored. Hooks may be registered both in Prolog
and in foreign code. Prolog hooks are registered using at_halt/1.
halt/0 is equivalent to halt(0).
hhaalltt((_+_S_t_a_t_u_s)) _[_I_S_O_]
Terminate Prolog execution with given status. Status is an
integer. See also halt/0.
pprroolloogg
This goal starts the default interactive top level. Queries are
read from the stream user_input. See also the Prolog flag history.
The prolog/0 predicate is terminated (succeeds) by typing the
end-of-file character (typically control-D).
The following two hooks allow for expanding queries and handling the
result of a query. These hooks are used by the top-level variable
expansion mechanism described in section 2.8.
eexxppaanndd__qquueerryy((_+_Q_u_e_r_y_, _-_E_x_p_a_n_d_e_d_, _+_B_i_n_d_i_n_g_s_, _-_E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s))
Hook in module user, normally not defined. _Q_u_e_r_y and _B_i_n_d_i_n_g_s
represents the query read from the user and the names of the
free variables as obtained using read_term/3. If this predicate
succeeds, it should bind _E_x_p_a_n_d_e_d and _E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s to the query
and bindings to be executed by the top-level. This predicate is
used by the top-level (prolog/0). See also expand_answer/2 and
term_expansion/2.
eexxppaanndd__aannsswweerr((_+_B_i_n_d_i_n_g_s_, _-_E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s))
Hook in module user, normally not defined. Expand the result of
a successfully executed top-level query. _B_i_n_d_i_n_g_s is the query
<_N_a_m_e>= <_V_a_l_u_e>binding list from the query. _E_x_p_a_n_d_e_d_B_i_n_d_i_n_g_s must
be unified with the bindings the top-level should print.
44..3366 CCrreeaattiinngg aa PPrroottooccooll ooff tthhee UUsseerr IInntteerraaccttiioonn
SWI-Prolog offers the possibility to log the interaction with the user
on a file. All Prolog interaction, including warnings and tracer
output, are written on the protocol file.
pprroottooccooll((_+_F_i_l_e))
Start protocolling on file _F_i_l_e. If there is already a protocol
file open then close it first. If _F_i_l_e exists it is truncated.
pprroottooccoollaa((_+_F_i_l_e))
Equivalent to protocol/1, but does not truncate the _F_i_l_e if it
exists.
nnoopprroottooccooll
Stop making a protocol of the user interaction. Pending output is
flushed on the file.
pprroottooccoolllliinngg((_-_F_i_l_e))
True if a protocol was started with protocol/1 or protocola/1 and
unifies _F_i_l_e with the current protocol output file.
44..3377 DDeebbuuggggiinngg aanndd TTrraacciinngg PPrrooggrraammss
This section is a reference to the debugger interaction predicates. A
more use-oriented overview of the debugger is in section 2.9.
If you have installed XPCE, you can use the graphical front-end of the
tracer. This front-end is installed using the predicate guitracer/0.
ttrraaccee
Start the tracer. trace/0 itself cannot be seen in the tracer.
Note that the Prolog top-level treats trace/0 special; it means
`trace the next goal'.
ttrraacciinngg
True if the tracer is currently switched on. tracing/0 itself can
not be seen in the tracer.
nnoottrraaccee
Stop the tracer. notrace/0 itself cannot be seen in the tracer.
gguuiittrraacceerr
Installs hooks (see prolog_trace_interception/4) into the system
that redirects tracing information to a GUI front-end providing
structured access to variable-bindings, graphical overview of the
stack and highlighting of relevant source-code.
nnoogguuiittrraacceerr
Reverts back to the textual tracer.
ttrraaccee((_+_P_r_e_d))
Equivalent to trace(_P_r_e_d, +all).
ttrraaccee((_+_P_r_e_d_, _+_P_o_r_t_s))
Put a trace-point on all predicates satisfying the predicate
specification _P_r_e_d. _P_o_r_t_s is a list of port names (call, redo,
exit, fail). The atom all refers to all ports. If the port is
preceded by a - sign the trace-point is cleared for the port. If
it is preceded by a + the trace-point is set.
The predicate trace/2 activates debug mode (see debug/0). Each
time a port (of the 4-port model) is passed that has a trace-point
set the goal is printed as with trace/0. Unlike trace/0 however,
the execution is continued without asking for further information.
Examples:
?- trace(hello). Trace all ports of hello with any
arity in any module.
?- trace(foo/2, +fail). Trace failures of foo/2 in any
module.
?- trace(bar/1, -all). Stop tracing bar/1.
The predicate debugging/0 shows all currently defined trace-points.
nnoottrraaccee((_:_G_o_a_l))
Call _G_o_a_l, but suspend the debugger while _G_o_a_l is executing.
The current implementation cuts the choice-points of _G_o_a_l after
successful completion. See once/1. Later implementations may have
the same semantics as call/1.
ddeebbuugg
Start debugger. In debug mode, Prolog stops at spy- and
trace-points, disables last-call optimisation and aggressive
destruction of choice points to make debugging information
accessible. Implemented by the Prolog flag debug.
Note that the min_free parameters of all stacks is enlarged
to 8 K-cells if debugging is switched off to avoid excessive
GC. GC complicates tracing because it renames the __G<_N_N_N>
variables and replaces unreachable variables with the atom
\bnfmeta{garbage_collected}. Calling nodebug/0 does _n_o_t reset
the initial free-margin because several parts of the toplevel and
debugger disable debugging of system code-regions. See also
set_prolog_stack/2.
nnooddeebbuugg
Stop debugger. Implemented by the Prolog flag debug. See also
debug/0.
ddeebbuuggggiinngg
Print debug status and spy points on current output stream. See
also the Prolog flag debug.
ssppyy((_+_P_r_e_d))
Put a spy point on all predicates meeting the predicate specifica-
tion _P_r_e_d. See section 4.4.
nnoossppyy((_+_P_r_e_d))
Remove spy point from all predicates meeting the predicate
specification _P_r_e_d.
nnoossppyyaallll
Remove all spy points from the entire program.
lleeaasshh((_?_P_o_r_t_s))
Set/query leashing (ports which allow for user interaction). _P_o_r_t_s
is one of _+_N_a_m_e, _-_N_a_m_e, _?_N_a_m_e or a list of these. _+_N_a_m_e enables
leashing on that port, _-_N_a_m_e disables it and _?_N_a_m_e succeeds or
fails according to the current setting. Recognised ports are:
call, redo, exit, fail and unify. The special shorthand all refers
to all ports, full refers to all ports except for the unify port
(default). half refers to the call, redo and fail port.
vviissiibbllee((_+_P_o_r_t_s))
Set the ports shown by the debugger. See leash/1 for a description
of the port specification. Default is full.
uunnkknnoowwnn((_-_O_l_d_, _+_N_e_w))
Edinburgh-prolog compatibility predicate, interfacing to the ISO
prolog flag unknown. Values are trace (meaning error) and fail.
If the unknown flag is set to warning, unknown/2 reports the value
as trace.
ssttyyllee__cchheecckk((_+_S_p_e_c))
Set style checking options. _S_p_e_c is either +<_o_p_t_i_o_n>, -<_o_p_t_i_o_n>,
?(<_o_p_t_i_o_n>) or a list of such options. +<_o_p_t_i_o_n> sets a style
checking option, -<_o_p_t_i_o_n> clears it and ?(<_o_p_t_i_o_n>) succeeds or
fails according to the current setting. consult/1 and derivatives
resets the style checking options to their value before loading the
file. If---for example---a file containing long atoms should be
loaded the user can start the file with:
____________________________________________________________________| |
||:-_style_check(-atom).____________________________________________ ||
Currently available options are:
____________________________________________________________________
|_Name__________|Default_|Description_______________________________|
| singleton | on | |
| | |read_clause/1 (used by consult/1) warns |
| | |on variables only appearing once in a |
| | |term (clause) which have a name not |
| | |starting with an underscore. See |
| | |section 2.15.1.5 for details on variable |
||atom || on |handling|and warnings. ||
| | |read/1 and derivatives will produce an |
| | |error message on quoted atoms or strings |
| | |longer than 5 lines. |
| dollar | off |Accept dollar as a lower case character, |
| | |thus avoiding the need for quoting atoms |
| | |with dollar signs. System maintenance |
| | |use only. |
| discontiguous | on |Warn if the clauses for a predicate are |
| | |not together in the same source file. |
| string | off |Backward compatibility. See |
| | |the Prolog flag double_quotes |
| | |(current_prolog_flag/2). |
| charset | off |Warn on atoms and variables holding non- |
| | |ASCII characters that are not quoted. |
|_______________|________|See_also_section_2.15.1.1.________________|
44..3388 OObbttaaiinniinngg RRuunnttiimmee SSttaattiissttiiccss
ssttaattiissttiiccss((_+_K_e_y_, _-_V_a_l_u_e))
Unify system statistics determined by _K_e_y with _V_a_l_u_e. The possible
keys are given in the table 4.2. The last part of the table
contains keys for compatibility with other Prolog implementations
(Quintus) for improved portability. Note that the ISO standard
does not define methods to collect system statistics. Space
unit is bytes. Times are in seconds, represented as a floating
point number. The Quintus compatibility keys express times in
milliseconds.
_________________________________________________________________________
| agc |Number of atom garbage-collections performed |
| agc_gained N|umber of atoms removed |
| agc_time T|ime spent in atom garbage-collections |
| cputime |(User) cpu time since Prolog was started in|
| |seconds |
| inferences |Total number of passes via the call and redo|
| |ports since Prolog was started. |
| heap |Estimated total size of the heap (see|
| |section 2.18.1.1) |
| heapused |Bytes heap in use by Prolog. |
| heaplimit |Maximum size of the heap (see sec-|
| |tion 2.18.1.1) |
| c_stack S|ystem (C-) stack limit. 0 if not known. |
| stack |Total memory in use for stacks in all threads |
| local |Allocated size of the local stack in bytes. |
| localused |Number of bytes in use on the local stack. |
| locallimit |Size to which the local stack is allowed to|
| |grow |
| global |Allocated size of the global stack in bytes. |
| globalused |Number of bytes in use on the global stack. |
| globallimit |Size to which the global stack is allowed to|
| |grow |
| trail |Allocated size of the trail stack in bytes. |
| trailused |Number of bytes in use on the trail stack. |
| traillimit |Size to which the trail stack is allowed to|
| |grow |
| atoms |Total number of defined atoms. |
| functors |Total number of defined name/arity pairs. |
| predicates |Total number of predicate definitions. |
| modules |Total number of module definitions. |
| codes |Total amount of byte codes in all clauses. |
| threads |MT-version: number of active threads |
| threads_created M|T-version: number of created threads |
| thread_cputime M|T-version: seconds CPU time used by finished|
| t|hreads. Supported on Windows-NT and later,|
| L|inux and possibly a few more. Verify it|
|________________________g|ives_plausible_results_before_using.__________|
|_______________Compatibility_keys_(times_in_milliseconds)_______________ |
| runtime |[ CPU time, CPU time since last ]|
| |(milliseconds, excluding time spent in garbage|
| |collection) |
| system_time [|System CPU time, System CPU time since last |
| ]|(milliseconds) |
| real_time [|Wall time, Wall time since last ] (integer |
| s|econds. See get_time/1) |
| walltime |[ Wall time since start, Wall time since last]|
| |(milliseconds, SICStus compatibility) |
| memory |[ Total unshared data, free memory ] (Uses|
| |getrusage() if available, otherwise incomplete|
| |own statistics.) |
| stacks |[ global use, local use ] |
| program |[ heap, 0 ] |
| global_stack [|global use, global free ] |
| local_stack [|local use, local free ] |
| trail |[ trail use, 0 ] |
| garbage_collection [| number of GC, bytes gained, time spent, |
| b|ytes left ] The last column is a SWI-Prolog|
| e|xtension. It contains the sum of the|
| m|emory left after each collection, which|
| c|an be divided by the count to find the|
| a|verage working set size after GC. Use|
| [|Count, Gained, Time|_]for compatiblity. |
| stack_shifts [|global shifts, local shifts, time spent ] |
| (|fails if no shifter in this version) |
| atoms |[ number, memory use, 0 ] |
| atom_garbage_collection[|number of AGC, bytes gained, time spent ] |
|_core___________________|Same_as_memory_________________________________|
Table 4.2: Keys for statistics/2
ssttaattiissttiiccss
Display a table of system statistics on the current output stream.
ttiimmee((_:_G_o_a_l))
Execute _G_o_a_l just like once/1 (i.e., leaving no choice points),
but print used time, number of logical inferences and the average
number of _l_i_p_s (logical inferences per second). Note that
SWI-Prolog counts the actual executed number of inferences rather
than the number of passes through the call- and redo ports of the
theoretical 4-port model.
44..3399 EExxeeccuuttiioonn pprrooffiilliinngg
This section describes the hierarchical execution profiler introduced
in SWI-Prolog 5.1.10. This profiler is based on ideas from gprof
described in [Graham _e_t _a_l_., 1982]. The profiler consists of two
parts: the information-gathering is built into the kernel, and a
presentation component which is defined in the statistics library. The
latter can be hooked, which is used by the XPCE module swi/pce_profile
to provide an interactive graphical representation of results.
44..3399..11 PPrrooffiilliinngg pprreeddiiccaatteess
Currently, the interface is kept compatible with the old profiler. As
experience grows, it is likely that the old interface is replaced with
one that better reflects the new capabilities. Feel free to examine
the internal interfaces and report useful application thereof.
pprrooffiillee((_:_G_o_a_l))
Execute _G_o_a_l just like time/1, collecting profiling statistics and
call show_profile(_p_l_a_i_n_, _2_5). With XPCE installed this opens a
graphical interface to the collected profiling data.
pprrooffiillee((_:_G_o_a_l_, _+_S_t_y_l_e_, _+_N_u_m_b_e_r))
Execute _G_o_a_l just like time/1. Collect profiling statistics and
show the top _N_u_m_b_e_r procedures on the current output stream (see
show_profile/1) using _S_t_y_l_e. The results are kept in the database
until reset_profiler/0or profile/3 is called and can be displayed
again with show_profile/1. The profile/1 predicate is a backward
compatibility interface to profile/1. The other predicates in this
section are low-level predicates for special cases.
sshhooww__pprrooffiillee((_+_S_t_y_l_e_, _+_N_u_m_b_e_r))
Show the collected results of the profiler. It shows the top
_N_u_m_b_e_r predicates according the percentage cpu-time used. If _S_t_y_l_e
is plain the time spent in the predicates itself is displayed. If
_S_t_y_l_e is cumulative the time spent in its siblings (callees) is
added to the predicate.
This predicate first calls prolog:show_profile_hook/2. If XPCE is
loaded this hook is used to activate a GUI interface to visualise
the profile results.
sshhooww__pprrooffiillee((_+_N_u_m_b_e_r))
Compatibility. Same as show_profile(_p_l_a_i_n_, _N_u_m_b_e_r).
pprrooffiilleerr((_-_O_l_d_, _+_N_e_w))
Query or change the status of the profiler. The status is a
boolean (true or false) stating whether or not the profiler is
collecting data. It can be used to enable or disable profiling
certain parts of the program.
rreesseett__pprrooffiilleerr
Switches the profiler to false and clears all collected statistics.
nnoopprrooffiillee((_+_N_a_m_e_/_+_A_r_i_t_y_, _._._.))
Declares the predicate _N_a_m_e/_A_r_i_t_y to be invisible to the profiler.
The time spend in the named predicate is added to the caller
and the callees are linked directly to the caller. This is
particularly useful for simple meta-predicates such as call/1,
ignore/1, catch/3, etc.
44..3399..22 VViissuuaalliizziinngg pprrooffiilliinngg ddaattaa
Browsing the annotated call-tree as described in section 4.39.3 itself
is not very attractive. Therefore, the results are combined per
predicate, collecting all _c_a_l_l_e_r_s and and _c_a_l_l_e_e_s as well as the
propagation of time and activations in both directions. Figure ????
illustrates this. The central yellowish line is the `current'
predicate with counts for time spent in the predicate (`Self'), time
spent in its children (`Siblings'), activations through the call and
redo ports. Above that are the _c_a_l_l_e_r_s. Here, the two time fields
indicate how much time is spent serving each of the callers. The
columns sum to the time in the yellowish line. The caller <_r_e_c_u_r_s_i_v_e>
are the number of recursive calls. Below the yellowish lines are
the callees, with the time spent in the callee itself for serving the
current predicate and the time spent in the callees of the callee
('Siblings'), so the whole time-block adds up to the `Siblings' field
of the current predicate. The `Access' fields show how many times the
current predicate accesses each of the callees.
The predicates have a menu that allows changing the view of the detail
window to the given caller or callee, showing the documentation (if it
is a built-in) and/or jumping to the source.
The statistics shown in the report-field of figure ???? show the
following information:
o _s_a_m_p_l_e_s
Number of times the call-tree was sampled for collecting time
statistics. On most hardware the resolution of SIGPROF is 1/100
second. This number must be sufficiently large to get reliable
timing figures. The Time menu allows viewing time as samples,
relative time or absolute time.
o _s_e_c
Total user CPU time with the profiler active.
o _p_r_e_d_i_c_a_t_e_s
Total count of predicates that have been called at least one time
during the profile.
o _n_o_d_e_s
Number of nodes in the call-tree.
o _d_i_s_t_o_r_t_i_o_n
How much of the time is spend building the call-tree as a
percentage of the total execution time. Timing samples while the
profiler is building the call-tree are not added to the call-tree.
44..3399..33 IInnffoorrmmaattiioonn ggaatthheerriinngg
While the program executes under the profiler, the system builds a
_d_y_n_a_m_i_c call-tree. It does this using three hooks from the kernel:
one that starts a new goal (_p_r_o_f_C_a_l_l), one the tells the system which
goal is resumed after an _e_x_i_t (_p_r_o_f_E_x_i_t) and one that tells the
system which goal is resumed after a _f_a_i_l (i.e. which goal is used
to _r_e_t_r_y (_p_r_o_f_R_e_d_o)). The profCall() function finds or creates the
subnode for the argument predicate below the current node, increments
the call-count of this link and returns the sub-node which is recorded
in the Prolog stack-frame. Choice-points are marked with the current
profiling node. profExit() and profRedo() pass the profiling node
where execution resumes.
Just using the above algorithm would create a much too big tree due to
recursion. For this reason the system performs detection of recursion.
In the simplest case, recursive procedures increment the `recursive'
count on the current node. Mutual recursion however is not easily
detected. For example, call/1 can call a predicate that uses call/1
itself. This can be viewed as a recursive invocation, but this is
generally not desirable. Recursion is currently assumed if the same
predicate _w_i_t_h _t_h_e _s_a_m_e _p_a_r_e_n_t appears higher in the call-graph. Early
experience with a some arbitrary non-trivial programs are promising.
The last part of the profiler collects statistics on the CPU-time used
in each node. On systems providing setitimer() with SIGPROF, it
`ticks' the current node of the call-tree each time the timer fires.
On Windows a MM-timer in a separate thread checks 100 times per second
how much time is spent in the profiled thread and adds this to the
current node. See section 4.39.3.1 for details.
44..3399..33..11 PPrrooffiilliinngg iinn tthhee WWiinnddoowwss IImmpplleemmeennttaattiioonn
Profiling in the Windows version is similar but as profiling is a
statistical process it is good to be aware of the implementation for
proper interpretation of the results.
Windows does not provide timers that fire asynchronously, frequent
and proportional to the CPU time used by the process. Windows does
provide multi-media timers that can run at high frequency. Such timers
however run in a separate thread of execution and they are fired on
the wall-clock rather than the amount of CPU time used. The profiler
installs such a timer running, for saving CPU time, rather inaccurately
at about 100 Hz. Each time it is fired, it determines the milliseconds
CPU time used by Prolog since the last time it was fired. If this
value is non-zero, active predicates are incremented with this value.
44..4400 MMeemmoorryy MMaannaaggeemmeenntt
ggaarrbbaaggee__ccoolllleecctt
Invoke the global- and trail stack garbage collector. Normally
the garbage collector is invoked automatically if necessary.
Explicit invocation might be useful to reduce the need for
garbage collections in time critical segments of the code. After
the garbage collection trim_stacks/0 is invoked to release the
collected memory resources.
ggaarrbbaaggee__ccoolllleecctt__aattoommss
Reclaim unused atoms. Normally invoked after agc_margin (a
Prolog flag) atoms have been created. On multi-threaded versions
the actual collection is delayed until there there are no
threads performing normal garbage collection. In this case
garbage_collect_atoms/0 returns immediately. Note this implies
there is no guarantee it will _e_v_e_r happen as there may always be
threads performing garbage collection.
ttrriimm__ssttaacckkss
Release stack memory resources that are not in use at this moment,
returning them to the operating system. It can be used to release
memory resources in a backtracking loop, where the iterations
require typically seconds of execution time and very different,
potentially large, amounts of stack space. Such a loop can be
written as follows:
____________________________________________________________________| |
| loop :- |
| generator, |
| trim_stacks, |
| potentially_expensive_operation, |
||________stop_condition,_!.________________________________________ ||
The prolog top level loop is written this way, reclaiming memory
resources after every user query.
sseett__pprroolloogg__ssttaacckk((_+_S_t_a_c_k_, _+_K_e_y_V_a_l_u_e))
Set a parameter for one of the Prolog runtime stacks. _S_t_a_c_k is one
of local, global, trail or argument. The table below describes
the _K_e_y(argValue) pairs. _V_a_l_u_e can be an arithmetic integer
expression. E.g., to specify a 2Gb limit for the global stack one
can use:
____________________________________________________________________| |
||?-_set_prolog_stack(global,_limit(2*10**9)).______________________ ||
Current settings can be retrieved with prolog_stack_property/2.
lliimmiitt((_+_B_y_t_e_s))
Set the limit to which the stack is allowed to grow. If
the specified value is lower than the current usage a
permission_error is raised. If the limit is larger than
supported, the system silently reduces the requested limit to
the system limit.
mmiinn__ffrreeee((_+_C_e_l_l_s))
Minimum amount of free space after trimming or shifting the
stack. Setting this value higher can reduce the number of
garbage collections and stack-shifts at the cost of higher
memory usage. The spare stack amount is reported and
specified in `cells'. A cell is 4 bytes in the 32-bit version
and 8-bytes on the 64-bit version. See address_bits. See also
trim_stacks/0 and debug/0.
ssppaarree((_+_C_e_l_l_s))
All stacks trigger overflow before actually reaching the
limit, so the resulting error can be handled gracefully.
The spare stack is used for print_message/2 from the garbage
collector and for handling exceptions. The default suffices,
unless the user redefines related hooks. Do nnoott specify
large values for this because it reduces the amount of memory
available for your real task.
Related hooks are: message_hook/3 (redefining GC messages),
prolog_trace_interception/4and prolog_exception_hook/4.
pprroolloogg__ssttaacckk__pprrooppeerrttyy((_?_S_t_a_c_k_, _?_K_e_y_V_a_l_u_e))
True if _K_e_y_V_a_l_u_e is a current property of _S_t_a_c_k. See
set_prolog_stack/2 for defined properties.
44..4411 WWiinnddoowwss DDDDEE iinntteerrffaaccee
The predicates in this section deal with MS-Windows `Dynamic Data
Exchange' or DDE protocol. A Windows DDE conversation is a form
of interprocess communication based on sending reserved window-events
between the communicating processes.
See also section 9.2.3 for loading Windows DLL's into SWI-Prolog.
44..4411..11 DDDDEE cclliieenntt iinntteerrffaaccee
The DDE client interface allows Prolog to talk to DDE server programs.
We will demonstrate the use of the DDE interface using the Windows
PROGMAN (Program Manager) application:
________________________________________________________________________| |
|1 ?- open_dde_conversation(progman, progman, C). |
| |
|C = 0 |
|2 ?- dde_request(0, groups, X) |
| |
|--> Unifies X with description of groups |
| |
|3 ?- dde_execute(0, '[CreateGroup("DDE Demo")]'). |
| |
|Yes |
| |
|4 ?- close_dde_conversation(0). |
| |
|Yes|___________________________________________________________________ | |
For details on interacting with progman, use the SDK online
manual section on the Shell DDE interface. See also the Prolog
library(progman), which may be used to write simple Windows setup
scripts in Prolog.
ooppeenn__ddddee__ccoonnvveerrssaattiioonn((_+_S_e_r_v_i_c_e_, _+_T_o_p_i_c_, _-_H_a_n_d_l_e))
Open a conversation with a server supporting the given service name
and topic (atoms). If successful, _H_a_n_d_l_e may be used to send
transactions to the server. If no willing server is found this
predicate fails silently.
cclloossee__ddddee__ccoonnvveerrssaattiioonn((_+_H_a_n_d_l_e))
Close the conversation associated with _H_a_n_d_l_e. All opened
conversations should be closed when they're no longer needed,
although the system will close any that remain open on process
termination.
ddddee__rreeqquueesstt((_+_H_a_n_d_l_e_, _+_I_t_e_m_, _-_V_a_l_u_e))
Request a value from the server. _I_t_e_m is an atom that identifies
the requested data, and _V_a_l_u_e will be a string (CF_TEXT data
in DDE parlance) representing that data, if the request is
successful. If unsuccessful, _V_a_l_u_e will be unified with a term
of form error(<_R_e_a_s_o_n>), identifying the problem. This call uses
SWI-Prolog string objects to return the value rather then atoms
to reduce the load on the atom-space. See section 4.22 for a
discussion on this data type.
ddddee__eexxeeccuuttee((_+_H_a_n_d_l_e_, _+_C_o_m_m_a_n_d))
Request the DDE server to execute the given command-string.
Succeeds if the command could be executed and fails with error
message otherwise.
ddddee__ppookkee((_+_H_a_n_d_l_e_, _+_I_t_e_m_, _+_C_o_m_m_a_n_d))
Issue a POKE command to the server on the specified _I_t_e_m. Command
is passed as data of type CF_TEXT.
44..4411..22 DDDDEE sseerrvveerr mmooddee
The (autoload) library(dde) defines primitives to realise simple DDE
server applications in SWI-Prolog. These features are provided as of
version 2.0.6 and should be regarded prototypes. The C-part of the DDE
server can handle some more primitives, so if you need features not
provided by this interface, please study library(dde).
ddddee__rreeggiisstteerr__sseerrvviiccee((_+_T_e_m_p_l_a_t_e_, _+_G_o_a_l))
Register a server to handle DDE request or DDE execute requests
from other applications. To register a service for a DDE request,
_T_e_m_p_l_a_t_e is of the form:
+Service(+Topic, +Item, +Value)
_S_e_r_v_i_c_e is the name of the DDE service provided (like progman in
the client example above). _T_o_p_i_c is either an atom, indicating
_G_o_a_l only handles requests on this topic or a variable that also
appears in _G_o_a_l. _I_t_e_m and _V_a_l_u_e are variables that also appear in
_G_o_a_l. _I_t_e_m represents the request data as a Prolog atom.
The example below registers the Prolog current_prolog_flag/2
predicate to be accessible from other applications. The request
may be given from the same Prolog as well as from another
application.
____________________________________________________________________| |
| ?- dde_register_service(prolog(current_prolog_flag, F, V), |
| current_prolog_flag(F, V)). |
| |
| ?- open_dde_conversation(prolog, current_prolog_flag, Handle), |
| dde_request(Handle, home, Home), |
| close_dde_conversation(Handle). |
| |
||Home_=_'/usr/local/lib/pl-2.0.6/'_________________________________ ||
Handling DDE execute requests is very similar. In this case the
template is of the form:
+Service(+Topic, +Item)
Passing a _V_a_l_u_e argument is not needed as execute requests either
succeed or fail. If _G_o_a_l fails, a `not processed' is passed back
to the caller of the DDE request.
ddddee__uunnrreeggiisstteerr__sseerrvviiccee((_+_S_e_r_v_i_c_e))
Stop responding to _S_e_r_v_i_c_e. If Prolog is halted, it will
automatically call this on all open services.
ddddee__ccuurrrreenntt__sseerrvviiccee((_-_S_e_r_v_i_c_e_, _-_T_o_p_i_c))
Find currently registered services and the topics served on them.
ddddee__ccuurrrreenntt__ccoonnnneeccttiioonn((_-_S_e_r_v_i_c_e_, _-_T_o_p_i_c))
Find currently open conversations.
44..4422 MMiisscceellllaanneeoouuss
ddwwiimm__mmaattcchh((_+_A_t_o_m_1_, _+_A_t_o_m_2))
True if _A_t_o_m_1 matches _A_t_o_m_2 in `Do What I Mean' sense. Both _A_t_o_m_1
and _A_t_o_m_2 may also be integers or floats. The two atoms match if:
o They are identical
o They differ by one character (spy spu)
o One character is inserted/deleted (debug deug)
o Two characters are transposed (trace tarce)
o `Sub-words' are glued differently (existsfile existsFile
exists_file)
o Two adjacent sub words are transposed (existsFile
fileExists)
ddwwiimm__mmaattcchh((_+_A_t_o_m_1_, _+_A_t_o_m_2_, _-_D_i_f_f_e_r_e_n_c_e))
Equivalent to dwim_match/2, but unifies _D_i_f_f_e_r_e_n_c_e with an atom
identifying the difference between _A_t_o_m_1 and _A_t_o_m_2. The return
values are (in the same order as above): equal, mismatched_char,
inserted_char, transposed_char, separated and transposed_word.
wwiillddccaarrdd__mmaattcchh((_+_P_a_t_t_e_r_n_, _+_S_t_r_i_n_g))
True if _S_t_r_i_n_g matches the wildcard pattern _P_a_t_t_e_r_n. _P_a_t_t_e_r_n is
very similar the Unix csh pattern matcher. The patterns are given
below:
? Matches one arbitrary character.
* Matches any number of arbitrary characters.
[...] Matches one of the characters specified between the brackets.
<_c_h_a_r_1>-<_c_h_a_r_2>indicates a range.
{...} Matches any of the patterns of the comma separated list between the braces.
Example:
____________________________________________________________________| |
| ?- wildcard_match('[a-z]*.{pro,pl}[%~]', 'a_hello.pl%'). |
| |
||Yes_______________________________________________________________ ||
sslleeeepp((_+_T_i_m_e))
Suspend execution _T_i_m_e seconds. _T_i_m_e is either a floating point
number or an integer. Granularity is dependent on the system's
timer granularity. A negative time causes the timer to return
immediately. On most non-realtime operating systems we can only
ensure execution is suspended for aatt lleeaasstt _T_i_m_e seconds.
On Unix systems the sleep/1 predicate is realised ---in order of
preference--- by nanosleep(), usleep(), select() if the time is
below 1 minute or sleep(). On Windows systems Sleep() is used.
CChhaapptteerr 55.. MMOODDUULLEESS
A Prolog module is a collection of predicates which defines a public
interface by means of a set of provided predicates and operators.
Prolog modules are defined by an ISO standard. Unfortunately, the
standard is considered a failure and, as far as we are aware, not
implemented by any concrete Prolog implementation. The SWI-Prolog
module system is derived from the Quintus Prolog module system. The
Quintus module system has been the starting points for the module
systems of a number of mainstream Prolog systems, such as SICStus, Ciao
and YAP.
This chapter motivates and describes the SWI-Prolog module system.
Novices can start using the module system after reading section 5.2
and section 5.3. The primitives defined in these sections suffice for
basic usage until one needs to export predicates that call or manage
other predicates dynamically (e.g., use call/1, assert/1, etc.). Such
predicates are called _m_e_t_a _p_r_e_d_i_c_a_t_e_s and are discussed in section 5.4.
Section 5.5 to section 5.8 describe more advanced issues. Starting
with section 5.9, we discuss more low-level aspects of the SWI-Prolog
module systems that are used to implement the visible module system,
and can be used to build other code reuse mechanisms.
55..11 WWhhyy UUssiinngg MMoodduulleess??
In classic Prolog systems, all predicates are organised in a single
namespace and any predicate can call any predicate. Because each
predicate in a file can be called from anywhere in the program,
it becomes very hard to find the dependencies and enhance the
implementation of a predicate without risking to break the overall
application. This is true for any language, but even worse for Prolog
due to its frequent need for `helper predicates'.
A Prolog module encapsulates a set of predicates and defines an
_i_n_t_e_r_f_a_c_e. Modules can import other modules, which makes the
dependencies explicit. Given explicit dependencies and a well-defined
interface, it becomes much easier to change the internal organisation
of a module without breaking the overall application.
Explicit dependencies can also be used by the development environment.
The SWI-Prolog library prolog_xref can be used to analyse completeness
and consistency of modules. This library is used by the built-in
editor PceEmacs for syntax highlighting, jump-to-definition, etc.
55..22 DDeeffiinniinngg aa MMoodduullee
Modules are normally created by loading a _m_o_d_u_l_e _f_i_l_e. A module file
is a file holding a module/2 directive as its first term. The module/2
directive declares the name and the public (i.e., externally visible)
predicates of the module. The rest of the file is loaded into the
module. Below is an example of a module file, defining reverse/2
and hiding the helper-predicate rev/3. A module can use all built-in
predicates and, by default, cannot redefine system predicates.
________________________________________________________________________| |
|:- module(reverse, [reverse/2]). |
| |
|reverse(List1, List2) :- |
| rev(List1, [], List2). |
| |
|rev([], List, List). |
|rev([Head|List1], List2, List3) :- |
||_______rev(List1,_[Head|List2],_List3)._______________________________ ||
The module is named reverse. Typically, the name of a module is
the same as the name of the file by which it is defined without the
filename extension, but this naming is not enforced. Modules are
organised in a single and flat namespace and therefore module names
must be chosen with some care to avoid conflicts. As we will see,
typical applications of the module system rarely use the name of a
module explicitly in the source text.
::-- mmoodduullee((_+_M_o_d_u_l_e_, _+_P_u_b_l_i_c_L_i_s_t))
This directive can only be used as the first term of a source file.
It declares the file to be a _m_o_d_u_l_e _f_i_l_e, defining a module named
_M_o_d_u_l_e and exporting the predicates of _P_u_b_l_i_c_L_i_s_t. _P_u_b_l_i_c_L_i_s_t is
a list of predicate indicators (name/arity or name//arity pairs)
or operator declarations using the format op(_P_r_e_c_e_d_e_n_c_e_, _T_y_p_e_,
_N_a_m_e). Operators defined in the export list are available inside
the module as well as to modules importing this module. See also
section 4.23.
Compatible to Ciao Prolog, if _M_o_d_u_l_e is unbound, it is unified with
the basename without extension of the file being loaded.
55..33 IImmppoorrttiinngg PPrreeddiiccaatteess iinnttoo aa MMoodduullee
Predicates can be added to a module by _i_m_p_o_r_t_i_n_g them from another
module. Importing adds predicates to the namespace of a module. An
imported predicate can be called exactly the same as a locally defined
predicate, although its implementation remains part of the module in
which it has been defined.
Importing the predicates from another module is achieved using the
directives use_module/1 or use_module/2. Note that both directives take
_f_i_l_e _n_a_m_e_(_s_) as arguments. I.e., modules are imported based on their
file name rather than their module name.
uussee__mmoodduullee((_+_F_i_l_e_s))
Load the file(s) specified with _F_i_l_e just like ensure_loaded/1.
The files must all be module files. All exported predicates
from the loaded files are imported into the module from which
this predicate is called. This predicate is equivalent to
ensure_loaded/1, except that it raises an error if _F_i_l_e is not a
module file.
uussee__mmoodduullee((_+_F_i_l_e_, _+_I_m_p_o_r_t_L_i_s_t))
Load _F_i_l_e, which must be a module file and import the predicates
as specified by _I_m_p_o_r_t_L_i_s_t. _I_m_p_o_r_t_L_i_s_t is a list of predicate
indicators specifying the predicates that will be imported from
the loaded module. _I_m_p_o_r_t_L_i_s_t also allows for renaming or
import-everything-except. See also import option of load_files/2.
The first example below loads member/2 from the lists library and
append/2 under the name list_concat, which how this predicate is
named in YAP. The second example loads all exports from library
option, except for meta_options/3. These renaming facilities are
generally used to deal with portability issues with as few as
possible changes to the actual code. See also section 13 and
section 5.7.
____________________________________________________________________| |
| :- use_module(library(lists), [ member/2, |
| append/2 as list_concat |
| ]). |
||:-_use_module(library(option),_except([meta_options/3]))._________ ||
The module/2 directive, use_module/1 and use_module/2 are sufficient
to partition a simple Prolog program into modules. The SWI-Prolog
graphical cross-referencing tool gxref/0 can be used to analyse the
dependencies between non-module files and propose module declarations
for each file.
55..44 DDeeffiinniinngg aa mmeettaa--pprreeddiiccaattee
A meta-predicate is a predicate that calls other predicates
dynamically, modifies a predicate or reasons about properties of
a predicate. Such predicates use either a compound term or a
_p_r_e_d_i_c_a_t_e _i_n_d_i_c_a_t_o_r to describe the predicate they address, e.g.,
assert(name(jan)) or abolish(name/1). With modules, this simple
schema no longer works as each module defines its own mapping from
name+arity to predicate. This is resolved by wrapping the original
description in a term <_m_o_d_u_l_e>:<_t_e_r_m>, e.g., assert(person:name(jan)) or
abolish(person:name/1).
Of course, calling assert/1 from inside a module, we expect to assert
to a predicate local to this module. In other words, we do not wish
to provide this :/2 wrapper by hand. The meta_predicate/1 directive
tells the compiler that certain arguments are terms that will be used
to lookup a predicate and thus need to be wrapped (qualified) with
<_m_o_d_u_l_e>:<_t_e_r_m>, unless they are already wrapped.
In the example below, we use this to define maplist/3 inside a module.
The argument `2' in the meta_predicate declaration means that the
argument is module sensitive and refers to a predicate with an arity
that is two more than the term that is passed in. The compiler
only distinguishes the values 0..9 and :, which denote module-sensitive
arguments, from +, - and ? which denotes _m_o_d_e_s. The values 0..9
are used by the _c_r_o_s_s_-_r_e_f_e_r_e_n_c_e_r and syntax highlighting. Note that
the helper-predicate maplist_/3 does not need to be declared as a
meta-predicate because the maplist/3 wrapper already ensures that _G_o_a_l
is qualified as <_m_o_d_u_l_e>:_G_o_a_l. See the description of meta_predicate/1
for details.
________________________________________________________________________| |
|:- module(maplist, [maplist/3]). |
|:- meta_predicate maplist(2, ?, ?). |
| |
|%% maplist(:Goal, +List1, ?List2) |
|% |
|% True if Goal can successfully be applied to all |
|% successive pairs of elements from List1 and List2. |
| |
|maplist(Goal, L1, L2) :- |
| maplist_(L1, L2, G). |
| |
|maplist_([], [], _). |
|maplist_([H0|T0], [H|T], Goal) :- |
| call(Goal, H0, H), |
||_______maplist_(T0,_T,_Goal)._________________________________________ ||
mmeettaa__pprreeddiiccaattee _+_H_e_a_d_, _._._.
Define the predicates referenced by the comma-separated list _H_e_a_d
as _m_e_t_a_-_p_r_e_d_i_c_a_t_e_s. Each argument of each head is a _m_e_t_a _a_r_g_u_m_e_n_t
_s_p_e_c_i_f_i_e_r. Defined specifiers are given below. Only 0..9 and :
are interpreted; the mode declarations +, - and ? are ignored.
00....99
The argument is a term that is used to reference a predicate
with N more arguments than the given argument term. For
example: call(0) or maplist(1, +).
:
The argument is module sensitive, but does not directly refer
to a predicate. For example: consult(:).
-
The argument is not module sensitive and unbound on entry.
?
The argument is not module sensitive and the mode is unspeci-
fied.
+
The argument is not module sensitive and bound (i.e., nonvar)
on entry.
Each argument that is module-sensitive (i.e., marked 0..9 or :)
is qualified with the context module of the caller if it is not
already qualified. The implementation ensures that the argument is
passed as <_m_o_d_u_l_e>:<_t_e_r_m>, where <_a_t_o_m> is an atom denoting the name
of a module and <_t_e_r_m> itself is not a :/2 term. Below is a simple
declaration and a number of queries.
____________________________________________________________________| |
| :- meta_predicate |
| meta(0, +). |
| |
| meta(Module:Term, _Arg) :- |
||________format('Module=~w,_Term_=_~q~n',_[Module,_Term])._________ ||
____________________________________________________________________| |
| ?- meta(test, x). |
| Module=user, Term = test |
| ?- meta(m1:test, x). |
| Module=m1, Term = test |
| ?- m2:meta(test, x). |
| Module=m2, Term = test |
| ?- m1:meta(m2:test, x). |
| Module=m2, Term = test |
| ?- meta(m1:m2:test, x). |
| Module=m2, Term = test |
| ?- meta(m1:42:test, x). |
||Module=42,_Term_=_test____________________________________________ ||
The meta_predicate/1 declaration is the portable mechanism
for defining meta-predicates and replaces the old SWI-Prolog
specific mechanism provided by the deprecated predicates
module_transparent/1, context_module/1 and strip_module/3. See also
section 5.15.
55..55 OOvveerrrruulliinngg MMoodduullee BBoouunnddaarriieess
The module system described so far is sufficient to distribute programs
over multiple modules. There are however cases in which we would like
to be able to overrule this schema and explicitly call a predicate
in some module or assert explicitly into some module. Calling in a
particular module is useful for debugging from the user's top-level or
to access multiple implementations of the same interface that reside in
multiple modules. Accessing the same interface from multiple modules
cannot be achieved using importing because importing a predicate
with the same name and arity from two modules results in a name
conflict. Asserting in a different module can be used to create models
dynamically in a new module. See section 5.12.
Direct addressing of modules is achieved using a :/2 explicitly in a
program and rely on the module qualification mechanism described in
section 5.4. Here are a few examples:
________________________________________________________________________| |
|?- assert(world:done). % asserts done/0 into module world |
|?- world:assert(done). % the same |
|?-|world:done.__________%_calls_done/0_in_module_world_________________ | |
55..66 IInntteerraaccttiinngg wwiitthh mmoodduulleess ffrroomm tthhee ttoopplleevveell
Debugging often requires interaction with predicates that reside in
modules: running them, setting spy-points on them, etc. This can
be achieved using the <_m_o_d_u_l_e>:<_t_e_r_m> construct explicitly as described
above. In SWI-Prolog, you may also wish to omit the module
qualification. Setting a spy-point (spy/1) on a plain predicate sets
a spy-point on any predicate with that name in any module. Editing
(edit/1) or calling an unqualified predicate invokes the DWIM (Do
What I Mean) mechanism, which generally suggests the correct qualified
query.
Mainly for compatibility, we provide module/1 to switch the module with
which the interactive toplevel interacts:
mmoodduullee((_+_M_o_d_u_l_e))
The call module(_M_o_d_u_l_e) may be used to switch the default working
module for the interactive top-level (see prolog/0). This may be
used when debugging a module. The example below lists the clauses
of file_of_label/2 in the module tex.
____________________________________________________________________| |
| 1 ?- module(tex). |
| |
| Yes |
| tex: 2 ?- listing(file_of_label/2). |
||..._______________________________________________________________ ||
55..77 CCoommppoossiinngg mmoodduulleess ffrroomm ootthheerr mmoodduulleess
The predicates in this section are intended to create new modules
from the content of other modules. Below is an example to define
a _c_o_m_p_o_s_i_t_e module. The example exports all public predicates of
module_1, module_2 and module_3, pred/1 from module_4, all predicates
from module_5 except do_not_use/1 and all predicates from module_6 while
renaming pred/1 into mypred/1.
________________________________________________________________________| |
|:- module(my_composite, []). |
|:- reexport([ module_1, |
| module_2, |
| module_3 |
| ]). |
|:- reexport(module_4, [ pred/1 ]). |
|:- reexport(module_5, except([do_not_use/1])). |
|:-|reexport(module_6,_except([pred/1_as_mypred]))._____________________ | |
rreeeexxppoorrtt((_+_F_i_l_e_s))
Load and import predicates as use_modules/1 and re-export all
imported predicates. The reexport declarations must immediately
follow the module declaration.
rreeeexxppoorrtt((_+_F_i_l_e_, _+_I_m_p_o_r_t))
Import from _F_i_l_e as use_module/2 and re-export the imported
predicates. The reexport declarations must immediately follow the
module declaration.
55..88 OOppeerraattoorrss aanndd mmoodduulleess
Operators (section 4.23) are local to modules, where the initial
table behaves as if it is copied from the module user (see
section 5.10). A specific operator can be disabled inside a module
using :- op(0, Type, Name). Inheritance from the public table can be
restored using :- op(-1, Type, Name).
In addition to using the op/3 directive, operators can be declared in
the module/2 directive as shown below. Such operator declarations
are visible inside the module and importing such a module makes the
operators visible in the target module. Exporting operators is
typically used by modules that implement sub-languages such as chr (see
chapter 7). The example below is copied from the library clpfd.
________________________________________________________________________| |
|:- module(clpfd, |
| [ op(760, yfx, #<==>), |
| op(750, xfy, #==>), |
| op(750, yfx, #<==), |
| op(740, yfx, #\/), |
| ... |
| (#<==>)/2, |
| (#==>)/2, |
| (#<==)/2, |
| (#\/)/2, |
| ... |
||_________]).__________________________________________________________ ||
55..99 DDyynnaammiicc iimmppoorrttiinngg uussiinngg iimmppoorrtt mmoodduulleess
Until now we discussed the public module interface that is, at least
to some extent, portable between Prolog implementation with a module
system that is derived from Quintus Prolog. The remainder of this
chapter describes the underlying mechanisms that can be used to emulate
other module systems or implement other code-reuse mechanisms.
In addition to built-in predicates, imported predicates and locally
defined predicates, SWI-Prolog modules can also call predicates from
its _i_m_p_o_r_t _m_o_d_u_l_e_s. Each module has a (possibly empty) list of import
modules. In the default setup, each new module has a single import
module, which is user for all normal user modules and system for all
system library modules. Module user imports from system where all
built-in predicates reside. These special modules are described in
more detail in section 5.10.
The list of import modules can be manipulated and queried using the
following predicates:
sseett__bbaassee__mmoodduullee((_:_M_o_d_u_l_e))
Set the default import module of the current module to _M_o_d_u_l_e.
Typically, _M_o_d_u_l_e is one of user or system.
iimmppoorrtt__mmoodduullee((_+_M_o_d_u_l_e_, _-_I_m_p_o_r_t))
True if _I_m_p_o_r_t is defined as an import module for _M_o_d_u_l_e. All
normal modules only import from user, which imports from system.
The predicates add_import_module/3and delete_import_module/2 can be
used to manipulate the import list.
aadddd__iimmppoorrtt__mmoodduullee((_+_M_o_d_u_l_e_, _+_I_m_p_o_r_t_, _+_S_t_a_r_t_O_r_E_n_d))
If _I_m_p_o_r_t is not already an import module for _M_o_d_u_l_e, add it to
this list at the start or end depending on _S_t_a_r_t_O_r_E_n_d. See also
import_module/2 and delete_import_module/2.
ddeelleettee__iimmppoorrtt__mmoodduullee((_+_M_o_d_u_l_e_, _+_I_m_p_o_r_t))
Delete _I_m_p_o_r_t from the list of import modules for _M_o_d_u_l_e. Fails
silently if _I_m_p_o_r_t is not in the list.
One usage scenario of import modules is to define a module that is a
copy of another, but where one or more predicates have an alternative
definition.
55..1100 RReesseerrvveedd MMoodduulleess aanndd uussiinngg tthhee ``uusseerr'' mmoodduullee
As mentioned above, SWI-Prolog contains two special modules. The
first one is the module system. This module contains all built-in
predicates. Module system has no import module. The second special
module is the module user. This module forms the initial working space
of the user. Initially it is empty. The import module of module user
is system, making all built-in predicates available.
All other modules import from the module user. This implies they
can use all predicates imported into user without explicitly importing
them. If an application loads all modules from the user module using
use_module/1, one achieves a scoping system similar to the C-language,
where every module can access all exported predicates without any
special precautions.
55..1111 AAnn aalltteerrnnaattiivvee iimmppoorrtt//eexxppoorrtt iinntteerrffaaccee
The use_module/1 predicate from section 5.3 defines import and export
relations based on the filename from which a module is loaded. If
modules are created differently, such as by asserting predicates into a
new module as described in section 5.12, this interface cannot be used.
The interface below provides for import/export from modules that are
not created using a module-file.
eexxppoorrtt((_+_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._.))
Add predicates to the public list of the context module. This
implies the predicate will be imported into another module if this
module is imported with use_module/[1,2]. Note that predicates are
normally exported using the directive module/2. export/1 is meant
to handle export from dynamically created modules.
iimmppoorrtt((_+_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_, _._._.))
Import predicates _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r into the current context
module. _P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r must specify the source module using
the <_m_o_d_u_l_e>:<_p_i>construct. Note that predicates are normally
imported using one of the directives use_module/[1,2]. The
import/1 alternative is meant for handling imports into dynamically
created modules. See also export/1 and export_list/2.
55..1122 DDyynnaammiicc MMoodduulleess
So far, we discussed modules that were created by loading a
module-file. These modules have been introduced to facilitate
the development of large applications. The modules are fully
defined at load-time of the application and normally will not change
during execution. Having the notion of a set of predicates as a
self-contained world can be attractive for other purposes as well. For
example, assume an application that can reason about multiple worlds.
It is attractive to store the data of a particular world in a module,
so we extract information from a world simply by invoking goals in this
world.
Dynamic modules can easily be created. Any built-in predicate that
tries to locate a predicate in a specific module will create this
module as a side-effect if it did not yet exist. For Example:
________________________________________________________________________| |
|?- assert(world_a:consistent), |
||__world_a:set_prolog_flag(unknown,_fail)._____________________________ ||
These calls create a module called `world_a' and make the call
`world_a:consistent' succeed. Undefined predicates will not raise an
exception for this module (see unknown).
Import and export from a dynamically created world can be achieved
using import/1 and export/1 or specifying the import module as
described in section 5.9.
________________________________________________________________________| |
|?- world_b:export(solve(_,_)). % exports solve/2 from world_b |
|?-|world_c:import(world_b:solve(_,_)).__%_and_import_it_to_world_c_____ | |
55..1133 TTrraannssppaarreenntt pprreeddiiccaatteess:: ddeeffiinniittiioonn aanndd ccoonntteexxtt mmoodduullee
The qualification of module sensitive arguments described in
section 5.4 is realised using _t_r_a_n_s_p_a_r_e_n_t predicates. It is now
deprecated to use this mechanism directly. However, studying the
underlying mechanism helps to understand SWI-Prolog's modules. In some
respect, the transparent mechanism is more powerful than meta-predicate
declarations.
Each predicate of the program is assigned a module, called its
_d_e_f_i_n_i_t_i_o_n _m_o_d_u_l_e. The definition module of a predicate is always the
module in which the predicate was originally defined. Each active goal
in the Prolog system has a _c_o_n_t_e_x_t _m_o_d_u_l_e assigned to it.
The context module is used to find predicates for a Prolog term. By
default, the context module is the definition module of the predicate
running the goal. For transparent predicates however, this is the
context module of the goal is inherited from the parent goal. Below,
we implement maplist/3 using the transparent mechanism. The code of
maplist/3 and maplist_/3 is the same as in section 5.4, but now we must
declare both the main predicate and the helper as transparent to avoid
changing the context module when calling the helper.
________________________________________________________________________| |
|:- module(maplist, maplist/3). |
| |
|:- module_transparent |
| maplist/3, |
| maplist_/3. |
| |
|maplist(Goal, L1, L2) :- |
| maplist_(L1, L2, G). |
| |
|maplist_([], [], _). |
|maplist_([H0|T0], [H|T], Goal) :- |
| call(Goal, H0, H), |
||_______maplist_(T0,_T,_Goal)._________________________________________ ||
Note that _a_n_y call that translates terms into predicates is
subject to the transparent mechanism, not just the terms passed
to module-sensitive arguments. For example, the module below
counts the number of unique atoms returned as bindings for a
variable. It works as expected. If we use the directive
:- module_transparent count_atom_results/3. instead, atom_result/2 is
called wrongly in the module _c_a_l_l_i_n_g count_atom_results/3. This can
be solved using strip_module/3 to create a qualified goal and a
non-transparent helper predicate that is defined in the same module.
________________________________________________________________________| |
|:- module(count_atom_results, |
| count_atom_results/3). |
|:- meta_predicate count_atom_results(-,0,-). |
| |
|count_atom_results(A, Goal, Count) :- |
| setof(A, atom_result(A, Goal), As), !, |
| length(As, Count). |
|count_atom_results(_, _, 0). |
| |
|atom_result(Var, Goal) :- |
| call(Goal), |
||_______atom(Var)._____________________________________________________ ||
The following predicates support the module-transparent interface:
::-- mmoodduullee__ttrraannssppaarreenntt((_+_P_r_e_d_s))
_P_r_e_d_s is a comma separated list of name/arity pairs (like
dynamic/1). Each goal associated with a transparent declared
predicate will inherit the _c_o_n_t_e_x_t _m_o_d_u_l_e from its parent goal.
ccoonntteexxtt__mmoodduullee((_-_M_o_d_u_l_e))
Unify _M_o_d_u_l_e with the context module of the current goal.
context_module/1 itself is, of course, transparent.
ssttrriipp__mmoodduullee((_+_T_e_r_m_, _-_M_o_d_u_l_e_, _-_P_l_a_i_n))
Used in module transparent or meta-predicates to extract the
referenced module and plain term. If _T_e_r_m is a module-qualified
term, i.e. of the format _M_o_d_u_l_e:_P_l_a_i_n, _M_o_d_u_l_e and _P_l_a_i_n are unified
to these values. Otherwise, _P_l_a_i_n is unified to _T_e_r_m and _M_o_d_u_l_e to
the context module.
55..1144 QQuueerryy tthhee mmoodduullee ssyysstteemm
The following predicates can be used to query the module system for
reflexive programming:
ccuurrrreenntt__mmoodduullee((_?_M_o_d_u_l_e)) _[_n_o_n_d_e_t_]
True if _M_o_d_u_l_e is a currently defined module. This predicate
enumerates all modules, whether loaded from a file or created
dynamically. Note that modules cannot be destroyed in the current
version of SWI-Prolog.
mmoodduullee__pprrooppeerrttyy((_?_M_o_d_u_l_e_, _?_P_r_o_p_e_r_t_y))
True if _P_r_o_p_e_r_t_y is a property of _M_o_d_u_l_e. Defined properties are:
ffiillee((_?_F_i_l_e))
True if _M_o_d_u_l_e was loaded from _F_i_l_e.
lliinnee__ccoouunntt((_-_L_i_n_e))
True if _M_o_d_u_l_e was loaded from the N-th line of file.
eexxppoorrttss((_-_L_i_s_t_O_f_P_r_e_d_i_c_a_t_e_I_n_d_i_c_a_t_o_r_s))
True if _M_o_d_u_l_e exports the given predicates. Predicate
indicators are in canonical form (i.e., always using
Name/Arity and never the DCG form Name//Arity). Future
versions may also use the DCG form and include public
operators. See also predicate_property/2.
55..1155 CCoommppaattiibbiilliittyy ooff tthhee MMoodduullee SSyysstteemm
The SWI-Prolog module system is largely derived from the Quintus
Prolog module system, which is also adopted by SICStus, Ciao and YAP.
Originally, the mechanism for defining meta-predicates in SWI-Prolog
was based on the module_transparent/1 directive and strip_module/3.
Since 5.7.4 it supports the de-facto standard meta_predicate/1
directive for implementing meta-predicates, providing much better
compatibility.
The support for the meta_predicate/1 mechanism however is considerably
different. On most systems, the _c_a_l_l_e_r of a meta-predicate is compiled
differently to provide the required <_m_o_d_u_l_e>:<_t_e_r_m> qualification. This
implies that the meta-declaration must be available to the compiler
when compiling code that calls a meta-predicate. In practice,
this implies that other systems pose the following restrictions on
meta-predicates:
o Modules that provide meta-predicates for a module to-be-compiled
must be loaded explicitly by that module.
o The meta_predicate directives of exported predicates must follow
the module/2 directive immediately.
o After changing a meta-declaration, all modules that _c_a_l_l the
modified predicates need to be recompiled.
In SWI-Prolog, meta-predicates are also _m_o_d_u_l_e_-_t_r_a_n_s_p_a_r_e_n_t and
qualifying the module sensitive arguments is done inside the
meta-predicate. As a result, the caller need not be aware that it is
calling a meta-predicate and none of the above restrictions hold for
SWI-Prolog. However, code that aims at portability must obey the above
rules.
Other differences are listed below.
o If a module does not define a predicate, it is searched for in the
_i_m_p_o_r_t _m_o_d_u_l_e_s. By default, the import module of any user-defined
module is the user module. In turn, the user module imports from
the module system that provides all built-in predicates. The
auto-import hierarchy can be changed using add_import_module/3 and
delete_import_module/2.
This mechanisms can be used to realise a simple object oriented
system or hierarchical module system.
o Operator declarations are local to a module and may be exported.
In Quintus and SICStus all operators are global. YAP and Ciao
also use local operators. SWI-Prolog provides global operator
declarations from within a module by explicitly qualifying the
operator name with the user module.
____________________________________________________________________| |
||:-_op(precedence,_type,_user:(operatorname))._____________________ ||
CChhaapptteerr 66.. SSPPEECCIIAALL VVAARRIIAABBLLEESS AANNDD CCOORROOUUTTIINNIINNGG
This chapter deals with extensions primarily designed to support
constraint logic programming (CLP). The low-level attributed variable
interface defined in in section 6.1 is not intended for the typical
Prolog programmer. Instead, the typical Prolog programmer should use
the coroutining predicates and the various constraint solvers built
on top of attributed variables. CHR (section 7) provides a general
purpose constraint handling language.
As a rule of thumb, constraint programming reduces the search space
by reordering goals and joining goals based on domain knowledge. A
typical example is constraint reasoning over integer domains. Plain
Prolog has no efficient means to deal with (integer) X >0 and X <3.
At best it could translate X >0 with uninstantiated X to between(_1_,
_i_n_f_i_n_i_t_e_, _X) and a similar primitive for X< 3. If the two are
combined it has no choice but to generate and test over this infinite
two-dimensional space. Instead, a constraint system will _d_e_l_a_y an
uninstantated goal to X >0. If, later, it finds a value for _X it will
execute the test. If it finds X <3 it will combine this knowledge to
infer that X is in 1..2 (see below). If never finds a concrete value
for _X it can be asked to _l_a_b_e_l _X and produce 1 and 2 on backtracking.
See section 11.7.
________________________________________________________________________| |
|1 ?- [library(clpfd)]. |
|... |
|true. |
| |
|2 ?- X #> 0, X #< 3. |
|X|in_1..2._____________________________________________________________ | |
Using constraints generally makes your program more _d_e_c_l_a_r_a_t_i_v_e. There
are some caveats though:
o Constraints and cuts to not merge well. A cut after a goal that is
delayed prunes the search-space before the condition is true.
o Term-copying operations (assert/1, restract/2, findall/3,
copy_term/2, etc.) generally also copy constraints. The
effect varies from ok, silent copying of huge constraint networks
to violations of the internal consistency of constraint networks.
As a rule of thumb, copying terms holding attributes must be
deprecated.
66..11 AAttttrriibbuutteedd vvaarriiaabblleess
_A_t_t_r_i_b_u_t_e_d _v_a_r_i_a_b_l_e_s provide a technique for extending the Prolog
unification algorithm [Holzbaur, 1992] by hooking the binding of
attributed variables. There is no consensus in the Prolog community
on the exact definition and interface to attributed variables. The
SWI-Prolog interface is identical to the one realised by Bart Demoen
for hProlog [Demoen, 2002]. This interface is simple and available on
all Prolog systems that can run the Leuven CHR system (see section 7
and the Leuven CHR page.
Binding an attributed variable schedules a goal to be executed at
the first possible opportunity. In the current implementation the
hooks are executed immediately after a successful unification of the
clause-head or successful completion of a foreign language (built-in)
predicate. Each attribute is associated to a module and the hook
(attr_unify_hook/2) is executed in this module. The example below
realises a very simple and incomplete finite domain reasoner.
________________________________________________________________________| |
|:- module(domain, |
| [ domain/2 % Var, ?Domain |
| ]). |
|:- use_module(library(ordsets)). |
| |
|domain(X, Dom) :- |
| var(Dom), !, |
| get_attr(X, domain, Dom). |
|domain(X, List) :- |
| list_to_ord_set(List, Domain), |
| put_attr(Y, domain, Domain), |
| X = Y. |
| |
|% An attributed variable with attribute value Domain has been |
|% assigned the value Y |
| |
|attr_unify_hook(Domain, Y) :- |
| ( get_attr(Y, domain, Dom2) |
| -> ord_intersection(Domain, Dom2, NewDomain), |
| ( NewDomain == [] |
| -> fail |
| ; NewDomain = [Value] |
| -> Y = Value |
| ; put_attr(Y, domain, NewDomain) |
| ) |
| ; var(Y) |
| -> put_attr( Y, domain, Domain ) |
| ; ord_memberchk(Y, Domain) |
| ). |
| |
|% Translate attributes from this module to residual goals |
| |
|attribute_goals(X) --> |
| { get_attr(X, domain, List) }, |
||_______[domain(X,_List)]._____________________________________________ ||
Before explaining the code we give some example queries:
?- domain(X, [a,b]), X = c fail
?- domain(X, [a,b]), domain(X, [a,c]). X = a
?- domain(X, [a,b,c]), domain(X, [a,c]). domain(X, [a, c])
The predicate domain/2 fetches (first clause) or assigns (second
clause) the variable a _d_o_m_a_i_n, a set of values it can be unified with.
In the second clause first associates the domain with a fresh variable
and then unifies X to this variable to deal with the possibility that X
already has a domain. The predicate attr_unify_hook/2is a hook called
after a variable with a domain is assigned a value. In the simple case
where the variable is bound to a concrete value we simply check whether
this value is in the domain. Otherwise we take the intersection of the
domains and either fail if the intersection is empty (first example),
simply assign the value if there is only one value in the intersection
(second example) or assign the intersection as the new domain of the
variable (third example). The nonterminal attribute_goals/3 is used
to translate remaining attributes to user-readable goals that, when
executed, reinstate these attributes.
66..11..11 AAttttrriibbuuttee mmaanniippuullaattiioonn pprreeddiiccaatteess
aattttvvaarr((_@_T_e_r_m))
Succeeds if _T_e_r_m is an attributed variable. Note that var/1 also
succeeds on attributed variables. Attributed variables are created
with put_attr/3.
ppuutt__aattttrr((_+_V_a_r_, _+_M_o_d_u_l_e_, _+_V_a_l_u_e))
If _V_a_r is a variable or attributed variable, set the value for
the attribute named _M_o_d_u_l_e to _V_a_l_u_e. If an attribute with this
name is already associated with _V_a_r, the old value is replaced.
Backtracking will restore the old value (i.e. an attribute is a
mutable term. See also setarg/3). This predicate raises a
representation error if _V_a_r is not a variable and a type error if
_M_o_d_u_l_e is not an atom.
ggeett__aattttrr((_+_V_a_r_, _+_M_o_d_u_l_e_, _-_V_a_l_u_e))
Request the current _v_a_l_u_e for the attribute named _M_o_d_u_l_e. If
_V_a_r is not an attributed variable or the named attribute is not
associated to _V_a_r this predicate fails silently. If _M_o_d_u_l_e is not
an atom, a type error is raised.
ddeell__aattttrr((_+_V_a_r_, _+_M_o_d_u_l_e))
Delete the named attribute. If _V_a_r loses its last attribute it
is transformed back into a traditional Prolog variable. If _M_o_d_u_l_e
is not an atom, a type error is raised. In all other cases this
predicate succeeds regardless whether or not the named attribute is
present.
66..11..22 AAttttrriibbuutteedd vvaarriiaabbllee hhooookkss
Attribute names are linked to modules. This means that certain
operations on attributed variables cause _h_o_o_k_s to be called in the the
module whose name matches the attribute name.
aattttrr__uunniiffyy__hhooookk((_+_A_t_t_V_a_l_u_e_, _+_V_a_r_V_a_l_u_e))
Hook that must be defined in the module an attributed variable
refers to. Is is called _a_f_t_e_r the attributed variable has been
unified with a non-var term, possibly another attributed variable.
_A_t_t_V_a_l_u_e is the attribute that was associated to the variable
in this module and _V_a_r_V_a_l_u_e is the new value of the variable.
Normally this predicate fails to veto binding the variable to
_V_a_r_V_a_l_u_e, forcing backtracking to undo the binding. If _V_a_r_V_a_l_u_e
is another attributed variable the hook often combines the two
attribute and associates the combined attribute with _V_a_r_V_a_l_u_e using
put_attr/3.
aattttrr__ppoorrttrraayy__hhooookk((_+_A_t_t_V_a_l_u_e_, _+_V_a_r))
Called by write_term/2and friends for each attribute if the option
attributes(_p_o_r_t_r_a_y) is in effect. If the hook succeeds the
attribute is considered printed. Otherwise Module = ... is printed
to indicate the existence of a variable. New infrastructure
dealing with communicating attribute values must be based on
copy_term/3 and its hook attribute_goals//1.
aattttrriibbuuttee__ggooaallss((_+_V_a_r)) //
This nonterminal, if it is defined in a module, is used by
copy_term/3 to project attributes of that module to residual goals.
It is also used by the toplevel to obtain residual goals after
executing a query.
66..11..33 OOppeerraattiioonnss oonn tteerrmmss wwiitthh aattttrriibbuutteedd vvaarriiaabblleess
ccooppyy__tteerrmm((_+_T_e_r_m_, _-_C_o_p_y_, _-_G_s))
Create a regular term _C_o_p_y as a copy of _T_e_r_m (without any
attributes), and a list _G_s of goals that represents the attributes.
The goal maplist(call,_G_s) recreates the attributes for _C_o_p_y. The
nonterminal attribute_goals//1, as defined in the modules the
attributes stem from, is used to convert attributes to lists of
goals.
This building block is used by the toplevel to report pending
attributes in a portable and understandable fashion. This
predicate is the preferred way to reason about and communicate
terms with constraints.
ccooppyy__tteerrmm__nnaatt((_+_T_e_r_m_, _-_C_o_p_y))
As copy_term/2. Attributes however, are _n_o_t copied but replaced by
fresh variables.
tteerrmm__aattttvvaarrss((_+_T_e_r_m_, _-_A_t_t_V_a_r_s))
_A_t_t_V_a_r_s is a list of all attributed variables in _T_e_r_m and
its attributes. I.e., term_attvars/2 works recursively through
attributes. This predicate is Cycle-safe. The goal
term_attvars(_T_e_r_m_, _[_]) in an efficient test that _T_e_r_m has _n_o
attributes. I.e., scanning the term is aborted after the first
attributed variable is found.
66..11..44 SSppeecciiaall ppuurrppoossee pprreeddiiccaatteess ffoorr aattttrriibbuutteess
Normal user code should deal with put_attr/3, get_attr/3 and del_attr/2.
The routines in this section fetch or set the entire attribute list of
a variables. Use of these predicates is anticipated to be restricted
to printing and other special purpose operations.
ggeett__aattttrrss((_+_V_a_r_, _-_A_t_t_r_i_b_u_t_e_s))
Get all attributes of _V_a_r. _A_t_t_r_i_b_u_t_e_s is a term of the form
att(_M_o_d_u_l_e_, _V_a_l_u_e_, _M_o_r_e_A_t_t_r_i_b_u_t_e_s), where _M_o_r_e_A_t_t_r_i_b_u_t_e_s is [] for
the last attribute.
ppuutt__aattttrrss((_+_V_a_r_, _-_A_t_t_r_i_b_u_t_e_s))
Set all attributes of _V_a_r. See get_attrs/2 for a description of
_A_t_t_r_i_b_u_t_e_s.
ddeell__aattttrrss((_+_V_a_r))
If _V_a_r is an attributed variable, delete _a_l_l its attributes. In
all other cases, this predicate succeeds without side-effects.
66..22 CCoorroouuttiinniinngg
Coroutining deals with having Prolog goals scheduled for execution
as soon as some conditions are fulfilled. In Prolog the most
commonly used condition is the instantiation (binding) of a variable.
Scheduling a goal to execute immediately after a variable is bound
can be used to avoid instantiation errors for some built-in predicates
(e.g. arithmetic), do work _l_a_z_y, prevent the binding of a variable to
a particular value, etc. Using freeze/2 for example we can define a
variable can only be assigned an even number:
________________________________________________________________________| |
|?- freeze(X, X mod 2 =:= 0), X = 3 |
| |
|No|____________________________________________________________________ | |
ffrreeeezzee((_+_V_a_r_, _:_G_o_a_l))
Delay the execution of _G_o_a_l until _V_a_r is bound (i.e. is not a
variable or attributed variable). If _V_a_r is bound on entry
freeze/2 is equivalent to call/1. The freeze/2 predicate is
realised using an attributed variable associated with the module
freeze. Use frozen(Var, Goal) to find out whether and which goals
are delayed on _V_a_r.
ffrroozzeenn((_@_V_a_r_, _-_G_o_a_l))
Unify _G_o_a_l with the goal or conjunction of goals delayed on _V_a_r.
If no goals are frozen on _V_a_r, _G_o_a_l is unified to true.
wwhheenn((_@_C_o_n_d_i_t_i_o_n_, _:_G_o_a_l))
Execute _G_o_a_l when _C_o_n_d_i_t_i_o_n becomes true. _C_o_n_d_i_t_i_o_n is one of
?=(_X_, _Y), nonvar(_X), ground(_X), ,(_C_o_n_d_1_, _C_o_n_d_2) or ;(_C_o_n_d_1_, _C_o_n_d_2).
See also freeze/2 and dif/2. The implementation can deal with
cyclic terms in _X and _Y.
The when/2 predicate is realised using attributed variable
associated with the module when. It is defined in the autoload
library when.
ddiiff((_@_A_, _@_B))
The dif/2 predicate provides a constraint stating that _A and _B
are different terms. If _A and _B can never unify dif/2 succeeds
deterministically. If _A and _B are identical it fails immediately
and finally, if _A and _B can unify, goals are delayed that prevent
_A and _B to become equal. The dif/2 predicate behaves as if
defined by dif(X, Y) :- when(?=(X, Y), X \== Y). See also ?=/2.
The implementation can deal with cyclic terms.
The dif/2 predicate is realised using attributed variable
associated with the module dif. It is defined in the autoload
library dif.
ccaallll__rreessiidduuee__vvaarrss((_:_G_o_a_l_, _-_V_a_r_s))
Find residual attributed variables left by _G_o_a_l. This predicate is
intended for debugging programs using coroutining or constraints.
Consider a program that poses contracting constraints on a
variable. Such programs should fail, but sometimes succeed because
the constraint solver is too weak to detect the contradiction.
Ideally, delayed goals and constraints are all executed at the end
of the computation. The meta predicate call_residue_vars/2 finds
variables that are given attributes variables or whose attributes
are modified by _G_o_a_l, regardless or not whether these variables are
reachable from the arguments of _G_o_a_l.
The predicate has considerable implications. During the execution
of _G_o_a_l, the garbage collector does not reclaim attributed
variables. This causes some degradation of GC performance. In
a well-behaved program there are no such variables, so the space
impact is generally minimal. The actual collection of _V_a_r_s is
implemented using a scan of the trail- and global stacks.
66..33 GGlloobbaall vvaarriiaabblleess
Global variables are associations between names (atoms) and terms.
They differ in various ways from storing information using assert/1 or
recorda/3.
o The value lives on the Prolog (global) stack. This implies that
lookup time is independent from the size of the term. This is
particularly interesting for large data structures such as parsed
XML documents or the CHR global constraint store.
o They support both global assignment using nb_setval/2 and
backtrackable assignment using b_setval/2.
o Only one value (which can be an arbitrary complex Prolog term) can
be associated to a variable at a time.
o Their value cannot be shared among threads. Each thread has its
own namespace and values for global variables.
o Currently global variables are scoped globally. We may consider
module scoping in future versions.
Both b_setval/2 and nb_setval/2 implicitly create a variable if the
referenced name does not already refer to a variable.
Global variables may be initialised from directives to make them
available during the program lifetime, but some considerations are
necessary for saved-states and threads. Saved-states to not store
global variables, which implies they have to be declared with
initialization/1 to recreate them after loading the saved state. Each
thread has its own set of global variables, starting with an empty
set. Using thread_initialization/1 to define a global variable it
will be defined, restored after reloading a saved state and created
in all threads that are created _a_f_t_e_r the registration. Finally,
global variables can be initialised using the exception hook called
exception/3. The latter technique is by CHR (see chapter 7.
bb__sseettvvaall((_+_N_a_m_e_, _+_V_a_l_u_e))
Associate the term _V_a_l_u_e with the atom _N_a_m_e or replaces the
currently associated value with _V_a_l_u_e. If _N_a_m_e does not refer
to an existing global variable a variable with initial value []
is created (the empty list). On backtracking the assignment is
reversed.
bb__ggeettvvaall((_+_N_a_m_e_, _-_V_a_l_u_e))
Get the value associated with the global variable _N_a_m_e and unify it
with _V_a_l_u_e. Note that this unification may further instantiate the
value of the global variable. If this is undesirable the normal
precautions (double negation or copy_term/2) must be taken. The
b_getval/2 predicate generates errors if _N_a_m_e is not an atom or the
requested variable does not exist.
nnbb__sseettvvaall((_+_N_a_m_e_, _+_V_a_l_u_e))
Associates a copy of _V_a_l_u_e created with duplicate_term/2 with the
atom _N_a_m_e. Note that this can be used to set an initial value
other than [] prior to backtrackable assignment.
nnbb__ggeettvvaall((_+_N_a_m_e_, _-_V_a_l_u_e))
The nb_getval/2 predicate is a synonym for b_getval/2, introduced
for compatibility and symmetry. As most scenarios will use
a particular global variable either using non-backtrackable or
backtrackable assignment, using nb_getval/2can be used to document
that the variable is used non-backtrackable.
nnbb__lliinnkkvvaall((_+_N_a_m_e_, _+_V_a_l_u_e))
Associates the term _V_a_l_u_e with the atom _N_a_m_e without copying it.
This is a fast special-purpose variation of nb_setval/2 intended
for expert users only because the semantics on backtracking
to a point before creating the link are poorly defined for
compound terms. The principal term is always left untouched,
but backtracking behaviour on arguments is undone if the original
assignment was _t_r_a_i_l_e_d and left alone otherwise, which implies
that the history that created the term affects the behaviour on
backtracking. Please consider the following example:
____________________________________________________________________| |
| demo_nb_linkval :- |
| T = nice(N), |
| ( N = world, |
| nb_linkval(myvar, T), |
| fail |
| ; nb_getval(myvar, V), |
| writeln(V) |
||________).________________________________________________________ ||
nnbb__ccuurrrreenntt((_?_N_a_m_e_, _?_V_a_l_u_e))
Enumerate all defined variables with their value. The order of
enumeration is undefined.
nnbb__ddeelleettee((_+_N_a_m_e))
Delete the named global variable.
66..33..11 CCoommppaattiibbiilliittyy ooff SSWWII--PPrroolloogg GGlloobbaall VVaarriiaabblleess
Global variables have been introduced by various Prolog implementations
recently. The implementation of them in SWI-Prolog is based on hProlog
by Bart Demoen. In discussion with Bart it was decided that the
semantics if hProlog nb_setval/2, which is equivalent to nb_linkval/2 is
not acceptable for normal Prolog users as the behaviour is influenced
by how built-in predicates constructing terms (read/1, =../2, etc.)
are implemented.
GNU-Prolog provides a rich set of global variables, including arrays.
Arrays can be implemented easily in SWI-Prolog using functor/3 and
setarg/3 due to the unrestricted arity of compound terms.
CChhaapptteerr 77.. CCHHRR:: CCOONNSSTTRRAAIINNTT HHAANNDDLLIINNGG RRUULLEESS
This chapter is written by Tom Schrijvers, K.U. Leuven, and adjustments
by Jan Wielemaker.
The CHR system of SWI-Prolog is the _K_._U_._L_e_u_v_e_n _C_H_R _s_y_s_t_e_m. The runtime
environment is written by Christian Holzbaur and Tom Schrijvers while
the compiler is written by Tom Schrijvers. Both are integrated with
SWI-Prolog and licensed under compatible conditions with permission
from the authors.
The main reference for the K.U.Leuven CHR system is:
o T. Schrijvers, and B. Demoen, _T_h_e _K_._U_._L_e_u_v_e_n _C_H_R _S_y_s_t_e_m_:
_I_m_p_l_e_m_e_n_t_a_t_i_o_n _a_n_d _A_p_p_l_i_c_a_t_i_o_n, First Workshop on Constraint
Handling Rules: Selected Contributions (Fr"uhwirth, T. and Meister,
M., eds.), pp. 1--5, 2004.
On the K.U.Leuven CHR website (http://www.cs.kuleuven.be/~toms/CHR/)
you can find more related papers, references and example programs.
77..11 IInnttrroodduuccttiioonn
Constraint Handling Rules (CHR) is a committed-choice rule-based
language embedded in Prolog. It is designed for writing constraint
solvers and is particularly useful for providing application-specific
constraints. It has been used in many kinds of applications, like
scheduling, model checking, abduction, type checking among many others.
CHR has previously been implemented in other Prolog systems (SICStus,
Eclipse, Yap), Haskell and Java. This CHR system is based on the
compilation scheme and runtime environment of CHR in SICStus.
In this documentation we restrict ourselves to giving a short overview
of CHR in general and mainly focus on elements specific to this
implementation. For a more thorough review of CHR we refer the
reader to [Fr"uhwirth, 1998]. More background on CHR can be found at
[Fr"uhwirth,].
In section 7.2 we present the syntax of CHR in Prolog and explain
informally its operational semantics. Next, section 7.3 deals with
practical issues of writing and compiling Prolog programs containing
CHR. Section 7.4 explains the currently primitive CHR debugging
facilities. Section 7.4.3 provides a few useful predicates to inspect
the constraint store and section 7.5 illustrates CHR with two example
programs. In section 7.6 some compatibility issues with older versions
of this system and SICStus' CHR system. Finally, section 7.7 concludes
with a few practical guidelines for using CHR.
77..22 SSyynnttaaxx aanndd SSeemmaannttiiccss
77..22..11 SSyynnttaaxx
The syntax of CHR rules is the following:
________________________________________________________________________| |
|rules --> rule, rules. |
|rules --> []. |
| |
|rule --> name, actual_rule, pragma, [atom('.')]. |
| |
|name --> atom, [atom('@')]. |
|name --> []. |
| |
|actual_rule --> simplification_rule. |
|actual_rule --> propagation_rule. |
|actual_rule --> simpagation_rule. |
| |
|simplification_rule --> head, [atom('<=>')], guard, body. |
|propagation_rule --> head, [atom('==>')], guard, body. |
|simpagation_rule --> head, [atom('\')], head, [atom('<=>')], |
| guard, body. |
| |
|head --> constraints. |
| |
|constraints --> constraint, constraint_id. |
|constraints --> constraint, constraint_id, [atom(',')], constraints. |
| |
|constraint --> compound_term. |
| |
|constraint_id --> []. |
|constraint_id --> [atom('#')], variable. |
|constraint_id --> [atom('#')], [atom('passive')] . |
| |
|guard --> []. |
|guard --> goal, [atom('|')]. |
| |
|body --> goal. |
| |
|pragma --> []. |
|pragma --> [atom('pragma')], actual_pragmas. |
| |
|actual_pragmas --> actual_pragma. |
|actual_pragmas --> actual_pragma, [atom(',')], actual_pragmas. |
| |
|actual_pragma --> [atom('passive(')], variable, [atom(')')]. |
||______________________________________________________________________ ||
Note that the guard of a rule may not contain any goal that binds a
variable in the head of the rule with a non-variable or with another
variable in the head of the rule. It may however bind variables that
do not appear in the head of the rule, e.g. an auxiliary variable
introduced in the guard.
77..22..22 SSeemmaannttiiccss
In this subsection the operational semantics of CHR in Prolog are
presented informally. They do not differ essentially from other CHR
systems.
When a constraint is called, it is considered an active constraint and
the system will try to apply the rules to it. Rules are tried and
executed sequentially in the order they are written.
A rule is conceptually tried for an active constraint in the following
way. The active constraint is matched with a constraint in the head of
the rule. If more constraints appear in the head they are looked for
among the suspended constraints, which are called passive constraints
in this context. If the necessary passive constraints can be found and
all match with the head of the rule and the guard of the rule succeeds,
then the rule is committed and the body of the rule executed. If not
all the necessary passive constraint can be found, the matching fails
or the guard fails, then the body is not executed and the process of
trying and executing simply continues with the following rules. If
for a rule, there are multiple constraints in the head, the active
constraint will try the rule sequentially multiple times, each time
trying to match with another constraint.
This process ends either when the active constraint disappears, i.e. it
is removed by some rule, or after the last rule has been processed. In
the latter case the active constraint becomes suspended.
A suspended constraint is eligible as a passive constraint for an
active constraint. The other way it may interact again with the rules,
is when a variable appearing in the constraint becomes bound to either
a non-variable or another variable involved in one or more constraints.
In that case the constraint is triggered, i.e. it becomes an active
constraint and all the rules are tried.
RRuullee TTyyppeess There are three different kinds of rules, each with their
specific semantics:
o _s_i_m_p_l_i_f_i_c_a_t_i_o_n
The simplification rule removes the constraints in its head and
calls its body.
o _p_r_o_p_a_g_a_t_i_o_n
The propagation rule calls its body exactly once for the
constraints in its head.
o _s_i_m_p_a_g_a_t_i_o_n
The simpagation rule removes the constraints in its head after the
\ and then calls its body. It is an optimization of simplification
rules of the form:
constraints1;constraints2<=> constraints1;body
Namely, in the simpagation form:
constraints1\constraints2<=> body
The constraints1constraints are not called in the body.
RRuullee NNaammeess
Naming a rule is optional and has no semantical meaning. It only
functions as documentation for the programmer.
PPrraaggmmaass The semantics of the pragmas are:
ppaassssiivvee((_I_d_e_n_t_i_f_i_e_r))
The constraint in the head of a rule _I_d_e_n_t_i_f_i_e_r can only match a
passive constraint in that rule. There is an abbreviated syntax
for this pragma. Instead of:
____________________________________________________________________| |
||________________...,_c_#_Id,_..._<=>_..._pragma_passive(Id)_______ ||
you can also write
____________________________________________________________________| |
||________________...,_c_#_passive,_..._<=>_..._____________________ ||
Additional pragmas may be released in the future.
::-- cchhrr__ooppttiioonn((_+_O_p_t_i_o_n_, _+_V_a_l_u_e))
It is possible to specify options that apply to all the CHR
rules in the module. Options are specified with the chr_option/2
declaration:
____________________________________________________________________| |
||:-_chr_option(Option,Value).______________________________________ ||
and may appear in the file anywhere after the first constraints
declaration.
Available options are:
cchheecckk__gguuaarrdd__bbiinnddiinnggss
This option controls whether guards should be checked for
(illegal) variable bindings or not. Possible values for this
option are on, to enable the checks, and off, to disable the
checks. If this option is on, any guard fails when it binds
a variable that appears in the head of the rule. When the
option is off (default), the behavior of a binding in the
guard is undefined.
ooppttiimmiizzee
This option controls the degree of optimization. Possible
values are full, to enable all available optimizations, and
off (default), to disable all optimizations. The default
is derived from the SWI-Prolog flag optimise, where true is
mapped to full. Therefore the command-line option -O provides
full CHR optimization. If optimization is enabled, debugging
must be disabled.
ddeebbuugg
This options enables or disables the possibility to debug the
CHR code. Possible values are on (default) and off. See
section 7.4 for more details on debugging. The default is
derived from the Prolog flag generate_debug_info, which is
true by default. See -nodebug. If debugging is enabled,
optimization must be disabled.
77..33 CCHHRR iinn SSWWII--PPrroolloogg PPrrooggrraammss
77..33..11 EEmmbbeeddddiinngg iinn PPrroolloogg PPrrooggrraammss
The CHR constraints defined in a .pl file are associated with a module.
The default module is user. One should never load different .pl files
with the same CHR module name.
77..33..22 CCoonnssttrraaiinntt ddeeccllaarraattiioonn
::-- cchhrr__ccoonnssttrraaiinntt((_+_S_p_e_c_i_f_i_e_r))
Every constraint used in CHR rules has to be declared with a
chr_constraint/1 declaration by the _c_o_n_s_t_r_a_i_n_t _s_p_e_c_i_f_i_e_r. For
convenience multiple constraints may be declared at once with the
same chr_constraint/1 declaration followed by a comma-separated
list of constraint specifiers.
A constraint specifier is, in its compact form, F/A where F and
A are respectively the functor name and arity of the constraint,
e.g.:
____________________________________________________________________| |
| :- chr_constraint foo/1. |
||:-_chr_constraint_bar/2,_baz/3.___________________________________ ||
In its extended form, a constraint specifier is c(A1,...,An) where
c is the constraint's functor, n its arity and the Aiare argument
specifiers. An argument specifier is a mode, optionally followed
by a type. E.g.
____________________________________________________________________| |
| :- chr_constraint get_value(+,?). |
| :- chr_constraint domain(?int, +list(int)), |
||__________________alldifferent(?list(int))._______________________ ||
MMooddeess
A mode is one of:
-
The corresponding argument of every occurrence of the constraint is
always unbound.
+
The corresponding argument of every occurrence of the constraint is
always ground.
?
The corresponding argument of every occurrence of the constraint
can have any instantiation, which may change over time. This is
the default value.
TTyyppeess
A type can be a user-defined type or one of the built-in types. A type
comprises a (possibly infinite) set of values. The type declaration
for a constraint argument means that for every instance of that
constraint the corresponding argument is only ever bound to values in
that set. It does not state that the argument necessarily has to be
bound to a value.
The built-in types are:
iinntt
The corresponding argument of every occurrence of the constraint is
an integer number.
ddeennssee__iinntt
The corresponding argument of every occurrence of the constraint is
an integer that can be used as an array index. Note that if this
argument takes values in [0; n], the array takes O(n) space.
ffllooaatt
...a floating point number.
nnuummbbeerr
...a number.
nnaattuurraall
...a positive integer.
aannyy
The corresponding argument of every occurrence of the constraint
can have any type. This is the default value.
::-- cchhrr__ttyyppee((_+_T_y_p_e_D_e_c_l_a_r_a_t_i_o_n))
User-defined types are algebraic data types, similar to those in
Haskell or the discriminated unions in Mercury. An algebraic data
type is defined using chr_type/1:
____________________________________________________________________| |
||:-_chr_type_type_--->_body._______________________________________ ||
If the type term is a functor of arity zero (i.e. one having zero
arguments), it names a monomorphic type. Otherwise, it names a
polymorphic type; the arguments of the functor must be distinct
type variables. The body term is defined as a sequence of
constructor definitions separated by semi-colons.
Each constructor definition must be a functor whose arguments
(if any) are types. Discriminated union definitions must be
transparent: all type variables occurring in the body must also
occur in the type.
Here are some examples of algebraic data type definitions:
____________________________________________________________________| |
| :- chr_type color ---> red ; blue ; yellow ; green. |
| |
| :- chr_type tree ---> empty ; leaf(int) ; branch(tree, tree). |
| |
| :- chr_type list(T) ---> [] ; [T | list(T)]. |
| |
||:-_chr_type_pair(T1,_T2)_--->_(T1_-_T2).__________________________ ||
Each algebraic data type definition introduces a distinct type.
Two algebraic data types that have the same bodies are considered
to be distinct types (name equivalence).
Constructors may be overloaded among different types: there may be
any number of constructors with a given name and arity, so long as
they all have different types.
Aliases can be defined using ==. For example, if your program uses
lists of lists of integers, you can define an alias as follows:
____________________________________________________________________| |
||:-_chr_type_lli_==_list(list(int))._______________________________ ||
TTyyppee CChheecckkiinngg
Currently two complementary forms of type checking are performed:
1. Static type checking is always performed by the compiler. It is
limited to CHR rule heads and CHR constraint calls in rule bodies.
Two kinds of type error are detected. The first is where a
variable has to belong to two types. For example, in the program:
____________________________________________________________________| |
| :-chr_type foo ---> foo. |
| :-chr_type bar ---> bar. |
| |
| :-chr_constraint abc(?foo). |
| :-chr_constraint def(?bar). |
| |
||foobar_@_abc(X)_<=>_def(X)._______________________________________ ||
the variable X has to be of both type foo and bar. This is
reported by the type clash error:
____________________________________________________________________| |
| CHR compiler ERROR: |
| `--> Type clash for variable _G5398 in rule foobar: |
| expected type foo in body goal def(_G5398, _G5448) |
||________________expected_type_bar_in_head_def(_G5448,__G5398)_____ ||
The second kind of error is where a functor is used that does not
belong to the declared type. For example in:
____________________________________________________________________| |
| :-chr_type foo ---> foo. |
| :-chr_type bar ---> bar. |
| |
| :-chr_constraint abc(?foo). |
| |
||foo_@_abc(bar)_<=>_true.__________________________________________ ||
in the head of the rule bar appears where something of type foo is
expected. This is reported as:
____________________________________________________________________| |
| CHR compiler ERROR: |
| `--> Invalid functor in head abc(bar) of rule foo: |
| found `bar', |
||________________expected_type_`foo'!______________________________ ||
No runtime overhead is incurred in static type checking.
2. Dynamic type checking checks at runtime, during program execution,
whether the arguments of CHR constraints respect their declared
types. The when/2 co-routining library is used to delay dynamic
type checks until variables are instantiated.
The kind of error detected by dynamic type checking is where a
functor is used that does not belong to the declared type. E.g.
for the program:
____________________________________________________________________| |
| :-chr_type foo ---> foo. |
| |
||:-chr_constraint_abc(?foo)._______________________________________ ||
we get the following error in an erroneous query:
____________________________________________________________________| |
| ?- abc(bar). |
||ERROR:_Type_error:_`foo'_expected,_found_`bar'_(CHR_Runtime_Type_Error)||_
Dynamic type checking is weaker than static type checking in the
sense that it only checks the particular program execution at hand
rather than all possible executions. It is stronger in the sense
that it tracks types throughout the whole program.
Note that it is enabled only in debug mode, as it incurs some
(minor) runtime overhead.
77..33..33 CCoommppiillaattiioonn
The SWI-Prolog CHR compiler exploits term_expansion/2 rules to
translate the constraint handling rules to plain Prolog. These rules
are loaded from the library chr. They are activated if the compiled
file has the .chr extension or after finding a declaration of the
format below.
________________________________________________________________________| |
|:-|chr_constraint_...__________________________________________________ | |
It is advised to define CHR rules in a module file, where the module
declaration is immediately followed by including the library(chr)
library as exemplified below:
________________________________________________________________________| |
|:- module(zebra, [ zebra/0 ]). |
|:- use_module(library(chr)). |
| |
|:-|chr_constraint_...__________________________________________________ | |
Using this style CHR rules can be defined in ordinary Prolog .pl files
and the operator definitions required by CHR do not leak into modules
where they might cause conflicts.
77..44 DDeebbuuggggiinngg
The CHR debugging facilities are currently rather limited. Only
tracing is currently available. To use the CHR debugging facilities
for a CHR file it must be compiled for debugging. Generating debug
info is controlled by the CHR option debug, whose default is derived
from the SWI-Prolog flag generate_debug_info. Therefore debug info is
provided unless the -nodebug is used.
77..44..11 PPoorrttss
For CHR constraints the four standard ports are defined:
ccaallll
A new constraint is called and becomes active.
eexxiitt
An active constraint exits: it has either been inserted in
the store after trying all rules or has been removed from the
constraint store.
ffaaiill
An active constraint fails.
rreeddoo
An active constraint starts looking for an alternative solution.
In addition to the above ports, CHR constraints have five additional
ports:
wwaakkee
A suspended constraint is woken and becomes active.
iinnsseerrtt
An active constraint has tried all rules and is suspended in the
constraint store.
rreemmoovvee
An active or passive constraint is removed from the constraint
store.
ttrryy
An active constraints tries a rule with possibly some passive
constraints. The try port is entered just before committing to the
rule.
aappppllyy
An active constraints commits to a rule with possibly some passive
constraints. The apply port is entered just after committing to
the rule.
77..44..22 TTrraacciinngg
Tracing is enabled with the chr_trace/0 predicate and disabled with the
chr_notrace/0 predicate.
When enabled the tracer will step through the call, exit, fail, wake
and apply ports, accepting debug commands, and simply write out the
other ports.
The following debug commands are currently supported:
CHR debug options:
<cr> creep c creep
s skip
g ancestors
n nodebug
b break
a abort
f fail
? help h help
Their meaning is:
ccrreeeepp
Step to the next port.
sskkiipp
Skip to exit port of this call or wake port.
aanncceessttoorrss
Print list of ancestor call and wake ports.
nnooddeebbuugg
Disable the tracer.
bbrreeaakk
Enter a recursive Prolog top-level. See break/0.
aabboorrtt
Exit to the top-level. See abort/0.
ffaaiill
Insert failure in execution.
hheellpp
Print the above available debug options.
77..44..33 CCHHRR DDeebbuuggggiinngg PPrreeddiiccaatteess
The chr module contains several predicates that allow inspecting and
printing the content of the constraint store.
cchhrr__ttrraaccee
Activate the CHR tracer. By default the CHR tracer is activated
and deactivated automatically by the Prolog predicates trace/0 and
notrace/0.
cchhrr__nnoottrraaccee
De-activate the CHR tracer. By default the CHR tracer is activated
and deactivated automatically by the Prolog predicates trace/0 and
notrace/0.
cchhrr__lleeaasshh((_+_S_p_e_c))
Define the set of CHR ports on which the CHR tracer asks for user
intervention (i.e. stops). _S_p_e_c is either a list of ports as
defined in section 7.4.1 or a predefined `alias'. Defined aliases
are: full to stop at all ports, none or off to never stop, and
default to stop at the call, exit, fail, wake and apply ports. See
also leash/1.
cchhrr__sshhooww__ssttoorree((_+_M_o_d))
Prints all suspended constraints of module _M_o_d to the standard
output. This predicate is automatically called by the SWI-Prolog
top-level at the end of each query for every CHR module currently
loaded. The Prolog flag chr_toplevel_show_store controls whether
the top-level shows the constraint stores. The value true enables
it. Any other value disables it.
ffiinndd__cchhrr__ccoonnssttrraaiinntt((_-_C_o_n_s_t_r_a_i_n_t))
Returns a constraint in the constraint store. Via backtracking,
all constraints in the store can be enumerated.
77..55 EExxaammpplleess
Here are two example constraint solvers written in CHR.
o The program below defines a solver with one constraint, leq/2/,
which is a less-than-or-equal constraint, also known as a partial
order constraint.
____________________________________________________________________| |
| :- module(leq,[leq/2]). |
| :- use_module(library(chr)). |
| |
| :- chr_constraint leq/2. |
| reflexivity @ leq(X,X) <=> true. |
| antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y. |
| idempotence @ leq(X,Y) \ leq(X,Y) <=> true. |
||transitivity_@_leq(X,Y),_leq(Y,Z)_==>_leq(X,Z).___________________ ||
When the above program is saved in a file and loaded in SWI-Prolog,
you can call the leq/2 constraints in a query, e.g.:
____________________________________________________________________| |
| ?- leq(X,Y), leq(Y,Z). |
| leq(_G23837, _G23841) |
| leq(_G23838, _G23841) |
| leq(_G23837, _G23838) |
| |
| X = _G23837{leq = ...} |
| Y = _G23838{leq = ...} |
| Z = _G23841{leq = ...} |
| |
||Yes_______________________________________________________________ ||
When the query succeeds, the SWI-Prolog top-level prints the
content of the CHR constraint store and displays the bindings
generate during the query. Some of the query variables may
have been bound to attributed variables, as you see in the above
example.
o The program below implements a simple finite domain constraint
solver.
____________________________________________________________________| |
| :- module(dom,[dom/2]). |
| :- use_module(library(chr)). |
| |
| :- chr_constraint dom(?int,+list(int)). |
| :- chr_type list(T) ---> [] ; [T|list(T)]. |
| |
| dom(X,[]) <=> fail. |
| dom(X,[Y]) <=> X = Y. |
| dom(X,L) <=> nonvar(X) | memberchk(X,L). |
||dom(X,L1),_dom(X,L2)_<=>_intersection(L1,L2,L3),_dom(X,L3)._______ ||
When the above program is saved in a file and loaded in SWI-Prolog,
you can call the dom/2 constraints in a query, e.g.:
____________________________________________________________________| |
| ?- dom(A,[1,2,3]), dom(A,[3,4,5]). |
| |
| A = 3 |
| |
||Yes_______________________________________________________________ ||
77..66 BBaacckkwwaarrddss CCoommppaattiibbiilliittyy
77..66..11 TThhee OOlldd SSIICCSSttuuss CCHHRR iimmpplleemmeennaattiioonn
There are small differences between the current K.U.Leuven CHR system
in SWI-Prolog, older versions of the same system and SICStus' CHR
system.
The current system maps old syntactic elements onto new ones and
ignores a number of no longer required elements. However, for each a
_d_e_p_r_e_c_a_t_e_d warning is issued. You are strongly urged to replace or
remove deprecated features.
Besides differences in available options and pragmas, the following
differences should be noted:
o _T_h_e constraints/1 _d_e_c_l_a_r_a_t_i_o_n
This declaration is deprecated. It has been replaced with the
chr_constraint/1 declaration.
o _T_h_e option/2 _d_e_c_l_a_r_a_t_i_o_n
This declaration is deprecated. It has been replaced with the
chr_option/2 declaration.
o _T_h_e handler/1 _d_e_c_l_a_r_a_t_i_o_n
In SICStus every CHR module requires a handler/1 declaration
declaring a unique handler name. This declaration is valid syntax
in SWI-Prolog, but will have no effect. A warning will be given
during compilation.
o _T_h_e rules/1 _d_e_c_l_a_r_a_t_i_o_n
In SICStus, for every CHR module it is possible to only enable a
subset of the available rules through the rules/1 declaration. The
declaration is valid syntax in SWI-Prolog, but has no effect. A
warning is given during compilation.
o _G_u_a_r_d _b_i_n_d_i_n_g_s
The check_guard_bindings option only turns invalid calls to
unification into failure. In SICStus this option does more: it
intercepts instantiation errors from Prolog built-ins such as is/2
and turns them into failure. In SWI-Prolog, we do not go this far,
as we like to separate concerns more. The CHR compiler is aware
of the CHR code, the Prolog system and programmer should be aware
of the appropriate meaning of the Prolog goals used in guards and
bodies of CHR rules.
77..66..22 TThhee OOlldd EECCLLiiPPSSee CCHHRR iimmpplleemmeennaattiioonn
The old ECLiPSe CHR implementations features a label_with/1 construct
for labeling variables in CHR constraints. This feature has long
since been abandoned. However, a simple transformation is all that is
required to port the functionality.
________________________________________________________________________| |
|label_with Constraint1 if Condition1. |
|... |
|label_with ConstraintN if ConditionN. |
|Constraint1 :- Body1. |
|... |
|ConstraintN|:-_BodyN.__________________________________________________ | |
is transformed into
________________________________________________________________________| |
|:- chr_constraint my_labeling/0. |
| |
|my_labeling \ Constraint1 <=> Condition1 | Body1. |
|... |
|my_labeling \ ConstraintN <=> ConditionN | BodyN. |
|my_labeling|<=>_true.__________________________________________________ | |
Be sure to put this code after all other rules in your program! With
my_labeling/0 (or another predicate name of your choosing) the labeling
is initiated, rather than ECLiPSe's chr_labeling/0.
77..77 PPrrooggrraammmmiinngg TTiippss aanndd TTrriicckkss
In this section we cover several guidelines on how to use CHR to write
constraint solvers and how to do so efficiently.
o _C_h_e_c_k _g_u_a_r_d _b_i_n_d_i_n_g_s _y_o_u_r_s_e_l_f
It is considered bad practice to write guards that bind variables
of the head and to rely on the system to detect this at runtime.
It is inefficient and obscures the working of the program.
o _S_e_t _s_e_m_a_n_t_i_c_s
The CHR system allows the presence of identical constraints, i.e.
multiple constraints with the same functor, arity and arguments.
For most constraint solvers, this is not desirable: it affects
efficiency and possibly termination. Hence appropriate simpagation
rules should be added of the form:
constraint\constraint <=>true
o _M_u_l_t_i_-_h_e_a_d_e_d _r_u_l_e_s
Multi-headed rules are executed more efficiently when the
constraints share one or more variables.
o _M_o_d_e _a_n_d _t_y_p_e _d_e_c_l_a_r_a_t_i_o_n_s
Provide mode and type declarations to get more efficient program
execution. Make sure to disable debug (-nodebug) and enable
optimization (-O).
o _C_o_m_p_i_l_e _o_n_c_e_, _r_u_n _m_a_n_y _t_i_m_e_s
Does consulting your CHR program take a long time in SWI-Prolog?
Probably it takes the CHR compiler a long time to compile the CHR
rules into Prolog code. When you disable optimizations the CHR
compiler will be a lot quicker, but you may loose performance.
Alternatively, you can just use SWI-Prolog's qcompile/1 to generate
a .qlf file once from your .pl file. This .qlf contains the
generated code of the CHR compiler (be it in a binary format).
When you consult the .qlf file, the CHR compiler is not invoked and
consultation is much faster.
o _F_i_n_d_i_n_g _C_o_n_s_t_r_a_i_n_t_s
The find_chr_constraint/1 predicate is fairly expensive. Avoid
it, if possible. If you must use it, try to use it with an
instantiated toplevel constraint symbol.
77..88 CCoommppiilleerr EErrrroorrss aanndd WWaarrnniinnggss
In this section we summarize the most important error and warning
messages of the CHR compiler.
77..88..11 CCHHRR CCoommppiilleerr EErrrroorrss
TTyyppee ccllaasshh for variable ... in rule ...
This error indicates an inconsistency between declared types; a
variable should belong to two types. See static type checking.
IInnvvaalliidd ffuunnccttoorr in head ... of rule ...
This error indicates an inconsistency between a declared type and
the use of a functor in a rule. See static type checking.
CCyycclliicc aalliiaass definition: ... == ...
You have defined a type alias in terms of itself, either directly
or indirectly.
AAmmbbiigguuoouuss ttyyppee aalliiaasseess You have defined two overlapping type aliases.
MMuullttiippllee ddeeffiinniittiioonnss for type
You have defined the same type multiple times.
NNoonn--ggrroouunndd ttyyppee in constraint definition: ...
You have declared a non-ground type for a constraint argument.
CCoouulldd nnoott ffiinndd ttyyppee ddeeffiinniittiioonn for ...
You have used an undefined type in a type declaration.
IIlllleeggaall mmooddee//ttyyppee ddeeccllaarraattiioonn You have used invalid syntax in a
constraint declaration.
CCoonnssttrraaiinntt mmuullttiippllyy ddeeffiinneedd There is more than one declaration for the
same constraint.
UUnnddeeccllaarreedd ccoonnssttrraaiinntt ... in head of ...
You have used an undeclared constraint in the head of a rule. This
often indicates a misspelled constrained name or wrong number of
arguments.
IInnvvaalliidd pprraaggmmaa ... in ... Pragma should not be a variable.
You have used a variable as a pragma in a rule. This is not
allowed.
IInnvvaalliidd iiddeennttiiffiieerr ... in pragma passive in ...
You have used an identifier in a passive pragma that does not
correspond to an identifier in the head of the rule. Likely the
identifier name is misspelled.
UUnnkknnoowwnn pprraaggmmaa ... in ...
You have used an unknown pragma in a rule. Likely the pragma is
misspelled or not supported.
SSoommeetthhiinngg uunneexxppeecctteedd happened in the CHR compiler
You have most likely bumped into a bug in the CHR compiler. Please
contact Tom Schrijvers to notify him of this error.
CChhaapptteerr 88.. MMUULLTTII--TTHHRREEAADDEEDD AAPPPPLLIICCAATTIIOONNSS
SWI-Prolog multithreading is based on standard C-language multithread-
ing support. It is not like _P_a_r_L_o_g or other parallel implementations
of the Prolog language. Prolog threads have their own stacks and only
share the Prolog _h_e_a_p: predicates, records, flags and other global
non-backtrackable data. SWI-Prolog thread support is designed with the
following goals in mind.
o _M_u_l_t_i_-_t_h_r_e_a_d_e_d _s_e_r_v_e_r _a_p_p_l_i_c_a_t_i_o_n_s
Todays computing services often focus on (internet) server
applications. Such applications often have need for communication
between services and/or fast non-blocking service to multiple
concurrent clients. The shared heap provides fast communication
and thread creation is relatively cheap.
o _I_n_t_e_r_a_c_t_i_v_e _a_p_p_l_i_c_a_t_i_o_n_s
Interactive applications often need to perform extensive
computation. If such computations are executed in a new thread,
the main thread can process events and allow the user to cancel
the ongoing computation. User interfaces can also use multiple
threads, each thread dealing with input from a distinct group of
windows. See also section 8.8.
o _N_a_t_u_r_a_l _i_n_t_e_g_r_a_t_i_o_n _w_i_t_h _f_o_r_e_i_g_n _c_o_d_e
Each Prolog thread runs in a native thread of the operating system,
automatically making them cooperate with _M_T_-_s_a_f_e foreign-code. In
addition, any foreign thread can create its own Prolog engine for
dealing with calling Prolog from C-code.
SWI-Prolog multi-threading is based on the POSIX thread standard
[Butenhof, 1997] used on most popular systems except for MS-Windows.
On Windows it uses the pthread-win32 emulation of POSIX threads mixed
with the Windows native API for smoother and faster operation.
88..11 CCrreeaattiinngg aanndd ddeessttrrooyyiinngg PPrroolloogg tthhrreeaaddss
tthhrreeaadd__ccrreeaattee((_:_G_o_a_l_, _-_I_d_, _+_O_p_t_i_o_n_s))
Create a new Prolog thread (and underlying C-thread) and start it
by executing _G_o_a_l. If the thread is created successfully, the
thread-identifier of the created thread is unified to _I_d. _O_p_t_i_o_n_s
is a list of options. The currently defined options are below.
Stack size options can also take the value inf or infinite, which
is mapped to the maximum stack size supported by the platform.
aalliiaass((_A_l_i_a_s_N_a_m_e))
Associate an `alias-name' with the thread. This named may be
used to refer to the thread and remains valid until the thread
is joined (see thread_join/2).
aatt__eexxiitt((_:_A_t_E_x_i_t))
Register _A_t_E_x_i_t as using thread_at_exit/1 before entering the
thread goal. Unlike calling thread_at_exit/1 as part of
the normal _G_o_a_l, this _e_n_s_u_r_e_s the _G_o_a_l is called. Using
thread_at_exit/1, the thread may be signalled or run out of
resources before thread_at_exit/1is reached.
ddeettaacchheedd((_B_o_o_l))
If false (default), the thread can be waited for using
thread_join/2. thread_join/2 must be called on this thread
to reclaim all resources associated with the thread. If
true, the system will reclaim all associated resources
automatically after the thread finishes. Please note that
thread identifiers are freed for reuse after a detached thread
finishes or a normal thread has been joined. See also
thread_join/2 and thread_detach/1.
If a detached thread dies due to failure or exception of the
initial goal the thread prints a message using print_message/2.
If such termination is considered normal, the code must be
wrapped using ignore/1 and/or catch/3 to ensure successful
completion.
gglloobbaall((_K_-_B_y_t_e_s))
Set the limit to which the global stack of this thread may
grow. If omitted, the limit of the calling thread is used.
See also the -G command-line option.
llooccaall((_K_-_B_y_t_e_s))
Set the limit to which the local stack of this thread may
grow. If omitted, the limit of the calling thread is used.
See also the -L command-line option.
cc__ssttaacckk((_K_-_B_y_t_e_s))
Set the limit to which the system stack of this thread
may grow. The default, minimum and maximum values are
system-dependent..
ttrraaiill((_K_-_B_y_t_e_s))
Set the limit to which the trail stack of this thread may
grow. If omitted, the limit of the calling thread is used.
See also the -T command-line option.
The _G_o_a_l argument is _c_o_p_i_e_d to the new Prolog engine. This implies
further instantiation of this term in either thread does not have
consequences for the other thread: Prolog threads do not share
data from their stacks.
tthhrreeaadd__sseellff((_-_I_d))
Get the Prolog thread identifier of the running thread. If the
thread has an alias, the alias-name is returned.
tthhrreeaadd__jjooiinn((_+_I_d_, _-_S_t_a_t_u_s))
Wait for the termination of thread with given _I_d. Then unify the
result-status of the thread with _S_t_a_t_u_s. After this call, _I_d
becomes invalid and all resources associated with the thread are
reclaimed. Note that threads with the attribute detached(_t_r_u_e)
cannot be joined. See also thread_property/2.
A thread that has been completed without thread_join/2 being called
on it is partly reclaimed: the Prolog stacks are released and the
C-thread is destroyed. A small data-structure representing the
exit-status of the thread is retained until thread_join/2 is called
on the thread. Defined values for _S_t_a_t_u_s are:
ttrruuee
The goal has been proven successfully.
ffaallssee
The goal has failed.
eexxcceeppttiioonn((_T_e_r_m))
The thread is terminated on an exception. See print_message/2
to turn system exceptions into readable messages.
eexxiitteedd((_T_e_r_m))
The thread is terminated on thread_exit/1 using the argument
_T_e_r_m.
tthhrreeaadd__ddeettaacchh((_+_I_d))
Switch thread into detached-state (see detached(_B_o_o_l) option at
thread_create/3) at runtime. _I_d is the identifier of the thread
placed in detached state. This may be the result of thread_self/1.
One of the possible applications is to simplify debugging.
Threads that are created as _d_e_t_a_c_h_e_d leave no traces if they
crash. For not-detached threads the status can be inspected using
thread_property/2. Threads nobody is waiting for may be created
normally and detach themselves just before completion. This way
they leave no traces on normal completion and their reason for
failure can be inspected.
tthhrreeaadd__eexxiitt((_+_T_e_r_m)) _[_d_e_p_r_e_c_a_t_e_d_]
Terminates the thread immediately, leaving exited(_T_e_r_m) as result-
state for thread_join/2. If the thread has the attribute
detached(_t_r_u_e) it terminates, but its exit status cannot be
retrieved using thread_join/2 making the value of _T_e_r_m irrelevant.
The Prolog stacks and C-thread are reclaimed.
The current implementation does not guarantee proper releasing
of all mutexes and proper cleanup in setup_call_cleanup/3, etc.
Please use the exception mechanism (throw/1) to abort execution
using non-standard control.
tthhrreeaadd__iinniittiiaalliizzaattiioonn((_:_G_o_a_l))
Run _G_o_a_l when thread is started. This predicate is similar to
initialization/1, but is intended for initialization operations of
the runtime stacks, such as setting global variables as described
in section 6.3. _G_o_a_l is run on four occasions: at the call to
this predicate, after loading a saved state, on starting a new
thread and on creating a Prolog engine through the C interface.
On loading a saved state, _G_o_a_l is executed _a_f_t_e_r running the
initialization/1 hooks.
tthhrreeaadd__aatt__eexxiitt((_:_G_o_a_l))
Run _G_o_a_l just before releasing the thread resources. This is to
be compared to at_halt/1, but only for the current thread. These
hooks are run regardless of why the execution of the thread has
been completed. As these hooks are run, the return-code is
already available through thread_property/2 using the result of
thread_self/1 as thread-identifier. See also the at_exit(_G_o_a_l)
argument of thread_create/3.
tthhrreeaadd__sseettccoonnccuurrrreennccyy((_-_O_l_d_, _+_N_e_w))
Determine the concurrency of the process, which is defined as
the maximum number of concurrently active threads. `Active' here
means they are using CPU time. This option is provided if the
thread-implementation provides pthread_setconcurrency(). Solaris
is a typical example of this family. On other systems this
predicate unifies _O_l_d to 0 (zero) and succeeds silently.
88..22 MMoonniittoorriinngg tthhrreeaaddss
Normal multi-threaded applications should not need the predicates from
this section because almost any usage of these predicates is unsafe.
For example checking the existence of a thread before signalling it is
of no use as it may vanish between the two calls. Catching exceptions
using catch/3 is the only safe way to deal with thread-existence
errors.
These predicates are provided for diagnosis and monitoring tasks. See
also section 8.5, describing more high-level primitives.
tthhrreeaadd__pprrooppeerrttyy((_?_I_d_, _?_P_r_o_p_e_r_t_y))
True if thread _I_d has _P_r_o_p_e_r_t_y. Either or both arguments may
be unbound, enumerating all relations on backtracking. Calling
thread_property/2 does not influence any thread. See also
thread_join/2. For threads that have an alias-name, this name is
returned in _I_d instead of the numerical thread identifier. Defined
properties are:
aalliiaass((_A_l_i_a_s))
_A_l_i_a_s is the alias name of thread _I_d.
ddeettaacchheedd((_B_o_o_l_e_a_n))
Current detached status of the thread.
ssttaattuuss((_S_t_a_t_u_s))
Current status of the thread. _S_t_a_t_u_s is one of:
rruunnnniinngg
The thread is running. This is the initial status of a
thread. Please note that threads waiting for something
are considered running too.
ffaallssee
The _G_o_a_l of the thread has been completed and failed.
ttrruuee
The _G_o_a_l of the thread has been completed and succeeded.
eexxiitteedd((_T_e_r_m))
The _G_o_a_l of the thread has been terminated using
thread_exit/1 with _T_e_r_m as argument. If the underlying
native thread has exited (using pthread_exit()) _T_e_r_m is
unbound.
eexxcceeppttiioonn((_T_e_r_m))
The _G_o_a_l of the thread has been terminated due to an
uncaught exception (see throw/1 and catch/3).
tthhrreeaadd__ssttaattiissttiiccss((_+_I_d_, _+_K_e_y_, _-_V_a_l_u_e))
Obtains statistical information on thread _I_d as statistics/2 does
in single-threaded applications. This call supports all keys
of statistics/2, although only stack sizes and CPU time yield
different values for each thread.
mmuutteexx__ssttaattiissttiiccss
Print usage statistics on internal mutexes and mutexes associated
with dynamic predicates. For each mutex two numbers are printed:
the number of times the mutex was acquired and the number of
_c_o_l_l_i_s_i_o_n_s: the number times the calling thread has to wait for
the mutex. The collision-count is not available on MS-Windows.
Generally collision count is close to zero on single-CPU hardware.
88..33 TThhrreeaadd ccoommmmuunniiccaattiioonn
88..33..11 MMeessssaaggee qquueeuueess
Prolog threads can exchange data using dynamic predicates, database
records, and other globally shared data. These provide no suitable
means to wait for data or a condition as they can only be checked in an
expensive polling loop. _M_e_s_s_a_g_e _q_u_e_u_e_s provide a means for threads to
wait for data or conditions without using the CPU.
Each thread has a message-queue attached to it that is identified by
the thread. Additional queues are created using message_queue_create/1.
tthhrreeaadd__sseenndd__mmeessssaaggee((_+_Q_u_e_u_e_O_r_T_h_r_e_a_d_I_d_, _+_T_e_r_m))
Place _T_e_r_m in the given queue or default queue of the indicated
thread (which can even be the message queue of itself, see
thread_self/1). Any term can be placed in a message queue,
but note that the term is copied to the receiving thread and
variable-bindings are thus lost. This call returns immediately.
If more than one thread is waiting for messages on the given queue
and at least one of these is waiting with a partially instantiated
_T_e_r_m, the waiting threads are _a_l_l sent a wake-up signal, starting a
rush for the available messages in the queue. This behaviour can
seriously harm performance with many threads waiting on the same
queue as all-but-the-winner perform a useless scan of the queue.
If there is only one waiting thread or all waiting threads wait
with an unbound variable an arbitrary thread is restarted to scan
the queue.
tthhrreeaadd__ggeett__mmeessssaaggee((_?_T_e_r_m))
Examines the thread message queue and if necessary blocks execution
until a term that unifies to _T_e_r_m arrives in the queue. After a
term from the queue has been unified to _T_e_r_m, the term is deleted
from the queue.
Please note that not-unifying messages remain in the queue. After
the following has been executed, thread 1 has the term b(_g_n_u) in
its queue and continues execution using _A = gnat.
____________________________________________________________________| |
| <thread 1> |
| thread_get_message(a(A)), |
| |
| <thread 2> |
| thread_send_message(Thread_1, b(gnu)), |
||___thread_send_message(Thread_1,_a(gnat)),________________________ ||
See also thread_peek_message/1.
tthhrreeaadd__ppeeeekk__mmeessssaaggee((_?_T_e_r_m))
Examines the thread message-queue and compares the queued terms
with _T_e_r_m until one unifies or the end of the queue has
been reached. In the first case the call succeeds (possibly
instantiating _T_e_r_m. If no term from the queue unifies this call
fails.
mmeessssaaggee__qquueeuuee__ccrreeaattee((_?_Q_u_e_u_e))
If _Q_u_e_u_e is an atom, create a named queue. To avoid ambiguity of
thread_send_message/2, the name of a queue may not be in use as a
thread-name. If _Q_u_e_u_e is unbound an anonymous queue is created and
_Q_u_e_u_e is unified to its identifier.
mmeessssaaggee__qquueeuuee__ccrreeaattee((_-_Q_u_e_u_e_, _+_O_p_t_i_o_n_s))
Create a message queue from _O_p_t_i_o_n_s. Defined options are.
aalliiaass((_+_A_l_i_a_s))
Same as message_queue_create(_A_l_i_a_s), but according to the ISO
draft on Prolog threads.
mmaaxx__ssiizzee((_+_S_i_z_e))
Maximum number of terms in the queue. If this number is
reached, thread_send_message/2 will suspend until the queue
is drained. The option can be used if the source, sending
messages to the queue, is faster than the drain, consuming the
messages.
mmeessssaaggee__qquueeuuee__ddeessttrrooyy((_+_Q_u_e_u_e))
Destroy a message queue created with message_queue_create/1. A
permission error is raised if _Q_u_e_u_e refers to (the default
queue of) a thread. Other threads are waiting for _Q_u_e_u_e using
thread_get_message/2 receive an existence error.
tthhrreeaadd__ggeett__mmeessssaaggee((_+_Q_u_e_u_e_, _?_T_e_r_m))
As thread_get_message/1, operating on a given queue. It is allowed
(but not advised) to get messages from the queue of other threads.
tthhrreeaadd__ppeeeekk__mmeessssaaggee((_+_Q_u_e_u_e_, _?_T_e_r_m))
As thread_peek_message/1, operating on a given queue. It is
allowed to peek into another thread's message queue, an operation
that can be used to check whether a thread has swallowed a message
sent to it.
mmeessssaaggee__qquueeuuee__pprrooppeerrttyy((_?_Q_u_e_u_e_, _?_P_r_o_p_e_r_t_y))
True if _P_r_o_p_e_r_t_y is a property of _Q_u_e_u_e. Defined properties are:
aalliiaass((_A_l_i_a_s))
Queue has the given alias name.
ssiizzee((_S_i_z_e))
Queue currently contains _S_i_z_e terms. Note that due to
concurrent access the returned value may be outdated before it
is returned. It can be used for debugging purposes as well as
work distribution purposes.
Explicit message queues are designed with the _w_o_r_k_e_r_-_p_o_o_l model in
mind, where multiple threads wait on a single queue and pick up
the first goal to execute. Below is a simple implementation where
the workers execute arbitrary Prolog goals. Note that this example
provides no means to tell when all work is done. This must be realised
using additional synchronisation.
________________________________________________________________________| |
|% create_workers(+Id, +N) |
|% |
|% Create a pool with given Id and number of workers. |
| |
|create_workers(Id, N) :- |
| message_queue_create(Id), |
| forall(between(1, N, _), |
| thread_create(do_work(Id), _, [])). |
| |
|do_work(Id) :- |
| repeat, |
| thread_get_message(Id, Goal), |
| ( catch(Goal, E, print_message(error, E)) |
| -> true |
| ; print_message(error, goal_failed(Goal, worker(Id))) |
| ), |
| fail. |
| |
|% work(+Id, +Goal) |
|% |
|% Post work to be done by the pool |
| |
|work(Id, Goal) :- |
||_______thread_send_message(Id,_Goal)._________________________________ ||
88..33..22 SSiiggnnaalllliinngg tthhrreeaaddss
These predicates provide a mechanism to make another thread execute
some goal as an _i_n_t_e_r_r_u_p_t. Signalling threads is safe as these
interrupts are only checked at safe points in the virtual machine.
Nevertheless, signalling in multi-threaded environments should be
handled with care as the receiving thread may hold a _m_u_t_e_x (see
with_mutex). Signalling probably only makes sense to start debugging
threads and to cancel no-longer-needed threads with throw/1, where the
receiving thread should be designed carefully to handle exceptions at
any point.
tthhrreeaadd__ssiiggnnaall((_+_T_h_r_e_a_d_I_d_, _:_G_o_a_l))
Make thread _T_h_r_e_a_d_I_d execute _G_o_a_l at the first opportunity. In the
current implementation, this implies at the first pass through the
_C_a_l_l_-_p_o_r_t. The predicate thread_signal/2 itself places _G_o_a_l into
the signalled-thread's signal queue and returns immediately.
Signals (interrupts) do not cooperate well with the world of
multi-threading, mainly because the status of mutexes cannot be
guaranteed easily. At the call-port, the Prolog virtual machine
holds no locks and therefore the asynchronous execution is safe.
_G_o_a_l can be any valid Prolog goal, including throw/1 to make the
receiving thread generate an exception and trace/0 to start tracing
the receiving thread.
In the Windows version, the receiving thread immediately executes
the signal if it reaches a Windows GetMessage() call, which
generally happens if the thread is waiting for (user-)input.
88..33..33 TThhrreeaaddss aanndd ddyynnaammiicc pprreeddiiccaatteess
Besides queues (section 8.3.1) threads can share and exchange data
using dynamic predicates. The multi-threaded version knows about two
types of dynamic predicates. By default, a predicate declared _d_y_n_a_m_i_c
(see dynamic/1) is shared by all threads. Each thread may assert,
retract and run the dynamic predicate. Synchronisation inside Prolog
guarantees the consistency of the predicate. Updates are _l_o_g_i_c_a_l:
visible clauses are not affected by assert/retract after a query
started on the predicate. In many cases primitives from section 8.4
should be used to ensure that application invariants on the predicate
are maintained.
Besides shared predicates, dynamic predicates can be declared with the
thread_local/1 directive. Such predicates share their attributes, but
the clause-list is different in each thread.
tthhrreeaadd__llooccaall _+_F_u_n_c_t_o_r_/_+_A_r_i_t_y_, _._._.
This directive is related to the dynamic/1 directive. It tells
the system that the predicate may be modified using assert/1,
retract/1, etc. during execution of the program. Unlike normal
shared dynamic data however each thread has its own clause-list for
the predicate. As a thread starts, this clause list is empty.
If there are still clauses when the thread terminates, these are
automatically reclaimed by the system (see also volatile/1). The
thread_local property implies the properties dynamic and volatile.
Thread-local dynamic predicates are intended for maintaining
thread-specific state or intermediate results of a computation.
It is not recommended to put clauses for a thread-local predicate
into a file as in the example below because the clause is only
visible from the thread that loaded the source-file. All other
threads start with an empty clause-list.
____________________________________________________________________| |
| :- thread_local |
| foo/1. |
| |
||foo(gnat).________________________________________________________ ||
DDIISSCCLLAAIIMMEERR Whether or not this declaration is appropriate in the
sense of the proper mechanism to reach the goal is still debated.
If you have strong feeling in favour or against, please share them
in the SWI-Prolog mailing list.
88..44 TThhrreeaadd ssyynncchhrroonniissaattiioonn
All internal Prolog operations are thread-safe. This implies two
Prolog threads can operate on the same dynamic predicate without
corrupting the consistency of the predicate. This section deals with
user-level _m_u_t_e_x_e_s (called _m_o_n_i_t_o_r_s in ADA or _c_r_i_t_i_c_a_l_-_s_e_c_t_i_o_n_s by
Microsoft). A mutex is a MMUUTTual EEXXclusive device, which implies at
most one thread can _h_o_l_d a mutex.
Mutexes are used to realise related updates to the Prolog database.
With `related', we refer to the situation where a `transaction' implies
two or more changes to the Prolog database. For example, we have
a predicate address/2, representing the address of a person and we
want to change the address by retracting the old and asserting the
new address. Between these two operations the database is invalid:
this person has either no address or two addresses, depending on the
assert/retract order.
Here is how to realise a correct update:
________________________________________________________________________| |
|:- initialization |
| mutex_create(addressbook). |
| |
|change_address(Id, Address) :- |
| mutex_lock(addressbook), |
| retractall(address(Id, _)), |
| asserta(address(Id, Address)), |
||_______mutex_unlock(addressbook)._____________________________________ ||
mmuutteexx__ccrreeaattee((_?_M_u_t_e_x_I_d))
Create a mutex. If _M_u_t_e_x_I_d is an atom, a _n_a_m_e_d mutex is created.
If it is a variable, an anonymous mutex reference is returned.
There is no limit to the number of mutexes that can be created.
mmuutteexx__ccrreeaattee((_-_M_u_t_e_x_I_d_, _+_O_p_t_i_o_n_s))
Create a mutex using options. Defined options are:
aalliiaass((_A_l_i_a_s))
Set the alias name. Using mutex_create(_X_, _[_a_l_i_a_s_(_n_a_m_e_)_]) is
preferred over the equivalent mutex_create(_n_a_m_e).
mmuutteexx__ddeessttrrooyy((_+_M_u_t_e_x_I_d))
Destroy a mutex. After this call, _M_u_t_e_x_I_d becomes invalid and
further references yield an existence_error exception.
wwiitthh__mmuutteexx((_+_M_u_t_e_x_I_d_, _:_G_o_a_l))
Execute _G_o_a_l while holding _M_u_t_e_x_I_d. If _G_o_a_l leaves choice-points,
these are destroyed (as in once/1). The mutex is unlocked
regardless of whether _G_o_a_l succeeds, fails or raises an exception.
An exception thrown by _G_o_a_l is re-thrown after the mutex
has been successfully unlocked. See also mutex_create/1 and
setup_call_cleanup/3.
Although described in the thread-section, this predicate is also
available in the single-threaded version, where it behaves simply
as once/1.
mmuutteexx__lloocckk((_+_M_u_t_e_x_I_d))
Lock the mutex. Prolog mutexes are _r_e_c_u_r_s_i_v_e mutexes: they can be
locked multiple times by the same thread. Only after unlocking
it as many times as it is locked, the mutex becomes available for
locking by other threads. If another thread has locked the mutex
the calling thread is suspended until to mutex is unlocked.
If _M_u_t_e_x_I_d is an atom, and there is no current mutex with that
name, the mutex is created automatically using mutex_create/1.
This implies named mutexes need not be declared explicitly.
Please note that locking and unlocking mutexes should be paired
carefully. Especially make sure to unlock mutexes even if
the protected code fails or raises an exception. For most
common cases use with_mutex/2, which provides a safer way for
handling Prolog-level mutexes. The predicate setup_call_cleanup/3
is another way to guarantee that the mutex is unlocked while
retaining non-determinism.
mmuutteexx__ttrryylloocckk((_+_M_u_t_e_x_I_d))
As mutex_lock/1, but if the mutex is held by another thread, this
predicates fails immediately.
mmuutteexx__uunnlloocckk((_+_M_u_t_e_x_I_d))
Unlock the mutex. This can only be called if the mutex is held by
the calling thread. If this is not the case, a permission_error
exception is raised.
mmuutteexx__uunnlloocckk__aallll
Unlock all mutexes held by the current thread. This call is
especially useful to handle thread-termination using abort/0 or
exceptions. See also thread_signal/2.
mmuutteexx__pprrooppeerrttyy((_?_M_u_t_e_x_I_d_, _?_P_r_o_p_e_r_t_y))
True if Property is a property of MutexId. Defined properties are:
aalliiaass((_A_l_i_a_s))
Mutex has defined alias name. See mutex_create/2 using the
`alias' option.
ssttaattuuss((_S_t_a_t_u_s))
Current status of the mutex. One of unlocked if the mutex
is currently not locked or locked(_O_w_n_e_r_, _C_o_u_n_t) if mutex is
locked _C_o_u_n_t times by threads _O_w_n_e_r. Note that, unless _O_w_n_e_r
is the calling thread, the locked status can change at any
time. There is no useful application of this property, except
for diagnostic purposes.
88..55 TThhrreeaadd--ssuuppppoorrtt lliibbrraarryy((tthhrreeaadduuttiill))
This library defines a couple of useful predicates for demonstrating
and debugging multi-threaded applications. This library is certainly
not complete.
tthhrreeaaddss
Lists all current threads and their status.
jjooiinn__tthhrreeaaddss
Join all terminated threads. For normal applications, dealing with
terminated threads must be part of the application logic, either
detaching the thread before termination or making sure it will be
joined. The predicate join_threads/0 is intended for interactive
sessions to reclaim resources from threads that died unexpectedly
during development.
iinntteerraaccttoorr
Create a new console and run the Prolog top-level in this new
console. See also attach_console/0. In the Windows version a new
interactor can also be created from the Run/New thread menu.
88..55..11 DDeebbuuggggiinngg tthhrreeaaddss
Support for debugging threads is still very limited. Debug and
trace mode are flags that are local to each thread. Individual
threads can be debugged either using the graphical debugger described
in section 3.5 (see tspy/1 and friends) or by attaching a console
to the thread and running the traditional command-line debugger (see
attach_console/0). When using the graphical debugger, the debugger
must be _l_o_a_d_e_d from the main thread (for example using guitracer)
before gtrace/0 can be called from a thread.
aattttaacchh__ccoonnssoollee
If the current thread has no console attached yet, attach one
and redirect the user streams (input, output, and error) to the
new console window. On Unix systems the console is an xterm
application. On Windows systems this requires the GUI version
swipl-win.exe rather than the console based swipl.exe.
This predicate has a couple of useful applications. One is to
separate (debugging) I/O of different threads. Another is to start
debugging a thread that is running in the background. If thread
10 is running, the following sequence starts the tracer on this
thread:
____________________________________________________________________| |
||?-_thread_signal(10,_(attach_console,_trace)).____________________ ||
ttddeebbuugg((_+_T_h_r_e_a_d_I_d))
Prepare _T_h_r_e_a_d_I_d for debugging using the graphical tracer. This
implies installing the tracer hooks in the thread and switching the
thread to debug-mode using debug/0. The call is injected into
the thread using thread_signal/2. We refer to the documentation
of this predicate for asynchronous interaction with threads. New
threads created inherit their debug-mode from the thread that
created them.
ttddeebbuugg
Call tdebug/1 in all running threads.
ttnnooddeebbuugg((_+_T_h_r_e_a_d_I_d))
Disable debugging thread _T_h_r_e_a_d_I_d.
ttnnooddeebbuugg
Disable debugging in all threads.
ttssppyy((_:_S_p_e_c_, _+_T_h_r_e_a_d_I_d))
Set a spy-point as spy/1 and enable the thread for debugging using
tdebug/1. Note that a spy-point is a global flag on a predicate
that is visible from all threads. Spy points are honoured in all
threads that are in debug-mode and ignored in threads that are in
nodebug mode.
ttssppyy((_:_S_p_e_c))
Set a spy-point as spy/1 and enable debugging in all threads
using tdebug/0. Note that removing spy-points can be done using
nospy/1. Disabling spy-points in a specific thread is achieved by
tnodebug/1.
88..55..22 PPrrooffiilliinngg tthhrreeaaddss
In the current implementation, at most one thread can be profiled at
any moment. Any thread can call profile/1 to profile the execution of
some part of its code. The predicate tprofile/1 allows for profiling
the execution of another thread until the user stops collecting profile
data.
ttpprrooffiillee((_+_T_h_r_e_a_d_I_d))
Start collecting profile data in _T_h_r_e_a_d_I_d and ask the user to hit
<_r_e_t_u_r_n> to stop the profiler. See section 4.39 for details on the
execution profiler.
88..66 UUnnbboouunnddeedd tthhrreeaadd ccrreeaattiioonn
(SWI-)Prolog threads are rather heavyweight objects, notably on 32-bit
systems, because every thread uses a considerable amount of _v_i_r_t_u_a_l
address space. SWI-Prolog threads claim the stack _l_i_m_i_t in virtual
address space for each of the runtime stacks, while on 32-bit systems
this resource is generally limited somewhere between 1GB and 3.5 GB,
depending on the operating system and operating configuration.
If SWI-Prolog starts a thread it copies the initial goal and starts a
POSIX thread which allocates a new Prolog engine that starts proving
the given goal. If allocation of the engine fails, typically due to
lack of virtual memory space, the thread is still created with minimal
(8 Kbyte) stacks and immediately calls its exit handlers. See the
option at_exit(_G_o_a_l). Although this mechanism allows for handling this
type of error gracefully it is not safe to rely on it. Allocating an
engine that nearly exhausts virtual address space may cause failures
in normal memory allocation that can appear anywhere in Prolog or the
foreign libraries used by it. Such errors typically kill the process
with a fatal error.
Especially on 32-bit hardware, the design of the application must
consider this issue and avoid ungraceful termination being conservative
with the dynamic creation of new threads.
88..77 MMuullttii--tthhrreeaaddeedd mmiixxeedd CC aanndd PPrroolloogg aapppplliiccaattiioonnss
All foreign-code linked to the multi-threading version of SWI-Prolog
should be thread-safe (_r_e_e_n_t_r_a_n_t) or guarded in Prolog using
with_mutex/2 from simultaneous access from multiple Prolog threads.
If you want to write mixed multi-threaded C and Prolog application
you should first familiarise yourself with writing multi-threaded
applications in C (C++).
If you are using SWI-Prolog as an embedded engine in a multi-threaded
application you can access the Prolog engine from multiple threads by
creating an _e_n_g_i_n_e in each thread from which you call Prolog. Without
creating an engine, a thread can only use functions that do _n_o_t use the
term_t type (for example PL_new_atom()).
The system supports two models. Section 8.7.1 describes the original
one-to-one mapping. In this schema a native thread attaches a Prolog
thread if it needs to call Prolog and detaches it when finished, as
opposed to the model from section 8.7.2 where threads temporarily use a
Prolog engine.
88..77..11 AA PPrroolloogg tthhrreeaadd ffoorr eeaacchh nnaattiivvee tthhrreeaadd ((oonnee--ttoo--oonnee))
In the one-to-one model, the thread that called PL_initialise()
has a Prolog engine attached. If another C-thread in the
system wishes to call Prolog it must first attach an engine using
PL_thread_attach_engine() and call PL_thread_destroy_engine()after all
Prolog work is finished. This model is especially suitable with
long running threads that need to do Prolog work regularly. See
section 8.7.2 for the alternative many-to-many model.
int PPLL__tthhrreeaadd__sseellff()
Returns the integer Prolog identifier of the engine or -1 if
the calling thread has no Prolog engine. This function is also
provided in the single-threaded version of SWI-Prolog, where it
returns -2.
int PPLL__uunniiffyy__tthhrreeaadd__iidd(_t_e_r_m___t _t_, _i_n_t _i)
Unify _t with the Prolog thread identifier for thread _i. Thread
identifiers are normally returned from PL_thread_self(). Returns
-1 if the thread does not exists or the unification result.
int PPLL__tthhrreeaadd__aattttaacchh__eennggiinnee(_c_o_n_s_t _P_L___t_h_r_e_a_d___a_t_t_r___t _*_a_t_t_r)
Creates a new Prolog engine in the calling thread. If the calling
thread already has an engine the reference count of the engine is
incremented. The _a_t_t_r argument can be NULL to create a thread with
default attributes. Otherwise it is a pointer to a structure with
the definition below. For any field with value `0', the default
is used. The cancel field may be filled with a pointer to a
function that is called when PL_cleanup() terminates the running
Prolog engines. If this function is not present or returns FALSE
pthread_cancel() is used.
____________________________________________________________________| |
| typedef struct |
| { unsigned long local_size; /* Stack sizes (K-bytes) */ |
| unsigned long global_size; |
| unsigned long trail_size; |
| unsigned long argument_size; |
| char * alias; /* alias name */ |
| int (*cancel)(int thread); |
||}_PL_thread_attr_t;_______________________________________________ ||
The structure may be destroyed after PL_thread_attach_engine() has
returned. On success it returns the Prolog identifier for the
thread (as returned by PL_thread_self()). If an error occurs, -1
is returned. If this Prolog is not compiled for multi-threading,
-2 is returned.
int PPLL__tthhrreeaadd__ddeessttrrooyy__eennggiinnee()
Destroy the Prolog engine in the calling thread. Only takes
effect if PL_thread_destroy_engine() is called as many times as
PL_thread_attach_engine() in this thread. Returns TRUE on success
and FALSE if the calling thread has no engine or this Prolog does
not support threads.
Please note that construction and destruction of engines are
relatively expensive operations. Only destroy an engine if
performance is not critical and memory is a critical resource.
int PPLL__tthhrreeaadd__aatt__eexxiitt(_v_o_i_d _(_*_f_u_n_c_t_i_o_n_)_(_v_o_i_d _*_)_, _v_o_i_d _*_c_l_o_s_u_r_e_, _i_n_t _g_l_o_b_a_l)
Register a handle to be called as the Prolog engine is destroyed.
The handler function is called with one void * argument holding
_c_l_o_s_u_r_e. If _g_l_o_b_a_l is TRUE, the handler is installed _f_o_r _a_l_l
_t_h_r_e_a_d_s. Globally installed handlers are executed after the
thread-local handlers. If the handler is installed local for the
current thread only (_g_l_o_b_a_l == FALSE) it is stored in the same FIFO
queue as used by thread_at_exit/1.
88..77..22 PPoooolliinngg PPrroolloogg eennggiinneess ((mmaannyy--ttoo--mmaannyy))
In this model Prolog engines live as entities that are independent from
threads. If a thread needs to call Prolog it takes one of the engines
from the pool and returns the engine when done. This model is suitable
in the following identified cases:
o _C_o_m_p_a_t_i_b_i_l_i_t_y _w_i_t_h _t_h_e _s_i_n_g_l_e_-_t_h_r_e_a_d_e_d _v_e_r_s_i_o_n
In the single-threaded version, foreign threads must serialise
access the one and only thread engine. Functions from this section
allow sharing one engine among multiple threads.
o _M_a_n_y _n_a_t_i_v_e _t_h_r_e_a_d_s _w_i_t_h _i_n_f_r_e_q_u_e_n_t _P_r_o_l_o_g _w_o_r_k
Prolog threads are expensive in terms of memory and time to create
and destroy them. Systems that use a large number of threads that
only infrequently need to call Prolog, better take an engine from a
pool and return it there.
o _P_r_o_l_o_g _s_t_a_t_u_s _m_u_s_t _b_e _h_a_n_d_e_d _t_o _a_n_o_t_h_e_r _t_h_r_e_a_d
This situation has been identified by Uwe Lesta when creating a
.NET interface for SWI-Prolog. .NET distributes work for active
internet connection over a pool of threads. If a Prolog engine
contains state for a connection, it must be possible to detach the
engine from a thread and re-attach it to another thread handling
the same connection.
PL_engine_t PPLL__ccrreeaattee__eennggiinnee(_P_L___t_h_r_e_a_d___a_t_t_r___t _*_a_t_t_r_i_b_u_t_e_s)
Create a new Prolog engine. _a_t_t_r_i_b_u_t_e_s is described with
PL_thread_attach_engine(). Any thread can make this call after
PL_initialise() returned success. The returned engine is not
attached to any thread and lives until PL_destroy_engine()is used
on the returned handle.
In the single-threaded version this call always returns NULL,
indicating failure.
int PPLL__ddeessttrrooyy__eennggiinnee(_P_L___e_n_g_i_n_e___t _e)
Destroy the given engine. Destroying an engine is only allowed if
the engine is not attached to any thread or attached to the calling
thread. On success this function returns TRUE, on failure the
return value is FALSE.
int PPLL__sseett__eennggiinnee(_P_L___e_n_g_i_n_e___t _e_n_g_i_n_e_, _P_L___e_n_g_i_n_e___t _*_o_l_d)
Make the calling thread ready to use _e_n_g_i_n_e. If _o_l_d is non-NULL
the current engine associated with the calling thread is stored
at the given location. If _e_n_g_i_n_e equals PL_ENGINE_MAIN the
initial engine is attached to the calling thread. If _e_n_g_i_n_e is
PL_ENGINE_CURRENT the engine is not changed. This can be used
to query the current engine. This call returns PL_ENGINE_SET if
the engine was switched successfully, PL_ENGINE_INVAL if _e_n_g_i_n_e is
not a valid engine handle and PL_ENGINE_INUSE if the engine is
currently in use by another thread.
Engines can be changed at any time. For example, it is allowed
to select an engine to initiate a Prolog goal, detach it and at a
later moment execute the goal from another thread. Note however
that the term_t, qid_t and fid_t types are interpreted relative to
the engine for which they are created. Behaviour when passing one
of these types from one engine to another is undefined.
In the single-threaded version this call only succeeds if _e_n_g_i_n_e
refers to the main engine.
88..77..22..11 EEnnggiinneess iinn ssiinnggllee--tthhrreeaaddeedd SSWWII--PPrroolloogg
In theory it is possible to port the API of section 8.7.2 to the
single-threaded version of SWI-Prolog. This allows C-programs to
control multiple Prolog engines concurrently. This has not yet been
realised.
88..88 MMuullttiitthhrreeaaddiinngg aanndd tthhee XXPPCCEE ggrraapphhiiccss ssyysstteemm
GUI applications written in XPCE can benefit from the multi-threaded
version of XPCE/SWI-Prolog if they need to do expensive computations
that block to UI in the single-threaded version.
Due to various technical problems on both Windows and Unix/X11
threading is best exploited by handing long computations to their own
thread.
The XPCE message passing system is guarded with a single _m_u_t_e_x, which
synchronises both access from Prolog and activation through the GUI.
In MS-Windows, GUI events are processed by the thread that created
the window in which the event occurred, whereas in Unix/X11 they are
processed by the thread that dispatches messages.
Some tentative work is underway to improve the integration between
XPCE and multi-threaded SWI-Prolog. There are two sets of support
predicates. The first model assumes that XPCE is running in the
main thread and background threads are used for computation. In the
second model, XPCE event dispatching runs in the background, while the
foreground thread is used for Prolog.
XXPPCCEE iinn tthhee ffoorreeggrroouunndd Using XPCE in the foreground simplifies
debugging of the UI and generally provides the most comfortable
development environment. The GUI creates new threads using
thread_create/3 and, after work in the thread is completed,
the sub-thread signals the main thread of the completion using
in_pce_thread/1.
iinn__ppccee__tthhrreeaadd((_:_G_o_a_l))
Assuming XPCE is running in the foreground thread, this call gives
background threads the opportunity to make calls to the XPCE
thread. A call to in_pce_thread/1 succeeds immediately, copying
_G_o_a_l to the XPCE thread. _G_o_a_l is added to the XPCE event-queue
and executed synchronous to normal user events like typing and
clicking.
XXPPCCEE iinn tthhee bbaacckkggrroouunndd
In this model a thread for running XPCE is created using pce_dispatch/1
and actions are sent to this thread using pce_call/1.
ppccee__ddiissppaattcchh((_+_O_p_t_i_o_n_s))
Create a Prolog thread with the alias-name pce for XPCE event-
handling. In the X11 version this call creates a thread that
executes the X11 event-dispatch loop. In MS-Windows it creates
a thread that executes a windows event-dispatch loop. The XPCE
event-handling thread has the alias pce. _O_p_t_i_o_n_s specifies the
thread-attributes as thread_create/3.
ppccee__ccaallll((_:_G_o_a_l))
Post _G_o_a_l to the pce thread, executing it synchronous with the
thread's event-loop. The pce_call/1 predicate returns immediately
without waiting. Note that _G_o_a_l is _c_o_p_i_e_d to the pce thread.
For further information about XPCE
in threaded applications, please visit
http://gollem.science.uva.nl/twiki/pl/bin/view/Development/MultiThreadsXPCE
CChhaapptteerr 99.. FFOORREEIIGGNN LLAANNGGUUAAGGEE IINNTTEERRFFAACCEE
SWI-Prolog offers a powerful interface to C
[Kernighan & Ritchie, 1978]. The main design objectives of the
foreign language interface are flexibility and performance. A foreign
predicate is a C-function that has the same number of arguments as
the predicate represented. C-functions are provided to analyse the
passed terms, convert them to basic C-types as well as to instantiate
arguments using unification. Non-deterministic foreign predicates are
supported, providing the foreign function with a handle to control
backtracking.
C can call Prolog predicates, providing both an query interface and
an interface to extract multiple solutions from an non-deterministic
Prolog predicate. There is no limit to the nesting of Prolog calling
C, calling Prolog, etc. It is also possible to write the `main' in C
and use Prolog as an embedded logical engine.
99..11 OOvveerrvviieeww ooff tthhee IInntteerrffaaccee
A special include file called SWI-Prolog.h should be included with each
C-source file that is to be loaded via the foreign interface. The
installation process installs this file in the directory include in the
SWI-Prolog home directory (?- current_prolog_flag(home, Home).). This
C-header file defines various data types, macros and functions that can
be used to communicate with SWI-Prolog. Functions and macros can be
divided into the following categories:
o Analysing Prolog terms
o Constructing new terms
o Unifying terms
o Returning control information to Prolog
o Registering foreign predicates with Prolog
o Calling Prolog from C
o Recorded database interactions
o Global actions on Prolog (halt, break, abort, etc.)
99..22 LLiinnkkiinngg FFoorreeiiggnn MMoodduulleess
Foreign modules may be linked to Prolog in two ways. Using _s_t_a_t_i_c
_l_i_n_k_i_n_g, the extensions, a (short) file defining main() which attaches
the extensions calls Prolog and the SWI-Prolog kernel distributed as a
C-library are linked together to form a new executable. Using _d_y_n_a_m_i_c
_l_i_n_k_i_n_g, the extensions are linked to a shared library (.so file on
most Unix systems) or dynamic-link library (.DLL file on Microsoft
platforms) and loaded into the running Prolog process..
99..22..11 WWhhaatt lliinnkkiinngg iiss pprroovviiddeedd??
The _s_t_a_t_i_c _l_i_n_k_i_n_g schema can be used on all versions of SWI-Prolog.
Whether or not dynamic linking is supported can be deduced from the
Prolog flag open_shared_object (see current_prolog_flag/2). If this
Prolog flag yields true, open_shared_object/2 and related predicates are
defined. See section 9.2.3 for a suitable high-level interface to
these predicates.
99..22..22 WWhhaatt kkiinndd ooff llooaaddiinngg sshhoouulldd II bbee uussiinngg??
All described approaches have their advantages and disadvantages.
Static linking is portable and allows for debugging on all platforms.
It is relatively cumbersome and the libraries you need to pass to the
linker may vary from system to system, though the utility program
swipl-ld described in section 9.5 often hides these problems from the
user.
Loading shared objects (DLL files on Windows) provides sharing and
protection and is generally the best choice. If a saved-state is
created using qsave_program/[1,2], an initialization/1 directive may be
used to load the appropriate library at startup.
Note that the definition of the foreign predicates is the same,
regardless of the linking type used.
99..22..33 lliibbrraarryy((sshhlliibb)):: UUttiilliittyy lliibbrraarryy ffoorr llooaaddiinngg ffoorreeiiggnn oobbjjeeccttss
((DDLLLLss,, sshhaarreedd oobbjjeeccttss))
This section discusses the functionality of the (autoload)
library(shlib), providing an interface to manage shared libraries. We
describe the procedure for using a foreign resource (DLL in Windows and
shared object in Unix) called mylib.
First, one must assemble the resource and make it compatible to
SWI-Prolog. The details for this vary between platforms. The plld(1)
utility can be used to deal with this in a portable manner. The
typical commandline is:
________________________________________________________________________| |
|plld|-o_mylib_file.{c,o,cc,C}_...______________________________________ | |
Make sure that one of the files provides a global function
install_mylib() that initialises the module using calls to
PL_register_foreign(). Here is a simple example file mylib.c, which
creates a Windows MessageBox:
________________________________________________________________________| |
|#include <windows.h> |
|#include <SWI-Prolog.h> |
| |
|static foreign_t |
|pl_say_hello(term_t to) |
|{ char *a; |
| |
| if ( PL_get_atom_chars(to, &a) ) |
| { MessageBox(NULL, a, "DLL test", MB_OK|MB_TASKMODAL); |
| |
| PL_succeed; |
| } |
| |
| PL_fail; |
|} |
| |
|install_t |
|install_mylib() |
|{ PL_register_foreign("say_hello", 1, pl_say_hello, 0); |
|}|_____________________________________________________________________ | |
Now write a file mylib.pl:
________________________________________________________________________| |
|:- module(mylib, [ say_hello/1 ]). |
|:-|use_foreign_library(foreign(mylib)).________________________________ | |
The file mylib.pl can be loaded as a normal Prolog file and provides
the predicate defined in C.
llooaadd__ffoorreeiiggnn__lliibbrraarryy((_:_F_i_l_e_S_p_e_c)) _[_d_e_t_]
llooaadd__ffoorreeiiggnn__lliibbrraarryy((_:_F_i_l_e_S_p_e_c_, _+_E_n_t_r_y_:_a_t_o_m)) _[_d_e_t_]
Load a _s_h_a_r_e_d _o_b_j_e_c_t or _D_L_L. After loading the _E_n_t_r_y function
is called without arguments. The default entry function is
composed from =install_=, followed by the file base-name. E.g.,
the load-call below calls the function install_mylib(). If the
platform prefixes extern functions with =_=, this prefix is added
before calling.
____________________________________________________________________| |
| ... |
| load_foreign_library(foreign(mylib)), |
||______..._________________________________________________________ ||
__________________________________________________________Parameters__F_i_l_e_S_p_e_cis a specification for absolute_file_name/3.
If searching the file fails, the plain name
is passed to the OS to try the default
method of the OS for locating foreign objects.
The default definition of file_search_path/2
searches <prolog home>/lib/<arch> on Unix and
<prolog home>/bin on Windows.
SSeeee aallssoo use_foreign_library/1,2 are intended for use in
directives.
uussee__ffoorreeiiggnn__lliibbrraarryy((_+_F_i_l_e_S_p_e_c)) _[_d_e_t_]
uussee__ffoorreeiiggnn__lliibbrraarryy((_+_F_i_l_e_S_p_e_c_, _+_E_n_t_r_y_:_a_t_o_m)) _[_d_e_t_]
Load and install a foreign library as load_foreign_library/1,2 and
register the installation using initialization/2 with the option
now. This is similar to using:
____________________________________________________________________| |
||:-_initialization(load_foreign_library(foreign(mylib))).__________ ||
but using the initialization/1 wrapper causes the library to be
loaded _a_f_t_e_r loading of the file in which it appears is completed,
while use_foreign_library/1 loads the library _i_m_m_e_d_i_a_t_e_l_y. I.e.
the difference is only relevant if the remainder of the file uses
functionality of the C-library.
uunnllooaadd__ffoorreeiiggnn__lliibbrraarryy((_+_F_i_l_e_S_p_e_c)) _[_d_e_t_]
uunnllooaadd__ffoorreeiiggnn__lliibbrraarryy((_+_F_i_l_e_S_p_e_c_, _+_E_x_i_t_:_a_t_o_m)) _[_d_e_t_]
Unload a _s_h_a_r_e_d _o_b_j_e_c_t or _D_L_L. After calling the _E_x_i_t function,
the shared object is removed from the process. The default
exit function is composed from =uninstall_=, followed by the file
base-name.
ccuurrrreenntt__ffoorreeiiggnn__lliibbrraarryy((_?_F_i_l_e_, _?_P_u_b_l_i_c))
Query currently loaded shared libraries.
rreellooaadd__ffoorreeiiggnn__lliibbrraarriieess
Reload all foreign libraries loaded (after restore of a state
created using qsave_program/2.
99..22..44 LLooww--lleevveell ooppeerraattiioonnss oonn sshhaarreedd lliibbrraarriieess
The interface defined in this section allows the user to load shared
libraries (.so files on most Unix systems, .dll files on Windows).
This interface is portable to Windows as well as to Unix machines
providing dlopen(2) (Solaris, Linux, FreeBSD, Irix and many more)
or shl_open(2) (HP/UX). It is advised to use the predicates from
section 9.2.3 in your application.
ooppeenn__sshhaarreedd__oobbjjeecctt((_+_F_i_l_e_, _-_H_a_n_d_l_e))
_F_i_l_e is the name of a shared object file (called dynamic load
library in MS-Windows). This file is attached to the current
process and _H_a_n_d_l_e is unified with a handle to the library.
Equivalent to open_shared_object(File, [], Handle). See also
load_foreign_library/[1,2].
On errors, an exception shared_object(_A_c_t_i_o_n_, _M_e_s_s_a_g_e) is raised.
_M_e_s_s_a_g_e is the return value from dlerror().
ooppeenn__sshhaarreedd__oobbjjeecctt((_+_F_i_l_e_, _-_H_a_n_d_l_e_, _+_O_p_t_i_o_n_s))
As open_shared_object/2, but allows for additional flags to be
passed. _O_p_t_i_o_n_s is a list of atoms. now implies the symbols are
resolved immediately rather than lazy (default). global implies
symbols of the loaded object are visible while loading other shared
objects (by default they are local). Note that these flags may not
be supported by your operating system. Check the documentation of
dlopen() or equivalent on your operating system. Unsupported flags
are silently ignored.
cclloossee__sshhaarreedd__oobbjjeecctt((_+_H_a_n_d_l_e))
Detach the shared object identified by _H_a_n_d_l_e.
ccaallll__sshhaarreedd__oobbjjeecctt__ffuunnccttiioonn((_+_H_a_n_d_l_e_, _+_F_u_n_c_t_i_o_n))
Call the named function in the loaded shared library. The function
is called without arguments and the return-value is ignored.
Normally this function installs foreign language predicates using
calls to PL_register_foreign().
99..22..55 SSttaattiicc LLiinnkkiinngg
Below is an outline of the files structure required for statically
linking SWI-Prolog with foreign extensions. \ldots/pl refers to the
SWI-Prolog home directory (see the Prolog flag home). <_a_r_c_h> refers to
the architecture identifier that may be obtained using the Prolog flag
arch.
.../pl/runtime/<_a_r_c_h>/libswipl.a SWI-Library
.../pl/include/SWI-Prolog.h Include file
.../pl/include/SWI-Stream.h Stream I/O include file
.../pl/include/SWI-Exports Export declarations (AIX only)
.../pl/include/stub.c Extension stub
The definition of the foreign predicates is the same as for
dynamic linking. Unlike with dynamic linking however, there is no
initialisation function. Instead, the file \ldots/pl/include/stub.c
may be copied to your project and modified to define the foreign
extensions. Below is stub.c, modified to link the lowercase example
described later in this chapter:
________________________________________________________________________| |
|#include <stdio.h> |
|#include <SWI-Prolog.h> |
| |
|extern foreign_t pl_lowercase(term, term); |
| |
|PL_extension predicates[] = |
|{ |
|/*{ "name", arity, function, PL_FA_<flags> },*/ |
| |
| { "lowercase", 2 pl_lowercase, 0 }, |
| { NULL, 0, NULL, 0 } /* terminating line */ |
|}; |
| |
| |
|int |
|main(int argc, char **argv) |
|{ PL_register_extensions(predicates); |
| |
| if ( !PL_initialise(argc, argv) ) |
| PL_halt(1); |
| |
| PL_install_readline(); /* delete if not required */ |
| |
| PL_halt(PL_toplevel() ? 0 : 1); |
|}|_____________________________________________________________________ | |
Now, a new executable may be created by compiling this file and
linking it to libpl.a from the runtime directory and the libraries
required by both the extensions and the SWI-Prolog kernel. This
may be done by hand, or using the swipl-ld utility described in
secrefplld. If the linking is performed `by hand', the command-line
option -dump-runtime-variables (see section 2.4) can be used to obtain
the required paths, libraries and linking options to link the new
executable.
99..33 IInntteerrffaaccee DDaattaa ttyyppeess
99..33..11 TTyyppee term_t:: aa rreeffeerreennccee ttoo aa PPrroolloogg tteerrmm
The principal data-type is term_t. Type term_t is what Quintus calls
QP_term_ref. This name indicates better what the type represents: it
is a _h_a_n_d_l_e for a term rather than the term itself. Terms can only be
represented and manipulated using this type, as this is the only safe
way to ensure the Prolog kernel is aware of all terms referenced by
foreign code and thus allows the kernel to perform garbage-collection
and/or stack-shifts while foreign code is active, for example during a
callback from C.
A term reference is a C unsigned long, representing the offset of a
variable on the Prolog environment-stack. A foreign function is passed
term references for the predicate-arguments, one for each argument. If
references for intermediate results are needed, such references may be
created using PL_new_term_ref() or PL_new_term_refs(). These references
normally live till the foreign function returns control back to Prolog.
Their scope can be explicitly limited using PL_open_foreign_frame() and
PL_close_foreign_frame()/PL_discard_foreign_frame().
A term_t always refers to a valid Prolog term (variable, atom, integer,
float or compound term). A term lives either until backtracking
takes us back to a point before the term was created, the garbage
collector has collected the term or the term was created after a
PL_open_foreign_frame()and PL_discard_foreign_frame()has been called.
The foreign-interface functions can either _r_e_a_d, _u_n_i_f_y or _w_r_i_t_e to
term-references. In the this document we use the following notation
for arguments of type term_t:
term_t +t Accessed in read-mode. The `+'
indicates the argument is `input'.
term_t -t Accessed in write-mode.
term_t ?t Accessed in unify-mode.
Term references are obtained in any of the following ways.
o _P_a_s_s_e_d _a_s _a_r_g_u_m_e_n_t
The C-functions implementing foreign predicates are passed their
arguments as term-references. These references may be read or
unified. Writing to these variables causes undefined behaviour.
o _C_r_e_a_t_e_d _b_y PL_new_term_ref()
A term created by PL_new_term_ref() is normally used to build
temporary terms or be written by one of the interface functions.
For example, PL_get_arg() writes a reference to the term-argument
in its last argument.
o _C_r_e_a_t_e_d _b_y PL_new_term_refs(_i_n_t _n)
This function returns a set of term refs with the same
characteristics as PL_new_term_ref(). See PL_open_query().
o _C_r_e_a_t_e_d _b_y PL_copy_term_ref(_t_e_r_m___t _t)
Creates a new term-reference to the same term as the argument. The
term may be written to. See figure 9.2.
Term-references can safely be copied to other C-variables of type
term_t, but all copies will always refer to the same term.
term_t PPLL__nneeww__tteerrmm__rreeff()
Return a fresh reference to a term. The reference is allocated
on the _l_o_c_a_l stack. Allocating a term-reference may trigger a
stack-shift on machines that cannot use sparse-memory management
for allocation the Prolog stacks. The returned reference describes
a variable.
term_t PPLL__nneeww__tteerrmm__rreeffss(_i_n_t _n)
Return _n new term references. The first term-reference is
returned. The others are _t +1, _t +2, etc. There are two reasons
for using this function. PL_open_query()expects the arguments as
a set of consecutive term references and _v_e_r_y time-critical code
requiring a number of term-references can be written as:
____________________________________________________________________| |
| pl_mypredicate(term_t a0, term_t a1) |
| { term_t t0 = PL_new_term_refs(2); |
| term_t t1 = t0+1; |
| |
| ... |
||}_________________________________________________________________ ||
term_t PPLL__ccooppyy__tteerrmm__rreeff(_t_e_r_m___t _f_r_o_m)
Create a new term reference and make it point initially to the same
term as _f_r_o_m. This function is commonly used to copy a predicate
argument to a term reference that may be written.
void PPLL__rreesseett__tteerrmm__rreeffss(_t_e_r_m___t _a_f_t_e_r)
Destroy all term references that have been created after _a_f_t_e_r,
including _a_f_t_e_r itself. Any reference to the invalidated term
references after this call results in undefined behaviour.
Note that returning from the foreign context to Prolog will
reclaim all references used in the foreign context. This call
is only necessary if references are created inside a loop that
never exits back to Prolog. See also PL_open_foreign_frame(),
PL_close_foreign_frame() and PL_discard_foreign_frame().
99..33..11..11 IInntteerraaccttiioonn wwiitthh tthhee ggaarrbbaaggee ccoolllleeccttoorr aanndd ssttaacckk--sshhiifftteerr
Prolog implements two mechanisms for avoiding stack overflow: garbage
collection and stack expansion. On machines that allow for it, Prolog
will use virtual memory management to detect stack overflow and expand
the runtime stacks. On other machines Prolog will reallocate the
stacks and update all pointers to them. To do so, Prolog needs to know
which data is referenced by C-code. As all Prolog data known by C is
referenced through term references (term_t), Prolog has all information
necessary to perform its memory management without special precautions
from the C-programmer.
99..33..22 OOtthheerr ffoorreeiiggnn iinntteerrffaaccee ttyyppeess
aattoomm__tt An atom in Prologs internal representation. Atoms are pointers
to an opaque structure. They are a unique representation for
represented text, which implies that atom A represents the same
text as atom B if-and-only-if A and B are the same pointer.
Atoms are the central representation for textual constants in
Prolog The transformation of C a character string to an atom
implies a hash-table lookup. If the same atom is needed often, it
is advised to store its reference in a global variable to avoid
repeated lookup.
ffuunnccttoorr__tt A functor is the internal representation of a name/arity
pair. They are used to find the name and arity of a compound term
as well as to construct new compound terms. Like atoms they live
for the whole Prolog session and are unique.
pprreeddiiccaattee__tt Handle to a Prolog predicate. Predicate handles live
forever (although they can loose their definition).
qqiidd__tt Query Identifier. Used by
PL_open_query()/PL_next_solution()/PL_close_query() to handle back-
tracking from C.
ffiidd__tt Frame Identifier. Used by
PL_open_foreign_frame()/PL_close_foreign_frame().
mmoodduullee__tt A module is a unique handle to a Prolog module. Modules are
used only to call predicates in a specific module.
ffoorreeiiggnn__tt Return type for a C-function implementing a Prolog predicate.
ccoonnttrrooll__tt Passed as additional argument to non-deterministic foreign
functions. See PL_retry*() and PL_foreign_context*().
iinnssttaallll__tt Type for the install() and uninstall() functions of shared or
dynamic link libraries. See secrefshlib.
iinntt6644__tt Actually part of the C99 standard rather than Prolog. As
of version 5.5.6, Prolog integers are 64-bit on all hardware.
The C99 type int64_t is defined in the stdint.h standard header
and provides platform independent 64-bit integers. Portable code
accessing Prolog should use this type to exchange integer values.
Please note that PL_get_long() can return FALSE on Prolog integers
outside the long domain. Robust code should not assume any of the
integer fetching functions to succeed if the Prolog term is know to
be an integer.
99..44 TThhee FFoorreeiiggnn IInncclluuddee FFiillee
99..44..11 AArrgguummeenntt PPaassssiinngg aanndd CCoonnttrrooll
If Prolog encounters a foreign predicate at run time it will call
a function specified in the predicate definition of the foreign
predicate. The arguments 1;:::; <_a_r_i_t_y>pass the Prolog arguments to the
goal as Prolog terms. Foreign functions should be declared of type
foreign_t. Deterministic foreign functions have two alternatives to
return control back to Prolog:
_(_r_e_t_u_r_n_) _f_o_r_e_i_g_n___t PPLL__ssuucccceeeedd(())
Succeed deterministically. PL_succeed is defined as return TRUE.
_(_r_e_t_u_r_n_) _f_o_r_e_i_g_n___t PPLL__ffaaiill(())
Fail and start Prolog backtracking. PL_fail is defined as
return FALSE.
99..44..11..11 NNoonn--ddeetteerrmmiinniissttiicc FFoorreeiiggnn PPrreeddiiccaatteess
By default foreign predicates are deterministic. Using the
PL_FA_NONDETERMINISTIC attribute (see PL_register_foreign()) it is
possible to register a predicate as a non-deterministic predicate.
Writing non-deterministic foreign predicates is slightly more
complicated as the foreign function needs context information for
generating the next solution. Note that the same foreign function
should be prepared to be simultaneously active in more than one
goal. Suppose the natural_number_below_n/2 is a non-deterministic
foreign predicate, backtracking over all natural numbers lower than the
first argument. Now consider the following predicate:
________________________________________________________________________| |
|quotient_below_n(Q, N) :- |
| natural_number_below_n(N, N1), |
| natural_number_below_n(N, N2), |
||_______Q_=:=_N1_/_N2,_!.______________________________________________ ||
In this predicate the function natural_number_below_n/2 simultaneously
generates solutions for both its invocations.
Non-deterministic foreign functions should be prepared to handle three
different calls from Prolog:
o _I_n_i_t_i_a_l _c_a_l_l _(PL_FIRST_CALL_)
Prolog has just created a frame for the foreign function and asks
it to produce the first answer.
o _R_e_d_o _c_a_l_l _(PL_REDO_)
The previous invocation of the foreign function associated with the
current goal indicated it was possible to backtrack. The foreign
function should produce the next solution.
o _T_e_r_m_i_n_a_t_e _c_a_l_l _(PL_PRUNED_)
The choice point left by the foreign function has been destroyed by
a cut. The foreign function is given the opportunity to clean the
environment.
Both the context information and the type of call is provided
by an argument of type control_t appended to the argument list
for deterministic foreign functions. The macro PL_foreign_control()
extracts the type of call from the control argument. The
foreign function can pass a context handle using the PL_retry*()
macros and extract the handle from the extra argument using the
PL_foreign_context*() macro.
_(_r_e_t_u_r_n_) _f_o_r_e_i_g_n___t PPLL__rreettrryy((_l_o_n_g))
The foreign function succeeds while leaving a choice point. On
backtracking over this goal the foreign function will be called
again, but the control argument now indicates it is a `Redo' call
and the macro PL_foreign_context() returns the handle passed via
PL_retry(). This handle is a 30 bits signed value (two bits are
used for status indication). Defined as return _PL_retry(_n). See
also PL_succeed().
_(_r_e_t_u_r_n_) _f_o_r_e_i_g_n___t PPLL__rreettrryy__aaddddrreessss((_v_o_i_d _*))
As PL_retry(), but ensures an address as returned by malloc() is
correctly recovered by PL_foreign_context_address(). Defined as
return _PL_retry_address(_n). See also PL_succeed().
_i_n_t PPLL__ffoorreeiiggnn__ccoonnttrrooll((_c_o_n_t_r_o_l___t))
Extracts the type of call from the control argument. The return
values are described above. Note that the function should be
prepared to handle the PL_PRUNED case and should be aware that the
other arguments are not valid in this case.
_l_o_n_g PPLL__ffoorreeiiggnn__ccoonntteexxtt((_c_o_n_t_r_o_l___t))
Extracts the context from the context argument. In the call type
is PL_FIRST_CALL the context value is 0L. Otherwise it is the value
returned by the last PL_retry() associated with this goal (both if
the call type is PL_REDO as PL_PRUNED).
_v_o_i_d _* PPLL__ffoorreeiiggnn__ccoonntteexxtt__aaddddrreessss((_c_o_n_t_r_o_l___t))
Extracts an address as passed in by PL_retry_address().
Note: If a non-deterministic foreign function returns using PL_succeed
or PL_fail, Prolog assumes the foreign function has cleaned its
environment. NNoo call with control argument PL_PRUNED will follow.
The code of figure 9.1 shows a skeleton for a non-deterministic foreign
predicate definition.
________________________________________________________________________| |
|typedef struct /* define a context structure */ |
|{ ... |
|} context; |
| |
|foreign_t |
|my_function(term_t a0, term_t a1, control_t handle) |
|{ struct context * ctxt; |
| |
| switch( PL_foreign_control(handle) ) |
| { case PL_FIRST_CALL: |
| ctxt = malloc(sizeof(struct context)); |
| ... |
| PL_retry_address(ctxt); |
| case PL_REDO: |
| ctxt = PL_foreign_context_address(handle); |
| ... |
| PL_retry_address(ctxt); |
| case PL_PRUNED: |
| ctxt = PL_foreign_context_address(handle); |
| ... |
| free(ctxt); |
| PL_succeed; |
| } |
|}|_____________________________________________________________________ | |
Figure 9.1: Skeleton for non-deterministic foreign functions
99..44..22 AAttoommss aanndd ffuunnccttoorrss
The following functions provide for communication using atoms and
functors.
atom_t PPLL__nneeww__aattoomm(_c_o_n_s_t _c_h_a_r _*)
Return an atom handle for the given C-string. This function always
succeeds. The returned handle is valid as long as the atom is
referenced (see section 9.4.2.1).
const char* PPLL__aattoomm__cchhaarrss(_a_t_o_m___t _a_t_o_m)
Return a C-string for the text represented by the given atom. The
returned text will not be changed by Prolog. It is not allowed to
modify the contents, not even `temporary' as the string may reside
in read-only memory. The returned string becomes invalid if the
atom is garbage-collected (see section 9.4.2.1). Foreign functions
that require the text from an atom passed in a term_t normally use
PL_get_atom_chars() or PL_get_atom_nchars().
functor_t PPLL__nneeww__ffuunnccttoorr(_a_t_o_m___t _n_a_m_e_, _i_n_t _a_r_i_t_y)
Returns a _f_u_n_c_t_o_r _i_d_e_n_t_i_f_i_e_r, a handle for the name/arity pair.
The returned handle is valid for the entire Prolog session.
atom_t PPLL__ffuunnccttoorr__nnaammee(_f_u_n_c_t_o_r___t _f)
Return an atom representing the name of the given functor.
int PPLL__ffuunnccttoorr__aarriittyy(_f_u_n_c_t_o_r___t _f)
Return the arity of the given functor.
99..44..22..11 AAttoommss aanndd aattoomm--ggaarrbbaaggee ccoolllleeccttiioonn
With the introduction of atom-garbage collection in version 3.3.0,
atoms no longer live as long as the process. Instead, their
lifetime is guaranteed only as long as they are referenced. In the
single-threaded version, atom garbage collections are only invoked at
the _c_a_l_l_-_p_o_r_t. In the multi-threaded version (see section 8), they
appear asynchronously, except for the invoking thread.
For dealing with atom garbage collection, two additional functions are
provided:
void PPLL__rreeggiisstteerr__aattoomm(_a_t_o_m___t _a_t_o_m)
Increment the reference count of the atom by one. PL_new_atom()
performs this automatically, returning an atom with a reference
count of at least one.
void PPLL__uunnrreeggiisstteerr__aattoomm(_a_t_o_m___t _a_t_o_m)
Decrement the reference count of the atom. If the reference-count
drops below zero, an assertion error is raised.
Please note that the following two calls are different with respect to
atom garbage collection:
________________________________________________________________________| |
|PL_unify_atom_chars(t, "text"); |
|PL_unify_atom(t,|PL_new_atom("text"));_________________________________ | |
The latter increments the reference count of the atom text, which
effectively ensures the atom will never be collected. It is advised to
use the *_chars() or *_nchars() functions whenever applicable.
99..44..33 AAnnaallyyssiinngg TTeerrmmss vviiaa tthhee FFoorreeiiggnn IInntteerrffaaccee
Each argument of a foreign function (except for the control argument)
is of type term_t, an opaque handle to a Prolog term. Three groups of
functions are available for the analysis of terms. The first just
validates the type, like the Prolog predicates var/1, atom/1, etc and
are called PL_is_*(). The second group attempts to translate the
argument into a C primitive type. These predicates take a term_t and a
pointer to the appropriate C-type and return TRUE or FALSE depending on
successful or unsuccessful translation. If the translation fails, the
pointed-to data is never modified.
99..44..33..11 TTeessttiinngg tthhee ttyyppee ooff aa tteerrmm
int PPLL__tteerrmm__ttyyppee(_t_e_r_m___t)
Obtain the type of a term, which should be a term returned by
one of the other interface predicates or passed as an argument.
The function returns the type of the Prolog term. The type
identifiers are listed below. Note that the extraction functions
PL_ge_t*() also validate the type and thus the two sections below
are equivalent.
____________________________________________________________________| |
| if ( PL_is_atom(t) ) |
| { char *s; |
| |
| PL_get_atom_chars(t, &s); |
| ...; |
| } |
| |
| or |
| |
| char *s; |
| if ( PL_get_atom_chars(t, &s) ) |
| { ...; |
||________}_________________________________________________________ ||
___________________________________________________________________
| PL_VARIABLE |An unbound variable. The value of term|
| |as such is a unique identifier for the|
| |variable. |
| PL_ATOM |A Prolog atom. |
| PL_STRING |A Prolog string. |
| PL_INTEGER |A Prolog integer. |
| PL_FLOAT |A Prolog floating point number. |
| PL_TERM |A compound term. Note that a list is a|
|________________________|compound_term_./2._______________________|
The functions PL_is_<_t_y_p_e> are an alternative to PL_term_type(). The test
PL_is_variable(_t_e_r_m) is equivalent to PL_term_type(_t_e_r_m)== PL_VARIABLE,
but the first is considerably faster. On the other hand, using a
switch over PL_term_type() is faster and more readable then using an
if-then-else using the functions below. All these functions return
either TRUE or FALSE.
int PPLL__iiss__vvaarriiaabbllee(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a variable.
int PPLL__iiss__ggrroouunndd(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a ground term. See also ground/1.
This function is cycle-safe.
int PPLL__iiss__aattoomm(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is an atom.
int PPLL__iiss__ssttrriinngg(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a string.
int PPLL__iiss__iinntteeggeerr(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is an integer.
int PPLL__iiss__ffllooaatt(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a float.
int PPLL__iiss__ccoommppoouunndd(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a compound term.
int PPLL__iiss__ffuunnccttoorr(_t_e_r_m___t_, _f_u_n_c_t_o_r___t)
Returns non-zero if _t_e_r_m is compound and its functor is _f_u_n_c_t_o_r.
This test is equivalent to PL_get_functor(), followed by testing
the functor, but easier to write and faster.
int PPLL__iiss__lliisstt(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a compound term with functor ./2 or the
atom []. See also PL_is_pair() and PL_skip_list().
int PPLL__iiss__ppaaiirr(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is a compound term with functor ./2. See
also PL_is_list() and PL_skip_list().
int PPLL__iiss__aattoommiicc(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is atomic (not variable or compound).
int PPLL__iiss__nnuummbbeerr(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is an integer or float.
int PPLL__iiss__aaccyycclliicc(_t_e_r_m___t)
Returns non-zero if _t_e_r_m is acyclic (i.e. a finite tree).
99..44..33..22 RReeaaddiinngg ddaattaa ffrroomm aa tteerrmm
The functions PL_get_*() read information from a Prolog term. Most of
them take two arguments. The first is the input term and the second is
a pointer to the output value or a term-reference.
int PPLL__ggeett__aattoomm(_t_e_r_m___t _+_t_, _a_t_o_m___t _*_a)
If _t is an atom, store the unique atom identifier over _a. See also
PL_atom_chars() and PL_new_atom(). If there is no need to access
the data (characters) of an atom, it is advised to manipulate atoms
using their handle. As the atom is referenced by _t, it will live
at least as long as _t does. If longer live-time is required, the
atom should be locked using PL_register_atom().
int PPLL__ggeett__aattoomm__cchhaarrss(_t_e_r_m___t _+_t_, _c_h_a_r _*_*_s)
If _t is an atom, store a pointer to a 0-terminated C-string in _s.
It is explicitly nnoott allowed to modify the contents of this string.
Some built-in atoms may have the string allocated in read-only
memory, so `temporary manipulation' can cause an error.
int PPLL__ggeett__ssttrriinngg__cchhaarrss(_t_e_r_m___t _+_t_, _c_h_a_r _*_*_s_, _i_n_t _*_l_e_n)
If _t is a string object, store a pointer to a 0-terminated
C-string in _s and the length of the string in _l_e_n. Note that
this pointer is invalidated by backtracking, garbage-collection and
stack-shifts, so generally the only save operations are to pass it
immediately to a C-function that doesn't involve Prolog.
int PPLL__ggeett__cchhaarrss(_t_e_r_m___t _+_t_, _c_h_a_r _*_*_s_, _u_n_s_i_g_n_e_d _f_l_a_g_s)
Convert the argument term _t to a 0-terminated C-string. _f_l_a_g_s is
a bitwise disjunction from two groups of constants. The first
specifies which term-types should converted and the second how the
argument is stored. Below is a specification of these constants.
BUF_RING implies, if the data is not static (as from an atom), the
data is copied to the next buffer from a ring of 16 buffers. This
is a convenient way of converting multiple arguments passed to a
foreign predicate to C-strings. If BUF_MALLOC is used, the data
must be freed using PL_free() when not needed any longer.
With the introduction of wide-characters (see section 2.17.1), not
all atoms can be converted into a char*. This function fails if _t
is of the wrong type, but also if the text cannot be represented.
See the REP_* flags below for details.
___________________________________________________________________
| CVT_ATOM |Convert if term is an atom |
| CVT_STRING |Convert if term is a string |
| CVT_LIST |Convert if term is a list of integers|
| |between 1 and 255 |
| CVT_INTEGER |Convert if term is an integer (using %d) |
| CVT_FLOAT |Convert if term is a float (using %f) |
| CVT_NUMBER |Convert if term is a integer or float |
| CVT_ATOMIC |Convert if term is atomic |
| CVT_VARIABLE |Convert variable to print-name |
| CVT_WRITE |Convert any term that is not converted|
| |by any of the other flags using write/1.|
| |If no BUF_* is provided, BUF_RING is|
| |implied. |
| CVT_WRITE_CANINICAL |As CVT_WRITE, but use write_canonical/2. |
| CVT_ALL |Convert if term is any of the above,|
|________________________|except_for_CVT_VARIABLE_and_CVT_WRITE____|
| CVT_EXCEPTION |If conversion fails due to a type error,|
| |raise a Prolog type error exception in|
|________________________|addition_to_failure______________________|
| BUF_DISCARDABLE |Data must copied immediately |
| BUF_RING |Data is stored in a ring of buffers |
| BUF_MALLOC |Data is copied to a new buffer returned|
| |by PL_malloc(3). When no longer needed|
|________________________|the_user_must_call_PL_free()_on_the_data.|_
| REP_ISO_LATIN_1 |(0, default). Text is in ISO Latin-1|
| |encoding and the call fails if text|
| |cannot be represented. |
| REP_UTF8 |Convert the text to a UTF-8 string.|
| |This works for all text. |
| REP_MB |Convert to default locale-defined 8-bit|
| |string. Success depends on the locale.|
| |Conversion is done using the wcrtomb()|
|________________________|C-library_function.______________________|
int PPLL__ggeett__lliisstt__cchhaarrss(_+_t_e_r_m___t _l_, _c_h_a_r _*_*_s_, _u_n_s_i_g_n_e_d _f_l_a_g_s)
Same as PL_get_chars(_l_, _s_, _C_V_T___L_I_S_T___f_l_a_g_s), provided _f_l_a_g_s contains
no of the CVT_* flags.
int PPLL__ggeett__iinntteeggeerr(_+_t_e_r_m___t _t_, _i_n_t _*_i)
If _t is a Prolog integer, assign its value over _i. On 32-bit
machines, this is the same as PL_get_long(), but avoids a warning
from the compiler. See also PL_get_long().
int PPLL__ggeett__lloonngg(_t_e_r_m___t _+_t_, _l_o_n_g _*_i)
If _t is a Prolog integer that can be represented as a long, assign
its value over _i. If _t is an integer that cannot be represented by
a C long, this function returns FALSE. If _t is a floating point
number that can be represented as a long, this function succeeds as
well. See also PL_get_int64()
int PPLL__ggeett__iinntt6644(_t_e_r_m___t _+_t_, _i_n_t_6_4___t _*_i)
If _t is a Prolog integer or float that can be represented as a
int64_t, assign its value over _i. Currently all Prolog integers
can be represented using this type, but this might change if
SWI-Prolog introduces unbounded integers.
int PPLL__ggeett__iinnttppttrr(_t_e_r_m___t _+_t_, _i_n_t_p_t_r___t _*_i)
Get an integer that is at least as wide a as a pointer. On most
platforms this is the same as PL_get_long(), but on Win64 pointers
are 8 bytes and longs only 4. Unlike PL_get_pointer(), the value
is not modified.
int PPLL__ggeett__bbooooll(_t_e_r_m___t _+_t_, _i_n_t _*_v_a_l)
If _t has the value true or false, set _v_a_l to the C constant TRUE or
FALSE and return success. otherwise return failure.
int PPLL__ggeett__ppooiinntteerr(_t_e_r_m___t _+_t_, _v_o_i_d _*_*_p_t_r)
In the current system, pointers are represented by Prolog in-
tegers, but need some manipulation to make sure they do
not get truncated due to the limited Prolog integer range.
PL_put_pointer()/PL_get_pointer() guarantees pointers in the range
of malloc() are handled without truncating.
int PPLL__ggeett__ffllooaatt(_t_e_r_m___t _+_t_, _d_o_u_b_l_e _*_f)
If _t is a float or integer, its value is assigned over _f.
int PPLL__ggeett__ffuunnccttoorr(_t_e_r_m___t _+_t_, _f_u_n_c_t_o_r___t _*_f)
If _t is compound or an atom, the Prolog representation of
the name-arity pair will be assigned over _f. See also
PL_get_name_arity() and PL_is_functor().
int PPLL__ggeett__nnaammee__aarriittyy(_t_e_r_m___t _+_t_, _a_t_o_m___t _*_n_a_m_e_, _i_n_t _*_a_r_i_t_y)
If _t is compound or an atom, the functor-name will be assigned
over _n_a_m_e and the arity over _a_r_i_t_y. See also PL_get_functor() and
PL_is_functor().
int PPLL__ggeett__mmoodduullee(_t_e_r_m___t _+_t_, _m_o_d_u_l_e___t _*_m_o_d_u_l_e)
If _t is an atom, the system will lookup or create the corresponding
module and assign an opaque pointer to it over _m_o_d_u_l_e,.
int PPLL__ggeett__aarrgg(_i_n_t _i_n_d_e_x_, _t_e_r_m___t _+_t_, _t_e_r_m___t _-_a)
If _t is compound and index is between 1 and arity (including),
assign _a with a term-reference to the argument.
int _PPLL__ggeett__aarrgg(_i_n_t _i_n_d_e_x_, _t_e_r_m___t _+_t_, _t_e_r_m___t _-_a)
Same as PL_get_arg(), but no checking is performed, nor whether _t
is actually a term, nor whether _i_n_d_e_x is a valid argument-index.
99..44..33..33 EExxcchhaannggiinngg tteexxtt uussiinngg lleennggtthh aanndd ssttrriinngg
All internal text-representation of SWI-Prolog is represented using
char * plus length and allow for _0_-_b_y_t_e_s in them. The foreign library
supports this by implementing a *_nchars() function for each applicable
*_chars() function. Below we briefly present the signatures of these
functions. For full documentation consult the *_chars() function.
int PPLL__ggeett__aattoomm__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _*_l_e_n_, _c_h_a_r _*_*_s)
See PL_get_atom_chars().
int PPLL__ggeett__lliisstt__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _*_l_e_n_, _c_h_a_r _*_*_s)
See PL_get_list_chars().
int PPLL__ggeett__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _*_l_e_n_, _c_h_a_r _*_*_s_, _u_n_s_i_g_n_e_d _i_n_t _f_l_a_g_s)
See PL_get_chars().
int PPLL__ppuutt__aattoomm__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_put_atom_chars().
int PPLL__ppuutt__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_put_string_chars().
int PPLL__ppuutt__lliisstt__nnccooddeess(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_put_list_codes().
int PPLL__ppuutt__lliisstt__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_put_list_chars().
int PPLL__uunniiffyy__aattoomm__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_unify_atom_chars().
int PPLL__uunniiffyy__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_unify_string_chars().
int PPLL__uunniiffyy__lliisstt__nnccooddeess(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_unify_codes().
int PPLL__uunniiffyy__lliisstt__nncchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
See PL_unify_list_chars().
In addition, the following functions are available for creating and
inspecting atoms:
atom_t PPLL__nneeww__aattoomm__nncchhaarrss(_s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_s)
Create a new atom as PL_new_atom(), but from length and characters.
const char * PPLL__aattoomm__nncchhaarrss(_a_t_o_m___t _a_, _s_i_z_e___t _*_l_e_n)
Extract text and length of an atom.
99..44..33..44 WWiiddee cchhaarraacctteerr vveerrssiioonnss
Support for exchange of wide character strings is still under
consideration. The functions dealing with 8-bit character strings
return failure when operating on a wide character atom or Prolog string
object. The functions below can extract and unify both 8-bit and wide
atoms and string objects. Wide character strings are represented as
C arrays of objects of the type pl_wchar_t, which is guaranteed to be
the same as wchar_t on platforms supporting this type. For example, on
MS-Windows, this represents 16-bit UCS2 characters, while using the GNU
C library (glibc) this represents 32-bit UCS4 characters.
atom_t PPLL__nneeww__aattoomm__wwcchhaarrss(_s_i_z_e___t _l_e_n_, _c_o_n_s_t _p_l___w_c_h_a_r___t _*_s)
Create atom from wide-character string as PL_new_atom_nchars() does
for ISO-Latin-1 strings. If _s only contains ISO-Latin-1 characters
a normal byte-array atom is created.
pl_wchar_t* PPLL__aattoomm__wwcchhaarrss(_a_t_o_m___t _a_t_o_m_, _i_n_t _*_l_e_n)
Extract characters from a wide-character atom. Fails (returns
NULL) if _a_t_o_m is not a wide-character atom. This is the
wide-character version of PL_atom_nchars(). Note that only one
of these functions succeeds on a particular atom. Especially,
after creating an atom with PL_new_atom_wchars(), extracting the
text using PL_atom_wchars()will fail if the atom only contains
ISO-Latin-1 characters.
int PPLL__ggeett__wwcchhaarrss(_t_e_r_m___t _t_, _s_i_z_e___t _*_l_e_n_, _p_l___w_c_h_a_r___t _*_*_s_, _u_n_s_i_g_n_e_d _f_l_a_g_s)
Wide-character version of PL_get_chars(). The _f_l_a_g_s argument is
the same as for PL_get_chars().
int PPLL__uunniiffyy__wwcchhaarrss(_t_e_r_m___t _t_, _i_n_t _t_y_p_e_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _p_l___w_c_h_a_r___t _*_s)
Unify _t with a textual representation of the C wide character array
_s. The _a_r_gtype argument defines the Prolog representation and is
one of PL_ATOM, PL_STRING, PL_CODE_LIST or PL_CHAR_LIST.
int PPLL__uunniiffyy__wwcchhaarrss__ddiiffff(_t_e_r_m___t _+_t_, _t_e_r_m___t _-_t_a_i_l_, _i_n_t _t_y_p_e_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _p_l___w_c_h_a_r___t _*_s)
Difference list version of PL_unify_wchars(), only supporting the
types PL_CODE_LIST and PL_CHAR_LIST. It serves two purposes. It
allows for returning very long lists from data read from a stream
without the need for a resizing buffer in C. Also, the use of
difference lists is often practical for further processing in
Prolog. Examples can be found in packages/clib/readutil.c from the
source distribution.
99..44..33..55 RReeaaddiinngg aa lliisstt
The functions from this section are intended to read a Prolog list from
C. Suppose we expect a list of atoms, the following code will print the
atoms, each on a line:
________________________________________________________________________| |
|foreign_t |
|pl_write_atoms(term_t l) |
|{ term_t head = PL_new_term_ref(); /* variable for the elements */|
| term_t list = PL_copy_term_ref(l); /* copy as we need to write */ |
| |
| while( PL_get_list(list, head, list) ) |
| { char *s; |
| |
| if ( PL_get_atom_chars(head, &s) ) |
| Sprintf("%s\n", s); |
| else |
| PL_fail; |
| } |
| |
| return PL_get_nil(list); /* test end for [] */ |
|}|_____________________________________________________________________ | |
int PPLL__ggeett__lliisstt(_t_e_r_m___t _+_l_, _t_e_r_m___t _-_h_, _t_e_r_m___t _-_t)
If _l is a list and not [] assign a term-reference to the head to _h
and to the tail to _t.
int PPLL__ggeett__hheeaadd(_t_e_r_m___t _+_l_, _t_e_r_m___t _-_h)
If _l is a list and not [] assign a term-reference to the head to _h.
int PPLL__ggeett__ttaaiill(_t_e_r_m___t _+_l_, _t_e_r_m___t _-_t)
If _l is a list and not [] assign a term-reference to the tail to _t.
int PPLL__ggeett__nniill(_t_e_r_m___t _+_l)
Succeeds if represents the atom [].
int PPLL__sskkiipp__lliisstt(_t_e_r_m___t _+_l_i_s_t_, _t_e_r_m___t _-_t_a_i_l_, _s_i_z_e___t _*_l_e_n)
This is a multi-purpose function to deal with lists. It allows
for finding the length of a list, checking whether something is a
list, etc. The reference _t_a_i_l is set to point to the end of the
list, _l_e_n is filled with the number of list-cells skipped and the
return-value indicates the status of the list:
PPLL__LLIISSTT
The list is a `proper' list: one that ends in [] and _t_a_i_l is
filled with []
PPLL__PPAARRTTIIAALL__LLIISSTT
The list is `partial' list: one that ends in a variable and
_t_a_i_l is a reference to this variable.
PPLL__CCYYCCLLIICC__TTEERRMM
The list is cyclic (e.g. X = [a_X]). _t_a_i_l points to an
arbitrary cell of the list and _l_e_n is at most twice the
cycle-length of the list.
PPLL__NNOOTT__AA__LLIISSTT
The term _l_i_s_t is not a list at all. _t_a_i_l is bound to
the non-list term and _l_e_n is set to the number of list-cells
skipped.
It is allowed to pass 0 for _t_a_i_l and NULL for _l_e_n.
99..44..33..66 AAnn eexxaammppllee:: ddeeffiinniinngg write/1 iinn CC
Figure 9.2 shows a simplified definition of write/1 to illustrate
the described functions. This simplified version does not deal with
operators. It is called display/1, because it mimics closely the
behaviour of this Edinburgh predicate.
________________________________________________________________________| |
|foreign_t |
|pl_display(term_t t) |
|{ functor_t functor; |
| int arity, len, n; |
| char *s; |
| |
| switch( PL_term_type(t) ) |
| { case PL_VARIABLE: |
| case PL_ATOM: |
| case PL_INTEGER: |
| case PL_FLOAT: |
| PL_get_chars(t, &s, CVT_ALL); |
| Sprintf("%s", s); |
| break; |
| case PL_STRING: |
| PL_get_string_chars(t, &s, &len); |
| Sprintf("\"%s\"", s); |
| break; |
| case PL_TERM: |
| { term_t a = PL_new_term_ref(); |
| |
| PL_get_name_arity(t, &name, &arity); |
| Sprintf("%s(", PL_atom_chars(name)); |
| for(n=1; n<=arity; n++) |
| { PL_get_arg(n, t, a); |
| if ( n > 1 ) |
| Sprintf(", "); |
| pl_display(a); |
| } |
| Sprintf(")"); |
| break; |
| default: |
| PL_fail; /* should not happen */ |
| } |
| } |
| |
| PL_succeed; |
|}|_____________________________________________________________________ | |
Figure 9.2: A Foreign definition of display/1
99..44..44 CCoonnssttrruuccttiinngg TTeerrmmss
Terms can be constructed using functions from the PL_put_*() and
PL_cons_*() families. This approach builds the term `inside-out',
starting at the leaves and subsequently creating compound terms.
Alternatively, terms may be created `top-down', first creating
a compound holding only variables and subsequently unifying the
arguments. This section discusses functions for the first approach.
This approach is generally used for creating arguments for PL_call()
and PL_open_query.
void PPLL__ppuutt__vvaarriiaabbllee(_t_e_r_m___t _-_t)
Put a fresh variable in the term, resetting the term-reference to
its initial state.
void PPLL__ppuutt__aattoomm(_t_e_r_m___t _-_t_, _a_t_o_m___t _a)
Put an atom in the term reference from a handle. See also
PL_new_atom() and PL_atom_chars().
int PPLL__ppuutt__aattoomm__cchhaarrss(_t_e_r_m___t _-_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put an atom in the term-reference constructed from the 0-terminated
string. The string itself will never be referenced by Prolog after
this function.
int PPLL__ppuutt__ssttrriinngg__cchhaarrss(_t_e_r_m___t _-_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put a zero-terminated string in the term-reference. The data will
be copied. See also PL_put_string_nchars().
int PPLL__ppuutt__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _-_t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put a string, represented by a length/start pointer pair in the
term-reference. The data will be copied. This interface can deal
with 0-bytes in the string. See also section 9.4.20.
int PPLL__ppuutt__lliisstt__cchhaarrss(_t_e_r_m___t _-_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Put a list of ASCII values in the term-reference.
int PPLL__ppuutt__iinntteeggeerr(_t_e_r_m___t _-_t_, _l_o_n_g _i)
Put a Prolog integer in the term reference.
int PPLL__ppuutt__iinntt6644(_t_e_r_m___t _-_t_, _i_n_t_6_4___t _i)
Put a Prolog integer in the term reference.
int PPLL__ppuutt__ppooiinntteerr(_t_e_r_m___t _-_t_, _v_o_i_d _*_p_t_r)
Put a Prolog integer in the term-reference. Provided ptr is in the
`malloc()-area', PL_get_pointer() will get the pointer back.
int PPLL__ppuutt__ffllooaatt(_t_e_r_m___t _-_t_, _d_o_u_b_l_e _f)
Put a floating-point value in the term-reference.
int PPLL__ppuutt__ffuunnccttoorr(_t_e_r_m___t _-_t_, _f_u_n_c_t_o_r___t _f_u_n_c_t_o_r)
Create a new compound term from _f_u_n_c_t_o_r and bind _t to this term.
All arguments of the term will be variables. To create a term with
instantiated arguments, either instantiate the arguments using the
PL_unify_*() functions or use PL_cons_functor().
int PPLL__ppuutt__lliisstt(_t_e_r_m___t _-_l)
Same as PL_put_functor(_l_, _P_L___n_e_w___f_u_n_c_t_o_r_(_P_L___n_e_w___a_t_o_m_(_"_._"), 2)).
void PPLL__ppuutt__nniill(_t_e_r_m___t _-_l)
Same as PL_put_atom_chars(_"_[_]_").
void PPLL__ppuutt__tteerrmm(_t_e_r_m___t _-_t_1_, _t_e_r_m___t _+_t_2)
Make _t_1 point to the same term as _t_2.
int PPLL__ccoonnss__ffuunnccttoorr(_t_e_r_m___t _-_h_, _f_u_n_c_t_o_r___t _f_, _._._.)
Create a term, whose arguments are filled from variable argument
list holding the same number of term_t objects as the arity of the
functor. To create the term animal(gnu, 50), use:
____________________________________________________________________| |
| { term_t a1 = PL_new_term_ref(); |
| term_t a2 = PL_new_term_ref(); |
| term_t t = PL_new_term_ref(); |
| functor_t animal2; |
| |
| /* animal2 is a constant that may be bound to a global |
| variable and re-used |
| */ |
| animal2 = PL_new_functor(PL_new_atom("animal"), 2); |
| |
| PL_put_atom_chars(a1, "gnu"); |
| PL_put_integer(a2, 50); |
| PL_cons_functor(t, animal2, a1, a2); |
||}_________________________________________________________________ ||
After this sequence, the term-references _a_1 and _a_2 may be used for
other purposes.
int PPLL__ccoonnss__ffuunnccttoorr__vv(_t_e_r_m___t _-_h_, _f_u_n_c_t_o_r___t _f_, _t_e_r_m___t _a_0)
Creates a compound term like PL_cons_functor(), but _a_0 is an array
of term references as returned by PL_new_term_refs(). The length
of this array should match the number of arguments required by the
functor.
int PPLL__ccoonnss__lliisstt(_t_e_r_m___t _-_l_, _t_e_r_m___t _+_h_, _t_e_r_m___t _+_t)
Create a list (cons-) cell in _l from the head and tail. The code
below creates a list of atoms from a char **. The list is built
tail-to-head. The PL_unify_*() functions can be used to build a
list head-to-tail.
____________________________________________________________________| |
| void |
| put_list(term_t l, int n, char **words) |
| { term_t a = PL_new_term_ref(); |
| |
| PL_put_nil(l); |
| while( --n >= 0 ) |
| { PL_put_atom_chars(a, words[n]); |
| PL_cons_list(l, a, l); |
| } |
||}_________________________________________________________________ ||
Note that _l can be redefined within a PL_cons_list call as shown
here because operationally its old value is consumed before its new
value is set.
99..44..55 UUnniiffyyiinngg ddaattaa
The functions of this sections _u_n_i_f_y terms with other terms or
translated C-data structures. Except for PL_unify(), the functions of
this section are specific to SWI-Prolog. They have been introduced
because they shorten the code for returning data to Prolog and at the
same time make this more efficient by avoiding the need to allocate
temporary term-references and reduce the number of calls to the Prolog
API. Consider the case where we want a foreign function to return the
host name of the machine Prolog is running on. Using the PL_get_*() and
PL_put_*() functions, the code becomes:
________________________________________________________________________| |
|foreign_t |
|pl_hostname(term_t name) |
|{ char buf[100]; |
| |
| if ( gethostname(buf, sizeof(buf)) ) |
| { term_t tmp = PL_new_term_ref(); |
| |
| PL_put_atom_chars(tmp, buf); |
| return PL_unify(name, tmp); |
| } |
| |
| PL_fail; |
|}|_____________________________________________________________________ | |
Using PL_unify_atom_chars(), this becomes:
________________________________________________________________________| |
|foreign_t |
|pl_hostname(term_t name) |
|{ char buf[100]; |
| |
| if ( gethostname(buf, sizeof(buf)) ) |
| return PL_unify_atom_chars(name, buf); |
| |
| PL_fail; |
|}|_____________________________________________________________________ | |
Note that unification functions that perform multiple bindings may
leave part of the bindings in case of failure. See PL_unify() for
details.
int PPLL__uunniiffyy(_t_e_r_m___t _?_t_1_, _t_e_r_m___t _?_t_2)
Unify two Prolog terms and return TRUE on success.
Care is needed if PL_unify() returns FAIL and the foreign function
does not _i_m_m_e_d_i_a_t_e_l_y return to Prolog with FAIL. Unification may
perform multiple changes to either _t_1 or _t_2. A failing unification
may have created bindings before failure is detected. _A_l_r_e_a_d_y
_c_r_e_a_t_e_d _b_i_n_d_i_n_g_s _a_r_e _n_o_t _u_n_d_o_n_e. For example, calling PL_unify()
on a(_X_, _a) and a(_c_,_b) binds _X to c and fails when trying to unify
a to b. If control remains in C or even if we want to return
success to Prolog, we _m_u_s_t undo such bindings. This is achieved
using PL_open_foreign_frame()and PL_rewind_foreign_frame(), as show
in the snippid below.
____________________________________________________________________| |
| { fid_t fid = PL_open_foreign_frame(); |
| |
| ... |
| if ( !PL_unify(t1, t2) ) |
| PL_rewind_foreign_frame(fid); |
| ... |
| |
| PL_close_foreign_frame(fid); |
||____}_____________________________________________________________ ||
In addition, PL_unify() may have failed on an eexxcceeppttiioonn,
typically a resource (stack) overflow. This can be tested
using PL_exception(), passing 0 (zero) for the query-id argument.
Foreign functions that encounter an exception must return FAIL to
Prolog as soon as possible or call PL_clear_exception() if they
wish to ignore the exception.
int PPLL__uunniiffyy__aattoomm(_t_e_r_m___t _?_t_, _a_t_o_m___t _a)
Unify _t with the atom _a and return non-zero on success.
int PPLL__uunniiffyy__bbooooll(_t_e_r_m___t _?_t_, _i_n_t _a)
Unify _t with either true or false.
int PPLL__uunniiffyy__cchhaarrss(_t_e_r_m___t _?_t_, _i_n_t _f_l_a_g_s_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
New function to deal with unification of char* with various
encodings to a Prolog representation. The _f_l_a_g_s argument is a
bitwise _o_r specifying the Prolog target type and the encoding of
_c_h_a_r_s. Prolog types is one of PL_ATOM, PL_STRING, PL_CODE_LIST or
PL_CHAR_LIST. Representations is one of REP_ISO_LATIN_1, REP_UTF8 or
REP_MB. See PL_get_chars() for a definition of the representation
types. If _l_e_n is -1 _c_h_a_r_s must be 0-terminated and the length is
computed from _c_h_a_r_s using strlen().
If _f_l_a_g_s includes PL_DIFF_LIST and type is one of PL_CODE_LIST or
PL_CHAR_LIST, the text is converted to a _d_i_f_f_e_r_e_n_c_e _l_i_s_t. The tail
of the difference list is t +1.
int PPLL__uunniiffyy__aattoomm__cchhaarrss(_t_e_r_m___t _?_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with an atom created from _c_h_a_r_s and return non-zero on
success.
int PPLL__uunniiffyy__lliisstt__cchhaarrss(_t_e_r_m___t _?_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with a list of ASCII characters constructed from _c_h_a_r_s.
void PPLL__uunniiffyy__ssttrriinngg__cchhaarrss(_t_e_r_m___t _?_t_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with a Prolog string object created from the zero-
terminated string _c_h_a_r_s. The data will be copied. See also
PL_unify_string_nchars().
void PPLL__uunniiffyy__ssttrriinngg__nncchhaarrss(_t_e_r_m___t _?_t_, _s_i_z_e___t _l_e_n_, _c_o_n_s_t _c_h_a_r _*_c_h_a_r_s)
Unify _t with a Prolog string object created from the string created
from the _l_e_n/_c_h_a_r_s pair. The data will be copied. This interface
can deal with 0-bytes in the string. See also section 9.4.20.
int PPLL__uunniiffyy__iinntteeggeerr(_t_e_r_m___t _?_t_, _l_o_n_g _n)
Unify _t with a Prolog integer from _n.
int PPLL__uunniiffyy__iinntt6644(_t_e_r_m___t _?_t_, _i_n_t_6_4___t _n)
Unify _t with a Prolog integer from _n.
int PPLL__uunniiffyy__ffllooaatt(_t_e_r_m___t _?_t_, _d_o_u_b_l_e _f)
Unify _t with a Prolog float from _f.
int PPLL__uunniiffyy__ppooiinntteerr(_t_e_r_m___t _?_t_, _v_o_i_d _*_p_t_r)
Unify _t with a Prolog integer describing the pointer. See also
PL_put_pointer() and PL_get_pointer().
int PPLL__uunniiffyy__ffuunnccttoorr(_t_e_r_m___t _?_t_, _f_u_n_c_t_o_r___t _f)
If _t is a compound term with the given functor, just succeed. If
it is unbound, create a term and bind the variable, else fails.
Note that this function does not create a term if the argument is
already instantiated.
int PPLL__uunniiffyy__lliisstt(_t_e_r_m___t _?_l_, _t_e_r_m___t _-_h_, _t_e_r_m___t _-_t)
Unify _l with a list-cell (./2). If successful, write a reference
to the head of the list to _h and a reference to the tail of the
list into _t. This reference may be used for subsequent calls to
this function. Suppose we want to return a list of atoms from
a char **. We could use the example described by PL_put_list(),
followed by a call to PL_unify(), or we can use the code below. If
the predicate argument is unbound, the difference is minimal (the
code based on PL_put_list() is probably slightly faster). If the
argument is bound, the code below may fail before reaching the end
of the word-list, but even if the unification succeeds, this code
avoids a duplicate (garbage) list and a deep unification.
____________________________________________________________________| |
| foreign_t |
| pl_get_environ(term_t env) |
| { term_t l = PL_copy_term_ref(env); |
| term_t a = PL_new_term_ref(); |
| extern char **environ; |
| char **e; |
| |
| for(e = environ; *e; e++) |
| { if ( !PL_unify_list(l, a, l) || |
| !PL_unify_atom_chars(a, *e) ) |
| PL_fail; |
| } |
| |
| return PL_unify_nil(l); |
||}_________________________________________________________________ ||
int PPLL__uunniiffyy__nniill(_t_e_r_m___t _?_l)
Unify _l with the atom [].
int PPLL__uunniiffyy__aarrgg(_i_n_t _i_n_d_e_x_, _t_e_r_m___t _?_t_, _t_e_r_m___t _?_a)
Unifies the _i_n_d_e_x_-_t_h argument (1-based) of _t with _a.
int PPLL__uunniiffyy__tteerrmm(_t_e_r_m___t _?_t_, _._._.)
Unify _t with a (normally) compound term. The remaining arguments
is a sequence of a type identifier, followed by the required
arguments. This predicate is an extension to the Quintus
and SICStus foreign interface from which the SWI-Prolog foreign
interface has been derived, but has proved to be a powerful and
comfortable way to create compound terms from C. Due to the vararg
packing/unpacking and the required type-switching this interface is
slightly slower than using the primitives. Please note that some
bad C-compilers have fairly low limits on the number of arguments
that may be passed to a function.
Special attention is required when passing numbers. C `promotes'
any integral smaller than int to int. I.e. the types char,
short and int are all passed as int. In addition, on most
32-bit platforms int and long are the same. Up-to version 4.0.5,
only PL_INTEGER could be specified which was taken from the stack
as long. Such code fails when passing small integral types on
machines where int is smaller than long. It is advised to use
PL_SHORT, PL_INT or PL_LONG as appropriate. Similar, C compilers
promote float to double and therefore PL_FLOAT and PL_DOUBLE are
synonyms.
The type identifiers are:
PL_VARIABLE _n_o_n_e
No op. Used in arguments of PL_FUNCTOR.
PL_BOOL _i_n_t
Unify the argument with true or false.
PL_ATOM _a_t_o_m___t
Unify the argument with an atom, as in PL_unify_atom().
PL_CHARS _c_o_n_s_t _c_h_a_r _*
Unify the argument with an atom, constructed from the C char
*, as in PL_unify_atom_chars().
PL_NCHARS _s_i_z_e___t_, _c_o_n_s_t _c_h_a_r _*
Unify the argument with an atom, constructed from length and
char* as in PL_unify_atom_nchars().
PL_UTF8_CHARS _c_o_n_s_t _c_h_a_r _*
Create an atom from a UTF-8 string.
PL_UTF8_STRING _c_o_n_s_t _c_h_a_r _*
Create a packed string object from a UTF-8 string.
PL_MBCHARS _c_o_n_s_t _c_h_a_r _*
Create an atom from a multi-byte string in the current locale.
PL_MBCODES _c_o_n_s_t _c_h_a_r _*
Create a list of character codes from a multi-byte string in
the current locale.
PL_MBSTRING _c_o_n_s_t _c_h_a_r _*
Create a packed string object from a multi-byte string in the
current locale.
PL_NWCHARS _s_i_z_e___t_, _c_o_n_s_t _w_c_h_a_r___t _*
Create an atom from a length and a wide character pointer.
PL_NWCODES _s_i_z_e___t_, _c_o_n_s_t _w_c_h_a_r___t _*
Create an list of character codes from a length and a wide
character pointer.
PL_NWSTRING _s_i_z_e___t_, _c_o_n_s_t _w_c_h_a_r___t _*
Create a packed string object from a length and a wide
character pointer.
PL_SHORT _s_h_o_r_t
Unify the argument with an integer, as in PL_unify_integer().
As short is promoted to int, PL_SHORT is a synonym for PL_INT.
PL_INTEGER _l_o_n_g
Unify the argument with an integer, as in PL_unify_integer().
PL_INT _i_n_t
Unify the argument with an integer, as in PL_unify_integer().
PL_LONG _l_o_n_g
Unify the argument with an integer, as in PL_unify_integer().
PL_INT64 _i_n_t_6_4___t
Unify the argument with a 64-bit integer, as in
PL_unify_int64().
PL_INTPTR _i_n_t_p_t_r___t
Unify the argument with an integer with the same width as a
pointer. On most machines this is the same as PL_LONG. but
on 64-bit MS-Windows pointers are 64-bit while longs are only
32-bits.
PL_DOUBLE _d_o_u_b_l_e
Unify the argument with a float, as in PL_unify_float().
Note that, as the argument is passed using the C vararg
conventions, a float must be casted to a double explicitly.
PL_FLOAT _d_o_u_b_l_e
Unify the argument with a float, as in PL_unify_float().
PL_POINTER _v_o_i_d _*
Unify the argument with a pointer, as in PL_unify_pointer().
PL_STRING _c_o_n_s_t _c_h_a_r _*
Unify the argument with a string object, as in
PL_unify_string_chars().
PL_TERM _t_e_r_m___t
Unify a subterm. Note this may the return value of a
PL_new_term_ref()call to get access to a variable.
PL_FUNCTOR _f_u_n_c_t_o_r___t_, _._._.
Unify the argument with a compound term. This specification
should be followed by exactly as many specifications as the
number of arguments of the compound term.
PL_FUNCTOR_CHARS _c_o_n_s_t _c_h_a_r _*_n_a_m_e_, _i_n_t _a_r_i_t_y_, _._._.
Create a functor from the given name and arity and then behave
as PL_FUNCTOR.
PL_LIST _i_n_t _l_e_n_g_t_h_, _._._.
Create a list of the indicated length. The following
arguments contain the elements of the list.
For example, to unify an argument with the term language(dutch),
the following skeleton may be used:
____________________________________________________________________| |
| static functor_t FUNCTOR_language1; |
| |
| static void |
| init_constants() |
| { FUNCTOR_language1 = PL_new_functor(PL_new_atom("language"), 1); |
| } |
| |
| foreign_t |
| pl_get_lang(term_t r) |
| { return PL_unify_term(r, |
| PL_FUNCTOR, FUNCTOR_language1, |
| PL_CHARS, "dutch"); |
| } |
| |
| install_t |
| install() |
| { PL_register_foreign("get_lang", 1, pl_get_lang, 0); |
| init_constants(); |
||}_________________________________________________________________ ||
int PPLL__cchhaarrss__ttoo__tteerrmm(_c_o_n_s_t _c_h_a_r _*_c_h_a_r_s_, _t_e_r_m___t _-_t)
Parse the string _c_h_a_r_s and put the resulting Prolog term into _t.
_c_h_a_r_s may or may not be closed using a Prolog full-stop (i.e., a
dot followed by a blank). Returns FALSE if a syntax error was
encountered and TRUE after successful completion. In addition to
returning FALSE, the exception-term is returned in _t on a syntax
error. See also term_to_atom/2.
The following example build a goal-term from a string and calls it.
____________________________________________________________________| |
| int |
| call_chars(const char *goal) |
| { fid_t fid = PL_open_foreign_frame(); |
| term_t g = PL_new_term_ref(); |
| BOOL rval; |
| |
| if ( PL_chars_to_term(goal, g) ) |
| rval = PL_call(goal, NULL); |
| else |
| rval = FALSE; |
| |
| PL_discard_foreign_frame(fid); |
| return rval; |
| } |
| |
| ... |
| call_chars("consult(load)"); |
||__..._____________________________________________________________ ||
char * PPLL__qquuoottee(_i_n_t _c_h_r_, _c_o_n_s_t _c_h_a_r _*_s_t_r_i_n_g)
Return a quoted version of _s_t_r_i_n_g. If _c_h_r is '\'', the result is a
quoted atom. If _c_h_r is '"', the result is a string. The result
string is stored in the same ring of buffers as described with the
BUF_RING argument of PL_get_chars();
In the current implementation, the string is surrounded by _c_h_r and
any occurrence of _c_h_r is doubled. In the future the behaviour will
depend on the character_escapes Prolog flag.
99..44..66 CCoonnvviieennccee ffuunnccttiioonnss ttoo ggeenneerraattee PPrroolloogg eexxcceeppttiioonnss
The typical implementation of a foreign predicate first uses the
PL_get_*() functions to extract C datatypes from the Prolog terms.
Failure of any of these functions is normally because the Prolog term
is of the wrong type. The *_ex() family of functions are wrappers
around (mostly) the PL_get_*() functions, such that we can write code
in the style below and get proper exceptions if an argument is
uninstantiated or of the wrong type.
________________________________________________________________________| |
|/** set_size(+Name:atom, +Width:int, +Height:int) is det. |
| |
|static foreign_t |
|set_size(term_t name, term_t width, term_t height) |
|{ char *n; |
| int w, h; |
| |
| if ( !PL_get_chars(name, &n, CVT_ATOM|CVT_EXCEPTION) || |
| !PL_get_integer_ex(with, &w) || |
| !PL_get_integer_ex(height, &h) ) |
| return FALSE; |
| |
| ... |
| |
|}|_____________________________________________________________________ | |
int PPLL__ggeett__aattoomm__eexx(_t_e_r_m___t _t_, _a_t_o_m___t _*_a)
; As PL_get_atom(), but raises a type or instantiation error if _t
is not an atom.
int PPLL__ggeett__iinntteeggeerr__eexx(_t_e_r_m___t _t_, _i_n_t _*_i)
; As PL_get_integer(), but raises a type or instantiation error if
_t is not an integer or a representation error if the Prolog integer
does not fit in a C int.
int PPLL__ggeett__lloonngg__eexx(_t_e_r_m___t _t_, _l_o_n_g _*_i)
; As PL_get_long(), but raises a type or instantiation error if _t
is not an atom or a representation error if the Prolog integer does
not fit in a C long.
int PPLL__ggeett__iinntt6644__eexx(_t_e_r_m___t _t_, _i_n_t_6_4___t _*_i)
; As PL_get_int64(), but raises a type or instantiation error if _t
is not an atom or a representation error if the Prolog integer does
not fit in a C int64_t.
int PPLL__ggeett__iinnttppttrr__eexx(_t_e_r_m___t _t_, _i_n_t_p_t_r___t _*_i)
; As PL_get_intptr(), but raises a type or instantiation error if _t
is not an atom or a representation error if the Prolog integer does
not fit in a C intptr_t.
int PPLL__ggeett__ssiizzee__eexx(_t_e_r_m___t _t_, _s_i_z_e___t _*_i)
; As PL_get_size(), but raises a type or instantiation error if _t
is not an atom or a representation error if the Prolog integer does
not fit in a C size_t.
int PPLL__ggeett__bbooooll__eexx(_t_e_r_m___t _t_, _i_n_t _*_i)
; As PL_get_atom_ex(), but raises a type or instantiation error if _t
is not an atom.
int PPLL__ggeett__ffllooaatt__eexx(_t_e_r_m___t _t_, _d_o_u_b_l_e _*_f)
; As PL_get_atom_ex(), but raises a type or instantiation error if _t
is not an atom.
int PPLL__ggeett__cchhaarr__eexx(_t_e_r_m___t _t_, _i_n_t _*_p_, _i_n_t _e_o_f)
; Get a character code from _t, where _t is either an integer or an
atom with length one. If _e_o_f is TRUE and _t is -1, _p is filled with
-1. Raises an appropriate error if the conversion is not possible.
int PPLL__ggeett__ppooiinntteerr__eexx(_t_e_r_m___t _t_, _v_o_i_d _*_*_a_d_d_r_p)
; As PL_get_pointer(), but raises a type or instantiation error if
_t is not a pointer.
int PPLL__ggeett__lliisstt__eexx(_t_e_r_m___t _l_, _t_e_r_m___t _h_, _t_e_r_m___t _t)
; As PL_get_list(), but raises a type or instantiation error if _t
is not a list.
int PPLL__ggeett__nniill__eexx(_t_e_r_m___t _l)
; As PL_get_nil(), but raises a type or instantiation error if _t is
not the empty list.
int PPLL__uunniiffyy__lliisstt__eexx(_t_e_r_m___t _l_, _t_e_r_m___t _h_, _t_e_r_m___t _t)
; As PL_unify_list(), but raises a type error if _t is not a
variable, list-cell or the empty list.
int PPLL__uunniiffyy__nniill__eexx(_t_e_r_m___t _l)
; As PL_unify_nil(), but raises a type error if _t is not a
variable, list-cell or the empty list.
int PPLL__uunniiffyy__bbooooll__eexx(_t_e_r_m___t _t_, _i_n_t _v_a_l)
; As PL_unify_bool(), but raises a type error if _t is not a
variable, or a boolean.
The second family of functions in this section simplifies the
generation of ISO compatible error terms. Any foreign function that
calls this function must return to Prolog with the return code of
the error function or the constant FALSE. If available, these error
functions add the name of the calling predicate to the error context.
See also PL_raise_exception().
int PPLL__iinnssttaannttiiaattiioonn__eerrrroorr(_t_e_r_m___t _c_u_l_p_r_i_t)
Raise instantiation_error. _C_u_l_p_r_i_t is ignored, but should be bound
to the term that is not a variable. See instantiation_error/1.
int PPLL__rreepprreesseennttaattiioonn__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_r_e_s_o_u_r_c_e)
Raise representation_error(resource). See representation_error/1.
int PPLL__ttyyppee__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_e_x_p_e_c_t_e_d_, _t_e_r_m___t _c_u_l_p_r_i_t)
Raise type_error(expected, culprit). See type_error/2.
int PPLL__ddoommaaiinn__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_e_x_p_e_c_t_e_d_, _t_e_r_m___t _c_u_l_p_r_i_t)
Raise domain_error(expected, culprit). See domain_error/2.
int PPLL__eexxiisstteennccee__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_t_y_p_e_, _t_e_r_m___t _c_u_l_p_r_i_t)
Raise existence_error(type, culprit). See type_error/2.
int PPLL__ppeerrmmiissssiioonn__eerrrroorr(_c_o_n_s_t _c_h_a_r _*_o_p_e_r_a_t_i_o_n_, _c_o_n_s_t _c_h_a_r _*_t_y_p_e_, _t_e_r_m___t _c_u_l_p_r_i_t)
Raise permission_error(operation, type, culprit). See
permission_error/3.
99..44..77 BBLLOOBBSS:: UUssiinngg aattoommss ttoo ssttoorree aarrbbiittrraarryy bbiinnaarryy ddaattaa
SWI-Prolog atoms as well as strings can represent arbitrary binary data
of arbitrary length. This facility is attractive for storing foreign
data such as images in an atom. An atom is a unique handle to this
data and the atom garbage collector is able to destroy atoms that are
no longer referenced by the Prolog engine. This property of atoms
makes them attractive as a handle to foreign resources, such as Java
atoms, Microsoft's COM objects, etc., providing safe combined garbage
collection.
To exploit these features safely and in an organised manner
the SWI-Prolog foreign interface allows for creating `atoms' with
additional type information. The type is represented by a structure
holding C function pointers that tell Prolog how to handle releasing
the atom, writing it, sorting it, etc. Two atoms created with
different types can represent the same sequence of bytes. Atoms are
first ordered on the rank number of the type and then on the result of
the compare() function. Rank numbers are assigned when the type is
registered.
99..44..77..11 DDeeffiinniinngg aa BBLLOOBB ttyyppee
The type PL_blob_t represents a structure with the layout displayed
above. The structure contains additional fields at the ...for internal
bookkeeping as well as future extension.
________________________________________________________________________| |
|typedef struct PL_blob_t |
|{ unsigned long magic; /* PL_BLOB_MAGIC */ |
| unsigned long flags; /* Bitwise or of PL_BLOB_* */ |
| char * name; /* name of the type */ |
| int (*release)(atom_t a); |
| int (*compare)(atom_t a, atom_t b); |
| int (*write)(IOSTREAM *s, atom_t a, int flags); |
| void (*acquire)(atom_t a); |
| ... |
|}|PL_blob_t;___________________________________________________________ | |
For each type exactly one such structure should be allocated. Its
first field must be initialised to PL_BLOB_MAGIC. The _f_l_a_g_s is a bitwise
or of the following constants:
PPLL__BBLLOOBB__TTEEXXTT
If specified the blob is assumed to contain text and is considered
a normal Prolog atom.
PPLL__BBLLOOBB__UUNNIIQQUUEE
If specified the system ensures that the blob-handle is a unique
reference for a blob with the given type, length and content. If
this flag is not specified each lookup creates a new blob.
PPLL__BBLLOOBB__NNOOCCOOPPYY
By default the content of the blob is copied. Using this flag
the blob references the external data directly. The user must
ensure the provided pointer is valid as long as the atom lives.
If PL_BLOB_UNIQUE is also specified uniqueness is determined by
comparing the pointer rather than the data pointed at.
The _n_a_m_e field represents the type name as available to Prolog. See
also current_blob/2. The other field are function pointers that must
be initialised to proper functions or NULL to get the default behaviour
of built-in atoms. Below are the defined member functions:
void aaccqquuiirree(_a_t_o_m___t _a)
Called if a new blob of this type is created through PL_put_blob()
or PL_unify_blob(). This callback may be used together with the
release hook to deal with reference counted external objects.
int rreelleeaassee(_a_t_o_m___t _a)
The blob (atom) _a is about to be released. This function can
retrieve the data of the blob using PL_blob_data(). If it returns
FALSE the atom garbage collector will _n_o_t reclaim the atom.
int ccoommppaarree(_a_t_o_m___t _a_, _a_t_o_m___t _b)
Compare the blobs _a and _b, both of which are of the type associated
to this blob-type. Return values are, as memcmp(), <0 if _a is
less then _b, = 0 if both are equal and >0 otherwise.
int wwrriittee(_I_O_S_T_R_E_A_M _*_s_, _a_t_o_m___t _a_, _i_n_t _f_l_a_g_s)
Write the content of the blob _a to the stream _s and respecting the
_f_l_a_g_s. The _f_l_a_g_s are a bitwise or of zero or more of the PL_WRT_*
flags defined in SWI-Prolog.h. This prototype is available if the
undocumented SWI-Stream.h is included _b_e_f_o_r_e SWI-Prolog.h.
If this function is not provided, write/1 emits the content of the
blob for blobs of type PL_BLOB_TEXT or a string of the format <#_h_e_x
_d_a_t_a> for binary blobs.
If a blob type is registered from a loadable object (shared object
or DLL) the blob-type must be deregistered before the object may be
released.
int PPLL__uunnrreeggiisstteerr__bblloobb__ttyyppee(_P_L___b_l_o_b___t _*_t_y_p_e)
Unlink the blob type from the registered type and transform the
type of possible living blobs to unregistered, avoiding further
reference to the type structure, functions referred by it as well
as the data. This function returns TRUE if no blobs of this type
existed and FALSE otherwise. PL_unregister_blob_type() is intended
for the uninstall() hook of foreign modules, avoiding further
references to the module.
99..44..77..22 AAcccceessssiinngg bblloobbss
The blob access functions are similar to the atom accessing functions.
Blobs being atoms, the atom functions operate on blobs and visa versa.
For clarity and possible future compatibility issues however it is not
advised to rely on this.
int PPLL__iiss__bblloobb(_t_e_r_m___t _t_, _P_L___b_l_o_b___t _*_*_t_y_p_e)
Succeeds if _t refers to a blob, in which case _t_y_p_e is filled with
the type of the blob.
int PPLL__uunniiffyy__bblloobb(_t_e_r_m___t _t_, _v_o_i_d _*_b_l_o_b_, _s_i_z_e___t _l_e_n_, _P_L___b_l_o_b___t _*_t_y_p_e)
Unify _t to a new blob constructed from the given data and
associated to the given type. See also PL_unify_atom_nchars().
int PPLL__ppuutt__bblloobb(_t_e_r_m___t _t_, _v_o_i_d _*_b_l_o_b_, _s_i_z_e___t _l_e_n_, _P_L___b_l_o_b___t _*_t_y_p_e)
Store the described blob in _t. The return value indicates whether
a new blob was allocated (FALSE) or the blob is a reference to
an existing blob (TRUE). Reporting new/existing can be used to
deal with external objects having their own reference counts. If
the return is TRUE this reference count must be incremented and
it must be decremented on blob destruction callback. See also
PL_put_atom_nchars().
int PPLL__ggeett__bblloobb(_t_e_r_m___t _t_, _v_o_i_d _*_*_b_l_o_b_, _s_i_z_e___t _*_l_e_n_, _P_L___b_l_o_b___t _*_*_t_y_p_e)
If _t holds a blob or atom get the data and type and return TRUE.
Otherwise return FALSE. Each result pointer may be NULL, in which
case the requested information is ignored.
void * PPLL__bblloobb__ddaattaa(_a_t_o_m___t _a_, _s_i_z_e___t _*_l_e_n_, _P_L___b_l_o_b___t _*_*_t_y_p_e)
Get the data and type associated to a blob. This function
is mainly used from the callback functions described in
section 9.4.7.1.
99..44..88 EExxcchhaannggiinngg GGMMPP nnuummbbeerrss
If SWI-Prolog is linked with the GNU Multiple Precision Arithmetic
Library (GMP, used by default), the foreign interface provides
functions for exchanging numeric values to GMP types. To
access these functions the header <gmp.h> must be included _b_e_f_o_r_e
<SWI-Prolog.h>. Foreign code using GMP linked to SWI-Prolog asks for
some considerations.
o SWI-Prolog normally rebinds the GMP allocation functions using
mp_set_memory_functions(). This means SWI-Prolog must be initialised
before the foreign code touches any GMP function. You can
call \funcref{PL_action}{PL_GMP_SET_ALLOC_FUNCTIONS, TRUE} to force
Prolog's GMP initialization without doing the rest of the Prolog
initialization. If you do not want Prolog rebinding the GMP allo-
cation, call \funcref{PL_action}{PL_GMP_SET_ALLOC_FUNCTIONS, FALSE}
_b_e_f_o_r_e initializing Prolog.
o On Windows, each DLL has its own memory pool. To make exchange
of GMP numbers between Prolog and foreign code possible you must
either let Prolog rebind the allocation functions (default) or you
must recompile SWI-Prolog to link to a DLL version of the GMP
library.
Here is an example exploiting the function mpz_nextprime():
________________________________________________________________________| |
|#include <gmp.h> |
|#include <SWI-Prolog.h> |
| |
|static foreign_t |
|next_prime(term_t n, term_t prime) |
|{ mpz_t mpz; |
| int rc; |
| |
| mpz_init(mpz); |
| if ( PL_get_mpz(n, mpz) ) |
| { mpz_nextprime(mpz, mpz); |
| |
| rc = PL_unify_mpz(prime, mpz); |
| } else |
| rc = FALSE; |
| |
| mpz_clear(mpz); |
| return rc; |
|} |
| |
|install_t |
|install() |
|{ PL_register_foreign("next_prime", 2, next_prime, 0); |
|}|_____________________________________________________________________ | |
int PPLL__ggeett__mmppzz(_t_e_r_m___t _t_, _m_p_z___t _m_p_z)
If _t represents an integer _m_p_z is filled with the value and the
function returns TRUE. Otherwise _m_p_z is untouched and the function
returns FALSE. Note that _m_p_z must have been initialised before
calling this function and must be cleared using mpz_clear() to
reclaim any storage associated with it.
int PPLL__ggeett__mmppqq(_t_e_r_m___t _t_, _m_p_q___t _m_p_q)
If _t is an integer or rational number (term rdiv/2) _m_p_q is filled
with the _n_o_r_m_a_l_i_s_e rational number and the function returns TRUE.
Otherwise _m_p_q is untouched and the function returns FALSE. Note
that _m_p_q must have been initialised before calling this function
and must be cleared using mpq_clear() to reclaim any storage
associated with it.
int PPLL__uunniiffyy__mmppzz(_t_e_r_m___t _t_, _m_p_z___t _m_p_z)
Unify _t with the integer value represented by _m_p_z and return _T_R_U_E
on success. The _m_p_z argument is not changed.
int PPLL__uunniiffyy__mmppqq(_t_e_r_m___t _t_, _m_p_q___t _m_p_q)
Unify _t with a rational number represented by _m_p_q and return _T_R_U_E
on success. Note that _t is unified with an integer if the
denominator is 1. The _m_p_q argument is not changed.
99..44..99 CCaalllliinngg PPrroolloogg ffrroomm CC
The Prolog engine can be called from C. There are two interfaces
for this. For the first, a term is created that could be used
as an argument to call/1 and next PL_call() is used to call Prolog.
This system is simple, but does not allow to inspect the different
answers to a non-deterministic goal and is relatively slow as the
runtime system needs to find the predicate. The other interface
is based on PL_open_query(), PL_next_solution() and PL_cut_query() or
PL_close_query(). This mechanism is more powerful, but also more
complicated to use.
99..44..99..11 PPrreeddiiccaattee rreeffeerreenncceess
This section discusses the functions used to communicate about
predicates. Though a Prolog predicate may defined or not, redefined,
etc., a Prolog predicate has a handle that is not destroyed, nor moved.
This handle is known by the type predicate_t.
predicate_t PPLL__pprreedd(_f_u_n_c_t_o_r___t _f_, _m_o_d_u_l_e___t _m)
Return a handle to a predicate for the specified name/arity in the
given module. This function always succeeds, creating a handle for
an undefined predicate if no handle was available. If the module
argument _m is NULL, the current context module is used.
predicate_t PPLL__pprreeddiiccaattee(_c_o_n_s_t _c_h_a_r _*_n_a_m_e_, _i_n_t _a_r_i_t_y_, _c_o_n_s_t _c_h_a_r_* _m_o_d_u_l_e)
Same a PL_pred(), but provides a more convenient interface to the
C-programmer.
void PPLL__pprreeddiiccaattee__iinnffoo(_p_r_e_d_i_c_a_t_e___t _p_, _a_t_o_m___t _*_n_, _i_n_t _*_a_, _m_o_d_u_l_e___t _*_m)
Return information on the predicate _p. The name is stored over
_n, the arity over _a, while _m receives the definition module.
Note that the latter need not be the same as specified with
PL_predicate(). If the predicate is imported into the module given
to PL_predicate(), this function will return the module where the
predicate is defined. Any of the arguments _n, _a and _m can be NULL.
99..44..99..22 IInniittiiaattiinngg aa qquueerryy ffrroomm CC
This section discusses the functions for creating and manipulating
queries from C. Note that a foreign context can have at most one active
query. This implies it is allowed to make strictly nested calls
between C and Prolog (Prolog calls C, calls Prolog, calls C, etc.,
but it is nnoott allowed to open multiple queries and start generating
solutions for each of them by calling PL_next_solution(). Be sure to
call PL_cut_query() or PL_close_query() on any query you opened before
opening the next or returning control back to Prolog.
qid_t PPLL__ooppeenn__qquueerryy(_m_o_d_u_l_e___t _c_t_x_, _i_n_t _f_l_a_g_s_, _p_r_e_d_i_c_a_t_e___t _p_, _t_e_r_m___t _+_t_0)
Opens a query and returns an identifier for it. _c_t_x is the
_c_o_n_t_e_x_t _m_o_d_u_l_e of the goal. When NULL, the context module
of the calling context will be used, or user if there is no
calling context (as may happen in embedded systems). Note
that the context module only matters for _m_e_t_a_-_p_r_e_d_i_c_a_t_e_s. See
meta_predicate/1, context_module/1 and module_transparent/1. The _p
argument specifies the predicate, and should be the result of a
call to PL_pred() or PL_predicate(). Note that it is allowed to
store this handle as global data and reuse it for future queries.
The term-reference _t_0 is the first of a vector of term-references
as returned by PL_new_term_refs(_n).
The _f_l_a_g_s arguments provides some additional options concerning
debugging and exception handling. It is a bitwise or of the
following values:
PL_Q_NORMAL
Normal operation. The debugger inherits its settings from the
environment. If an exception occurs that is not handled in
Prolog, a message is printed and the tracer is started to
debug the error.
PL_Q_NODEBUG
Switch off the debugger while executing the goal. This option
is used by many calls to hook-predicates to avoid tracing the
hooks. An example is print/1 calling portray/1 from foreign
code.
PL_Q_CATCH_EXCEPTION
If an exception is raised while executing the goal, do not
report it, but make it available for PL_exception().
PL_Q_PASS_EXCEPTION
As PL_Q_CATCH_EXCEPTION, but do not invalidate the exception-
term while calling PL_close_query(). This option is
experimental.
PL_open_query() can return a query-identifier `0' if there is not
enough space on the environment stack. This function succeeds,
even if the referenced predicate is not defined. In this
case, running the query using PL_next_solution() will return an
existence_error. See PL_exception().
The example below opens a query to the predicate is_a/2 to find the
ancestor of `me'. The reference to the predicate is valid for the
duration of the process and may be cached by the client.
____________________________________________________________________| |
| char * |
| ancestor(const char *me) |
| { term_t a0 = PL_new_term_refs(2); |
| static predicate_t p; |
| |
| if ( !p ) |
| p = PL_predicate("is_a", 2, "database"); |
| |
| PL_put_atom_chars(a0, me); |
| PL_open_query(NULL, PL_Q_NORMAL, p, a0); |
| ... |
||}_________________________________________________________________ ||
int PPLL__nneexxtt__ssoolluuttiioonn(_q_i_d___t _q_i_d)
Generate the first (next) solution for the given query. The return
value is TRUE if a solution was found, or FALSE to indicate the
query could not be proven. This function may be called repeatedly
until it fails to generate all solutions to the query.
void PPLL__ccuutt__qquueerryy(_q_i_d)
Discards the query, but does not delete any of the data created
by the query. It just invalidate _q_i_d, allowing for a new call to
PL_open_query() in this context.
void PPLL__cclloossee__qquueerryy(_q_i_d)
As PL_cut_query(), but all data and bindings created by the query
are destroyed.
int PPLL__ccaallll__pprreeddiiccaattee(_m_o_d_u_l_e___t _m_, _i_n_t _f_l_a_g_s_, _p_r_e_d_i_c_a_t_e___t _p_r_e_d_, _t_e_r_m___t _+_t_0)
Shorthand for PL_open_query(), PL_next_solution(), PL_cut_query(),
generating a single solution. The arguments are the same as for
PL_open_query(), the return value is the same as PL_next_solution().
int PPLL__ccaallll(_t_e_r_m___t_, _m_o_d_u_l_e___t)
Call term just like the Prolog predicate once/1. _T_e_r_m is called in
the specified module, or in the context module if module_t = NULL.
Returns TRUE if the call succeeds, FALSE otherwise. Figure 9.3
shows an example to obtain the number of defined atoms. All checks
are omitted to improve readability.
99..44..1100 DDiissccaarrddiinngg DDaattaa
The Prolog data created and term-references needed to setup the call
and/or analyse the result can in most cases be discarded right after
the call. PL_close_query() allows for destructing the data, while
leaving the term-references. The calls below may be used to destroy
term-references and data. See figure 9.3 for an example.
fid_t PPLL__ooppeenn__ffoorreeiiggnn__ffrraammee()
Created a foreign frame, holding a mark that allows the system
to undo bindings and destroy data created after it as well as
providing the environment for creating term-references. This
function is called by the kernel before calling a foreign
predicate.
void PPLL__cclloossee__ffoorreeiiggnn__ffrraammee(_f_i_d___t _i_d)
Discard all term-references created after the frame was opened.
All other Prolog data is retained. This function is called by the
kernel whenever a foreign function returns control back to Prolog.
void PPLL__ddiissccaarrdd__ffoorreeiiggnn__ffrraammee(_f_i_d___t _i_d)
Same as PL_close_foreign_frame(), but also undo all bindings made
since the open and destroy all Prolog data.
void PPLL__rreewwiinndd__ffoorreeiiggnn__ffrraammee(_f_i_d___t _i_d)
Undo all bindings and discard all term-references created since the
frame was created, but does not pop the frame. I.e. the same frame
can be rewinded multiple times, and must eventually be closed or
discarded.
It is obligatory to call either of the two closing functions to discard
a foreign frame. Foreign frames may be nested.
________________________________________________________________________| |
|int |
|count_atoms() |
|{ fid_t fid = PL_open_foreign_frame(); |
| term_t goal = PL_new_term_ref(); |
| term_t a1 = PL_new_term_ref(); |
| term_t a2 = PL_new_term_ref(); |
| functor_t s2 = PL_new_functor(PL_new_atom("statistics"), 2); |
| int atoms; |
| |
| PL_put_atom_chars(a1, "atoms"); |
| PL_cons_functor(goal, s2, a1, a2); |
| PL_call(goal, NULL); /* call it in current module */ |
| |
| PL_get_integer(a2, &atoms); |
| PL_discard_foreign_frame(fid); |
| |
| return atoms; |
|}|_____________________________________________________________________ | |
Figure 9.3: Calling Prolog
99..44..1111 FFoorreeiiggnn CCooddee aanndd MMoodduulleess
Modules are identified via a unique handle. The following functions
are available to query and manipulate modules.
module_t PPLL__ccoonntteexxtt()
Return the module identifier of the context module of the currently
active foreign predicate.
int PPLL__ssttrriipp__mmoodduullee(_t_e_r_m___t _+_r_a_w_, _m_o_d_u_l_e___t _*_m_, _t_e_r_m___t _-_p_l_a_i_n)
Utility function. If _r_a_w is a term, possibly holding the module
construct <_m_o_d_u_l_e>:<_r_e_s_t>this function will make _p_l_a_i_n a reference
to <_r_e_s_t> and fill _m_o_d_u_l_e _* with <_m_o_d_u_l_e>. For further nested
module constructs the inner most module is returned via _m_o_d_u_l_e
_*. If _r_a_w is not a module construct _a_r_g will simply be put in
_p_l_a_i_n. If _m_o_d_u_l_e _* is NULL it will be set to the context module.
Otherwise it will be left untouched. The following example shows
how to obtain the plain term and module if the default module is
the user module:
____________________________________________________________________| |
| { module m = PL_new_module(PL_new_atom("user")); |
| term_t plain = PL_new_term_ref(); |
| |
| PL_strip_module(term, &m, plain); |
| ... |
||}_________________________________________________________________ ||
atom_t PPLL__mmoodduullee__nnaammee(_m_o_d_u_l_e___t)
Return the name of _m_o_d_u_l_e as an atom.
module_t PPLL__nneeww__mmoodduullee(_a_t_o_m___t _n_a_m_e)
Find an existing or create a new module with name specified by the
atom _n_a_m_e.
99..44..1122 PPrroolloogg eexxcceeppttiioonnss iinn ffoorreeiiggnn ccooddee
This section discusses PL_exception(), PL_throw() and
PL_raise_exception(), the interface functions to detect and generate
Prolog exceptions from C-code. PL_throw() and PL_raise_exception()
from the C-interface to raise an exception from foreign code.
PL_throw() exploits the C-function longjmp() to return immediately to
the innermost PL_next_solution(). PL_raise_exception() registers the
exception term and returns FALSE. If a foreign predicate returns FALSE,
while and exception-term is registered a Prolog exception will be
raised by the virtual machine.
Calling these functions outside the context of a function implementing
a foreign predicate results in undefined behaviour.
PL_exception() may be used after a call to PL_next_solution() fails,
and returns a term reference to an exception term if an exception was
raised, and 0 otherwise.
If a C-function, implementing a predicate calls Prolog and detects
an exception using PL_exception(), it can handle this exception, or
return with the exception. Some caution is required though. It
is nnoott allowed to call PL_close_query() or PL_discard_foreign_frame()
afterwards, as this will invalidate the exception term. Below
is the code that calls a Prolog defined arithmetic function (see
arithmetic_function/1).
If PL_next_solution() succeeds, the result is analysed and translated
to a number, after which the query is closed and all Prolog data
created after PL_open_foreign_frame() is destroyed. On the other
hand, if PL_next_solution() fails and if an exception was raised,
just pass it. Otherwise generate an exception (PL_error() is an
internal call for building the standard error terms and calling
PL_raise_exception()). After this, the Prolog environment should be
discarded using PL_cut_query() and PL_close_foreign_frame() to avoid
invalidating the exception term.
________________________________________________________________________| |
|static int |
|prologFunction(ArithFunction f, term_t av, Number r) |
|{ int arity = f->proc->definition->functor->arity; |
| fid_t fid = PL_open_foreign_frame(); |
| qid_t qid; |
| int rval; |
| |
| qid = PL_open_query(NULL, PL_Q_NORMAL, f->proc, av); |
| |
| if ( PL_next_solution(qid) ) |
| { rval = valueExpression(av+arity-1, r); |
| PL_close_query(qid); |
| PL_discard_foreign_frame(fid); |
| } else |
| { term_t except; |
| |
| if ( (except = PL_exception(qid)) ) |
| { rval = PL_throw(except); /* pass exception */ |
| } else |
| { char *name = stringAtom(f->proc->definition->functor->name); |
| |
| /* generate exception */ |
| rval = PL_error(name, arity-1, NULL, ERR_FAILED, f->proc); |
| } |
| |
| PL_cut_query(qid); /* donot destroy data */ |
| PL_close_foreign_frame(fid); /* same */ |
| } |
| |
| return rval; |
|}|_____________________________________________________________________ | |
int PPLL__rraaiissee__eexxcceeppttiioonn(_t_e_r_m___t _e_x_c_e_p_t_i_o_n)
Generate an exception (as throw/1) and return FALSE. Below is an
example returning an exception from foreign predicate:
____________________________________________________________________| |
| foreign_t |
| pl_hello(term_t to) |
| { char *s; |
| |
| if ( PL_get_atom_chars(to, &s) ) |
| { Sprintf("Hello \"%s\"\n", s); |
| |
| PL_succeed; |
| } else |
| { term_t except = PL_new_term_ref(); |
| |
| PL_unify_term(except, |
| PL_FUNCTOR_CHARS, "type_error", 2, |
| PL_CHARS, "atom", |
| PL_TERM, to); |
| |
| return PL_raise_exception(except); |
| } |
||}_________________________________________________________________ ||
int PPLL__tthhrrooww(_t_e_r_m___t _e_x_c_e_p_t_i_o_n)
Similar to PL_raise_exception(), but returns using the C longjmp()
function to the innermost PL_next_solution().
term_t PPLL__eexxcceeppttiioonn(_q_i_d___t _q_i_d)
If PL_next_solution() fails, this can be due to normal failure
of the Prolog call, or because an exception was raised using
throw/1. This function returns a handle to the exception term if
an exception was raised, or 0 if the Prolog goal simply failed. If
there is an exception, PL_exception()allocates a term-handle using
PL_new_term_ref() that is used to return the exception term.
Additionally, \funcref{PL_exception}{0} returns the pending
exception in the current query or 0 if no exception is pending.
This can be used to check the error-status after a failing call to
e.g., one of the unification functions.
PL_clear_exception vvooiidd(_T)
ells Prolog that the encountered exception must be ignored. This
function must be called if control remains in C after an previous
API calls fails with an exception..
99..44..1133 CCaattcchhiinngg SSiiggnnaallss ((SSooffttwwaarree IInntteerrrruuppttss))
SWI-Prolog offers both a C and Prolog interface to deal with software
interrupts (signals). The Prolog mapping is defined in section 4.10.
This subsection deals with handling signals from C.
If a signal is not used by Prolog and the handler does not call Prolog
in any way, the native signal interface routines may be used.
Some versions of SWI-Prolog, notably running on popular Unix platforms,
handle SIG_SEGV for guarding the Prolog stacks. If the application
wishes to handle this signal too, it should use PL_signal() to install
its handler after initialising Prolog. SWI-Prolog will pass SIG_SEGV
to the user code if it detected the signal is not related to a Prolog
stack overflow.
Any handler that wishes to call one of the Prolog interface functions
should call PL_signal() for its installation.
void (*)() PPLL__ssiiggnnaall(_s_i_g_, _f_u_n_c)
This function is equivalent to the BSD-Unix signal() function,
regardless of the platform used. The signal handler is blocked
while the signal routine is active, and automatically reactivated
after the handler returns.
After a signal handler is registered using this function, the
native signal interface redirects the signal to a generic signal
handler inside SWI-Prolog. This generic handler validates the
environment, creates a suitable environment for calling the
interface functions described in this chapter and finally calls the
registered user-handler.
By default, signals are handled asynchronously (i.e. at the time
they arrive). It is inherently dangerous to call extensive code
fragments, and especially exception related code from asynchronous
handlers. The interface allows for _s_y_n_c_h_r_o_n_o_u_s handling of
signals. In this case the native OS handler just schedules the
signal using PL_raise(), which is checked by PL_handle_signals() at
the call- and redo-port. This behaviour is realised by or-ing _s_i_g
with the constant PL_SIGSYNC.
Signal handling routines may raise exceptions using
PL_raise_exception(). The use of PL_throw() is not safe.
If a synchronous handler raises an exception, the exception is
delayed to the next call to PL_handle_signals();
int PPLL__rraaiissee(_i_n_t _s_i_g)
Register _s_i_g for _s_y_n_c_h_r_o_n_o_u_s handling by Prolog. Synchronous
signals are handled at the call-port or if foreign code calls
PL_handle_signals(). See also thread_signal/2.
int PPLL__hhaannddllee__ssiiggnnaallss(_v_o_i_d)
Handle any signals pending from PL_raise(). PL_handle_signals()
is called at each pass through the call- and redo-port at a safe
point. Exceptions raised by the handler using PL_raise_exception()
are properly passed to the environment.
The user may call this function inside long-running foreign
functions to handle scheduled interrupts. This routine returns the
number of signals handled. If a handler raises an exception, the
return value is -1 and the calling routine should return with FALSE
as soon as possible.
int PPLL__ggeett__ssiiggnnuumm__eexx(_t_e_r_m___t _t_, _i_n_t _*_s_i_g)
Extract a signal specification from a Prolog term and store as
integer signal number in _s_i_g. The specification is an integer,
lowercase signal name without SIG or the full signal name. These
refer to the same: 9, kill and SIGKILL. Leaves a typed, domain or
instantiation error if the conversion fails.
99..44..1144 MMiisscceellllaanneeoouuss
99..44..1144..11 TTeerrmm CCoommppaarriissoonn
int PPLL__ccoommppaarree(_t_e_r_m___t _t_1_, _t_e_r_m___t _t_2)
Compares two terms using the standard order of terms and returns
-1, 0 or 1. See also compare/3.
int PPLL__ssaammee__ccoommppoouunndd(_t_e_r_m___t _t_1_, _t_e_r_m___t _t_2)
Yields TRUE if _t_1 and _t_2 refer to physically the same compound term
and FALSE otherwise.
99..44..1144..22 RReeccoorrddeedd ddaattaabbaassee
In some applications it is useful to store and retrieve Prolog terms
from C-code. For example, the XPCE graphical environment does this for
storing arbitrary Prolog data as slot-data of XPCE objects.
Please note that the returned handles have no meaning at the Prolog
level and the recorded terms are not visible from Prolog. The
functions PL_recorded() and PL_erase() are the only functions that can
operate on the stored term.
Two groups of functions are provided. The first group (PL_record() and
friends) store Prolog terms on the Prolog heap for retrieval during the
same session. These functions are also used by recorda/3 and friends.
The recorded database may be used to communicate Prolog terms between
threads.
record_t PPLL__rreeccoorrdd(_t_e_r_m___t _+_t)
Record the term _t into the Prolog database as recorda/3 and return
an opaque handle to the term. The returned handle remains valid
until PL_erase() is called on it. PL_recorded() is used to copy
recorded terms back to the Prolog stack.
int PPLL__rreeccoorrddeedd(_r_e_c_o_r_d___t _r_e_c_o_r_d_, _t_e_r_m___t _-_t)
Copy a recorded term back to the Prolog stack. The same record
may be used to copy multiple instances at any time to the Prolog
stack. Returns TRUE on success, and FALSE if there is not enough
space on the stack to accomodate the term. See also PL_record()
and PL_erase().
void PPLL__eerraassee(_r_e_c_o_r_d___t _r_e_c_o_r_d)
Remove the recorded term from the Prolog database, reclaiming all
associated memory resources.
The second group (headed by PL_record_external()) provides the same
functionality, but the returned data has properties that enable storing
the data on an external device. It has been designed to make it
possible to store Prolog terms fast an compact in an external database.
Here are the main features:
o _I_n_d_e_p_e_n_d_e_n_t _o_f _s_e_s_s_i_o_n
Records can be communicated to another Prolog session and made
visible using PL_recorded_external().
o _B_i_n_a_r_y
The representation is binary for maximum performance. The returned
data may contain 0-bytes.
o _B_y_t_e_-_o_r_d_e_r _i_n_d_e_p_e_n_d_e_n_t
The representation can be transferred between machines with
different byte-order.
o _N_o _a_l_i_g_n_m_e_n_t _r_e_s_t_r_i_c_t_i_o_n_s
There are no memory alignment restrictions and copies of the record
can thus be moved freely. For example, it is possible to use
this representation to exchange terms using shared memory between
different Prolog processes.
o _C_o_m_p_a_c_t
It is assumed that a smaller memory footprint will eventually
outperform slightly faster representations.
o _S_t_a_b_l_e
The format is designed for future enhancements without breaking
compatibility with older records.
char * PPLL__rreeccoorrdd__eexxtteerrnnaall(_t_e_r_m___t _+_t_, _s_i_z_e___t _*_l_e_n)
Record the term _t into the Prolog database as recorda/3 and return
an opaque handle to the term. The returned handle remains valid
until PL_erase_external() is called on it.
It is allowed to copy the data and use PL_recorded_external() on
the copy. The user is responsible for the memory management of
the copy. After copying, the original may be discarded using
PL_erase_external().
PL_recorded_external() is used to copy such recorded terms back to
the Prolog stack.
int PPLL__rreeccoorrddeedd__eexxtteerrnnaall(_c_o_n_s_t _c_h_a_r _*_r_e_c_o_r_d_, _t_e_r_m___t _-_t)
Copy a recorded term back to the Prolog stack. The same record may
be used to copy multiple instances at any time to the Prolog stack.
See also PL_record_external() and PL_erase_external().
int PPLL__eerraassee__eexxtteerrnnaall(_c_h_a_r _*_r_e_c_o_r_d)
Remove the recorded term from the Prolog database, reclaiming all
associated memory resources.
99..44..1144..33 GGeettttiinngg ffiillee nnaammeess
The function PL_get_file_name() provides access to Prolog filenames and
its file-search mechanism described with absolute_file_name/3. Its
existence is motivated to realise a uniform interface to deal with
file-properties, search, naming conventions etc. from foreign code.
int PPLL__ggeett__ffiillee__nnaammee(_t_e_r_m___t _s_p_e_c_, _c_h_a_r _*_*_n_a_m_e_, _i_n_t _f_l_a_g_s)
Translate a Prolog term into a file name. The name is stored
in the static buffer ring described with PL_get_chars() option
BUF_RING. Conversion from the internal UNICODE encoding is done
using standard C library functions. _f_l_a_g_s is a bit-mask
controlling the conversion process. Options are:
PL_FILE_ABSOLUTE
Return an absolute path to the requested file.
PL_FILE_OSPATH
Return a the name using the hosting OS conventions. On
MS-Windows, \ is used to separate directories rather than the
canonical /.
PL_FILE_SEARCH
Invoke absolute_file_name/3. This implies rules from
file_search_path/2are used.
PL_FILE_EXIST
Demand the path to refer to an existing entity.
PL_FILE_READ
Demand read-access on the result.
PL_FILE_WRITE
Demand write-access on the result.
PL_FILE_EXECUTE
Demand execute-access on the result.
PL_FILE_NOERRORS
Do not raise any exceptions.
int PPLL__ggeett__ffiillee__nnaammeeWW(_t_e_r_m___t _s_p_e_c_, _w_c_h_a_r___t _*_*_n_a_m_e_, _i_n_t _f_l_a_g_s)
Same as PL_get_file_name(), but returns the filename as a wide-
character string. This is intended for Windows to access the
Unicode version of the Win32 API. Note that the flag PL_FILE_OSPATH
must be provided to fetch a file name in OS native (e.g., C:\x\y)
notation.
99..44..1155 EErrrroorrss aanndd wwaarrnniinnggss
PL_warning() prints a standard Prolog warning message to the standard
error (user_error) stream. Please note that new code should consider
using PL_raise_exception() to raise a Prolog exception. See also
section 4.9.
int PPLL__wwaarrnniinngg(_f_o_r_m_a_t_, _a_1_, _._._.)
Print an error message starting with `[WARNING: ', followed by
the output from _f_o_r_m_a_t, followed by a `]' and a newline. Then
start the tracer. _f_o_r_m_a_t and the arguments are the same as for
printf(2). Always returns FALSE.
99..44..1166 EEnnvviirroonnmmeenntt CCoonnttrrooll ffrroomm FFoorreeiiggnn CCooddee
int PPLL__aaccttiioonn(_i_n_t_, _._._.)
Perform some action on the Prolog system. _i_n_t describes the
action, Remaining arguments depend on the requested action. The
actions are listed in table 9.1.
___________________________________________________________________
| PL_ACTION_TRACE |Start Prolog tracer (trace/0). Requires|
| |no arguments. |
| PL_ACTION_DEBUG |Switch on Prolog debug mode (debug/0).|
| |Requires no arguments. |
| PL_ACTION_BACKTRACE |Print backtrace on current output|
| |stream. The argument (an int) is the|
| |number of frames printed. |
| PL_ACTION_HALT |Halt Prolog execution. This action|
| |should be called rather than Unix exit()|
| |to give Prolog the opportunity to clean|
| |up. This call does not return. The|
| |argument (an int) is the exit code. See|
| |halt/1. |
| PL_ACTION_ABORT |Generate a Prolog abort (abort/0). This|
| |call does not return. Requires no|
| |arguments. |
| PL_ACTION_BREAK |Create a standard Prolog break envi-|
| |ronment (break/0). Returns after the|
| |user types the end-of-file character.|
|| |Requires|no arguments. ||
| PL_ACTION_GUIAPP |Win32: Used to indicate the kernel that|
| |the application is a GUI application if|
| |the argument is not 0 and a console|
| |application if the argument is 0. If|
| |a fatal error occurs, the system uses|
| |a windows messagebox to report this on|
| |a GUI application and simply prints the|
| |error and exits otherwise. |
| PL_ACTION_WRITE |Write the argument, a char * to the|
| |current output stream. |
| PL_ACTION_FLUSH |Flush the current output stream. Re-|
| |quires no arguments. |
| PL_ACTION_ATTACH_CONSOLE|Attach a console to a thread if it does|
|| |not|have one. See attach_console/0. ||
| PL_GMP_SET_ALLOC_FUNCTIONS|TakesTRUandE,integertheargument.GMP alIflocation|are immediately
| | |
| |bound to the Prolog functions. If|
| |FALSE, SWI-Prolog will never rebind|
| |the GMP allocation functions. See|
| |mp_set_memory_functions() in the GMP doc-|
| |umentation. The action returns FALSE|
| |if there is no GMP support or GMP is|
|________________________|already_initialised._____________________|
Table 9.1: PL_action() options
99..44..1177 QQuueerryyiinngg PPrroolloogg
long PPLL__qquueerryy(_i_n_t)
Obtain status information on the Prolog system. The actual
argument type depends on the information required. _i_n_t describes
what information is wanted. The options are given in table 9.2.
___________________________________________________________________
| PL_QUERY_ARGC |Return an integer holding the number of|
| |arguments given to Prolog from Unix. |
| PL_QUERY_ARGV |Return a char ** holding the argument|
| |vector given to Prolog from Unix. |
| PL_QUERY_SYMBOLFILE |Return a char * holding the current|
| |symbol file of the running process. |
| PL_MAX_INTEGER |Return a long, representing the maximal|
| |integer value represented by a Prolog|
| |integer. |
| PL_MIN_INTEGER |Return a long, representing the minimal|
| |integer value. |
| PL_QUERY_VERSION |Return a long, representing the version|
| |as 10; 000M* +100m* +p, where M is the |
| |major, m the minor version number and |
| |p the patch-level. For example, 20717|
| |means 2.7.17. |
| PL_QUERY_ENCODING |Return the default stream encoding of|
| |Prolog (of type IOENC). |
| PL_QUERY_USER_CPU |Get amount of user CPU time of the|
|________________________|process_in_milliseconds._________________|
Table 9.2: PL_query() options
99..44..1188 RReeggiisstteerriinngg FFoorreeiiggnn PPrreeddiiccaatteess
int PPLL__rreeggiisstteerr__ffoorreeiiggnn__iinn__mmoodduullee(_c_o_n_s_t _c_h_a_r _*_m_o_d_u_l_e_, _c_o_n_s_t _c_h_a_r _*_n_a_m_e_, _i_n_t _a_r_i_t_y_, _f_o_r_e_i_g_n___t _(_*_f_u_n_c_t_i_o_n_)_(_)_, _i_n_t _f_l_a_g_s)
Register a C-function to implement a Prolog predicate. After this
call returns successfully a predicate with name _n_a_m_e (a char *) and
arity _a_r_i_t_y (a C int) is created in module _m_o_d_u_l_e. If _m_o_d_u_l_e is
NULL, the predicate is created in the module of the calling context
or if no context is present in the module user.
When called in Prolog, Prolog will call _f_u_n_c_t_i_o_n. _f_l_a_g_s forms
bitwise or'ed list of options for the installation. These are:
___________________________________________________________________
| PL_FA_NOTRACE |Predicate cannot be seen in the tracer |
| PL_FA_TRANSPARENT |Predicate is module transparent |
| PL_FA_NONDETERMINISTIC |Predicate is non-deterministic. See|
| |also PL_retry(). |
|_PL_FA_VARARGS__________|Use_alternative_calling_convention.______|
Predicates may be registered either before or after
PL_initialise(). When registered before initialisation the
registration is recorded and executed after installing the system
predicates and before loading the saved state.
Default calling (i.e. without PL_FA_VARARGS) _f_u_n_c_t_i_o_n is passed the
same number of term_t arguments as the arity of the predicate and,
if the predicate is non-deterministic, an extra argument of type
control_t (see section 9.4.1.1). If PL_FA_VARARGS is provided,
_f_u_n_c_t_i_o_n is called with three arguments. The first argument is
a term_t handle to the first argument. Further arguments can be
reached by adding the offset (see also PL_new_term_refs()). The
second argument is the arity, which defines the number of valid
term-references in the argument vector. The last argument is used
for non-deterministic calls. It is currently undocumented and
should be defined of type void*. Here is an example:
____________________________________________________________________| |
| static foreign_t |
| atom_checksum(term_t a0, int arity, void* context) |
| { char *s; |
| |
| if ( PL_get_atom_chars(a0, &s) ) |
| { int sum; |
| |
| for(sum=0; *s; s++) |
| sum += *s&0xff; |
| |
| return PL_unify_integer(a0+1, sum&0xff); |
| } |
| |
| return FALSE; |
| } |
| |
| install_t |
| install() |
| { PL_register_foreign("atom_checksum", 2, atom_checksum, PL_FA_VARARGS);|
||}_________________________________________________________________ ||
int PPLL__rreeggiisstteerr__ffoorreeiiggnn(_c_o_n_s_t _c_h_a_r _*_n_a_m_e_, _i_n_t _a_r_i_t_y_, _f_o_r_e_i_g_n___t _(_*_f_u_n_c_t_i_o_n_)_(_)_, _i_n_t _f_l_a_g_s)
Same as PL_register_foreign_in_module(), passing NULL for the
_m_o_d_u_l_e.
void PPLL__rreeggiisstteerr__eexxtteennssiioonnss__iinn__mmoodduullee(_c_o_n_s_t _c_h_a_r _*_m_o_d_u_l_e_, _P_L___e_x_t_e_n_s_i_o_n _*_e)
Register a series of predicates from an array of definitions of the
type PL_extension in the given _m_o_d_u_l_e. If _m_o_d_u_l_e is NULL, the
predicate is created in the module of the calling context or if no
context is present in the module user. The PL_extension type is
defined as
____________________________________________________________________| |
| typedef struct PL_extension |
| { char *predicate_name; /* Name of the predicate */|
| short arity; /* Arity of the predicate */|
| pl_function_t function; /* Implementing functions */|
| short flags; /* Or of PL_FA_... */ |
||}_PL_extension;___________________________________________________ ||
For details, see PL_register_foreign_in_module(). Here is an
example of its usage:
____________________________________________________________________| |
| static PL_extension predicates[] = { |
| { "foo", 1, pl_foo, 0 }, |
| { "bar", 2, pl_bar, PL_FA_NONDETERMINISTIC }, |
| { NULL, 0, NULL, 0 } |
| }; |
| |
| main(int argc, char **argv) |
| { PL_register_extensions_in_module("user", predicates); |
| |
| if ( !PL_initialise(argc, argv) ) |
| PL_halt(1); |
| |
| ... |
||}_________________________________________________________________ ||
void PPLL__rreeggiisstteerr__eexxtteennssiioonnss( _P_L___e_x_t_e_n_s_i_o_n _*_e)
Same as PL_register_extensions_in_module()using NULL for the _m_o_d_u_l_e
argument.
99..44..1199 FFoorreeiiggnn CCooddee HHooookkss
For various specific applications some hooks re provided.
PL_dispatch_hook_t PPLL__ddiissppaattcchh__hhooookk(_P_L___d_i_s_p_a_t_c_h___h_o_o_k___t)
If this hook is not NULL, this function is called when reading from
the terminal. It is supposed to dispatch events when SWI-Prolog
is connected to a window environment. It can return two values:
PL_DISPATCH_INPUT indicates Prolog input is available on file
descriptor 0 or PL_DISPATCH_TIMEOUT to indicate a timeout. The old
hook is returned. The type PL_dispatch_hook_t is defined as:
____________________________________________________________________| |
||typedef_int__(*PL_dispatch_hook_t)(void);_________________________ ||
void PPLL__aabboorrtt__hhooookk(_P_L___a_b_o_r_t___h_o_o_k___t)
Install a hook when abort/0 is executed. SWI-Prolog abort/0 is
implemented using C setjmp()/longjmp() construct. The hooks are
executed in the reverse order of their registration after the
longjmp() took place and before the Prolog top-level is reinvoked.
The type PL_abort_hook_t is defined as:
____________________________________________________________________| |
||typedef_void_(*PL_abort_hook_t)(void);____________________________ ||
int PPLL__aabboorrtt__uunnhhooookk(_P_L___a_b_o_r_t___h_o_o_k___t)
Remove a hook installed with PL_abort_hook(). Returns FALSE if no
such hook is found, TRUE otherwise.
void PPLL__oonn__hhaalltt(_v_o_i_d _(_*_f_)_(_i_n_t_, _v_o_i_d _*_)_, _v_o_i_d _*_c_l_o_s_u_r_e)
Register the function _f to be called if SWI-Prolog is halted. The
function is called with two arguments: the exit code of the
process (0 if this cannot be determined on your operating system)
and the _c_l_o_s_u_r_e argument passed to the PL_on_halt()call. See also
at_halt/1.
PL_agc_hook_t PPLL__aaggcc__hhooookk(_P_L___a_g_c___h_o_o_k___t _n_e_w)
Register a hook with the atom-garbage collector (see
garbage_collect_atoms/0 that is called on any atom that is
reclaimed. The old hook is returned. If no hook is currently
defined, NULL is returned. The argument of the called hook is the
atom that is to be garbage collected. The return value is an int.
If the return value is zero, the atom is nnoott reclaimed. The hook
may invoke any Prolog predicate.
The example below defines a foreign library for printing the
garbage collected atoms for debugging purposes.
____________________________________________________________________| |
| #include <SWI-Stream.h> |
| #include <SWI-Prolog.h> |
| |
| static int |
| atom_hook(atom_t a) |
| { Sdprintf("AGC: deleting %s\n", PL_atom_chars(a)); |
| |
| return TRUE; |
| } |
| |
| static PL_agc_hook_t old; |
| |
| install_t |
| install() |
| { old = PL_agc_hook(atom_hook); |
| } |
| |
| install_t |
| uninstall() |
| { PL_agc_hook(old); |
||}_________________________________________________________________ ||
99..44..2200 SSttoorriinngg ffoorreeiiggnn ddaattaa
This section provides some hints for handling foreign data in Prolog.
With foreign data, we refer to data that is used by foreign language
predicates and needs to be passed around in Prolog. Excluding
combinations, there are three principal options for storing such data
o _N_a_t_u_r_a_l _P_r_o_l_o_g _d_a_t_a
E.i. using the representation one would choose if there was no
foreign interface required.
o _O_p_a_q_u_e _p_a_c_k_e_d _P_r_o_l_o_g _d_a_t_a
Data can also be represented in a foreign structure and stored on
the Prolog stacks using PL_put_string_nchars()and retrieved using
PL_get_string_chars(). It is generally good practice to wrap the
string in a compound term with arity 1, so Prolog can identify the
type. portray/1 rules may be used to streamline printing such
terms during development.
o _N_a_t_u_r_a_l _f_o_r_e_i_g_n _d_a_t_a_, _p_a_s_s_i_n_g _a _p_o_i_n_t_e_r
An alternative is to pass a pointer to the foreign data. Again,
this functor may be wrapped in a compound term.
The choice may be guided using the following distinctions
o _I_s _t_h_e _d_a_t_a _o_p_a_q_u_e _t_o _P_r_o_l_o_g
With `opaque' data, we refer to data handled in foreign functions,
passed around in Prolog, but of which Prolog never examines the
contents of the data itself. If the data is opaque to Prolog,
the chosen representation does not depend on simple analysis by
Prolog, and the selection will be driven solely by simplicity of
the interface and performance (both in time and space).
o _H_o_w _b_i_g _i_s _t_h_e _d_a_t_a
Is efficient encoding required? For examine, a boolean array may
be expressed as a compound term, holding integers each of which
contains a number of bits, or as a list of true and false.
o _W_h_a_t _i_s _t_h_e _n_a_t_u_r_e _o_f _t_h_e _d_a_t_a
For examples in C, constants are often expressed using `enum' or
#define'd integer values. If prolog needs to handle this data,
atoms are a more logical choice. Whether or not this mapping is
used depends on whether Prolog needs to interpret the data, how
important debugging is and how important performance is.
o _W_h_a_t _i_s _t_h_e _l_i_f_e_t_i_m_e _o_f _t_h_e _d_a_t_a
We can distinguish three cases.
1. The lifetime is dictated by the accessibility of the data on
the Prolog stacks. Their is no way by which the foreign code
when the data becomes `garbage', and the data thus needs to
be represented on the Prolog stacks using Prolog data-types.
(2),
2. The data lives on the `heap' and is explicitly allocated
and deallocated. In this case, representing the data using
native foreign representation and passing a pointer to it is a
sensible choice.
3. The data lives as during the lifetime of a foreign predicate.
If the predicate is deterministic, foreign automatic variables
are suitable. if the predicate is non-deterministic, the data
may be allocated using malloc() and a pointer may be passed.
See section 9.4.1.1.
99..44..2200..11 EExxaammpplleess ffoorr ssttoorriinngg ffoorreeiiggnn ddaattaa
In this section, we will outline some examples, covering typical cases.
In the first example, we will deal with extending Prolog's data
representation with integer-sets, represented as bit-vectors. Finally,
we discuss the outline of the DDE interface.
IInntteeggeerr sseettss with not-too-far-apart upper- and lower-bounds can be
represented using bit-vectors. Common set operations, such as union,
intersection, etc. are reduced to simple and'ing and or'ing the
bit-vectors. This can be done using Prolog's unbounded integers.
For really demanding applications, foreign representation will perform
better, especially time-wise. Bit-vectors are naturally expressed
using string objects. If the string is wrapped in bitvector/1,
lower-bound of the vector is 0, and the upper-bound is not defined, an
implementation for getting and putting the sets as well as the union
predicate for it is below.
________________________________________________________________________| |
|#include <SWI-Prolog.h> |
| |
|#define max(a, b) ((a) > (b) ? (a) : (b)) |
|#define min(a, b) ((a) < (b) ? (a) : (b)) |
| |
|static functor_t FUNCTOR_bitvector1; |
| |
|static int |
|get_bitvector(term_t in, int *len, unsigned char **data) |
|{ if ( PL_is_functor(in, FUNCTOR_bitvector1) ) |
| { term_t a = PL_new_term_ref(); |
| |
| PL_get_arg(1, in, a); |
| return PL_get_string(a, (char **)data, len); |
| } |
| |
| PL_fail; |
|} |
| |
|static int |
|unify_bitvector(term_t out, int len, const unsigned char *data) |
|{ if ( PL_unify_functor(out, FUNCTOR_bitvector1) ) |
| { term_t a = PL_new_term_ref(); |
| |
| PL_get_arg(1, out, a); |
| |
| return PL_unify_string_nchars(a, len, (const char *)data); |
| } |
| |
| PL_fail; |
|} |
| |
|static foreign_t |
|pl_bitvector_union(term_t t1, term_t t2, term_t u) |
|{ unsigned char *s1, *s2; |
| int l1, l2; |
| |
| if ( get_bitvector(t1, &l1, &s1) && |
| get_bitvector(t2, &l2, &s2) ) |
| { int l = max(l1, l2); |
| unsigned char *s3 = alloca(l); |
| |
| if ( s3 ) |
| { int n; |
| int ml = min(l1, l2); |
| |
| for(n=0; n<ml; n++) |
| s3[n] = s1[n] | s2[n]; |
| for( ; n < l1; n++) |
| s3[n] = s1[n]; |
| for( ; n < l2; n++) |
| s3[n] = s2[n]; |
| |
| return unify_bitvector(u, l, s3); |
| } |
| |
| return PL_warning("Not enough memory"); |
| } |
| |
| PL_fail; |
|} |
| |
| |
|install_t |
|install() |
|{ PL_register_foreign("bitvector_union", 3, pl_bitvector_union, 0); |
| |
| FUNCTOR_bitvector1 = PL_new_functor(PL_new_atom("bitvector"), 1); |
|}|_____________________________________________________________________ | |
TThhee DDDDEE iinntteerrffaaccee (see section 4.41) represents another common usage
of the foreign interface: providing communication to new operating
system features. The DDE interface requires knowledge about active DDE
server and client channels. These channels contains various foreign
data-types. Such an interface is normally achieved using an open/close
protocol that creates and destroys a _h_a_n_d_l_e. The handle is a reference
to a foreign data-structure containing the relevant information.
There are a couple of possibilities for representing the handle. The
choice depends on responsibilities and debugging facilities. The
simplest approach is to using PL_unify_pointer() and PL_get_pointer().
This approach is fast and easy, but has the drawbacks of (untyped)
pointers: there is no reliable way to detect the validity of the
pointer, not to verify it is pointing to a structure of the desired
type. The pointer may be wrapped into a compound term with arity 1
(i.e., dde_channel(<_P_o_i_n_t_e_r>)), making the type-problem less serious.
Alternatively (used in the DDE interface), the interface code can
maintain a (preferably variable length) array of pointers and return
the index in this array. This provides better protection. Especially
for debugging purposes, wrapping the handle in a compound is a good
suggestion.
99..44..2211 EEmmbbeeddddiinngg SSWWII--PPrroolloogg iinn ootthheerr aapppplliiccaattiioonnss
With embedded Prolog we refer to the situation where the `main' program
is not the Prolog application. Prolog is sometimes embedded in C, C++,
Java or other languages to provide logic based services in a larger
application. Embedding loads the Prolog engine as a library to the
external language. Prolog itself only provides for embedding in the
C-language (compatible with C++). Embedding in Java is achieved using
JPL using a C-glue between the Java and Prolog C-interfaces.
The most simple embedded program is below. The interface
function PL_initialise() mmuusstt be called before any of the other
SWI-Prolog foreign language functions described in this chapter,
except for PL_initialise_hook(), PL_new_atom(), PL_new_functor() and
PL_register_foreign(). PL_initialise() interprets all the command-line
arguments, except for the -t toplevel flag that is interpreted by
PL_toplevel().
________________________________________________________________________| |
|int |
|main(int argc, char **argv) |
|{ |
|#ifdef READLINE /* Remove if you don't want readline */ |
| PL_initialise_hook(install_readline); |
|#endif |
| |
| if ( !PL_initialise(argc, argv) ) |
| PL_halt(1); |
| |
| PL_halt(PL_toplevel() ? 0 : 1); |
|}|_____________________________________________________________________ | |
int PPLL__iinniittiiaalliissee(_i_n_t _a_r_g_c_, _c_h_a_r _*_*_a_r_g_v)
Initialises the SWI-Prolog heap and stacks, restores the Prolog
state, loads the system and personal initialisation files, runs the
at_initialization/1 hooks and finally runs the -g goal hook.
Special consideration is required for argv[0]. On UUnniixx, this
argument passes the part of the command-line that is used to locate
the executable. Prolog uses this to find the file holding the
running executable. The WWiinnddoowwss version uses this to find a _m_o_d_u_l_e
of the running executable. If the specified module cannot be
found, it tries the module libpl.dll, containing the Prolog runtime
kernel. In all these cases, the resulting file is used for two
purposes
o See whether a Prolog saved-state is appended to the file. If
this is the case, this state will be loaded instead of the
default boot.prc file from the SWI-Prolog home directory. See
also qsave_program/[1,2] and section 9.5.
o Find the Prolog home directory. This process is described in
detail in section 9.6.
PL_initialise() returns 1 if all initialisation succeeded and 0
otherwise.
In most cases, _a_r_g_c and _a_r_g_v will be passed from the main program.
It is allowed to create your own argument vector, provided argv[0]
is constructed according to the rules above. For example:
____________________________________________________________________| |
| int |
| main(int argc, char **argv) |
| { char *av[10]; |
| int ac = 0; |
| |
| av[ac++] = argv[0]; |
| av[ac++] = "-x"; |
| av[ac++] = "mystate"; |
| av[ac] = NULL; |
| |
| if ( !PL_initialise(ac, av) ) |
| PL_halt(1); |
| ... |
||}_________________________________________________________________ ||
Please note that the passed argument vector may be referred from
Prolog at any time and should therefore be valid as long as the
Prolog engine is used.
A good setup in Windows is to add SWI-Prolog's bin directory to
your PATH and either pass a module holding a saved-state, or
"libpl.dll" as argv[0]. If the Prolog state is attached to a DLL
(see the -dll option of swipl-ld, pass the name of this DLL.
int PPLL__iiss__iinniittiiaalliisseedd(_i_n_t _*_a_r_g_c_, _c_h_a_r _*_*_*_a_r_g_v)
Test whether the Prolog engine is already initialised. Returns
FALSE if Prolog is not initialised and TRUE otherwise. If the
engine is initialised and _a_r_g_c is not NULL, the argument count used
with PL_initialise() is stored in _a_r_g_c. Same for the argument
vector _a_r_g_v.
void PPLL__iinnssttaallll__rreeaaddlliinnee()
Installs the GNU-readline line-editor. Embedded applications that
do not use the Prolog top-level should normally delete this line,
shrinking the Prolog kernel significantly. Note that the Windows
version does not use GNU readline.
int PPLL__ttoopplleevveell()
Runs the goal of the -t toplevel switch (default prolog/0) and
returns 1 if successful, 0 otherwise.
int PPLL__cclleeaannuupp(_i_n_t _s_t_a_t_u_s)
This function performs the reverse of PL_initialise(). It runs the
PL_on_halt() and at_halt/1 handlers, closes all streams (except for
the `standard I/O' streams which are flushed only), deallocates
all memory and restores all signal handlers. The _s_t_a_t_u_s argument
is passed to the various termination hooks and indicates the
_e_x_i_t_-_s_t_a_t_u_s.
The function returns TRUE if successful and FALSE otherwise.
Currently, FALSE is returned when an attempt is made to call
PL_cleanup() recursively or if PL_cleanup() is not called from the
main-thread.
In theory, this function allows deleting and restarting the Prolog
system in the same process. In practice, SWI-Prolog's cleanup
process is far from complete and trying to revive the system using
PL_initialise() will leak memory in the best case. It can also
crash the appliction.
In this state, there is little practical use for this function. If
you want to use Prolog temporary consider running it in a separate
process. If you want to be able to reset Prolog your options are
(again) a separate process, modules or threads.
void PPLL__cclleeaannuupp__ffoorrkk()
Close file descriptors associated to Prolog streams except for
0,1 and 2. Stop intervaltimer that may be running on behalf of
profile/1. The call is intended to be used in combination with
fork():
____________________________________________________________________| |
| if ( (pid=fork()) == 0 ) |
| { PL_cleanup_fork(); |
| <some exec variation> |
||____}_____________________________________________________________ ||
The call behaves the same on Windows, though there is probably no
meaningful application.
int PPLL__hhaalltt(_i_n_t _s_t_a_t_u_s)
Cleanup the Prolog environment using PL_cleanup() and calls exit()
with the status argument. As PL_cleanup() can only be called from
the main thread, this function returns FALSE when called from
another thread as the main one.
99..44..2211..11 TThhrreeaaddiinngg,, SSiiggnnaallss aanndd eemmbbeeddddeedd PPrroolloogg
This section applies to Unix-based environments that have signals or
multi-threading. The Windows version is compiled for multi-threading
and Windows lacks proper signals.
We can distinguish two classes of embedded executables. There are
small C/C++-programs that act as an interfacing layer around Prolog.
Most of these programs can be replaced using the normal Prolog
executable extended with a dynamically loaded foreign extension and in
most cases this is the preferred route. In other cases, Prolog is
embedded in a complex application that---like Prolog---wants to control
the process environment. A good example is Java. Embedding Prolog
is generally the only way to get these environments together in one
process image. Java applications however are by nature multi-threaded
and appear to do signal-handling (software interrupts).
On Unix systems, SWI-Prolog uses three signals:
SSIIGGUUSSRR11 is used to sychronise atom- and clause garbage collection. The
handler is installed at the start of GC and reverted to the old
setting after completing.
SSIIGGUUSSRR22 has an empty signal handler. This signal is sent to a thread
after sending a thread-signal (see thread_signal/2). It causes
blocking system calls to return with EINTR, which gives them to
opportunity to react on thread-signals.
SSIIGGIINNTT is used by the toplevel to activate the tracer (typically bound
to control-C). The first control-C posts a request for starting the
tracer in a safe synchronous fashion. If control-C is hit again
before the safe route is executed, it prompts the user whether or
not a forced interrupt is desired.
The --nosignals option can be used to inhibit processing of SIGINT. The
other signals are vital for the functioning of SWI-Prolog. If they
conflict with other applications, signal handling of either component
must be modified. The SWI-Prolog signals are defined in pl-thread.h of
the source-distribution.
99..55 LLiinnkkiinngg eemmbbeeddddeedd aapppplliiccaattiioonnss uussiinngg sswwiippll--lldd
The utility program swipl-ld (Win32: swipl-ld.exe) may be used to
link a combination of C-files and Prolog files into a stand-alone
executable. swipl-ld automates most of what is described in the
previous sections.
In the normal usage, a copy is made of the default embedding template
\ldots/pl/include/stub.c. The main() routine is modified to suit
your application. PL_initialise() mmuusstt be passed the program-name
(_a_r_g_v_[_0_]) (Win32: the executing program can be obtained using
GetModuleFileName()). The other elements of the command-line may be
modified. Next, swipl-ld is typically invoked as:
________________________________________________________________________| |
|swipl-ld|-o_output_stubfile.c_[other-c-or-o-files]_[plfiles]___________ | |
swipl-ld will first split the options into various groups for both the
C-compiler and the Prolog compiler. Next, it will add various default
options to the C-compiler and call it to create an executable holding
the user's C-code and the Prolog kernel. Then, it will call the
SWI-Prolog compiler to create a saved state from the provided Prolog
files and finally, it will attach this saved state to the created
emulator to create the requested executable.
Below, it is described how the options are split and which additional
options are passed.
-help
Print brief synopsis.
-pl _p_r_o_l_o_g
Select the prolog to use. This prolog is used for two purposes:
get the home-directory as well as the compiler/linker options and
create a saved state of the Prolog code.
-ld _l_i_n_k_e_r
Linker used to link the raw executable. Default is to use the
C-compiler (Win32: link.exe).
-cc _C_-_c_o_m_p_i_l_e_r
Compiler for .c files found on the command-line. Default is the
compiler used to build SWI-Prolog accessible through the Prolog
flag c_cc (Win32: cl.exe)..
-c++ _C_+_+_-_c_o_m_p_i_l_e_r
Compiler for C++ sources (extensions .cpp, .cxx, .cc or .C) files
found on the command-line. Default is c++ or g++ if the C-compiler
is gcc) (Win32: cl.exe).
-nostate
Just relink the kernel, do not add any Prolog code to the
new kernel. This is used to create a new kernel holding
additional foreign predicates on machines that do not support
the shared-library (DLL) interface, or if building the state
cannot be handled by the default procedure used by swipl-ld.
In the latter case the state is created separately and
appended to the kernel using cat <_k_e_r_n_e_l> <_s_t_a_t_e> > <_o_u_t>(Win32:
copy /b <_k_e_r_n_e_l>+<_s_t_a_t_e> <_o_u_t>)
-shared
Link C, C++ or object files into a shared object (DLL) that can be
loaded by the load_foreign_library/1predicate. If used with -c
it sets the proper options to compile a C or C++ file ready for
linking into a shared object
-dll
_W_i_n_d_o_w_s _o_n_l_y. Embed SWI-Prolog into a DLL rather than an
executable.
-c
Compile C or C++ source-files into object files. This turns
swipl-ld into a replacement for the C or C++ compiler where proper
options such as the location of the include directory are passed
automatically to the compiler.
-E
Invoke the C preprocessor. Used to make swipl-ld a replacement for
the C or C++ compiler.
-pl-options _,_._._.
Additional options passed to Prolog when creating the saved state.
The first character immediately following pl-options is used as
separator and translated to spaces when the argument is built.
Example: -pl-options,-F,xpce passed -F xpce as additional flags to
Prolog.
-ld-options _,_._._.
Passes options to the linker, similar to -pl-options.
-cc-options _,_._._.
Passes options to the C/C++ compiler, similar to -pl-options.
-v
Select verbose operation, showing the various programs and their
options.
-o _o_u_t_f_i_l_e
Reserved to specify the final output file.
-l_l_i_b_r_a_r_y
Specifies a library for the C-compiler. By default, -lswipl
(Win32: libpl.lib) and the libraries needed by the Prolog kernel
are given.
-L_l_i_b_r_a_r_y_-_d_i_r_e_c_t_o_r_y
Specifies a library directory for the C-compiler. By default
the directory containing the Prolog C-library for the current
architecture is passed.
-g | -I_i_n_c_l_u_d_e_-_d_i_r_e_c_t_o_r_y | -D_d_e_f_i_n_i_t_i_o_n
These options are passed to the C-compiler. By default, the
include directory containing SWI-Prolog.h is passed. swipl-ld adds
two additional * -Ddef flags:
-D__SWI_PROLOG__
Indicates the code is to be connected to SWI-Prolog.
-D__SWI_EMBEDDED__
Indicates the creation of an embedded program.
_*_._o | _*_._c | _*_._C | _*_._c_x_x | _*_._c_p_p
Passed as input files to the C-compiler
_*_._p_l |_*_._q_l_f
Passed as input files to the Prolog compiler to create the
saved-state.
*
I.e. all other options. These are passed as linker options to the
C-compiler.
99..55..11 AA ssiimmppllee eexxaammppllee
The following is a very simple example going through all the steps
outlined above. It provides an arithmetic expression evaluator. We
will call the application calc and define it in the files calc.c and
calc.pl. The Prolog file is simple:
________________________________________________________________________| |
|calc(Atom) :- |
| term_to_atom(Expr, Atom), |
| A is Expr, |
| write(A), |
||_______nl.____________________________________________________________ ||
The C-part of the application parses the command-line options,
initialises the Prolog engine, locates the calc/1 predicate and calls
it. The coder is in figure 9.4.
________________________________________________________________________| |
|#include <stdio.h> |
|#include <SWI-Prolog.h> |
| |
|#define MAXLINE 1024 |
| |
|int |
|main(int argc, char **argv) |
|{ char expression[MAXLINE]; |
| char *e = expression; |
| char *program = argv[0]; |
| char *plav[2]; |
| int n; |
| |
| /* combine all the arguments in a single string */ |
| |
| for(n=1; n<argc; n++) |
| { if ( n != 1 ) |
| *e++ = ' '; |
| strcpy(e, argv[n]); |
| e += strlen(e); |
| } |
| |
| /* make the argument vector for Prolog */ |
| |
| plav[0] = program; |
| plav[1] = NULL; |
| |
| /* initialise Prolog */ |
| |
| if ( !PL_initialise(1, plav) ) |
| PL_halt(1); |
| |
| /* Lookup calc/1 and make the arguments and call */ |
| |
| { predicate_t pred = PL_predicate("calc", 1, "user"); |
| term_t h0 = PL_new_term_refs(1); |
| int rval; |
| |
| PL_put_atom_chars(h0, expression); |
| rval = PL_call_predicate(NULL, PL_Q_NORMAL, pred, h0); |
| |
| PL_halt(rval ? 0 : 1); |
| } |
| |
| return 0; |
|}|_____________________________________________________________________ | |
Figure 9.4: C-source for the calc application
The application is now created using the following command-line:
________________________________________________________________________| |
|%|swipl-ld_-o_calc_calc.c_calc.pl______________________________________ | |
The following indicates the usage of the application:
________________________________________________________________________| |
|% calc pi/2 |
|1.5708|________________________________________________________________ | |
99..66 TThhee PPrroolloogg ``hhoommee'' ddiirreeccttoorryy
Executables embedding SWI-Prolog should be able to find the `home'
directory of the development environment unless a self-contained
saved-state has been added to the executable (see qsave_program/[1,2]
and section 9.5).
If Prolog starts up, it will try to locate the development environment.
To do so, it will try the following steps until one succeeds.
1. If the --home=DIR is provided, use this.
2. If the environment variable SWI_HOME_DIRis defined and points to
an existing directory, use this.
3. If the environment variable SWIPL is defined and points to an
existing directory, use this.
4. Locate the primary executable or (Windows only) a component
(_m_o_d_u_l_e) thereof and check whether the parent directory of the
directory holding this file contains the file swipl. If so, this
file contains the (relative) path to the home directory. If this
directory exists, use this. This is the normal mechanism used by
the binary distribution.
5. If the precompiled path exists, use it. This is only useful for a
source installation.
If all fails and there is no state attached to the executable or
provided Windows module (see PL_initialise()), SWI-Prolog gives up. If
a state is attached, the current working directory is used.
The file_search_path/2 alias swi is set to point to the home directory
located.
99..77 EExxaammppllee ooff UUssiinngg tthhee FFoorreeiiggnn IInntteerrffaaccee
Below is an example showing all stages of the declaration of a foreign
predicate that transforms atoms possibly holding uppercase letters into
an atom only holding lower case letters. Figure 9.5 shows the C-source
file, figure 9.6 illustrates compiling and loading of foreign code.
________________________________________________________________________| |
|/* Include file depends on local installation */ |
|#include <SWI-Prolog.h> |
|#include <stdlib.h> |
|#include <string.h> |
|#include <ctype.h> |
| |
|foreign_t |
|pl_lowercase(term_t u, term_t l) |
|{ char *copy; |
| char *s, *q; |
| int rval; |
| |
| if ( !PL_get_atom_chars(u, &s) ) |
| return PL_warning("lowercase/2: instantiation fault"); |
| copy = malloc(strlen(s)+1); |
| |
| for( q=copy; *s; q++, s++) |
| *q = (isupper(*s) ? tolower(*s) : *s); |
| *q = '\0'; |
| |
| rval = PL_unify_atom_chars(l, copy); |
| free(copy); |
| |
| return rval; |
|} |
| |
|install_t |
|install() |
|{ PL_register_foreign("lowercase", 2, pl_lowercase, 0); |
|}|_____________________________________________________________________ | |
Figure 9.5: Lowercase source file
________________________________________________________________________| |
|% gcc -I/usr/local/lib/pl-\plversion/include -fpic -c lowercase.c |
|% gcc -shared -o lowercase.so lowercase.o |
|% swipl |
|Welcome to SWI-Prolog (Version \plversion) |
|... |
| |
|1 ?- load_foreign_library(lowercase). |
| |
|Yes |
|2 ?- lowercase('Hello World!', L). |
| |
|L = 'hello world!' |
| |
|Yes|___________________________________________________________________ | |
Figure 9.6: Compiling the C-source and loading the object file
99..88 NNootteess oonn UUssiinngg FFoorreeiiggnn CCooddee
99..88..11 MMeemmoorryy AAllllooccaattiioonn
SWI-Prolog's heap memory allocation is based on the malloc(3) library
routines. The stacks are allocated using mmap() on most Unix
machines and using VirtualAlloc() on windows. SWI-Prolog provides the
functions below as a wrapper around malloc(). Allocation errors in
these functions trap SWI-Prolog's fatal-error handler, in which case
PL_malloc() or PL_realloc()do not return.
Portable applications must use PL_free() to release strings returned by
PL_get_chars()using the BUF_MALLOC argument. Portable applications may
use both PL_malloc() and friends or malloc() and friends but should not
mix these two sets of functions on the same memory.
void * PPLL__mmaalllloocc(_s_i_z_e___t _b_y_t_e_s)
Allocate _b_y_t_e_s of memory. On failure SWI-Prolog's fatal error
handler is called and PL_malloc() does not return. Memory
allocated using these functions must use PL_realloc() and PL_free()
rather than realloc() and free().
void * PPLL__rreeaalllloocc(_v_o_i_d _*_m_e_m_, _s_i_z_e___t _s_i_z_e)
Change the size of the allocated chunk, possibly moving it. The
_m_e_m argument must be obtained from a previous PL_malloc() or
PL_realloc() call.
void PPLL__ffrreeee(_v_o_i_d _*_m_e_m)
Release memory. The _m_e_m argument must be obtained from a previous
PL_malloc() or PL_realloc() call.
99..88..22 CCoommppaattiibbiilliittyy bbeettwweeeenn PPrroolloogg vveerrssiioonnss
Great care is taken to ensure binary compatibility of foreign
extensions between different Prolog versions. Only much less
frequently used stream interface has been responsible for binary
incompatibilities.
Source-code that relies on new features of the foreign interface can
use the macro PLVERSION to find the version of SWI-Prolog.h and
PL_query() using the option PL_QUERY_VERSION to find the version of
the attached Prolog system. Both follow the same numbering schema
explained with PL_query().
99..88..33 DDeebbuuggggiinngg aanndd pprrooffiilliinngg ffoorreeiiggnn ccooddee ((vvaallggrriinndd))
This section is only relevant for Unix users on platforms supported
by valgrind. Valgrind is an excellent binary intrumentation platform.
Unlike many other instrumentation platforms, valgrind can deal with
code loaded through dlopen().
The callgrind tool can be used to profile foreign code loaded under
SWI-Prolog. Compile the foreign library adding -g option to gcc
or swipl-ld. By setting the environment variable VALGRIND to yes,
SWI-Prolog will _n_o_t release loaded shared objects using dlclose().
This trick is required to get source information on the loaded library.
Without, valgrind claims that the shared object has no debugging
information. Here is the complete sequence using bash as login shell:
________________________________________________________________________| |
|% VALGRIND=yes valgrind --tool=callgrind pl <args> |
|<prolog interaction> |
|%|kcachegrind_callgrind.out.<pid>______________________________________ | |
99..88..44 NNaammee CCoonnfflliiccttss iinn CC mmoodduulleess
In the current version of the system all public C functions of
SWI-Prolog are in the symbol table. This can lead to name clashes with
foreign code. Someday I should write a program to strip all these
symbols from the symbol table (why does Unix not have that?). For now
I can only suggest to give your function another name. You can do this
using the C preprocessor. If---for example---your foreign package uses
a function warning(), which happens to exist in SWI-Prolog as well, the
following macro should fix the problem.
________________________________________________________________________| |
|#define|warning_warning________________________________________________ | |
Note that shared libraries do not have this problem as the shared
library loader will only look for symbols in the main executable for
symbols that are not defined in the library itself.
99..88..55 CCoommppaattiibbiilliittyy ooff tthhee FFoorreeiiggnn IInntteerrffaaccee
The term-reference mechanism was first used by Quintus Prolog version
3. SICStus Prolog version 3 is strongly based on the Quintus
interface. The described SWI-Prolog interface is similar to using the
Quintus or SICStus interfaces, defining all foreign-predicate arguments
of type +term. SWI-Prolog explicitly uses type functor_t, while
Quintus and SICStus uses <_n_a_m_e> and <_a_r_i_t_y>. As the names of the
functions differ from Prolog to Prolog, a simple macro layer dealing
with the names can also deal with this detail. For example:
________________________________________________________________________| |
|#define|QP_put_functor(t,_n,_a)_PL_put_functor(t,_PL_new_functor(n,_a))|_ |
The PL_unify_*() functions are lacking from the Quintus and SICStus
interface. They can easily be emulated or the put/unify approach
should be used to write compatible code.
The PL_open_foreign_frame()/PL_close_foreign_frame() combination is lack-
ing from both other Prologs. SICStus has PL_new_term_refs(_0), followed
by PL_reset_term_refs()that allows for discarding term references.
The Prolog interface for the graphical user interface package XPCE
shares about 90% of the code using a simple macro layer to deal with
different naming and calling conventions of the interfaces.
CChhaapptteerr 1100.. GGEENNEERRAATTIINNGG RRUUNNTTIIMMEE AAPPPPLLIICCAATTIIOONNSS
This chapter describes the features of SWI-Prolog for delivering
applications that can run without the development version of the system
installed.
A SWI-Prolog runtime executable is a file consisting of two parts. The
first part is the _e_m_u_l_a_t_o_r, which is machine dependent. The second
part is the _r_e_s_o_u_r_c_e _a_r_c_h_i_v_e, which contains the compiled program in a
machine-independent format, startup options and possibly user-defined
_r_e_s_o_u_r_c_e_s, see resource/3 and open_resource/3.
These two parts can be connected in various different ways. The most
common way for distributed runtime applications is to _c_o_n_c_a_t_e_n_a_t_e the
two parts. This can be achieved using external commands (Unix: cat,
Windows: copy), or using the stand_alone option to qsave_program/2.
The second option is to attach a startup script in front of the
resource that starts the emulator with the proper options. This is
the default under Unix. Finally, an emulator can be told to use a
specified resource file using the -x command-line switch.
qqssaavvee__pprrooggrraamm((_+_F_i_l_e_, _+_L_i_s_t_O_f_O_p_t_i_o_n_s))
Saves the current state of the program to the file _F_i_l_e. The
result is a resource archive containing a saved-state that
expresses all Prolog data from the running program and all
user-defined resources. Depending on the stand_alone option, the
resource is headed by the emulator, a Unix shell-script or nothing.
_L_i_s_t_O_f_O_p_t_i_o_n_s is a list of <_K_e_y>=<_V_a_l_u_e> or <_K_e_y>(<_V_a_l_u_e>) pairs.
The available keys are described in table 10.1.
_________________________________________________________________________
|__KKeeyy________________||OOppttiioonn__||________TTyyppee____________||DDeessccrriippttiioonn__________________________________________________||
|| local | --LL || K-bytes |Size (Limit) of local stack |
| global | --GG || K-bytes |Size (Limit) of global stack |
| trail | --TT || K-bytes |Size (Limit) of trail stack |
| argument | --AA || K-bytes |Size (Limit) of argument stack |
| goal | --gg || atom |Initialisation goal |
| toplevel | --tt || atom |Prolog top-level goal |
|_init_file___|--ff___||_____atom______|Personal_initialisation_file________||||||
| class | | atom |If runtime, only read resources |
| | | |from the state (default). If |
| | | |kernel, lock all predicates as |
| | | |system predicates If development, |
| | | |save the predicates in their |
| | | |current state and keep reading |
| | | |resources from their source (if |
| | | |present). See also resource/3. |
| autoload | | bool |If true, run autoload/0 first |
| map | | file |File to write info on dump |
| op | | save/standard |Save operator declarations? |
| stand_alone | | bool |Include the emulator in the state |
| emulator | | file |Emulator attached to the (stand- |
| | | |alone) executable. Default is the |
|____________|______|_______________|running_emulator.___________________|
Table 10.1: <_K_e_y> = <_V_a_l_u_e> pairs for qsave_program/2
Before writing the data to file, qsave_program/2 will run
autoload/0 to all required autoloading the system can discover.
See autoload/0.
Provided the application does not require any of the Prolog
libraries to be loaded at runtime, the only file from the
SWI-Prolog development environment required is the emulator itself.
The emulator may be built in two flavours. The default is the
_d_e_v_e_l_o_p_m_e_n_t _e_m_u_l_a_t_o_r. The _r_u_n_t_i_m_e _e_m_u_l_a_t_o_r is similar, but lacks
the tracer.
If the option stand_alone(true) is present, the emulator is the
first part of the state. If the emulator is started it will test
whether a boot-file (state) is attached to the emulator itself
and load this state. Provided the application has all libraries
loaded, the resulting executable is completely independent of the
runtime environment or location where it was build.
See also section 2.10.2.4.
qqssaavvee__pprrooggrraamm((_+_F_i_l_e))
Equivalent to qsave_program(File, []).
aauuttoollooaadd
Check the current Prolog program for predicates that are referred
to, are undefined and have a definition in the Prolog library.
Load the appropriate libraries.
This predicate is used by qsave_program/[1,2] to ensure the saved
state will not depend on one of the libraries. The predicate
autoload/0 will find all ddiirreecctt references to predicates. It does
not find predicates referenced via meta-predicates. The predicate
log/2 is defined in the library(quintus) to provide a quintus
compatible means to compute the natural logarithm of a number. The
following program will behave correctly if its state is executed in
an environment where the library(quintus) is not available:
____________________________________________________________________| |
| logtable(From, To) :- |
| From > To, !. |
| logtable(From, To) :- |
| log(From, Value), |
| format('~d~t~8|~2f~n', [From, Value]), |
| F is From + 1, |
||________logtable(F,_To).__________________________________________ ||
However, the following implementation refers to log/2 through the
meta-predicate maplist/3. Autoload will not be able to find the
reference. This problem may be fixed either by loading the module
library(quintus) explicitly or use require/1 to tell the system
that the predicate log/2 is required by this module.
____________________________________________________________________| |
| logtable(From, To) :- |
| findall(X, between(From, To, X), Xlist), |
| maplist(log, Xlist, SineList), |
| write_table(Xlist, SineList). |
| |
| write_table([], []). |
| write_table([I|IT], [V|VT]) :- |
| format('~d~t~8|~2f~n', [I, V]), |
||________write_table(IT,_VT).______________________________________ ||
vvoollaattiillee _+_N_a_m_e_/_A_r_i_t_y_, _._._.
Declare that the clauses of specified predicates should nnoott be
saved to the program. The volatile declaration is normally used to
avoid that the clauses of dynamic predicates that represent data
for the current session is saved in the state file.
1100..11 LLiimmiittaattiioonnss ooff qqssaavvee__pprrooggrraamm
There are three areas that require special attention when using
qsave_program/[1,2].
o If the program is an embedded Prolog application or uses the
foreign language interface, care has to be taken to restore the
appropriate foreign context. See section 10.2 for details.
o If the program uses directives (:- goal. lines) that perform other
actions then setting predicate attributes (dynamic, volatile, etc.)
or loading files (consult, etc.), the directive may need to be
prefixed with initialization/1.
o Database references as returned by clause/3, recorded/3, etc. are
not preserved and may thus not be part of the database when saved.
1100..22 RRuunnttiimmeess aanndd FFoorreeiiggnn CCooddee
Some applications may need to use the foreign language interface.
Object code is by definition machine-dependent and thus cannot be part
of the saved program file.
To complicate the matter even further there are various ways of loading
foreign code:
o _U_s_i_n_g _t_h_e _l_i_b_r_a_r_y_(_s_h_l_i_b_) _p_r_e_d_i_c_a_t_e_s
This is the preferred way of dealing with foreign code. It loads
quickly and ensures an acceptable level of independence between the
versions of the emulator and the foreign code loaded. It works on
Unix machines supporting shared libraries and library functions to
load them. Most modern Unixes, as well as Win32 (Windows 95/NT)
satisfy this constraint.
o _S_t_a_t_i_c _l_i_n_k_i_n_g
This mechanism works on all machines, but generally requires the
same C-compiler and linker to be used for the external code as is
used to build SWI-Prolog itself.
To make a runtime executable that can run on multiple platforms one
must make runtime checks to find the correct way of linking. Suppose
we have a source-file myextension.c defining the installation function
install().
If this file is compiled into a shared library, load_foreign_library/1
will load this library and call the installation function to initialise
the foreign code. If it is loaded as a static extension, define
install() as the predicate install/0:
________________________________________________________________________| |
|static foreign_t |
|pl_install() |
|{ install(); |
| |
| PL_succeed; |
|} |
| |
|PL_extension PL_extensions [] = |
|{ |
|/*{ "name", arity, function, PL_FA_<flags> },*/ |
| |
| { "install", 0, pl_install, 0 }, |
| { NULL, 0, NULL, 0 } /* terminating line */ |
|};|____________________________________________________________________ | |
Now, use the following Prolog code to load the foreign library:
________________________________________________________________________| |
|load_foreign_extensions :- |
| current_predicate(install, install), !, % static loaded |
| install. |
|load_foreign_extensions :- % shared library |
| load_foreign_library(foreign(myextension)). |
| |
|:-|initialization_load_foreign_extensions._____________________________ | |
The path alias foreign is defined by file_search_path/2. By default
it searches the directories <_h_o_m_e>/lib/<_a_r_c_h> and <_h_o_m_e>/lib. The
application can specify additional rules for file_search_path/2.
1100..33 UUssiinngg pprrooggrraamm rreessoouurrcceess
A _r_e_s_o_u_r_c_e is very similar to a file. Resources however can be
represented in two different formats: on files, as well as part of the
resource _a_r_c_h_i_v_e of a saved-state (see qsave_program/2).
A resource has a _n_a_m_e and a _c_l_a_s_s. The _s_o_u_r_c_e data of the resource is
a file. Resources are declared by declaring the predicate resource/3.
They are accessed using the predicate open_resource/3.
Before going into details, let us start with an example. Short
texts can easily be expressed in Prolog source code, but long texts
are cumbersome. Assume our application defines a command `help' that
prints a helptext to the screen. We put the content of the helptext
into a file called help.txt. The following code implements our help
command such that help.txt is incorporated into the runtime executable.
________________________________________________________________________| |
|resource(help, text, 'help.txt'). |
| |
|help :- |
| open_resource(help, text, In), |
| call_cleanup(copy_stream_data(In, user_output), |
||____________________close(In))._______________________________________ ||
The predicate help/0 opens the resource as a Prolog stream. If we
are executing this from the development environment, this will actually
return a stream to the file help.txt itself. When executed from the
saved-state, the stream will actually be a stream opened on the program
resource file, taking care of the offset and length of the resource.
1100..33..11 PPrreeddiiccaatteess DDeeffiinniittiioonnss
rreessoouurrccee((_+_N_a_m_e_, _+_C_l_a_s_s_, _+_F_i_l_e_S_p_e_c))
This predicate is defined as a dynamic predicate in the module
user. Clauses for it may be defined in any module, including the
user module. _N_a_m_e is the name of the resource (an atom). A
resource name may contain any character, except for $ and :, which
are reserved for internal usage by the resource library. _C_l_a_s_s
describes the what kind of object is stored in the resource.
In the current implementation, it is just an atom. _F_i_l_e_S_p_e_c
is a file specification that may exploit file_search_path/2 (see
absolute_file_name/2).
Normally, resources are defined as unit clauses (facts), but the
definition of this predicate also allows for rules. For proper
generation of the saved state, it must be possible to enumerate
the available resources by calling this predicate with all its
arguments unbound.
Dynamic rules are useful to turn all files in a certain directory
into resources, without specifying a resources for each file. For
example, assume the file_search_path/2icons refers to the resource
directory containing icon-files. The following definition makes
all these images available as resources:
____________________________________________________________________| |
| resource(Name, image, icons(XpmName)) :- |
| atom(Name), !, |
| file_name_extension(Name, xpm, XpmName). |
| resource(Name, image, XpmFile) :- |
| var(Name), |
| absolute_file_name(icons(.), [type(directory)], Dir) |
| concat(Dir, '/*.xpm', Pattern), |
| expand_file_name(Pattern, XpmFiles), |
||________member(XpmFile,_XpmFiles).________________________________ ||
ooppeenn__rreessoouurrccee((_+_N_a_m_e_, _?_C_l_a_s_s_, _-_S_t_r_e_a_m))
Opens the resource specified by _N_a_m_e and _C_l_a_s_s. If the latter is a
variable, it will be unified to the class of the first resource
found that has the specified _N_a_m_e. If successful, _S_t_r_e_a_m becomes a
handle to a binary input stream, providing access to the content of
the resource.
The predicate open_resource/3 first checks resource/3. When
successful it will open the returned resource source-file.
Otherwise it will look in the programs resource database. When
creating a saved-state, the system normally saves the resource
contents into the resource archive, but does not save the resource
clauses.
This way, the development environment uses the files (and
modifications to the resource/3 declarations and/or files
containing resource info thus immediately affect the running
environment, while the runtime system quickly accesses the system
resources.
1100..33..22 TThhee swipl-rc pprrooggrraamm
The utility program swipl-rc can be used to examine and manipulate the
contents of a SWI-Prolog resource file. The options are inspired by
the Unix ar program. The basic command is:
________________________________________________________________________| |
|%|swipl-rc_option_resource-file_member_..._____________________________ | |
The options are described below.
l
List contents of the archive.
x
Extract named (or all) members of the archive into the current
directory.
a
Add files to the archive. If the archive already contains a
member with the same name, the contents is replaced. Anywhere
in the sequence of members, the options --class=_c_l_a_s_s and
--encoding=_e_n_c_o_d_i_n_g may appear. They affect the class and encoding
of subsequent files. The initial class is data and encoding none.
d
Delete named members from the archive.
This command is also described in the pl(1) Unix manual page.
1100..44 FFiinnddiinngg AApppplliiccaattiioonn ffiilleess
If your application uses files that are not part of the saved program
such as database files, configuration files, etc., the runtime version
has to be able to locate these files. The file_search_path/2 mechanism
in combination with the -palias command-line argument is the preferred
way to locate runtime files. The first step is to define an alias
for the top-level directory of your application. We will call this
directory gnatdir in our examples.
A good place for storing data associated with SWI-Prolog runtime
systems is below the emulator's home-directory. swi is a predefined
alias for this directory. The following is a useful default definition
for the search path.
________________________________________________________________________| |
|user:file_search_path(gnatdir,|swi(gnat))._____________________________ | |
The application should locate all files using absolute_file_name.
Suppose gnatdir contains a file config.pl to define local
configuration. Then use the code below to load this file:
________________________________________________________________________| |
|configure_gnat :- |
| ( absolute_file_name(gnatdir('config.pl'), ConfigFile) |
| -> consult(ConfigFile) |
| ; format(user_error, 'gnat: Cannot locate config.pl~n'), |
| halt(1) |
||___________)._________________________________________________________ ||
1100..44..11 PPaassssiinngg aa ppaatthh ttoo tthhee aapppplliiccaattiioonn
Suppose the system administrator has installed the SWI-Prolog
runtime environment in /usr/local/lib/rt-pl-3.2.0. A user wants
to install gnat, but gnat will look for its configuration in
/usr/local/lib/rt-pl-3.2.0/gnat where the user cannot write.
The user decides to install the gnat runtime files in /users/bob/lib/
gnat. For one-time usage, the user may decide to start gnat using the
command:
________________________________________________________________________| |
|%|gnat_-p_gnatdir=/users/bob/lib/gnat__________________________________ | |
CChhaapptteerr 1111.. TTHHEE SSWWII--PPRROOLLOOGG LLIIBBRRAARRYY
This chapter documents the SWI-Prolog library. As SWI-Prolog provides
auto-loading, there is little difference between library predicates
and built-in predicates. Part of the library is therefore documented
in the rest of the manual. Library predicates differ from built-in
predicates in the following ways.
o User-definition of a built-in leads to a permission-error, while
using the name of a library predicate is allowed.
o If autoloading is disabled explicitely or because trapping unknown
predicates is disabled (see unknown/2 and current_prolog_flag/2),
library predicates must be loaded explicitely.
o Using libraries reduce the footprint of applications that don't
need them.
_T_h_e _d_o_c_u_m_e_n_t_a_t_i_o_n _o_f _t_h_e _l_i_b_r_a_r_y _i_s _j_u_s_t _s_t_a_r_t_e_d_. _M_a_t_e_r_i_a_l
_f_r_o_m _t_h_e _s_t_a_n_d_a_r_d _p_a_c_k_a_g_e_s _s_h_o_u_l_d _b_e _m_o_v_e_d _h_e_r_e_, _s_o_m_e _m_a_t_e_r_i_a_l
_f_r_o_m _o_t_h_e_r _p_a_r_t_s _o_f _t_h_e _m_a_n_u_a_l _s_h_o_u_l_d _b_e _m_o_v_e_d _t_o_o _a_n_d _v_a_r_i_o_u_s
_l_i_b_r_a_r_i_e_s _a_r_e _n_o_t _d_o_c_u_m_e_n_t_e_d _a_t _a_l_l_.
1111..11 lliibbrraarryy((aaggggrreeggaattee)):: AAggggrreeggaattiioonn ooppeerraattoorrss oonn bbaacckkttrraacckkaabbllee
pprreeddiiccaatteess
CCoommppaattiibbiilliittyy Quintus, SICStus 4. The forall/2 is a
SWI-Prolog built-in and term_variables/3 is a SWI-Prolog
with a ddiiffffeerreenntt ddeeffiinniittiioonn.
TToo bbee ddoonnee
- Analysing the aggregation template and compiling a
predicate for the list aggregation can be done at compile
time.
- aggregate_all/3 can be rewritten to run in constant
space using non-backtrackable assignment on a term.
This library provides aggregating operators over the solutions of a
predicate. The operations are a generalisation of the bagof/3, setof/3
and findall/3 built-in predicates. The defined aggregation operations
are counting, computing the sum, minimum, maximum, a bag of solutions
and a set of solutions. We first give a simple example, computing the
country with the smallest area:
________________________________________________________________________| |
|smallest_country(Name, Area) :- |
||_______aggregate(min(A,_N),_country(N,_A),_min(Area,_Name)).__________ ||
There are four aggregation predicates, distinguished on two properties.
aaggggrreeggaattee vvss.. aaggggrreeggaattee__aallll The aggregate predicates use setof/3
(aggregate/4) or bagof/3 (aggregate/3), dealing with existential
qualified variables (Var^Goal) and providing multiple solutions
for the remaining free variables in Goal. The aggregate_all/3
predicate uses findall/3, implicitly qualifying all free variables
and providing exactly one solution, while aggregate_all/4 uses
sort/2 over solutions and Distinguish (see below) generated using
findall/3.
TThhee DDiissttiinngguuiisshh aarrgguummeenntt The versions with 4 arguments provide a
Distinguish argument that allow for keeping duplicate bindings of a
variable in the result. For example, if we wish to compute the
total population of all countries we do not want to lose results
because two countries have the same population. Therefore we use:
____________________________________________________________________| |
||____aggregate(sum(P),_Name,_country(Name,_P),_Total)______________ ||
All aggregation predicates support the following operator below in
Template. In addition, they allow for an arbitrary named compound term
where each of the arguments is a term from the list below. I.e. the
term r(min(X), max(X)) computes both the minimum and maximum binding
for X.
ccoouunntt
Count number of solutions. Same as sum(1).
ssuumm((_E_x_p_r))
Sum of Expr for all solutions.
mmiinn((_E_x_p_r))
Minimum of Expr for all solutions.
mmiinn((_E_x_p_r_, _W_i_t_n_e_s_s))
A term min(Min, Witness), where Min is the minimal version of Expr
over all Solution and Witness is any other template applied to
Solution that produced Min. If multiple solutions provide the same
minimum, Witness corresponds to the first solution.
mmaaxx((_E_x_p_r))
Maximum of Expr for all solutions.
mmaaxx((_E_x_p_r_, _W_i_t_n_e_s_s))
As min(Expr, Witness), but producing the maximum result.
sseett((_X))
An ordered set with all solutions for X.
bbaagg((_X))
A list of all solutions for X.
1111..11..00..11 AAcckknnoowwlleeddggeemmeennttss
_T_h_e _d_e_v_e_l_o_p_m_e_n_t _o_f _t_h_i_s _l_i_b_r_a_r_y _w_a_s _s_p_o_n_s_o_r_e_d _b_y _S_e_c_u_r_i_t_E_a_s_e_,
http://www.securitease.com
aaggggrreeggaattee((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_R_e_s_u_l_t)) _[_n_o_n_d_e_t_]
Aggregate bindings in _G_o_a_l according to _T_e_m_p_l_a_t_e. The aggregate/3
version performs bagof/3 on _G_o_a_l.
aaggggrreeggaattee((_+_T_e_m_p_l_a_t_e_, _+_D_i_s_c_r_i_m_i_n_a_t_o_r_, _:_G_o_a_l_, _-_R_e_s_u_l_t)) _[_n_o_n_d_e_t_]
Aggregate bindings in _G_o_a_l according to _T_e_m_p_l_a_t_e. The aggregate/3
version performs setof/3 on _G_o_a_l.
aaggggrreeggaattee__aallll((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l_, _-_R_e_s_u_l_t)) _[_s_e_m_i_d_e_t_]
Aggregate bindings in _G_o_a_l according to _T_e_m_p_l_a_t_e. The
aggregate_all/3 version performs findall/3 on _G_o_a_l.
aaggggrreeggaattee__aallll((_+_T_e_m_p_l_a_t_e_, _+_D_i_s_c_r_i_m_i_n_a_t_o_r_, _:_G_o_a_l_, _-_R_e_s_u_l_t)) _[_s_e_m_i_d_e_t_]
Aggregate bindings in _G_o_a_l according to _T_e_m_p_l_a_t_e. The
aggregate_all/3 version performs findall/3 followed by sort/2 on
_G_o_a_l.
ffoorreeaacchh((_:_G_e_n_e_r_a_t_o_r_, _:_G_o_a_l))
True if the conjunction of instances of _G_o_a_l using the bindings
from _G_e_n_e_r_a_t_o_r is true. Unlike forall/2, which runs a
failure-driven loop that proves _G_o_a_l for each solution of
_G_e_n_e_r_a_t_o_r, foreach creates a conjunction. Each member of the
conjunction is a copy of _G_o_a_l, where the variables it shares
with _G_e_n_e_r_a_t_o_r are filled with the values from the corresponding
solution.
The implementation executes forall/2 if _G_o_a_l does not contain any
variables that are not shared with _G_e_n_e_r_a_t_o_r.
Here is an example:
____________________________________________________________________| |
| ?- foreach(between(1,4,X), dif(X,Y)), Y = 5. |
| Y = 5 |
| ?- foreach(between(1,4,X), dif(X,Y)), Y = 3. |
||No________________________________________________________________ ||
bbuugg _G_o_a_l is copied repeatetly, which may cause problems
if attributed variables are involved.
ffrreeee__vvaarriiaabblleess((_:_G_e_n_e_r_a_t_o_r_, _+_T_e_m_p_l_a_t_e_, _+_V_a_r_L_i_s_t_0_, _-_V_a_r_L_i_s_t)) _[_d_e_t_]
In order to handle variables properly, we have to find all the
universally quantified variables in the _G_e_n_e_r_a_t_o_r. All variables
as yet unbound are universally quantified, unless
1. they occur in the template
2. they are bound by X^P, setof, or bagof
free_variables(_G_e_n_e_r_a_t_o_r, _T_e_m_p_l_a_t_e, OldList, NewList) finds this
set, using OldList as an accumulator.
aauutthhoorr
- Richard O'Keefe
- Jan Wielemaker (made some SWI-Prolog enhancements)
lliicceennssee Public domain (from DEC10 library).
TToo bbee ddoonnee
- Distinguish between control-structures and data
terms.
- Exploit our built-in term_variables/2 at some
places?
1111..22 lliibbrraarryy((aappppllyy)):: AAppppllyy pprreeddiiccaatteess oonn aa lliisstt
SSeeee aallssoo
- apply_macros.pl provides compile-time expansion for part
of this library.
- http://www.cs.otago.ac.nz/staffpriv/ok/pllib.htm
TToo bbee ddoonnee Add include/4, include/5, exclude/4, exclude/5
This module defines meta-predicates that apply a predicate on all
members of a list.
iinncclluuddee((_:_G_o_a_l_, _+_L_i_s_t_1_, _?_L_i_s_t_2)) _[_d_e_t_]
Filter elements for which _G_o_a_l succeed. True if _L_i_s_t_2 contains
those elements Xi of _L_i_s_t_1 for which call(_G_o_a_l, Xi) succeeds.
SSeeee aallssoo Older versions of SWI-Prolog had sublist/3 with
the same arguments and semantics.
eexxcclluuddee((_:_G_o_a_l_, _+_L_i_s_t_1_, _?_L_i_s_t_2)) _[_d_e_t_]
Filter elements for which _G_o_a_l fails. True if _L_i_s_t_2 contains those
elements Xi of _L_i_s_t_1 for which call(_G_o_a_l, Xi) fails.
ppaarrttiittiioonn((_:_P_r_e_d_, _+_L_i_s_t_, _?_I_n_c_l_u_d_e_d_, _?_E_x_c_l_u_d_e_d)) _[_d_e_t_]
Filter elements of _L_i_s_t according to _P_r_e_d. True if _I_n_c_l_u_d_e_d
contains all elements for which call(_P_r_e_d, X) succeeds and _E_x_c_l_u_d_e_d
contains the remaining elements.
ppaarrttiittiioonn((_:_P_r_e_d_, _+_L_i_s_t_, _?_L_e_s_s_, _?_E_q_u_a_l_, _?_G_r_e_a_t_e_r)) _[_s_e_m_i_d_e_t_]
Filter list according to _P_r_e_d in three sets. For each element Xi
of _L_i_s_t, its destination is determined by call(_P_r_e_d, Xi, Place),
where Place must be unified to one of <, = or >. _P_r_e_d must be
deterministic.
mmaapplliisstt((_:_G_o_a_l_, _?_L_i_s_t))
True if _G_o_a_l can succesfully be applied on all elements of _L_i_s_t.
Arguments are reordered to gain performance as well as to make the
predicate deterministic under normal circumstances.
mmaapplliisstt((_:_G_o_a_l_, _?_L_i_s_t_1_, _?_L_i_s_t_2))
True if _G_o_a_l can succesfully be applied to all succesive pairs of
elements of _L_i_s_t_1 and _L_i_s_t_2.
mmaapplliisstt((_:_G_o_a_l_, _?_L_i_s_t_1_, _?_L_i_s_t_2_, _?_L_i_s_t_3))
True if _G_o_a_l can succesfully be applied to all succesive triples of
elements of _L_i_s_t_1.._L_i_s_t_3.
mmaapplliisstt((_:_G_o_a_l_, _?_L_i_s_t_1_, _?_L_i_s_t_2_, _?_L_i_s_t_3_, _L_i_s_t_4))
True if _G_o_a_l can succesfully be applied to all succesive quadruples
of elements of _L_i_s_t_1.._L_i_s_t_4
1111..33 assoc:: AAssssoocciiaattiioonn lliissttss
Authors: _R_i_c_h_a_r_d _A_. _O_'_K_e_e_f_e_, _L_._D_a_m_a_s_, _V_._S_._C_o_s_t_a _a_n_d _M_a_r_k_u_s _T_r_i_s_k_a
Elements of an association list have 2 components: A (unique) _k_e_y and
a _v_a_l_u_e. Keys should be ground, values need not be. An association
list can be used to fetch elements via their keys and to enumerate its
elements in ascending order of their keys. The assoc module uses AVL
trees to implement association lists. This makes inserting, changing
and fetching a single element an O(log(N)) (where N denotes the number
of elements in the list) expected time (and worst-case time) operation.
aassssoocc__ttoo__lliisstt((_+_A_s_s_o_c_, _-_L_i_s_t))
_L_i_s_t is a list of Key-Value pairs corresponding to the associations
in _A_s_s_o_c in ascending order of keys.
aassssoocc__ttoo__kkeeyyss((_+_A_s_s_o_c_, _-_L_i_s_t))
_L_i_s_t is a list of Keys corresponding to the associations in _A_s_s_o_c
in ascending order.
aassssoocc__ttoo__vvaalluueess((_+_A_s_s_o_c_, _-_L_i_s_t))
_L_i_s_t is a list of Values corresponding to the associations in _A_s_s_o_c
in ascending order of the keys they are associated to.
eemmppttyy__aassssoocc((_-_A_s_s_o_c))
_A_s_s_o_c is unified with an empty association list.
ggeenn__aassssoocc((_?_K_e_y_, _+_A_s_s_o_c_, _?_V_a_l_u_e))
Enumerate matching elements of _A_s_s_o_c in ascending order of their
keys via backtracking.
ggeett__aassssoocc((_+_K_e_y_, _+_A_s_s_o_c_, _?_V_a_l_u_e))
_V_a_l_u_e is the value associated with _K_e_y in the association list
_A_s_s_o_c.
ggeett__aassssoocc((_+_K_e_y_, _+_A_s_s_o_c_, _?_O_l_d_, _?_N_e_w_A_s_s_o_c_, _?_N_e_w))
_N_e_w_A_s_s_o_c is an association list identical to _A_s_s_o_c except that the
value associated with _K_e_y is _N_e_w instead of _O_l_d.
lliisstt__ttoo__aassssoocc((_+_L_i_s_t_, _?_A_s_s_o_c))
_A_s_s_o_c is an association list corresponding to the Key-Value pairs
in _L_i_s_t.
mmaapp__aassssoocc((_:_G_o_a_l_, _+_A_s_s_o_c))
_G_o_a_l_(_V_) is true for every value V in _A_s_s_o_c.
mmaapp__aassssoocc((_:_G_o_a_l_, _+_A_s_s_o_c_I_n_, _?_A_s_s_o_c_O_u_t))
_A_s_s_o_c_O_u_t is _A_s_s_o_c_I_n with _G_o_a_l applied to all corresponding pairs of
values.
mmaaxx__aassssoocc((_+_A_s_s_o_c_, _?_K_e_y_, _?_V_a_l_u_e))
_K_e_y and _V_a_l_u_e are key and value of the element with the largest key
in _A_s_s_o_c.
mmiinn__aassssoocc((_+_A_s_s_o_c_, _?_K_e_y_, _?_V_a_l_u_e))
_K_e_y and _V_a_l_u_e are key and value of the element with the smallest
key in _A_s_s_o_c.
oorrdd__lliisstt__ttoo__aassssoocc((_+_L_i_s_t_, _?_A_s_s_o_c))
_A_s_s_o_c is an association list correpsond to the Key-Value pairs in
_L_i_s_t, which must occur in ascending order of their keys.
ppuutt__aassssoocc((_+_K_e_y_, _+_A_s_s_o_c_, _+_V_a_l_u_e_, _?_N_e_w_A_s_s_o_c))
_N_e_w_A_s_s_o_c is an association list identical to _A_s_s_o_c except that _K_e_y
is associated with _V_a_l_u_e. This can be used to insert and change
associations.
1111..44 broadcast:: BBrrooaaddccaasstt aanndd rreecceeiivvee eevveenntt nnoottiiffiiccaattiioonnss
The broadcast library was invented to realise GUI applications
consisting of stand-alone components that use the Prolog database for
storing the application data. Figure ???? illustrates the flow of
information using this design
The broadcasting service provides two services. Using the `shout'
service, an unknown number of agents may listen to the message and act.
The broadcaster is not (directly) aware of the implications. Using the
`request' service, listening agents are asked for an answer one-by-one
and the broadcaster is allowed to reject answers using normal Prolog
failure.
Shouting is often used to inform about changes made to a common
database. Other messages can be ``save yourself'' or ``show this''.
Requesting is used to get information while the broadcaster is not
aware who might be able to answer the question. For example ``who is
showing X?''.
bbrrooaaddccaasstt((_+_T_e_r_m))
Broadcast _T_e_r_m. There are no limitations to _T_e_r_m, though being
a global service, it is good practice to use a descriptive and
unique principal functor. All associated goals are started
and regardless of their success or failure, broadcast/1 always
succeeds. Exceptions are passed.
bbrrooaaddccaasstt__rreeqquueesstt((_+_T_e_r_m))
Unlike broadcast/1, this predicate stops if an associated goal
succeeds. Backtracking causes it to try other listeners. A
broadcast request is used to fetch information without knowing the
identity of the agent providing it. C.f. ``Is there someone who
knows the age of John?'' could be asked using
____________________________________________________________________| |
| ..., |
||________broadcast_request(age_of('John',_Age)),___________________ ||
If there is an agent (_l_i_s_t_e_n_e_r) that registered an `age-of' service
and knows about the age of `John' this question will be answered.
lliisstteenn((_+_T_e_m_p_l_a_t_e_, _:_G_o_a_l))
Register a _l_i_s_t_e_n channel. Whenever a term unifying _T_e_m_p_l_a_t_e
is broadcasted, call _G_o_a_l. The following example traps all
broadcasted messages as a variable unifies to any message. It is
commonly used to debug usage of the library.
____________________________________________________________________| |
| ?- listen(Term, (writeln(Term),fail)). |
| ?- broadcast(hello(world)). |
| hello(world) |
| |
||Yes_______________________________________________________________ ||
lliisstteenn((_+_L_i_s_t_e_n_e_r_, _+_T_e_m_p_l_a_t_e_, _:_G_o_a_l))
Declare _L_i_s_t_e_n_e_r as the owner of the channel. Unlike a channel
opened using listen/2, channels that have an owner can terminate
the channel. This is commonly used if an object is listening to
broadcast messages. In the example below we define a `name-item'
displaying the name of an identifier represented by the predicate
name_of/2.
____________________________________________________________________| |
| :- pce_begin_class(name_item, text_item). |
| |
| variable(id, any, get, "Id visualised"). |
| |
| initialise(NI, Id:any) :-> |
| name_of(Id, Name), |
| send_super(NI, initialise, name, Name, |
| message(NI, set_name, @arg1)), |
| send(NI, slot, id, Id), |
| listen(NI, name_of(Id, Name), |
| send(NI, selection, Name)). |
| |
| unlink(NI) :-> |
| unlisten(NI), |
| send_super(NI, unlink). |
| |
| set_name(NI, Name:name) :-> |
| get(NI, id, Id), |
| retractall(name_of(Id, _)), |
| assert(name_of(Id, Name)), |
| broadcast(name_of(Id, Name)). |
| |
||:-_pce_end_class._________________________________________________ ||
uunnlliisstteenn((_+_L_i_s_t_e_n_e_r))
Deregister all entries created with listen/3 whose _L_i_s_t_e_n_e_r unify.
uunnlliisstteenn((_+_L_i_s_t_e_n_e_r_, _+_T_e_m_p_l_a_t_e))
Deregister all entries created with listen/3 whose _L_i_s_t_e_n_e_r and
_T_e_m_p_l_a_t_e unify.
uunnlliisstteenn((_+_L_i_s_t_e_n_e_r_, _+_T_e_m_p_l_a_t_e_, _:_G_o_a_l))
Deregister all entries created with listen/3 whose _L_i_s_t_e_n_e_r,
_T_e_m_p_l_a_t_e and _G_o_a_l unify.
lliisstteenniinngg((_?_L_i_s_t_e_n_e_r_, _?_T_e_m_p_l_a_t_e_, _?_G_o_a_l))
Examine the current listeners. This predicate is useful for
debugging purposes.
1111..55 lliibbrraarryy((cchhaarrssiioo)):: II//OO oonn LLiissttss ooff CChhaarraacctteerr CCooddeess
CCoommppaattiibbiilliittyy The naming of this library is not in line
with the ISO standard. We believe that the SWI-Prolog
native predicates form a more elegant alternative for this
library.
This module emulates the Quintus/SICStus library charsio.pl for reading
and writing from/to lists of character codes. Most of these predicates
are straight calls into similar SWI-Prolog primitives. Some can even
be replaced by ISO standard predicates.
ffoorrmmaatt__ttoo__cchhaarrss((_+_F_o_r_m_a_t_, _+_A_r_g_s_, _-_C_o_d_e_s)) _[_d_e_t_]
Use format/2 to write to a list of character codes.
ffoorrmmaatt__ttoo__cchhaarrss((_+_F_o_r_m_a_t_, _+_A_r_g_s_, _-_C_o_d_e_s)) _[_d_e_t_]
Use format/2 to write to a difference list of character codes.
wwrriittee__ttoo__cchhaarrss((_+_T_e_r_m_, _-_C_o_d_e_s))
_C_o_d_e_s is a list of character codes produced by write/1 on _T_e_r_m.
wwrriittee__ttoo__cchhaarrss((_+_T_e_r_m_, _-_C_o_d_e_s_, _?_T_a_i_l))
_C_o_d_e_s is a difference-list of character codes produced by write/1
on _T_e_r_m.
aattoomm__ttoo__cchhaarrss((_+_A_t_o_m_, _-_C_o_d_e_s)) _[_d_e_t_]
Convert _A_t_o_m into a list of character codes.
ddeepprreeccaatteedd Use ISO atom_codes/2.
aattoomm__ttoo__cchhaarrss((_+_A_t_o_m_, _-_C_o_d_e_s_, _?_T_a_i_l)) _[_d_e_t_]
Convert _A_t_o_m into a difference-list of character codes.
nnuummbbeerr__ttoo__cchhaarrss((_+_N_u_m_b_e_r_, _-_C_o_d_e_s)) _[_d_e_t_]
Convert Atom into a list of character codes.
ddeepprreeccaatteedd Use ISO number_codes/2.
nnuummbbeerr__ttoo__cchhaarrss((_+_A_t_o_m_, _-_C_o_d_e_s_, _?_T_a_i_l)) _[_d_e_t_]
Convert Number into a difference-list of character codes.
rreeaadd__ffrroomm__cchhaarrss((_+_C_o_d_e_s_, _-_T_e_r_m)) _[_d_e_t_]
Read _C_o_d_e_s into _T_e_r_m.
CCoommppaattiibbiilliittyy The SWI-Prolog version does not require
_C_o_d_e_s to end in a full-stop.
rreeaadd__tteerrmm__ffrroomm__cchhaarrss((_+_C_o_d_e_s_, _-_T_e_r_m_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Read _C_o_d_e_s into _T_e_r_m. _O_p_t_i_o_n_s are processed by read_term/3.
CCoommppaattiibbiilliittyy sicstus
ooppeenn__cchhaarrss__ssttrreeaamm((_+_C_o_d_e_s_, _-_S_t_r_e_a_m)) _[_d_e_t_]
Open _C_o_d_e_s as an input stream.
bbuugg Depends on autoloading library(memfile). As many
applications do not need this predicate we do
not want to make the entire library dependent on
autoloading.
wwiitthh__oouuttppuutt__ttoo__cchhaarrss((_:_G_o_a_l_, _C_o_d_e_s)) _[_d_e_t_]
Run _G_o_a_l with as once/1. Output written to current_output is
collected in _C_o_d_e_s.
wwiitthh__oouuttppuutt__ttoo__cchhaarrss((_:_G_o_a_l_, _-_C_o_d_e_s_, _?_T_a_i_l)) _[_d_e_t_]
Run _G_o_a_l with as once/1. Output written to current_output is
collected in _C_o_d_e_s\_T_a_i_l.
wwiitthh__oouuttppuutt__ttoo__cchhaarrss((_:_G_o_a_l_, _-_S_t_r_e_a_m_, _-_C_o_d_e_s_, _?_T_a_i_l)) _[_d_e_t_]
As with_output_to_chars/2, but _S_t_r_e_a_m is unified with the temporary
stream.
1111..66 check:: EElleemmeennttaarryy ccoommpplleetteenneessss cchheecckkss
This library defines the predicate check/0 and a few friends that allow
for a quick-and-dirty cross-referencing.
cchheecckk
Performs the three checking passes implemented by list_undefined/0,
list_autoload/0 and list_redefined/0. Please check the definition
of these predicates for details.
The typical usage of this predicate is right after loading your
program to get a quick overview on the completeness and possible
conflicts in your program.
lliisstt__uunnddeeffiinneedd
Scans the database for predicates that have no definition. A
predicate is considered defined if it has clauses, is declared
using dynamic/1 or multifile/1. As a program is compiled calls
are translated to predicates. If the called predicate is not yet
defined it is created as a predicate without definition. The same
happens with runtime generated calls. This predicate lists all
such undefined predicates that are referenced and not defined in
the library. See also list_autoload/0. Below is an example from
a real program and an illustration how to edit the referencing
predicate using edit/1.
____________________________________________________________________| |
| ?- list_undefined. |
| Warning: The predicates below are not defined. If these are defined|
| Warning: at runtime using assert/1, use :- dynamic Name/Arity. |
| Warning: |
| Warning: rdf_edit:rdfe_retract/4, which is referenced by |
| Warning: 1-st clause of rdf_edit:undo/4 |
| Warning: rdf_edit:rdfe_retract/3, which is referenced by |
| Warning: 1-st clause of rdf_edit:delete_object/1 |
| Warning: 1-st clause of rdf_edit:delete_subject/1 |
| Warning: 1-st clause of rdf_edit:delete_predicate/1 |
| |
||?-_edit(rdf_edit:undo/4)._________________________________________ ||
lliisstt__aauuttoollooaadd
Lists all undefined (see list_undefined/0) predicates that have a
definition in the library along with the file from which they will
be autoloaded when accessed. See also autoload/0.
lliisstt__rreeddeeffiinneedd
Lists predicates that are defined in the global module user as
well as in a normal module. I.e. predicates for which the local
definition overrules the global default definition.
1111..77 lliibbrraarryy((ccllppffdd)):: CCoonnssttrraaiinntt LLooggiicc PPrrooggrraammmmiinngg oovveerr FFiinniittee DDoommaaiinnss
aauutthhoorr Markus Triska
Constraint programming is a declarative formalism that lets you
describe conditions a solution must satisfy. This library provides
CLP(FD), Constraint Logic Programming over Finite Domains. It can
be used to model and solve various combinatorial problems such as
planning, scheduling and allocation tasks.
Most predicates of this library are finite domain _c_o_n_s_t_r_a_i_n_t_s, which
are relations over integers. They generalise arithmetic evaluation of
integer expressions in that propagation can proceed in all directions.
This library also provides _e_n_u_m_e_r_a_t_i_o_n _p_r_e_d_i_c_a_t_e_s, which let you
systematically search for solutions on variables whose domains have
become finite. A finite domain _e_x_p_r_e_s_s_i_o_n is one of:
_____________________________________________
| an integer |Given value |
| a variable |Unknown value |
| -Expr |Unary minus |
| Expr + Expr |Addition |
| Expr * Expr |Multiplication |
| Expr - Expr |Subtraction |
| Expr ^ Expr |Exponentiation |
| min(Expr,Expr) |Minimum of two expressions |
| max(Expr,Expr) |Maximum of two expressions |
| Expr mod Expr |Modulo |
| abs(Expr) |Absolute value |
|_Expr_/_Expr____|Integer_division___________|
The most important finite domain constraints are:
___________________________________________________________
| Expr1 #>= Expr2 |Expr1 is larger than or equal to Expr2 |
| Expr1 #=< Expr2 |Expr1 is smaller than or equal to Expr2 |
| Expr1 #= Expr2 |Expr1 equals Expr2 |
| Expr1 #\= Expr2 |Expr1 is not equal to Expr2 |
| Expr1 #> Expr2 |Expr1 is strictly larger than Expr2 |
|_Expr1_#<__Expr2__|Expr1_is_strictly_smaller_than_Expr2___ |
The constraints in/2, #=/2, #\=/2, #</2, #>/2, #=</2, and #>=/2 can be
_r_e_i_f_i_e_d, which means reflecting their truth values into Boolean values
represented by the integers 0 and 1. Let P and Q denote reifiable
constraints or Boolean variables, then:
_____________________________________________
| #\ Q |True iff Q is false |
| P #\/ Q |True iff either P or Q |
| P #/\ Q |True iff both P and Q |
| P #<==> Q |True iff P and Q are equivalent |
| P #==> Q |True iff P implies Q |
|_P_#<==_Q___|True_iff_Q_implies_P___________ |
The constraints of this table are reifiable as well. If a variable
occurs at the place of a constraint that is being reified, it is
implicitly constrained to the Boolean values 0 and 1. Therefore, the
following queries all fail: ?- #\ 2., ?- #\ #\ 2. etc.
Here is an example session with a few queries and their answers:
________________________________________________________________________| |
|?- [library(clpfd)]. |
|% library(clpfd) compiled into clpfd 0.06 sec, 3,308 bytes |
|true. |
| |
|?- X #> 3. |
|X in 4..sup. |
| |
|?- X #\= 20. |
|X in inf..19\/21..sup. |
| |
|?- 2*X #= 10. |
|X = 5. |
| |
|?- X*X #= 144. |
|X in -12\/12. |
| |
|?- 4*X + 2*Y #= 24, X + Y #= 9, [X,Y] ins 0..sup. |
|X = 3, |
|Y = 6. |
| |
|?- Vs = [X,Y,Z], Vs ins 1..3, all_different(Vs), X = 1, Y #\= 2. |
|Vs = [1, 3, 2], |
|X = 1, |
|Y = 3, |
|Z = 2. |
| |
|?- X #= Y #<==> B, X in 0..3, Y in 4..5. |
|B = 0, |
|X in 0..3, |
|Y|in_4..5._____________________________________________________________ | |
In each case (and as for all pure programs), the answer is
declaratively equivalent to the original query, and in many cases the
constraint solver has deduced additional domain restrictions.
A common usage of this library is to first post the desired constraints
among the variables of a model, and then to use enumeration predicates
to search for solutions. As an example of a constraint satisfaction
problem, consider the cryptoarithmetic puzzle SEND + MORE = MONEY,
where different letters denote distinct integers between 0 and 9. It
can be modeled in CLP(FD) as follows:
________________________________________________________________________| |
|:- use_module(library(clpfd)). |
| |
|puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :- |
| Vars = [S,E,N,D,M,O,R,Y], |
| Vars ins 0..9, |
| all_different(Vars), |
| S*1000 + E*100 + N*10 + D + |
| M*1000 + O*100 + R*10 + E #= |
| M*10000 + O*1000 + N*100 + E*10 + Y, |
||_______M_#\=_0,_S_#\=_0.______________________________________________ ||
Sample query and its result:
________________________________________________________________________| |
|?- puzzle(As+Bs=Cs). |
|As = [9, _G10107, _G10110, _G10113], |
|Bs = [1, 0, _G10128, _G10107], |
|Cs = [1, 0, _G10110, _G10107, _G10152], |
|_G10107 in 4..7, |
|1000*9+91*_G10107+ -90*_G10110+_G10113+ -9000*1+ -900*0+10*_G10128+ -1*_G10152#=0,|
|all_different([_G10107, _G10110, _G10113, _G10128, _G10152, 0, 1, 9]), |
|_G10110 in 5..8, |
|_G10113 in 2..8, |
|_G10128 in 2..8, |
|_G10152|in_2..8._______________________________________________________ | |
Here, the constraint solver has deduced more stringent bounds for all
variables. Keeping the modeling part separate from the search lets
you view these residual goals, observe termination and determinism
properties of the modeling part in isolation from the search, and more
easily experiment with different search strategies. Labeling can then
be used to search for solutions:
________________________________________________________________________| |
|?- puzzle(As+Bs=Cs), label(As). |
|As = [9, 5, 6, 7], |
|Bs = [1, 0, 8, 5], |
|Cs = [1, 0, 6, 5, 2] ; |
|false.|________________________________________________________________ | |
In this case, it suffices to label a subset of variables to find the
puzzle's unique solution, since the constraint solver is strong enough
to reduce the domains of remaining variables to singleton sets. In
general though, it is necessary to label all variables to obtain ground
solutions.
You can also use CLP(FD) constraints as a more declarative alternative
for ordinary integer arithmetic with is/2, >/2 etc. For example:
________________________________________________________________________| |
|:- use_module(library(clpfd)). |
| |
|n_factorial(0, 1). |
|n_factorial(N,|F)_:-_N_#>_0,_N1_#=_N_-_1,_F_#=_N_*_F1,_n_factorial(N1,_F1).| |
This predicate can be used in all directions. For example:
________________________________________________________________________| |
|?- n_factorial(47, F). |
|F = 258623241511168180642964355153611979969197632389120000000000 ; |
|false. |
| |
|?- n_factorial(N, 1). |
|N = 0 ; |
|N = 1 ; |
|false. |
| |
|?- n_factorial(N, 3). |
|false.|________________________________________________________________ | |
To make the predicate terminate if any argument is instantiated, add
the (implied) constraint F #\= 0 before the recursive call. Otherwise,
the query n_factorial(N, 0) is the only non-terminating case of this
kind.
This library uses goal_expansion/2 to rewrite constraints at
compilation time. The expansion's aim is to transparently bring
the performance of CLP(FD) constraints close to that of conventional
arithmetic predicates (</2, =:=/2, is/2 etc.) when the constraints are
used in modes that can also be handled by built-in arithmetic. To
disable the expansion, set the flag clpfd_goal_expansion to false.
Use call_residue_vars/2 and copy_term/3 to inspect residual goals and
the constraints in which a variable is involved. This library also
provides _r_e_f_l_e_c_t_i_o_n predicates (like fd_dom/2, fd_size/2 etc.) with
which you can inspect a variable's current domain. These predicates
can be useful if you want to implement your own labeling strategies.
You can also define custom constraints. The mechanism to do this is
not yet finalised, and we welcome suggestions and descriptions of use
cases that are important to you. As an example of how it can be done
currently, let us define a new custom constraint "oneground(X,Y,Z)",
where Z shall be 1 if at least one of X and Y is instantiated:
________________________________________________________________________| |
|:- use_module(library(clpfd)). |
| |
|:- multifile clpfd:run_propagator/2. |
| |
|oneground(X, Y, Z) :- |
| clpfd:make_propagator(oneground(X, Y, Z), Prop), |
| clpfd:init_propagator(X, Prop), |
| clpfd:init_propagator(Y, Prop), |
| clpfd:trigger_once(Prop). |
| |
|clpfd:run_propagator(oneground(X, Y, Z), MState) :- |
| ( integer(X) -> clpfd:kill(MState), Z = 1 |
| ; integer(Y) -> clpfd:kill(MState), Z = 1 |
| ; true |
||_______)._____________________________________________________________ ||
First, clpfd:make_propagator/2 is used to transform a user-defined
representation of the new constraint to an internal form. With
clpfd:init_propagator/2, this internal form is then attached to X and
Y. From now on, the propagator will be invoked whenever the domains of
X or Y are changed. Then, clpfd:trigger_once/1 is used to give the
propagator its first chance for propagation even though the variables'
domains have not yet changed. Finally, clpfd:run_propagator/2 is
extended to define the actual propagator. As explained, this predicate
is automatically called by the constraint solver. The first argument
is the user-defined representation of the constraint as used in
clpfd:make_propagator/2, and the second argument is a mutable state
that can be used to prevent further invocations of the propagator when
the constraint has become entailed, by using clpfd:kill/1. An example
of using the new constraint:
________________________________________________________________________| |
|?- oneground(X, Y, Z), Y = 5. |
|Y = 5, |
|Z = 1, |
|X|in_inf..sup._________________________________________________________ | |
_?_V_a_r iinn _+_D_o_m_a_i_n
_V_a_r is an element of _D_o_m_a_i_n. _D_o_m_a_i_n is one of:
_I_n_t_e_g_e_r
Singleton set consisting only of _I_n_t_e_g_e_r.
_L_o_w_e_r .... _U_p_p_e_r
All integers _I such that _L_o_w_e_r =< _I =< _U_p_p_e_r. _L_o_w_e_r must be
an integer or the atom iinnff, which denotes negative infinity.
_U_p_p_e_r must be an integer or the atom ssuupp, which denotes
positive infinity.
_D_o_m_a_i_n_1 \/ _D_o_m_a_i_n_2
The union of Domain1 and Domain2.
_+_V_a_r_s iinnss _+_D_o_m_a_i_n
The variables in the list _V_a_r_s are elements of _D_o_m_a_i_n.
iinnddoommaaiinn((_?_V_a_r))
Bind _V_a_r to all feasible values of its domain on backtracking. The
domain of _V_a_r must be finite.
llaabbeell((_+_V_a_r_s))
Equivalent to labeling([], _V_a_r_s).
llaabbeelliinngg((_+_O_p_t_i_o_n_s_, _+_V_a_r_s))
Labeling means systematically trying out values for the finite
domain variables _V_a_r_s until all of them are ground. The domain of
each variable in _V_a_r_s must be finite. _O_p_t_i_o_n_s is a list of options
that let you exhibit some control over the search process. Several
categories of options exist:
The variable selection strategy lets you specify which variable of
_V_a_r_s is labeled next and is one of:
lleeffttmmoosstt
Label the variables in the order they occur in _V_a_r_s. This is
the default.
ffff
_F_i_r_s_t _f_a_i_l. Label the leftmost variable with smallest domain
next, in order to detect infeasibility early. This is often a
good strategy.
ffffcc
Of the variables with smallest domains, the leftmost one
participating in most constraints is labeled next.
mmiinn
Label the leftmost variable whose lower bound is the lowest
next.
mmaaxx
Label the leftmost variable whose upper bound is the highest
next.
The value order is one of:
uupp
Try the elements of the chosen variable's domain in ascending
order. This is the default.
ddoowwnn
Try the domain elements in descending order.
The branching strategy is one of:
sstteepp
For each variable X, a choice is made between X = V and X #\=
V, where V is determined by the value ordering options. This
is the default.
eennuumm
For each variable X, a choice is made between X = V_1, X = V_2
etc., for all values V_i of the domain of X. The order is
determined by the value ordering options.
bbiisseecctt
For each variable X, a choice is made between X #=< M and X #>
M, where M is the midpoint of the domain of X.
At most one option of each category can be specified, and an option
must not occur repeatedly.
The order of solutions can be influenced with:
mmiinn((_E_x_p_r))
mmaaxx((_E_x_p_r))
This generates solutions in ascending/descending order with respect
to the evaluation of the arithmetic expression Expr. Labeling _V_a_r_s
must make Expr ground. If several such options are specified, they
are interpreted from left to right, e.g.:
____________________________________________________________________| |
||?-_[X,Y]_ins_10..20,_labeling([max(X),min(Y)],[X,Y])._____________ ||
This generates solutions in descending order of X, and for each
binding of X, solutions are generated in ascending order of Y. To
obtain the incomplete behaviour that other systems exhibit with
"maximize(Expr)" and "minimize(Expr)", use once/1, e.g.:
____________________________________________________________________| |
||once(labeling([max(Expr)],_Vars))_________________________________ ||
Labeling is always complete, always terminates, and yields no
redundant solutions.
aallll__ddiiffffeerreenntt((_+_V_a_r_s))
_V_a_r_s are pairwise distinct.
ssuumm((_+_V_a_r_s_, _+_R_e_l_, _?_E_x_p_r))
The sum of elements of the list _V_a_r_s is in relation _R_e_l to _E_x_p_r,
where _R_e_l is #=, #\=, #<, #>, #=< or #>=. For example:
____________________________________________________________________| |
| ?- [A,B,C] ins 0..sup, sum([A,B,C], #=, 100). |
| A in 0..100, |
| A+B+C#=100, |
| B in 0..100, |
||C_in_0..100.______________________________________________________ ||
ssccaallaarr__pprroodduucctt((_+_C_s_, _+_V_s_, _+_R_e_l_, _?_E_x_p_r))
_C_s is a list of integers, _V_s is a list of variables and integers.
True if the scalar product of _C_s and _V_s is in relation _R_e_l to _E_x_p_r,
where _R_e_l is #=, #\=, #<, #>, #=< or #>=.
_?_X #>= _?_Y
_X is greater than or equal to _Y.
_?_X #=< _?_Y
_X is less than or equal to _Y.
_?_X #= _?_Y
_X equals _Y.
_?_X #\= _?_Y
_X is not _Y.
_?_X #> _?_Y
_X is greater than _Y.
_?_X #< _?_Y
_X is less than _Y. In addition to its regular use in problems
that require it, this constraint can also be useful to eliminate
uninteresting symmetries from a problem. For example, all possible
matches between pairs built from four players in total:
____________________________________________________________________| |
| ?- Vs = [A,B,C,D], Vs ins 1..4, all_different(Vs), A #< B, C #< D, A|#< C,
| findall(pair(A,B)-pair(C,D), label(Vs), Ms). |
||Ms_=_[pair(1,_2)-pair(3,_4),_pair(1,_3)-pair(2,_4),_pair(1,_4)-pair(2,|3)]|_
#\ _+_Q
The reifiable constraint _Q does _n_o_t hold. For example, to obtain
the complement of a domain:
____________________________________________________________________| |
| ?- #\ X in -3..0\/10..80. |
||X_in_inf.._-4\/1..9\/81..sup._____________________________________ ||
_?_P #<==> _?_Q
_P and _Q are equivalent. For example:
____________________________________________________________________| |
| ?- X #= 4 #<==> B, X #\= 4. |
| B = 0, |
||X_in_inf..3\/5..sup.______________________________________________ ||
The following example uses reified constraints to relate a list of
finite domain variables to the number of occurrences of a given
value:
____________________________________________________________________| |
| :- use_module(library(clpfd)). |
| |
| vs_n_num(Vs, N, Num) :- |
| maplist(eq_b(N), Vs, Bs), |
| sum(Bs, #=, Num). |
| |
||eq_b(X,_Y,_B)_:-_X_#=_Y_#<==>_B.__________________________________ ||
Sample queries and their results:
____________________________________________________________________| |
| ?- Vs = [X,Y,Z], Vs ins 0..1, vs_n_num(Vs, 4, Num). |
| Vs = [X, Y, Z], |
| Num = 0, |
| X in 0..1, |
| Y in 0..1, |
| Z in 0..1. |
| |
| ?- vs_n_num([X,Y,Z], 2, 3). |
| X = 2, |
| Y = 2, |
||Z_=_2.____________________________________________________________ ||
_?_P #==> _?_Q
_P implies _Q.
_?_P #<== _?_Q
_Q implies _P.
_?_P #/\ _?_Q
_P and _Q hold.
_?_P #\/ _?_Q
_P or _Q holds. For example, the sum of natural numbers below 1000
that are multiples of 3 or 5:
____________________________________________________________________| |
| ?- findall(N, (N mod 3 #= 0 #\/ N mod 5 #= 0, N in 0..999, indomain(N)),|Ns), sum(Ns, #=, Sum).
| Ns = [0, 3, 5, 6, 9, 10, 12, 15, 18|...], |
||Sum_=_233168._____________________________________________________ ||
lleexx__cchhaaiinn((_+_L_i_s_t_s))
_L_i_s_t_s are lexicographically non-decreasing.
ttuupplleess__iinn((_+_T_u_p_l_e_s_, _+_R_e_l_a_t_i_o_n))
_R_e_l_a_t_i_o_n must be a list of lists of integers. The elements of the
list _T_u_p_l_e_s are constrained to be elements of _R_e_l_a_t_i_o_n. Arbitrary
finite relations, such as compatibility tables, can be modeled in
this way. For example, if 1 is compatible with 2 and 5, and 4 is
compatible with 0 and 3:
____________________________________________________________________| |
| ?- tuples_in([[X,Y]], [[1,2],[1,5],[4,0],[4,3]]), X = 4. |
| X = 4, |
||Y_in_0\/3.________________________________________________________ ||
As another example, consider a train schedule represented as a list
of quadruples, denoting departure and arrival places and times for
each train. In the following program, Ps is a feasible journey
of length 3 from A to D via trains that are part of the given
schedule.
____________________________________________________________________| |
| :- use_module(library(clpfd)). |
| |
| trains([[1,2,0,1],[2,3,4,5],[2,3,0,1],[3,4,5,6],[3,4,2,3],[3,4,8,9]]).|
| |
| threepath(A, D, Ps) :- |
| Ps = [[A,B,_T0,T1],[B,C,T2,T3],[C,D,T4,_T5]], |
| T2 #> T1, |
| T4 #> T3, |
| trains(Ts), |
||________tuples_in(Ps,_Ts).________________________________________ ||
In this example, the unique solution is found without labeling:
____________________________________________________________________| |
| ?- threepath(1, 4, Ps). |
||Ps_=_[[1,_2,_0,_1],_[2,_3,_4,_5],_[3,_4,_8,_9]].__________________ ||
aallll__ddiissttiinncctt((_+_L_s))
Like all_different/1, with stronger propagation. For example,
all_distinct/1 can detect that not all variables can assume
distinct values given the following domains:
____________________________________________________________________| |
| ?- maplist(in, Vs, [1\/3..4, 1..2\/4, 1..2\/4, 1..3, 1..3, 1..6]), all_distinct(Vs).|
||false.____________________________________________________________ ||
sseerriiaalliizzeedd((_+_S_t_a_r_t_s_, _+_D_u_r_a_t_i_o_n_s))
Constrain a set of intervals to a non-overlapping sequence. _S_t_a_r_t_s
= [S_1,...,S_n], is a list of variables or integers, _D_u_r_a_t_i_o_n_s =
[D_1,...,D_n] is a list of non-negative integers. Constrains _S_t_a_r_t_s
and _D_u_r_a_t_i_o_n_s to denote a set of non-overlapping tasks, i.e.: S_i
+ D_i =< S_j or S_j + D_j =< S_i for all 1 =< i < j =< n. Example:
____________________________________________________________________| |
| ?- length(Vs, 3), Vs ins 0..3, serialized(Vs, [1,2,3]), label(Vs). |
| Vs = [0, 1, 3] ; |
| Vs = [2, 0, 3] ; |
||false.____________________________________________________________ ||
SSeeee aallssoo Dorndorf et al. 2000, "Constraint Propagation
Techniques for the Disjunctive Scheduling Problem"
eelleemmeenntt((_?_N_, _+_V_s_, _?_V))
The _N-th element of the list of finite domain variables _V_s is _V.
Analogous to nth1/3.
gglloobbaall__ccaarrddiinnaalliittyy((_+_V_s_, _+_P_a_i_r_s))
Equivalent to global_cardinality(_V_s, _P_a_i_r_s, []). Example:
____________________________________________________________________| |
| ?- Vs = [_,_,_], global_cardinality(Vs, [1-2,3-_]), label(Vs). |
| Vs = [1, 1, 3] ; |
| Vs = [1, 3, 1] ; |
||Vs_=_[3,_1,_1].___________________________________________________ ||
gglloobbaall__ccaarrddiinnaalliittyy((_+_V_s_, _+_P_a_i_r_s_, _+_O_p_t_i_o_n_s))
_V_s is a list of finite domain variables, _P_a_i_r_s is a list of Key-Num
pairs, where Key is an integer and Num is a finite domain variable.
The constraint holds iff each V in _V_s is equal to some key, and for
each Key-Num pair in _P_a_i_r_s, the number of occurrences of Key in _V_s
is Num. _O_p_t_i_o_n_s is a list of options. Supported options are:
ccoonnssiisstteennccyy((_v_a_l_u_e))
A weaker form of consistency is used.
ccoosstt((_C_o_s_t_, _M_a_t_r_i_x))
Matrix is a list of rows, one for each variable, in the order
they occur in _V_s. Each of these rows is a list of integers,
one for each key, in the order these keys occur in _P_a_i_r_s.
When variable v_i is assigned the value of key k_j, then the
associated cost is Matrix_{ij}. Cost is the sum of all costs.
cciirrccuuiitt((_+_V_s))
True if the list _V_s of finite domain variables induces a
Hamiltonian circuit, where the k-th element of _V_s denotes the
successor of node k. Node indexing starts with 1. Examples:
____________________________________________________________________| |
| ?- length(Vs, _), circuit(Vs), label(Vs). |
| Vs = [] ; |
| Vs = [1] ; |
| Vs = [2, 1] ; |
| Vs = [2, 3, 1] ; |
| Vs = [3, 1, 2] ; |
||Vs_=_[2,_3,_4,_1]_._______________________________________________ ||
aauuttoommaattoonn((_+_S_i_g_n_a_t_u_r_e_, _+_N_o_d_e_s_, _+_A_r_c_s))
Equivalent to automaton(_, _, _S_i_g_n_a_t_u_r_e, _N_o_d_e_s, _A_r_c_s, [], [], _),
a common use case of automaton/8. In the following example, a
list of binary finite domain variables is constrained to contain at
least two consecutive ones:
____________________________________________________________________| |
| :- use_module(library(clpfd)). |
| |
| two_consecutive_ones(Vs) :- |
| automaton(Vs, [source(a),sink(c)], |
| [arc(a,0,a), arc(a,1,b), |
| arc(b,0,a), arc(b,1,c), |
| arc(c,0,c), arc(c,1,c)]). |
| |
| ?- length(Vs, 3), two_consecutive_ones(Vs), label(Vs). |
| Vs = [0, 1, 1] ; |
| Vs = [1, 1, 0] ; |
||Vs_=_[1,_1,_1].___________________________________________________ ||
aauuttoommaattoonn((_?_S_e_q_u_e_n_c_e_, _?_T_e_m_p_l_a_t_e_, _+_S_i_g_n_a_t_u_r_e_, _+_N_o_d_e_s_, _+_A_r_c_s_, _+_C_o_u_n_t_e_r_s_, _+_I_n_i_t_i_a_l_s_, _?_F_i_n_a_l_s))
True if the finite automaton induced by _N_o_d_e_s and _A_r_c_s (extended
with _C_o_u_n_t_e_r_s) accepts _S_i_g_n_a_t_u_r_e. _S_e_q_u_e_n_c_e is a list of terms,
all of the same shape. Additional constraints must link _S_e_q_u_e_n_c_e
to _S_i_g_n_a_t_u_r_e, if necessary. _N_o_d_e_s is a list of source(Node)
and sink(Node) terms. _A_r_c_s is a list of arc(Node,Integer,Node)
and arc(Node,Integer,Node,Exprs) terms that denote the automaton's
transitions. Each node is represented by an arbitrary term.
Transitions that are not mentioned go to an implicit failure
node. Exprs is a list of arithmetic expressions, of the same
length as _C_o_u_n_t_e_r_s. In each expression, variables occurring in
_C_o_u_n_t_e_r_s correspond to old counter values, and variables occurring
in _T_e_m_p_l_a_t_e correspond to the current element of _S_e_q_u_e_n_c_e. When a
transition containing expressions is taken, counters are updated as
stated. By default, counters remain unchanged. _C_o_u_n_t_e_r_s is a list
of variables that must not occur anywhere outside of the constraint
goal. _I_n_i_t_i_a_l_s is a list of the same length as _C_o_u_n_t_e_r_s.
Counter arithmetic on the transitions relates the counter values in
_I_n_i_t_i_a_l_s to _F_i_n_a_l_s.
The following example is taken from Beldiceanu, Carlsson, Debruyne
and Petit: "Reformulation of Global Constraints Based on
Constraints Checkers", Constraints 10(4), pp 339-362 (2005). It
relates a sequence of integers and finite domain variables to its
number of inflexions, which are switches between strictly ascending
and strictly descending subsequences:
____________________________________________________________________| |
| :- use_module(library(clpfd)). |
| |
| sequence_inflexions(Vs, N) :- |
| variables_signature(Vs, Sigs), |
| automaton(_, _, Sigs, |
| [source(s),sink(i),sink(j),sink(s)], |
| [arc(s,0,s), arc(s,1,j), arc(s,2,i), |
| arc(i,0,i), arc(i,1,j,[C+1]), arc(i,2,i), |
| arc(j,0,j), arc(j,1,j), arc(j,2,i,[C+1])], [C], [0],|[N]).
| |
| variables_signature([], []). |
| variables_signature([V|Vs], Sigs) :- |
| variables_signature_(Vs, V, Sigs). |
| |
| variables_signature_([], _, []). |
| variables_signature_([V|Vs], Prev, [S|Sigs]) :- |
| V #= Prev #<==> S #= 0, |
| Prev #< V #<==> S #= 1, |
| Prev #> V #<==> S #= 2, |
||________variables_signature_(Vs,_V,_Sigs).________________________ ||
Example queries:
____________________________________________________________________| |
| ?- sequence_inflexions([1,2,3,3,2,1,3,0], N). |
| N = 3. |
| |
| ?- length(Ls, 5), Ls ins 0..1, sequence_inflexions(Ls, 3), label(Ls).|
| Ls = [0, 1, 0, 1, 0] ; |
||Ls_=_[1,_0,_1,_0,_1]._____________________________________________ ||
ttrraannssppoossee((_+_M_a_t_r_i_x_, _?_T_r_a_n_s_p_o_s_e))
_T_r_a_n_s_p_o_s_e a list of lists of the same length. Example:
____________________________________________________________________| |
| ?- transpose([[1,2,3],[4,5,6],[7,8,9]], Ts). |
||Ts_=_[[1,_4,_7],_[2,_5,_8],_[3,_6,_9]].___________________________ ||
This predicate is useful in many constraint programs. Consider for
instance Sudoku:
____________________________________________________________________| |
| :- use_module(library(clpfd)). |
| |
| sudoku(Rows) :- |
| length(Rows, 9), maplist(length_(9), Rows), |
| append(Rows, Vs), Vs ins 1..9, |
| maplist(all_distinct, Rows), |
| transpose(Rows, Columns), maplist(all_distinct, Columns), |
| Rows = [A,B,C,D,E,F,G,H,I], |
| blocks(A, B, C), blocks(D, E, F), blocks(G, H, I). |
| |
| length_(L, Ls) :- length(Ls, L). |
| |
| blocks([], [], []). |
| blocks([A,B,C|Bs1], [D,E,F|Bs2], [G,H,I|Bs3]) :- |
| all_distinct([A,B,C,D,E,F,G,H,I]), |
| blocks(Bs1, Bs2, Bs3). |
| |
| problem(1, [[_,_,_,_,_,_,_,_,_], |
| [_,_,_,_,_,3,_,8,5], |
| [_,_,1,_,2,_,_,_,_], |
| [_,_,_,5,_,7,_,_,_], |
| [_,_,4,_,_,_,1,_,_], |
| [_,9,_,_,_,_,_,_,_], |
| [5,_,_,_,_,_,_,7,3], |
| [_,_,2,_,1,_,_,_,_], |
||____________[_,_,_,_,4,_,_,_,9]]).________________________________ ||
Sample query:
____________________________________________________________________| |
| ?- problem(1, Rows), sudoku(Rows), maplist(writeln, Rows). |
| [9, 8, 7, 6, 5, 4, 3, 2, 1] |
| [2, 4, 6, 1, 7, 3, 9, 8, 5] |
| [3, 5, 1, 9, 2, 8, 7, 4, 6] |
| [1, 2, 8, 5, 3, 7, 6, 9, 4] |
| [6, 3, 4, 8, 9, 2, 1, 5, 7] |
| [7, 9, 5, 4, 6, 1, 8, 3, 2] |
| [5, 1, 9, 2, 8, 6, 4, 7, 3] |
| [4, 7, 2, 3, 1, 9, 5, 6, 8] |
| [8, 6, 3, 7, 4, 5, 2, 1, 9] |
||Rows_=_[[9,_8,_7,_6,_5,_4,_3,_2|...],_..._,_[...|...]].___________ ||
zzccoommppaarree((_?_O_r_d_e_r_, _?_A_, _?_B))
Analogous to compare/3, with finite domain variables _A and _B.
Example:
____________________________________________________________________| |
| :- use_module(library(clpfd)). |
| |
| n_factorial(N, F) :- |
| zcompare(C, N, 0), |
| n_factorial_(C, N, F). |
| |
| n_factorial_(=, _, 1). |
||_n_factorial_(>,_N,_F)_:-_F_#=_F0*N,_N1_#=_N_-_1,_n_factorial(N1,_F0).||
This version is deterministic if the first argument is
instantiated:
____________________________________________________________________| |
| ?- n_factorial(30, F). |
||F_=_265252859812191058636308480000000.____________________________ ||
cchhaaiinn((_+_Z_s_, _+_R_e_l_a_t_i_o_n))
_Z_s is a list of finite domain variables that are a chain with
respect to the partial order _R_e_l_a_t_i_o_n, in the order they appear in
the list. _R_e_l_a_t_i_o_n must be #=, #=<, #>=, #< or #>. For example:
____________________________________________________________________| |
| ?- chain([X,Y,Z], #>=). |
| X#>=Y, |
||Y#>=Z.____________________________________________________________ ||
ffdd__vvaarr((_+_V_a_r))
True iff _V_a_r is a CLP(FD) variable.
ffdd__iinnff((_+_V_a_r_, _-_I_n_f))
_I_n_f is the infimum of the current domain of _V_a_r.
ffdd__ssuupp((_+_V_a_r_, _-_S_u_p))
_S_u_p is the supremum of the current domain of _V_a_r.
ffdd__ssiizzee((_+_V_a_r_, _-_S_i_z_e))
_S_i_z_e is the number of elements of the current domain of _V_a_r, or the
atom ssuupp if the domain is unbounded.
ffdd__ddoomm((_+_V_a_r_, _-_D_o_m))
_D_o_m is the current domain (see in/2) of _V_a_r. This predicate is
useful if you want to reason about domains. It is not needed
if you only want to display remaining domains; instead, separate
your model from the search part and let the toplevel display this
information via residual goals.
1111..88 clpqr:: CCoonnssttrraaiinntt LLooggiicc PPrrooggrraammmmiinngg oovveerr RRaattiioonnaallss aanndd RReeaallss
Author: _L_e_s_l_i_e _D_e _K_o_n_i_n_c_k, K.U. Leuven
This CLP(Q,R) system is a port of the CLP(Q,R) system of Sicstus Prolog
by Christian Holzbaur: Holzbaur C.: OFAI clp(q,r) Manual, Edition
1.3.3, Austrian Research Institute for Artificial Intelligence, Vienna,
TR-95-09, 1995. This manual is roughly based on the manual of the
above mentioned CLP(Q,R) implementation.
The CLP(Q,R) system consists of two components: the CLP(Q) library for
handling constraints over the rational numbers and the CLP(R) library
for handling constraints over the real numbers (using floating point
numbers as representation). Both libraries offer the same predicates
(with exception of bb_inf/4 in CLP(Q) and bb_inf/5 in CLP(R)). It is
allowed to use both libraries in one program, but using both CLP(Q) and
CLP(R) constraints on the same variable will result in an exception.
Please note that the clpqr library is _n_o_t an _a_u_t_o_l_o_a_d library and
therefore this library must be loaded explicitely before using it:
________________________________________________________________________| |
|:-|use_module(library(clpq)).__________________________________________ | |
or
________________________________________________________________________| |
|:-|use_module(library(clpr)).__________________________________________ | |
1111..88..11 SSoollvveerr pprreeddiiccaatteess
The following predicates are provided to work with constraints:
{}((_+_C_o_n_s_t_r_a_i_n_t_s))
Adds the constraints given by _C_o_n_s_t_r_a_i_n_t_s to the constraint store.
eennttaaiilleedd((_+_C_o_n_s_t_r_a_i_n_t))
Succeeds if _C_o_n_s_t_r_a_i_n_t is necessarily true within the current
constraint store. This means that adding the negation of the
constraint to the store results in failure.
iinnff((_+_E_x_p_r_e_s_s_i_o_n_, _-_I_n_f))
Computes the infimum of _E_x_p_r_e_s_s_i_o_n within the current state of the
constraint store and returns that infimum in _I_n_f. This predicate
does not change the constraint store.
ssuupp((_+_E_x_p_r_e_s_s_i_o_n_, _-_S_u_p))
Computes the supremum of _E_x_p_r_e_s_s_i_o_n within the current state of the
constraint store and returns that supremum in _S_u_p. This predicate
does not change the constraint store.
mmiinniimmiizzee((_+_E_x_p_r_e_s_s_i_o_n))
Minimizes _E_x_p_r_e_s_s_i_o_n within the current constraint store. This is
the same as computing the infimum and equation the expression to
that infimum.
mmaaxxiimmiizzee((_+_E_x_p_r_e_s_s_i_o_n))
Maximizes _E_x_p_r_e_s_s_i_o_n within the current constraint store. This is
the same as computing the supremum and equating the expression to
that supremum.
bbbb__iinnff((_+_I_n_t_s_, _+_E_x_p_r_e_s_s_i_o_n_, _-_I_n_f_, _-_V_e_r_t_e_x_, _+_E_p_s))
This predicate is offered in CLP(R) only. It computes the
infimum of _E_x_p_r_e_s_s_i_o_n within the current constraint store, with the
additional constraint that in that infimum, all variables in _I_n_t_s
have integral values. _V_e_r_t_e_x will contain the values of _I_n_t_s in
the infimum. _E_p_s denotes how much a value may differ from an
integer to be considered an integer. E.g. when _E_p_s = 0.001, then X
= 4.999 will be considered as an integer (5 in this case). _E_p_s
should be between 0 and 0.5.
bbbb__iinnff((_+_I_n_t_s_, _+_E_x_p_r_e_s_s_i_o_n_, _-_I_n_f_, _-_V_e_r_t_e_x))
This predicate is offered in CLP(Q) only. It behaves the same as
bb_inf/5 but does not use an error margin.
bbbb__iinnff((_+_i_n_t_s_, _+_E_x_p_r_e_s_s_i_o_n_, _-_I_n_f))
The same as bb_inf/5 or bb_inf/4 but without returning the values
of the integers. In CLP(R), an error margin of 0.001 is used.
dduummpp((_+_T_a_r_g_e_t_, _+_N_e_w_v_a_r_s_, _-_C_o_d_e_d_A_n_s_w_e_r))
Returns the constraints on _T_a_r_g_e_t in the list _C_o_d_e_d_A_n_s_w_e_r where all
variables of _T_a_r_g_e_t have veen replaced by _N_e_w_V_a_r_s. This operation
does not change the constraint store. E.g. in
____________________________________________________________________| |
||dump([X,Y,Z],[x,y,z],Cons)________________________________________ ||
Cons will contain the constraints on X, Y and Z where these
variables have been replaced by atoms x, y and z.
1111..88..22 SSyynnttaaxx ooff tthhee pprreeddiiccaattee aarrgguummeennttss
The arguments of the predicates defined in the subsection above are
defined in table 11.1. Failing to meet the syntax rules will result in
an exception.
__________________________________________________________________________________________
| <_C_o_n_s_t_r_a_i_n_t_s>::= <_C_o_n_s_t_r_a_i_n_t> |single constraint |
| | <_C_o_n_s_t_r_a_i_n_t> , <_C_o_n_s_t_r_a_i_n_t_s> |conjunction |
| | <_C_o_n_s_t_r_a_i_n_t> ; <_C_o_n_s_t_r_a_i_n_t_s> |disjunction |
| <_C_o_n_s_t_r_a_i_n_t> ::= <_E_x_p_r_e_s_s_i_o_n> < <_E_x_p_r_e_s_s_i_o_n> |less than |
| | <_E_x_p_r_e_s_s_i_o_n> > <_E_x_p_r_e_s_s_i_o_n> |greater than |
| | <_E_x_p_r_e_s_s_i_o_n> =< <_E_x_p_r_e_s_s_i_o_n> |less or equal |
| | <=(<_E_x_p_r_e_s_s_i_o_n>, <_E_x_p_r_e_s_s_i_o_n>) |less or equal |
| | <_E_x_p_r_e_s_s_i_o_n> >= <_E_x_p_r_e_s_s_i_o_n> |greater or equal |
| | <_E_x_p_r_e_s_s_i_o_n> =\= <_E_x_p_r_e_s_s_i_o_n> |not equal |
| | <_E_x_p_r_e_s_s_i_o_n> =:= <_E_x_p_r_e_s_s_i_o_n> |equal |
| | <_E_x_p_r_e_s_s_i_o_n> = <_E_x_p_r_e_s_s_i_o_n> |equal |
| <_E_x_p_r_e_s_s_i_o_n> ::= <_V_a_r_i_a_b_l_e> |Prolog variable |
| | <_N_u_m_b_e_r> |Prolog number (float, integer) |
| | +<_E_x_p_r_e_s_s_i_o_n> |unary plus |
| | -<_E_x_p_r_e_s_s_i_o_n> |unary minus |
| | <_E_x_p_r_e_s_s_i_o_n> + <_E_x_p_r_e_s_s_i_o_n> |addition |
| | <_E_x_p_r_e_s_s_i_o_n> - <_E_x_p_r_e_s_s_i_o_n> |substraction |
| | <_E_x_p_r_e_s_s_i_o_n> * <_E_x_p_r_e_s_s_i_o_n> |multiplication |
| | <_E_x_p_r_e_s_s_i_o_n> / <_E_x_p_r_e_s_s_i_o_n> |division |
| | abs(<_E_x_p_r_e_s_s_i_o_n>) |absolute value |
| | sin(<_E_x_p_r_e_s_s_i_o_n>) |sine |
| | cos(<_E_x_p_r_e_s_s_i_o_n>) |cosine |
| | tan(<_E_x_p_r_e_s_s_i_o_n>) |tangent |
| | exp(<_E_x_p_r_e_s_s_i_o_n>) |exponent |
| | pow(<_E_x_p_r_e_s_s_i_o_n>) |exponent |
| | <_E_x_p_r_e_s_s_i_o_n> ^ <_E_x_p_r_e_s_s_i_o_n> |exponent |
| | min(<_E_x_p_r_e_s_s_i_o_n>, <_E_x_p_r_e_s_s_i_o_n>) |minimum |
|_________________|_max(<_E_x_p_r_e_s_s_i_o_n>,_<_E_x_p_r_e_s_s_i_o_n>)_|maximum_____________________________|_
Table 11.1: CLP(Q,R) constraint BNF
1111..88..33 UUssee ooff uunniiffiiccaattiioonn
Instead of using the {}/1 predicate, you can also use the standard
unification mechanism to store constraints. The following code samples
are equivalent:
____________________________________________________________________| |
o _U_n_i_f_i_c_a_t_i_o_n_|_w_i_t_h{_aX_v_a_r_i_a_b_l_e=:= Y} |
| {X = Y} |
||X_=_Y_____________________________________________________________ ||
____________________________________________________________________| |
o _U_n_i_f_i_c_a_t_i_o_n_|_w_i_t_h{_aX_n_u_m_b_e_r=:= 5.0} |
| {X = 5.0} |
||X_=_5.0___________________________________________________________ ||
1111..88..44 NNoonn--lliinneeaarr ccoonnssttrraaiinnttss
The CLP(Q,R) system deals only passively with non-linear constraints.
They remain in a passive state until certain conditions are satisfied.
These conditions, which are called the isolation axioms, are given in
table 11.2.
______________________________________________________________
| A =B *C |B or C is ground |A = 5 * C or A = B * |
| | |4 |
| |A and (B or C) are|20 = 5 * C or 20 = B |
|______________|ground________________|*_4___________________|_
| A =B=C |C is ground |A = B / 3 |
|______________|A_and_B_are_ground____|4_=_12_/_C____________|_
| X =min(Y; Z) |Y and Z are ground |X = min(4,3) |
| X =max(Y; Z) |Y and Z are ground |X = max(4,3) |
|_X_=abs(Y_)___|Y_is_ground___________|X_=_abs(-7)___________|_
| X =pow(Y; Z) |X and Y are ground |8 = 2 ^ Z |
| X =exp(Y; Z) |X and Z are ground |8 = Y ^ 3 |
|_X_=Y__^_Z___|Y_and_Z_are_ground_____|X_=_2_^_3_____________|_
| X =sin(Y ) X|is ground |1 = sin(Y) |
| X =cos(Y ) Y|is ground |X = sin(1.5707) |
|_X_=tan(Y_)___|______________________|______________________|_
Table 11.2: CLP(Q,R) isolating axioms
1111..99 lliibbrraarryy((ccssvv)):: PPrroocceessss CCSSVV ((CCoommmmaa--SSeeppaarraatteedd VVaalluueess)) ddaattaa
SSeeee aallssoo RFC 4180
TToo bbee ddoonnee
- Implement immediate assert of the data to avoid possible
stack overflows.
- Writing creates an intermediate code-list, possibly
overflowing resources. This waits for pure output!
This library parses and generates CSV data. CSV data is represented in
Prolog as a list of rows. Each row is a compound term, where all rows
have the same name and arity.
ccssvv__rreeaadd__ffiillee((_+_F_i_l_e_, _-_R_o_w_s)) _[_d_e_t_]
ccssvv__rreeaadd__ffiillee((_+_F_i_l_e_, _-_R_o_w_s_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Read a CSV file into a list of rows. Each row is a Prolog term
with the same arity. _O_p_t_i_o_n_s is handed to csv//2. Remaining
options are processed by phrase_from_file/3.
Suppose we want to create a predicate table/6 from a CSV file that
we know contains 6 fields per record. This can be done using the
code below. Without the option arity(6), this would generate a
predicate table/N, where N is the number of fields per record in
the data.
____________________________________________________________________| |
| ?- csv_read_file(File, Rows, [functor(table), arity(6)]), |
||___maplist(assert,_Rows)._________________________________________ ||
ccssvv((_?_R_o_w_s)) // _[_d_e_t_]
ccssvv((_?_R_o_w_s_, _+_O_p_t_i_o_n_s)) // _[_d_e_t_]
Prolog DCG to `read/write' CSV data. _O_p_t_i_o_n_s:
sseeppaarraattoorr((_+_C_o_d_e))
The comma-separator. Must be a character code. Default is
(of course) the comma. Character codes can be specified using
the 0' notion. E.g., separator(0';).
ssttrriipp((_+_B_o_o_l_e_a_n))
If true (default false), strip leading and trailing blank-
space. RFC4180 says that blank space is part of the
data.
ccoonnvveerrtt((_+_B_o_o_l_e_a_n))
if true (Default), use name/2 on the field-data. This
translates the field into a number if possible.
ffuunnccttoorr((_+_A_t_o_m))
Functor to use for creating row-terms. Default is row.
aarriittyy((_?_A_r_i_t_y))
Number of fields in each row. This predicate raises a
domain_error(row_arity(Expected), Found) if a row is found with
different arity.
ccssvv__wwrriittee__ffiillee((_+_F_i_l_e_, _+_D_a_t_a)) _[_d_e_t_]
ccssvv__wwrriittee__ffiillee((_+_F_i_l_e_, _+_D_a_t_a_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Write a list of Prolog terms to a CSV file. _O_p_t_i_o_n_s are given to
csv//2. Remaining options are given to open/4.
1111..1100 debug:: SSoommee rreeuussaabbllee ccooddee ttoo hheellpp ddeebbuuggggiinngg aapppplliiccaattiioonnss
This library provides an structured alternative for putting print-
statements into your source-code to trace what is going on. Debug
messages are organised in _t_o_p_i_c_s that can be activated and de-activated
without changing the source. In addition, if the application
is compiled with the -O flag these predicates are removed using
goal_expansion/2.
Although this library can be used through the normal demand-loading
mechanism it is adviced to load it explicitely before code using it to
profit from goal-expansion, which removes these calls if compiled with
optimisation on and records the topics from debug/3 and debugging/1 for
list_debug_topics/0.
ddeebbuugg((_+_T_o_p_i_c_, _+_F_o_r_m_a_t_, _+_A_r_g_s))
If _T_o_p_i_c is a selected debugging topic (see debug/1) a message is
printed using print_message/2with level informational. _F_o_r_m_a_t and
_A_r_g_s are interpreted by format/2. Here is a typical example:
____________________________________________________________________| |
| ..., |
| debug(init, 'Initialised ~w', [Module]), |
||________...,______________________________________________________ ||
_T_o_p_i_c can be any Prolog term. Compound terms can be used to make
categories of topics that can be activated using debug/1.
ddeebbuuggggiinngg((_+_T_o_p_i_c))
Succeeds if _T_o_p_i_c is a selected debugging topic. It is intended
to execute arbitrary code depending on the users debug topic
selection. The construct (debugging(Topic) -> _C_o_d_e ; true) is
removed if the code is compiled in optimise mode.
ddeebbuugg((_+_T_o_p_i_c))
Select all registered topics that unify with _T_o_p_i_c for debugging.
This call is normally used from the toplevel to activate a topic
for debugging. If no matching _T_o_p_i_c is registered a warning is
printed and the topic is registered for debugging as matching debug
statements may be loaded later. Topics are de-activated using
nodebug/1.
nnooddeebbuugg((_+_T_o_p_i_c))
Deactivates topics for debugging. See debug/1 for the arguments.
lliisstt__ddeebbuugg__ttooppiiccss
List the current status of registered topics. See also
debugging/0.
aasssseerrttiioonn((_:_G_o_a_l))
This predicate is to be compared to the C-library assert()
function. By inserting this goal you explicitely state you expect
_G_o_a_l to succeed at this place. As assertion/1 calls are removed
when compiling in optimized mode _G_o_a_l should not have side-effects.
Typical examples are type-tests and validating invariants defined
by your application.
If _G_o_a_l fails the system prints a message, followed by a
stack-trace and starts the debugger.
In older versions of this library this predicate was called
assume/1. Code using assume/1 is automatically converted while
printing a warning on the first occurrence.
1111..1111 gensym:: GGeenneerraattee uunniiqquuee iiddeennttiiffiieerrss
Gensym (GGeennerate SSyymmbols) is an old library for generating unique
symbols (atoms). Such symbols are generated from a base atom which
gets a sequence number appended. Of course there is no guarantee that
`catch22' is not an already defined atom and therefore one must be
aware these atoms are only unique in an isolated context.
The SWI-Prolog gensym library is thread-safe. The sequence numbers are
global over all threads and therefore generated atoms are unique over
all threads.
ggeennssyymm((_+_B_a_s_e_, _-_U_n_i_q_u_e))
Generate a unique atom from base _B_a_s_e and unify it with _U_n_i_q_u_e.
_B_a_s_e should be an atom. The first call will return <_b_a_s_e>1, the
next <_b_a_s_e>2, etc. Note that this is no warrant that the atom is
unique in the system.
rreesseett__ggeennssyymm((_+_B_a_s_e))
Restart generation of identifiers from _B_a_s_e at <_B_a_s_e>1. Used to
make sure a program produces the same results on subsequent runs.
Use with care.
rreesseett__ggeennssyymm
Reset gensym for all registered keys. This predicate is available
for compatibility only. New code is strongly advice to avoid the
use of reset_gensym or at least to reset only the keys used by your
program to avoid unexpected site-effects on other components.
1111..1122 lliibbrraarryy((lliissttss)):: LLiisstt MMaanniippuullaattiioonn
This library provides commonly accepted basic predicates for list
manipulation in the Prolog community. Some additional list
manipulations are built-in. See e.g., memberchk/2, length/2.
The implementation of this library is copied from many places. These
include: "The Craft of Prolog", the DEC-10 Prolog library (LISTRO.PL)
and the YAP lists library.
mmeemmbbeerr((_?_E_l_e_m_, _?_L_i_s_t))
True if _E_l_e_m is a member of _L_i_s_t. The SWI-Prolog definition
differs from the classical one. Our definition avoids unpacking
each list element twice and provides determinism on the last
element. E.g. this is deterministic:
____________________________________________________________________| |
||____member(X,_[One])._____________________________________________ ||
aauutthhoorr Gertjan van Noord
aappppeenndd((_?_L_i_s_t_1_, _?_L_i_s_t_2_, _?_L_i_s_t_1_A_n_d_L_i_s_t_2))
_L_i_s_t_1_A_n_d_L_i_s_t_2 is the concatination of _L_i_s_t_1 and _L_i_s_t_2
aappppeenndd((_+_L_i_s_t_O_f_L_i_s_t_s_, _?_L_i_s_t))
Concatenate a list of lists. Is true if Lists is a list of lists,
and _L_i_s_t is the concatenation of these lists.
__________________________________________________________Parameters_
_L_i_s_t_O_f_L_i_s_t_s must be a list of -possibly- partial lists
pprreeffiixx((_?_P_a_r_t_, _?_W_h_o_l_e))
True iff _P_a_r_t is a leading substring of _W_h_o_l_e. This is the same as
append(_P_a_r_t, _, _W_h_o_l_e).
sseelleecctt((_?_E_l_e_m_, _?_L_i_s_t_1_, _?_L_i_s_t_2))
Is true when _L_i_s_t_1, with _E_l_e_m removed results in _L_i_s_t_2.
sseelleeccttcchhkk((_+_E_l_e_m_, _+_L_i_s_t_, _-_R_e_s_t)) _[_s_e_m_i_d_e_t_]
Semi-deterministic removal of first element in _L_i_s_t that unifies
_E_l_e_m.
sseelleecctt((_?_X_, _?_X_L_i_s_t_, _?_Y_, _?_Y_L_i_s_t)) _[_n_o_n_d_e_t_]
Is true when select(_X, _X_L_i_s_t) and select(_Y, _Y_L_i_s_t) are true, _X
and _Y appear in the same locations of their respective lists
and same_length(_X_L_i_s_t, _Y_L_i_s_t) is true. A typical use for this
predicate is to _r_e_p_l_a_c_e an element:
____________________________________________________________________| |
| ?- select(b, [a,b,c], 2, X). |
| X = [a, 2, c] ; |
||X_=_[a,_b,_c].____________________________________________________ ||
sseelleeccttcchhkk((_X_, _X_L_i_s_t_, _Y_, _Y_L_i_s_t)) _[_s_e_m_i_d_e_t_]
Semi-deterministic version of select/4.
nneexxttttoo((_?_X_, _?_Y_, _?_L_i_s_t))
True of _Y follows _X in _L_i_s_t.
ddeelleettee((_?_L_i_s_t_1_, _?_E_l_e_m_, _?_L_i_s_t_2))
Is true when Lis1, with all occurences of _E_l_e_m deleted results in
_L_i_s_t_2.
SSeeee aallssoo select/3, subtract/3.
ddeepprreeccaatteedd There are too many ways in which one might
want to delete elements from a list to justify the
name. Think of matching (= vs. ==), delete
first/all, be deterministic or not.
nntthh00((_?_I_n_d_e_x_, _?_L_i_s_t_, _?_E_l_e_m))
True if _E_l_e_m is the _I_n_d_e_x'th element of _L_i_s_t. Counting starts at
1. This is a faster version of the original SWI-Prolog predicate.
nntthh11((_?_I_n_d_e_x_, _?_L_i_s_t_, _?_E_l_e_m))
Is true when _E_l_e_m is the _I_n_d_e_x'th element of _L_i_s_t. Counting
starts at 1. This is a faster version of the original SWI-Prolog
predicate.
llaasstt((_?_L_i_s_t_, _?_L_a_s_t))
Succeeds if `_L_a_s_t' unifies with the last element of `_L_i_s_t'.
CCoommppaattiibbiilliittyy There is no de-facto standard for the
argument order of last/2. Be careful when porting
code or use append(_, [_L_a_s_t], _L_i_s_t) as a portable
alternative.
rreevveerrssee((_?_L_i_s_t_1_, _?_L_i_s_t_2))
Is true when the elements of _L_i_s_t_2 are in reverse order compared to
_L_i_s_t_1.
ppeerrmmuuttaattiioonn((_?_X_s_, _?_Y_s)) _[_n_o_n_d_e_t_]
permutation(_X_s, _Y_s) is true when _X_s is a permutation of _Y_s. This
can solve for _Y_s given _X_s or _X_s given _Y_s, or even enumerate _X_s and
_Y_s together.
ffllaatttteenn((_+_L_i_s_t_1_, _?_L_i_s_t_2)) _[_d_e_t_]
Is true it _L_i_s_t_2 is a non nested version of _L_i_s_t_1.
SSeeee aallssoo append/2
ddeepprreeccaatteedd Ending up needing flatten/3 often indicates,
like append/3 for appending two lists, a bad design.
Efficient code that generates lists from generated
small lists must use difference lists, often possible
through grammar rules for optimal readability.
ssuummlliisstt((_+_L_i_s_t_, _-_S_u_m)) _[_d_e_t_]
_S_u_m is the result of adding all numbers in _L_i_s_t.
mmaaxx__lliisstt((_+_L_i_s_t_:_l_i_s_t_(_n_u_m_b_e_r_)_, _-_M_a_x_:_n_u_m_b_e_r)) _[_d_e_t_]
True if _M_a_x is the largest number in _L_i_s_t.
mmiinn__lliisstt((_+_L_i_s_t_:_l_i_s_t_(_n_u_m_b_e_r_)_, _-_M_i_n_:_n_u_m_b_e_r)) _[_d_e_t_]
True if _M_i_n is the largest number in _L_i_s_t.
nnuummlliisstt((_+_L_o_w_, _+_H_i_g_h_, _-_L_i_s_t)) _[_s_e_m_i_d_e_t_]
_L_i_s_t is a list [_L_o_w, _L_o_w+1, ... _H_i_g_h]. Fails if _H_i_g_h < _L_o_w.
EErrrroorrss
- type_error(integer, _L_o_w)
- type_error(integer, _H_i_g_h)
iiss__sseett((_@_S_e_t)) _[_d_e_t_]
True if _S_e_t is a proper list without duplicates. Equivalence is
based on ==/2. The implementation uses sort/2, which implies
that the complexity is N*log(N) and the predicate may cause a
resource-error. There are no other error conditions.
lliisstt__ttoo__sseett((_+_L_i_s_t_, _?_S_e_t)) _[_d_e_t_]
True when _S_e_t has the same element as _L_i_s_t in the same order. The
left-most copy of the duplicate is retained. The complexity of
this operation is |_L_i_s_t|^2.
SSeeee aallssoo sort/2.
iinntteerrsseeccttiioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_S_e_t_3)) _[_d_e_t_]
True if _S_e_t_3 unifies with the intersection of _S_e_t_1 and _S_e_t_2. The
complexity of this predicate is |_S_e_t_1|*|_S_e_t_2|
SSeeee aallssoo ord_intersection/3.
uunniioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_S_e_t_3)) _[_d_e_t_]
True if _S_e_t_3 unifies with the union of _S_e_t_1 and _S_e_t_2. The
complexity of this predicate is |_S_e_t_1|*|_S_e_t_2|
SSeeee aallssoo ord_union/3.
ssuubbsseett((_+_S_u_b_S_e_t_, _+_S_e_t)) _[_s_e_m_i_d_e_t_]
True if all elements of _S_u_b_S_e_t belong to _S_e_t as well. Membership
test is based on memberchk/2. The complexity is |_S_u_b_S_e_t|*|_S_e_t|.
SSeeee aallssoo ord_subset/2.
ssuubbttrraacctt((_+_S_e_t_, _+_D_e_l_e_t_e_, _-_R_e_s_u_l_t)) _[_d_e_t_]
_D_e_l_e_t_e all elements from `_S_e_t' that occur in `_D_e_l_e_t_e' (a set) and
unify the result with `_R_e_s_u_l_t'. Deletion is based on unification
using memberchk/2. The complexity is |_D_e_l_e_t_e|*|_S_e_t|.
SSeeee aallssoo ord_subtract/3.
1111..1133 nb_set:: NNoonn--bbaacckkttrraacckkaabbllee sseett
The library nb_set defines _n_o_n_-_b_a_c_k_t_r_a_c_k_a_b_l_e _s_e_t_s, implemented as
binary trees. The sets are represented as compound terms and
manipulated using nb_setarg/3. Non-backtrackable manipulation of
datastructures is not supported by a large number of Prolog
implementation, but it it has several advantages over using the
database. It produces less garbage, is thread-safe, reentrant and
deals with exceptions without leaking data.
Similar to the assoc library keys can be any Prolog term, but it is not
allowed to instantiate or modify a term.
One of the ways to use this library is to generate unique values on
backtracking _w_i_t_h_o_u_t generating _a_l_l solutions first, for example to
act as a filter between a generator producing many duplicates and an
expensive test routine, as outlines below.
________________________________________________________________________| |
|generate_and_test(Solution) :- |
| empty_nb_set(Set), |
| generate(Solution), |
| add_nb_set(Solution, Set, true), |
||_______test(Solution).________________________________________________ ||
eemmppttyy__nnbb__sseett((_?_S_e_t))
True if _S_e_t is a non-backtrackable emoty set.
aadddd__nnbb__sseett((_+_K_e_y_, _!_S_e_t))
Add _K_e_y to _S_e_t. If _K_e_y is already a member of _S_e_t, add_nb_set/3
succeeds without modifying _S_e_t.
aadddd__nnbb__sseett((_+_K_e_y_, _!_S_e_t_, _?_N_e_w))
If _K_e_y is not in _S_e_t and _N_e_w is unified to true _K_e_y is added to
_S_e_t. If _K_e_y is in _S_e_t _N_e_w is unified to false. It can be used for
many purposes:
add_nb_set(+, +, false) Test membership
add_nb_set(+, +, true) Succeed only if new member
add_nb_set(+, +, Var) Succeed, bindin _V_a_r
ggeenn__nnbb__sseett((_+_S_e_t_, _-_K_e_y))
Generate all members of _S_e_t on backtracking in the standard order
of terms. To test membership, use add_nb_set/3.
ssiizzee__nnbb__sseett((_+_S_e_t_, _-_S_i_z_e))
Unify _S_i_z_e with the number of elements in _S_e_t.
nnbb__sseett__ttoo__lliisstt((_+_S_e_t_, _-_L_i_s_t))
Unify _L_i_s_t with a list of all elements in set in the standard order
of terms (i.e. and _o_r_d_e_r_e_d _l_i_s_t).
1111..1144 www_browser:: AAccttiivvaattiinngg yyoouurr WWeebb--bbrroowwsseerr
This library deals with the very system dependent task of opening a web
page in a browser. See also url and the HTTP package.
wwwwww__ooppeenn__uurrll((_+_U_R_L))
Open _U_R_L in an external web-browser. The reason to place this
in the library is to centralise the maintenance on this highly
platform and browser specific task. It distinguishes between the
following cases:
o _M_S_-_W_i_n_d_o_w_s
If it detects MS-Windows it uses win_shell/2 to open the _U_R_L.
The behaviour and browser started depends on the Window and
Windows-shell configuration, but in general it should be the
behaviour expected by the user.
o _O_t_h_e_r _p_l_a_t_f_o_r_m_s
On other platforms it tests the environment variable (see
getenv/2) named BROWSER or uses netscape if this variable is
not set. If the browser is either mozilla or netscape,
www_open_url/1 first tries to open a new window on a running
using the -remote option of netscape. If this fails or the
browser is not mozilla or netscape the system simply passes
the URL as first argument to the program.
1111..1155 lliibbrraarryy((ooppttiioonn)):: OOppttiioonn lliisstt pprroocceessssiinngg
SSeeee aallssoo library(record)
TToo bbee ddoonnee
- We should consider putting many options in an assoc or
record with appropriate preprocessing to achieve better
performance.
- We should provide some standard to do automatic
type-checking on option lists.
The library(option) provides some utilities for processing option
lists. Option lists are commonly used as an alternative for many
arguments. Examples built-in predicates are open/4 and write_term/3.
Naming the arguments results in more readable code and the list nature
makes it easy to extend the list of options accepted by a predicate.
Option lists come in two styles, both of which are handled by this
library.
NNaammee((VVaalluuee)) This is the preferred style.
NNaammee == VVaalluuee This is often used, but deprecated.
Processing options inside time critical code (loops) can cause
serious overhead. One possibility is to define a record using
library(record) and initialise this using make_<record>/2. In addition
to providing good performance, this also provides type-checking and
central declaration of defaults.
________________________________________________________________________| |
|:- record atts(width:integer=100, shape:oneof([box,circle])=box). |
| |
|process(Data, Options) :- |
| make_atts(Options, Attributes), |
| action(Data, Attributes). |
| |
|action(Data, Attributes) :- |
| atts_shape(Attributes, Shape), |
||_______...____________________________________________________________ ||
ooppttiioonn((_?_O_p_t_i_o_n_, _+_O_p_t_i_o_n_L_i_s_t_, _+_D_e_f_a_u_l_t))
Get an option from a _O_p_t_i_o_n_L_i_s_t. _O_p_t_i_o_n_L_i_s_t can use the Name=Value
as well as the Name(Value) convention.
__________________________________________________________Parameters_
_O_p_t_i_o_n Term of the form Name(?Value).
ooppttiioonn((_?_O_p_t_i_o_n_, _+_O_p_t_i_o_n_L_i_s_t))
Get an option from a _O_p_t_i_o_n_L_i_s_t. _O_p_t_i_o_n_L_i_s_t can use the Name=Value
as well as the Name(Value) convention. Fails silently if the
option does not appear in _O_p_t_i_o_n_L_i_s_t.
__________________________________________________________Parameters_
_O_p_t_i_o_n Term of the form Name(?Value).
sseelleecctt__ooppttiioonn((_?_O_p_t_i_o_n_, _+_O_p_t_i_o_n_s_, _-_R_e_s_t_O_p_t_i_o_n_s)) _[_s_e_m_i_d_e_t_]
Get and remove option from an option list. As option/2, removing
the matching option from _O_p_t_i_o_n_s and unifying the remaining options
with _R_e_s_t_O_p_t_i_o_n_s.
sseelleecctt__ooppttiioonn((_?_O_p_t_i_o_n_, _+_O_p_t_i_o_n_s_, _-_R_e_s_t_O_p_t_i_o_n_s_, _+_D_e_f_a_u_l_t)) _[_d_e_t_]
Get and remove option with default value. As select_option/3, but
if _O_p_t_i_o_n is not in _O_p_t_i_o_n_s, its value is unified with _D_e_f_a_u_l_t and
_R_e_s_t_O_p_t_i_o_n_s with _O_p_t_i_o_n_s.
mmeerrggee__ooppttiioonnss((_+_N_e_w_, _+_O_l_d_, _-_M_e_r_g_e_d)) _[_d_e_t_]
Merge two option lists. _M_e_r_g_e_d is a sorted list of options using
the canonical format Name(Value) holding all options from _N_e_w and
_O_l_d, after removing conflicting options from _O_l_d.
Multi-values options (e.g., proxy(Host, Port)) are allowed, where
both option-name and arity define the identity of the option.
mmeettaa__ooppttiioonnss((_+_I_s_M_e_t_a_, _:_O_p_t_i_o_n_s_0_, _-_O_p_t_i_o_n_s)) _[_d_e_t_]
Perform meta-expansion on options that are module-sensitive.
Whether an option name is module sensitive is determined by calling
call(_I_s_M_e_t_a, Name). Here is an example:
____________________________________________________________________| |
| meta_options(is_meta, OptionsIn, Options), |
| ... |
| |
||is_meta(callback).________________________________________________ ||
1111..1166 ordsets:: OOrrddeerreedd SSeett MMaanniippuullaattiioonn
Ordered sets are lists with unique elements sorted to the standard
order of terms (see sort/2). Exploiting ordering, many of the set
operations can be expressed in order N rather than N2 when dealing
with unordered sets that may contain duplicates. The ordsets is
available in a number of Prolog implementations. Our predicates are
designed to be compatible with common practice in the Prolog community.
The implementation is incomplete and relies partly on oset, an older
ordered set library distributed with SWI-Prolog. New applications are
advices to use ordsets.
Some of these predicates match directly to corresponding list
operations. It is adviced to use the versions from this library to
make clear you are operating on ordered sets.
oorrdd__eemmppttyy((_?_S_e_t))
True if _S_e_t is an empty ordered set. _S_e_t unifies with the empty
list.
lliisstt__ttoo__oorrdd__sseett((_+_L_i_s_t_, _-_O_r_d_S_e_t))
Convert a _L_i_s_t to an ordered set. Same as sort/2.
oorrdd__aadddd__eelleemmeenntt((_+_S_e_t_, _+_E_l_e_m_e_n_t_, _-_N_e_w_S_e_t))
Add an element to an ordered set. _N_e_w_S_e_t is the same as _S_e_t if
_E_l_e_m_e_n_t is already part of _S_e_t.
oorrdd__ddeell__eelleemmeenntt((_+_S_e_t_, _+_E_l_e_m_e_n_t_, _-_N_e_w_S_e_t))
Delete _E_l_e_m_e_n_t from _S_e_t. Succeeds without changing _S_e_t if _S_e_t does
not contain _E_l_e_m_e_n_t.
oorrdd__iinntteerrsseecctt((_+_S_e_t_1_, _+_S_e_t_2))
True if the intersection of _S_e_t_1 and _S_e_t_2 is non-empty.
oorrdd__iinntteerrsseeccttiioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_I_n_t_e_r_s_e_c_t_i_o_n))
True if _I_n_t_e_r_s_e_c_t_i_o_n is the intersection of _S_e_t_1 and _S_e_t_2.
oorrdd__ddiissjjooiinntt((_+_S_e_t_1_, _+_S_e_t_2))
True if _S_e_t_1 and _S_e_t_2 have no common element. Negation of
ord_intersect/2.
oorrdd__ssuubbttrraacctt((_+_S_e_t_, _+_D_e_l_e_t_e_, _-_R_e_m_a_i_n_i_n_g))
True if _R_e_m_a_i_n_i_n_g contains the elements of _S_e_t that are not in set
_D_e_l_e_t_e.
oorrdd__uunniioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_U_n_i_o_n))
True if _U_n_i_o_n contains all elements from _S_e_t_1 and _S_e_t_2
oorrdd__uunniioonn((_+_S_e_t_1_, _+_S_e_t_2_, _-_U_n_i_o_n_, _-_N_e_w))
Defined as if ord_union(_S_e_t_1_, _S_e_t_2_, _U_n_i_o_n), ord_subtract(_S_e_t_2_,
_S_e_t_1_, _N_e_w).
oorrdd__ssuubbsseett((_+_S_u_b_, _+_S_u_p_e_r))
True if all elements of _S_u_b are in _S_u_p_e_r.
oorrdd__mmeemmbbeerrcchhkk((_+_E_l_e_m_e_n_t_, _+_S_e_t))
True if _E_l_e_m_e_n_t appears in _S_e_t. Does not backtrack. Same as
memberchk/2.
1111..1177 lliibbrraarryy((ppaaiirrss)):: OOppeerraattiioonnss oonn kkeeyy--vvaalluuee lliissttss
aauutthhoorr Jan Wielemaker
SSeeee aallssoo keysort/2, library(assoc)
This module implements common operations on Key-Value lists, also
known as _P_a_i_r_s. Pairs have great practical value, especially due to
keysort/2 and the library assoc.pl.
This library is based on disussion in the SWI-Prolog mailinglist,
including specifications from Quintus and a library proposal by Richard
O'Keefe.
ppaaiirrss__kkeeyyss__vvaalluueess((_?_P_a_i_r_s_, _?_K_e_y_s_, _?_V_a_l_u_e_s)) _[_d_e_t_]
True if _K_e_y_s holds the keys of _P_a_i_r_s and _V_a_l_u_e_s the values.
Deterministic if any argument is instantiated to a finite list and
the others are either free or finite lists. All three lists are in
the same order.
SSeeee aallssoo pairs_values/2 and pairs_keys/2.
ppaaiirrss__vvaalluueess((_+_P_a_i_r_s_, _-_V_a_l_u_e_s)) _[_d_e_t_]
Remove the keys from a list of Key-Value pairs. Same as
pairs_keys_values(_P_a_i_r_s, _, _V_a_l_u_e_s)
ppaaiirrss__kkeeyyss((_+_P_a_i_r_s_, _-_K_e_y_s)) _[_d_e_t_]
Remove the values from a list of Key-Value pairs. Same as
pairs_keys_values(_P_a_i_r_s, _K_e_y_s, _)
ggrroouupp__ppaaiirrss__bbyy__kkeeyy((_+_P_a_i_r_s_, _-_J_o_i_n_e_d_:_l_i_s_t_(_K_e_y_-_V_a_l_u_e_s_))) _[_d_e_t_]
Group values with the same key. _P_a_i_r_s must be a key-sorted list.
For example:
____________________________________________________________________| |
| ?- group_pairs_by_key([a-2, a-1, b-4], X). |
| |
||X_=_[a-[2,1],_b-[4]]______________________________________________ ||
__________________________________________________________Parameters__P_a_i_r_s_K_e_y-Value list, sorted to the standard order of
terms (as keysort/2 does)
_J_o_i_n_e_d List of _K_e_y-Group, where Group is the list of
_V_a_l_u_e_s associated with _K_e_y.
ttrraannssppoossee__ppaaiirrss((_+_P_a_i_r_s_, _-_T_r_a_n_s_p_o_s_e_d)) _[_d_e_t_]
Swap Key-Value to Value-Key and sort the result on Value (the new
key) using keysort/2.
mmaapp__lliisstt__ttoo__ppaaiirrss((_:_F_u_n_c_t_i_o_n_, _+_L_i_s_t_, _-_K_e_y_e_d))
Create a key-value list by mapping each element of _L_i_s_t. For
example, if we have a list of lists we can create a list of
Length-_L_i_s_t using
____________________________________________________________________| |
||________map_list_to_pairs(length,_ListOfLists,_Pairs),____________ ||
1111..1188 pio:: PPuurree II//OO
This library provides pure list-based I/O processing for Prolog, where
the communication to the actual I/O device is performed transparently
through coroutining. This module itself is just an interface to the
actual implementation modules.
1111..1188..11 lliibbrraarryy((ppuurree__iinnppuutt)):: PPuurree IInnppuutt ffrroomm ffiilleess
aauutthhoorr
- Ulrich Neumerkel
- Jan Wielemaker
TToo bbee ddoonnee
- Provide support for alternative input readers, e.g.
reading terms, tokens, etc.
- Support non-repositioning streams, such as sockets and
pipes.
This module is part of pio.pl, dealing with _p_u_r_e _i_n_p_u_t: processing
input streams from the outside world using pure predicates, notably
grammar rules (DCG). Using pure predicates makes non-deterministic
processing of input much simpler.
Pure input uses coroutining (freeze/2) to read input from the external
source into a list _o_n _d_e_m_a_n_d. The overhead of lazy reading is more
than compensated for by using block reads based on read_pending_input/3.
pphhrraassee__ffrroomm__ffiillee((_:_G_r_a_m_m_a_r_, _+_F_i_l_e)) _[_n_o_n_d_e_t_]
Process the content of _F_i_l_e using the DCG rule _G_r_a_m_m_a_r. The
space usage of this mechanism depends on the length of the not
committed part of _G_r_a_m_m_a_r. Committed parts of the temporary list
are reclaimed by the garbage collector, while the list is extended
on demand. Here is a very simple definition for searching a string
in a file:
____________________________________________________________________| |
| ... --> []|[_],... . |
| |
| file_contains(File, Pattern) :- |
| phrase_from_file((..., Pattern, ...), File). |
| |
| match_count(File, Pattern, Count) :- |
| findall(x, file_contains(File, Pattern), Xs), |
||________length(Xs,_Count).________________________________________ ||
This can be called as (note that the pattern must be a string (code
list)):
____________________________________________________________________| |
||?-_match_count('pure_input.pl',_"file",_Count).___________________ ||
pphhrraassee__ffrroomm__ffiillee((_:_G_r_a_m_m_a_r_, _+_F_i_l_e_, _+_O_p_t_i_o_n_s)) _[_n_o_n_d_e_t_]
As phrase_from_file/2, providing additional _O_p_t_i_o_n_s. _O_p_t_i_o_n_s are
passed to open/4, except for buffer_size, which is passed to
set_stream/2. If not specified, the default buffer size is 512
bytes. Of particular importance are the open/4 options type and
encoding.
ssttrreeaamm__ttoo__llaazzyy__lliisstt((_+_S_t_r_e_a_m_, _-_L_i_s_t)) _[_d_e_t_]
Create a lazy list representing the character codes in _S_t_r_e_a_m. It
must be possible to reposition _S_t_r_e_a_m. _L_i_s_t is a list that ends in
a delayed goal. _L_i_s_t can be unified completely transparent to a
(partial) list and processed transparently using DCGs, but please
be aware that a lazy list is not the same as a materialized list in
all respects.
Typically, this predicate is used as a building block for more high
level safe predicates such as phrase_from_file/2.
TToo bbee ddoonnee Enhance of lazy list throughout the system.
1111..1199 prolog_xref:: CCrroossss--rreeffeerreennccee ddaattaa ccoolllleeccttiioonn lliibbrraarryy
This library collects information on defined and used objects in Prolog
sourcefiles. Typically these are predicates, but we expect the library
to deal with other types of objects in the future. The library is
a building block for tools doing dependency tracking in applications.
Dependency tracking is useful to reveal the structure of an unknown
program or detect missing components at compile-time, but also for
program transformation or minimising a program saved-state by only
saving the reachable objects.
This section gives a partial description of the library API, providing
some insight in how you can use it for analysing your program. The
library should be further modularized, moving its knowledge about -for
example- XPCE into a different file and allowing for adding knowledge
about other libraries such as Logtalk. PPlleeaassee ddoo nnoott ccoonnssiiddeerr tthhiiss
iinntteerrffaaccee rroocckk--ssoolliidd..
The library is exploited by two graphical tools in the SWI-Prolog
environment. The XPCE frontend started by gxref/0 and described in
section 3.7 and PceEmacs (section 3.4) which exploits this library for
its syntax colouring.
For all predicates described below, _S_o_u_r_c_e is the source that is
processed. This is normally a filename in any notation acceptable
to the file loading predicates (see load_files/2). Using the hooks
defined in section 11.19.1 it can be anything else that can be
translated into a Prolog stream holding Prolog source text. _C_a_l_l_a_b_l_e
is a callable term (see callable/1). Callables do not carry a module
qualifier unless the referred predicate is not in the module defined
_S_o_u_r_c_e.
xxrreeff__ssoouurrccee((_+_S_o_u_r_c_e))
Gather information on _S_o_u_r_c_e. If _S_o_u_r_c_e has already been processed
and is still up-to-date according to the file timestamp, no action
is taken. This predicate must be called on a file before
information can be gathered.
xxrreeff__ccuurrrreenntt__ssoouurrccee((_?_S_o_u_r_c_e))
_S_o_u_r_c_e has been processed.
xxrreeff__cclleeaann((_+_S_o_u_r_c_e))
Remove the information gathered for _S_o_u_r_c_e
xxrreeff__ddeeffiinneedd((_?_S_o_u_r_c_e_, _?_C_a_l_l_a_b_l_e_, _-_H_o_w))
_C_a_l_l_a_b_l_e is defined in _S_o_u_r_c_e. _H_o_w is one of
dynamic(_L_i_n_e) Declared dynamic at _L_i_n_e
thread_local(_L_i_n_e) Declared thread local at _L_i_n_e
multifile(_L_i_n_e) Declared multifile at _L_i_n_e
local(_L_i_n_e) First clause at _L_i_n_e
foreign(_L_i_n_e) Foreign library loaded at _L_i_n_e
constraint(_L_i_n_e) CHR Constraint at _L_i_n_e
imported(_F_i_l_e) Imported from _F_i_l_e
xxrreeff__ccaalllleedd((_?_S_o_u_r_c_e_, _?_C_a_l_l_a_b_l_e_, _?_B_y))
_C_a_l_l_a_b_l_e is called in _S_o_u_r_c_e by _B_y.
xxrreeff__eexxppoorrtteedd((_?_S_o_u_r_c_e_, _?_C_a_l_l_a_b_l_e))
_C_a_l_l_a_b_l_e is public (exported from the module).
xxrreeff__mmoodduullee((_?_S_o_u_r_c_e_, _?_M_o_d_u_l_e))
_S_o_u_r_c_e is a module-file defining the given module.
xxrreeff__bbuuiilltt__iinn((_?_C_a_l_l_a_b_l_e))
True if _C_a_l_l_a_b_l_e is a built-in predicate. Currently this is
assumed for all predicates defined in the system module and having
the property built_in. Built-in predicates are not registered as
`called'.
1111..1199..11 EExxtteennddiinngg tthhee lliibbrraarryy
The library provides hooks for extending its rules it uses for finding
predicates called by some programming construct.
pprroolloogg::ccaalllleedd__bbyy((_+_G_o_a_l_, _-_C_a_l_l_e_d))
Where _G_o_a_l is a non-var subgoal appearing in called object
(typically a clause-body). If it succeeds it must return a list of
goals called by _G_o_a_l. As a special construct, if a term Callable +N
is returned, N variable arguments are added to _C_a_l_l_a_b_l_e before
further processing. For simple meta-calls a single fact suffices.
Complex rules as used in the html_write library provided by the
HTTP package examine the arguments and create a list of called
objects.
The current system cannot deal with the same name/arity in
different modules that behave differently with respect to called
arguments.
1111..2200 readutil:: RReeaaddiinngg lliinneess,, ssttrreeaammss aanndd ffiilleess
This library contains primitives to read lines, files, multiple terms,
etc. The package clib provides a shared object (DLL) named readutil.
If the library can locate this shared object it will use the foreign
implementation for reading character codes. Otherwise it will use a
Prolog implementation. Distributed applications should make sure to
deliver the readutil shared object if performance of these predicates
is critical.
rreeaadd__lliinnee__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s))
Read the next line of input from _S_t_r_e_a_m and unify the result
with _C_o_d_e_s _a_f_t_e_r the line has been read. A line is ended by a
newline character or end-of-file. Unlike read_line_to_codes/3, this
predicate removes trailing newline character.
On end-of-file the atom end_of_file is returned. See also
at_end_of_stream/[0,1].
rreeaadd__lliinnee__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s_, _?_T_a_i_l))
Diference-list version to read an input line to a list of character
codes. Reading stops at the newline or end-of-file character, but
unlike read_line_to_codes/2, the newline is retained in the output.
This predicate is especially useful for readine a block of lines
upto some delimiter. The following example reads an HTTP header
ended by a blank line:
____________________________________________________________________| |
| read_header_data(Stream, Header) :- |
| read_line_to_codes(Stream, Header, Tail), |
| read_header_data(Header, Stream, Tail). |
| |
| read_header_data("\r\n", _, _) :- !. |
| read_header_data("\n", _, _) :- !. |
| read_header_data("", _, _) :- !. |
| read_header_data(_, Stream, Tail) :- |
| read_line_to_codes(Stream, Tail, NewTail), |
||________read_header_data(Tail,_Stream,_NewTail).__________________ ||
rreeaadd__ssttrreeaamm__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s))
Read all input until end-of-file and unify the result to _C_o_d_e_s.
rreeaadd__ssttrreeaamm__ttoo__ccooddeess((_+_S_t_r_e_a_m_, _-_C_o_d_e_s_, _?_T_a_i_l))
Difference-list version of read_stream_to_codes/2.
rreeaadd__ffiillee__ttoo__ccooddeess((_+_S_p_e_c_, _-_C_o_d_e_s_, _+_O_p_t_i_o_n_s))
Read a file to a list of character codes. _S_p_e_c is a file-
specification for absolute_file_name/3. _C_o_d_e_s is the resulting
code-list. _O_p_t_i_o_n_s is a list of options for absolute_file_name/3
and open/4. In addition, the option tail(_T_a_i_l) is defined, forming
a difference-list.
rreeaadd__ffiillee__ttoo__tteerrmmss((_+_S_p_e_c_, _-_T_e_r_m_s_, _+_O_p_t_i_o_n_s))
Read a file to a list of prolog terms (see read/1). _S_p_e_c
is a file-specification for absolute_file_name/3. _T_e_r_m_s is the
resulting list of Prolog terms. _O_p_t_i_o_n_s is a list of options
for absolute_file_name/3 and open/4. In addition, the option
tail(_T_a_i_l) is defined, forming a difference-list.
1111..2211 record:: AAcccceessss nnaammeedd ffiieellddss iinn aa tteerrmm
The library record provides named access to fields in a record
represented as a compound term such as point(X, Y). The Prolog world
knows various approaches to solve this problem, unfortunately with no
consensus. The approach taken by this library is proposed by Richard
O'Keefe on the SWI-Prolog mailinglist.
The approach automates a technique commonly described in Prolog
text-books, where access- and modification predicates are defined for
the record type. Such predicates are subject to normal import/export
as well as analysis by cross-referencers. Given the simple nature of
the access predicates, an optimizing compiler can easily inline them
for optimal preformance.
A record is defined using the directive record/1. We introduce the
library with a short example:
________________________________________________________________________| |
|:- record point(x:integer=0, y:integer=0). |
| |
| ..., |
| default_point(Point), |
| point_x(Point, X), |
| set_x_of_point(10, Point, Point1), |
| |
||_______make_point([y(20)],_YPoint),___________________________________ ||
The principal functor and arity of the term used defines the name and
arity of the compound used as records. Each argument is described
using a term of the format below.
<_n_a_m_e>[:<_t_y_p_e>][=<_d_e_f_a_u_l_t>]
In this definition, <_n_a_m_e> is an atom defining the name of the argument.
<_t_y_p_e> is an optional type specification as defined by must_be/2 from
library error and <_d_e_f_a_u_l_t> is the default initial value. The <_t_y_p_e>
defaults to any. If no default value is specified the default is an
unbound variable.
A record declaration creates a set of predicates through _t_e_r_m_-
_e_x_p_a_n_s_i_o_n. We describe these predicates below. In this description,
<_c_o_n_s_t_r_u_c_t_o_r> refers to the name of the record (`point' in the example
above) and <_n_a_m_e> to the name of an argument (field).
o _d_e_f_a_u_l_t__<_c_o_n_s_t_r_u_c_t_o_r>_(_-_R_e_c_o_r_d_)
Create a new record where all fields have their default values.
This is the same as make_<_c_o_n_s_t_r_u_c_t_o_r>([], Record).
o _m_a_k_e__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_F_i_e_l_d_s_, _-_R_e_c_o_r_d_)
Create a new record where specified fields have the specified
values and remaining fields have their default value. Each
field is specified as a term <_n_a_m_e>(<_v_a_l_u_e>). See example in the
introduction.
o _m_a_k_e__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_F_i_e_l_d_s_, _-_R_e_c_o_r_d_, _-_R_e_s_t_F_i_e_l_d_s_)
Same as make_<_c_o_n_s_t_r_u_c_t_o_r>/2, but named fields that do not appear in
_R_e_c_o_r_d are returned in _R_e_s_t_F_i_e_l_d_s. This predicate is motivated by
option-list processing. See library option.
o <_c_o_n_s_t_r_u_c_t_o_r>_<_n_a_m_e>_(_R_e_c_o_r_d_, _V_a_l_u_e_)
Unify _V_a_l_u_e with argument in _R_e_c_o_r_d named <_n_a_m_e>.
o _s_e_t__<_n_a_m_e>__o_f__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_V_a_l_u_e_, _+_O_l_d_R_e_c_o_r_d_, _-_N_e_w_R_e_c_o_r_d_)
Replace the value for <_n_a_m_e> in _O_l_d_R_e_c_o_r_d by _V_a_l_u_e and unify the
result with _N_e_w_R_e_c_o_r_d.
o _s_e_t__<_n_a_m_e>__o_f__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_V_a_l_u_e_, _!_R_e_c_o_r_d_)
Destructively replace the argument <_n_a_m_e> in _R_e_c_o_r_d by _V_a_l_u_e based
on setarg/3. Use with care.
o _n_b___s_e_t__<_n_a_m_e>__o_f__<_c_o_n_s_t_r_u_c_t_o_r>_(_+_V_a_l_u_e_, _!_R_e_c_o_r_d_)
As above, but using non-backtrackable assignment based on
nb_setarg/3. Use with _e_x_t_r_e_m_e care.
o _s_e_t__<_c_o_n_s_t_r_u_c_t_o_r>__f_i_e_l_d_s_(_+_F_i_e_l_d_s_, _+_R_e_c_o_r_d_0_, _-_R_e_c_o_r_d_)
Set multiple fields using the same syntax as make_<_c_o_n_s_t_r_u_c_t_o_r>/2,
but starting with _R_e_c_o_r_d_0 rather than the default record.
o _s_e_t__<_c_o_n_s_t_r_u_c_t_o_r>__f_i_e_l_d_s_(_+_F_i_e_l_d_s_, _+_R_e_c_o_r_d_0_, _-_R_e_c_o_r_d_, _-_R_e_s_t_F_i_e_l_d_s_)
Similar to set_<_c_o_n_s_t_r_u_c_t_o_r>_fields/4, but fields not defined by
<_c_o_n_s_t_r_u_c_t_o_r> are returned in _R_e_s_t_F_i_e_l_d_s.
o _s_e_t__<_c_o_n_s_t_r_u_c_t_o_r>__f_i_e_l_d_(_+_F_i_e_l_d_, _+_R_e_c_o_r_d_0_, _-_R_e_c_o_r_d_)
Set a single field specified as a term <_n_a_m_e>(<_v_a_l_u_e>).
rreeccoorrdd((_+_S_p_e_c))
The construct :- record Spec, ... is used to define access to
named fields in a compound. It is subject to term-expansion
(see expand_term/2) and cannot be called as a predicate. See
section 11.21 for details.
1111..2222 registry:: MMaanniippuullaattiinngg tthhee WWiinnddoowwss rreeggiissttrryy
The registry is only available on the MS-Windows version of SWI-Prolog.
It loads the foreign extension plregtry.dll, providing the predicates
described below. This library only makes the most common operations
on the registry available through the Prolog user. The underlying DLL
provides a more complete coverage of the Windows registry API. Please
consult the sources in pl/src/win32/foreign/plregtry.c for further
details.
In all these predicates, _P_a_t_h refers to a `/' separated path into
the registry. This is _n_o_t an atom containing `/'-characters as used
for filenames, but a term using the functor //2. Windows defines
the following roots for the registry: classes_root, current_user,
local_machine and users
rreeggiissttrryy__ggeett__kkeeyy((_+_P_a_t_h_, _-_V_a_l_u_e))
Get the principal (default) value associated to this key. Fails
silently of the key does not exist.
rreeggiissttrryy__ggeett__kkeeyy((_+_P_a_t_h_, _+_N_a_m_e_, _-_V_a_l_u_e))
Get a named value associated to this key.
rreeggiissttrryy__sseett__kkeeyy((_+_P_a_t_h_, _+_V_a_l_u_e))
Set the principal (default) value of this key. Creates (a path to)
the key if this does not already exist.
rreeggiissttrryy__sseett__kkeeyy((_+_P_a_t_h_, _+_N_a_m_e_, _+_V_a_l_u_e))
Associated a named value to this key. Creates (a path to) the key
if this does not already exist.
rreeggiissttrryy__ddeelleettee__kkeeyy((_+_P_a_t_h))
Delete the indicated key.
sshheellll__rreeggiisstteerr__ffiillee__ttyyppee((_+_E_x_t_, _+_T_y_p_e_, _+_N_a_m_e_, _+_O_p_e_n_A_c_t_i_o_n))
Register a file-type. _E_x_t is the extension to associate. _T_y_p_e
is the type name, often something link prolog.type. _N_a_m_e is the
name visible in the Windows file-type browser. Finally, _O_p_e_n_A_c_t_i_o_n
defines the action to execute when a file with this extension is
opened in the Windows explorer.
sshheellll__rreeggiisstteerr__ddddee((_+_T_y_p_e_, _+_A_c_t_i_o_n_, _+_S_e_r_v_i_c_e_, _+_T_o_p_i_c_, _+_C_o_m_m_a_n_d_, _+_I_f_N_o_t_R_u_n_n_i_n_g))
Associate DDE actions to a type. _T_y_p_e is the same type as
used for the 2nd argument of shell_register_file_type/4, _A_c_t_i_o_n
is the a action to perform, _S_e_r_v_i_c_e and _T_o_p_i_c specify the DDE
topic to address and _C_o_m_m_a_n_d is the command to execute on this
topic. Finally, _I_f_N_o_t_R_u_n_n_i_n_g defines the command to execute if the
required DDE server is not present.
sshheellll__rreeggiisstteerr__pprroolloogg((_+_E_x_t))
Default registration of SWI-Prolog, which is invoked as part of the
initialisation process on Windows systems. As the source also
explains the above predicates, it is given as an example:
____________________________________________________________________| |
| shell_register_prolog(Ext) :- |
| current_prolog_flag(argv, [Me|_]), |
| concat_atom(['"', Me, '" "%1"'], OpenCommand), |
| shell_register_file_type(Ext, 'prolog.type', 'Prolog Source',|
| OpenCommand), |
| shell_register_dde('prolog.type', consult, |
| prolog, control, 'consult(''%1'')', Me),|
| shell_register_dde('prolog.type', edit, |
||___________________________prolog,_control,_'edit(''%1'')',_Me).__ ||
1111..2233 simplex:: SSoollvvee lliinneeaarr pprrooggrraammmmiinngg pprroobblleemmss
Author: _M_a_r_k_u_s _T_r_i_s_k_a
A linear programming problem consists of a set of (linear) constraints,
a number of variables and a linear objective function. The goal is
to assign values to the variables so as to maximize (or minimize) the
value of the objective function while satisfying all constraints.
Many optimization problems can be modeled in this way. Consider having
a knapsack with fixed capacity C, and a number of items with sizes s(i)
and values v(i). The goal is to put as many items as possible in the
knapsack (not exceeding its capacity) while maximizing the sum of their
values.
As another example, suppose you are given a set of coins with certain
values, and you are to find the minimum number of coins such that their
values sum up to a fixed amount. Instances of these problems are
solved below.
The simplex module provides the following predicates:
aassssiiggnnmmeenntt((_+_C_o_s_t_, _-_A_s_s_i_g_n_m_e_n_t))
_C_o_s_t is a list of lists representing the quadratic cost matrix,
where element (i,j) denotes the cost of assigning entity i to
entity j. An assignment with minimal cost is computed and unified
with _A_s_s_i_g_n_m_e_n_t as a list of lists, representing an adjacency
matrix.
ccoonnssttrraaiinntt((_+_C_o_n_s_t_r_a_i_n_t_, _+_S_0_, _-_S))
Adds a linear or integrality constraint to the linear program
corresponding to state _S_0. A linear constraint is of the form
"Left Op C", where "Left" is a list of Coefficient*Variable terms
(variables in the context of linear programs can be atoms or
compound terms) and C is a non-negative numeric constant. The list
represents the sum of its elements. _O_p can be =, =< or >=. The
coefficient "1" can be omitted. An integrality constraint is of
the form integral(Variable) and constrains Variable to an integral
value.
ccoonnssttrraaiinntt((_+_N_a_m_e_, _+_C_o_n_s_t_r_a_i_n_t_, _+_S_0_, _-_S))
Like constraint/3, and attaches the name _N_a_m_e (an atom or compound
term) to the new constraint.
ccoonnssttrraaiinntt__aadddd((_+_N_a_m_e_, _+_L_e_f_t_, _+_S_0_, _-_S))
_L_e_f_t is a list of Coefficient*Variable terms. The terms are added
to the left-hand side of the constraint named _N_a_m_e. _S is unified
with the resulting state.
ggeenn__ssttaattee((_-_S_t_a_t_e))
Generates an initial state corresponding to an empty linear
program.
mmaaxxiimmiizzee((_+_O_b_j_e_c_t_i_v_e_, _+_S_0_, _-_S))
Maximizes the objective function, stated as a list of "Coeffi-
cient*Variable" terms that represents the sum of its elements, with
respect to the linear program corresponding to state _S_0. _S is
unified with an internal representation of the solved instance.
mmiinniimmiizzee((_+_O_b_j_e_c_t_i_v_e_, _+_S_0_, _-_S))
Analogous to maximize/3.
oobbjjeeccttiivvee((_+_S_t_a_t_e_, _-_O_b_j_e_c_t_i_v_e))
Unifies _O_b_j_e_c_t_i_v_e with the result of the objective function at the
obtained extremum. _S_t_a_t_e must correspond to a solved instance.
sshhaaddooww__pprriiccee((_+_S_t_a_t_e_, _+_N_a_m_e_, _-_V_a_l_u_e))
Unifies _V_a_l_u_e with the shadow price corresponding to the linear
constraint whose name is _N_a_m_e. _S_t_a_t_e must correspond to a solved
instance.
ttrraannssppoorrttaattiioonn((_+_S_u_p_p_l_i_e_s_, _+_D_e_m_a_n_d_s_, _+_C_o_s_t_s_, _-_T_r_a_n_s_p_o_r_t))
_S_u_p_p_l_i_e_s and _D_e_m_a_n_d_s are both lists of positive numbers. Their
respective sums must be equal. _C_o_s_t_s is a list of lists
representing the cost matrix, where an entry (i,j) denotes the cost
of transporting one unit from i to j. A transportation plan having
minimum cost is computed and unified with _T_r_a_n_s_p_o_r_t in the form of
a list of lists that represents the transportation matrix, where
element (i,j) denotes how many units to ship from i to j.
vvaarriiaabbllee__vvaalluuee((_+_S_t_a_t_e_, _+_V_a_r_i_a_b_l_e_, _-_V_a_l_u_e))
_V_a_l_u_e is unified with the value obtained for _V_a_r_i_a_b_l_e. _S_t_a_t_e must
correspond to a solved instance.
All numeric quantities are converted to rationals via rationalize/1,
and rational arithmetic is used throughout solving linear programs. In
the current implementation, all variables are implicitly constrained
to be non-negative. This may change in future versions, and
non-negativity constraints should therefore be stated explicitly.
1111..2233..11 EExxaammppllee 11
This is the "radiation therapy" example, taken from "Introduction to
Operations Research" by Hillier and Lieberman. DCG notation is used to
implicitly thread the state through posting the constraints:
________________________________________________________________________| |
|:- use_module(library(simplex)). |
| |
|post_constraints --> |
| constraint([0.3*x1, 0.1*x2] =< 2.7), |
| constraint([0.5*x1, 0.5*x2] = 6), |
| constraint([0.6*x1, 0.4*x2] >= 6), |
| constraint([x1] >= 0), |
| constraint([x2] >= 0). |
| |
|radiation(S) :- |
| gen_state(S0), |
| post_constraints(S0, S1), |
||_______minimize([0.4*x1,_0.5*x2],_S1,_S)._____________________________ ||
An example query:
________________________________________________________________________| |
|?- radiation(S), variable_value(S, x1, Val1), variable_value(S, x2, Val2).|
| |
|Val1 = 15 rdiv 2 |
|Val2|=_9_rdiv_2_;______________________________________________________ | |
1111..2233..22 EExxaammppllee 22
Here is an instance of the knapsack problem described above, where C
= 8, and we have two types of items: One item with value 7 and size
6, and 2 items each having size 4 and value 4. We introduce two
variables, x(1) and x(2) that denote how many items to take of each
type.
________________________________________________________________________| |
|knapsack_constrain(S) :- |
| gen_state(S0), |
| constraint([6*x(1), 4*x(2)] =< 8, S0, S1), |
| constraint([x(1)] =< 1, S1, S2), |
| constraint([x(2)] =< 2, S2, S). |
| |
|knapsack(S) :- |
| knapsack_constrain(S0), |
||_______maximize([7*x(1),_4*x(2)],_S0,_S)._____________________________ ||
An example query yields:
________________________________________________________________________| |
|?- knapsack(S), variable_value(S, x(1), X1), variable_value(S, x(2), X2).|
| |
|X1 = 1 |
|X2|=_1_rdiv_2_;________________________________________________________ | |
That is, we are to take the one item of the first type, and half of one
of the items of the other type to maximize the total value of items in
the knapsack.
If items can not be split, integrality constraints have to be imposed:
________________________________________________________________________| |
|knapsack_integral(S) :- |
| knapsack_constrain(S0), |
| constraint(integral(x(1)), S0, S1), |
| constraint(integral(x(2)), S1, S2), |
||_______maximize([7*x(1),_4*x(2)],_S2,_S)._____________________________ ||
Now the result is different:
________________________________________________________________________| |
|?- knapsack_integral(S), variable_value(S, x(1), X1), variable_value(S, x(2),|X2).
| |
|X1 = 0 |
|X2|=_2_________________________________________________________________ | |
That is, we are to take only the two items of the second type.
Notice in particular that always choosing the remaining item with best
performance (ratio of value to size) that still fits in the knapsack
does not necessarily yield an optimal solution in the presence of
integrality constraints.
1111..2233..33 EExxaammppllee 33
We are given 3 coins each worth 1, 20 coins each worth 5, and 10 coins
each worth 20 units of money. The task is to find a minimal number of
these coins that amount to 111 units of money. We introduce variables
c(1), c(5) and c(20) denoting how many coins to take of the respective
type:
________________________________________________________________________| |
|coins --> |
| constraint([c(1), 5*c(5), 20*c(20)] = 111), |
| constraint([c(1)] =< 3), |
| constraint([c(5)] =< 20), |
| constraint([c(20)] =< 10), |
| constraint([c(1)] >= 0), |
| constraint([c(5)] >= 0), |
| constraint([c(20)] >= 0), |
| constraint(integral(c(1))), |
| constraint(integral(c(5))), |
| constraint(integral(c(20))), |
| minimize([c(1), c(5), c(20)]). |
| |
|coins(S) :- |
| gen_state(S0), |
||_______coins(S0,_S).__________________________________________________ ||
An example query:
________________________________________________________________________| |
|?- coins(S), variable_value(S, c(1), C1), variable_value(S, c(5), C5), variable_value(S,|c(20), C20).
| |
|C1 = 1 |
|C5 = 2 |
|C20|=_5________________________________________________________________ | |
1111..2244 lliibbrraarryy((tthhrreeaadd__ppooooll)):: RReessoouurrccee bboouunnddeedd tthhrreeaadd mmaannaaggeemmeenntt
SSeeee aallssoo http_handler/3 and http_spawn/2.
The module library(thread_pool) manages threads in pools. A pool
defines properties of its member threads and the maximum number of
threads that can coexist in the pool. The call thread_create_in_pool/4
allocates a thread in the pool, just like thread_create/3. If the pool
is fully allocated it can be asked to wait or raise an error.
The library has been designed to deal with server application that
recieve a variety of requests, such as HTTP servers. Simply starting a
thread for each request is a bit too simple minded for such servers:
o Creating many CPU intensive threads often leads to a slow-down
rather than a speedup.
o Creating many memory intensive threads may exhaust resources
o Tasks that require little CPU and memory but take long waiting for
external resources can run many threads.
Using this library, one can define a pool for each set of tasks with
comparable characteristics and create threads in this pool. Unlike the
worker-pool model, threads are not started immediately. Depending on
the design, both approaches can be attractive.
The library is implemented by means of a manager thread with the
fixed thread id __thread_pool_manager. All state is maintained in
this manager thread, which receives and processes requests to create
and destroy pools, create threads in a pool and handle messages from
terminated threads. Thread pools are _n_o_t saved in a saved state and
must therefore be recreated using the initialization/1 directive or
otherwise during startup of the application.
tthhrreeaadd__ppooooll__ccrreeaattee((_+_P_o_o_l_, _+_S_i_z_e_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Create a pool of threads. A pool of threads is a declaration
for creating threads with shared properties (stack sizes) and
a limited number of threads. Threads are created using
thread_create_in_pool/4. If all threads in the pool are in use,
the behaviour depends on the wait option of thread_create_in_pool/4
and the backlog option described below. _O_p_t_i_o_n_s are passed to
thread_create/3, except for
bbaacckklloogg((_+_M_a_x_B_a_c_k_L_o_g))
Maximum number of requests that can be suspended. Default is
infinite. Otherwise it must be a non-negative integer. Using
backlog(0) will never delay thread creation for this pool.
The pooling mechanism does _n_o_t interact with the detached state of
a thread. Threads can be created both detached and normal and must
be joined using thread_join/2 if they are not detached.
bbuugg The thread creation option at_exit is reserved for
internal use by this library.
tthhrreeaadd__ppooooll__ddeessttrrooyy((_+_N_a_m_e)) _[_d_e_t_]
Destroy the thread pool named _N_a_m_e.
EErrrroorrss existence_error(thread_pool, _N_a_m_e).
ccuurrrreenntt__tthhrreeaadd__ppooooll((_?_N_a_m_e)) _[_n_o_n_d_e_t_]
True if _N_a_m_e refers to a defined thread pool.
tthhrreeaadd__ppooooll__pprrooppeerrttyy((_?_N_a_m_e_, _?_P_r_o_p_e_r_t_y)) _[_n_o_n_d_e_t_]
True if _P_r_o_p_e_r_t_y is a property of thread pool _N_a_m_e. Defined
properties are:
ooppttiioonnss((_O_p_t_i_o_n_s))
Thread creation options for this pool
ffrreeee((_S_i_z_e))
Number of free slots on this pool
ssiizzee((_S_i_z_e))
Total number of slots on this pool
mmeemmbbeerrss((_L_i_s_t_O_f_I_D_s))
ListOfIDs is the list or threads running in this pool
rruunnnniinngg((_R_u_n_n_i_n_g))
Number of running threads in this pool
bbaacckklloogg((_S_i_z_e))
Number of delayed thread creations on this pool
tthhrreeaadd__ccrreeaattee__iinn__ppooooll((_+_P_o_o_l_, _:_G_o_a_l_, _-_I_d_, _+_O_p_t_i_o_n_s)) _[_d_e_t_]
Create a thread in _P_o_o_l. _O_p_t_i_o_n_s overrule default thread creation
options associated to the pool. In addition, the following option
is defined:
wwaaiitt((_+_B_o_o_l_e_a_n))
If true (default) and the pool is full, wait until a member of
the pool completes. If false, throw a resource_error.
EErrrroorrss
- resource_error(threads_in_pool(_P_o_o_l)) is raised if
wait is false or the backlog limit has been reached.
- existence_error(thread_pool, _P_o_o_l) if _P_o_o_l does not
exist.
1111..2255 ugraphs:: UUnnwweeiigghhtteedd GGrraapphhss
Authors: _R_i_c_h_a_r_d _O_'_K_e_e_f_e _& _V_i_t_o_r _S_a_n_t_o_s _C_o_s_t_a
_I_m_p_l_e_m_e_n_t_a_t_i_o_n _a_n_d _d_o_c_u_m_e_n_t_a_t_i_o_n _a_r_e _c_o_p_i_e_d _f_r_o_m _Y_A_P _5_._0_._1_.
_T_h_e ugraph _l_i_b_r_a_r_y _i_s _b_a_s_e_d _o_n _c_o_d_e _o_r_i_g_i_n_a_l_l_y _w_r_i_t_t_e_n
_b_y _R_i_c_h_a_r_d _O_'_K_e_e_f_e_. _T_h_e _c_o_d_e _w_a_s _t_h_e_n _e_x_t_e_n_d_e_d _t_o _b_e
_c_o_m_p_a_t_i_b_l_e _w_i_t_h _t_h_e _S_I_C_S_t_u_s _P_r_o_l_o_g _u_g_r_a_p_h_s _l_i_b_r_a_r_y_. _C_o_d_e _a_n_d
_d_o_c_u_m_e_n_t_a_t_i_o_n _h_a_v_e _b_e_e_n _c_l_e_a_n_e_d _a_n_d _s_t_y_l_e _h_a_s _b_e_e_n _c_h_a_n_g_e_d _t_o
_b_e _m_o_r_e _i_n _l_i_n_e _w_i_t_h _t_h_e _r_e_s_t _o_f _S_W_I_-_P_r_o_l_o_g_.
_T_h_e _u_g_r_a_p_h_s _l_i_b_r_a_r_y _w_a_s _o_r_i_g_i_n_a_l_l_y _r_e_l_e_a_s_e_d _i_n _t_h_e _p_u_b_l_i_c
_d_o_m_a_i_n_. _Y_A_P _i_s _c_o_n_v_e_r_e_d _b_y _t_h_e _P_e_r_l _a_r_t_i_s_t_i_c _l_i_c_e_n_s_e_, _w_h_i_c_h
_d_o_e_s _n_o_t _i_m_p_l_y _f_u_r_t_h_e_r _r_e_s_t_r_i_c_t_i_o_n_s _o_n _t_h_e _S_W_I_-_P_r_o_l_o_g _L_G_P_L
_l_i_c_e_n_s_e_.
The routines assume directed graphs, undirected graphs may be
implemented by using two edges.
Originally graphs where represented in two formats. The SICStus
library and this version of ugraphs.pl only uses the _S_-_r_e_p_r_e_s_e_n_t_a_t_i_o_n.
The S-representation of a graph is a list of (vertex-neighbors) pairs,
where the pairs are in standard order (as produced by keysort) and the
neighbors of each vertex are also in standard order (as produced by
sort). This form is convenient for many calculations. Each vertex
appears in the S-representation, also if it has no neighbors.
vveerrttiicceess__eeddggeess__ttoo__uuggrraapphh((_+_V_e_r_t_i_c_e_s_, _+_E_d_g_e_s_, _-_G_r_a_p_h))
Given a graph with a set of _V_e_r_t_i_c_e_s and a set of _E_d_g_e_s, _G_r_a_p_h
must unify with the corresponding S-representation. Note that the
vertices without edges will appear in _V_e_r_t_i_c_e_s but not in _E_d_g_e_s.
Moreover, it is sufficient for a vertice to appear in _E_d_g_e_s.
____________________________________________________________________| |
| ?- vertices_edges_to_ugraph([],[1-3,2-4,4-5,1-5], L). |
||L_=_[1-[3,5],_2-[4],_3-[],_4-[5],_5-[]]___________________________ ||
In this case all vertices are defined implicitly. The next example
shows three unconnected vertices:
____________________________________________________________________| |
| ?- vertices_edges_to_ugraph([6,7,8],[1-3,2-4,4-5,1-5], L). |
||L_=_[1-[3,5],_2-[4],_3-[],_4-[5],_5-[],_6-[],_7-[],_8-[]]_?_______ ||
vveerrttiicceess((_+_G_r_a_p_h_, _-_V_e_r_t_i_c_e_s))
Unify _V_e_r_t_i_c_e_s with all vertices appearing in graph _G_r_a_p_h.
Example:
____________________________________________________________________| |
| ?- vertices([1-[3,5],2-[4],3-[],4-[5],5-[]], L). |
||L_=_[1,_2,_3,_4,_5]_______________________________________________ ||
eeddggeess((_+_G_r_a_p_h_, _-_E_d_g_e_s))
Unify _E_d_g_e_s with all edges appearing in _G_r_a_p_h. In the next
example:
____________________________________________________________________| |
| ?- edges([1-[3,5],2-[4],3-[],4-[5],5-[]], L). |
||L_=_[1-3,_1-5,_2-4,_4-5]__________________________________________ ||
aadddd__vveerrttiicceess((_+_G_r_a_p_h_, _+_V_e_r_t_i_c_e_s_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained by adding the list of
_V_e_r_t_i_c_e_s to the _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- add_vertices([1-[3,5],2-[]], [0,1,2,9], NG). |
||NG_=_[0-[],_1-[3,5],_2-[],_9-[]]__________________________________ ||
ddeell__vveerrttiicceess((_+_G_r_a_p_h_, _+_V_e_r_t_i_c_e_s_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained by deleting the list of
_V_e_r_t_i_c_e_s and all the edges that start from or go to a vertex in
_V_e_r_t_i_c_e_s to the _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- del_vertices([2,1], |
| [1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[2,6],8-[]], |
| NL). |
||NL_=_[3-[],4-[5],5-[],6-[],7-[6],8-[]]____________________________ ||
aadddd__eeddggeess((_+_G_r_a_p_h_, _+_E_d_g_e_s_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained by adding the list of
edges _E_d_g_e_s to the graph _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- add_edges([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[],8-[]], |
| [1-6,2-3,3-2,5-7,3-2,4-5], |
| NL). |
||NL_=_[1-[3,5,6],_2-[3,4],_3-[2],_4-[5],_5-[7],_6-[],_7-[],_8-[]]__ ||
ddeell__eeddggeess((_+_G_r_a_p_h_, _+_E_d_g_e_s_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained by removing the list of
_E_d_g_e_s from the _G_r_a_p_h. Notice that no vertices are deleted. In the
next example:
____________________________________________________________________| |
| ?- del_edges([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[],8-[]], |
| [1-6,2-3,3-2,5-7,3-2,4-5,1-3], |
| NL). |
||NL_=_[1-[5],2-[4],3-[],4-[],5-[],6-[],7-[],8-[]]__________________ ||
ttrraannssppoossee((_+_G_r_a_p_h_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with a new graph obtained from _G_r_a_p_h by replacing
all edges of the form V1-V2 by edges of the form V2-V1. The cost
is O(|V|2). Notice that an undirected graph is its own transpose.
Example:
____________________________________________________________________| |
| ?- transpose([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[],8-[]], NL). |
||NL_=_[1-[],2-[],3-[1],4-[2],5-[1,4],6-[],7-[],8-[]]_______________ ||
nneeiigghhbboouurrss((_+_V_e_r_t_e_x_, _+_G_r_a_p_h_, _-_V_e_r_t_i_c_e_s))
Unify _V_e_r_t_i_c_e_s with the list of neighbours of vertex _V_e_r_t_e_x in
_G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- neighbours(4,[1-[3,5],2-[4],3-[], |
| 4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL). |
||NL_=_[1,2,7,5]____________________________________________________ ||
nneeiigghhbboorrss((_+_V_e_r_t_e_x_, _+_G_r_a_p_h_, _-_V_e_r_t_i_c_e_s))
American version of neighbours/3.
ccoommpplleemmeenntt((_+_G_r_a_p_h_, _-_N_e_w_G_r_a_p_h))
Unify _N_e_w_G_r_a_p_h with the graph complementary to _G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- complement([1-[3,5],2-[4],3-[], |
| 4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL). |
| NL = [1-[2,4,6,7,8],2-[1,3,5,6,7,8],3-[1,2,4,5,6,7,8], |
| 4-[3,5,6,8],5-[1,2,3,4,6,7,8],6-[1,2,3,4,5,7,8], |
||______7-[1,2,3,4,5,6,8],8-[1,2,3,4,5,6,7]]________________________ ||
ccoommppoossee((_+_L_e_f_t_G_r_a_p_h_, _+_R_i_g_h_t_G_r_a_p_h_, _-_N_e_w_G_r_a_p_h))
Compose, by connecting the _d_r_a_i_n_s of _L_e_f_t_G_r_a_p_h to the _s_o_u_r_c_e_s of
_R_i_g_h_t_G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- compose([1-[2],2-[3]],[2-[4],3-[1,2,4]],L). |
||L_=_[1-[4],_2-[1,2,4],_3-[]]______________________________________ ||
uuggrraapphh__uunniioonn((_+_G_r_a_p_h_1_, _+_G_r_a_p_h_2_, _-_N_e_w_G_r_a_p_h))
_N_e_w_G_r_a_p_h is the union of _G_r_a_p_h_1 and _G_r_a_p_h_2. Example:
____________________________________________________________________| |
| ?- ugraph_union([1-[2],2-[3]],[2-[4],3-[1,2,4]],L). |
||L_=_[1-[2],_2-[3,4],_3-[1,2,4]]___________________________________ ||
ttoopp__ssoorrtt((_+_G_r_a_p_h_, _-_S_o_r_t))
Generate the set of nodes _S_o_r_t as a topological sorting of graph
_G_r_a_p_h, if one is possible. A toplogical sort is possible if
the graph is connected and acyclic. In the example we show how
topological sorting works for a linear graph:
____________________________________________________________________| |
| ?- top_sort([1-[2], 2-[3], 3-[]], L). |
||L_=_[1,_2,_3]_____________________________________________________ ||
ttoopp__ssoorrtt((_+_G_r_a_p_h_, _-_S_o_r_t_0_, _-_S_o_r_t))
Generate the difference list Sort-Sort0 as a topological sorting of
graph _G_r_a_p_h, if one is possible.
ttrraannssiittiivvee__cclloossuurree((_+_G_r_a_p_h_, _-_C_l_o_s_u_r_e))
Generate the graph Closure as the transitive closure of graph
_G_r_a_p_h. Example:
____________________________________________________________________| |
| ?- transitive_closure([1-[2,3],2-[4,5],4-[6]],L). |
||L_=_[1-[2,3,4,5,6],_2-[4,5,6],_4-[6]]_____________________________ ||
rreeaacchhaabbllee((_+_V_e_r_t_e_x_, _+_G_r_a_p_h_, _-_V_e_r_t_i_c_e_s))
Unify _V_e_r_t_i_c_e_s with the set of all vertices in graph _G_r_a_p_h that are
reachable from _V_e_r_t_e_x. Example:
____________________________________________________________________| |
| ?- reachable(1,[1-[3,5],2-[4],3-[],4-[5],5-[]],V). |
||V_=_[1,_3,_5]_____________________________________________________ ||
1111..2266 lliibbrraarryy((uurrll)):: AAnnaallyyssiinngg aanndd ccoonnssttrruuccttiinngg UURRLL
aauutthhoorr
- Jan Wielemaker
- Lukas Faulstich
ddeepprreeccaatteedd New code should use library(uri), provided by the
clib package.
This library deals with the analysis and construction of a URL,
Universal Resource Locator. URL is the basis for communicating
locations of resources (data) on the web. A URL consists of a protocol
identifier (e.g. HTTP, FTP, and a protocol-specific syntax further
defining the location. URLs are standardized in RFC-1738.
The implementation in this library covers only a small portion of the
defined protocols. Though the initial implementation followed RFC-1738
strictly, the current is more relaxed to deal with frequent violations
of the standard encountered in practical use.
gglloobbaall__uurrll((_+_U_R_L_, _+_B_a_s_e_, _-_G_l_o_b_a_l)) _[_d_e_t_]
Translate a possibly relative _U_R_L into an absolute one.
EErrrroorrss syntax_error(illegal_url) if _U_R_L is not legal.
iiss__aabbssoolluuttee__uurrll((_+_U_R_L))
True if _U_R_L is an absolute _U_R_L. That is, a _U_R_L that starts with a
protocol identifier.
hhttttpp__llooccaattiioonn((_?_P_a_r_t_s_, _?_L_o_c_a_t_i_o_n))
Construct or analyze an HTTP location. This is similar to
parse_url/2, but only deals with the location part of an HTTP URL.
That is, the path, search and fragment specifiers. In the HTTP
protocol, the first line of a message is
____________________________________________________________________| |
||<Action>_<Location>_HTTP/<version>________________________________ ||
__________________________________________________________Parameters_
_L_o_c_a_t_i_o_n Atom or list of character codes.
ppaarrssee__uurrll((_+_U_R_L_, _-_A_t_t_r_i_b_u_t_e_s)) _[_d_e_t_]
Construct or analyse a _U_R_L. _U_R_L is an atom holding a _U_R_L or a
variable. Parts is a list of components. Each component is of the
format Name(Value). Defined components are:
pprroottooccooll((_P_r_o_t_o_c_o_l))
The used protocol. This is, after the optional url:, an
identifier separated from the remainder of the _U_R_L using
:. parse_url/2 assumes the http protocol if no protocol is
specified and the _U_R_L can be parsed as a valid HTTP url.
In addition to the RFC-1738 specified protocols, the file
protocol is supported as well.
hhoosstt((_H_o_s_t))
Host-name or IP-address on which the resource is located.
Supported by all network-based protocols.
ppoorrtt((_P_o_r_t))
Integer port-number to access on the \arg{Host}. This only
appears if the port is explicitly specified in the _U_R_L.
Implicit default ports (e.g., 80 for HTTP) do _n_o_t appear in
the part-list.
ppaatthh((_P_a_t_h))
(File-) path addressed by the _U_R_L. This is supported for the
ftp, http and file protocols. If no path appears, the library
generates the path /.
sseeaarrcchh((_L_i_s_t_O_f_N_a_m_e_V_a_l_u_e))
Search-specification of HTTP _U_R_L. This is the part after the
?, normally used to transfer data from HTML forms that use the
GET protocol. In the _U_R_L it consists of a www-form-encoded
list of Name=Value pairs. This is mapped to a list of Prolog
Name=Value terms with decoded names and values.
ffrraaggmmeenntt((_F_r_a_g_m_e_n_t))
Fragment specification of HTTP _U_R_L. This is the part after the
# character.
The example below illustrates the all this for an HTTP _U_R_L.
____________________________________________________________________| |
| ?- parse_url('http://swi.psy.uva.nl/message.cgi?msg=Hello+World%21#x',|P).
| |
| P = [ protocol(http), |
| host('swi.psy.uva.nl'), |
| fragment(x), |
| search([ msg = 'Hello World!' |
| ]), |
| path('/message.cgi') |
||____]_____________________________________________________________ ||
By instantiating the parts-list this predicate can be used to
create a _U_R_L.
ppaarrssee__uurrll((_+_U_R_L_, _+_B_a_s_e_U_R_L_, _-_A_t_t_r_i_b_u_t_e_s)) _[_d_e_t_]
Similar to parse_url/2 for relative URLs. If _U_R_L is relative, it
is resolved using the absolute _U_R_L _B_a_s_e_U_R_L.
wwwwww__ffoorrmm__eennccooddee((_+_V_a_l_u_e_, _-_X_W_W_W_F_o_r_m_E_n_c_o_d_e_d)) _[_d_e_t_]
wwwwww__ffoorrmm__eennccooddee((_-_V_a_l_u_e_, _+_X_W_W_W_F_o_r_m_E_n_c_o_d_e_d)) _[_d_e_t_]
En/Decode between native value and application/x-www-form-encoded.
Maps space to +, keeps alnum, maps anything else to %XX and
newlines to %OD%OA. When decoding, newlines appear as a single
newline (10) character.
sseett__uurrll__eennccooddiinngg((_?_O_l_d_, _+_N_e_w)) _[_s_e_m_i_d_e_t_]
Query and set the encoding for URLs. The default is utf8. The
only other defined value is iso_latin_1.
TToo bbee ddoonnee Having a global flag is highly inconvenient,
but a work-around for old sites using ISO Latin 1
encoding.
uurrll__iirrii((_+_E_n_c_o_d_e_d_, _-_D_e_c_o_d_e_d)) _[_d_e_t_]
uurrll__iirrii((_-_E_n_c_o_d_e_d_, _+_D_e_c_o_d_e_d)) _[_d_e_t_]
Convert between a URL, encoding in US-ASCII and an IRI. An IRI is a
fully expanded Unicode string. Unicode strings are first encoded
into UTF-8, after which %-encoding takes place.
ppaarrssee__uurrll__sseeaarrcchh((_?_S_p_e_c_, _?_F_i_e_l_d_s_:_l_i_s_t_(_N_a_m_e_=_V_a_l_u_e_))) _[_d_e_t_]
Construct or analyze an HTTP search specification. This deals with
form data using the MIME-type =application/x-www-form-urlencoded=
as used in HTTP GET requests.
ffiillee__nnaammee__ttoo__uurrll((_+_F_i_l_e_, _-_U_R_L)) _[_d_e_t_]
ffiillee__nnaammee__ttoo__uurrll((_-_F_i_l_e_, _+_U_R_L)) _[_s_e_m_i_d_e_t_]
Translate between a filename and a file:// _U_R_L.
TToo bbee ddoonnee Current implementation does not deal with
paths that need special encoding.
CChhaapptteerr 1122.. HHAACCKKEERRSS CCOORRNNEERR
This appendix describes a number of predicates which enable the
Prolog user to inspect the Prolog environment and manipulate (or
even redefine) the debugger. They can be used as entry points for
experiments with debugging tools for Prolog. The predicates described
here should be handled with some care as it is easy to corrupt the
consistency of the Prolog system by misusing them.
1122..11 EExxaammiinniinngg tthhee EEnnvviirroonnmmeenntt SSttaacckk
pprroolloogg__ccuurrrreenntt__ffrraammee((_-_F_r_a_m_e))
Unify _F_r_a_m_e with an integer providing a reference to the parent
of the current local stack frame. A pointer to the current
local frame cannot be provided as the predicate succeeds
deterministically and therefore its frame is destroyed immediately
after succeeding.
pprroolloogg__ffrraammee__aattttrriibbuuttee((_+_F_r_a_m_e_, _+_K_e_y_, _-_V_a_l_u_e))
Obtain information about the local stack frame _F_r_a_m_e. _F_r_a_m_e
is a frame reference as obtained through prolog_current_frame/1,
prolog_trace_interception/4 or this predicate. The key values are
described below.
aalltteerrnnaattiivvee
_V_a_l_u_e is unified with an integer reference to the local stack
frame in which execution is resumed if the goal associated
with _F_r_a_m_e fails. Fails if the frame has no alternative
frame.
hhaass__aalltteerrnnaattiivveess
_V_a_l_u_e is unified with true if _F_r_a_m_e still is a candidate for
backtracking. false otherwise.
ggooaall
_V_a_l_u_e is unified with the goal associated with _F_r_a_m_e. If the
definition module of the active predicate is not user the goal
is represented as <_m_o_d_u_l_e>:<_g_o_a_l>. Do not instantiate variables
in this goal unless you kknnooww what you are doing! Note that
the returned term may contain references to the frame and
should be discarded before the frame terminates.
ppaarreenntt__ggooaall
If _V_a_l_u_e is instantiated to a callable term, find a frame
executing the predicate described by _V_a_l_u_e and unify the
arguments of _V_a_l_u_e to the goal arguments associated with the
frame. This is intended to check the current execution
context. The user must ensure the checked parent goal is not
removed from the stack due to last-call optimisation and be
aware of the slow operation on deeply nested calls.
pprreeddiiccaattee__iinnddiiccaattoorr
Similar to goal, but only returning the
[<_m_o_d_u_l_e>:]<_n_a_m_e>/<_a_r_i_t_y> term describing the term, not
the actual arguments. It avoids creating an illegal term as
goal and is used by the library prolog_stack.
ccllaauussee
_V_a_l_u_e is unified with a reference to the currently running
clause. Fails if the current goal is associated with a
foreign (C) defined predicate. See also nth_clause/3 and
clause_property/2.
lleevveell
_V_a_l_u_e is unified with the recursion level of _F_r_a_m_e. The top
level frame is at level `0'.
ppaarreenntt
_V_a_l_u_e is unified with an integer reference to the parent local
stack frame of _F_r_a_m_e. Fails if _F_r_a_m_e is the top frame.
ccoonntteexxtt__mmoodduullee
_V_a_l_u_e is unified with the name of the context module of the
environment.
ttoopp
_V_a_l_u_e is unified with true if _F_r_a_m_e is the top Prolog goal
from a recursive call back from the foreign language. false
otherwise.
hhiiddddeenn
_V_a_l_u_e is unified with true if the frame is hidden from the
user, either because a parent has the hide-childs attribute
(all system predicates), or the system has no trace-me
attribute.
ppcc
_V_a_l_u_e is unified with the program-pointer saved on behalf of
the parent-goal if the parent-goal is not owned by a foreign
predicate.
aarrgguummeenntt((_N))
_V_a_l_u_e is unified with the _N-th slot of the frame. Argument
1 is the first argument of the goal. Arguments above the
arity refer to local variables. Fails silently if _N is out of
range.
pprroolloogg__cchhooiiccee__aattttrriibbuuttee((_+_C_h_o_i_c_e_P_o_i_n_t_, _+_K_e_y_, _-_V_a_l_u_e))
Extract attributes of a choice-point. _C_h_o_i_c_e_P_o_i_n_t is a reference
to a choice-point as passed to prolog_trace_interception/4on the
3-th argument. _K_e_y specifies the requested information:
ppaarreenntt
Requests a reference to the first older choice-point.
ffrraammee
Requests a reference to the frame to which the choice-point
refers.
ttyyppee
Requests the type. Defined values are clause (the goal
has alternative clauses), foreign (non-deterministic foreign
predicate), jump (clause internal choice-point), top (first
dummy choice-point), catch (catch/3 to allow for undo), debug
(help the debugger), or none (has been deleted).
This predicate is used for the graphical debugger to show the
choice-point stack.
ddeetteerrmmiinniissttiicc((_-_B_o_o_l_e_a_n))
Unifies its argument with true if no choicepoint exists that is
more recent than the entry of the clause in which is appears.
There are few realistic situations for using this predicate. It is
used by the prolog/0 toplevel to check whether Prolog should prompt
the user for alternatives. Similar results can be achieved in a
more portable fashion using call_cleanup/2.
1122..22 IInntteerrcceeppttiinngg tthhee TTrraacceerr
pprroolloogg__ttrraaccee__iinntteerrcceeppttiioonn((_+_P_o_r_t_, _+_F_r_a_m_e_, _+_C_h_o_i_c_e_, _-_A_c_t_i_o_n))
Dynamic predicate, normally not defined. This predicate is called
from the SWI-Prolog debugger just before it would show a port. If
this predicate succeeds the debugger assumes the trace action has
been taken care of and continues execution as described by _A_c_t_i_o_n.
Otherwise the normal Prolog debugger actions are performed.
_P_o_r_t denotes the reason to activate the tracer (`port' in the
4/5-port, but with some additions:
ccaallll
Normal entry through the call-port of the 4-port debugger.
rreeddoo
Normal entry through the call-port of the 4-port debugger.
The redo port signals resuming a predicate to generate
alternative solutions.
uunniiffyy
The unify-port represents the _n_e_c_k instruction, signalling the
end of the head-matching process. This port is normally
invisible. See leash/1 and visible/1.
eexxiitt
The exit-port signals the goal is proved. It is possible for
the goal to have alternative. See prolog_frame_attribute/3 to
examine the goal-stack.
ffaaiill
The fail-port signals final failure of the goal.
eexxcceeppttiioonn((_E_x_c_e_p_t))
An exception is raised and still pending. This port is
activated on each parent frame of the frame generating the
exception until the exception is caught or the user restarts
normal computation using retry. _E_x_c_e_p_t is the pending
exception-term.
bbrreeaakk((_P_C))
A break instruction is executed. _P_C is program counter. This
port is used by the graphical debugger.
ccuutt__ccaallll((_P_C))
A cut is encountered at _P_C. This port is used by the graphical
debugger. to visualise the effect of the cut.
ccuutt__eexxiitt((_P_C))
A cut has been executed. See cut_call(_P_C) for more informa-
tion.
_F_r_a_m_e is a reference to the current local stack frame, which
can be examined using prolog_frame_attribute/3. _C_h_o_i_c_e is a
reference to the last choice-point and can be examined using
prolog_choice_attribute/3. _A_c_t_i_o_n should be unified with one of
the atoms continue (just continue execution), retry (retry the
current goal) or fail (force the current goal to fail). Leaving it
a variable is identical to continue.
Together with the predicates described in section 4.37 and the
other predicates of this chapter this predicate enables the Prolog
user to define a complete new debugger in Prolog. Besides this it
enables the Prolog programmer monitor the execution of a program.
The example below records all goals trapped by the tracer in the
database.
____________________________________________________________________| |
| prolog_trace_interception(Port, Frame, _PC, continue) :- |
| prolog_frame_attribute(Frame, goal, Goal), |
| prolog_frame_attribute(Frame, level, Level), |
||________recordz(trace,_trace(Port,_Level,_Goal))._________________ ||
To trace the execution of `go' this way the following query should
be given:
____________________________________________________________________| |
||?-_trace,_go,_notrace.____________________________________________ ||
pprroolloogg__sskkiipp__ffrraammee((_-_F_r_a_m_e))
Indicate _F_r_a_m_e as a skipped frame and set the `skip level' (see
prolog_skip_level/2 to the recursion depth of _F_r_a_m_e. The effect of
the skipped flag is that a redo on a child of this frame is handled
differently. First, a redo trace is called for the child, where
the skip-level is set to redo_in_skip. Next, the skip level is set
to skip-level of the skipped frame.
pprroolloogg__sskkiipp__lleevveell((_-_O_l_d_, _+_N_e_w))
Unify _O_l_d with the old value of `skip level' and than set
this level according to _N_e_w. _N_e_w is an integer, the atom
very_deep (meaning don't skip) or the atom skip_in_redo (see
prolog_skip_frame/1). The `skip level' is a setting of each Prolog
thread that disables the debugger on all recursion levels deeper
than the level of the variable. See also prolog_skip_frame/1.
1122..33 AAddddiinngg ccoonntteexxtt ttoo eerrrroorrss:: pprroolloogg__eexxcceeppttiioonn__hhooookk
The hook prolog_exception_hook/4 has been introduced in SWI-Prolog 5.6.5
to provide dedicated exception handling facilities for application
frameworks. For example non-interactive server applications that wish
to provide extensive context for exceptions for offline debugging.
pprroolloogg__eexxcceeppttiioonn__hhooookk((_+_E_x_c_e_p_t_i_o_n_I_n_, _-_E_x_c_e_p_t_i_o_n_O_u_t_, _+_F_r_a_m_e_, _+_C_a_t_c_h_e_r_F_r_a_m_e))
This hook predicate, if defined in the module user, is between
raising an exception and handling it. It is intended to
allow a program adding additional context to an exception to
simplify diagnosing the problem. _E_x_c_e_p_t_i_o_n_I_n is the exception
term as raised by throw/1 or one of the bullt-in predicates.
The output argument _E_x_c_e_p_t_i_o_n_O_u_t describes the exception that
is actually raised. _F_r_a_m_e is the innermost frame. See
prolog_frame_attribute/3 and the library prolog_stack for getting
information from this. _C_a_t_c_h_e_r_F_r_a_m_e is a reference to the frame
calling the matching catch/3 or none of the exception is not
caught.
The hook is run in `nodebug' mode. If it succeeds _E_x_c_e_p_t_i_o_n_O_u_t is
considered the current exception. If it fails, _E_x_c_e_p_t_i_o_n_I_n is used
for further processing. The hook is _n_e_v_e_r called recursively. The
hook is _n_o_t allowed to modify _E_x_c_e_p_t_i_o_n_O_u_t in such as way that it
no longer unifies with the catching frame.
Typically, prolog_exception_hook/4 is used to fill the second
argument of error(_F_o_r_m_a_l_, _C_o_n_t_e_x_t) exceptions. _F_o_r_m_a_l is defined
by the ISO standard, while SWI-Prolog defines _C_o_n_t_e_x_t as a
term context(_L_o_c_a_t_i_o_n_, _M_e_s_s_a_g_e). _L_o_c_a_t_i_o_n is bound to a term
<_n_a_m_e>/<_a_r_i_t_y> by the kernel. This hook can be used to add more
information on the calling context, such as a full stack trace.
Applications that use exceptions as part of normal processing must
do a quick test of the environment before starting expensive
gathering information on the state of the program.
The hook can call trace/0 to enter trace mode immediately. For
example imagine an application performing an unwanted division by
zero while all other errors are expected and handled. We can force
the debugger using the hook definition below. Run the program in
debug mode (see debug/0) to preserve as much as possible of the
error context.
____________________________________________________________________| |
| user:prolog_exception_hook(error(evaluation_error(zero_divisor), _),|
| _, _, _) :- |
||________trace,_fail.______________________________________________ ||
1122..44 HHooookkss uussiinngg tthhee eexxcceeppttiioonn pprreeddiiccaattee
This section describes the predicate exception/3, which can be defined
by the user in the module user as a multifile predicate. Unlike the
name suggests, this is actually a _h_o_o_k predicate that has no relation
to Prolog exceptions as defined by the ISO predicates catch/3 and
throw/1.
The predicate exception/3 is called by the kernel on a couple of
events, allowing the user to `fix' errors just-in-time. The mechanism
allows for _l_a_z_y creation of objects such as predicates.
eexxcceeppttiioonn((_+_E_x_c_e_p_t_i_o_n_, _+_C_o_n_t_e_x_t_, _-_A_c_t_i_o_n))
Dynamic predicate, normally not defined. Called by the Prolog
system on run-time exceptions that can be repaired `just-in-time'.
The values for _E_x_c_e_p_t_i_o_n are described below. See also catch/3 and
throw/1.
If this hook predicate succeeds it must instantiate the _A_c_t_i_o_n
argument to the atom fail to make the operation fail silently,
retry to tell Prolog to retry the operation or error to make the
system generate an exception. The action retry only makes sense if
this hook modified the environment such that the operation can now
succeed without error.
uunnddeeffiinneedd__pprreeddiiccaattee
_C_o_n_t_e_x_t is instantiated to a predicate-indicator
([module]:<_n_a_m_e>/<_a_r_i_t_y>). If the predicate fails Pro-
log will generate an existence_error exception. The hook is
intended to implement alternatives to the built-in autoloader,
such as autoloading code from a database. Do _n_o_t use this
hook to suppress existence errors on predicates. See also
unknown and section 2.13.
uunnddeeffiinneedd__gglloobbaall__vvaarriiaabbllee
_C_o_n_t_e_x_t is instantiated to the name of the missing global
variable. The hook must call nb_setval/2 or b_setval/2 before
returning with the action retry.
1122..55 HHooookkss ffoorr iinntteeggrraattiinngg lliibbrraarriieess
Some libraries realise an entirely new programming paradigm on top of
Prolog. An example is XPCE which adds an object-system to Prolog as
well as an extensive set of graphical primitives. SWI-Prolog provides
several hooks to improve the integration of such libraries. See also
section 4.4 for editing hooks and section 4.9.3 for hooking into the
message system.
pprroolloogg__lliisstt__ggooaall((_:_G_o_a_l))
Hook, normally not defined. This hook is called by the 'L' command
of the tracer in the module user to list the currently called
predicate. This hook may be defined to list only relevant clauses
of the indicated _G_o_a_l and/or show the actual source-code in an
editor. See also portray/1 and multifile/1.
pprroolloogg::ddeebbuugg__ccoonnttrrooll__hhooookk((_:_A_c_t_i_o_n))
Hook for the debugger-control predicates that allows the creator of
more high-level programming languages to use the common front-end
predicates to control de debugger. For example, XPCE uses these
hooks to allow for spying methods rather then predicates. _A_c_t_i_o_n
is one of:
ssppyy((_S_p_e_c))
Hook in spy/1. If the hook succeeds spy/1 takes no further
action.
nnoossppyy((_S_p_e_c))
Hook in nospy/1. If the hook succeeds spy/1 takes no further
action. If spy/1 is hooked, it is advised to place a
complementary hook for nospy/1.
nnoossppyyaallll
Hook in nospyall/0. Should remove all spy-points. This hook
is called in a failure-driven loop.
ddeebbuuggggiinngg
Hook in debugging/0. It can be used in two ways. It can
report the status of the additional debug-points controlled by
the above hooks and fail to let the system report the others
or it succeed, overruling the entire behaviour of debugging/0.
pprroolloogg::hheellpp__hhooookk((_+_A_c_t_i_o_n))
Hook into help/0 and help/1. If the hook succeeds, the built-in
actions are not executed. For example, ?- help(picture). is caught
by the XPCE help-hook to give help on the class _p_i_c_t_u_r_e. Defined
actions are:
hheellpp
User entered plain help/0 to give default help. The default
performs help(help/1), giving help on help.
hheellpp((_W_h_a_t))
Hook in help/1 on the topic _W_h_a_t.
aapprrooppooss((_W_h_a_t))
Hook in apropos/1 on the topic _W_h_a_t.
1122..66 HHooookkss ffoorr llooaaddiinngg ffiilleess
All loading of source-files is achieved by load_files/2. The hook
prolog_load_file/2 can be used to load Prolog code from non-files or
even load entirely different information, such as foreign files.
pprroolloogg__llooaadd__ffiillee((_+_S_p_e_c_, _+_O_p_t_i_o_n_s))
Load a single object. If this call succeeds, load_files/2 assumes
the action has been taken care of. This hook is only called if
_O_p_t_i_o_n_s does not contain the stream(_I_n_p_u_t) option. The hook must
be defined in the module user.
The http_load provides an example, loading Prolog sources directly
from an HTTP server.
pprroolloogg::ccoommmmeenntt__hhooookk((_+_C_o_m_m_e_n_t_s_, _+_P_o_s_, _+_T_e_r_m))
This hook allows for processing ---structured--- comments encoun-
tered by the compiler. The reader collects all comments found
from the current position to the end of the next term. It calls
this hook providing a list of _P_o_s_i_t_i_o_n-_C_o_m_m_e_n_t in _C_o_m_m_e_n_t_s, the
start-position of the next term in _P_o_s and the next term itself
in _T_e_r_m. All positions are stream-position terms. This hook is
exploited by the documentation system. See stream_position_data/3.
See also read_term/3.
1122..77 RReeaaddlliinnee IInntteerraaccttiioonn
The following predicates are available if SWI-Prolog is linked to the
GNU readline library. This is by default the case on non-Windows
installations and indicated by the Prolog flag readline. See also
readline(3)
rrll__rreeaadd__iinniitt__ffiillee((_+_F_i_l_e))
Read a readline initialisation file. Readline by default reads
~/.inputrc. This predicate may be used to read alternative
readline initialisation files.
rrll__aadddd__hhiissttoorryy((_+_L_i_n_e))
Add a line to the Control-P/Control-N history system of the
readline library.
rrll__wwrriittee__hhiissttoorryy((_+_F_i_l_e_N_a_m_e))
Write current history to _F_i_l_e_N_a_m_e. Can be used from at_halt/1 to
save the history.
rrll__rreeaadd__hhiissttoorryy((_+_F_i_l_e_N_a_m_e))
Read history from _F_i_l_e_N_a_m_e, appending to the current history.
CChhaapptteerr 1133.. CCOOMMPPAATTIIBBIILLIITTYY WWIITTHH OOTTHHEERR PPRROOLLOOGG DDIIAALLEECCTTSS
This chapter explains issues for writing portable Prolog programs.
It was started after discussion with Vitor Santos Costa, the leading
developer of YAP Prolog YAP and SWI-Prolog have expressed the
ambition to enhance the portability beyond the trivial Prolog examples,
including complex libraries involving foreign code.
Although it is our aim to enhance compatibility, we are still faced
with many incompatibilities between the dialects. As a first step both
YAP and SWI will provide some instruments that help developing portable
code. A first release of these tools appeared in SWI-Prolog 5.6.43.
Some of the facilities are implemented in the base system. Others in
the library dialect.pl.
o The Prolog flag dialect is an unambiguous and fast way to find out
which Prolog dialect executes your program. It has the value swi
for SWI-Prolog and yap on YAP.
o The Prolog flag version_data is bound to a term swi(_M_a_j_o_r_, _M_i_n_o_r_,
_P_a_t_c_h_, _E_x_t_r_a)
o Conditional compilation using :- if(Condition) ...:- endif is
supported. See section 4.3.1.1.
o The predicate expects_dialect/1 allows for specifying for which
Prolog system the code was written.
o The predicates exists_source/1 and source_exports/2 can be used to
query the library content. The require/1 directive can be used to
get access to predicates without knowing their location.
o The module predicates use_module/1, use_module/2have been extended
with a notion for `import-except' and `import-as'. This is
particulary useful together with reexport/1 and reexport/2 to
compose modules from other modules and mapping names.
o Foreign code can expect __SWI_PROLOG__ when compiled for SWI-Prolog
and __YAP_PROLOG__when compiled on YAP.
::-- eexxppeeccttss__ddiiaalleecctt((_+_D_i_a_l_e_c_t))
This directive states that the code following the directive is
written for the given Prolog _D_i_a_l_e_c_t. See also dialect. The
declaration holds until the end of the file in which it appears.
The current dialect is available using prolog_load_context/2.
The exact behaviour of this predicate is still subject to
discussion. Of course, if _D_i_a_l_e_c_t matches the running dialect the
directive has no effect. Otherwise we check for the existence
of library(_d_i_a_l_e_c_t_/_D_i_a_l_e_c_t) and load it if the file is found.
Currently, this file has this functionality:
o Define system predicates of the requested dialect we do not
have.
o Apply goal_expansion/2 rules that map conflicting predicates
to versions emulating the requested dialect. These expansion
rules reside in the dialect compatibility module, but are
applied if prolog_load_context(dialect, Dialect) is active.
o Modify the search path for library directories, putting
libraries compatible with the target dialect before the native
libraries.
o Setup support for the default filename extension of the
dialect.
eexxiissttss__ssoouurrccee((_+_S_p_e_c))
Is true if _S_p_e_c exists as a Prolog source. _S_p_e_c uses the same
conventions as load_files/2. Fails without error if _S_p_e_c cannot be
found.
ssoouurrccee__eexxppoorrttss((_+_S_p_e_c_, _+_E_x_p_o_r_t))
Is true if source _S_p_e_c exports _E_x_p_o_r_t, a predicate indicator.
Fails without error otherwise.
1133..11 SSoommee ccoonnssiiddeerraattiioonnss ffoorr wwrriittiinngg ppoorrttaabbllee ccooddee
The traditional way to write portable code is to define custom
predicates for all potentially non-portable code and define these
separately for all Prolog dialects one wishes to support. Here are
some considerations.
o Probably the best reason for this is that it allows to define
minimal semantics required by the application for the portability
predicates. Such functionality can often be mapped efficiently to
the target dialect. Contrary, if code was written for dialect
X, the defined semantics are those of dialect X. Emulating all
extreme cases and full error handling compatibility may be tedious
and result in a much slower implementation that needed. Take for
example call_cleanup/2. The SICStus definition is fundamentally
different from the SWI definition, but 99% of the applications just
want to make calls like below to guarantee _S_t_r_e_a_m_I_n is closed, even
if process/1 misbehaves.
____________________________________________________________________| |
||________call_cleanup(process(StreamIn),_close(In))________________ ||
o As a drawback, the code becomes full of _m_y___c_a_l_l___c_l_e_a_n_u_p, etc. and
every potential portability conflict needs to be abstracted. It
is hard for people who have to maintain such code later to grasp
the exact semantics of the _m_y___* predicates and applications that
combine multiple libraries using this compatibility approach are
likely to encounter conflicts between the portability layers. A
good start is not to use _m_y___*, but a prefix derived from the
library or application name or names that explain the intended
semantics more precisely.
o Another problem is that most code is initially not written with
portability in mind. Instead, ports are requested by users or
arise from the desire to switch Prolog dialect. Typically, we want
to achieve compatibility with the new Prolog dialect with minimal
changes, often keeping compatibility with the original dialect(s).
This problem is well known from the C/Unix world and we advice
anyone to study the philosophy of GNU autoconf, from which we will
illustrate some highlights below.
The GNU autoconf suite, known to most people as configure, was an
answer to the frustrating life of Unix/C programmers when Unix dialects
were about as abundant and poorly standardised as Prolog dialects
today. Writing a portable C program can only be achieved using cpp,
the C preprocessor. The C preprocessor performs two tasks: macro
expansion and conditional compilation. Prolog realises macro expansion
through term_expansion/2 and goal_expansion/2. Conditional compilation
is achieved using :- if(Condition) as explained in section 4.3.1.1.
The situation appears similar.
The important lesson learned from GNU autoconf is that the _l_a_s_t resort
for conditional compilation to achieve portability is to switch on the
platform or dialect. Instead, GNU autoconf allows you to write tests
for specific properties of the platform. Most of these are whether
or not some function or file is available. Then there are some
standard tests for difficult-to-write-portable situations and finally
there is a framework that allows you to write arbitrary C programs
and check whether they can be compiled and/or whether they show the
intended behaviour. Using a separate configure program is needed in
C, as you cannot perform C compilation step or run C programs from
the C preprocessor. In most Prolog environments we do not need this
distinction as the compiler is integrated into the runtime environment
and Prolog has excelent reflexion capabilities.
We must learn from the distinction to test for features instead of
platform (dialect), as this makes the platform specific code robust for
future changes of the dialect. Suppose we need compare/3 as defined in
this manual. The compare/3 predicate is not part of the ISO standard,
but many systems support it and it is not unlikely it will become
ISO standard or the intended dialect will start supporting it. GNU
autoconf strongly advises to test for the availability:
________________________________________________________________________| |
|:- if(\+current_predicate(_, compare(_,_,_))). |
|compare(<, Term1, Term2) :- |
| Term1 @< Term2, !. |
|compare(>, Term1, Term2) :- |
| Term1 @> Term2, !. |
|compare(=, Term1, Term2) :- |
| Term1 == Term2. |
|:-|endif.______________________________________________________________ | |
This code is mmuucchh more robust against changes to the intended dialect
and, possible at least as important, will provide compatibility with
dialects you didn't even consider porting to right now.
In a more challenging case, the target Prolog has compare/3, but the
semantics are different. What to do? One option is to write a
my_compare/3 and change all occurrences in the code. Alternatively you
can rename calls using goal_expansion/2 like below. This construct
will not only deal with Prolog dialects lacking compare as well as
those that only implement it for numeric comparison or have changed
the argument order. Of course, writing rock-solid code would require
a complete test-suite, but this example will probably cover all
Prolog dialects that allow for conditional compilation, have core ISO
facilities and provide goal_expansion/2, the things we claim a Prolog
dialect should have to start writing portable code for it.
________________________________________________________________________| |
|:- if(\+catch(compare(<,a,b), _, fail)). |
|compare_standard_order(<, Term1, Term2) :- |
| Term1 @< Term2, !. |
|compare_standard_order(>, Term1, Term2) :- |
| Term1 @> Term2, !. |
|compare_standard_order(=, Term1, Term2) :- |
| Term1 == Term2. |
| |
|goal_expansion(compare(Order, Term1, Term2), |
| compare_standard_order(Order, Term1, Term2)). |
|:-|endif.______________________________________________________________ | |
CChhaapptteerr 1144.. GGLLOOSSSSAARRYY OOFF TTEERRMMSS
aannoonnyymmoouuss [[vvaarriiaabbllee]]
The variable _ is called the _a_n_o_n_y_m_o_u_s variable. Multiple
occurrences of _ in a single _t_e_r_m are not _s_h_a_r_e_d.
aarrgguummeennttss
Arguments are _t_e_r_m_s that appear in a _c_o_m_p_o_u_n_d _t_e_r_m. _A_1 and _a_2 are
the first and second argument of the term myterm(_A_1_, _a_2).
aarriittyy
Argument count (is number of arguments) of a _c_o_m_p_o_u_n_d _t_e_r_m.
aasssseerrtt
Add a _c_l_a_u_s_e to a _p_r_e_d_i_c_a_t_e. Clauses can be added at either end of
the clause-list of a _p_r_e_d_i_c_a_t_e. See assert/1 and assertz/1.
aattoomm
Textual constant. Used as name for _c_o_m_p_o_u_n_d terms, to represent
constants or text.
bbaacckkttrraacckkiinngg
Searching process used by Prolog. If a predicate offers multiple
_c_l_a_u_s_e_s to solve a _g_o_a_l, they are tried one-by-one until one
_s_u_c_c_e_e_d_s. If a subsequent part of the proof is not satisfied
with the resulting _v_a_r_i_a_b_l_e _b_i_n_d_i_n_g, it may ask for an alternative
_s_o_l_u_t_i_o_n (= _b_i_n_d_i_n_g of the _v_a_r_i_a_b_l_e_s), causing Prolog to reject the
previously chosen _c_l_a_u_s_e and try the next one.
bbiinnddiinngg [[ooff aa vvaarriiaabbllee]]
Current value of the _v_a_r_i_a_b_l_e. See also _b_a_c_k_t_r_a_c_k_i_n_g and _q_u_e_r_y.
bbuuiilltt--iinn [[pprreeddiiccaattee]]
Predicate that is part of the Prolog system. Built-in predicates
cannot be redefined by the user, unless this is overruled using
redefine_system_predicate/1.
bbooddyy
Part of a _c_l_a_u_s_e behind the _n_e_c_k operator (:-).
ccllaauussee
`Sentence' of a Prolog program. A _c_l_a_u_s_e consists of a _h_e_a_d and
_b_o_d_y separated by the _n_e_c_k operator (:-) or it is a _f_a_c_t. For
example:
____________________________________________________________________| |
| parent(X) :- |
||________father(X,__)._____________________________________________ ||
Expressed ``X is a parent if X is a father of someone''. See also
_v_a_r_i_a_b_l_e and _p_r_e_d_i_c_a_t_e.
ccoommppiillee
Process where a Prolog _p_r_o_g_r_a_m is translated to a sequence of
instructions. See also _i_n_t_e_r_p_r_e_t_e_d. SWI-Prolog always compiles
your program before executing it.
ccoommppoouunndd [[tteerrmm]]
Also called _s_t_r_u_c_t_u_r_e. It consists of a name followed by _N
_a_r_g_u_m_e_n_t_s, each of which are _t_e_r_m_s. _N is called the _a_r_i_t_y of the
term.
ccoonntteexxtt mmoodduullee
If a _t_e_r_m is referring to a _p_r_e_d_i_c_a_t_e in a _m_o_d_u_l_e, the _c_o_n_t_e_x_t
_m_o_d_u_l_e is used to find the target module. The context module of a
_g_o_a_l is the module in which the _p_r_e_d_i_c_a_t_e is defined, unless this
_p_r_e_d_i_c_a_t_e is _m_o_d_u_l_e _t_r_a_n_s_p_a_r_e_n_t, in which case the _c_o_n_t_e_x_t _m_o_d_u_l_e
is inherited from the parent _g_o_a_l. See also module_transparent/1
and _m_e_t_a_-_p_r_e_d_i_c_a_t_e.
ddyynnaammiicc [[pprreeddiiccaattee]]
A _d_y_n_a_m_i_c predicate is a predicate to which _c_l_a_u_s_e_s may be _a_s_s_e_r_ted
and from which _c_l_a_u_s_e_s may be _r_e_t_r_a_c_ted while the program is
running. See also _u_p_d_a_t_e _v_i_e_w.
eexxppoorrtteedd [[pprreeddiiccaattee]]
A _p_r_e_d_i_c_a_t_e is said to be _e_x_p_o_r_t_e_d from a _m_o_d_u_l_e if it appears
in the _p_u_b_l_i_c _l_i_s_t. This implies that the predicate can be
_i_m_p_o_r_t_e_d into another module to make it visible there. See also
use_module/[1,2].
ffaacctt
_C_l_a_u_s_e without a _b_o_d_y. This is called a fact because interpreted
as logic, there is no condition to be satisfied. The example below
states john is a person.
____________________________________________________________________| |
||person(john)._____________________________________________________ ||
ffaaiill
A _g_o_a_l is said to haved failed if it could not be _p_r_o_v_e_n.
ffllooaatt
Computers crippled representation of a real number. Represented as
`IEEE double'.
ffoorreeiiggnn
Computer code expressed in other languages than Prolog. SWI-Prolog
can only cooperate directly with the C and C++ computer languages.
ffuunnccttoorr
Combination of name and _a_r_i_t_y of a _c_o_m_p_o_u_n_d term. The term foo(_a_,
_b_, _c) is said to be a term belonging to the functor foo/3. foo/0
is used to refer to the _a_t_o_m foo.
ggooaall
Question stated to the Prolog engine. A _g_o_a_l is either an _a_t_o_m or
a _c_o_m_p_o_u_n_d term. A _g_o_a_l succeeds, in which case the _v_a_r_i_a_b_l_e_s in
the _c_o_m_p_o_u_n_d terms have a _b_i_n_d_i_n_g or _f_a_i_l_s if Prolog fails to prove
the _g_o_a_l.
hhaasshhiinngg
_I_n_d_e_x_i_n_g technique used for quick lookup.
hheeaadd
Part of a _c_l_a_u_s_e before the _n_e_c_k instruction. This is an atom or
_c_o_m_p_o_u_n_d term.
iimmppoorrtteedd [[pprreeddiiccaattee]]
A _p_r_e_d_i_c_a_t_e is said to be _i_m_p_o_r_t_e_d into a _m_o_d_u_l_e if it is defined
in another _m_o_d_u_l_e and made available in this _m_o_d_u_l_e. See also
chapter 5.
iinnddeexxiinngg
Indexing is a technique used to quickly select candidate _c_l_a_u_s_e_s
of a _p_r_e_d_i_c_a_t_e for a specific _g_o_a_l. In most Prolog systems,
including SWI-Prolog, indexing is done on the first _a_r_g_u_m_e_n_t of
the _h_e_a_d. If this argument is instantiated to an _a_t_o_m, _i_n_t_e_g_e_r,
_f_l_o_a_t or _c_o_m_p_o_u_n_d term with _f_u_n_c_t_o_r, _h_a_s_h_i_n_g is used quickly select
all _c_l_a_u_s_e_s of which the first argument may _u_n_i_f_y with the first
argument of the _g_o_a_l.
iinntteeggeerr
Whole number. On all implementations of SWI-Prolog integers are at
least 64-bit signed values. When linked to the GNU GMP library,
integer arithmetic is unbounded. See also current_prolog_flag/2,
flags bounded, max_integer and min_integer.
iinntteerrpprreetteedd
As opposed to _c_o_m_p_i_l_e_d, interpreted means the Prolog system
attempts to prove a _g_o_a_l by directly reading the _c_l_a_u_s_e_s rather
than executing instructions from an (abstract) instruction set that
is not or only indirectly related to Prolog.
mmeettaa--pprreeddiiccaattee
A _p_r_e_d_i_c_a_t_e that reasons about other _p_r_e_d_i_c_a_t_e_s, either by calling
them, (re)defining them or querying _p_r_o_p_e_r_t_i_e_s.
mmoodduullee
Collection of predicates. Each module defines a name-space for
predicates. _b_u_i_l_t_-_i_n predicates are accessible from all modules.
Predicates can be published (_e_x_p_o_r_t_e_d) and _i_m_p_o_r_t_e_d to make their
definition available to other modules.
mmoodduullee ttrraannssppaarreenntt [[pprreeddiiccaattee]]
A _p_r_e_d_i_c_a_t_e that does not change the _c_o_n_t_e_x_t _m_o_d_u_l_e. Sometimes
also called a _m_e_t_a_-_p_r_e_d_i_c_a_t_e.
mmuullttiiffiillee [[pprreeddiiccaattee]]
Predicate for which the definition is distributed over multiple
source-files. See multifile/1.
nneecckk
Operator (:-) separating _h_e_a_d from _b_o_d_y in a _c_l_a_u_s_e.
ooppeerraattoorr
Symbol (_a_t_o_m) that may be placed before its _o_p_e_r_a_n_d (prefix), after
its _o_p_e_r_a_n_d (postfix) or between its two _o_p_e_r_a_n_d_s (infix).
In Prolog, the expression a+b is exactly the same as the canonical
term +(a,b).
ooppeerraanndd
_A_r_g_u_m_e_n_t of an _o_p_e_r_a_t_o_r.
pprreecceeddeennccee
The _p_r_i_o_r_i_t_y of an _o_p_e_r_a_t_o_r. Operator precedence is used to
interpret a+b*c as +(a, *(b,c)).
pprreeddiiccaattee
Collection of _c_l_a_u_s_e_s with the same _f_u_n_c_t_o_r (name/_a_r_i_t_y). If a
_g_o_a_l is proved, the system looks for a _p_r_e_d_i_c_a_t_e with the same
functor, then uses _i_n_d_e_x_i_n_g to select candidate _c_l_a_u_s_e_s and then
tries these _c_l_a_u_s_e_s one-by-one. See also _b_a_c_k_t_r_a_c_k_i_n_g.
pprreeddiiccaattee iinnddiiccaattoorr
Term of the form Name/Arity (traditional) or Name//Arity (ISO DCG
proposal) where Name is an atom an Arity a non-negative integer.
It acts as an _i_n_d_i_c_a_t_o_r (or reference) to a predicate or _D_C_G rule.
pprriioorriittyy
In the context of _o_p_e_r_a_t_o_r_s a synonym for _p_r_e_c_e_d_e_n_c_e.
pprrooggrraamm
Collection of _p_r_e_d_i_c_a_t_e_s.
pprrooppeerrttyy
Attribute of an object. SWI-Prolog defines various _*___p_r_o_p_e_r_t_y
predicates to query the status of predicates, clauses. etc.
pprroovvee
Process where Prolog attempts to prove a _q_u_e_r_y using the available
_p_r_e_d_i_c_a_t_e_s.
ppuubblliicc lliisstt
List of _p_r_e_d_i_c_a_t_e_s exported from a _m_o_d_u_l_e.
qquueerryy
See _g_o_a_l.
rreettrraacctt
Remove a _c_l_a_u_s_e from a _p_r_e_d_i_c_a_t_e. See also _d_y_n_a_m_i_c, _u_p_d_a_t_e _v_i_e_w
and _a_s_s_e_r_t.
sshhaarreedd
Two _v_a_r_i_a_b_l_e_s are called _s_h_a_r_e_d after they are _u_n_i_f_i_e_d. This
implies if either of them is _b_o_u_n_d, the other is bound to the same
value:
____________________________________________________________________| |
| ?- A = B, A = a. |
| |
| A = a, |
||B_=_a_____________________________________________________________ ||
ssiinngglleettoonn [[vvaarriiaabbllee]]
_V_a_r_i_a_b_l_e appearing only one time in a _c_l_a_u_s_e. SWI-Prolog normally
warns for this to avoid you making spelling mistakes. If a
variable appears on purpose only once in a clause, write it as
_ (see _a_n_o_n_y_m_o_u_s). Rules for naming a variable and avoiding a
warning are given in section 2.15.1.5.
ssoolluuttiioonn
_B_i_n_d_i_n_g_s resulting from a successfully _p_r_o_v_en _g_o_a_l.
ssttrruuccttuurree
Synonym for _c_o_m_p_o_u_n_d term.
ssttrriinngg
Used for the following representations of text: a packed array
(see section 4.22), SWI-Prolog specific), a list of character codes
or a list of one-character _a_t_o_m_s.
ssuucccceeeedd
A _g_o_a_l is said to have _s_u_c_c_e_e_d_e_d if it has been _p_r_o_v_e_n.
tteerrmm
Value in Prolog. A _t_e_r_m is either a _v_a_r_i_a_b_l_e, _a_t_o_m, integer, float
or _c_o_m_p_o_u_n_d term. In addition, SWI-Prolog also defines the type
_s_t_r_i_n_g
ttrraannssppaarreenntt
See _m_o_d_u_l_e _t_r_a_n_s_p_a_r_e_n_t.
uunniiffyy
Prolog process to make two terms equal by assigning variables in
one term to values at the corresponding location of the other term.
For example:
____________________________________________________________________| |
| ?- foo(a, B) = foo(A, b). |
| |
| A = a, |
||B_=_b_____________________________________________________________ ||
Unlike assignment (which does not exist in Prolog), unification is
not directed.
uuppddaattee vviieeww
How Prolog behaves when a _d_y_n_a_m_i_c _p_r_e_d_i_c_a_t_e is changed while it is
running. There are two models. In most older Prolog systems the
change becomes immediately visible to the _g_o_a_l, in modern systems
including SWI-Prolog, the running _g_o_a_l is not affected. Only new
_g_o_a_l_s `see' the new definition.
vvaarriiaabbllee
A Prolog variable is a value that `is not yet bound'. After
_b_i_n_d_i_n_g a variable, it cannot be modified. _B_a_c_k_t_r_a_c_k_i_n_g to a point
in the execution before the variable was bound will turn it back
into a variable:
____________________________________________________________________| |
| ?- A = b, A = c. |
| No |
| ?- (A = b; true; A = c). |
| A = b ; |
| A = _G283 ; |
| A = c ; |
||No________________________________________________________________ ||
See also _u_n_i_f_y.
CChhaapptteerr 1155.. SSWWII--PPRROOLLOOGG LLIICCEENNSSEE CCOONNDDIITTIIOONNSS AANNDD TTOOOOLLSS
SWI-Prolog licensing aims at a large audience, combining ideas from the
Free Software Foundation and the less principal Open Source Initiative.
The license aims at:
o Make SWI-Prolog itself and its libraries are `As free as possible'.
o Allow for easy integration of contributions. See section 15.2.
o Free software can build on SWI-Prolog without limitations.
o Non-free (open or proprietary) software can be produced using
SWI-Prolog, although contributed pure GPL-ed components cannot be
used.
To achieve this, different parts of the system have different licenses.
SWI-Prolog programs consists of a mixture of `native' code (source
compiled to machine instructions) and `virtual machine' code (Prolog
source compiled to SWI-Prolog virtual machine instructions, covering
both compiled SWI-Prolog libraries and your compiled application).
For maximal coherence between free licenses, we start with the two
prime licenses from the Free Software Foundation, the GNU General
Public License (GPL) and the Lesser GNU General Public License (LGPL),
after which we add a proven (used by the GNU-C compiler runtime library
as well as the GNU _C_l_a_s_s_P_a_t_h project) exception to deal with the
specific nature of compiled virtual machine code in a saved state.
1155..11 TThhee SSWWII--PPrroolloogg kkeerrnneell aanndd ffoorreeiiggnn lliibbrraarriieess
The SWI-Prolog kernel and our foreign libraries are distributed under
the LLGGPPLL. A Prolog executable consists of the combination of these
`native' code components and Prolog virtual machine code. The
SWI-Prolog swipl-rc utility allows for disassembling and re-assembling
these parts, a process satisfying article 66bb of the LGPL.
Under the LGPL SWI-Prolog can be linked to code distributed under
arbitrary licenses, provided a number of requirements are fullfilled.
The most important requirement is that, if an application replies on
a _m_o_d_i_f_i_e_d version of SWI-Prolog, the modified sources must be made
available.
1155..11..11 TThhee SSWWII--PPrroolloogg PPrroolloogg lliibbrraarriieess
Lacking a satisfactory technical solution to handle article 66 of the
LGPL, this license cannot be used for the Prolog source code that is
part of the SWI-Prolog system (both libraries and kernel code). This
situation is comparable to libgcc, the runtime library used with the
GNU C-compiler. Therefore, we use the same proven license terms as
this library. The libgcc license is the with a special exception.
Below we rephrased this exception adjusted to our needs:
_A_s _a _s_p_e_c_i_a_l _e_x_c_e_p_t_i_o_n_, _i_f _y_o_u _l_i_n_k _t_h_i_s _l_i_b_r_a_r_y _w_i_t_h _o_t_h_e_r
_f_i_l_e_s_, _c_o_m_p_i_l_e_d _w_i_t_h _a _F_r_e_e _S_o_f_t_w_a_r_e _c_o_m_p_i_l_e_r_, _t_o _p_r_o_d_u_c_e
_a_n _e_x_e_c_u_t_a_b_l_e_, _t_h_i_s _l_i_b_r_a_r_y _d_o_e_s _n_o_t _b_y _i_t_s_e_l_f _c_a_u_s_e _t_h_e
_r_e_s_u_l_t_i_n_g _e_x_e_c_u_t_a_b_l_e _t_o _b_e _c_o_v_e_r_e_d _b_y _t_h_e _G_N_U _G_e_n_e_r_a_l _P_u_b_l_i_c
_L_i_c_e_n_s_e_. _T_h_i_s _e_x_c_e_p_t_i_o_n _d_o_e_s _n_o_t _h_o_w_e_v_e_r _i_n_v_a_l_i_d_a_t_e _a_n_y _o_t_h_e_r
_r_e_a_s_o_n_s _w_h_y _t_h_e _e_x_e_c_u_t_a_b_l_e _f_i_l_e _m_i_g_h_t _b_e _c_o_v_e_r_e_d _b_y _t_h_e _G_N_U
_G_e_n_e_r_a_l _P_u_b_l_i_c _L_i_c_e_n_s_e_.
1155..22 CCoonnttrriibbuuttiinngg ttoo tthhee SSWWII--PPrroolloogg pprroojjeecctt
To achieve maximal coherence using SWI-Prolog for Free and Non-Free
software we advice the use of the LGPL for contributed foreign code
and the use of the GPL with SWI-Prolog exception for Prolog code for
contributed modules.
As a rule of thumb it is advised to use the above licenses whenever
possible and only use a strict GPL compliant license only if the module
contains other code under strict GPL compliant licenses.
1155..33 SSooffttwwaarree ssuuppppoorrtt ttoo kkeeeepp ttrraacckk ooff lliicceennssee ccoonnddiittiioonnss
Given the above, it is possible that SWI-Prolog packages and extensions
will rely on the GPL. The predicates below allow for registering
license requirements for Prolog files and foreign modules. The
predicate eval_license/0 reports which components from the currenly
configured system are distributed under copy-left and open source
enforcing licenses (the GPL) and therefore must be replaced before
distributing linked applications under non-free license conditions.
eevvaall__lliicceennssee
Evaluate the license conditions of all loaded components. If the
system contains one or more components that are licenced under
GPL-like restrictions the system indicates this program may only
be distributed under the GPL license as well as which components
prohibit the use of other license conditions.
lliicceennssee((_+_L_i_c_e_n_s_e_I_d_, _+_C_o_m_p_o_n_e_n_t))
Register the fact that _C_o_m_p_o_n_e_n_t is distributed under a license
identified by _L_i_c_e_n_s_e_I_d. The most important _L_i_c_e_n_s_e_I_d's are:
sswwiippll
Indicates this module is distributed under the GNU General
Public License (GPL) with the SWI-Prolog exception:
_A_s _a _s_p_e_c_i_a_l _e_x_c_e_p_t_i_o_n_, _i_f _y_o_u _l_i_n_k _t_h_i_s _l_i_b_r_a_r_y _w_i_t_h
_o_t_h_e_r _f_i_l_e_s_, _c_o_m_p_i_l_e_d _w_i_t_h _S_W_I_-_P_r_o_l_o_g_, _t_o _p_r_o_d_u_c_e _a_n
_e_x_e_c_u_t_a_b_l_e_, _t_h_i_s _l_i_b_r_a_r_y _d_o_e_s _n_o_t _b_y _i_t_s_e_l_f _c_a_u_s_e _t_h_e
_r_e_s_u_l_t_i_n_g _e_x_e_c_u_t_a_b_l_e _t_o _b_e _c_o_v_e_r_e_d _b_y _t_h_e _G_N_U _G_e_n_e_r_a_l
_P_u_b_l_i_c _L_i_c_e_n_s_e_. _T_h_i_s _e_x_c_e_p_t_i_o_n _d_o_e_s _n_o_t _h_o_w_e_v_e_r
_i_n_v_a_l_i_d_a_t_e _a_n_y _o_t_h_e_r _r_e_a_s_o_n_s _w_h_y _t_h_e _e_x_e_c_u_t_a_b_l_e _f_i_l_e
_m_i_g_h_t _b_e _c_o_v_e_r_e_d _b_y _t_h_e _G_N_U _G_e_n_e_r_a_l _P_u_b_l_i_c _L_i_c_e_n_s_e_.
This should be the default for software contributed to the
SWI-Prolog project as it allows the community to prosper
both in the free and non-free world. Still, people using
SWI-Prolog to create non-free applications must contribute
sources to improvements they make to the community.
llggppll
This is the default license for foreign-libraries linked with
SWI-Prolog. Use PL_license() to register the condition from
foreign code.
ggppll
Indicates this module is strictly Free Software, which implies
it cannot be used together with any module that is
incompatible with the GPL. Please only use these conditions
when forced by other code used in the component.
Other licenses known to the system are guile, gnu_ada, x11, expat,
sml, public_domain, cryptix, bsd, zlib, constlgpl_compatible and
gpl_compatible. New licenses can be defined by adding clauses
for the multifile predicate license:license/3. Below is an
example. The second argument is either gpl or lgpl to indicate
compatibility with these licenses. Other values cause the license
to interpreted as _p_r_o_p_r_i_e_t_a_r_y. Proprietary licenses are reported
by eval_license/0. See the file boot/license.pl for details.
____________________________________________________________________| |
| :- multifile license:license/3. |
| |
| license:license(mylicense, lgpl, |
| [ comment('My personal license'), |
| url('http://www.mine.org/license.html') |
| ]). |
| |
||:-_license(mylicense).____________________________________________ ||
lliicceennssee((_+_L_i_c_e_n_s_e_I_d))
Intented as a directive in Prolog source files. It takes the
current filename and calls license/2.
void PPLL__lliicceennssee(_c_o_n_s_t _c_h_a_r _*_L_i_c_e_n_s_e_I_d_, _c_o_n_s_t _c_h_a_r _*_C_o_m_p_o_n_e_n_t)
Intended for the install() procedure of foreign libraries. This
call can be made _b_e_f_o_r_e PL_initialise().
1155..44 LLiicceennssee ccoonnddiittiioonnss iinnhheerriitteedd ffrroomm uusseedd ccooddee
1155..44..11 CCrryyppttooggrraapphhiicc rroouuttiinneess
Cryptographic routines are used in variant_sha1/2 and crypt. These
routines are provided under the following conditions.
Copyright (c) 2002, Dr Brian Gladman, Worcester, UK. All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
CChhaapptteerr 1166.. SSUUMMMMAARRYY
1166..11 PPrreeddiiccaatteess
The predicate summary is used by the Prolog predicate apropos/1 to
suggest predicates from a keyword.
!/0 Cut (discard choicepoints)
,/2 Conjunction of goals
->/2 If-then-else
*->/2 Soft-cut
./2 Consult. Also list constructor
;/2 Disjunction of goals. Same as |/2
</2 Arithmetic smaller
=/2 Unification
=../2 ``Univ.'' Term to list conversion
=:=/2 Arithmetic equal
=</2 Arithmetic smaller or equal
==/2 Identical
=@=/2 Structural identical
=\=/2 Arithmetic not equal
>/2 Arithmetic larger
>=/2 Arithmetic larger or equal
?=/2 Test of terms can be compared now
@</2 Standard order smaller
@=</2 Standard order smaller or equal
@>/2 Standard order larger
@>=/2 Standard order larger or equal
\+/1 Negation by failure. Same as not/1
\=/2 Not unifiable
\==/2 Not identical
\=@=/2 Not structural identical
^/2 Existential quantification (bagof/3, setof/3)
|/2 Disjunction of goals. Same as ;/2
abolish/1 Remove predicate definition from the database
abolish/2 Remove predicate definition from the database
abort/0 Abort execution, return to top level
absolute_file_name/2 Get absolute path name
absolute_file_name/3 Get absolute path name with options
access_file/2 Check access permissions of a file
acyclic_term/1 Test term for cycles
add_import_module/3 Add module to the auto-import list
add_nb_set/2 Add term to a non-backtrackable set
add_nb_set/3 Add term to a non-backtrackable set
append/1 Append to a file
apply/2 Call goal with additional arguments
apropos/1 online_help Search manual
arg/3 Access argument of a term
arithmetic_function/1 Register an evaluable function
assoc_to_list/2 Convert association tree to list
assert/1 Add a clause to the database
assert/2 Add a clause to the database, give reference
asserta/1 Add a clause to the database (first)
asserta/2 Add a clause to the database (first)
assertion/1 Make assertions about your program
assertz/1 Add a clause to the database (last)
assertz/2 Add a clause to the database (last)
attach_console/0 Attach I/O console to thread
attribute_goals/3 Project attributes to goals
attr_unify_hook/2 Attributed variable unification hook
attr_portray_hook/2 Attributed variable print hook
attvar/1 Type test for attributed variable
at_end_of_stream/0 Test for end of file on input
at_end_of_stream/1 Test for end of file on stream
at_halt/1 Register goal to run at halt/1
atom/1 Type check for an atom
atom_chars/2 Convert between atom and list of characters
atom_codes/2 Convert between atom and list of characters codes
atom_concat/3 Append two atoms
atom_length/2 Determine length of an atom
atom_prefix/2 Test for start of atom
atom_number/2 Convert between atom and number
atom_to_term/3 Convert between atom and term
atomic/1 Type check for primitive
atomic_concat/3 Concatenate two atomic values to an atom
atomic_list_concat/2 Append a list of atoms
atomic_list_concat/3 Append a list of atoms with separator
autoload/0 Autoload all predicates now
b_getval/2 Fetch backtrackable global variable
b_setval/2 Assign backtrackable global variable
bagof/3 Find all solutions to a goal
between/3 Integer range checking/generating
blob/2 Type check for a blob
break/0 Start interactive top-level
byte_count/2 Byte-position in a stream
call/1 Call a goal
call/[2..] Call with additional arguments
call_cleanup/3 Guard a goal with a cleaup-handler
call_cleanup/2 Guard a goal with a cleaup-handler
call_residue_vars/2 Find residual attributed variables
call_shared_object_function/2 UNIX: Call C-function in shared (.so) file
call_with_depth_limit/3 Prove goal with bounded depth
callable/1 Test for atom or compound term
catch/3 Call goal, watching for exceptions
char_code/2 Convert between character and character code
char_conversion/2 Provide mapping of input characters
char_type/2 Classify characters
character_count/2 Get character index on a stream
chdir/1 Compatibility: change working directory
chr_constraint/1 CHR Constraint declaration
chr_show_store/1 List suspended CHR constraints
chr_trace/0 Start CHR tracer
chr_type/1 CHR Type declaration
chr_notrace/0 Stop CHR tracer
chr_leash/1 Define CHR leashed ports
chr_option/2 Specify CHR compilation options
clause/2 Get clauses of a predicate
clause/3 Get clauses of a predicate
clause_property/2 Get properties of a clause
close/1 Close stream
close/2 Close stream (forced)
close_dde_conversation/1 Win32: Close DDE channel
close_shared_object/1 UNIX: Close shared library (.so file)
collation_key/2 Sort key for locale dependent ordering
comment_hook/3 (hook) handle comments in sources
compare/3 Compare, using a predicate to determine the order
compile_aux_clauses/1 Compile predicates for goal_expansion/2
compile_predicates/1 Compile dynamic code to static
compiling/0 Is this a compilation run?
compound/1 Test for compound term
code_type/2 Classify a character-code
consult/1 Read (compile) a Prolog source file
context_module/1 Get context module of current goal
convert_time/8 Break time stamp into fields
convert_time/2 Convert time stamp to string
copy_stream_data/2 Copy all data from stream to stream
copy_stream_data/3 Copy n bytes from stream to stream
copy_term/2 Make a copy of a term
copy_term/3 Copy a term and obtain attribute-goals
copy_term_nat/2 Make a copy of a term without attributes
create_prolog_flag/3 Create a new Prolog flag
current_arithmetic_function/1 Examine evaluable functions
current_atom/1 Examine existing atoms
current_blob/2 Examine typed blobs
current_char_conversion/2 Query input character mapping
current_flag/1 Examine existing flags
current_foreign_library/2 shlib Examine loaded shared libraries (.so files)
current_format_predicate/2 Enumerate user-defined format codes
current_functor/2 Examine existing name/arity pairs
current_input/1 Get current input stream
current_key/1 Examine existing database keys
current_module/1 Examine existing modules
current_op/3 Examine current operator declarations
current_output/1 Get the current output stream
current_predicate/1 Examine existing predicates (ISO)
current_predicate/2 Examine existing predicates
current_signal/3 Current software signal mapping
current_stream/3 Examine open streams
cyclic_term/1 Test term for cycles
day_of_the_week/2 Determine ordinal-day from date
date_time_stamp/2 Convert sate structure to time-stamp
date_time_value/3 Extract info from a date structure
dcg_translate_rule/2 Source translation of DCG rules
dde_current_connection/2 Win32: Examine open DDE connections
dde_current_service/2 Win32: Examine DDE services provided
dde_execute/2 Win32: Execute command on DDE server
dde_register_service/2 Win32: Become a DDE server
dde_request/3 Win32: Make a DDE request
dde_poke/3 Win32: POKE operation on DDE server
dde_unregister_service/1 Win32: Terminate a DDE service
debug/0 Test for debugging mode
debug/1 Select topic for debugging
debug/3 Print debugging message on topic
debug_control_hook/1 (hook) Extend spy/1, etc.
debugging/0 Show debugger status
debugging/1 Test where we are debugging topic
del_attr/2 Delete attribute from variable
del_attrs/1 Delete all attributes from variable
delete_directory/1 Remove a folder from the file system
delete_file/1 Remove a file from the file system
delete_import_module/2 Remove module from import list
deterministic/1 Test deterministicy of current clause
dif/2 Constrain two terms to be different
directory_files/2 Get entries of a directory/folder
discontiguous/1 Indicate distributed definition of a predicate
downcase_atom/2 Convert atom to lower-case
duplicate_term/2 Create a copy of a term
dwim_match/2 Atoms match in ``Do What I Mean'' sense
dwim_match/3 Atoms match in ``Do What I Mean'' sense
dwim_predicate/2 Find predicate in ``Do What I Mean'' sense
dynamic/1 Indicate predicate definition may change
edit/0 Edit current script- or associated file
edit/1 Edit a file, predicate, module (extensible)
elif/1 Part of conditional compilation (directive)
else/0 Part of conditional compilation (directive)
empty_assoc/1 Create/test empty association tree
empty_nb_set/1 Test/create an empty non-backtrackable set
encoding/1 Define encoding inside a source file
endif/0 End of conditional compilation (directive)
ensure_loaded/1 Consult a file if that has not yet been done
erase/1 Erase a database record or clause
eval_license/0 Evaluate licenses of loaded modules
exception/3 (hook) Handle runtime exceptions
exists_directory/1 Check existence of directory
exists_file/1 Check existence of file
exists_source/1 Check existence of a Prolog source
expand_answer/2 Expand answer of query
expand_file_name/2 Wildcard expansion of file names
expand_file_search_path/2 Wildcard expansion of file paths
expand_goal/2 Compiler: expand goal in clause-body
expand_query/4 Expanded entered query
expand_term/2 Compiler: expand read term into clause(s)
expects_dialect/1 For which Prolog dialect is this code written?
explain/1 explain Explain argument
explain/2 explain 2nd argument is explanation of first
export/1 Export a predicate from a module
fail/0 Always false
false/0 Always false
current_prolog_flag/2 Get system configuration parameters
file_base_name/2 Get file part of path
file_directory_name/2 Get directory part of path
file_name_extension/3 Add, remove or test file extensions
file_search_path/2 Define path-aliases for locating files
find_chr_constraint/1 Returns a constraint from the store
findall/3 Find all solutions to a goal
findall/4 Difference list version of findall/3
flag/3 Simple global variable system
float/1 Type check for a floating point number
flush_output/0 Output pending characters on current stream
flush_output/1 Output pending characters on specified stream
forall/2 Prove goal for all solutions of another goal
format/1 Formatted output
format/2 Formatted output with arguments
format/3 Formatted output on a stream
format_time/3 C strftime() like date/time formatter
format_time/4 date/time formatter with explicit locale
format_predicate/2 Program format/[1,2]
term_attvars/2 Find attributed variables in a term
term_variables/2 Find unbound variables in a term
term_variables/3 Find unbound variables in a term
freeze/2 Delay execution until variable is bound
frozen/2 Query delayed goals on var
functor/3 Get name and arity of a term or construct a term
garbage_collect/0 Invoke the garbage collector
garbage_collect_atoms/0 Invoke the atom garbage collector
garbage_collect_clauses/0 Invoke clause garbage collector
gen_assoc/3 Enumerate members of association tree
gen_nb_set/2 Generate members of non-backtrackable set
gensym/2 Generate unique atoms from a base
get/1 Read first non-blank character
get/2 Read first non-blank character from a stream
get_assoc/3 Fetch key from association tree
get_assoc/5 Fetch key from association tree
get0/1 Read next character
get0/2 Read next character from a stream
get_attr/3 Fetch named attribute from a variable
get_attrs/2 Fetch all attributes of a variable
get_byte/1 Read next byte (ISO)
get_byte/2 Read next byte from a stream (ISO)
get_char/1 Read next character as an atom (ISO)
get_char/2 Read next character from a stream (ISO)
get_code/1 Read next character (ISO)
get_code/2 Read next character from a stream (ISO)
get_single_char/1 Read next character from the terminal
get_time/1 Get current time
getenv/2 Get shell environment variable
goal_expansion/2 Hook for macro-expanding goals
ground/1 Verify term holds no unbound variables
gdebug/0 Debug using graphical tracer
gspy/1 Spy using graphical tracer
gtrace/0 Trace using graphical tracer
guitracer/0 Install hooks for the graphical debugger
gxref/0 Cross-reference loaded program
halt/0 Exit from Prolog
halt/1 Exit from Prolog with status
hash/1 Index predicate using a hash-table
term_hash/2 Hash-value of ground term
term_hash/4 Hash-value of term with depth limit
help/0 Give help on help
help/1 Give help on predicates and show parts of manual
help_hook/1 (hook) User-hook in the help-system
if/1 Start conditional compilation (directive)
ignore/1 Call the argument, but always succeed
import/1 Import a predicate from a module
import_module/2 Query import modules
in_pce_thread/1 Run goal in XPCE thread
include/1 Include a file with declarations
index/1 Change clause indexing
initialization/1 Initialization directive
initialization/2 Initialization directive
instance/2 Fetch clause or record from reference
integer/1 Type check for integer
interactor/0 Start new thread with console and top-level
is/2 Evaluate arithmetic expression
is_absolute_file_name/1 True if arg defines an absolute path
is_list/1 Type check for a list
is_stream/1 Type check for a stream handle
join_threads/0 Join all terminated threads interactively
keysort/2 Sort, using a key
last/2 Last element of a list
leash/1 Change ports visited by the tracer
length/2 Length of a list
library_directory/1 (hook) Directories holding Prolog libraries
license/1 Define license for current file
license/2 Define license for named module
line_count/2 Line number on stream
line_position/2 Character position in line on stream
list_debug_topics/0 List registered topics for debugging
list_to_assoc/2 Create association tree from list
list_to_set/2 Remove duplicates from a list
listing/0 List program in current module
listing/1 List predicate
load_files/2 Load source files with options
load_foreign_library/1 shlib Load shared library (.so file)
load_foreign_library/2 shlib Load shared library (.so file)
locale_sort/2 Language dependent sort of atoms
make/0 Reconsult all changed source files
make_directory/1 Create a folder on the file system
make_library_index/1 Create autoload file INDEX.pl
make_library_index/2 Create selective autoload file INDEX.pl
map_assoc/2 Map association tree
map_assoc/3 Map association tree
max_assoc/3 Highest key in association tree
memberchk/2 Deterministic member/2
message_hook/3 Intercept print_message/2
message_queue_create/1 Create queue for thread communication
message_queue_create/2 Create queue for thread communication
message_queue_destroy/1 Destroy queue for thread communication
message_queue_property/2 Query message queue properties
message_to_string/2 Translate message-term to string
meta_predicate/1 Quintus compatibility
min_assoc/3 Lowest key in association tree
module/1 Query/set current type-in module
module/2 Declare a module
module_property/2 Find properties of a module
module_transparent/1 Indicate module based meta-predicate
msort/2 Sort, do not remove duplicates
multifile/1 Indicate distributed definition of predicate
mutex_create/1 Create a thread-synchronisation device
mutex_create/2 Create a thread-synchronisation device
mutex_destroy/1 Destroy a mutex
mutex_lock/1 Become owner of a mutex
mutex_property/2 Query mutex properties
mutex_statistics/0 Print statistics on mutex usage
mutex_trylock/1 Become owner of a mutex (non-blocking)
mutex_unlock/1 Release ownership of mutex
mutex_unlock_all/0 Release ownership of all mutexes
name/2 Convert between atom and list of character codes
nb_current/2 Enumerate non-backtrackable global variables
nb_delete/1 Delete a non-backtrackable global variable
nb_getval/2 Fetch non-backtrackable global variable
nb_linkarg/3 Non-backtrackable assignment to term
nb_linkval/2 Assign non-backtrackable global variable
nb_set_to_list/2 Convert non-backtrackable set to list
nb_setarg/3 Non-backtrackable assignment to term
nb_setval/2 Assign non-backtrackable global variable
nl/0 Generate a newline
nl/1 Generate a newline on a stream
nodebug/0 Disable debugging
nodebug/1 Disable debug-topic
noguitracer/0 Disable the graphical debugger
nonvar/1 Type check for bound term
noprofile/1 Hide (meta-) predicate for the profiler
noprotocol/0 Disable logging of user interaction
normalize_space/2 Normalize white space
nospy/1 Remove spy point
nospyall/0 Remove all spy points
not/1 Negation by failure (argument not provable). Same as \+/1
notrace/0 Stop tracing
notrace/1 Do not debug argument goal
nth_clause/3 N-th clause of a predicate
number/1 Type check for integer or float
number_chars/2 Convert between number and one-char atoms
number_codes/2 Convert between number and character codes
numbervars/3 Number unbound variables of a term
numbervars/4 Number unbound variables of a term
on_signal/3 Handle a software signal
once/1 Call a goal deterministically
op/3 Declare an operator
open/3 Open a file (creating a stream)
open/4 Open a file (creating a stream)
open_dde_conversation/3 Win32: Open DDE channel
open_null_stream/1 Open a stream to discard output
open_resource/3 Open a program resource as a stream
open_shared_object/2 UNIX: Open shared library (.so file)
open_shared_object/3 UNIX: Open shared library (.so file)
ord_list_to_assoc/2 Convert ordered list to assoc
parse_time/2 Parse text to a time-stamp
parse_time/3 Parse text to a time-stamp
pce_dispatch/1 Run XPCE GUI in separate thread
pce_call/1 Run goal in XPCE GUI thread
peek_byte/1 Read byte without removing
peek_byte/2 Read byte without removing
peek_char/1 Read character without removing
peek_char/2 Read character without removing
peek_code/1 Read character-code without removing
peek_code/2 Read character-code without removing
phrase/2 Activate grammar-rule set
phrase/3 Activate grammar-rule set (returning rest)
please/3 Query/change environment parameters
plus/3 Logical integer addition
portray/1 (hook) Modify behaviour of print/1
portray_clause/1 Pretty print a clause
portray_clause/2 Pretty print a clause to a stream
predicate_property/2 Query predicate attributes
predsort/3 Sort, using a predicate to determine the order
preprocessor/2 Install a preprocessor before the compiler
print/1 Print a term
print/2 Print a term on a stream
print_message/2 Print message from (exception) term
print_message_lines/3 Print message to stream
profile/1 Obtain execution statistics
profile/3 Obtain execution statistics
profile_count/3 Obtain profile results on a predicate
profiler/2 Obtain/change status of the profiler
prolog/0 Run interactive top-level
prolog_choice_attribute/3 Examine the choice-point stack
prolog_current_frame/1 Reference to goal's environment stack
prolog_edit:locate/2 Locate targets for edit/1
prolog_edit:locate/3 Locate targets for edit/1
prolog_edit:edit_source/1 Call editor for edit/1
prolog_edit:edit_command/2 Specify editor activation
prolog_edit:load/0 Load edit/1 extensions
prolog_exception_hook/4 Rewrite exceptions
prolog_file_type/2 Define meaning of file extension
prolog_frame_attribute/3 Obtain information on a goal environment
prolog_ide/1 Program access to the development environment
prolog_list_goal/1 (hook) Intercept tracer 'L' command
prolog_load_context/2 Context information for directives
prolog_load_file/2 (hook) Program load_files/2
prolog_skip_level/2 Indicate deepest recursion to trace
prolog_skip_frame/1 Perform `skip' on a frame
prolog_stack_property/2 Query properties of the stacks
prolog_to_os_filename/2 Convert between Prolog and OS filenames
prolog_trace_interception/4 user Intercept the Prolog tracer
prompt1/1 Change prompt for 1 line
prompt/2 Change the prompt used by read/1
protocol/1 Make a log of the user interaction
protocola/1 Append log of the user interaction to file
protocolling/1 On what file is user interaction logged
public/1 Declaration that a predicate may be called
put/1 Write a character
put/2 Write a character on a stream
put_assoc/4 Add Key-Value to association tree
put_attr/3 Put attribute on a variable
put_attrs/2 Set/replace all attributes on a variable
put_byte/1 Write a byte
put_byte/2 Write a byte on a stream
put_char/1 Write a character
put_char/2 Write a character on a stream
put_code/1 Write a character-code
put_code/2 Write a character-code on a stream
qcompile/1 Compile source to Quick Load File
qcompile/2 Compile source to Quick Load File
qsave_program/1 Create runtime application
qsave_program/2 Create runtime application
rational/1 Type check for a rational number
rational/3 Decompose a rational
read/1 Read Prolog term
read/2 Read Prolog term from stream
read_clause/1 Read clause
read_clause/2 Read clause from stream
read_history/6 Read using history substitution
read_link/3 Read a symbolic link
read_pending_input/3 Fetch buffered input from a stream
read_term/2 Read term with options
read_term/3 Read term with options from stream
recorda/2 Record term in the database (first)
recorda/3 Record term in the database (first)
recorded/2 Obtain term from the database
recorded/3 Obtain term from the database
recordz/2 Record term in the database (last)
recordz/3 Record term in the database (last)
redefine_system_predicate/1 Abolish system definition
reexport/1 Load files and re-export the imported predicates
reexport/2 Load predicates from a file and re-export it
reload_foreign_libraries/0 Reload DLLs/shared objects
reload_library_index/0 Force reloading the autoload index
rename_file/2 Change name of file
repeat/0 Succeed, leaving infinite backtrack points
require/1 This file requires these predicates
reset_gensym/1 Reset a gensym key
reset_gensym/0 Reset all gensym keys
reset_profiler/0 Clear statistics obtained by the profiler
resource/3 Declare a program resource
retract/1 Remove clause from the database
retractall/1 Remove unifying clauses from the database
same_file/2 Succeeds if arguments refer to same file
same_term/2 Test terms to be at the same address
see/1 Change the current input stream
seeing/1 Query the current input stream
seek/4 Modify the current position in a stream
seen/0 Close the current input stream
set_base_module/1 Declare the associated global module
set_end_of_stream/1 Set physical end of an open file
set_input/1 Set current input stream from a stream
set_output/1 Set current output stream from a stream
set_prolog_IO/3 Prepare streams for interactive session
set_prolog_flag/2 Define a system feature
set_prolog_stack/2 Modify stack characteristics
set_random/1 Control random number generation
set_stream/2 Set stream attribute
set_stream_position/2 Seek stream to position
set_tty/2 Set `tty' stream
setup_call_cleanup/3 Undo side-effects safely
setup_call_catcher_cleanup/4 Undo side-effects safely
setarg/3 Destructive assignment on term
setenv/2 Set shell environment variable
setlocale/3 Set/query C-library regional information
setof/3 Find all unique solutions to a goal
shell/0 Execute interactive subshell
shell/1 Execute OS command
shell/2 Execute OS command
show_profile/1 Show results of the profiler
show_profile/2 Show results of the profiler
size_file/2 Get size of a file in characters
size_nb_set/2 Determine size of non-backtrackable set
skip/1 Skip to character in current input
skip/2 Skip to character on stream
rl_add_history/1 Add line to readline(3) history
rl_read_history/1 Read readline(3) history
rl_read_init_file/1 Read readline(3) init file
rl_write_history/1 Write readline(3) history
sleep/1 Suspend execution for specified time
sort/2 Sort elements in a list
source_exports/2 Check whether source exports a predicate
source_file/1 Examine currently loaded source files
source_file/2 Obtain source file of predicate
source_location/2 Location of last read term
spy/1 Force tracer on specified predicate
stamp_date_time/3 Convert time-stamp to date structure
statistics/0 Show execution statistics
statistics/2 Obtain collected statistics
stream_pair/3 Create/examine a bi-directional stream
stream_position_data/3 Access fields from stream position
stream_property/2 Get stream properties
string/1 Type check for string
string_concat/3 atom_concat/3 for strings
string_length/2 Determine length of a string
string_to_atom/2 Conversion between string and atom
string_to_list/2 Conversion between string and list of character codes
strip_module/3 Extract context module and term
style_check/1 Change level of warnings
sub_atom/5 Take a substring from an atom
sub_string/5 Take a substring from a string
subsumes_term/2 One-sided unification test
succ/2 Logical integer successor relation
swritef/2 Formatted write on a string
swritef/3 Formatted write on a string
tab/1 Output number of spaces
tab/2 Output number of spaces on a stream
tdebug/0 Switch all threads into debug mode
tdebug/1 Switch a thread into debug mode
tell/1 Change current output stream
telling/1 Query current output stream
term_expansion/2 (hook) Convert term before compilation
term_subsumer/3 Most specific generalization of two terms
term_to_atom/2 Convert between term and atom
thread_at_exit/1 Register goal to be called at exit
thread_create/3 Create a new Prolog task
thread_detach/1 Make thread cleanup after completion
thread_exit/1 Terminate Prolog task with value
thread_get_message/1 Wait for message
thread_get_message/2 Wait for message in a queue
thread_initialization/1 Run action at start of thread
thread_join/2 Wait for Prolog task-completion
thread_local/1 Declare thread-specific clauses for a predicate
thread_peek_message/1 Test for message
thread_peek_message/2 Test for message in a queue
thread_property/2 Examine Prolog threads
thread_self/1 Get identifier of current thread
thread_send_message/2 Send message to another thread
thread_setconcurrency/2 Number of active threads
thread_signal/2 Execute goal in another thread
thread_statistics/3 Get statistics of another thread
threads/0 List running threads
throw/1 Raise an exception (see catch/3)
time/1 Determine time needed to execute goal
time_file/2 Get last modification time of file
tmp_file/2 Create a temporary filename
tmp_file_stream/3 Create a temporary file and open it
tnodebug/0 Switch off debug mode in all threads
tnodebug/1 Switch off debug mode in a thread
told/0 Close current output
tprofile/1 Profile a thread for some period
trace/0 Start the tracer
trace/1 Set trace-point on predicate
trace/2 Set/Clear trace-point on ports
tracing/0 Query status of the tracer
trim_stacks/0 Release unused memory resources
true/0 Succeed
tspy/1 Set spy point and enable debugging in all threads
tspy/2 Set spy point and enable debugging in a thread
tty_get_capability/3 Get terminal parameter
tty_goto/2 Goto position on screen
tty_put/2 Write control string to terminal
tty_size/2 Get row/column size of the terminal
ttyflush/0 Flush output on terminal
unify_with_occurs_check/2 Logically sound unification
unifiable/3 Determining binding required for unification
unix/1 OS interaction
unknown/2 Trap undefined predicates
unload_file/1 Unload a source-file
unload_foreign_library/1 shlib Detach shared library (.so file)
unload_foreign_library/2 shlib Detach shared library (.so file)
unsetenv/1 Delete shell environment variable
upcase_atom/2 Convert atom to upper-case
use_foreign_library/1 Load DLL/shared object (directive)
use_foreign_library/2 Load DLL/shared object (directive)
use_module/1 Import a module
use_module/2 Import predicates from a module
var/1 Type check for unbound variable
variant_sha1/2 Term-hash for term-variants
visible/1 Ports that are visible in the tracer
volatile/1 Predicates that are not saved
wait_for_input/3 Wait for input with optional timeout
when/2 Execute goal when condition becomes true
wildcard_match/2 Csh(1) style wildcard match
win_exec/2 Win32: spawn Windows task
win_has_menu/0 Win32: true if console menu is available
win_folder/2 Win32: get special folder by CSIDL
win_insert_menu/2 swipl-win.exe: add menu
win_insert_menu_item/4 swipl-win.exe: add item to menu
win_shell/2 Win32: open document through Shell
win_shell/3 Win32: open document through Shell
win_registry_get_value/3 Win32: get registry value
win_window_pos/1 Win32: change size and position of window
window_title/2 Win32: change title of window
with_mutex/2 Run goal while holding mutex
with_output_to/2 Write to strings and more
working_directory/2 Query/change CWD
write/1 Write term
write/2 Write term to stream
writeln/1 Write term, followed by a newline
write_canonical/1 Write a term with quotes, ignore operators
write_canonical/2 Write a term with quotes, ignore operators on a stream
write_term/2 Write term with options
write_term/3 Write term with options to stream
writef/1 Formatted write
writef/2 Formatted write on stream
writeq/1 Write term, insert quotes
writeq/2 Write term, insert quotes on stream
1166..22 LLiibbrraarryy pprreeddiiccaatteess
1166..22..11 aggregate
aggregate/3 Aggregate bindings in Goal according to Template.
aggregate/4 Aggregate bindings in Goal according to Template.
aggregate_all/3 Aggregate bindings in Goal according to Template.
aggregate_all/4 Aggregate bindings in Goal according to Template.
foreach/2 True if the conjunction of instances of Goal using the bindings from Generator is true.
free_variables/4 In order to handle variables properly, we have to find all the universally quantified variables in the Generator.
1166..22..22 apply
exclude/3 Filter elements for which Goal fails.
include/3 Filter elements for which Goal succeed.
maplist/2 True if Goal can succesfully be applied on all elements of List.
maplist/3 True if Goal can succesfully be applied to all succesive pairs of elements of List1 and List2.
maplist/4 True if Goal can succesfully be applied to all succesive triples of elements of List1..List3.
maplist/5 True if Goal can succesfully be applied to all succesive quadruples of elements of List1..List4.
partition/4 Filter elements of List according to Pred.
partition/5 Filter list according to Pred in three sets.
1166..22..33 assoc
assoc_to_list/2 Translate assoc into a pairs list
assoc_to_keys/2 Translate assoc into a key list
assoc_to_values/2 Translate assoc into a value list
empty_assoc/1 Test/create an empty assoc
gen_assoc/3 Non-deterministic enumeration of assoc
get_assoc/3 Get associated value
get_assoc/5 Get and replace associated value
list_to_assoc/2 Translate pair list to assoc
map_assoc/2 Test assoc values
map_assoc/3 Map assoc values
max_assoc/3 Max key-value of an assoc
min_assoc/3 Min key-value of an assoc
ord_list_to_assoc/3Translate ordered list into an assoc
put_assoc/4 Add association to an assoc
1166..22..44 broadcast
broadcast/1 Send event notification
broadcast_request/1 Request all agents
listen/2 Listen to event notifications
listen/3 Listen to event notifications
unlisten/1 Stop listening to event notifications
unlisten/2 Stop listening to event notifications
unlisten/3 Stop listening to event notifications
listening/3 Who is listening to event notifications?
1166..22..55 charsio
atom_to_chars/2 Convert Atom into a list of character codes.
atom_to_chars/3 Convert Atom into a difference-list of character codes.
format_to_chars/3 Use format/2 to write to a list of character codes.
format_to_chars/3 Use format/2 to write to a list of character codes.
number_to_chars/2 Convert Atom into a list of character codes.
number_to_chars/3 Convert Number into a difference-list of character codes.
open_chars_stream/2 Open Codes as an input stream.
read_from_chars/2 Read Codes into Term.
read_term_from_chars/3Read Codes into Term.
with_output_to_chars/2Run Goal with as once/1.
with_output_to_chars/3Run Goal with as once/1.
with_output_to_chars/4As with_output_to_chars/2, but Stream is unified with the temporary stream.
write_to_chars/2 Codes is a list of character codes produced by write/1 on Term.
write_to_chars/3 Codes is a difference-list of character codes produced by write/1 on Term.
1166..22..66 check
check/0 Program completeness and consistency
list_undefined/0 List undefined predicates
list_autoload/0 List predicates that require autoload
list_redefined/0 List locally redefined predicates
1166..22..77 csv
csv_read_file/2 Read a CSV file into a list of rows.
csv_read_file/3 Read a CSV file into a list of rows.
csv_write_file/2 Write a list of Prolog terms to a CSV file.
csv_write_file/3 Write a list of Prolog terms to a CSV file.
csv/3 Prolog DCG to `read/write' CSV data.
csv/4 Prolog DCG to `read/write' CSV data.
1166..22..88 lists
append/2 Concatenate a list of lists.
append/3 List1AndList2 is the concatination of List1 and List2.
delete/3 Is true when Lis1, with all occurences of Elem deleted results in List2.
flatten/2 Is true it List2 is a non nested version of List1.
intersection/3 True if Set3 unifies with the intersection of Set1 and Set2.
is_set/1 True if Set is a proper list without duplicates.
last/2 Succeeds if `Last' unifies with the last element of `List'.
list_to_set/2 True when Set has the same element as List in the same order.
max_list/2 True if Max is the largest number in List.
member/2 True if Elem is a member of List.
min_list/2 True if Min is the largest number in List.
nextto/3 True of Y follows X in List.
nth0/3 True if Elem is the Index'th element of List.
nth1/3 Is true when Elem is the Index'th element of List.
numlist/3 List is a list [Low, Low+1, ... High].
permutation/2 permutation(Xs, Ys) is true when Xs is a permutation of Ys.
prefix/2 True iff Part is a leading substring of Whole.
reverse/2 Is true when the elements of List2 are in reverse order compared to List1.
select/3 Is true when List1, with Elem removed results in List2.
select/4 Is true when select(X, XList) and select(Y, YList) are true, X and Y appear in the same locations of their respective lists and same_le@
selectchk/3 Semi-deterministic removal of first element in List that unifies Elem.
selectchk/4 Semi-deterministic version of select/4.
subset/2 True if all elements of SubSet belong to Set as well.
subtract/3 Delete all elements from `Set' that occur in `Delete' (a set) and unify the result with `Result'.
sumlist/2 Sum is the result of adding all numbers in List.
union/3 True if Set3 unifies with the union of Set1 and Set2.
1166..22..99 option
merge_options/3 Merge two option lists.
meta_options/3 Perform meta-expansion on options that are module-sensitive.
option/2 Get an option from a OptionList.
option/3 Get an option from a OptionList.
select_option/3 Get and remove option from an option list.
select_option/4 Get and remove option with default value.
1166..22..1100 ordsets
ord_empty/1 Test empty ordered set
list_to_ord_set/2 Create ordered set
ord_add_element/3 Add element to ordered set
ord_del_element/3 Delete element from ordered set
ord_intersect/2 Test non-empty intersection
ord_intersection/3 Compute intersection
ord_disjoint/2 Test empty intersection
ord_subtract/3 Delete set from set
ord_union/3 Union of two ordered sets
ord_union/4 Union and difference of two ordered sets
ord_subset/2 Test subset
ord_memberchk/2 Deterministically test membership
1166..22..1111 prologxref
prolog:called_by/2 (hook) Extend cross-referencer
xref_built_in/1 Examine defined built-ins
xref_called/3 Examine called predicates
xref_clean/1 Remove analysis of source
xref_current_source/1 Examine cross-referenced sources
xref_defined/3 Examine defined predicates
xref_exported/2 Examine exported predicates
xref_module/2 Module defined by source
xref_source/1 Cross-reference analysis of source
1166..22..1122 pairs
group_pairs_by_key/2Group values with the same key.
map_list_to_pairs/3 Create a key-value list by mapping each element of List.
pairs_keys/2 Remove the values from a list of Key-Value pairs.
pairs_keys_values/3 True if Keys holds the keys of Pairs and Values the values.
pairs_values/2 Remove the keys from a list of Key-Value pairs.
transpose_pairs/2 Swap Key-Value to Value-Key and sort the result on Value (the new key) using keysort/2.
1166..22..1133 pio
1166..22..1133..11 pure_input
phrase_from_file/2 Process the content of File using the DCG rule Grammar.
phrase_from_file/3 As phrase_from_file/2, providing additional Options.
stream_to_lazy_list/2Create a lazy list representing the character codes in Stream.
1166..22..1144 readutil
read_line_to_codes/2 Read line from a stream
read_line_to_codes/3 Read line from a stream
read_stream_to_codes/2Read contents of stream
read_stream_to_codes/3Read contents of stream
read_file_to_codes/3 Read contents of file
read_file_to_terms/3 Read contents of file to Prolog terms
1166..22..1155 record
record/1 Define named fields in a term
1166..22..1166 registry
This library is only available on Windows systems.
registry_get_key/2 Get principal value of key
registry_get_key/3 Get associated value of key
registry_set_key/2 Set principal value of key
registry_set_key/3 Set associated value of key
registry_delete_key/1 Remove a key
shell_register_file_type/4Register a file-type
shell_register_dde/6 Register DDE action
shell_register_prolog/1 Register Prolog
1166..22..1177 ugraphs
vertices_edges_to_ugraph/3Create unweighted graph
vertices/2 Find vertices in graph
edges/2 Find edges in graph
add_vertices/3 Add vertices to graph
del_vertices/3 Delete vertices from graph
add_edges/3 Add edges to graph
del_edges/3 Delete edges from graph
transpose/2 Invert the direction of all edges
neighbors/3 Find neighbors of vertice
neighbours/3 Find neighbors of vertice
complement/2 Inverse presense of edges
compose/3
top_sort/2 Sort graph topologically
top_sort/3 Sort graph topologically
transitive_closure/2 Create transitive closure of graph
reachable/3 Find all reachable vertices
ugraph_union/3 Union of two graphs
1166..22..1188 url
file_name_to_url/2 Translate between a filename and a file:// URL.
global_url/3 Translate a possibly relative URL into an absolute one.
http_location/2 Construct or analyze an HTTP location.
is_absolute_url/1 True if URL is an absolute URL.
parse_url/2 Construct or analyse a URL.
parse_url/3 Similar to parse_url/2 for relative URLs.
parse_url_search/2 Construct or analyze an HTTP search specification.
set_url_encoding/2 Query and set the encoding for URLs.
url_iri/2 Convert between a URL, encoding in US-ASCII and an IRI.
www_form_encode/2 En/Decode between native value and application/x-www-form-encoded.
1166..22..1199 www_browser
www_open_url/1 Open a web-page in a browser
1166..22..2200 clp/clpfd
#/\/2 P and Q hold.
#</2 X is less than Y.
#<==/2 Q implies P.
#<==>/2 P and Q are equivalent.
#=/2 X equals Y.
#=</2 X is less than or equal to Y.
#==>/2 P implies Q.
#>/2 X is greater than Y.
#>=/2 X is greater than or equal to Y.
#\/1 The reifiable constraint Q does _not_hold.
#\//2 P or Q holds.
#\=/2 X is not Y.
all_different/1 Vars are pairwise distinct.
all_distinct/1 Like all_different/1, with stronger propagation.
automaton/3 Equivalent to automaton(_, _, Signature, Nodes, Arcs, [], [], _), a common use case of automaton/8.
automaton/8 True if the finite automaton induced by Nodes and Arcs (extended with Counters) accepts Signature.
chain/2 Zs is a list of finite domain variables that are a chain with respect to the partial order Relation, in the order they appear in t@
circuit/1 True if the list Vs of finite domain variables induces a Hamiltonian circuit, where the k-th element of Vs denotes the successor o@
element/3 The N-th element of the list of finite domain variables Vs is V.
fd_dom/2 Dom is the current domain (see in/2) of Var.
fd_inf/2 Inf is the infimum of the current domain of Var.
fd_size/2 Size is the number of elements of the current domain of Var, or the atom *sup* if the domain is unbounded.
fd_sup/2 Sup is the supremum of the current domain of Var.
fd_var/1 True iff Var is a CLP(FD) variable.
global_cardinality/2 Equivalent to global_cardinality(Vs, Pairs, []).
global_cardinality/3 Vs is a list of finite domain variables, Pairs is a list of Key-Num pairs, where Key is an integer and Num is a finite domain vari@
in/2 Var is an element of Domain.
indomain/1 Bind Var to all feasible values of its domain on backtracking.
ins/2 The variables in the list Vars are elements of Domain.
label/1 Equivalent to labeling([], Vars).
labeling/2 Labeling means systematically trying out values for the finite domain variables Vars until all of them are ground.
lex_chain/1 Lists are lexicographically non-decreasing.
scalar_product/4 Cs is a list of integers, Vs is a list of variables and integers.
serialized/2 Constrain a set of intervals to a non-overlapping sequence.
sum/3 The sum of elements of the list Vars is in relation Rel to Expr, where Rel is #=, #\=, #<, #>, #=< or #>=.
transpose/2 Transpose a list of lists of the same length.
tuples_in/2 Relation must be a list of lists of integers.
zcompare/3 Analogous to compare/3, with finite domain variables A and B.
1166..22..2211 clpqr
entailed/1 Check if constraint is entailed
inf/2 Find the infimum of an expression
sup/2 Find the supremum of an expression
minimize/1 Minimizes an expression
maximize/1 Maximizes an expression
bb_inf/3 Infimum of expression for mixed-integer problems
bb_inf/4 Infimum of expression for mixed-integer problems
bb_inf/5 Infimum of expression for mixed-integer problems
dump/3 Dump constraints on variables
1166..22..2222 clp/simplex
assignment/2 Solve assignment problem
constraint/3 Add linear constraint to state
constraint/4 Add named linear constraint to state
constraint_add/4 Extend a named constraint
gen_state/1 Create empty linear program
maximize/3 Maximize objective function in to linear constraints
minimize/3 Minimize objective function in to linear constraints
objective/2 Fetch value of objective function
shadow_price/3 Fetch shadow price in solved state
transportation/4 Solve transportation problem
variable_value/3 Fetch value of variable in solved state
1166..22..2233 thread_pool
current_thread_pool/1 True if Name refers to a defined thread pool.
thread_create_in_pool/4Create a thread in Pool.
thread_pool_create/3 Create a pool of threads.
thread_pool_destroy/1 Destroy the thread pool named Name.
thread_pool_property/2 True if Property is a property of thread pool Name.
1166..33 AArriitthhmmeettiicc FFuunnccttiioonnss
*/2 Multiplication
**/2 Power function
+/1 Unary plus (No-op)
+/2 Addition
-/1 Unary minus
-/2 Subtraction
//2 Division
///2 Integer division
/\/2 Bitwise and
<</2 Bitwise left shift
></2 Bitwise exclusive or
>>/2 Bitwise right shift
./2 List of one character: character code
\/1 Bitwise negation
\//2 Bitwise or
^/2 Power function
abs/1 Absolute value
acos/1 Inverse (arc) cosine
asin/1 Inverse (arc) sine
atan/1 Inverse (arc) tangent
atan/2 Rectangular to polar conversion
atan2/2 Rectangular to polar conversion
ceil/1 Smallest integer larger than arg
ceiling/1 Smallest integer larger than arg
cos/1 Cosine
cputime/0 Get CPU time
div/2 Integer division
e/0 Mathematical constant
epsilon/0 Floating point precision
eval/1 Evaluate term as expression
exp/1 Exponent (base e)
float/1 Explicitly convert to float
float_fractional_part/1 Fractional part of a float
float_integer_part/1 Integer part of a float
floor/1 Largest integer below argument
gcd/2 Greatest common divisor
integer/1 Round to nearest integer
log/1 Natural logarithm
log10/1 10 base logarithm
lsb/1 Least significant bit
max/2 Maximum of two numbers
min/2 Minimum of two numbers
msb/1 Most significant bit
mod/2 Remainder of division
powm/3 Integer exponent and modulo
random/1 Generate random number
random/1 Generate random number
rational/1 Convert to rational number
rationalize/1 Convert to rational number
rdiv/2 Ration number division
rem/2 Remainder of division
round/1 Round to nearest integer
truncate/1 Truncate float to integer
pi/0 Mathematical constant
popcount/1 Count 1s in a bitvector
sign/1 Extract sign of value
sin/1 Sine
sqrt/1 Square root
tan/1 Tangent
xor/2 Bitwise exclusive or
1166..44 OOppeerraattoorrss
$ 1 fx Bind top-level variable
^ 200 xfy Predicate
^ 200 xfy Arithmetic function
mod 300 xfx Arithmetic function
* 400 yfx Arithmetic function
/ 400 yfx Arithmetic function
// 400 yfx Arithmetic function
<< 400 yfx Arithmetic function
>> 400 yfx Arithmetic function
xor 400 yfx Arithmetic function
+ 500 fx Arithmetic function
- 500 fx Arithmetic function
? 500 fx XPCE: obtainer
\ 500 fx Arithmetic function
+ 500 yfx Arithmetic function
- 500 yfx Arithmetic function
/\ 500 yfx Arithmetic function
\/ 500 yfx Arithmetic function
: 600 xfy module:term separator
< 700 xfx Predicate
= 700 xfx Predicate
=.. 700 xfx Predicate
=:= 700 xfx Predicate
< 700 xfx Predicate
== 700 xfx Predicate
=@= 700 xfx Predicate
=\= 700 xfx Predicate
> 700 xfx Predicate
>= 700 xfx Predicate
@< 700 xfx Predicate
@=< 700 xfx Predicate
@> 700 xfx Predicate
@>= 700 xfx Predicate
is 700 xfx Predicate
\= 700 xfx Predicate
\== 700 xfx Predicate
=@= 700 xfx Predicate
not 900 fy Predicate
\+ 900 fy Predicate
, 1000 xfy Predicate
-> 1050 xfy Predicate
*-> 1050 xfy Predicate
; 1100 xfy Predicate
| 1105 xfy Predicate
discontiguous 1150 fx Predicate
dynamic 1150 fx Predicate
module_transparent 1150 fx Predicate
meta_predicate 1150 fx Head
multifile 1150 fx Predicate
thread_local 1150 fx Predicate
volatile 1150 fx Predicate
initialization 1150 fx Predicate
:- 1200 fx Introduces a directive
?- 1200 fx Introduces a directive
--> 1200 xfx DCGrammar: rewrite
:- 1200 xfx head :- body. separator
Bibliography
[Anjewierden & Wielemaker, 1989] A. Anjewierden and J. Wielemaker.
Extensible objects. ESPRIT Project
1098 Technical Report UvA-C1-TR-006a,
University of Amsterdam, March 1989.
[BIM, 1989] BIM sa/nv, Everberg, Belgium. _B_I_M
_P_r_o_l_o_g _r_e_l_e_a_s_e _2_._4, 1989.
[Bowen _e_t _a_l_., 1983] D. L. Bowen, L. M. Byrd, and
WF. Clocksin. A portable Prolog
compiler. In L. M. Pereira, editor,
_P_r_o_c_e_e_d_i_n_g_s _o_f _t_h_e _L_o_g_i_c _P_r_o_g_r_a_m_m_i_n_g
_W_o_r_k_s_h_o_p _1_9_8_3, Lisabon, Portugal,
1983. Universidade nova de Lisboa.
[Bratko, 1986] I. Bratko. _P_r_o_l_o_g _P_r_o_g_r_a_m_m_i_n_g _f_o_r _A_r_-
_t_i_f_i_c_i_a_l _I_n_t_e_l_l_i_g_e_n_c_e. Addison-Wesley,
Reading, Massachusetts, 1986.
[Butenhof, 1997] David R. Butenhof. _P_r_o_g_r_a_m_m_i_n_g _w_i_t_h
_P_O_S_I_X _t_h_r_e_a_d_s. Addison-Wesley, Read-
ing, MA, USA, 1997.
[Byrd, 1980] L. Byrd. Understanding the control
flow of Prolog programs. _L_o_g_i_c
_P_r_o_g_r_a_m_m_i_n_g _W_o_r_k_s_h_o_p, 1980.
[Clocksin & Melish, 1987] W. F. Clocksin and C. S. Melish.
_P_r_o_g_r_a_m_m_i_n_g _i_n _P_r_o_l_o_g. Springer-
Verlag, New York, Third, Revised and
Extended edition, 1987.
[Demoen, 2002] Bart Demoen. Dynamic attributes, their
hProlog implementation, and a first
evaluation. Report CW 350, Department
of Computer Science, K.U.Leuven,
Leuven, Belgium, oct 2002. URL =
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.
[Deransart _e_t _a_l_., 1996] P. Deransart, A. Ed-Dbali, and
L. Cervoni. _P_r_o_l_o_g_: _T_h_e _S_t_a_n_d_a_r_d.
Springer-Verlag, New York, 1996.
[Fr"uhwirth, ] T. Fr"uhwirth. Thom Fruehwirth's
constraint handling rules web-
site. http://www.informatik.uni-
ulm.de/pm/mitarbeiter/fruehwirth/chr-
intro.html.
[Fr"uhwirth, 1998] T. Fr"uhwirth. Theory and Practice
of Constraint Handling Rules. In
P. Stuckey and K. Marriot, editors,
_S_p_e_c_i_a_l _I_s_s_u_e _o_n _C_o_n_s_t_r_a_i_n_t _L_o_g_i_c
_P_r_o_g_r_a_m_m_i_n_g, volume 37, October 1998.
[Graham _e_t _a_l_., 1982] Susan L. Graham, Peter B. Kessler, and
Marshall K. McKusick. gprof: a call
graph execution profiler. In _S_I_G_P_L_A_N
_S_y_m_p_o_s_i_u_m _o_n _C_o_m_p_i_l_e_r _C_o_n_s_t_r_u_c_t_i_o_n,
pages 120--126, 1982.
[Hodgson, 1998] Jonathan Hodgson. validation
suite for conformance with part
1 of the standard, 1998,
http://www.sju.edu/~jhodgson/pub/suite.tar.gz.
[Holzbaur, 1992] Christian Holzbaur. Metastructures
versus attributed variables in the
context of extensible unification. In
_P_L_I_L_P, volume 631, pages 260--268.
Springer-Verlag, 1992. LNCS 631.
[Kernighan & Ritchie, 1978] B. W. Kernighan and D. M. Ritchie. _T_h_e
_C _P_r_o_g_r_a_m_m_i_n_g _L_a_n_g_u_a_g_e. Prentice-Hall,
Englewood Cliffs, New Jersey, 1978.
[Neumerkel, 1993] Ulrich Neumerkel. The binary
WAM, a simplified Prolog en-
gine. Technical report, Tech-
nische Universit"at Wien, 1993.
http://www.complang.tuwien.ac.at/ulrich/papers/PDF/binwam-
nov93.pdf.
[O'Keefe, 1990] R. A. O'Keefe. _T_h_e _C_r_a_f_t _o_f _P_r_o_l_o_g.
MIT Press, Massachussetts, 1990.
[Pereira, 1986] F. Pereira. _C_-_P_r_o_l_o_g _U_s_e_r_'_s _M_a_n_u_a_l.
EdCaad, University of Edinburgh, 1986.
[Qui, 1997] AI International ltd., Berkhamsted,
UK. _Q_u_i_n_t_u_s _P_r_o_l_o_g_, _U_s_e_r _G_u_i_d_e _a_n_d
_R_e_f_e_r_e_n_c_e _M_a_n_u_a_l, 1997.
[Sterling & Shapiro, 1986] L. Sterling and E. Shapiro. _T_h_e
_A_r_t _o_f _P_r_o_l_o_g. MIT Press, Cambridge,
Massachusetts, 1986.
1514
Index
'MANUAL' _l_i_b_r_a_r_y, 49 PL_quote(), 1016
-lswipl _l_i_b_r_a_r_y, 1131 PL_raise(), 1086
.pl, 98 PL_raise_exception(), 1080
.pro, 98 PL_realloc(), 1138
?=/2, 217 PL_record(), 1094
=:=/2, 474 PL_record_external(), 1097
/\/2, 511 PL_recorded(), 1095
=\=/2, 473 PL_recorded_external(), 1098
|/2, 226 PL_register_atom(), 916
#/\/2, 1239 PL_register_extensions(), 1113
#=/2, 1231 PL_register_extensions_in_module(),
#<==>/2, 1236 1112
#>=/2, 1229 PL_register_foreign(), 1111
#>/2, 1233 PL_register_foreign_in_module(), 1110
#=</2, 1230 PL_representation_error(), 1034
#</2, 1234 PL_reset_term_refs(), 896
#\=/2, 1232 PL_retry(), 904
#\/1, 1235 PL_retry_address(), 905
,/2, 224 PL_rewind_foreign_frame(), 1073
#\//2, 1240 PL_same_compound(), 1092
{}/1, 1261 PL_set_engine(), 865
!/0, 223 PL_signal(), 1085
/, 99 PL_skip_list(), 977
//2, 484 PL_strip_module(), 1076
./2, 495 PL_succeed(), 901
=/2, 200 PL_term_type(), 920
==/2, 203 PL_thread_at_exit(), 861
>=/2, 472 PL_thread_attach_engine(), 859
>/2, 469 PL_thread_destroy_engine(), 860
^/2, 528 PL_thread_self(), 857
///2, 487 PL_throw(), 1081
->/2, 227 PL_toplevel(), 1126
=</2, 471 PL_type_error(), 1035
#<==/2, 1238 PL_unify(), 998
<</2, 509 PL_unify_arg(), 1013
</2, 470 PL_unify_atom(), 999
-/1, 479 PL_unify_atom_chars(), 1002
-/2, 482 PL_unify_atom_nchars(), 960
\=/2, 201 PL_unify_blob(), 1048
\/1, 513 PL_unify_bool(), 1000
\==/2, 204 PL_unify_bool_ex(), 1032
\+/1, 229 PL_unify_chars(), 1001
\//2, 510 PL_unify_float(), 1008
+/1, 480 PL_unify_functor(), 1010
+/2, 481 PL_unify_int64(), 1007
**/2, 526 PL_unify_integer(), 1006
#==>/2, 1237 PL_unify_list(), 1011
>>/2, 508 PL_unify_list_chars(), 1003
;/2, 225 PL_unify_list_ex(), 1030
*->/2, 228 PL_unify_list_nchars(), 963
=@=/2, 212 PL_unify_list_ncodes(), 962
\=@=/2, 213 PL_unify_mpq(), 1056
@>=/2, 208 PL_unify_mpz(), 1055
@>/2, 207 PL_unify_nil(), 1012
*/2, 483 PL_unify_nil_ex(), 1031
@=</2, 206 PL_unify_pointer(), 1009
@</2, 205 PL_unify_string_chars(), 1004
=../2, 411 PL_unify_string_nchars(), 961, 1005
_PL_get_arg(), 951 PL_unify_term(), 1014
\, 99 PL_unify_thread_id(), 858
64-bits PL_unify_wchars(), 970
platforms, 92 PL_unify_wchars_diff(), 971
abolish/1, 17, 261, 262 PL_unregister_atom(),P917L_unregister_blob_type(), 1045
abolish/2, 262 PL_warning(), 1104
abolish/[1 plus/3, 467
2], 66 PLVERSION, 1140
abort/0, 45, 57, 310, 315, 322, popcount/1, 536
636, 787, 838, 1106, 1116 portable
abs/1, 491 prolog code, 1468
absolute_file_name/2, 620 portray/1, 57, 101, 388, 396, 398,
absolute_file_name/3, 621 1063, 1120, 1457
absolute_file_name/2, 34, 131, 143, portray_clause/1, 180
622, 632, 1153 portray_clause/2, 181
absolute_file_name/3, 66, 69, 123, portray_text _l_i_b_r_a_r_y, 396
130, 140, 144, 145, 620, portray_clause/1, 178, 181
621, 1100, 1101, 1376, 1377 portray_clause/2, 180, 413
absolute_file_name/[2 powm/3, 527
3], 66, 139, 621 precedence, 1473
access_file/2, 610 pred/1, 717
access_file/2, 66, 621 predicate, 1473
acos/1, 519 dynamic, 1473
acquire(), 1041 exported, 1473
acyclic_term/1, 198 imported, 1473
acyclic_term/1, 82, 197 predicate indicator, 128, 1473
add_edges/3, 1416 predicate_property/2, 302
add_import_module/3, 724 predicate_property/2, 293, 300,
add_nb_set/2, 1321 302, 737
add_nb_set/3, 1322 predsort/3, 549
add_vertices/3, 1414 prefix/2, 1296
add_import_module/3, 723, 738 preprocessor/2, 158
add_nb_set/3, 1321, 1323 print/1, 388, 396, 398, 561, 566,
agent, 1191 1063, 1486
aggregate _l_i_b_r_a_r_y, 1488 print/2, 397
aggregate/3, 1161 print_message/2, 248, 1486
aggregate/4, 1162 print_message_lines/3, 249
aggregate_all/3, 1163 print_message/2, 20, 66, 69, 131,
aggregate_all/4, 1164 147, 247--250, 252, 403,
all_different/1, 1226 686, 803, 805, 1282
all_distinct/1, 1243 print_message_lines/3, 20, 248, 250,
Alpha 252
DEC, 16 priority, 1473
AMD64, 93 profile file, 41
anonymous profile/1, 672, 673, 852, 1128
variable, 81 profile/3, 673
anonymous variable, 1473 profiler/2, 676
append/1, 324, 328 profiling
append/2, 711, 1295 foreign code, 1141
append/3, 433, 1294 program, 1473
apply _l_i_b_r_a_r_y, 1489 prolog/0, 45, 323, 635, 639, 640,
apply/2, 233 716, 1126, 1447
apropos/1, 51, 52, 69, 1459, 1486 prolog:called_by/2, 1370
arg/3, 410 prolog:comment_hook/3, 1462
arithmetic_function/1, 538 prolog:debug_control_hook/1, 1458
arithmetic_function/1, 537, 539, prolog:help_hook/1, 1459
1079 prolog_choice_attribute/3, 1446
arity, 1473 prolog_current_frame/1, 1444
asin/1, 518 prolog_edit:edit_command/2, 176
assert, 1473 prolog_edit:edit_source/1, 175
assert/1, 130, 138, 260, 266, 268, prolog_edit:load/0, 177
281, 287, 288, 302, 705, prolog_edit:locate/2, 174
712, 739, 764, 829, 1473 prolog_edit:locate/3, 173
assert/2, 271, 278, 305 prolog_exception_hook/4, 1453
asserta/1, 46, 138, 212, 266, 267, prolog_file_type/2, 141
269, 270 prolog_frame_attribute/3, 1445
asserta/2, 269, 278 prolog_ide _c_l_a_s_s, 125
assertion/1, 1287 prolog_ide/1, 125
assertions, 1287 prolog_list_goal/1, 1457
assertz/1, 267, 268, 1473 prolog_load_context/2, 145
assertz/2, 270, 271, 278 prolog_load_file/2, 1461
assignment/2, 1390 prolog_server _l_i_b_r_a_r_y, 323
assoc _l_i_b_r_a_r_y, 1176, 1319, 1490 prolog_skip_frame/1, 1450
assoc_to_keys/2, 1178 prolog_skip_level/2, 1451
assoc_to_list/2, 1177 prolog_stack _l_i_b_r_a_r_y, 1445, 1453
assoc_to_values/2, 1179 prolog_stack_property/2, 687
at_end_of_stream/0, 381 prolog_to_os_filename/2, 626
at_end_of_stream/1, 382 prolog_trace_interception/4, 1449
at_halt/1, 147 prolog_xref _l_i_b_r_a_r_y, 122, 706, 1360
at_end_of_stream/1, 386 prolog_choice_attribute/3, 1449
at_end_of_stream/[0 prolog_current_frame/1, 1445
1], 315, 1372 prolog_exception_hook/4, 245, 686,
at_halt/1, 637, 809, 1118, 1127, 1452, 1453
1466 prolog_file_type/2, 130, 141, 621
at_initialization/1, 1123 prolog_frame_attribute/3, 307, 1449,
atan/1, 520 1453
atan/2, 522 prolog_ide/1, 124
atan2/2, 521, 522 prolog_load_context/2, 146, 1469
atom, 1473 prolog_load_file/2, 131, 1460
atom/1, 190, 918 prolog_skip_frame/1, 1451
atom_chars/2, 425 prolog_skip_level/2, 1450
atom_codes/2, 424 prolog_stack_property/2, 686
atom_concat/3, 433 prolog_to_os_filename/2, 99, 622
atom_length/2, 437 prolog_trace_interception/4, 114,
atom_number/2, 429 651, 686, 1445, 1446
atom_prefix/2, 438 prologxref _l_i_b_r_a_r_y, 1498
atom_to_chars/2, 1205 prompt
atom_to_chars/3, 1206 alternatives, 66
atom_to_term/3, 432 prompt/2, 405--407
atom_chars/2, 66, 129, 339, 366, prompt1/1, 407
423, 427, 442 property, 1473
atom_codes/2, 21, 66, 129, 339, protocol/1, 643, 644, 646
423, 425, 429, 430, 442 protocola/1, 644, 646
atom_concat/3, 455 protocolling/1, 646
atom_length/2, 66, 454 prove, 1473
atom_number/2, 339 public list, 1473
atom_result/2, 731 public/1, 291, 302
atomic/1, 193 pure_input _l_i_b_r_a_r_y, 1501
atomic_concat/3, 434 put/1, 349, 350
atomic_list_concat/2, 435 put/2, 350
atomic_list_concat/3, 436 put_assoc/4, 1190
atomic_concat/3, 433 put_attr/3, 743
atomic_list_concat/2, 436 put_attrs/2, 756
attach_console/0, 845 put_byte/1, 351
attach_console/0, 843, 844, 1106 put_byte/2, 352
attr_portray_hook/2, 748 put_char/1, 353
attr_unify_hook/2, 747 put_char/2, 354
attr_portray_hook/2, 388 put_code/1, 355
attr_unify_hook/2, 740 put_code/2, 356
attribute_goals/1, 749 put_attr/3, 742, 747, 754
attribute_goals//1, 748, 751 put_byte/[1
attribute_goals/3, 740 2], 129
attvar/1, 742 put_char/1, 349, 355
autoload/0, 135, 1145, 1147, 1218 put_char/[1
automaton/3, 1249 2], 129
automaton/8, 1250 put_code/1, 349, 356
b_getval/2, 766 put_code/2,p84,u384,t386_code/[1
b_setval/2, 765 2], 129
b_getval/2, 766, 768
b_setval/2, 764, 1455 qcompile/1, 131, 150, 167--169, 798
backcomp _l_i_b_r_a_r_y, 17, 21 qcompile/2, 169
backtracking, 1473 qsave_program/1, 1146
bagof/3, 82, 551, 553, 554, 1486 qsave_program/2, 1145
bb_inf/3, 1269 qsave_program/1, 148
bb_inf/4, 1268 qsave_program/2, 14, 64, 66, 101,
bb_inf/5, 1267 124, 1144, 1145, 1151
between/3, 465 qsave_program/[1
binding, 1473 2], 13, 18, 46, 63, 66, 302,
bits 875, 1123, 1133, 1147, 1149
64, 91 query, 1473
blackboard, 1191 quiet, 43, 248
blob/2, 191, 309 quintus _l_i_b_r_a_r_y, 21
body, 1473
BOM, 85 random _l_i_b_r_a_r_y, 541
break/0, 45, 57, 635, 787, 1106 random/1, 496, 541
broadcast, 1191 rational
broadcast _l_i_b_r_a_r_y, 1191, 1491 number, 476
broadcast/1, 1192, 1193 rational/1, 187, 476, 477, 500, 501
broadcast_request/1, 1193 rational/3, 188, 476
built-in predicate, 1473 rationalize/1, 476, 477, 500, 501,
Byte Order Mark, 85 1400
byte_count/2, 342 rb_new/1, 66
byte_count/2, 320 rbtrees _l_i_b_r_a_r_y, 66
call/1, 21, 122, 195, 231, 233, RDFmemory usage, 94
243, 655, 678, 680, 705, rdiv/2, 476, 477, 484, 489
759, 1057 reachable/3, 1427
call/2, 232 read/1, 66, 89, 309, 310, 359, 394,
call/[2-6], 232 399, 401, 403, 406, 451,
call_cleanup/2, 240 665, 772, 1377, 1486
call_cleanup/3, 241 read/2, 341, 400
call_residue_vars/2, 763 read_clause/1, 401
call_shared_object_function/2, 889 read_clause/2, 402
call_with_depth_limit/3, 237 read_file_to_codes/3, 1376
call_cleanup/2, 238, 240, 241, 339, read_file_to_terms/3, 1377
1447, 1472 read_from_chars/2, 1209
call_residue_vars/2, 763 read_history/6, 405
call_with_depth_limit/3, 237 read_line_to_codes/2, 1372
call_with_time_limit/2, 238 read_line_to_codes/3, 1373
callable/1, 195, 1360 read_link/3, 627
catch/3, 17, 19, 242--245, 403, read_pending_input/3, 386
636, 678, 803, 811, 812, read_stream_to_codes/2, 1374
1446, 1453--1455, 1486 read_stream_to_codes/3, 1375
ceil/1, 507 read_term/2, 403
ceiling/1, 506, 507 read_term/3, 404
chain/2, 1253 read_term_from_chars/3, 1210
char_code/2, 426 read_clause/1, 402, 665
char_conversion/2, 461 read_history/6, 405
char_type/2, 441 read_line_to_codes/2, 1373
char_code/2, 129 read_line_to_codes/3, 1372
char_conversion/2, 66, 462 read_stream_to_codes/2, 1375
char_type/2, 80, 442--444 read_term/2, 66, 401, 403--405, 432
character set, 77 read_term/3, 388, 403, 461, 640,
character_count/2, 343 1462
character_count/2, 320, 342 read_term/[2
charsio _l_i_b_r_a_r_y, 1492 3], 403
chdir/1, 632, 633 readutil _l_i_b_r_a_r_y, 103, 1371, 1502
check _l_i_b_r_a_r_y, 137, 302, 1215, 1493 record _l_i_b_r_a_r_y, 1378, 1503
check/0, 135, 1215, 1216 record/1, 1378, 1379
check_old_select/0, 22 recorda/2, 273
checkselect _l_i_b_r_a_r_y, 22 recorda/3, 82, 272, 274, 278, 299,
chr _l_i_b_r_a_r_y, 784, 788 764, 1093, 1094, 1097
chr_constraint/1, 782 recorded/2, 277
chr_leash/1, 791 recorded/3, 276, 278, 1149
chr_notrace/0, 790 recordz/2, 275
chr_option/2, 778 recordz/3, 82, 274
chr_show_store/1, 792 redefine_system_predicate/1, 263
chr_trace/0, 789 redefine_system_predicate/1, 11,
chr_type/1, 783 1473
chr_constraint/1, 782, 796 reexport/1, 131, 718, 1468
chr_notrace/0, 787 reexport/2, 131, 719, 1468
chr_option/2, 796 registry, 87
chr_trace/0, 787 registry _l_i_b_r_a_r_y, 1380, 1504
chr_type/1, 783 registry_delete_key/1, 1385
circuit/1, 1248 registry_get_key/2, 1381
clause, 1473 registry_get_key/3, 1382
clause/2, 304, 305 registry_set_key/2, 1383
clause/3, 269, 278, 305, 307, 1149 registry_set_key/3, 1384
clause/[2 release(), 1042
3], 66 reload_foreign_libraries/0, 884
clause_property/2, 307 reload_library_index/0, 73
clause_property/2, 143, 1445 reload_library_index/0, 70, 73
close/1, 308, 313, 318 rem/2, 486
close/2, 314 rename_file/2, 617
close_dde_conversation/1, 691 repeat/0, 218, 222, 237
close_shared_object/1, 888 representation_error/1, 1034
clp/clpfd _l_i_b_r_a_r_y, 1508 require/1, 135, 1147, 1468
clp/simplex _l_i_b_r_a_r_y, 1510 reset_gensym/0, 1291
clpfd _l_i_b_r_a_r_y, 720 reset_gensym/1, 1290
clpqr _l_i_b_r_a_r_y, 1259, 1509 reset_profiler/0, 677
code_type/2, 442 reset_profiler/0, 673
code_type/2, 440, 443 resource/3, 18, 66, 1144, 1145,
collate, 448 1151, 1153, 1154
collation_key/2, 449 restract/2, 739
collation_key/2, 449, 450, 589 retract, 1473
COM, 1039 retract/1, 130, 138, 260, 261, 264,
commandline 281, 287, 288, 302, 829
arguments, 43 retractall/1, 260, 261, 265
compare rev/3, 707
language-specific, 448 reverse/2, 707, 1306
compare(), 1043 rl_add_history/1, 1465
compare/3, 82, 209, 549, 1091, 1472 rl_read_history/1, 1467
compile_aux_clauses/1, 156 rl_read_init_file/1, 1464
compile_predicates/1, 288 rl_write_history/1, 1466
compile_predicates/1, 287 rlimit _l_i_b_r_a_r_y, 25
compiling/0, 150, 168 round/1, 497, 498
complement/2, 1421
completion same_file/2, 614
TAB, 105 same_term/2, 422
compose/3, 1422 scalar_product/4, 1228
compound, 1473 see/1, 20, 308, 310, 324--326
compound/1, 194 seeing/1, 324, 325, 329
concat_atom/3, 436 seek/4, 315, 319, 321
constraint/3, 1391, 1392 seen/0, 331
constraint/4, 1392 select/3, 22, 1297
constraint_add/4, 1393 select/4, 1299
consult/1, 38, 41, 59, 69, 113, select_option/3, 1331
130--133, 167, 168, 289, select_option/4, 1332
401, 665 selectchk/3, 1298
context module, 1473 selectchk/4, 1300
context_module/1, 733 serialized/2, 1244
context_module/1, 713, 733, 1063 set_base_module/1, 722
convert_time/2, 66 set_end_of_stream/1, 383
convert_time/[2 set_input/1, 334
8], 619 set_output/1, 335
copy_stream_data/2, 385 set_prolog_flag/2, 67
copy_stream_data/3, 384 set_prolog_IO/3, 323
copy_term/2, 416 set_prolog_stack/2, 686
copy_term/3, 751 set_random/1, 541
copy_term_nat/2, 752 set_stream/2, 322
copy_stream_data/2, 386 set_stream_position/2, 319
copy_stream_data/3, 321 set_tty/2, 575
copy_term/2, 82, 212, 416, 418, set_url_encoding/2, 1436
421, 739, 752, 766 set_input/1, 322, 326
copy_term/3, 748, 749 set_output/1, 327
cos/1, 516 set_prolog_flag/2, 21, 55, 65--68,
count_atom_results/3, 731 468
count_atom_results/3, 731 set_prolog_stack/2, 656, 687
cputime/0, 532 set_random/1, 496, 541
create_prolog_flag/3, 68 set_stream/2, 84, 310, 315, 323,
create_prolog_flag/3, 66, 67 341, 377
crypt _l_i_b_r_a_r_y, 1484 set_stream_position/2, 315, 321
csv _l_i_b_r_a_r_y, 1494 setarg/3, 128, 416, 418, 419, 421,
csv//1, 1277 422, 743, 772, 1378
csv//2, 1278 setenv/2, 587
csv_read_file/2, 1275 setlocale/3, 450, 589
csv_read_file/3, 1276 setof/3, 82, 554, 1486
csv_write_file/2, 1279 setup_call_catcher_cleanup/4, 239
csv_write_file/3, 1280 setup_call_cleanup/3, 238
ctype _l_i_b_r_a_r_y, 440 setup_call_cleanup/3, 238, 240, 807,
current_arithmetic_function/1, 539 834, 835
current_atom/1, 295 shadow_price/3, 1398
current_blob/2, 296 shared, 1473
current_char_conversion/2, 462 shell/0, 580, 590
current_flag/1, 298 shell/1, 99, 176, 579, 590
current_foreign_library/2, 883 shell/2, 578
current_format_predicate/2, 570 shell/[0-2], 587
current_functor/2, 297 shell/[1
current_input/1, 336 2], 578
current_key/1, 299 shell_register_dde/6, 1387
current_module/1, 736 shell_register_file_type/4, 1386
current_op/3, 459 shell_register_prolog/1, 1388
current_output/1, 337 shell_register_file_type/4, 1387
current_predicate/1, 300 shlib _l_i_b_r_a_r_y, 1486
current_predicate/2, 301 show_profile/1, 675
current_prolog_flag/2, 66 show_profile/2, 674
current_signal/3, 255 show_profile/1, 673
current_stream/3, 316 sign/1, 492
current_thread_pool/1, 1407 silent, 248
current_atom/1, 295 simplex _l_i_b_r_a_r_y, 1389
current_blob/2, 1040 sin/1, 515
current_char_conversion/2, 461 singleton, 1473
current_input/1, 145, 329 variable, 81
current_module/1, 300 size_file/2, 618
current_output/1, 330 size_nb_set/2, 1324
current_predicate/1, 300--302 skip/1, 378, 379
current_predicate/2, 300, 301 skip/2, 379
current_prolog_flag/2, 21, 43, 46, sleep/1, 704
65, 66, 70, 74, 78, 131, socket _l_i_b_r_a_r_y, 341
403, 665, 696, 874, 1158, Solaris, 810
1473 solution, 1473
current_signal/3, 254 sort/2, 546, 547, 549, 554, 1335,
current_stream/3, 316 1337
cyclic terms, 82 source_exports/2, 1471
cyclic_term/1, 197 source_file/1, 142
cyclic_term/1, 82, 198 source_file/2, 143
daemon, 1191 source_location/2,s146ource_exports/2, 1468
date_time_stamp/2, 596 source_file/1, 144
date_time_value/3, 597 source_file/2, 168, 302
date_time_value/3, 592 source_location/2, 145
day_of_the_week/2, 602 spy/1, 57, 66, 69, 115, 116, 126,
DCG, 130, 257 128, 659, 715, 850, 851,
dcg_translate_rule/2, 157 1458, 1486
dcg_translate_rule/2, 153 sqrt/1, 514
dde_current_connection/2, 699 stack
dde_current_service/2, 698 memory management, 88
dde_execute/2, 693 stamp_date_time/3, 595
dde_poke/4, 694 stamp_date_time/3, 592, 596
dde_register_service/2, 696 startup file, 41
dde_request/3, 692 statistics _l_i_b_r_a_r_y, 670
dde_unregister_service/1, 697 statistics/0, 668
debug _l_i_b_r_a_r_y, 125, 1281 statistics/2, 532, 667, 813
debug/0, 57, 245, 654, 656, 657, stream_pair/3, 318
686, 846, 1106, 1453 stream_position_data/3, 320
debug/1, 1282, 1284, 1285 stream_property/2, 315
debug/3, 1281, 1282 stream_to_lazy_list/2, 1359
debugging stream_pair/3, 309
exceptions, 245 stream_position_data/3, 145, 315,
debugging/0, 69, 654, 658, 1286, 403, 1462
1458 stream_property/2, 85, 310, 319--
debugging/1, 1281, 1283 322, 403
DEC string/1, 192, 193, 566
Alpha, 16 string_concat/3, 455
del_attr/2, 745 string_length/2, 454
del_attrs/1, 757 string_to_atom/2, 452
del_edges/3, 1417 string_to_list/2, 453
del_vertices/3, 1415 strip_module/3, 734
del_attr/2, 754 strip_module/3, 713, 731, 738
delete/3, 1302 structure, 1473
delete_directory/1, 631 style_check/1, 665
delete_file/1, 616 style_check/1, 81, 89, 90, 290
delete_import_module/2, 725 sub_atom/5, 439
delete_file/1, 629 sub_string/5, 456
delete_import_module/2, 723, 724, sub_atom/5, 456
738 subset/2, 1317
deterministic/1, 238, 1447 subsumes_term/2, 214
Development environment, 95 subsumes_chk/2, 285
dialect.pl _l_i_b_r_a_r_y, 1468 subsumes_term/2, 210
dif _l_i_b_r_a_r_y, 762 subtract/3, 1318
dif/2, 82, 201, 761, 762 succ/2, 466
directory_files/2, 624 succeed, 1473
discontiguous/1, 286, 290 sum/3, 1227
display/1, 561, 978 sumlist/2, 1309
display/[1 sup/2, 1264
2], 17 swi/pce_profile _l_i_b_r_a_r_y, 670
displayq/[1 swi_edit _l_i_b_r_a_r_y, 177
2], 17 swi_help _l_i_b_r_a_r_y, 49
div/2, 488 swritef/2, 563
do_not_use/1, 717 swritef/3, 339, 562
domain_error/2, 1036
downcase_atom/2, 444 TAB
downcase_atom/2, 441, 445 completion, 105
dump/3, 1270 tab/1, 357
dup/2, 21 tab/2, 358
dup_stream/2, 21 tan/1, 517
duplicate_term/2, 421 tdebug/0, 847, 851
duplicate_term/2, 82, 416, 419, 767 tdebug/1, 846, 847, 850
dwim_match/2, 701 tell/1, 20, 308, 310, 324, 325,
dwim_match/3, 702 327, 328
dwim_predicate/2, 303 telling/1, 324, 325, 330
dwim_match/2, 303, 702 term, 1473
dynamic predicate, 1473 term//1, 339
dynamic/1, 66, 128, 260, 265, term_attvars/2, 753
286--288, 302, 732, 828, term_expansion/2, 152
829, 1217 term_hash/2, 283
e/0, 530 term_hash/4,t284erm_subsumer/3, 215
edges/2, 1413 term_to_atom/2, 431
edit/0, 172 term_variables/2, 414
edit/1, 23, 66, 69, 105, 108, 113, term_variables/3, 415
126, 137, 170--173, 175, term_attvars/2, 753
715, 1217, 1486 term_expansion/2, 69, 130, 150--
edit_source/1, 176 154, 159, 168, 640, 784,
editor _c_l_a_s_s, 104, 109 1472
element/3, 1245 term_hash/2, 82, 282--285, 292, 293
elif/1, 161 term_hash/4, 282
else/0, 162 term_to_atom/2, 339, 1015
Emacs, 48 term_variables/2, 82, 403, 415
emacs/[0 term_variables/3, 414
1], 108 terms
emacs/prolog_colour _l_i_b_r_a_r_y, 112 cyclic, 82
emacs/swi_prolog _l_i_b_r_a_r_y, 23 thread _l_i_b_r_a_r_y, 66
empty_assoc/1, 1180 thread_at_exit/1, 809
empty_nb_set/1, 1320 thread_create/3, 803
encoding/1, 84, 136 thread_create_in_pool/4, 1409
endif/0, 163 thread_detach/1, 806
ensure_loaded/1, 133 thread_exit/1, 807
ensure_loaded/1, 59, 130, 133, 710 thread_get_message/1, 818
entailed/1, 1262 thread_get_message/2, 823
epsilon/0, 531 thread_initialization/1, 808
erase/1, 269, 272, 278, 305 thread_join/2, 805
error _l_i_b_r_a_r_y, 1378 thread_local/1, 829
eval/1, 533 thread_peek_message/1, 819
eval_license/0, 1479 thread_peek_message/2, 824
eval_license/0, 1478, 1480 thread_pool _l_i_b_r_a_r_y, 1511
exception/3, 764, 1454, 1455 thread_pool_create/3, 1405
exceptions thread_pool_destroy/1, 1406
debugging, 245 thread_pool_property/2, 1408
exclude/3, 1169 thread_property/2, 812
exists_directory/1, 615 thread_self/1, 804
exists_file/1, 611 thread_send_message/2, 817
exists_source/1, 1470 thread_setconcurrency/2, 810
exists_file/1, 66 thread_signal/2, 827
exists_source/1, 1468 thread_statistics/3, 813
exp/1, 525 thread_at_exit/1, 803, 861
expand_answer/2, 641 thread_create/3, 806, 809, 867, 869
expand_file_name/2, 625 thread_detach/1, 803
expand_file_search_path/2, 140 thread_exit/1, 805, 812
expand_goal/2, 155 thread_get_message/1, 823
expand_query/4, 640 thread_get_message/2, 822
expand_term/2, 153 thread_initialization/1, 764
expand_answer/2, 640 thread_join/2, 803, 805, 807, 812
expand_file_name/2, 66, 131, 587, thread_local/1, 287, 302, 828
590, 620, 621, 624 thread_peek_message/1, 818, 824
expand_goal/2, 66, 151--155, 160 thread_property/2, 805, 806, 809,
expand_term/2, 151, 152, 154, 157, 812
257, 1379 thread_self/1, 66, 806, 809, 817
expects_dialect/1, 1469 thread_send_message/2, 820, 821
expects_dialect/1, 145, 1468 thread_setconcurrency/2, 66
explain _l_i_b_r_a_r_y, 1486 thread_signal/2, 238, 827, 838,
explain/1, 53 846, 1086, 1130
explain/2, 54 threads/0, 841
export/1, 728--730 throw/1, 17, 57, 82, 242--244, 252,
export_list/2, 729 256, 807, 812, 826, 827,
exported predicate, 1473 1080, 1082, 1453--1455
fact, 1473 time/1,t532,i669,m672,e673_file/2, 619
fail/0, 155, 219 tmp_file/2, 628
false/0, 220 tmp_file_stream/3, 629
fd_dom/2, 1258 tmp_file/2, 629
fd_inf/2, 1255 tmp_file_stream/3, 628
fd_size/2, 1257 tnodebug/0, 849
fd_sup/2, 1256 tnodebug/1, 848, 851
fd_var/1, 1254 told/0, 332
file_base_name/2, 613 top_sort/2, 1424
file_directory_name/2, 612 top_sort/3, 1425
file_name_extension/3, 623 tprofile/1, 852, 853
file_name_to_url/2, 1440, 1441 trace/0, 57, 66, 115, 116, 126,
file_search_path/2, 139 648, 654, 789, 790, 827,
file_search_path/2, 41, 46, 66, 70, 1106, 1453
73, 100, 123, 131, 132, 139, trace/1, 66, 653
141, 145, 1101, 1133, 1150, trace/2, 654
1153, 1156 tracing/0, 649
fileerrors/2, 66 transformation
find_chr_constraint/1, 793 of program, 151
findall/3, 82, 212, 218, 551, 552, transitive_closure/2, 1426
739, 1486 transparent, 1473
findall/4, 552 transportation/4, 1399
flag/3, 280, 298, 419 transpose/2, 1251, 1418
flag:address_bits, 66 transpose_pairs/2, 1353
flag:agc_margin, 66 trim_stacks/0, 685
flag:allow_variable_name_as_functor, trim_stacks/0, 683, 686
66 true/0, 66, 155, 221, 237
flag:arch, 66 truncate/1, 504
flag:argv, 66 tspy/1, 844, 851
flag:associate, 66 tspy/2, 850
flag:autoload, 66 tty_get_capability/3, 572
flag:backquoted_string, 66 tty_goto/2, 573
flag:bounded, 66 tty_put/2, 574
flag:c_cc, 66 tty_size/2, 576
flag:c_ldflags, 66 tty_get_capability/3, 574, 576
flag:c_libs, 66 tty_goto/2, 575
flag:char_conversion, 66 tty_put/2, 575
flag:character_escapes, 66 tty_size/2, 576
flag:compiled_at, 66 ttyflush/0, 361, 561
flag:console_menu, 66 tuples_in/2, 1242
flag:cpu_count, 66 type_error/2, 252, 1035, 1037
flag:dde, 66
flag:debug, 66 UCS, 83
flag:debug_on_error, 66 ugraph _l_i_b_r_a_r_y, 1410
flag:debugger_print_options, 66 ugraph_union/3, 1423
flag:debugger_show_context, 66 ugraphs _l_i_b_r_a_r_y, 1410, 1505
flag:dialect, 66 ugraphs.pl _l_i_b_r_a_r_y, 1410
flag:double_quotes, 66 Unicode, 83
flag:editor, 66 unifiable/3, 210, 216
flag:emacs_inferior_process, 66 unify, 1473
flag:encoding, 66 unify_with_occurs_check/2, 211
flag:executable, 66 unify_with_occurs_check/2, 66, 210
flag:file_name_variables, 66 union/3, 1316
flag:gc, 66 Unix, 7
flag:generate_debug_info, 66 unix, 66
flag:gmp_version, 66 unix/1, 21, 590
flag:gui, 66 unknown/2, 664, 1158
flag:history, 66 unlisten/1, 1196
flag:home, 66 unlisten/2, 1197
flag:hwnd, 66 unlisten/3, 1198
flag:integer_rounding_function, 66 unload_file/1, 144
flag:iso, 66 unload_foreign_library/1, 881
flag:large_files, 66 unload_foreign_library/2, 882
flag:last_call_optimisation, 66 unload_file/1, 131
flag:max_arity, 66 unsetenv/1, 587, 588
flag:max_integer, 66 upcase_atom/2, 445
flag:max_tagged_integer, 66 upcase_atom/2, 441
flag:min_integer, 66 update view, 281, 1473
flag:min_tagged_integer, 66 URL, 582
flag:occurs_check, 66 url _l_i_b_r_a_r_y, 1326, 1506
flag:open_shared_object, 66 url_iri/2, 1437, 1438
flag:optimise, 66 use_foreign_library/1, 879
flag:pid, 66 use_foreign_library/2, 880
flag:pipe, 66 use_module/1, 710
flag:prompt_alternatives_on, 66 use_module/2, 711
flag:qcompile, 66 use_foreign_library/1, 148
flag:readline, 66 use_module/1, 69, 100, 131, 709,
flag:report_error, 66 711, 726, 727, 1468
flag:resource_database, 66 use_module/2, 70, 131, 709, 711,
flag:runtime, 66 719, 1468
flag:saved_program, 66 use_module/[1
flag:shared_object_extension, 66 2], 59, 113, 130, 131, 133,
flag:shared_object_search_path, 66 728, 729, 1473
flag:signals, 66 use_modules/1, 718
flag:system_thread_id, 66 user _l_i_b_r_a_r_y, 1486
flag:timezone, 66 user profile file, 41
flag:toplevel_print_anon, 66 UTF-8, 83
flag:toplevel_print_factorized, 66 utf-8, 129
flag:toplevel_print_options, 66
flag:toplevel_var_size, 66 valgrind, 1141
flag:trace_gc, 66 var/1, 12, 183, 742, 918
flag:tty_control, 66 variable, 1473
flag:unix, 66 anonymous, 1473
flag:unknown, 66 variable_value/3, 1400
flag:user_flags, 66 variant, 212
flag:verbose, 66 variant_sha1/2, 285
flag:verbose_autoload, 66 variant_sha1/2, 1484
flag:verbose_file_search, 66 verbose, 43
flag:verbose_load, 66 vertices/2, 1412
flag:version, 66 vertices_edges_to_ugraph/3, 1411
flag:version_data, 66 view
flag:version_git, 66 update, 1473
flag:windows, 66 visible/1, 663, 1449
flag:write_attributes, 66 void(), 1083
flag:write_help_with_overstrike, 66 volatile/1, 302, 829, 1148
flag:xpce, 66
flag:xpce_version, 66 wait_for_input/3, 341
flatten/2, 1308 wait_for_input/3, 322, 341
float/1, 186, 499 when _l_i_b_r_a_r_y, 761
float_fractional_part/1, 502 when/2, 82, 761
float_integer_part/1, 503 wildcard_match/2, 703
floor/1, 505 win_exec/2, 581
flush_output/0, 359 win_folder/2, 585
flush_output/1, 360 win_has_menu/0, 606
flush_output/0, 359 win_insert_menu/2, 607
flush_output/1, 249, 386 win_insert_menu_item/4, 608
flush_output/[0 win_registry_get_value/3, 584
1], 310, 361 win_shell/2, 582, 583
forall/2, 556 win_window_pos/1, 605
foreach/2, 1165 win_exec/2, 578, 582
format/1, 249, 565 win_folder/2, 41, 43
format/2, 566, 567, 1282 win_insert_menu/2, 606, 608
format/3, 249, 252, 339, 387, 431, win_insert_menu_item/4, 606
447, 476, 477, 566, 567 win_shell/2, 578, 1327
format/[1 Window interface, 8
2], 387, 557, 1486 window_title/2, 604
format/[2 Windows, 7
3], 78 windows, 66
format_predicate/2, 569 with_mutex/2, 834
format_time/3, 598 with_output_to/2, 339
format_time/4, 599 with_output_to_chars/2, 1212
format_to_chars/3, 1201, 1202 with_output_to_chars/3, 1213
format_time/3, 589 with_output_to_chars/4, 1214
format_time/4, 598 with_mutex/2, 835, 855
free_variables/4, 1166 with_output_to/2, 309, 335, 339,
freeze/2, 758, 759, 761 387, 429, 431, 447, 567, 598
frozen/2, 760 working_directory/2, 632
functor, 1473 working_directory/2, 590, 621, 633
functor/3, 6, 194, 195, 301, 409, write(), 1044
772 write/1, 66, 82, 392, 396, 437,
garbage_collect/0, 683 write/561,2566,,938,3978,910443
garbage_collect_atoms/0, 684 write_canonical/1, 390
garbage_collect_clauses/0, 165 write_canonical/2, 391
garbage_collect_atoms/0, 684, 1119 write_term/2, 388
garbage_collect_clauses/0, 164--166 write_term/3, 389
gcd/2, 490 write_to_chars/2, 1203
gdebug/0, 119 write_to_chars/3, 1204
gen_assoc/3, 1181 write_canonical/1, 390, 566
gen_nb_set/2, 1323 write_canonical/2, 413, 938
gen_state/1, 1394 write_canonical/[1
gensym _l_i_b_r_a_r_y, 1288 2], 17
gensym/2, 1289 write_term/2, 57, 66, 211, 388--
get/1, 370 390, 413, 431, 451, 561,
get/2, 371 566, 748
get0/1, 310, 368, 369 write_term/3, 66, 69, 388, 412
get0/2, 369 write_term/[2
get_assoc/3, 1182 3], 17
get_assoc/5, 1183 writef/1, 560
get_attr/3, 744 writef/2, 34, 78, 387, 561, 562
get_attrs/2, 755 writef/[1
get_byte/1, 362 2], 557
get_byte/2, 363 writeln/1, 559
get_char/1, 366 writeq/1, 394, 561, 566
get_char/2, 367 writeq/2, 395
get_code/1, 364 www_browser _l_i_b_r_a_r_y, 1326, 1507
get_code/2, 365 www_form_encode/2, 1434, 1435
get_single_char/1, 380 www_open_url/1, 1327
get_time/1, 594 www_open_url/1, 1327
get_attr/3, 754
get_attrs/2, 756 X-Windows, 7
get_byte/1, 368 X11, 8
get_byte/2, 367 xor/2, 512
get_byte/[1 XPCE, 8
2], 129 xref_built_in/1, 1368
get_char/1, 364 xref_called/3, 1365
get_char/2, 367 xref_clean/1, 1363
get_char/[1 xref_current_source/1, 1362
2], 129 xref_defined/3, 1364
get_code/1, 129, 368, 378, 380 xref_exported/2, 1366
get_code/2, 84, 321, 367, 369, 384, xref_module/2, 1367
386 xref_source/1, 1361
get_code/[1
2], 129 YAP
get_single_char/1, 43, 66 prolog, 1468
get_time/1, 619, 667
getenv/2, 586, 587, 1327 zcompare/3, 1252
global_cardinality/2, 1246
global_cardinality/3, 1247
global_url/3, 1429
GMP, 476
GNU-Emacs, 48
goal, 1473
goal_expansion/2, 154, 1486
goal_expansion/2, 130, 151, 152,
154--156, 159, 1281, 1469,
1472
Graphics, 8
ground/1, 82, 196, 283, 922
group_pairs_by_key/2, 1352
gspy/1, 120
gtrace/0, 118, 844
GUI, 8
guitracer/0, 23, 115--117, 126,
647, 651
gxref/0, 53, 123, 711, 1360
halt/0, 57, 637, 638
halt/1, 638, 1106, 1486
halt/[0
1], 147
hash/1, 292, 293
hashing, 1473
head, 1473
help/0, 50, 69, 1151, 1459
help/1, 49--51, 66, 69, 1459
helpidx _l_i_b_r_a_r_y, 49
hooks, 69
html_write _l_i_b_r_a_r_y, 1370
http/http_error _l_i_b_r_a_r_y, 245
http/http_header _l_i_b_r_a_r_y, 598
http_load _l_i_b_r_a_r_y, 131, 1461
http_location/2, 1431
http_open/3, 252
http_timestamp/2, 598
IA32, 93
IDE, 95
if
directive, 159
if/1, 145, 160
ignore/1, 236, 678, 803
immediate
update view, 281
import/1, 729, 730
import_module/2, 723
import_module/2, 300, 724
imported predicate, 1473
in/2, 1221
in_pce_thread/1, 868
in_pce_thread/1, 867, 868
include/1, 130, 131, 134, 145
include/3, 1168
index/1, 282, 292, 293, 302
indexing, 1473
indomain/1, 1223
inf/2, 1263
infinite trees, 82
initialization/1, 148, 149, 764,
808, 875, 1149
initialization/2, 149
ins/2, 1222
instance/2, 279
instantiation_error/1, 1033
integer, 1473
unbounded, 476
integer/1, 185, 498
interactor/0, 322, 843
internationalization, 83
interpreted, 1473
intersection/3, 1315
is/2, 475, 476, 499, 538, 796
is_absolute_file_name/1, 622
is_absolute_url/1, 1430
is_list/1, 543
is_set/1, 1313
is_stream/1, 317
ISO Latin 1, 77
Java, 1039
join_threads/0, 842
join_threads/0, 842
keysort/2, 548, 549
label/1, 1224
labeling/2, 1225
last/2, 1305
leash/1, 57, 662, 663, 791, 1449
length/2, 545
lex_chain/1, 1241
library_directory/1, 138
library_directory/1, 70, 73, 132
license/1, 1481
license/2, 1480, 1481
line_count/2, 344
line_position/2, 345
line_count/2, 320, 322, 573
line_position/2, 320, 322, 573
list_autoload/0, 1218
list_debug_topics/0, 1286
list_redefined/0, 1219
list_to_assoc/2, 1184
list_to_ord_set/2, 1337
list_to_set/2, 1314
list_undefined/0, 1217
list_autoload/0, 1216, 1217
list_debug_topics/0, 1281
list_redefined/0, 1216
list_undefined/0, 137, 1216, 1218
listen/2, 1194, 1195
listen/3, 1195--1198
listening/3, 1199
listing/0, 179
listing/1, 57, 178, 179
lists _l_i_b_r_a_r_y, 542, 1495
load_files/2, 131, 1486
load_foreign_library/1, 877
load_foreign_library/2, 878
load_file/2, 131
load_files/2, 66, 69, 84, 131, 132,
169, 711, 1360, 1460, 1461,
1470
load_foreign_library/1, 148, 1131,
1150
load_foreign_library/[1
2], 139, 886
locale, 448
locale_sort/2, 450
locale_sort/2, 449, 589
log/1, 523
log10/1, 524
logical
update view, 281
lsb/1, 535
MacOS X, 7
make/0, 7, 70, 73, 106, 113, 126,
131, 137, 164
make_directory/1, 630
make_library_index/1, 71
make_library_index/2, 72
make_library_index/1, 70
make_library_index/2, 70
make_library_index/[1
2], 73
manpce/0, 87
map_assoc/2, 1185
map_assoc/3, 1186
map_list_to_pairs/3, 1354
maplist/2, 1172
maplist/3, 712, 731, 1147, 1173
maplist/4, 1174
maplist/5, 1175
maplist_/3, 712, 731
max/2, 493, 494
max_assoc/3, 1187
max_list/2, 1310
maximize/1, 1266
maximize/3, 1395, 1396
member/2, 57, 238, 306, 544, 621,
711, 1293, 1486
memberchk/2, 544, 1347
memory
layout, 88
merge_options/3, 1333
message
service, 1191
message_hook/3, 250
message_queue_create/1, 820
message_queue_create/2, 821
message_queue_destroy/1, 822
message_queue_property/2, 825
message_to_string/2, 251
message_hook/3, 20, 247--249, 252,
686
message_queue_create/1, 816, 822
message_to_string/2, 248, 250
meta-predicate, 1473
meta_options/3, 1334
meta_predicate/1, 713
meta_options/3, 711
meta_predicate/1, 31, 154, 302,
712, 713, 738, 1063
min/2, 494
min_assoc/3, 1188
min_list/2, 1311
minimize/1, 1265
minimize/3, 1396
mod/2, 485, 488
module, 1473
contex, 1473
module transparent, 1473
module/1, 715, 716
module/2, 152, 457, 458, 707, 708,
711, 720, 728, 738
module_property/2, 737
module_transparent/1, 732
module_property/2, 144
module_transparent/1, 302, 713,
738, 1063, 1473
msb/1, 533, 534
msort/2, 547, 548
multifile/1, 66, 170, 286, 289,
302, 1217, 1457, 1473
must_be/2, 1378
mutex_create/1, 831
mutex_create/2, 832
mutex_destroy/1, 833
mutex_lock/1, 835
mutex_property/2, 839
mutex_statistics/0, 814
mutex_trylock/1, 836
mutex_unlock/1, 837
mutex_unlock_all/0, 838
mutex_create/1, 834, 835
mutex_create/2, 839
mutex_lock/1, 836
my_compare/3, 1472
mypred/1, 717
name/1, 712
name/2, 423, 430
name_of/2, 1195
nb_current/2, 770
nb_delete/1, 771
nb_getval/2, 768
nb_linkarg/3, 420
nb_linkval/2, 769
nb_set _l_i_b_r_a_r_y, 1319
nb_set_to_list/2, 1325
nb_setarg/3, 419
nb_setval/2, 767
nb_getval/2, 768
nb_linkarg/3, 419, 421
nb_linkval/2, 420, 421, 772
nb_setarg/3, 128, 418, 420, 421,
1319, 1378
nb_setval/2, 419, 421, 764, 769,
772, 1455
neck, 1473
neighbors/3, 1420
neighbours/3, 1419, 1420
nextto/3, 1301
nl/0, 347
nl/1, 348
nl/[0
1], 561
nodebug/0, 656, 657
nodebug/1, 1284, 1285
noguitracer/0, 115, 117, 126, 652
nonvar/1, 184
noprofile/1, 678
noprotocol/0, 645
normalize_space/2, 447
nospy/1, 57, 69, 660, 851, 1458
nospyall/0, 69, 661, 1458
not/1, 234, 1486
notrace/0, 650, 789, 790
notrace/1, 655
nth0/3, 1303
nth1/3, 1304
nth_clause/3, 306
nth_clause/3, 307, 1445
number
rational, 476
number/1, 189
number_chars/2, 427
number_codes/2, 428
number_to_chars/2, 1207
number_to_chars/3, 1208
number_chars/2, 21, 129, 428
number_codes/2, 21, 129, 423, 429,
430
numbervars/3, 388, 412, 413
numbervars/4, 390, 412, 413
numbervars/[3
4], 82
numlist/3, 1312
objective/2, 1397
occurs_check, 211
on_signal/3, 254
on_signal/3, 19, 254, 255
once/1, 235, 236, 238, 339, 636,
655, 669, 834, 1068
online_help _l_i_b_r_a_r_y, 1486
op/3, 286, 388, 458, 459, 720
open/3, 66, 308, 309, 311
open/4, 13, 84, 85, 129, 310, 311,
315, 321, 322, 382, 1376,
1377
open_chars_stream/2, 1211
open_dde_conversation/3, 690
open_null_stream/1, 312
open_resource/3, 1154
open_shared_object/2, 886
open_shared_object/3, 887
open_null_stream/1, 321
open_resource/3, 18, 1144, 1151,
1154
open_shared_object/2, 66, 874, 887
operand, 1473
operator, 1473
and modules, 457
option _l_i_b_r_a_r_y, 1378, 1496
option/2, 1330
option/3, 1329
ord_add_element/3, 1338
ord_del_element/3, 1339
ord_disjoint/2, 1342
ord_empty/1, 1336
ord_intersect/2, 1340
ord_intersection/3, 1341
ord_list_to_assoc/2, 1189
ord_memberchk/2, 1347
ord_subset/2, 1346
ord_subtract/3, 1343
ord_union/3, 1344
ord_union/4, 1345
ord_intersect/2, 1342
ordsets _l_i_b_r_a_r_y, 1335, 1497
oset _l_i_b_r_a_r_y, 1335
pairs _l_i_b_r_a_r_y, 1499
pairs_keys/2, 1351
pairs_keys_values/3, 1349
pairs_values/2, 1350
parse_time/2, 600
parse_time/3, 601
parse_url/2, 1432
parse_url/3, 1433
parse_url_search/2, 1439
parse_time/3, 600
partition/4, 1170
partition/5, 1171
pce_call/1, 870
pce_dispatch/1, 869
pce_xref _l_i_b_r_a_r_y, 122
pce_call/1, 868, 870
pce_dispatch/1, 868
peek_byte/1, 372
peek_byte/2, 373
peek_char/1, 376
peek_char/2, 377
peek_code/1, 374
peek_code/2, 375
peek_byte/[1
2], 129
peek_char/[1
2], 129
peek_code/[1
2], 129
permission_error/3, 1038
permutation/2, 1307
phrase/2, 257, 258
phrase/3, 257, 259
phrase_from_file/2, 1357
phrase_from_file/3, 1358
pi/0, 529
pio _l_i_b_r_a_r_y, 1355, 1500
PL_abort_hook(), 1116
PL_abort_unhook(), 1117
PL_action(), 1106
PL_agc_hook(), 1119
PL_atom_chars(), 911
PL_atom_nchars(), 965
PL_atom_wchars(), 968
PL_blob_data(), 1051
PL_BLOB_NOCOPY, 1040
PL_BLOB_TEXT, 1040
PL_BLOB_UNIQUE, 1040
PL_call(), 1068
PL_call_predicate(), 1067
PL_chars_to_term(), 1015
PL_cleanup(), 1127
PL_cleanup_fork(), 1128
PL_close_foreign_frame(), 1071
PL_close_query(), 1066
PL_compare(), 1091
PL_cons_functor(), 994
PL_cons_functor_v(), 995
PL_cons_list(), 996
PL_context(), 1075
PL_copy_term_ref(), 895
PL_create_engine(), 863
PL_cut_query(), 1065
PL_CYCLIC_TERM, 977
PL_destroy_engine(), 864
PL_discard_foreign_frame(), 1072
PL_dispatch_hook(), 1115
PL_domain_error(), 1036
PL_erase(), 1096
PL_erase_external(), 1099
PL_exception(), 1082
PL_existence_error(), 1037
PL_fail(), 902
PL_foreign_context(), 907
PL_foreign_context_address(), 908
PL_foreign_control(), 906
PL_free(), 1139
PL_functor_arity(), 914
PL_functor_name(), 913
PL_get_arg(), 950
PL_get_atom(), 935
PL_get_atom_chars(), 936
PL_get_atom_ex(), 1018
PL_get_atom_nchars(), 953
PL_get_blob(), 1050
PL_get_bool(), 944
PL_get_bool_ex(), 1024
PL_get_char_ex(), 1026
PL_get_chars(), 938
PL_get_file_name(), 1101
PL_get_file_nameW(), 1102
PL_get_float(), 946
PL_get_float_ex(), 1025
PL_get_functor(), 947
PL_get_head(), 974
PL_get_int64(), 942
PL_get_int64_ex(), 1021
PL_get_integer(), 940
PL_get_integer_ex(), 1019
PL_get_intptr(), 943
PL_get_intptr_ex(), 1022
PL_get_list(), 973
PL_get_list_chars(), 939
PL_get_list_ex(), 1028
PL_get_list_nchars(), 954
PL_get_long(), 941
PL_get_long_ex(), 1020
PL_get_module(), 949
PL_get_mpq(), 1054
PL_get_mpz(), 1053
PL_get_name_arity(), 948
PL_get_nchars(), 955
PL_get_nil(), 976
PL_get_nil_ex(), 1029
PL_get_pointer(), 945
PL_get_pointer_ex(), 1027
PL_get_signum_ex(), 1088
PL_get_size_ex(), 1023
PL_get_string_chars(), 937
PL_get_tail(), 975
PL_get_wchars(), 969
PL_halt(), 1129
PL_handle_signals(), 1087
PL_initialise(), 1123
PL_install_readline(), 1125
PL_instantiation_error(), 1033
PL_is_acyclic(), 933
PL_is_atom(), 923
PL_is_atomic(), 931
PL_is_blob(), 1047
PL_is_compound(), 927
PL_is_float(), 926
PL_is_functor(), 928
PL_is_ground(), 922
PL_is_initialised(), 1124
PL_is_integer(), 925
PL_is_list(), 929
PL_is_number(), 932
PL_is_pair(), 930
PL_is_string(), 924
PL_is_variable(), 921
PL_license(), 1482
PL_LIST, 977
PL_malloc(), 1137
PL_module_name(), 1077
PL_new_atom(), 910
PL_new_atom_nchars(), 964
PL_new_atom_wchars(), 967
PL_new_functor(), 912
PL_new_module(), 1078
PL_new_term_ref(), 893
PL_new_term_refs(), 894
PL_next_solution(), 1064
PL_NOT_A_LIST, 977
PL_on_halt(), 1118
PL_open_foreign_frame(), 1070
PL_open_query(), 1063
PL_PARTIAL_LIST, 977
PL_permission_error(), 1038
PL_pred(), 1059
PL_predicate(), 1060
PL_predicate_info(), 1061
PL_put_atom(), 981
PL_put_atom_chars(), 982
PL_put_atom_nchars(), 956
PL_put_blob(), 1049
PL_put_float(), 989
PL_put_functor(), 990
PL_put_int64(), 987
PL_put_integer(), 986
PL_put_list(), 991
PL_put_list_chars(), 985
PL_put_list_nchars(), 959
PL_put_list_ncodes(), 958
PL_put_nil(), 992
PL_put_pointer(), 988
PL_put_string_chars(), 983
PL_put_string_nchars(), 957, 984
PL_put_term(), 993
PL_put_variable(), 980
PL_query(), 1108
1515
|