/usr/lib/perl5/PDL/Complex.pm is in pdl 1:2.4.7+dfsg-2ubuntu5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 | #
# GENERATED WITH PDL::PP! Don't modify!
#
package PDL::Complex;
@EXPORT_OK = qw( Ctan Catan re im i cplx real PDL::PP r2C PDL::PP i2C PDL::PP Cr2p PDL::PP Cp2r PDL::PP Cadd PDL::PP Csub PDL::PP Cmul PDL::PP Cprodover PDL::PP Cscale PDL::PP Cdiv PDL::PP Ccmp PDL::PP Cconj PDL::PP Cabs PDL::PP Cabs2 PDL::PP Carg PDL::PP Csin PDL::PP Ccos PDL::PP Cexp PDL::PP Clog PDL::PP Cpow PDL::PP Csqrt PDL::PP Casin PDL::PP Cacos PDL::PP Csinh PDL::PP Ccosh PDL::PP Ctanh PDL::PP Casinh PDL::PP Cacosh PDL::PP Catanh PDL::PP Cproj PDL::PP Croots PDL::PP rCpolynomial );
%EXPORT_TAGS = (Func=>[@EXPORT_OK]);
use PDL::Core;
use PDL::Exporter;
use DynaLoader;
BEGIN {
@ISA = ( 'PDL::Exporter','DynaLoader','PDL' );
push @PDL::Core::PP, __PACKAGE__;
bootstrap PDL::Complex ;
}
use PDL::Slices;
use PDL::Types;
use PDL::Bad;
use vars qw($sep $sep2);
=head1 NAME
PDL::Complex - handle complex numbers
=head1 SYNOPSIS
use PDL;
use PDL::Complex;
=head1 DESCRIPTION
This module features a growing number of functions manipulating complex
numbers. These are usually represented as a pair C<[ real imag ]> or
C<[ angle phase ]>. If not explicitly mentioned, the functions can work
inplace (not yet implemented!!!) and require rectangular form.
While there is a procedural interface available (C<$a/$b*$c <=> Cmul
(Cdiv $a, $b), $c)>), you can also opt to cast your pdl's into the
C<PDL::Complex> datatype, which works just like your normal piddles, but
with all the normal perl operators overloaded.
The latter means that C<sin($a) + $b/$c> will be evaluated using the
normal rules of complex numbers, while other pdl functions (like C<max>)
just treat the piddle as a real-valued piddle with a lowest dimension of
size 2, so C<max> will return the maximum of all real and imaginary parts,
not the "highest" (for some definition)
=head1 TIPS, TRICKS & CAVEATS
=over 4
=item *
C<i> is a constant exported by this module, which represents
C<-1**0.5>, i.e. the imaginary unit. it can be used to quickly and
conviniently write complex constants like this: C<4+3*i>.
=item *
Use C<r2C(real-values)> to convert from real to complex, as in C<$r
= Cpow $cplx, r2C 2>. The overloaded operators automatically do that for
you, all the other functions, do not. So C<Croots 1, 5> will return all
the fifths roots of 1+1*i (due to threading).
=item *
use C<cplx(real-valued-piddle)> to cast from normal piddles intot he
complex datatype. Use C<real(complex-valued-piddle)> to cast back. This
requires a copy, though.
=item *
This module has received some testing by Vanuxem Grégory
(g.vanuxem at wanadoo dot fr). Please report any other errors you
come across!
=back
=head1 EXAMPLE WALK-THROUGH
The complex constant five is equal to C<pdl(1,0)>:
pdl> p $x = r2C 5
5 +0i
Now calculate the three roots of of five:
pdl> p $r = Croots $x, 3
[1.70998 +0i -0.854988 +1.48088i -0.854988 -1.48088i]
Check that these really are the roots of unity:
pdl> p $r ** 3
[5 +0i 5 -1.22465e-15i 5 -7.65714e-15i]
Duh! Could be better. Now try by multiplying C<$r> three times with itself:
pdl> p $r*$r*$r
[5 +0i 5 -4.72647e-15i 5 -7.53694e-15i]
Well... maybe C<Cpow> (which is used by the C<**> operator) isn't as
bad as I thought. Now multiply by C<i> and negate, which is just a very
expensive way of swapping real and imaginary parts.
pdl> p -($r*i)
[0 -1.70998i 1.48088 +0.854988i -1.48088 +0.854988i]
Now plot the magnitude of (part of) the complex sine. First generate the
coefficients:
pdl> $sin = i * zeroes(50)->xlinvals(2,4) + zeroes(50)->xlinvals(0,7)
Now plot the imaginary part, the real part and the magnitude of the sine
into the same diagram:
pdl> line im sin $sin; hold
pdl> line re sin $sin
pdl> line abs sin $sin
Sorry, but I didn't yet try to reproduce the diagram in this
text. Just run the commands yourself, making sure that you have loaded
C<PDL::Complex> (and C<PDL::Graphics::PGPLOT>).
=cut
my $i;
BEGIN { $i = bless pdl 0,1 }
sub i () { $i->copy };
=head1 FUNCTIONS
=cut
=head2 cplx real-valued-pdl
Cast a real-valued piddle to the complex datatype. The first dimension of
the piddle must be of size 2. After this the usual (complex) arithmetic
operators are applied to this pdl, rather than the normal elementwise pdl
operators. Dataflow to the complex parent works. Use C<sever> on the result
if you don't want this.
=head2 complex real-valued-pdl
Cast a real-valued piddle to the complex datatype I<without> dataflow
and I<inplace>. Achieved by merely reblessing a piddle. The first dimension of
the piddle must be of size 2.
=head2 real cplx-valued-pdl
Cast a complex valued pdl back to the "normal" pdl datatype. Afterwards
the normal elementwise pdl operators are used in operations. Dataflow
to the real parent works. Use C<sever> on the result if you don't want this.
=cut
use Carp;
sub cplx($) {
return $_[0] if UNIVERSAL::isa($_[0],'PDL::Complex'); # NOOP if just piddle
croak "first dimsize must be 2" unless $_[0]->dims > 0 && $_[0]->dim(0) == 2;
bless $_[0]->slice('');
}
sub complex($) {
return $_[0] if UNIVERSAL::isa($_[0],'PDL::Complex'); # NOOP if just piddle
croak "first dimsize must be 2" unless $_[0]->dims > 0 && $_[0]->dim(0) == 2;
bless $_[0];
}
*PDL::cplx = \&cplx;
*PDL::complex = \&complex;
sub real($) {
return $_[0] unless UNIVERSAL::isa($_[0],'PDL::Complex'); # NOOP unless complex
bless $_[0]->slice(''), 'PDL';
}
=head2 r2C
=for sig
Signature: (r(); [o]c(m=2))
=for ref
convert real to complex, assuming an imaginary part of zero
=for bad
r2C does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*PDL::r2C = \&PDL::Complex::r2C;
sub PDL::Complex::r2C($) {
return $_[0] if UNIVERSAL::isa($_[0],'PDL::Complex');
my $r = __PACKAGE__->initialize;
&PDL::Complex::_r2C_int($_[0], $r);
$r }
BEGIN {*r2C = \&PDL::Complex::r2C;
}
=head2 i2C
=for sig
Signature: (r(); [o]c(m=2))
=for ref
convert imaginary to complex, assuming a real part of zero
=for bad
i2C does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
*PDL::i2C = \&PDL::Complex::i2C; sub PDL::Complex::i2C($) { my $r = __PACKAGE__->initialize; &PDL::Complex::_i2C_int($_[0], $r); $r }
BEGIN {*i2C = \&PDL::Complex::i2C;
}
=head2 Cr2p
=for sig
Signature: (r(m=2); float+ [o]p(m=2))
=for ref
convert complex numbers in rectangular form to polar (mod,arg) form
=for bad
Cr2p does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Cr2p = \&PDL::Complex::Cr2p;
}
=head2 Cp2r
=for sig
Signature: (r(m=2); [o]p(m=2))
=for ref
convert complex numbers in polar (mod,arg) form to rectangular form
=for bad
Cp2r does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Cp2r = \&PDL::Complex::Cp2r;
}
BEGIN {*Cadd = \&PDL::Complex::Cadd;
}
BEGIN {*Csub = \&PDL::Complex::Csub;
}
=head2 Cmul
=for sig
Signature: (a(m=2); b(m=2); [o]c(m=2))
=for ref
complex multiplication
=for bad
Cmul does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Cmul = \&PDL::Complex::Cmul;
}
=head2 Cprodover
=for sig
Signature: (a(m=2,n); [o]c(m=2))
=for ref
Project via product to N-1 dimension
=for bad
Cprodover does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Cprodover = \&PDL::Complex::Cprodover;
}
=head2 Cscale
=for sig
Signature: (a(m=2); b(); [o]c(m=2))
=for ref
mixed complex/real multiplication
=for bad
Cscale does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Cscale = \&PDL::Complex::Cscale;
}
=head2 Cdiv
=for sig
Signature: (a(m=2); b(m=2); [o]c(m=2))
=for ref
complex division
=for bad
Cdiv does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Cdiv = \&PDL::Complex::Cdiv;
}
=head2 Ccmp
=for sig
Signature: (a(m=2); b(m=2); [o]c())
=for ref
Complex comparison oeprator (spaceship). It orders by real first, then by imaginary. Hm, but it is mathematical nonsense! Complex numbers cannot be ordered.
=for bad
Ccmp does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Ccmp = \&PDL::Complex::Ccmp;
}
=head2 Cconj
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
complex conjugation
=for bad
Cconj does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Cconj = \&PDL::Complex::Cconj;
}
=head2 Cabs
=for sig
Signature: (a(m=2); [o]c())
=for ref
complex C<abs()> (also known as I<modulus>)
=for bad
Cabs does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
sub PDL::Complex::Cabs($) {
my $pdl= shift;
my $abs = PDL->null;
&PDL::Complex::_Cabs_int($pdl, $abs);
$abs;
}
BEGIN {*Cabs = \&PDL::Complex::Cabs;
}
=head2 Cabs2
=for sig
Signature: (a(m=2); [o]c())
=for ref
complex squared C<abs()> (also known I<squared modulus>)
=for bad
Cabs2 does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
sub PDL::Complex::Cabs2($) {
my $pdl= shift;
my $abs2 = PDL->null;
&PDL::Complex::_Cabs2_int($pdl, $abs2);
$abs2;
}
BEGIN {*Cabs2 = \&PDL::Complex::Cabs2;
}
=head2 Carg
=for sig
Signature: (a(m=2); [o]c())
=for ref
complex argument function ("angle")
=for bad
Carg does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
sub PDL::Complex::Carg($) {
my $pdl= shift;
my $arg = PDL->null;
&PDL::Complex::_Carg_int($pdl, $arg);
$arg;
}
BEGIN {*Carg = \&PDL::Complex::Carg;
}
=head2 Csin
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
sin (a) = 1/(2*i) * (exp (a*i) - exp (-a*i))
=for bad
Csin does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Csin = \&PDL::Complex::Csin;
}
=head2 Ccos
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
cos (a) = 1/2 * (exp (a*i) + exp (-a*i))
=for bad
Ccos does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Ccos = \&PDL::Complex::Ccos;
}
=head2 Ctan a [not inplace]
tan (a) = -i * (exp (a*i) - exp (-a*i)) / (exp (a*i) + exp (-a*i))
=cut
sub Ctan($) { Csin($_[0]) / Ccos($_[0]) }
=head2 Cexp
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
exp (a) = exp (real (a)) * (cos (imag (a)) + i * sin (imag (a)))
=for bad
Cexp does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Cexp = \&PDL::Complex::Cexp;
}
=head2 Clog
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
log (a) = log (cabs (a)) + i * carg (a)
=for bad
Clog does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Clog = \&PDL::Complex::Clog;
}
=head2 Cpow
=for sig
Signature: (a(m=2); b(m=2); [o]c(m=2))
=for ref
complex C<pow()> (C<**>-operator)
=for bad
Cpow does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Cpow = \&PDL::Complex::Cpow;
}
=head2 Csqrt
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
=for bad
Csqrt does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Csqrt = \&PDL::Complex::Csqrt;
}
=head2 Casin
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
=for bad
Casin does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Casin = \&PDL::Complex::Casin;
}
=head2 Cacos
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
=for bad
Cacos does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Cacos = \&PDL::Complex::Cacos;
}
=head2 Catan cplx [not inplace]
Return the complex C<atan()>.
=cut
sub Catan($) {
my $z = shift;
Cmul Clog(Cdiv (PDL::Complex::i+$z, PDL::Complex::i-$z)), pdl(0, 0.5);
}
=head2 Csinh
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
sinh (a) = (exp (a) - exp (-a)) / 2
=for bad
Csinh does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Csinh = \&PDL::Complex::Csinh;
}
=head2 Ccosh
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
cosh (a) = (exp (a) + exp (-a)) / 2
=for bad
Ccosh does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Ccosh = \&PDL::Complex::Ccosh;
}
=head2 Ctanh
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
=for bad
Ctanh does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Ctanh = \&PDL::Complex::Ctanh;
}
=head2 Casinh
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
=for bad
Casinh does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Casinh = \&PDL::Complex::Casinh;
}
=head2 Cacosh
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
=for bad
Cacosh does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Cacosh = \&PDL::Complex::Cacosh;
}
=head2 Catanh
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
=for bad
Catanh does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Catanh = \&PDL::Complex::Catanh;
}
=head2 Cproj
=for sig
Signature: (a(m=2); [o]c(m=2))
=for ref
compute the projection of a complex number to the riemann sphere
=for bad
Cproj does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*Cproj = \&PDL::Complex::Cproj;
}
=head2 Croots
=for sig
Signature: (a(m=2); [o]c(m=2,n); int n => n)
=for ref
Compute the C<n> roots of C<a>. C<n> must be a positive integer. The result will always be a complex type!
=for bad
Croots does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
sub PDL::Complex::Croots($$) {
my ($pdl, $n) = @_;
my $r = PDL->null;
&PDL::Complex::_Croots_int($pdl, $r, $n);
bless $r;
}
BEGIN {*Croots = \&PDL::Complex::Croots;
}
=head2 re cplx, im cplx
Return the real or imaginary part of the complex number(s) given. These
are slicing operators, so data flow works. The real and imaginary parts
are returned as piddles (ref eq PDL).
=cut
sub re($) { bless $_[0]->slice("(0)"), 'PDL'; }
sub im($) { bless $_[0]->slice("(1)"), 'PDL'; }
*PDL::Complex::re = \&re;
*PDL::Complex::im = \&im;
=head2 rCpolynomial
=for sig
Signature: (coeffs(n); x(c=2,m); [o]out(c=2,m))
=for ref
evaluate the polynomial with (real) coefficients C<coeffs> at the (complex) position(s) C<x>. C<coeffs[0]> is the constant term.
=for bad
rCpolynomial does not process bad values.
It will set the bad-value flag of all output piddles if the flag is set for any of the input piddles.
=cut
BEGIN {*rCpolynomial = \&PDL::Complex::rCpolynomial;
}
;
# overload must be here, so that all the functions can be seen
# undocumented compatibility functions
sub Catan2($$) { Catan Cdiv $_[1], $_[0] }
sub atan2($$) { Catan Cdiv $_[1], $_[0] }
sub _gen_biop {
local $_ = shift;
my $sub;
if (/(\S+)\+(\w+)/) {
$sub = eval 'sub { '.$2.' $_[0], ref $_[1] eq __PACKAGE__ ? $_[1] : r2C $_[1] }';
} elsif (/(\S+)\-(\w+)/) {
$sub = eval 'sub { my $b = ref $_[1] eq __PACKAGE__ ? $_[1] : r2C $_[1];
$_[2] ? '.$2.' $b, $_[0] : '.$2.' $_[0], $b }';
} else {
die;
}
return ($1, $sub) if $1 eq "atan2";
($1, $sub, "$1=", $sub);
}
sub _gen_unop {
my ($op, $func) = ($_[0] =~ /(.+)@(\w+)/);
*$op = \&$func if $op =~ /\w+/; # create an alias
($op, eval 'sub { '.$func.' $_[0] }');
}
sub _gen_cpop {
($_[0], eval 'sub { my $b = ref $_[1] eq __PACKAGE__ ? $_[1] : r2C $_[1];
($_[2] ? $b <=> $_[0] : $_[0] <=> $b) '.$_[0].' 0 }');
}
sub initialize {
# Bless a null PDL into the supplied 1st arg package
# If 1st arg is a ref, get the package from it
bless PDL->null, ref($_[0]) ? ref($_[0]) : $_[0];
}
use overload
(map _gen_biop($_), qw(++Cadd --Csub *+Cmul /-Cdiv **-Cpow atan2-Catan2 <=>-Ccmp)),
(map _gen_unop($_), qw(sin@Csin cos@Ccos exp@Cexp abs@Cabs log@Clog sqrt@Csqrt abs@Cabs)),
(map _gen_cpop($_), qw(< <= == != => >)),
'++' => sub { $_[0] += 1 },
'--' => sub { $_[0] -= 1 },
'""' => \&PDL::Complex::string
;
# overwrite PDL's overloading to honour subclass methods in + - * /
{ package PDL;
my $warningFlag;
# This strange usage of BEGINs is to ensure the
# warning messages get disabled and enabled in the
# proper order. Without the BEGIN's the 'use overload'
# would be called first.
BEGIN {$warningFlag = $^W; # Temporarily disable warnings caused by
$^W = 0; # redefining PDL's subs
}
sub cp(;@) {
my $foo;
if (ref $_[1]
&& (ref $_[1] ne 'PDL')
&& defined ($foo = overload::Method($_[1],'+')))
{ &$foo($_[1], $_[0], !$_[2])}
else { PDL::plus (@_)}
}
sub cm(;@) {
my $foo;
if (ref $_[1]
&& (ref $_[1] ne 'PDL')
&& defined ($foo = overload::Method($_[1],'*')))
{ &$foo($_[1], $_[0], !$_[2])}
else { PDL::mult (@_)}
}
sub cmi(;@) {
my $foo;
if (ref $_[1]
&& (ref $_[1] ne 'PDL')
&& defined ($foo = overload::Method($_[1],'-')))
{ &$foo($_[1], $_[0], !$_[2])}
else { PDL::minus (@_)}
}
sub cd(;@) {
my $foo;
if (ref $_[1]
&& (ref $_[1] ne 'PDL')
&& defined ($foo = overload::Method($_[1],'/')))
{ &$foo($_[1], $_[0], !$_[2])}
else { PDL::divide (@_)}
}
# Used in overriding standard PDL +, -, *, / ops in the complex subclass.
use overload (
'+' => \&cp,
'*' => \&cm,
'-' => \&cmi,
'/' => \&cd,
);
BEGIN{ $^W = $warningFlag;} # Put Back Warnings
};
{
our $floatformat = "%4.4g"; # Default print format for long numbers
our $doubleformat = "%6.6g";
$PDL::Complex::_STRINGIZING = 0;
sub PDL::Complex::string {
my($self,$format1,$format2)=@_;
my @dims = $self->dims;
return PDL::string($self) if ($dims[0] != 2);
if($PDL::Complex::_STRINGIZING) {
return "ALREADY_STRINGIZING_NO_LOOPS";
}
local $PDL::Complex::_STRINGIZING = 1;
my $ndims = $self->getndims;
if($self->nelem > 10000) {
return "TOO LONG TO PRINT";
}
if ($ndims==0){
PDL::Core::string($self,$format1);
}
return "Null" if $self->isnull;
return "Empty" if $self->isempty; # Empty piddle
local $sep = $PDL::use_commas ? ", " : " ";
local $sep2 = $PDL::use_commas ? ", " : "";
if ($ndims < 3) {
return str1D($self,$format1,$format2);
}
else{
return strND($self,$format1,$format2,0);
}
}
sub sum {
my($x) = @_;
my $tmp = $x->mv(0,1)->clump(0,2)->mv(1,0)->sumover;
return $tmp->squeeze;
}
sub sumover{
my $m = shift;
PDL::Ufunc::sumover($m->xchg(0,1));
}
sub strND {
my($self,$format1,$format2,$level)=@_;
my @dims = $self->dims;
if ($#dims==2) {
return str2D($self,$format1,$format2,$level);
}
else {
my $secbas = join '',map {":,"} @dims[0..$#dims-1];
my $ret="\n"." "x$level ."["; my $j;
for ($j=0; $j<$dims[$#dims]; $j++) {
my $sec = $secbas . "($j)";
$ret .= strND($self->slice($sec),$format1,$format2, $level+1);
chop $ret; $ret .= $sep2;
}
chop $ret if $PDL::use_commas;
$ret .= "\n" ." "x$level ."]\n";
return $ret;
}
}
# String 1D array in nice format
#
sub str1D {
my($self,$format1,$format2)=@_;
barf "Not 1D" if $self->getndims() > 2;
my $x = PDL::Core::listref_c($self);
my ($ret,$dformat,$t, $i);
my $dtype = $self->get_datatype();
$dformat = $PDL::Complex::floatformat if $dtype == $PDL_F;
$dformat = $PDL::Complex::doubleformat if $dtype == $PDL_D;
$ret = "[" if $self->getndims() > 1;
my $badflag = $self->badflag();
for($i=0; $i<=$#$x; $i++){
$t = $$x[$i];
if ( $badflag and $t eq "BAD" ) {
# do nothing
} elsif ($format1) {
$t = sprintf $format1,$t;
} else{ # Default
if ($dformat && length($t)>7) { # Try smaller
$t = sprintf $dformat,$t;
}
}
$ret .= $i % 2 ?
$i<$#$x ? $t."i$sep" : $t."i"
: substr($$x[$i+1],0,1) eq "-" ? "$t " : $t." +";
}
$ret.="]" if $self->getndims() > 1;
return $ret;
}
sub str2D {
my($self,$format1,$format2,$level)=@_;
my @dims = $self->dims();
barf "Not 2D" if scalar(@dims)!=3;
my $x = PDL::Core::listref_c($self);
my ($i, $f, $t, $len1, $len2, $ret);
my $dtype = $self->get_datatype();
my $badflag = $self->badflag();
my $findmax = 0;
if (!defined $format1 || !defined $format2 ||
$format1 eq '' || $format2 eq '') {
$len1= $len2 = 0;
if ( $badflag ) {
for ($i=0; $i<=$#$x; $i++) {
if ( $$x[$i] eq "BAD" ) {
$f = 3;
}
else {
$f = length($$x[$i]);
}
if ($i % 2) {
$len2 = $f if $f > $len2;
}
else {
$len1 = $f if $f > $len1;
}
}
} else {
for ($i=0; $i<=$#$x; $i++) {
$f = length($$x[$i]);
if ($i % 2){
$len2 = $f if $f > $len2;
}
else{
$len1 = $f if $f > $len1;
}
}
}
$format1 = '%'.$len1.'s';
$format2 = '%'.$len2.'s';
if ($len1 > 5){
if ($dtype == $PDL_F) {
$format1 = $PDL::Complex::floatformat;
$findmax = 1;
} elsif ($dtype == $PDL_D) {
$format1 = $PDL::Complex::doubleformat;
$findmax = 1;
} else {
$findmax = 0;
}
}
if($len2 > 5){
if ($dtype == $PDL_F) {
$format2 = $PDL::Complex::floatformat;
$findmax = 1;
} elsif ($dtype == $PDL_D) {
$format2 = $PDL::Complex::doubleformat;
$findmax = 1;
} else {
$findmax = 0 unless $findmax;
}
}
}
if($findmax) {
$len1 = $len2=0;
if ( $badflag ) {
for($i=0; $i<=$#$x; $i++){
$findmax = $i % 2;
if ( $$x[$i] eq 'BAD' ){
$f = 3;
}
else{
$f = $findmax ? length(sprintf $format2,$$x[$i]) :
length(sprintf $format1,$$x[$i]);
}
if ($findmax){
$len2 = $f if $f > $len2;
}
else{
$len1 = $f if $f > $len1;
}
}
} else {
for ($i=0; $i<=$#$x; $i++) {
if ($i % 2){
$f = length(sprintf $format2,$$x[$i]);
$len2 = $f if $f > $len2;
}
else{
$f = length(sprintf $format1,$$x[$i]);
$len1 = $f if $f > $len1;
}
}
}
} # if: $findmax
$ret = "\n" . ' 'x$level . "[\n";
{
my $level = $level+1;
$ret .= ' 'x$level .'[';
$len2 += 2;
for ($i=0; $i<=$#$x; $i++) {
$findmax = $i % 2;
if ($findmax){
if ( $badflag and $$x[$i] eq 'BAD' ){
#||
#($findmax && $$x[$i - 1 ] eq 'BAD') ||
#(!$findmax && $$x[$i +1 ] eq 'BAD')){
$f = "BAD";
}
else{
$f = sprintf $format2, $$x[$i];
if (substr($$x[$i],0,1) eq '-'){
$f.='i';
}
else{
$f =~ s/(\s*)(.*)/+$2i/;
}
}
$t = $len2-length($f);
}
else{
if ( $badflag and $$x[$i] eq 'BAD' ){
$f = "BAD";
}
else{
$f = sprintf $format1, $$x[$i];
$t = $len1-length($f);
}
}
$f = ' 'x$t.$f if $t>0;
$ret .= $f;
if (($i+1)%($dims[1]*2)) {
$ret.=$sep if $findmax;
}
else{ # End of output line
$ret.=']';
if ($i==$#$x) { # very last number
$ret.="\n";
}
else{
$ret.= $sep2."\n" . ' 'x$level .'[';
}
}
}
}
$ret .= ' 'x$level."]\n";
return $ret;
}
}
=head1 AUTHOR
Copyright (C) 2000 Marc Lehmann <pcg@goof.com>.
All rights reserved. There is no warranty. You are allowed
to redistribute this software / documentation as described
in the file COPYING in the PDL distribution.
=head1 SEE ALSO
perl(1), L<PDL>.
=cut
# Exit with OK status
1;
|