This file is indexed.

/usr/share/pyshared/Bio/Seq.py is in python-biopython 1.58-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
# Copyright 2000-2002 Brad Chapman.
# Copyright 2004-2005 by M de Hoon.
# Copyright 2007-2010 by Peter Cock.
# All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.
"""Provides objects to represent biological sequences with alphabets.

See also U{http://biopython.org/wiki/Seq} and the chapter in our tutorial:
 - U{http://biopython.org/DIST/docs/tutorial/Tutorial.html}
 - U{http://biopython.org/DIST/docs/tutorial/Tutorial.pdf}
"""
__docformat__ ="epytext en" #Don't just use plain text in epydoc API pages!

import string #for maketrans only
import array
import sys

from Bio import Alphabet
from Bio.Alphabet import IUPAC
from Bio.Data.IUPACData import ambiguous_dna_complement, ambiguous_rna_complement
from Bio.Data import CodonTable

def _maketrans(complement_mapping):
    """Makes a python string translation table (PRIVATE).

    Arguments:
     - complement_mapping - a dictionary such as ambiguous_dna_complement
       and ambiguous_rna_complement from Data.IUPACData.

    Returns a translation table (a string of length 256) for use with the
    python string's translate method to use in a (reverse) complement.
    
    Compatible with lower case and upper case sequences.

    For internal use only.
    """
    before = ''.join(complement_mapping.keys())
    after  = ''.join(complement_mapping.values())
    before = before + before.lower()
    after  = after + after.lower()
    if sys.version_info[0] == 3 :
        return str.maketrans(before, after)
    else:
        return string.maketrans(before, after)

_dna_complement_table = _maketrans(ambiguous_dna_complement)
_rna_complement_table = _maketrans(ambiguous_rna_complement)

class Seq(object):
    """A read-only sequence object (essentially a string with an alphabet).

    Like normal python strings, our basic sequence object is immutable.
    This prevents you from doing my_seq[5] = "A" for example, but does allow
    Seq objects to be used as dictionary keys.

    The Seq object provides a number of string like methods (such as count,
    find, split and strip), which are alphabet aware where appropriate.

    In addition to the string like sequence, the Seq object has an alphabet
    property. This is an instance of an Alphabet class from Bio.Alphabet,
    for example generic DNA, or IUPAC DNA. This describes the type of molecule
    (e.g. RNA, DNA, protein) and may also indicate the expected symbols
    (letters).

    The Seq object also provides some biological methods, such as complement,
    reverse_complement, transcribe, back_transcribe and translate (which are
    not applicable to sequences with a protein alphabet).
    """
    def __init__(self, data, alphabet = Alphabet.generic_alphabet):
        """Create a Seq object.

        Arguments:
         - seq      - Sequence, required (string)
         - alphabet - Optional argument, an Alphabet object from Bio.Alphabet
        
        You will typically use Bio.SeqIO to read in sequences from files as
        SeqRecord objects, whose sequence will be exposed as a Seq object via
        the seq property.

        However, will often want to create your own Seq objects directly:

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import IUPAC
        >>> my_seq = Seq("MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF",
        ...              IUPAC.protein)
        >>> my_seq
        Seq('MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF', IUPACProtein())
        >>> print my_seq
        MKQHKAMIVALIVICITAVVAALVTRKDLCEVHIRTGQTEVAVF
        >>> my_seq.alphabet
        IUPACProtein()

        """
        # Enforce string storage
        if not isinstance(data, basestring):
            raise TypeError("The sequence data given to a Seq object should "
                            "be a string (not another Seq object etc)")
        self._data = data
        self.alphabet = alphabet  # Seq API requirement
 
    # A data property is/was a Seq API requirement
    # Note this is read only since the Seq object is meant to be imutable
    @property
    def data(self) :
        """Sequence as a string (DEPRECATED).

        This is a read only property provided for backwards compatility with
        older versions of Biopython (as is the tostring() method). We now
        encourage you to use str(my_seq) instead of my_seq.data or the method
        my_seq.tostring().

        In recent releases of Biopython it was possible to change a Seq object
        by updating its data property, but this triggered a deprecation warning.
        Now the data property is read only, since Seq objects are meant to be
        immutable:

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import generic_dna
        >>> my_seq = Seq("ACGT", generic_dna)
        >>> str(my_seq) == my_seq.tostring() == "ACGT"
        True
        >>> my_seq.data = "AAAA"
        Traceback (most recent call last):
           ...
        AttributeError: can't set attribute
        """
        import warnings
        import Bio
        warnings.warn("Accessing the .data attribute is deprecated. Please "
                      "use str(my_seq) or my_seq.tostring() instead of "
                      "my_seq.data.", Bio.BiopythonDeprecationWarning)
        return str(self)

    def __repr__(self):
        """Returns a (truncated) representation of the sequence for debugging."""
        if len(self) > 60:
            #Shows the last three letters as it is often useful to see if there
            #is a stop codon at the end of a sequence.
            #Note total length is 54+3+3=60
            return "%s('%s...%s', %s)" % (self.__class__.__name__,
                                   str(self)[:54], str(self)[-3:],
                                   repr(self.alphabet))
        else:
            return "%s(%s, %s)" % (self.__class__.__name__,
                                  repr(self._data),
                                   repr(self.alphabet))
    def __str__(self):
        """Returns the full sequence as a python string, use str(my_seq).

        Note that Biopython 1.44 and earlier would give a truncated
        version of repr(my_seq) for str(my_seq).  If you are writing code
        which need to be backwards compatible with old Biopython, you
        should continue to use my_seq.tostring() rather than str(my_seq).
        """
        return self._data

    def __hash__(self):
        """Hash for comparison.

        See the __cmp__ documentation - we plan to change this!
        """
        return id(self) #Currently use object identity for equality testing
    
    def __cmp__(self, other):
        """Compare the sequence to another sequence or a string (README).

        Historically comparing Seq objects has done Python object comparison.
        After considerable discussion (keeping in mind constraints of the
        Python language, hashes and dictionary support) a future release of
        Biopython will change this to use simple string comparison. The plan is
        that comparing incompatible alphabets (e.g. DNA to RNA) will trigger a
        warning.

        This version of Biopython still does Python object comparison, but with
        a warning about this future change. During this transition period,
        please just do explicit comparisons:

        >>> seq1 = Seq("ACGT")
        >>> seq2 = Seq("ACGT")
        >>> id(seq1) == id(seq2)
        False
        >>> str(seq1) == str(seq2)
        True

        Note - This method indirectly supports ==, < , etc.
        """
        if hasattr(other, "alphabet"):
            #other should be a Seq or a MutableSeq
            import warnings
            warnings.warn("In future comparing Seq objects will use string "
                          "comparison (not object comparison). Incompatible "
                          "alphabets will trigger a warning (not an exception). "
                          "In the interim please use id(seq1)==id(seq2) or "
                          "str(seq1)==str(seq2) to make your code explicit "
                          "and to avoid this warning.", FutureWarning)
        return cmp(id(self), id(other))

    def __len__(self):
        """Returns the length of the sequence, use len(my_seq)."""
        return len(self._data)       # Seq API requirement

    def __getitem__(self, index) :                 # Seq API requirement
        """Returns a subsequence of single letter, use my_seq[index]."""
        #Note since Python 2.0, __getslice__ is deprecated
        #and __getitem__ is used instead.
        #See http://docs.python.org/ref/sequence-methods.html
        if isinstance(index, int):
            #Return a single letter as a string
            return self._data[index]
        else:
            #Return the (sub)sequence as another Seq object
            return Seq(self._data[index], self.alphabet)

    def __add__(self, other):
        """Add another sequence or string to this sequence.

        If adding a string to a Seq, the alphabet is preserved:

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import generic_protein
        >>> Seq("MELKI", generic_protein) + "LV"
        Seq('MELKILV', ProteinAlphabet())

        When adding two Seq (like) objects, the alphabets are important.
        Consider this example:

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet.IUPAC import unambiguous_dna, ambiguous_dna
        >>> unamb_dna_seq = Seq("ACGT", unambiguous_dna)
        >>> ambig_dna_seq = Seq("ACRGT", ambiguous_dna)
        >>> unamb_dna_seq
        Seq('ACGT', IUPACUnambiguousDNA())
        >>> ambig_dna_seq
        Seq('ACRGT', IUPACAmbiguousDNA())

        If we add the ambiguous and unambiguous IUPAC DNA alphabets, we get
        the more general ambiguous IUPAC DNA alphabet:
        
        >>> unamb_dna_seq + ambig_dna_seq
        Seq('ACGTACRGT', IUPACAmbiguousDNA())

        However, if the default generic alphabet is included, the result is
        a generic alphabet:

        >>> Seq("") + ambig_dna_seq
        Seq('ACRGT', Alphabet())

        You can't add RNA and DNA sequences:
        
        >>> from Bio.Alphabet import generic_dna, generic_rna
        >>> Seq("ACGT", generic_dna) + Seq("ACGU", generic_rna)
        Traceback (most recent call last):
           ...
        TypeError: Incompatible alphabets DNAAlphabet() and RNAAlphabet()

        You can't add nucleotide and protein sequences:

        >>> from Bio.Alphabet import generic_dna, generic_protein
        >>> Seq("ACGT", generic_dna) + Seq("MELKI", generic_protein)
        Traceback (most recent call last):
           ...
        TypeError: Incompatible alphabets DNAAlphabet() and ProteinAlphabet()
        """
        if hasattr(other, "alphabet"):
            #other should be a Seq or a MutableSeq
            if not Alphabet._check_type_compatible([self.alphabet,
                                                    other.alphabet]):
                raise TypeError("Incompatible alphabets %s and %s" \
                                % (repr(self.alphabet), repr(other.alphabet)))
            #They should be the same sequence type (or one of them is generic)
            a = Alphabet._consensus_alphabet([self.alphabet, other.alphabet])
            return self.__class__(str(self) + str(other), a)
        elif isinstance(other, basestring):
            #other is a plain string - use the current alphabet
            return self.__class__(str(self) + other, self.alphabet)
        from Bio.SeqRecord import SeqRecord #Lazy to avoid circular imports
        if isinstance(other, SeqRecord):
            #Get the SeqRecord's __radd__ to handle this
            return NotImplemented
        else :
            raise TypeError

    def __radd__(self, other):
        """Adding a sequence on the left.

        If adding a string to a Seq, the alphabet is preserved:

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import generic_protein
        >>> "LV" + Seq("MELKI", generic_protein)
        Seq('LVMELKI', ProteinAlphabet())

        Adding two Seq (like) objects is handled via the __add__ method.
        """
        if hasattr(other, "alphabet"):
            #other should be a Seq or a MutableSeq
            if not Alphabet._check_type_compatible([self.alphabet,
                                                    other.alphabet]):
                raise TypeError("Incompatable alphabets %s and %s" \
                                % (repr(self.alphabet), repr(other.alphabet)))
            #They should be the same sequence type (or one of them is generic)
            a = Alphabet._consensus_alphabet([self.alphabet, other.alphabet])
            return self.__class__(str(other) + str(self), a)
        elif isinstance(other, basestring):
            #other is a plain string - use the current alphabet
            return self.__class__(other + str(self), self.alphabet)
        else:
            raise TypeError

    def tostring(self):                            # Seq API requirement
        """Returns the full sequence as a python string (semi-obsolete).

        Although not formally deprecated, you are now encouraged to use
        str(my_seq) instead of my_seq.tostring()."""
        #TODO - Fix all places elsewhere in Biopython using this method,
        #then start deprecation process?
        #import warnings
        #warnings.warn("This method is obsolete; please use str(my_seq) "
        #              "instead of my_seq.tostring().",
        #              PendingDeprecationWarning)
        return str(self)
    
    def tomutable(self):   # Needed?  Or use a function?
        """Returns the full sequence as a MutableSeq object.

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import IUPAC
        >>> my_seq = Seq("MKQHKAMIVALIVICITAVVAAL",
        ...              IUPAC.protein)
        >>> my_seq
        Seq('MKQHKAMIVALIVICITAVVAAL', IUPACProtein())
        >>> my_seq.tomutable()
        MutableSeq('MKQHKAMIVALIVICITAVVAAL', IUPACProtein())

        Note that the alphabet is preserved.
        """
        return MutableSeq(str(self), self.alphabet)

    def _get_seq_str_and_check_alphabet(self, other_sequence):
        """string/Seq/MutableSeq to string, checking alphabet (PRIVATE).

        For a string argument, returns the string.

        For a Seq or MutableSeq, it checks the alphabet is compatible
        (raising an exception if it isn't), and then returns a string.
        """
        try:
            other_alpha = other_sequence.alphabet
        except AttributeError:
            #Assume other_sequence is a string
            return other_sequence

        #Other should be a Seq or a MutableSeq
        if not Alphabet._check_type_compatible([self.alphabet, other_alpha]):
            raise TypeError("Incompatable alphabets %s and %s" \
                            % (repr(self.alphabet), repr(other_alpha)))
        #Return as a string
        return str(other_sequence)
    
    def count(self, sub, start=0, end=sys.maxint):
        """Non-overlapping count method, like that of a python string.

        This behaves like the python string method of the same name,
        which does a non-overlapping count!

        Returns an integer, the number of occurrences of substring
        argument sub in the (sub)sequence given by [start:end].
        Optional arguments start and end are interpreted as in slice
        notation.
    
        Arguments:
         - sub - a string or another Seq object to look for
         - start - optional integer, slice start
         - end - optional integer, slice end

        e.g.

        >>> from Bio.Seq import Seq
        >>> my_seq = Seq("AAAATGA")
        >>> print my_seq.count("A")
        5
        >>> print my_seq.count("ATG")
        1
        >>> print my_seq.count(Seq("AT"))
        1
        >>> print my_seq.count("AT", 2, -1)
        1

        HOWEVER, please note because python strings and Seq objects (and
        MutableSeq objects) do a non-overlapping search, this may not give
        the answer you expect:

        >>> "AAAA".count("AA")
        2
        >>> print Seq("AAAA").count("AA")
        2

        A non-overlapping search would give the answer as three!
        """
        #If it has one, check the alphabet:
        sub_str = self._get_seq_str_and_check_alphabet(sub)
        return str(self).count(sub_str, start, end)

    def __contains__(self, char):
        """Implements the 'in' keyword, like a python string.

        e.g.

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import generic_dna, generic_rna, generic_protein
        >>> my_dna = Seq("ATATGAAATTTGAAAA", generic_dna)
        >>> "AAA" in my_dna
        True
        >>> Seq("AAA") in my_dna
        True
        >>> Seq("AAA", generic_dna) in my_dna
        True

        Like other Seq methods, this will raise a type error if another Seq
        (or Seq like) object with an incompatible alphabet is used:

        >>> Seq("AAA", generic_rna) in my_dna
        Traceback (most recent call last):
           ...
        TypeError: Incompatable alphabets DNAAlphabet() and RNAAlphabet()
        >>> Seq("AAA", generic_protein) in my_dna
        Traceback (most recent call last):
           ...
        TypeError: Incompatable alphabets DNAAlphabet() and ProteinAlphabet()
        """
        #If it has one, check the alphabet:
        sub_str = self._get_seq_str_and_check_alphabet(char)
        return sub_str in str(self)

    def find(self, sub, start=0, end=sys.maxint):
        """Find method, like that of a python string.

        This behaves like the python string method of the same name.

        Returns an integer, the index of the first occurrence of substring
        argument sub in the (sub)sequence given by [start:end].

        Arguments:
         - sub - a string or another Seq object to look for
         - start - optional integer, slice start
         - end - optional integer, slice end

        Returns -1 if the subsequence is NOT found.
        
        e.g. Locating the first typical start codon, AUG, in an RNA sequence:

        >>> from Bio.Seq import Seq
        >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
        >>> my_rna.find("AUG")
        3
        """
        #If it has one, check the alphabet:
        sub_str = self._get_seq_str_and_check_alphabet(sub)
        return str(self).find(sub_str, start, end)

    def rfind(self, sub, start=0, end=sys.maxint):
        """Find from right method, like that of a python string.

        This behaves like the python string method of the same name.

        Returns an integer, the index of the last (right most) occurrence of
        substring argument sub in the (sub)sequence given by [start:end].

        Arguments:
         - sub - a string or another Seq object to look for
         - start - optional integer, slice start
         - end - optional integer, slice end

        Returns -1 if the subsequence is NOT found.

        e.g. Locating the last typical start codon, AUG, in an RNA sequence:

        >>> from Bio.Seq import Seq
        >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
        >>> my_rna.rfind("AUG")
        15
        """
        #If it has one, check the alphabet:
        sub_str = self._get_seq_str_and_check_alphabet(sub)
        return str(self).rfind(sub_str, start, end)

    def startswith(self, prefix, start=0, end=sys.maxint):
        """Does the Seq start with the given prefix?  Returns True/False.

        This behaves like the python string method of the same name.

        Return True if the sequence starts with the specified prefix
        (a string or another Seq object), False otherwise.
        With optional start, test sequence beginning at that position.
        With optional end, stop comparing sequence at that position.
        prefix can also be a tuple of strings to try.  e.g.
        
        >>> from Bio.Seq import Seq
        >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
        >>> my_rna.startswith("GUC")
        True
        >>> my_rna.startswith("AUG")
        False
        >>> my_rna.startswith("AUG", 3)
        True
        >>> my_rna.startswith(("UCC","UCA","UCG"),1)
        True
        """
        #If it has one, check the alphabet:
        if isinstance(prefix, tuple):
            #TODO - Once we drop support for Python 2.4, instead of this
            #loop offload to the string method (requires Python 2.5+).
            #Check all the alphabets first...
            prefix_strings = [self._get_seq_str_and_check_alphabet(p) \
                              for p in prefix]
            for prefix_str in prefix_strings:
                if str(self).startswith(prefix_str, start, end):
                    return True
            return False
        else:
            prefix_str = self._get_seq_str_and_check_alphabet(prefix)
            return str(self).startswith(prefix_str, start, end)

    def endswith(self, suffix, start=0, end=sys.maxint):
        """Does the Seq end with the given suffix?  Returns True/False.

        This behaves like the python string method of the same name.

        Return True if the sequence ends with the specified suffix
        (a string or another Seq object), False otherwise.
        With optional start, test sequence beginning at that position.
        With optional end, stop comparing sequence at that position.
        suffix can also be a tuple of strings to try.  e.g.

        >>> from Bio.Seq import Seq
        >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
        >>> my_rna.endswith("UUG")
        True
        >>> my_rna.endswith("AUG")
        False
        >>> my_rna.endswith("AUG", 0, 18)
        True
        >>> my_rna.endswith(("UCC","UCA","UUG"))
        True
        """        
        #If it has one, check the alphabet:
        if isinstance(suffix, tuple):
            #TODO - Once we drop support for Python 2.4, instead of this
            #loop offload to the string method (requires Python 2.5+).
            #Check all the alphabets first...
            suffix_strings = [self._get_seq_str_and_check_alphabet(p) \
                              for p in suffix]
            for suffix_str in suffix_strings:
                if str(self).endswith(suffix_str, start, end):
                    return True
            return False
        else:
            suffix_str = self._get_seq_str_and_check_alphabet(suffix)
            return str(self).endswith(suffix_str, start, end)


    def split(self, sep=None, maxsplit=-1):
        """Split method, like that of a python string.

        This behaves like the python string method of the same name.

        Return a list of the 'words' in the string (as Seq objects),
        using sep as the delimiter string.  If maxsplit is given, at
        most maxsplit splits are done.  If maxsplit is ommited, all
        splits are made.

        Following the python string method, sep will by default be any
        white space (tabs, spaces, newlines) but this is unlikely to
        apply to biological sequences.
        
        e.g.

        >>> from Bio.Seq import Seq
        >>> my_rna = Seq("GUCAUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAGUUG")
        >>> my_aa = my_rna.translate()
        >>> my_aa
        Seq('VMAIVMGR*KGAR*L', HasStopCodon(ExtendedIUPACProtein(), '*'))
        >>> my_aa.split("*")
        [Seq('VMAIVMGR', HasStopCodon(ExtendedIUPACProtein(), '*')), Seq('KGAR', HasStopCodon(ExtendedIUPACProtein(), '*')), Seq('L', HasStopCodon(ExtendedIUPACProtein(), '*'))]
        >>> my_aa.split("*",1)
        [Seq('VMAIVMGR', HasStopCodon(ExtendedIUPACProtein(), '*')), Seq('KGAR*L', HasStopCodon(ExtendedIUPACProtein(), '*'))]

        See also the rsplit method:

        >>> my_aa.rsplit("*",1)
        [Seq('VMAIVMGR*KGAR', HasStopCodon(ExtendedIUPACProtein(), '*')), Seq('L', HasStopCodon(ExtendedIUPACProtein(), '*'))]
        """
        #If it has one, check the alphabet:
        sep_str = self._get_seq_str_and_check_alphabet(sep)
        #TODO - If the sep is the defined stop symbol, or gap char,
        #should we adjust the alphabet?
        return [Seq(part, self.alphabet) \
                for part in str(self).split(sep_str, maxsplit)]

    def rsplit(self, sep=None, maxsplit=-1):
        """Right split method, like that of a python string.

        This behaves like the python string method of the same name.

        Return a list of the 'words' in the string (as Seq objects),
        using sep as the delimiter string.  If maxsplit is given, at
        most maxsplit splits are done COUNTING FROM THE RIGHT.
        If maxsplit is ommited, all splits are made.

        Following the python string method, sep will by default be any
        white space (tabs, spaces, newlines) but this is unlikely to
        apply to biological sequences.
        
        e.g. print my_seq.rsplit("*",1)

        See also the split method.
        """
        #If it has one, check the alphabet:
        sep_str = self._get_seq_str_and_check_alphabet(sep)
        return [Seq(part, self.alphabet) \
                for part in str(self).rsplit(sep_str, maxsplit)]

    def strip(self, chars=None):
        """Returns a new Seq object with leading and trailing ends stripped.

        This behaves like the python string method of the same name.

        Optional argument chars defines which characters to remove.  If
        ommitted or None (default) then as for the python string method,
        this defaults to removing any white space.
        
        e.g. print my_seq.strip("-")

        See also the lstrip and rstrip methods.
        """
        #If it has one, check the alphabet:
        strip_str = self._get_seq_str_and_check_alphabet(chars)
        return Seq(str(self).strip(strip_str), self.alphabet)

    def lstrip(self, chars=None):
        """Returns a new Seq object with leading (left) end stripped.

        This behaves like the python string method of the same name.

        Optional argument chars defines which characters to remove.  If
        ommitted or None (default) then as for the python string method,
        this defaults to removing any white space.
        
        e.g. print my_seq.lstrip("-")

        See also the strip and rstrip methods.
        """
        #If it has one, check the alphabet:
        strip_str = self._get_seq_str_and_check_alphabet(chars)
        return Seq(str(self).lstrip(strip_str), self.alphabet)

    def rstrip(self, chars=None):
        """Returns a new Seq object with trailing (right) end stripped.

        This behaves like the python string method of the same name.

        Optional argument chars defines which characters to remove.  If
        ommitted or None (default) then as for the python string method,
        this defaults to removing any white space.
        
        e.g. Removing a nucleotide sequence's polyadenylation (poly-A tail):

        >>> from Bio.Alphabet import IUPAC
        >>> from Bio.Seq import Seq
        >>> my_seq = Seq("CGGTACGCTTATGTCACGTAGAAAAAA", IUPAC.unambiguous_dna)
        >>> my_seq
        Seq('CGGTACGCTTATGTCACGTAGAAAAAA', IUPACUnambiguousDNA())
        >>> my_seq.rstrip("A")
        Seq('CGGTACGCTTATGTCACGTAG', IUPACUnambiguousDNA())

        See also the strip and lstrip methods.
        """
        #If it has one, check the alphabet:
        strip_str = self._get_seq_str_and_check_alphabet(chars)
        return Seq(str(self).rstrip(strip_str), self.alphabet)

    def upper(self):
        """Returns an upper case copy of the sequence.

        >>> from Bio.Alphabet import HasStopCodon, generic_protein
        >>> from Bio.Seq import Seq
        >>> my_seq = Seq("VHLTPeeK*", HasStopCodon(generic_protein))
        >>> my_seq
        Seq('VHLTPeeK*', HasStopCodon(ProteinAlphabet(), '*'))
        >>> my_seq.lower()
        Seq('vhltpeek*', HasStopCodon(ProteinAlphabet(), '*'))
        >>> my_seq.upper()
        Seq('VHLTPEEK*', HasStopCodon(ProteinAlphabet(), '*'))

        This will adjust the alphabet if required. See also the lower method.
        """
        return Seq(str(self).upper(), self.alphabet._upper())

    def lower(self):
        """Returns a lower case copy of the sequence.

        This will adjust the alphabet if required. Note that the IUPAC alphabets
        are upper case only, and thus a generic alphabet must be substituted.

        >>> from Bio.Alphabet import Gapped, generic_dna
        >>> from Bio.Alphabet import IUPAC
        >>> from Bio.Seq import Seq
        >>> my_seq = Seq("CGGTACGCTTATGTCACGTAG*AAAAAA", Gapped(IUPAC.unambiguous_dna, "*"))
        >>> my_seq
        Seq('CGGTACGCTTATGTCACGTAG*AAAAAA', Gapped(IUPACUnambiguousDNA(), '*'))
        >>> my_seq.lower()
        Seq('cggtacgcttatgtcacgtag*aaaaaa', Gapped(DNAAlphabet(), '*'))

        See also the upper method.
        """
        return Seq(str(self).lower(), self.alphabet._lower())

    def complement(self):
        """Returns the complement sequence. New Seq object.

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import IUPAC
        >>> my_dna = Seq("CCCCCGATAG", IUPAC.unambiguous_dna)
        >>> my_dna
        Seq('CCCCCGATAG', IUPACUnambiguousDNA())
        >>> my_dna.complement()
        Seq('GGGGGCTATC', IUPACUnambiguousDNA())

        You can of course used mixed case sequences,

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import generic_dna
        >>> my_dna = Seq("CCCCCgatA-GD", generic_dna)
        >>> my_dna
        Seq('CCCCCgatA-GD', DNAAlphabet())
        >>> my_dna.complement()
        Seq('GGGGGctaT-CH', DNAAlphabet())

        Note in the above example, ambiguous character D denotes
        G, A or T so its complement is H (for C, T or A).
        
        Trying to complement a protein sequence raises an exception.

        >>> my_protein = Seq("MAIVMGR", IUPAC.protein)
        >>> my_protein.complement()
        Traceback (most recent call last):
           ...
        ValueError: Proteins do not have complements!
        """
        base = Alphabet._get_base_alphabet(self.alphabet)
        if isinstance(base, Alphabet.ProteinAlphabet):
            raise ValueError("Proteins do not have complements!")
        if isinstance(base, Alphabet.DNAAlphabet):
            ttable = _dna_complement_table
        elif isinstance(base, Alphabet.RNAAlphabet):
            ttable = _rna_complement_table
        elif ('U' in self._data or 'u' in self._data) \
        and ('T' in self._data or 't' in self._data):
            #TODO - Handle this cleanly?
            raise ValueError("Mixed RNA/DNA found")
        elif 'U' in self._data or 'u' in self._data:
            ttable = _rna_complement_table
        else:
            ttable = _dna_complement_table
        #Much faster on really long sequences than the previous loop based one.
        #thx to Michael Palmer, University of Waterloo
        return Seq(str(self).translate(ttable), self.alphabet)

    def reverse_complement(self):
        """Returns the reverse complement sequence. New Seq object.

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import IUPAC
        >>> my_dna = Seq("CCCCCGATAGNR", IUPAC.ambiguous_dna)
        >>> my_dna
        Seq('CCCCCGATAGNR', IUPACAmbiguousDNA())
        >>> my_dna.reverse_complement()
        Seq('YNCTATCGGGGG', IUPACAmbiguousDNA())

        Note in the above example, since R = G or A, its complement
        is Y (which denotes C or T).

        You can of course used mixed case sequences,

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import generic_dna
        >>> my_dna = Seq("CCCCCgatA-G", generic_dna)
        >>> my_dna
        Seq('CCCCCgatA-G', DNAAlphabet())
        >>> my_dna.reverse_complement()
        Seq('C-TatcGGGGG', DNAAlphabet())

        Trying to complement a protein sequence raises an exception:

        >>> my_protein = Seq("MAIVMGR", IUPAC.protein)
        >>> my_protein.reverse_complement()
        Traceback (most recent call last):
           ...
        ValueError: Proteins do not have complements!
        """
        #Use -1 stride/step to reverse the complement
        return self.complement()[::-1]

    def transcribe(self):
        """Returns the RNA sequence from a DNA sequence. New Seq object.

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import IUPAC
        >>> coding_dna = Seq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG",
        ...                  IUPAC.unambiguous_dna)
        >>> coding_dna
        Seq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG', IUPACUnambiguousDNA())
        >>> coding_dna.transcribe()
        Seq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG', IUPACUnambiguousRNA())

        Trying to transcribe a protein or RNA sequence raises an exception:

        >>> my_protein = Seq("MAIVMGR", IUPAC.protein)
        >>> my_protein.transcribe()
        Traceback (most recent call last):
           ...
        ValueError: Proteins cannot be transcribed!
        """
        base = Alphabet._get_base_alphabet(self.alphabet)
        if isinstance(base, Alphabet.ProteinAlphabet):
            raise ValueError("Proteins cannot be transcribed!")
        if isinstance(base, Alphabet.RNAAlphabet):
            raise ValueError("RNA cannot be transcribed!")

        if self.alphabet==IUPAC.unambiguous_dna:
            alphabet = IUPAC.unambiguous_rna
        elif self.alphabet==IUPAC.ambiguous_dna:
            alphabet = IUPAC.ambiguous_rna
        else:
            alphabet = Alphabet.generic_rna
        return Seq(str(self).replace('T','U').replace('t','u'), alphabet)
    
    def back_transcribe(self):
        """Returns the DNA sequence from an RNA sequence. New Seq object.

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import IUPAC
        >>> messenger_rna = Seq("AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG",
        ...                     IUPAC.unambiguous_rna)
        >>> messenger_rna
        Seq('AUGGCCAUUGUAAUGGGCCGCUGAAAGGGUGCCCGAUAG', IUPACUnambiguousRNA())
        >>> messenger_rna.back_transcribe()
        Seq('ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG', IUPACUnambiguousDNA())

        Trying to back-transcribe a protein or DNA sequence raises an
        exception:

        >>> my_protein = Seq("MAIVMGR", IUPAC.protein)
        >>> my_protein.back_transcribe()
        Traceback (most recent call last):
           ...
        ValueError: Proteins cannot be back transcribed!
        """
        base = Alphabet._get_base_alphabet(self.alphabet)
        if isinstance(base, Alphabet.ProteinAlphabet):
            raise ValueError("Proteins cannot be back transcribed!")
        if isinstance(base, Alphabet.DNAAlphabet):
            raise ValueError("DNA cannot be back transcribed!")

        if self.alphabet==IUPAC.unambiguous_rna:
            alphabet = IUPAC.unambiguous_dna
        elif self.alphabet==IUPAC.ambiguous_rna:
            alphabet = IUPAC.ambiguous_dna
        else:
            alphabet = Alphabet.generic_dna
        return Seq(str(self).replace("U", "T").replace("u", "t"), alphabet)

    def translate(self, table="Standard", stop_symbol="*", to_stop=False,
                  cds=False):
        """Turns a nucleotide sequence into a protein sequence. New Seq object.

        This method will translate DNA or RNA sequences, and those with a
        nucleotide or generic alphabet.  Trying to translate a protein
        sequence raises an exception.

        Arguments:
         - table - Which codon table to use?  This can be either a name
                   (string), an NCBI identifier (integer), or a CodonTable
                   object (useful for non-standard genetic codes).  This
                   defaults to the "Standard" table.
         - stop_symbol - Single character string, what to use for terminators.
                         This defaults to the asterisk, "*".
         - to_stop - Boolean, defaults to False meaning do a full translation
                     continuing on past any stop codons (translated as the
                     specified stop_symbol).  If True, translation is
                     terminated at the first in frame stop codon (and the
                     stop_symbol is not appended to the returned protein
                     sequence).
         - cds - Boolean, indicates this is a complete CDS.  If True,
                 this checks the sequence starts with a valid alternative start
                 codon (which will be translated as methionine, M), that the
                 sequence length is a multiple of three, and that there is a
                 single in frame stop codon at the end (this will be excluded
                 from the protein sequence, regardless of the to_stop option).
                 If these tests fail, an exception is raised.
        
        e.g. Using the standard table:

        >>> coding_dna = Seq("GTGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG")
        >>> coding_dna.translate()
        Seq('VAIVMGR*KGAR*', HasStopCodon(ExtendedIUPACProtein(), '*'))
        >>> coding_dna.translate(stop_symbol="@")
        Seq('VAIVMGR@KGAR@', HasStopCodon(ExtendedIUPACProtein(), '@'))
        >>> coding_dna.translate(to_stop=True)
        Seq('VAIVMGR', ExtendedIUPACProtein())

        Now using NCBI table 2, where TGA is not a stop codon:

        >>> coding_dna.translate(table=2)
        Seq('VAIVMGRWKGAR*', HasStopCodon(ExtendedIUPACProtein(), '*'))
        >>> coding_dna.translate(table=2, to_stop=True)
        Seq('VAIVMGRWKGAR', ExtendedIUPACProtein())

        In fact, GTG is an alternative start codon under NCBI table 2, meaning
        this sequence could be a complete CDS:

        >>> coding_dna.translate(table=2, cds=True)
        Seq('MAIVMGRWKGAR', ExtendedIUPACProtein())

        It isn't a valid CDS under NCBI table 1, due to both the start codon and
        also the in frame stop codons:
        
        >>> coding_dna.translate(table=1, cds=True)
        Traceback (most recent call last):
            ...
        TranslationError: First codon 'GTG' is not a start codon

        If the sequence has no in-frame stop codon, then the to_stop argument
        has no effect:

        >>> coding_dna2 = Seq("TTGGCCATTGTAATGGGCCGC")
        >>> coding_dna2.translate()
        Seq('LAIVMGR', ExtendedIUPACProtein())
        >>> coding_dna2.translate(to_stop=True)
        Seq('LAIVMGR', ExtendedIUPACProtein())

        NOTE - Ambiguous codons like "TAN" or "NNN" could be an amino acid
        or a stop codon.  These are translated as "X".  Any invalid codon
        (e.g. "TA?" or "T-A") will throw a TranslationError.

        NOTE - Does NOT support gapped sequences.

        NOTE - This does NOT behave like the python string's translate
        method.  For that use str(my_seq).translate(...) instead.
        """
        if isinstance(table, str) and len(table)==256:
            raise ValueError("The Seq object translate method DOES NOT take " \
                             + "a 256 character string mapping table like " \
                             + "the python string object's translate method. " \
                             + "Use str(my_seq).translate(...) instead.")
        if isinstance(Alphabet._get_base_alphabet(self.alphabet),
                      Alphabet.ProteinAlphabet):
            raise ValueError("Proteins cannot be translated!")
        try:
            table_id = int(table)
        except ValueError:
            #Assume its a table name
            if self.alphabet==IUPAC.unambiguous_dna:
                #Will use standard IUPAC protein alphabet, no need for X
                codon_table = CodonTable.unambiguous_dna_by_name[table]
            elif self.alphabet==IUPAC.unambiguous_rna:
                #Will use standard IUPAC protein alphabet, no need for X
                codon_table = CodonTable.unambiguous_rna_by_name[table]
            else:
                #This will use the extended IUPAC protein alphabet with X etc.
                #The same table can be used for RNA or DNA (we use this for
                #translating strings).
                codon_table = CodonTable.ambiguous_generic_by_name[table]
        except (AttributeError, TypeError):
            #Assume its a CodonTable object
            if isinstance(table, CodonTable.CodonTable):
                codon_table = table
            else:
                raise ValueError('Bad table argument')
        else:
            #Assume its a table ID
            if self.alphabet==IUPAC.unambiguous_dna:
                #Will use standard IUPAC protein alphabet, no need for X
                codon_table = CodonTable.unambiguous_dna_by_id[table_id]
            elif self.alphabet==IUPAC.unambiguous_rna:
                #Will use standard IUPAC protein alphabet, no need for X
                codon_table = CodonTable.unambiguous_rna_by_id[table_id]
            else:
                #This will use the extended IUPAC protein alphabet with X etc.
                #The same table can be used for RNA or DNA (we use this for
                #translating strings).
                codon_table = CodonTable.ambiguous_generic_by_id[table_id]
        protein = _translate_str(str(self), codon_table, \
                                 stop_symbol, to_stop, cds)
        if stop_symbol in protein:
            alphabet = Alphabet.HasStopCodon(codon_table.protein_alphabet,
                                             stop_symbol = stop_symbol)
        else:
            alphabet = codon_table.protein_alphabet
        return Seq(protein, alphabet)

    def ungap(self, gap=None):
        """Return a copy of the sequence without the gap character(s).

        The gap character can be specified in two ways - either as an explicit
        argument, or via the sequence's alphabet. For example:

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import generic_dna
        >>> my_dna = Seq("-ATA--TGAAAT-TTGAAAA", generic_dna)
        >>> my_dna
        Seq('-ATA--TGAAAT-TTGAAAA', DNAAlphabet())
        >>> my_dna.ungap("-")
        Seq('ATATGAAATTTGAAAA', DNAAlphabet())

        If the gap character is not given as an argument, it will be taken from
        the sequence's alphabet (if defined). Notice that the returned sequence's
        alphabet is adjusted since it no longer requires a gapped alphabet:

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import IUPAC, Gapped, HasStopCodon
        >>> my_pro = Seq("MVVLE=AD*", HasStopCodon(Gapped(IUPAC.protein, "=")))
        >>> my_pro
        Seq('MVVLE=AD*', HasStopCodon(Gapped(IUPACProtein(), '='), '*'))
        >>> my_pro.ungap()
        Seq('MVVLEAD*', HasStopCodon(IUPACProtein(), '*'))

        Or, with a simpler gapped DNA example:

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import IUPAC, Gapped
        >>> my_seq = Seq("CGGGTAG=AAAAAA", Gapped(IUPAC.unambiguous_dna, "="))
        >>> my_seq
        Seq('CGGGTAG=AAAAAA', Gapped(IUPACUnambiguousDNA(), '='))
        >>> my_seq.ungap()
        Seq('CGGGTAGAAAAAA', IUPACUnambiguousDNA())

        As long as it is consistent with the alphabet, although it is redundant,
        you can still supply the gap character as an argument to this method:

        >>> my_seq
        Seq('CGGGTAG=AAAAAA', Gapped(IUPACUnambiguousDNA(), '='))
        >>> my_seq.ungap("=")
        Seq('CGGGTAGAAAAAA', IUPACUnambiguousDNA())
        
        However, if the gap character given as the argument disagrees with that
        declared in the alphabet, an exception is raised:

        >>> my_seq
        Seq('CGGGTAG=AAAAAA', Gapped(IUPACUnambiguousDNA(), '='))
        >>> my_seq.ungap("-")
        Traceback (most recent call last):
           ...
        ValueError: Gap '-' does not match '=' from alphabet

        Finally, if a gap character is not supplied, and the alphabet does not
        define one, an exception is raised:

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import generic_dna
        >>> my_dna = Seq("ATA--TGAAAT-TTGAAAA", generic_dna)
        >>> my_dna
        Seq('ATA--TGAAAT-TTGAAAA', DNAAlphabet())
        >>> my_dna.ungap()
        Traceback (most recent call last):
           ...
        ValueError: Gap character not given and not defined in alphabet

        """
        if hasattr(self.alphabet, "gap_char"):
            if not gap:
                gap = self.alphabet.gap_char
            elif gap != self.alphabet.gap_char:
                raise ValueError("Gap %s does not match %s from alphabet" \
                                 % (repr(gap), repr(self.alphabet.gap_char)))
            alpha = Alphabet._ungap(self.alphabet)
        elif not gap:
            raise ValueError("Gap character not given and not defined in alphabet")
        else:
            alpha = self.alphabet #modify!
        if len(gap)!=1 or not isinstance(gap, str):
            raise ValueError("Unexpected gap character, %s" % repr(gap))
        return Seq(str(self).replace(gap, ""), alpha)

class UnknownSeq(Seq):
    """A read-only sequence object of known length but unknown contents.

    If you have an unknown sequence, you can represent this with a normal
    Seq object, for example:

    >>> my_seq = Seq("N"*5)
    >>> my_seq
    Seq('NNNNN', Alphabet())
    >>> len(my_seq)
    5
    >>> print my_seq
    NNNNN

    However, this is rather wasteful of memory (especially for large
    sequences), which is where this class is most usefull:

    >>> unk_five = UnknownSeq(5)
    >>> unk_five
    UnknownSeq(5, alphabet = Alphabet(), character = '?')
    >>> len(unk_five)
    5
    >>> print(unk_five)
    ?????

    You can add unknown sequence together, provided their alphabets and
    characters are compatible, and get another memory saving UnknownSeq:

    >>> unk_four = UnknownSeq(4)
    >>> unk_four
    UnknownSeq(4, alphabet = Alphabet(), character = '?')
    >>> unk_four + unk_five
    UnknownSeq(9, alphabet = Alphabet(), character = '?')

    If the alphabet or characters don't match up, the addition gives an
    ordinary Seq object:
    
    >>> unk_nnnn = UnknownSeq(4, character = "N")
    >>> unk_nnnn
    UnknownSeq(4, alphabet = Alphabet(), character = 'N')
    >>> unk_nnnn + unk_four
    Seq('NNNN????', Alphabet())

    Combining with a real Seq gives a new Seq object:

    >>> known_seq = Seq("ACGT")
    >>> unk_four + known_seq
    Seq('????ACGT', Alphabet())
    >>> known_seq + unk_four
    Seq('ACGT????', Alphabet())
    """
    def __init__(self, length, alphabet = Alphabet.generic_alphabet, character = None):
        """Create a new UnknownSeq object.

        If character is ommited, it is determed from the alphabet, "N" for
        nucleotides, "X" for proteins, and "?" otherwise.
        """
        self._length = int(length)
        if self._length < 0:
            #TODO - Block zero length UnknownSeq?  You can just use a Seq!
            raise ValueError("Length must not be negative.")
        self.alphabet = alphabet
        if character:
            if len(character) != 1:
                raise ValueError("character argument should be a single letter string.")
            self._character = character
        else:
            base = Alphabet._get_base_alphabet(alphabet)
            #TODO? Check the case of the letters in the alphabet?
            #We may have to use "n" instead of "N" etc.
            if isinstance(base, Alphabet.NucleotideAlphabet):
                self._character = "N"
            elif isinstance(base, Alphabet.ProteinAlphabet):
                self._character = "X"
            else:
                self._character = "?"

    def __len__(self):
        """Returns the stated length of the unknown sequence."""
        return self._length
    
    def __str__(self):
        """Returns the unknown sequence as full string of the given length."""
        return self._character * self._length

    def __repr__(self):
        return "UnknownSeq(%i, alphabet = %s, character = %s)" \
               % (self._length, repr(self.alphabet), repr(self._character))

    def __add__(self, other):
        """Add another sequence or string to this sequence.

        Adding two UnknownSeq objects returns another UnknownSeq object
        provided the character is the same and the alphabets are compatible.

        >>> from Bio.Seq import UnknownSeq
        >>> from Bio.Alphabet import generic_protein
        >>> UnknownSeq(10, generic_protein) + UnknownSeq(5, generic_protein)
        UnknownSeq(15, alphabet = ProteinAlphabet(), character = 'X')

        If the characters differ, an UnknownSeq object cannot be used, so a
        Seq object is returned:

        >>> from Bio.Seq import UnknownSeq
        >>> from Bio.Alphabet import generic_protein
        >>> UnknownSeq(10, generic_protein) + UnknownSeq(5, generic_protein,
        ...                                              character="x")
        Seq('XXXXXXXXXXxxxxx', ProteinAlphabet())

        If adding a string to an UnknownSeq, a new Seq is returned with the
        same alphabet:
        
        >>> from Bio.Seq import UnknownSeq
        >>> from Bio.Alphabet import generic_protein
        >>> UnknownSeq(5, generic_protein) + "LV"
        Seq('XXXXXLV', ProteinAlphabet())
        """
        if isinstance(other, UnknownSeq) \
        and other._character == self._character:
            #TODO - Check the alphabets match
            return UnknownSeq(len(self)+len(other),
                              self.alphabet, self._character)
        #Offload to the base class...
        return Seq(str(self), self.alphabet) + other

    def __radd__(self, other):
        #If other is an UnknownSeq, then __add__ would be called.
        #Offload to the base class...
        return other + Seq(str(self), self.alphabet)

    def __getitem__(self, index):
        """Get a subsequence from the UnknownSeq object.
        
        >>> unk = UnknownSeq(8, character="N")
        >>> print unk[:]
        NNNNNNNN
        >>> print unk[5:3]
        <BLANKLINE>
        >>> print unk[1:-1]
        NNNNNN
        >>> print unk[1:-1:2]
        NNN
        """
        if isinstance(index, int):
            #TODO - Check the bounds without wasting memory
            return str(self)[index]
        old_length = self._length
        step = index.step
        if step is None or step == 1:
            #This calculates the length you'd get from ("N"*old_length)[index]
            start = index.start
            end = index.stop
            if start is None:
                start = 0
            elif start < 0:
                start = max(0, old_length + start)
            elif start > old_length:
                start = old_length
            if end is None:
                end = old_length
            elif end < 0:
                end = max(0, old_length + end)
            elif end > old_length:
                end = old_length
            new_length = max(0, end-start)
        elif step == 0:
            raise ValueError("slice step cannot be zero")
        else:
            #TODO - handle step efficiently
            new_length = len(("X"*old_length)[index])
        #assert new_length == len(("X"*old_length)[index]), \
        #       (index, start, end, step, old_length,
        #        new_length, len(("X"*old_length)[index]))
        return UnknownSeq(new_length, self.alphabet, self._character)

    def count(self, sub, start=0, end=sys.maxint):
        """Non-overlapping count method, like that of a python string.

        This behaves like the python string (and Seq object) method of the
        same name, which does a non-overlapping count!

        Returns an integer, the number of occurrences of substring
        argument sub in the (sub)sequence given by [start:end].
        Optional arguments start and end are interpreted as in slice
        notation.
    
        Arguments:
         - sub - a string or another Seq object to look for
         - start - optional integer, slice start
         - end - optional integer, slice end

        >>> "NNNN".count("N")
        4
        >>> Seq("NNNN").count("N")
        4
        >>> UnknownSeq(4, character="N").count("N")
        4
        >>> UnknownSeq(4, character="N").count("A")
        0
        >>> UnknownSeq(4, character="N").count("AA")
        0

        HOWEVER, please note because that python strings and Seq objects (and
        MutableSeq objects) do a non-overlapping search, this may not give
        the answer you expect:

        >>> UnknownSeq(4, character="N").count("NN")
        2
        >>> UnknownSeq(4, character="N").count("NNN")
        1
        """
        sub_str = self._get_seq_str_and_check_alphabet(sub)
        if len(sub_str) == 1:
            if str(sub_str) == self._character:
                if start==0 and end >= self._length:
                    return self._length
                else:
                    #This could be done more cleverly...
                    return str(self).count(sub_str, start, end)
            else:
                return 0
        else:
            if set(sub_str) == set(self._character):
                if start==0 and end >= self._length:
                    return self._length // len(sub_str)
                else:
                    #This could be done more cleverly...
                    return str(self).count(sub_str, start, end)
            else:
                return 0

    def complement(self):
        """The complement of an unknown nucleotide equals itself.

        >>> my_nuc = UnknownSeq(8)
        >>> my_nuc
        UnknownSeq(8, alphabet = Alphabet(), character = '?')
        >>> print my_nuc
        ????????
        >>> my_nuc.complement()
        UnknownSeq(8, alphabet = Alphabet(), character = '?')
        >>> print my_nuc.complement()
        ????????
        """
        if isinstance(Alphabet._get_base_alphabet(self.alphabet),
                      Alphabet.ProteinAlphabet):
            raise ValueError("Proteins do not have complements!")
        return self

    def reverse_complement(self):
        """The reverse complement of an unknown nucleotide equals itself.

        >>> my_nuc = UnknownSeq(10)
        >>> my_nuc
        UnknownSeq(10, alphabet = Alphabet(), character = '?')
        >>> print my_nuc
        ??????????
        >>> my_nuc.reverse_complement()
        UnknownSeq(10, alphabet = Alphabet(), character = '?')
        >>> print my_nuc.reverse_complement()
        ??????????
        """
        if isinstance(Alphabet._get_base_alphabet(self.alphabet),
                      Alphabet.ProteinAlphabet):
            raise ValueError("Proteins do not have complements!")
        return self

    def transcribe(self):
        """Returns unknown RNA sequence from an unknown DNA sequence.

        >>> my_dna = UnknownSeq(10, character="N")
        >>> my_dna
        UnknownSeq(10, alphabet = Alphabet(), character = 'N')
        >>> print my_dna
        NNNNNNNNNN
        >>> my_rna = my_dna.transcribe()
        >>> my_rna
        UnknownSeq(10, alphabet = RNAAlphabet(), character = 'N')
        >>> print my_rna
        NNNNNNNNNN
        """
        #Offload the alphabet stuff
        s = Seq(self._character, self.alphabet).transcribe()
        return UnknownSeq(self._length, s.alphabet, self._character)

    def back_transcribe(self):
        """Returns unknown DNA sequence from an unknown RNA sequence.

        >>> my_rna = UnknownSeq(20, character="N")
        >>> my_rna
        UnknownSeq(20, alphabet = Alphabet(), character = 'N')
        >>> print my_rna
        NNNNNNNNNNNNNNNNNNNN
        >>> my_dna = my_rna.back_transcribe()
        >>> my_dna
        UnknownSeq(20, alphabet = DNAAlphabet(), character = 'N')
        >>> print my_dna
        NNNNNNNNNNNNNNNNNNNN
        """
        #Offload the alphabet stuff
        s = Seq(self._character, self.alphabet).back_transcribe()
        return UnknownSeq(self._length, s.alphabet, self._character)

    def upper(self):
        """Returns an upper case copy of the sequence.

        >>> from Bio.Alphabet import generic_dna
        >>> from Bio.Seq import UnknownSeq
        >>> my_seq = UnknownSeq(20, generic_dna, character="n")
        >>> my_seq
        UnknownSeq(20, alphabet = DNAAlphabet(), character = 'n')
        >>> print my_seq
        nnnnnnnnnnnnnnnnnnnn
        >>> my_seq.upper()
        UnknownSeq(20, alphabet = DNAAlphabet(), character = 'N')
        >>> print my_seq.upper()
        NNNNNNNNNNNNNNNNNNNN

        This will adjust the alphabet if required. See also the lower method.
        """
        return UnknownSeq(self._length, self.alphabet._upper(), self._character.upper())

    def lower(self):
        """Returns a lower case copy of the sequence.

        This will adjust the alphabet if required:

        >>> from Bio.Alphabet import IUPAC
        >>> from Bio.Seq import UnknownSeq
        >>> my_seq = UnknownSeq(20, IUPAC.extended_protein)
        >>> my_seq
        UnknownSeq(20, alphabet = ExtendedIUPACProtein(), character = 'X')
        >>> print my_seq
        XXXXXXXXXXXXXXXXXXXX
        >>> my_seq.lower()
        UnknownSeq(20, alphabet = ProteinAlphabet(), character = 'x')
        >>> print my_seq.lower()
        xxxxxxxxxxxxxxxxxxxx

        See also the upper method.
        """
        return UnknownSeq(self._length, self.alphabet._lower(), self._character.lower())

    def translate(self, **kwargs):
        """Translate an unknown nucleotide sequence into an unknown protein.

        e.g.

        >>> my_seq = UnknownSeq(11, character="N")
        >>> print my_seq
        NNNNNNNNNNN
        >>> my_protein = my_seq.translate()
        >>> my_protein
        UnknownSeq(3, alphabet = ProteinAlphabet(), character = 'X')
        >>> print my_protein
        XXX

        In comparison, using a normal Seq object:

        >>> my_seq = Seq("NNNNNNNNNNN")
        >>> print my_seq
        NNNNNNNNNNN
        >>> my_protein = my_seq.translate()
        >>> my_protein
        Seq('XXX', ExtendedIUPACProtein())
        >>> print my_protein
        XXX

        """
        if isinstance(Alphabet._get_base_alphabet(self.alphabet),
                      Alphabet.ProteinAlphabet):
            raise ValueError("Proteins cannot be translated!")
        return UnknownSeq(self._length//3, Alphabet.generic_protein, "X")

    def ungap(self, gap=None):
        """Return a copy of the sequence without the gap character(s).

        The gap character can be specified in two ways - either as an explicit
        argument, or via the sequence's alphabet. For example:

        >>> from Bio.Seq import UnknownSeq
        >>> from Bio.Alphabet import Gapped, generic_dna
        >>> my_dna = UnknownSeq(20, Gapped(generic_dna,"-"))
        >>> my_dna
        UnknownSeq(20, alphabet = Gapped(DNAAlphabet(), '-'), character = 'N')
        >>> my_dna.ungap()
        UnknownSeq(20, alphabet = DNAAlphabet(), character = 'N')
        >>> my_dna.ungap("-")
        UnknownSeq(20, alphabet = DNAAlphabet(), character = 'N')

        If the UnknownSeq is using the gap character, then an empty Seq is
        returned:

        >>> my_gap = UnknownSeq(20, Gapped(generic_dna,"-"), character="-")
        >>> my_gap
        UnknownSeq(20, alphabet = Gapped(DNAAlphabet(), '-'), character = '-')
        >>> my_gap.ungap()
        Seq('', DNAAlphabet())
        >>> my_gap.ungap("-")
        Seq('', DNAAlphabet())

        Notice that the returned sequence's alphabet is adjusted to remove any
        explicit gap character declaration.
        """
        #Offload the alphabet stuff
        s = Seq(self._character, self.alphabet).ungap()
        if s :
            return UnknownSeq(self._length, s.alphabet, self._character)
        else :
            return Seq("", s.alphabet)

class MutableSeq(object):
    """An editable sequence object (with an alphabet).

    Unlike normal python strings and our basic sequence object (the Seq class)
    which are immuatable, the MutableSeq lets you edit the sequence in place.
    However, this means you cannot use a MutableSeq object as a dictionary key.

    >>> from Bio.Seq import MutableSeq
    >>> from Bio.Alphabet import generic_dna
    >>> my_seq = MutableSeq("ACTCGTCGTCG", generic_dna)
    >>> my_seq
    MutableSeq('ACTCGTCGTCG', DNAAlphabet())
    >>> my_seq[5]
    'T'
    >>> my_seq[5] = "A"
    >>> my_seq
    MutableSeq('ACTCGACGTCG', DNAAlphabet())
    >>> my_seq[5]
    'A'
    >>> my_seq[5:8] = "NNN"
    >>> my_seq
    MutableSeq('ACTCGNNNTCG', DNAAlphabet())
    >>> len(my_seq)
    11

    Note that the MutableSeq object does not support as many string-like
    or biological methods as the Seq object.
    """
    def __init__(self, data, alphabet = Alphabet.generic_alphabet):
        if sys.version_info[0] == 3:
            self.array_indicator = "u"
        else:
            self.array_indicator = "c"
        if isinstance(data, str): #TODO - What about unicode?
            self.data = array.array(self.array_indicator, data)
        else:
            self.data = data   # assumes the input is an array
        self.alphabet = alphabet
    
    def __repr__(self):
        """Returns a (truncated) representation of the sequence for debugging."""
        if len(self) > 60:
            #Shows the last three letters as it is often useful to see if there
            #is a stop codon at the end of a sequence.
            #Note total length is 54+3+3=60
            return "%s('%s...%s', %s)" % (self.__class__.__name__,
                                   str(self[:54]), str(self[-3:]),
                                   repr(self.alphabet))
        else:
            return "%s('%s', %s)" % (self.__class__.__name__,
                                   str(self),
                                   repr(self.alphabet))

    def __str__(self):
        """Returns the full sequence as a python string.

        Note that Biopython 1.44 and earlier would give a truncated
        version of repr(my_seq) for str(my_seq).  If you are writing code
        which needs to be backwards compatible with old Biopython, you
        should continue to use my_seq.tostring() rather than str(my_seq).
        """
        #See test_GAQueens.py for an historic usage of a non-string alphabet!
        return "".join(self.data)

    def __cmp__(self, other):
        """Compare the sequence to another sequence or a string (README).

        Currently if compared to another sequence the alphabets must be
        compatible. Comparing DNA to RNA, or Nucleotide to Protein will raise
        an exception. Otherwise only the sequence itself is compared, not the
        precise alphabet.

        A future release of Biopython will change this (and the Seq object etc)
        to use simple string comparison. The plan is that comparing sequences
        with incompatible alphabets (e.g. DNA to RNA) will trigger a warning
        but not an exception.

        During this transition period, please just do explicit comparisons:

        >>> seq1 = MutableSeq("ACGT")
        >>> seq2 = MutableSeq("ACGT")
        >>> id(seq1) == id(seq2)
        False
        >>> str(seq1) == str(seq2)
        True

        This method indirectly supports ==, < , etc.
        """
        if hasattr(other, "alphabet"):
            #other should be a Seq or a MutableSeq
            import warnings
            warnings.warn("In future comparing incompatible alphabets will "
                          "only trigger a warning (not an exception). In " 
                          "the interim please use id(seq1)==id(seq2) or "
                          "str(seq1)==str(seq2) to make your code explicit "
                          "and to avoid this warning.", FutureWarning)
            if not Alphabet._check_type_compatible([self.alphabet,
                                                    other.alphabet]):
                raise TypeError("Incompatable alphabets %s and %s" \
                                % (repr(self.alphabet), repr(other.alphabet)))
            #They should be the same sequence type (or one of them is generic)
            if isinstance(other, MutableSeq):
                #See test_GAQueens.py for an historic usage of a non-string
                #alphabet!  Comparing the arrays supports this.
                return cmp(self.data, other.data)
            else:
                return cmp(str(self), str(other))
        elif isinstance(other, basestring):
            return cmp(str(self), other)
        else:
            raise TypeError

    def __len__(self): return len(self.data)

    def __getitem__(self, index):
        #Note since Python 2.0, __getslice__ is deprecated
        #and __getitem__ is used instead.
        #See http://docs.python.org/ref/sequence-methods.html
        if isinstance(index, int):
            #Return a single letter as a string
            return self.data[index]
        else:
            #Return the (sub)sequence as another Seq object
            return MutableSeq(self.data[index], self.alphabet)

    def __setitem__(self, index, value):
        #Note since Python 2.0, __setslice__ is deprecated
        #and __setitem__ is used instead.
        #See http://docs.python.org/ref/sequence-methods.html
        if isinstance(index, int):
            #Replacing a single letter with a new string
            self.data[index] = value
        else:
            #Replacing a sub-sequence
            if isinstance(value, MutableSeq):
                self.data[index] = value.data
            elif isinstance(value, type(self.data)):
                self.data[index] = value
            else:
                self.data[index] = array.array(self.array_indicator,
                                               str(value))

    def __delitem__(self, index):
        #Note since Python 2.0, __delslice__ is deprecated
        #and __delitem__ is used instead.
        #See http://docs.python.org/ref/sequence-methods.html
        
        #Could be deleting a single letter, or a slice
        del self.data[index]
    
    def __add__(self, other):
        """Add another sequence or string to this sequence.

        Returns a new MutableSeq object."""
        if hasattr(other, "alphabet"):
            #other should be a Seq or a MutableSeq
            if not Alphabet._check_type_compatible([self.alphabet,
                                                    other.alphabet]):
                raise TypeError("Incompatable alphabets %s and %s" \
                                % (repr(self.alphabet), repr(other.alphabet)))
            #They should be the same sequence type (or one of them is generic)
            a = Alphabet._consensus_alphabet([self.alphabet, other.alphabet])
            if isinstance(other, MutableSeq):
                #See test_GAQueens.py for an historic usage of a non-string
                #alphabet!  Adding the arrays should support this.
                return self.__class__(self.data + other.data, a)
            else:
                return self.__class__(str(self) + str(other), a)
        elif isinstance(other, basestring):
            #other is a plain string - use the current alphabet
            return self.__class__(str(self) + str(other), self.alphabet)
        else:
            raise TypeError

    def __radd__(self, other):
        if hasattr(other, "alphabet"):
            #other should be a Seq or a MutableSeq
            if not Alphabet._check_type_compatible([self.alphabet,
                                                    other.alphabet]):
                raise TypeError("Incompatable alphabets %s and %s" \
                                % (repr(self.alphabet), repr(other.alphabet)))
            #They should be the same sequence type (or one of them is generic)
            a = Alphabet._consensus_alphabet([self.alphabet, other.alphabet])
            if isinstance(other, MutableSeq):
                #See test_GAQueens.py for an historic usage of a non-string
                #alphabet!  Adding the arrays should support this.
                return self.__class__(other.data + self.data, a)
            else:
                return self.__class__(str(other) + str(self), a)
        elif isinstance(other, basestring):
            #other is a plain string - use the current alphabet
            return self.__class__(str(other) + str(self), self.alphabet)
        else:
            raise TypeError

    def append(self, c):
        self.data.append(c)

    def insert(self, i, c):
        self.data.insert(i, c)

    def pop(self, i = (-1)):
        c = self.data[i]
        del self.data[i]
        return c

    def remove(self, item):
        for i in range(len(self.data)):
            if self.data[i] == item:
                del self.data[i]
                return
        raise ValueError("MutableSeq.remove(x): x not in list")

    def count(self, sub, start=0, end=sys.maxint):
        """Non-overlapping count method, like that of a python string.

        This behaves like the python string method of the same name,
        which does a non-overlapping count!

        Returns an integer, the number of occurrences of substring
        argument sub in the (sub)sequence given by [start:end].
        Optional arguments start and end are interpreted as in slice
        notation.
    
        Arguments:
         - sub - a string or another Seq object to look for
         - start - optional integer, slice start
         - end - optional integer, slice end

        e.g.
        
        >>> from Bio.Seq import MutableSeq
        >>> my_mseq = MutableSeq("AAAATGA")
        >>> print my_mseq.count("A")
        5
        >>> print my_mseq.count("ATG")
        1
        >>> print my_mseq.count(Seq("AT"))
        1
        >>> print my_mseq.count("AT", 2, -1)
        1
        
        HOWEVER, please note because that python strings, Seq objects and
        MutableSeq objects do a non-overlapping search, this may not give
        the answer you expect:

        >>> "AAAA".count("AA")
        2
        >>> print MutableSeq("AAAA").count("AA")
        2

        A non-overlapping search would give the answer as three!
        """
        try:
            #TODO - Should we check the alphabet?
            search = sub.tostring()
        except AttributeError:
            search = sub

        if not isinstance(search, basestring):
            raise TypeError("expected a string, Seq or MutableSeq")

        if len(search) == 1:
            #Try and be efficient and work directly from the array.
            count = 0
            for c in self.data[start:end]:
                if c == search: count += 1
            return count
        else:
            #TODO - Can we do this more efficiently?
            return self.tostring().count(search, start, end)

    def index(self, item):
        for i in range(len(self.data)):
            if self.data[i] == item:
                return i
        raise ValueError("MutableSeq.index(x): x not in list")

    def reverse(self):
        """Modify the mutable sequence to reverse itself.

        No return value.
        """
        self.data.reverse()

    def complement(self):
        """Modify the mutable sequence to take on its complement.

        Trying to complement a protein sequence raises an exception.

        No return value.
        """
        if isinstance(Alphabet._get_base_alphabet(self.alphabet),
                      Alphabet.ProteinAlphabet):
            raise ValueError("Proteins do not have complements!")
        if self.alphabet in (IUPAC.ambiguous_dna, IUPAC.unambiguous_dna):
            d = ambiguous_dna_complement
        elif self.alphabet in (IUPAC.ambiguous_rna, IUPAC.unambiguous_rna):
            d = ambiguous_rna_complement
        elif 'U' in self.data and 'T' in self.data:
            #TODO - Handle this cleanly?
            raise ValueError("Mixed RNA/DNA found")
        elif 'U' in self.data:
            d = ambiguous_rna_complement
        else:
            d = ambiguous_dna_complement
        c = dict([(x.lower(), y.lower()) for x,y in d.iteritems()])
        d.update(c)
        self.data = map(lambda c: d[c], self.data)
        self.data = array.array(self.array_indicator, self.data)
        
    def reverse_complement(self):
        """Modify the mutable sequence to take on its reverse complement.

        Trying to reverse complement a protein sequence raises an exception.

        No return value.
        """
        self.complement()
        self.data.reverse()

    ## Sorting a sequence makes no sense.
    # def sort(self, *args): self.data.sort(*args)
    
    def extend(self, other):
        if isinstance(other, MutableSeq):
            for c in other.data:
                self.data.append(c)
        else:
            for c in other:
                self.data.append(c)

    def tostring(self):
        """Returns the full sequence as a python string (semi-obsolete).

        Although not formally deprecated, you are now encouraged to use
        str(my_seq) instead of my_seq.tostring().

        Because str(my_seq) will give you the full sequence as a python string,
        there is often no need to make an explicit conversion.  For example,
        
        print "ID={%s}, sequence={%s}" % (my_name, my_seq)

        On Biopython 1.44 or older you would have to have done this:

        print "ID={%s}, sequence={%s}" % (my_name, my_seq.tostring())
        """
        return "".join(self.data)

    def toseq(self):
        """Returns the full sequence as a new immutable Seq object.

        >>> from Bio.Seq import Seq
        >>> from Bio.Alphabet import IUPAC
        >>> my_mseq = MutableSeq("MKQHKAMIVALIVICITAVVAAL", 
        ...                      IUPAC.protein)
        >>> my_mseq
        MutableSeq('MKQHKAMIVALIVICITAVVAAL', IUPACProtein())
        >>> my_mseq.toseq()
        Seq('MKQHKAMIVALIVICITAVVAAL', IUPACProtein())

        Note that the alphabet is preserved.
        """
        return Seq("".join(self.data), self.alphabet)

# The transcribe, backward_transcribe, and translate functions are
# user-friendly versions of the corresponding functions in Bio.Transcribe
# and Bio.Translate. The functions work both on Seq objects, and on strings.

def transcribe(dna):
    """Transcribes a DNA sequence into RNA.

    If given a string, returns a new string object.

    Given a Seq or MutableSeq, returns a new Seq object with an RNA alphabet.

    Trying to transcribe a protein or RNA sequence raises an exception.

    e.g.
    
    >>> transcribe("ACTGN")
    'ACUGN'
    """
    if isinstance(dna, Seq):
        return dna.transcribe()
    elif isinstance(dna, MutableSeq):
        return dna.toseq().transcribe()
    else:
        return dna.replace('T','U').replace('t','u')

def back_transcribe(rna):
    """Back-transcribes an RNA sequence into DNA.

    If given a string, returns a new string object.
    
    Given a Seq or MutableSeq, returns a new Seq object with an RNA alphabet.

    Trying to transcribe a protein or DNA sequence raises an exception.

    e.g.

    >>> back_transcribe("ACUGN")
    'ACTGN'
    """
    if isinstance(rna, Seq):
        return rna.back_transcribe()
    elif isinstance(rna, MutableSeq):
        return rna.toseq().back_transcribe()
    else:
        return rna.replace('U','T').replace('u','t')
    
def _translate_str(sequence, table, stop_symbol="*", to_stop=False,
                   cds=False, pos_stop="X"):
    """Helper function to translate a nucleotide string (PRIVATE).

    Arguments:
     - sequence    - a string
     - table       - a CodonTable object (NOT a table name or id number)
     - stop_symbol - a single character string, what to use for terminators.
     - to_stop     - boolean, should translation terminate at the first
                     in frame stop codon?  If there is no in-frame stop codon
                     then translation continues to the end.
     - pos_stop    - a single character string for a possible stop codon
                     (e.g. TAN or NNN)
     - cds - Boolean, indicates this is a complete CDS.  If True, this
             checks the sequence starts with a valid alternative start
             codon (which will be translated as methionine, M), that the
             sequence length is a multiple of three, and that there is a
             single in frame stop codon at the end (this will be excluded
             from the protein sequence, regardless of the to_stop option).
             If these tests fail, an exception is raised.

    Returns a string.

    e.g.

    >>> from Bio.Data import CodonTable
    >>> table = CodonTable.ambiguous_dna_by_id[1]
    >>> _translate_str("AAA", table)
    'K'
    >>> _translate_str("TAR", table)
    '*'
    >>> _translate_str("TAN", table)
    'X'
    >>> _translate_str("TAN", table, pos_stop="@")
    '@'
    >>> _translate_str("TA?", table)
    Traceback (most recent call last):
       ...
    TranslationError: Codon 'TA?' is invalid
    >>> _translate_str("ATGCCCTAG", table, cds=True)
    'MP'
    >>> _translate_str("AAACCCTAG", table, cds=True)
    Traceback (most recent call last):
       ...
    TranslationError: First codon 'AAA' is not a start codon
    >>> _translate_str("ATGCCCTAGCCCTAG", table, cds=True)
    Traceback (most recent call last):
       ...
    TranslationError: Extra in frame stop codon found.
    """
    sequence = sequence.upper()
    amino_acids = []
    forward_table = table.forward_table
    stop_codons = table.stop_codons
    if table.nucleotide_alphabet.letters is not None:
        valid_letters = set(table.nucleotide_alphabet.letters.upper())
    else:
        #Assume the worst case, ambiguous DNA or RNA:
        valid_letters = set(IUPAC.ambiguous_dna.letters.upper() + \
                            IUPAC.ambiguous_rna.letters.upper())
    if cds:
        if str(sequence[:3]).upper() not in table.start_codons:
            raise CodonTable.TranslationError(\
                "First codon '%s' is not a start codon" % sequence[:3])
        if len(sequence) % 3 != 0:
            raise CodonTable.TranslationError(\
                "Sequence length %i is not a multiple of three" % len(sequence))
        if str(sequence[-3:]).upper() not in stop_codons:
            raise CodonTable.TranslationError(\
                "Final codon '%s' is not a stop codon" % sequence[-3:])
        #Don't translate the stop symbol, and manually translate the M
        sequence = sequence[3:-3]
        amino_acids = ["M"]
    n = len(sequence)
    for i in xrange(0,n-n%3,3):
        codon = sequence[i:i+3]
        try:
            amino_acids.append(forward_table[codon])
        except (KeyError, CodonTable.TranslationError):
            #Todo? Treat "---" as a special case (gapped translation)
            if codon in table.stop_codons:
                if cds:
                    raise CodonTable.TranslationError(\
                        "Extra in frame stop codon found.")
                if to_stop : break
                amino_acids.append(stop_symbol)
            elif valid_letters.issuperset(set(codon)):
                #Possible stop codon (e.g. NNN or TAN)
                amino_acids.append(pos_stop)
            else:
                raise CodonTable.TranslationError(\
                    "Codon '%s' is invalid" % codon)
    return "".join(amino_acids)

def translate(sequence, table="Standard", stop_symbol="*", to_stop=False,
              cds=False):
    """Translate a nucleotide sequence into amino acids.

    If given a string, returns a new string object. Given a Seq or
    MutableSeq, returns a Seq object with a protein alphabet.

    Arguments:
     - table - Which codon table to use?  This can be either a name (string),
               an NCBI identifier (integer), or a CodonTable object (useful
               for non-standard genetic codes).  Defaults to the "Standard"
               table.
     - stop_symbol - Single character string, what to use for any
                     terminators, defaults to the asterisk, "*".
     - to_stop - Boolean, defaults to False meaning do a full
                 translation continuing on past any stop codons
                 (translated as the specified stop_symbol).  If
                 True, translation is terminated at the first in
                 frame stop codon (and the stop_symbol is not
                 appended to the returned protein sequence).
     - cds - Boolean, indicates this is a complete CDS.  If True, this
                 checks the sequence starts with a valid alternative start
                 codon (which will be translated as methionine, M), that the
                 sequence length is a multiple of three, and that there is a
                 single in frame stop codon at the end (this will be excluded
                 from the protein sequence, regardless of the to_stop option).
                 If these tests fail, an exception is raised.
    
    A simple string example using the default (standard) genetic code:
    
    >>> coding_dna = "GTGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG"
    >>> translate(coding_dna)
    'VAIVMGR*KGAR*'
    >>> translate(coding_dna, stop_symbol="@")
    'VAIVMGR@KGAR@'
    >>> translate(coding_dna, to_stop=True)
    'VAIVMGR'
     
    Now using NCBI table 2, where TGA is not a stop codon:

    >>> translate(coding_dna, table=2)
    'VAIVMGRWKGAR*'
    >>> translate(coding_dna, table=2, to_stop=True)
    'VAIVMGRWKGAR'

    In fact this example uses an alternative start codon valid under NCBI table 2,
    GTG, which means this example is a complete valid CDS which when translated
    should really start with methionine (not valine):
    
    >>> translate(coding_dna, table=2, cds=True)
    'MAIVMGRWKGAR'

    Note that if the sequence has no in-frame stop codon, then the to_stop
    argument has no effect:

    >>> coding_dna2 = "GTGGCCATTGTAATGGGCCGC"
    >>> translate(coding_dna2)
    'VAIVMGR'
    >>> translate(coding_dna2, to_stop=True)
    'VAIVMGR'
    
    NOTE - Ambiguous codons like "TAN" or "NNN" could be an amino acid
    or a stop codon.  These are translated as "X".  Any invalid codon
    (e.g. "TA?" or "T-A") will throw a TranslationError.

    NOTE - Does NOT support gapped sequences.
    
    It will however translate either DNA or RNA.
    """
    if isinstance(sequence, Seq):
        return sequence.translate(table, stop_symbol, to_stop, cds)
    elif isinstance(sequence, MutableSeq):
        #Return a Seq object
        return sequence.toseq().translate(table, stop_symbol, to_stop, cds)
    else:
        #Assume its a string, return a string
        try:
            codon_table = CodonTable.ambiguous_generic_by_id[int(table)]
        except ValueError:
            codon_table = CodonTable.ambiguous_generic_by_name[table]
        except (AttributeError, TypeError):
            if isinstance(table, CodonTable.CodonTable):
                codon_table = table
            else:
                raise ValueError('Bad table argument')
        return _translate_str(sequence, codon_table, stop_symbol, to_stop, cds)
      
def reverse_complement(sequence):
    """Returns the reverse complement sequence of a nucleotide string.

    If given a string, returns a new string object.
    Given a Seq or a MutableSeq, returns a new Seq object with the same alphabet.

    Supports unambiguous and ambiguous nucleotide sequences.

    e.g.

    >>> reverse_complement("ACTG-NH")
    'DN-CAGT'
    """
    if isinstance(sequence, Seq):
        #Return a Seq
        return sequence.reverse_complement()
    elif isinstance(sequence, MutableSeq):
        #Return a Seq
        #Don't use the MutableSeq reverse_complement method as it is 'in place'.
        return sequence.toseq().reverse_complement()

    #Assume its a string.
    #In order to avoid some code duplication, the old code would turn the string
    #into a Seq, use the reverse_complement method, and convert back to a string.
    #This worked, but is over five times slower on short sequences!
    if ('U' in sequence or 'u' in sequence) \
    and ('T' in sequence or 't' in sequence):
        raise ValueError("Mixed RNA/DNA found")
    elif 'U' in sequence or 'u' in sequence:
        ttable = _rna_complement_table
    else:
        ttable = _dna_complement_table
    return sequence.translate(ttable)[::-1]

def _test():
    """Run the Bio.Seq module's doctests (PRIVATE)."""
    if sys.version_info[0:2] == (3,1):
        print "Not running Bio.Seq doctest on Python 3.1"
        print "See http://bugs.python.org/issue7490"
    else:
        print "Runing doctests..."
        import doctest
        doctest.testmod(optionflags=doctest.IGNORE_EXCEPTION_DETAIL)
        print "Done"

if __name__ == "__main__":
    _test()