/usr/include/rheolef/space.h is in librheolef-dev 5.93-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 | # ifndef _RHEO_SPACE_H
# define _RHEO_SPACE_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
namespace rheolef {
struct space_component;
struct const_space_component;
}// namespace rheolef
#include "rheolef/spacerep.h"
/*Class:space
NAME: @code{space} -- piecewise polynomial finite element space
@clindex space
DESCRIPTION:
@noindent
The @code{space} class contains some numbering
for unknowns and blocked @emph{degrees of freedoms}
related to a given mesh and polynomial approximation.
DEGREE OF FREEDOM NUMBERING:
@cindex degree of freedom
@clindex field
@clindex form
@clindex geo
@fiindex @code{.field} field
@c
@noindent
Numbering of degrees of freedom (or shortly, @dfn{dof}) depends upon
the mesh and the piecewise polynomial approximation used.
This numbering is then used by the @code{field} and @code{form} classes.
See also @ref{field class} and @ref{form class}.
@noindent
The degree-of-freedom (or shortly, @dfn{dof}) follows some simple rules,
that depends of course of the approximation.
These rules are suitable for easy @code{.field} file retrieval
(@pxref{field class}).
@apindex P0
@apindex bubble
@apindex P1
@apindex P2
@apindex P1d
@c
@table @code
@itemx P0
@itemx bubble
dof numbers follow element numbers in mesh.
@itemx P1
dof numbers follow vertice numbers in mesh.
@itemx P2
dof numbers related to vertices follow vertice numbers in mesh.
Follow dof numbers related to edges, in the edge numbering order.
@itemx P1d
dof numbers follow element numbers in mesh. In each element, we
loop on vertices following the local vertice order provided in
the mesh.
@end table
UNKNOWN AND BLOCKED DEGREE OF FREEDOM:
@cindex unknow degree of freedom
@cindex blocked degree of freedom
@c
@noindent
A second numbering is related to
the @dfn{unknown} and @dfn{blocked} degrees of freedom.
@example
geo omega("square");
space V(omega,"P1");
V.block ("boundary");
@end example
@noindent
Here, all degrees of freedom located on the domain
@code{"boundary"} are marked as blocked.
FILE FORMAT:
@fiindex @file{.space} space
@noindent
File output format for @code{space} is not of practical interest.
This file format is provided for completness.
@noindent
Here is a small example
@example
space
1 6
square
P1
0 B
1 B
0
1
2 B
2
@end example
@noindent
where the @samp{B} denotes blocked degres of freedom.
The method @code{set_dof(K, dof_array)} gives the numbering
in @code{dof_array}, supplying an element @code{K}.
The method @code{index(dof)} gives the unknown or blocked
numbering from the initial numbering, suppling a given @code{dof}
ADDITIONAL FEATURES:
@noindent
The method @code{xdof(K, i)} gives the geometrical location of
the i-th degree of freedom in the element @code{K}.
@noindent
Product spaces, for non-scalar fields, such as vector-valued
or tensor-valued (symmetric) fields,
can also be defined:
@example
space U (omega, "P1", "vector");
space T (omega, "P1", "tensor");
@end example
Then, the number of component depends upon the geometrical
dimension of the mesh @code{omega}.
@noindent
Arbitrarily product spaces can also be constructed
@example
space X = V0*V1;
@end example
Spaces for fields defined on a boundary domain can also be
constructed
@noindent
@example
space W (omega, omega["top"], "P1");
@end example
The correspondance between the degree-of-freedom numbering for
the space @code{W} and the global degree-of-freedom numbering
for the space @code{V} is supported.
The method @code{set_global_dof(S, dof_array)} gives the global numbering
in @code{dof_array}, supplying a boundary element @code{S}.
The method @code{domain_index(global_dof)} gives the unknown or blocked
numbering from the initial numbering, suppling a given @code{global_dof},
related to the space @code{V}.
AUTHORS: Pierre.Saramito@imag.fr
DATE: 14 may 1997 update: 28 jan 1998
METHODS: @space
End:
*/
namespace rheolef {
//<space:
class space : public smart_pointer<spacerep> {
public:
// typdefs:
typedef spacerep::size_type size_type;
// allocator/deallocator:
space ();
space (const geo& g, const std::string& approx_name, const std::string& valued = "scalar");
space (const geo& g, const std::string& approx_name,
const domain& interface, const domain& subgeo, const std::string& valued = "scalar");
//! For spaces with a discontinuity through domain `interface', but otherwise continuous
space (const geo& g, const domain& d, const std::string& approx_name);
space(const const_space_component&);
space operator = (const const_space_component&);
friend space operator * (const space&, const space&);
friend space pow (const space&, size_type);
// modifiers:
void block () const;
void block_Lagrange () const;
void block (size_type i_comp) const;
void block_Lagrange (size_type i_comp) const;
void block (const std::string& d_name) const;
void block (const domain& d) const;
void block (const std::string& d_name, size_type i_comp) const;
void block (const domain& d, size_type i_comp) const;
void block_dof (size_type dof_idx, size_type i_comp) const;
void block_dof (size_type dof_idx) const;
void unblock_dof (size_type dof_idx, size_type i_comp) const;
void unblock_dof (size_type dof_idx) const;
void set_periodic (const domain& d1, const domain& d2) const;
void set_periodic (const std::string& d1_name, const std::string& d2_name) const;
void lock_components (const domain& d, point locked_dir) const;
void lock_components (const std::string& d_name, point locked_dir) const;
template <class Function>
void lock_components (const std::string& d_name, Function locked_dir) const;
//! Allows to enforce vector-boundary conditions.
/*! Allows to enforce vector-boundary conditions.
*!
*! Current limitation: only 2D vector fields with components having same FE approximation.
*! The space has a dof for the direction normal to locked_dir, while the value in the
*! direction locked_dir is blocked.
*! The field::at function implements the reconstruction of the original cartesian components.
*/
template <class Function>
void lock_components (const domain& d, Function locked_dir) const;
// accessors:
size_type size() const;
size_type degree () const;
size_type n_blocked() const;
size_type n_unknown() const;
size_type dimension() const;
std::string coordinate_system() const;
fem_helper::coordinate_type coordinate_system_type() const;
const geo& get_geo () const;
const basis& get_basis (size_type i_component = 0) const;
const numbering& get_numbering (size_type i_component = 0) const;
std::string get_approx(size_type i_component = 0) const;
const basis& get_p1_transformation () const;
std::string get_valued() const;
fem_helper::valued_field_type get_valued_type() const;
size_type n_component() const;
space_component operator [] (size_type i_comp);
const_space_component operator [] (size_type i_comp) const;
size_type size_component (size_type i_component = 0) const;
size_type n_unknown_component (size_type i_component = 0) const;
size_type n_blocked_component (size_type i_component = 0) const;
size_type start (size_type i_component = 0) const;
size_type start_unknown (size_type i_component = 0) const;
size_type start_blocked (size_type i_component = 0) const;
size_type index (size_type degree_of_freedom) const;
size_type period_association (size_type degree_of_freedom) const;
bool is_blocked (size_type degree_of_freedom) const;
bool is_periodic (size_type degree_of_freedom) const;
bool has_locked () const;
//! for (2D) vector spaces only, field is only blocked along locked_dir
bool is_locked (size_type degree_of_freedom) const;
//! for tangential-normal representation
size_type locked_with (size_type degree_of_freedom) const;
size_type index_locked_with (size_type degree_of_freedom) const;
//! dof with the other component (thru space::index() as well)
Float locked_component (size_type dof, size_type i_comp) const;
//! i-th component of locked direction
Float unlocked_component (size_type dof, size_type i_comp) const;
//! i-th component of unlocked direction
void freeze () const;
bool is_frozen() const;
// informations related to boundary spaces
bool is_on_boundary_domain() const;
const domain& get_boundary_domain() const;
const geo& get_global_geo () const;
size_type global_size () const;
size_type domain_dof (size_type global_dof) const;
size_type domain_index (size_type global_dof) const;
// get indices of degrees of freedom associated to an element
// the tiny_vector is a "local index" -> "global index" table
// "global" variants differ only for boundary spaces (non-global uses domain-indices, global use
// mesh-wide indices)
void set_dof (const geo_element& K, tiny_vector<size_type>& idx) const;
void set_global_dof (const geo_element& K, tiny_vector<size_type>& idx) const;
void set_dof (const geo_element& K, tiny_vector<size_type>& idx, size_type i_comp) const;
void set_global_dof (const geo_element& K, tiny_vector<size_type>& idx, size_type i_comp) const;
void set_dof (const geo_element& K, tiny_vector<size_type>& idx, size_type i_comp, reference_element::dof_family_type family) const;
point x_dof (const geo_element& K, size_type i_local) const;
//! Hermite/Argyris: returns 1 if the global dof contains the derivative along outward normal of K, -1 else
void dof_orientation(const geo_element& K, tiny_vector<int>& orientation) const;
// piola transformation
meshpoint hatter (const point& x, size_type K) const;
point dehatter (const meshpoint& S) const;
point dehatter (const point& x_hat, size_type e) const;
// comparator
bool operator == (const space&) const;
bool operator != (const space&) const;
// input/output
friend std::ostream& operator << (std::ostream&, const space&);
friend std::istream& operator >> (std::istream&, space&);
std::ostream& dump(std::ostream& s = std::cerr) const;
void check() const;
// inquires:
static size_type inquire_size(const geo&, const numbering&);
// implementation:
protected:
space(smart_pointer<spacerep>);
space (const space&, const space&); // X*Y
space (const space&, size_type i_comp); // X[i_comp]
friend class field;
};
//>space:
// ---------------------------------------------------------
// V[1].block("boundary"); multicomponent spaces...
// ---------------------------------------------------------
struct space_component {
typedef space::size_type size_type;
space_component();
space_component(space& V, size_type i);
void block (const domain& d);
void block (const std::string& d_name);
space* _pV;
size_type _i_comp;
};
struct const_space_component {
typedef space::size_type size_type;
const_space_component();
const_space_component(const space& V, size_type i);
const_space_component(const space_component&);
const space* _pV;
size_type _i_comp;
};
inline
space_component::space_component()
: _pV(), _i_comp(0) {}
inline
const_space_component::const_space_component()
: _pV(), _i_comp(0) {}
inline
const_space_component::const_space_component(const space_component& Vi)
: _pV(Vi._pV), _i_comp(Vi._i_comp) {}
inline
space_component::space_component(space& V, size_type i)
: _pV(&V), _i_comp(i) {}
inline
const_space_component::const_space_component(const space& V, size_type i)
: _pV(&V), _i_comp(i) {}
inline
space_component
space::operator [] (size_type i_comp)
{
return space_component (*this, i_comp);
}
inline
const_space_component
space::operator [] (size_type i_comp) const
{
return const_space_component (*this, i_comp);
}
inline
void
space_component::block (const domain& d)
{
(*_pV).block (d, _i_comp);
}
inline
void
space_component::block (const std::string& d_name)
{
(*_pV).block (d_name, _i_comp);
}
// ---------------------------------------------------------
inline
space::space ()
: smart_pointer<spacerep> (new_macro(spacerep)) {}
inline
space::space (smart_pointer<spacerep> x)
: smart_pointer<spacerep> (x) {}
inline
space::space(const geo& g, const std::string& approx_name, const std::string& option)
: smart_pointer<spacerep> (new_macro(spacerep(g, approx_name, option))) {}
inline
space::space (const geo& g, const std::string& approx_name,
const domain& interface, const domain& subgeo, const std::string& option)
: smart_pointer<spacerep> (new_macro(spacerep(g, approx_name, interface, subgeo, option))) {}
inline
space::space (const geo& g, const domain& d, const std::string& approx_name)
: smart_pointer<spacerep> (new_macro(spacerep(g, d, approx_name))) {}
inline
space::space (const space& X, const space& Y)
: smart_pointer<spacerep> (new_macro(spacerep(X.data(),Y.data()))) {}
inline
space::space (const space& X, size_type i_comp)
: smart_pointer<spacerep> (new_macro(spacerep(X.data(),i_comp))) {}
inline
space::size_type
space::size() const
{
return data().size();
}
inline
space::size_type
space::degree() const
{
return get_basis().degree();
}
inline
space::size_type
space::dimension() const
{
return data().dimension();
}
inline
std::string
space::coordinate_system() const
{
return data().coordinate_system();
}
inline
fem_helper::coordinate_type
space::coordinate_system_type() const
{
return data().coordinate_system_type();
}
inline
space::size_type
space::n_blocked() const
{
return data().n_blocked();
}
inline
space::size_type
space::n_unknown() const
{
return data().n_unknown();
}
inline
space::size_type
space::size_component(space::size_type i) const
{
return data().size_component(i) ;
}
inline
space::size_type
space::start(space::size_type i) const
{
return data().start(i) ;
}
inline
space::size_type
space::start_unknown(space::size_type i) const
{
return data().start_unknown(i);
}
inline
space::size_type
space::start_blocked(space::size_type i) const
{
return data().start_blocked(i);
}
inline
space::size_type
space::n_blocked_component(space::size_type i) const
{
return data().n_blocked_component(i) ;
}
inline
space::size_type
space::n_unknown_component(space::size_type i) const
{
return data().n_unknown_component(i) ;
}
inline
space::size_type
space::n_component() const
{
return data().n_component() ;
}
inline
space::size_type
space::index (space::size_type degree_of_freedom) const
{
return data().index (degree_of_freedom);
}
inline
space::size_type
space::period_association (space::size_type degree_of_freedom) const
{
return data().period_association (degree_of_freedom);
}
inline
bool
space::is_blocked (space::size_type degree_of_freedom) const
{
return data().is_blocked (degree_of_freedom);
}
inline
bool
space::is_periodic (space::size_type degree_of_freedom) const
{
return data().is_periodic (degree_of_freedom);
}
inline
bool
space::is_locked (space::size_type degree_of_freedom) const
{
return data().is_locked (degree_of_freedom);
}
inline
space::size_type
space::index_locked_with (size_type degree_of_freedom) const
{
return data().index_locked_with (degree_of_freedom);
}
inline
space::size_type
space::locked_with (size_type degree_of_freedom) const
{
return data().locked_with (degree_of_freedom);
}
inline
Float
space::unlocked_component (size_type dof, size_type i_comp) const
{
return data().unlocked_component (dof, i_comp);
}
inline
Float
space::locked_component (size_type dof, size_type i_comp) const
{
return data().locked_component (dof, i_comp);
}
inline
bool
space::has_locked () const
{
return data().has_locked ();
}
inline
std::string
space::get_approx (space::size_type i) const
{
return data().get_approx(i);
}
inline
const basis&
space::get_p1_transformation () const
{
return data().get_p1_transformation();
}
inline
fem_helper::valued_field_type
space::get_valued_type() const
{
return data().get_valued_type();
}
inline
std::string
space::get_valued() const
{
return data().get_valued();
}
inline
const geo&
space::get_geo () const
{
return data().get_geo();
}
inline
const basis&
space::get_basis (space::size_type i) const
{
return data().get_basis(i);
}
inline
const numbering&
space::get_numbering (space::size_type i) const
{
return data().get_numbering(i);
}
inline
space::size_type
space::global_size() const
{
return data().global_size();
}
inline
void
space::block () const
{
data().block();
}
inline
void
space::block (size_type i_comp) const
{
data().block(i_comp);
}
inline
void
space::block_Lagrange () const
{
data().block_Lagrange();
}
inline
void
space::block_Lagrange (size_type i_comp) const
{
data().block_Lagrange(i_comp);
}
inline
void
space::block (const domain& d) const
{
data().block(d);
}
inline
void
space::block (const domain& d, size_type i_comp) const
{
data().block(d, i_comp);
}
inline
void
space::block (const std::string& d_name) const
{
data().block(d_name);
}
inline
void
space::block (const std::string& d_name, size_type i_comp) const
{
data().block(d_name, i_comp);
}
inline
void
space::block_dof (size_type dof_idx) const
{
data().block_dof(dof_idx);
}
inline
void
space::unblock_dof (size_type dof_idx) const
{
data().unblock_dof(dof_idx);
}
inline
void
space::set_periodic (const domain& d1, const domain& d2) const
{
data().set_periodic(d1,d2);
}
inline
void
space::set_periodic (const std::string& d1_name, const std::string& d2_name) const
{
data().set_periodic(d1_name, d2_name);
}
inline
void
space::lock_components (const domain& d, point locked_dir) const
{
data().lock_components(d, locked_dir);
}
inline
void
space::lock_components (const std::string& d_name, point locked_dir) const
{
data().lock_components(d_name, locked_dir);
}
template <class Function>
inline
void
space::lock_components (const domain& d, Function locked_dir) const
{
data().lock_components(d, locked_dir);
}
template <class Function>
inline
void
space::lock_components (const std::string& d_name, Function locked_dir) const
{
data().lock_components(d_name, locked_dir);
}
inline
space::size_type
space::domain_dof (size_type global_degree_of_freedom) const
{
return data().domain_dof (global_degree_of_freedom);
}
inline
bool
space::is_on_boundary_domain() const
{
return data().is_on_boundary_domain();
}
inline
const domain&
space::get_boundary_domain() const
{
return data().get_boundary_domain();
}
inline
const geo&
space::get_global_geo () const
{
return data().get_global_geo();
}
inline
space::size_type
space::domain_index (size_type global_degree_of_freedom) const
{
return data().domain_index (global_degree_of_freedom);
}
inline
void
space::freeze () const
{
data().freeze();
}
inline
bool
space::is_frozen () const
{
return data().is_frozen();
}
inline
void
space::set_dof( const geo_element& K, tiny_vector<size_type>& idx) const
{
data().set_dof(K, idx);
}
inline
void
space::set_dof( const geo_element& K, tiny_vector<size_type>& idx,
size_type i_comp) const
{
data().set_dof(K, idx, i_comp);
}
inline
void
space::set_dof( const geo_element& K, tiny_vector<size_type>& idx,
size_type i_comp, reference_element::dof_family_type family) const
{
data().set_dof(K, idx, i_comp, family);
}
inline
void
space::set_global_dof(
const geo_element& K,
tiny_vector<size_type>& idx) const
{
data().set_global_dof(K, idx);
}
inline
void
space::set_global_dof(
const geo_element& K,
tiny_vector<size_type>& idx,
size_type i_comp) const
{
data().set_global_dof(K, idx, i_comp);
}
inline
point
space::x_dof(const geo_element& K, size_type iloc) const
{
return data().x_dof(K, iloc) ;
}
inline
void
//! Hermite/Argyris: returns 1 if the global dof contains the derivative along outward normal of K, -1 else
space::dof_orientation(const geo_element& K, tiny_vector<int>& orientation) const
{
return data().dof_orientation(K, orientation);
}
inline
space
operator * (const space& X, const space& Y)
{
return space(X,Y);
}
inline
std::ostream&
operator << (std::ostream& s, const space& x)
{
return s << x.data();
}
inline
std::istream&
operator >> (std::istream& s, space& x)
{
return s >> x.data();
}
inline
std::ostream&
space::dump(std::ostream& s) const
{
return data().dump(s);
}
inline
void
space::check() const
{
data().check();
}
inline
bool
space::operator == (const space& y) const
{
return data().operator== (y.data());
}
inline
bool
space::operator != (const space& y) const
{
return !operator== (y);
}
/* static */
inline
space::size_type
space::inquire_size(const geo& g, const numbering& numb)
{
return spacerep::inquire_size(g,numb);
}
inline
meshpoint
space::hatter (const point& x, size_type K) const
{
return data().hatter(x,K);
}
inline
point
space::dehatter (const meshpoint& S) const
{
return data().dehatter(S);
}
inline
point
space::dehatter (const point& x_hat, size_type e) const
{
return data().dehatter(meshpoint(e,x_hat));
}
}// namespace rheolef
# endif /* _RHEO_SPACE_H */
|