This file is indexed.

/usr/include/rheolef/space.h is in librheolef-dev 5.93-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
# ifndef _RHEO_SPACE_H
# define _RHEO_SPACE_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
/// =========================================================================

namespace rheolef { 
struct space_component;
struct const_space_component;
}// namespace rheolef

#include "rheolef/spacerep.h"

/*Class:space
NAME: @code{space} -- piecewise polynomial finite element space
@clindex space
DESCRIPTION:
@noindent
The @code{space} class contains some numbering 
for unknowns and blocked @emph{degrees of freedoms}
related to a given mesh and polynomial approximation.

DEGREE OF FREEDOM NUMBERING:
@cindex degree of freedom
@clindex field
@clindex form
@clindex geo
@fiindex @code{.field} field
@c
@noindent
Numbering of degrees of freedom (or shortly, @dfn{dof}) depends upon
the mesh and the piecewise polynomial approximation used.
This numbering is then used by the @code{field} and @code{form} classes.
See also @ref{field class} and @ref{form class}.

@noindent
The degree-of-freedom (or shortly, @dfn{dof}) follows some simple rules,
that depends of course of the approximation.
These rules are suitable for easy @code{.field} file retrieval 
(@pxref{field class}).
 
@apindex P0
@apindex bubble
@apindex P1
@apindex P2
@apindex P1d
@c
@table @code
   @itemx P0
   @itemx bubble
   	dof numbers follow element numbers in mesh.
   @itemx P1
   	dof numbers follow vertice numbers in mesh.
   @itemx P2
   	dof numbers related to vertices follow vertice numbers in mesh.
        Follow dof numbers related to edges, in the edge numbering order.
   @itemx P1d
   	dof numbers follow element numbers in mesh. In each element, we
	loop on vertices following the local vertice order provided in
	the mesh.
@end table
 
UNKNOWN AND BLOCKED DEGREE OF FREEDOM:
@cindex unknow degree of freedom
@cindex blocked degree of freedom
@c
@noindent
A second numbering is related to
the @dfn{unknown} and @dfn{blocked} degrees of freedom.
@example
      geo omega("square");
      space V(omega,"P1");
      V.block ("boundary");
@end example
@noindent
Here, all degrees of freedom located on the domain 
@code{"boundary"} are marked as blocked.

FILE FORMAT:
@fiindex @file{.space} space
@noindent
File output format for @code{space} is not of practical interest.
This file format is provided for completness.
@noindent
Here is a small example
@example
   space
   1 6
   square
   P1
      0 B
      1 B
      0
      1
      2 B
      2
@end example
@noindent
where the @samp{B} denotes blocked degres of freedom.
The method @code{set_dof(K, dof_array)} gives the numbering
in @code{dof_array}, supplying an element @code{K}.
The method @code{index(dof)} gives the unknown or blocked
numbering from the initial numbering, suppling a given @code{dof}
  
ADDITIONAL FEATURES:
@noindent
The method @code{xdof(K, i)} gives the geometrical location of
the i-th degree of freedom in the element @code{K}.

@noindent
Product spaces, for non-scalar fields, such as vector-valued 
or tensor-valued (symmetric) fields,
can also be defined:
@example
      space U (omega, "P1", "vector");
      space T (omega, "P1", "tensor");
@end example
Then, the number of component depends upon the geometrical
dimension of the mesh @code{omega}.

@noindent
Arbitrarily product spaces can also be constructed
@example
      space X = V0*V1;
@end example
Spaces for fields defined on a boundary domain can also be 
constructed
@noindent
@example
      space W (omega, omega["top"], "P1");
@end example
The correspondance between the degree-of-freedom numbering for
the space @code{W} and the global degree-of-freedom numbering
for the space @code{V} is supported.
The method @code{set_global_dof(S, dof_array)} gives the global numbering
in @code{dof_array}, supplying a boundary element @code{S}.
The method @code{domain_index(global_dof)} gives the unknown or blocked
numbering from the initial numbering, suppling a given @code{global_dof},
related to the space @code{V}.

AUTHORS: Pierre.Saramito@imag.fr
DATE:   14 may 1997   update: 28 jan 1998
METHODS: @space
End:
*/

namespace rheolef { 
//<space:  
class space : public smart_pointer<spacerep> {
public:
// typdefs:

    typedef spacerep::size_type size_type;
 
// allocator/deallocator:

    space ();
    space (const geo& g, const std::string& approx_name, const std::string& valued = "scalar");
    space (const geo& g, const std::string& approx_name, 
	const domain& interface, const domain& subgeo, const std::string& valued = "scalar");
	//! For spaces with a discontinuity through domain `interface', but otherwise continuous
    space (const geo& g, const domain& d, const std::string& approx_name);
    space(const const_space_component&);

    space operator = (const const_space_component&);
    friend space operator * (const space&, const space&);
    friend space pow (const space&, size_type);

// modifiers:

    void block () const;
    void block_Lagrange () const;
    void block (size_type i_comp) const;
    void block_Lagrange (size_type i_comp) const;
    void block (const std::string& d_name) const;
    void block (const domain& d) const;
    void block (const std::string& d_name,  size_type i_comp) const;
    void block (const domain& d, size_type i_comp) const;
    void block_dof (size_type dof_idx, size_type i_comp) const;
    void block_dof (size_type dof_idx) const;
    void unblock_dof (size_type dof_idx, size_type i_comp) const;
    void unblock_dof (size_type dof_idx) const;
    void set_periodic (const domain& d1, const domain& d2) const;
    void set_periodic (const std::string& d1_name, const std::string& d2_name) const;
    void lock_components (const domain& d, point locked_dir) const;
    void lock_components (const std::string& d_name, point locked_dir) const;
    template <class Function>
    void lock_components (const std::string& d_name, Function locked_dir) const;
    	//! Allows to enforce vector-boundary conditions.
	/*! Allows to enforce vector-boundary conditions.
	 *!  
	 *! Current limitation: only 2D vector fields with components having same FE approximation.
	 *! The space has a dof for the direction normal to locked_dir, while the value in the
	 *! direction locked_dir is blocked. 
	 *! The field::at function implements the reconstruction of the original cartesian components.
	 */
    template <class Function>
    void lock_components (const domain& d, Function locked_dir) const;

// accessors:

    size_type  size()      const;
    size_type  degree ()   const;
    size_type  n_blocked() const;
    size_type  n_unknown() const;
    size_type  dimension() const;
    std::string coordinate_system() const;
    fem_helper::coordinate_type coordinate_system_type() const;


    const geo&                get_geo   () const;
    const basis&              get_basis (size_type i_component = 0) const;
    const numbering&          get_numbering (size_type i_component = 0) const;
    std::string               get_approx(size_type i_component = 0) const;
    const basis&              get_p1_transformation () const;

    std::string               get_valued() const;
    fem_helper::valued_field_type get_valued_type() const;

    size_type  n_component() const;
    space_component operator [] (size_type i_comp);
    const_space_component operator [] (size_type i_comp) const;

    size_type  size_component      (size_type i_component = 0) const;
    size_type  n_unknown_component (size_type i_component = 0) const;
    size_type  n_blocked_component (size_type i_component = 0) const;
    size_type  start               (size_type i_component = 0) const;
    size_type  start_unknown       (size_type i_component = 0) const;
    size_type  start_blocked       (size_type i_component = 0) const;

    size_type  index              (size_type degree_of_freedom) const;
    size_type  period_association (size_type degree_of_freedom) const;
    bool       is_blocked         (size_type degree_of_freedom) const;
    bool       is_periodic        (size_type degree_of_freedom) const;
    
    bool       has_locked         () const; 
		 //! for (2D) vector spaces only, field is only blocked along locked_dir
    bool       is_locked          (size_type degree_of_freedom) const; 
    	//! for tangential-normal representation
    size_type  locked_with  (size_type degree_of_freedom) const; 
    size_type  index_locked_with  (size_type degree_of_freedom) const; 
        //! dof with the other component (thru space::index() as well)
    Float      locked_component   (size_type dof, size_type i_comp) const;  
    	//! i-th component of locked direction
    Float      unlocked_component (size_type dof, size_type i_comp) const;  
    	//! i-th component of unlocked direction

    void freeze () const;
    bool is_frozen() const;
	

    // informations related to boundary spaces
    bool  is_on_boundary_domain() const;
    const domain& get_boundary_domain() const;
    const geo&    get_global_geo     () const;
    size_type  global_size () const;
    size_type  domain_dof   (size_type global_dof) const;
    size_type  domain_index (size_type global_dof) const;

    // get indices of degrees of freedom associated to an element
	//  the tiny_vector is a "local index" -> "global index" table
	//	"global" variants differ only for boundary spaces (non-global uses domain-indices, global use
	//  mesh-wide indices)
    void  set_dof        (const geo_element& K, tiny_vector<size_type>& idx) const;
    void  set_global_dof (const geo_element& K, tiny_vector<size_type>& idx) const;
    void  set_dof        (const geo_element& K, tiny_vector<size_type>& idx, size_type i_comp) const;
    void  set_global_dof (const geo_element& K, tiny_vector<size_type>& idx, size_type i_comp) const;
    void  set_dof        (const geo_element& K, tiny_vector<size_type>& idx, size_type i_comp, reference_element::dof_family_type family) const;
    point x_dof      (const geo_element& K, size_type i_local) const;
     //! Hermite/Argyris: returns 1 if the global dof contains the derivative along outward normal of K, -1 else  
    void  dof_orientation(const geo_element& K, tiny_vector<int>& orientation) const;

    // piola transformation
    meshpoint hatter (const point& x, size_type K) const;
    point dehatter (const meshpoint& S) const;
    point dehatter (const point& x_hat, size_type e) const;

// comparator

    bool operator == (const space&) const;
    bool operator != (const space&) const;

// input/output

   friend std::ostream& operator << (std::ostream&, const space&);
   friend std::istream& operator >> (std::istream&, space&);
   std::ostream& dump(std::ostream& s = std::cerr) const;
   void check() const;

// inquires:

   static size_type inquire_size(const geo&, const numbering&);

// implementation:
protected:
   space(smart_pointer<spacerep>);
   space (const space&, const space&); // X*Y
   space (const space&, size_type i_comp); // X[i_comp]
   friend class field;
};
//>space:

// ---------------------------------------------------------
// V[1].block("boundary");        multicomponent spaces...
// ---------------------------------------------------------
struct space_component {
    typedef space::size_type size_type;
    space_component();
    space_component(space& V, size_type i);
    void block (const domain& d);
    void block (const std::string& d_name);
    space*    _pV;
    size_type _i_comp;
};
struct const_space_component {
    typedef space::size_type size_type;
    const_space_component();
    const_space_component(const space& V, size_type i);
    const_space_component(const space_component&);
    const space*    _pV;
    size_type _i_comp;
};
inline
space_component::space_component()
 : _pV(), _i_comp(0) {}

inline
const_space_component::const_space_component()
 : _pV(), _i_comp(0) {}

inline
const_space_component::const_space_component(const space_component& Vi)
 : _pV(Vi._pV), _i_comp(Vi._i_comp) {}

inline
space_component::space_component(space& V, size_type i)
 : _pV(&V), _i_comp(i) {}
inline
const_space_component::const_space_component(const space& V, size_type i)
 : _pV(&V), _i_comp(i) {}

inline
space_component
space::operator [] (size_type i_comp)
{
    return space_component (*this, i_comp);
}
inline
const_space_component
space::operator [] (size_type i_comp) const
{
    return const_space_component (*this, i_comp);
}
inline
void
space_component::block (const domain& d)
{
    (*_pV).block (d, _i_comp);
}
inline
void
space_component::block (const std::string& d_name)
{
    (*_pV).block (d_name, _i_comp);
}
// ---------------------------------------------------------

inline
space::space () 
  : smart_pointer<spacerep> (new_macro(spacerep)) {}

inline
space::space (smart_pointer<spacerep> x) 
  : smart_pointer<spacerep> (x) {}

inline
space::space(const geo& g, const std::string& approx_name, const std::string& option)
  : smart_pointer<spacerep> (new_macro(spacerep(g, approx_name, option))) {}

inline
space::space (const geo& g, const std::string& approx_name, 
	const domain& interface, const domain& subgeo, const std::string& option)
  : smart_pointer<spacerep> (new_macro(spacerep(g, approx_name, interface, subgeo, option))) {}

inline
space::space (const geo& g, const domain& d, const std::string& approx_name) 
  : smart_pointer<spacerep> (new_macro(spacerep(g, d, approx_name))) {}

inline
space::space (const space& X, const space& Y) 
  : smart_pointer<spacerep> (new_macro(spacerep(X.data(),Y.data()))) {}

inline
space::space (const space& X, size_type i_comp) 
  : smart_pointer<spacerep> (new_macro(spacerep(X.data(),i_comp))) {}

inline
space::size_type
space::size() const
{
  return data().size();
}
inline
space::size_type
space::degree() const
{
  return get_basis().degree();
}
inline
space::size_type
space::dimension() const
{
  return data().dimension();
}
inline
std::string
space::coordinate_system() const
{
  return data().coordinate_system();
}
inline
fem_helper::coordinate_type
space::coordinate_system_type() const
{
  return data().coordinate_system_type();
}
inline
space::size_type
space::n_blocked() const
{
  return data().n_blocked();
}

inline
space::size_type
space::n_unknown() const
{
  return data().n_unknown();
}
inline
space::size_type
space::size_component(space::size_type i) const 
{
  return data().size_component(i) ;
}
inline
space::size_type
space::start(space::size_type i) const 
{
  return data().start(i) ;
}
inline
space::size_type
space::start_unknown(space::size_type i) const 
{
  return data().start_unknown(i);
}
inline
space::size_type
space::start_blocked(space::size_type i) const 
{
  return data().start_blocked(i);
}
inline 
space::size_type
space::n_blocked_component(space::size_type i) const 
{
  return data().n_blocked_component(i) ;
}
inline 
space::size_type
space::n_unknown_component(space::size_type i) const 
{
  return data().n_unknown_component(i) ;
}

inline 
space::size_type
space::n_component() const 
{
  return data().n_component() ;
}

inline
space::size_type
space::index (space::size_type degree_of_freedom) const
{
  return data().index (degree_of_freedom);
}

inline
space::size_type
space::period_association (space::size_type degree_of_freedom) const
{
  return data().period_association (degree_of_freedom);
}

inline
bool
space::is_blocked (space::size_type degree_of_freedom) const
{
  return data().is_blocked (degree_of_freedom);
}

inline
bool
space::is_periodic (space::size_type degree_of_freedom) const
{
  return data().is_periodic (degree_of_freedom);
}

inline
bool
space::is_locked (space::size_type degree_of_freedom) const
{
  return data().is_locked (degree_of_freedom);
}
inline
space::size_type  
space::index_locked_with  (size_type degree_of_freedom) const
{
  return data().index_locked_with  (degree_of_freedom);
}
inline
space::size_type  
space::locked_with  (size_type degree_of_freedom) const
{
  return data().locked_with  (degree_of_freedom);
}
inline
Float
space::unlocked_component (size_type dof, size_type i_comp) const
{
  return data().unlocked_component (dof, i_comp);
}
inline
Float
space::locked_component (size_type dof, size_type i_comp) const
{
  return data().locked_component (dof, i_comp);
}
inline
bool
space::has_locked () const
{
  return data().has_locked ();
}

inline
std::string
space::get_approx (space::size_type i) const
{
  return data().get_approx(i);
}
inline
const basis&
space::get_p1_transformation () const
{
  return data().get_p1_transformation();
}
inline
fem_helper::valued_field_type 
space::get_valued_type() const
{
  return data().get_valued_type();
}
inline
std::string 
space::get_valued() const
{
  return data().get_valued();
}
inline
const geo&
space::get_geo () const
{
  return data().get_geo();
}

inline
const basis&
space::get_basis (space::size_type i) const
{
  return data().get_basis(i);
}
inline
const numbering&
space::get_numbering (space::size_type i) const
{
  return data().get_numbering(i);
}

inline
space::size_type
space::global_size() const
{
  return data().global_size();
}

inline
void 
space::block () const
{
  data().block();
}
inline
void 
space::block (size_type i_comp) const
{
  data().block(i_comp);
}
inline
void 
space::block_Lagrange () const
{
  data().block_Lagrange();
}
inline
void 
space::block_Lagrange (size_type i_comp) const
{
  data().block_Lagrange(i_comp);
}
inline
void 
space::block (const domain& d) const
{
  data().block(d);
}
inline
void 
space::block (const domain& d, size_type i_comp) const
{
  data().block(d, i_comp);
}
inline
void 
space::block (const std::string& d_name) const
{
  data().block(d_name);
}
inline
void 
space::block (const std::string& d_name, size_type i_comp) const
{
  data().block(d_name, i_comp);
}  
inline
void 
space::block_dof (size_type dof_idx) const
{
  data().block_dof(dof_idx);
}
inline
void 
space::unblock_dof (size_type dof_idx) const
{
  data().unblock_dof(dof_idx);
}

inline
void 
space::set_periodic (const domain& d1, const domain& d2) const
{
  data().set_periodic(d1,d2);
}
inline
void 
space::set_periodic (const std::string& d1_name, const std::string& d2_name) const
{
  data().set_periodic(d1_name, d2_name);
}
inline
void 
space::lock_components (const domain& d, point locked_dir) const
{
  data().lock_components(d, locked_dir);
}
inline
void 
space::lock_components (const std::string& d_name, point locked_dir) const
{
  data().lock_components(d_name, locked_dir);
}
template <class Function>
inline
void 
space::lock_components (const domain& d, Function locked_dir) const
{
  data().lock_components(d, locked_dir);
}
template <class Function>
inline
void 
space::lock_components (const std::string& d_name, Function locked_dir) const
{
  data().lock_components(d_name, locked_dir);
}

inline
space::size_type
space::domain_dof (size_type global_degree_of_freedom) const
{
  return data().domain_dof (global_degree_of_freedom);
}

inline
bool
space::is_on_boundary_domain() const
{
  return data().is_on_boundary_domain();
}
inline
const domain&
space::get_boundary_domain() const
{
  return data().get_boundary_domain();
}
inline
const geo&
space::get_global_geo () const
{
  return data().get_global_geo();
}

inline
space::size_type
space::domain_index (size_type global_degree_of_freedom) const
{
  return data().domain_index (global_degree_of_freedom);
}


inline
void
space::freeze () const
{
  data().freeze();
}
inline
bool
space::is_frozen () const
{
  return data().is_frozen();
}
inline
void
space::set_dof( const geo_element& K, tiny_vector<size_type>& idx) const
{
  data().set_dof(K, idx);
}
inline
void
space::set_dof( const geo_element& K, tiny_vector<size_type>& idx,
		size_type i_comp) const
{
  data().set_dof(K, idx, i_comp);
}
inline
void
space::set_dof( const geo_element& K, tiny_vector<size_type>& idx,
		size_type i_comp, reference_element::dof_family_type family) const
{
  data().set_dof(K, idx, i_comp, family);
}
inline
void
space::set_global_dof(
		const geo_element& K, 
		tiny_vector<size_type>& idx) const
{
  data().set_global_dof(K, idx);
}
inline
void
space::set_global_dof(
		const geo_element& K, 
		tiny_vector<size_type>& idx,
		size_type i_comp) const
{
  data().set_global_dof(K, idx, i_comp);
}
inline
point
space::x_dof(const geo_element& K, size_type iloc) const
{
  return data().x_dof(K, iloc) ;
}
inline
void   
//! Hermite/Argyris: returns 1 if the global dof contains the derivative along outward normal of K, -1 else  
space::dof_orientation(const geo_element& K, tiny_vector<int>& orientation) const
{
  return data().dof_orientation(K, orientation);
}

inline
space 
operator * (const space& X, const space& Y)
{
  return space(X,Y);
}

inline
std::ostream&
operator << (std::ostream& s, const space& x)
{
  return s << x.data();
}
inline
std::istream&
operator >> (std::istream& s, space& x)
{
  return s >> x.data();
}
inline
std::ostream& 
space::dump(std::ostream& s) const
{
    return data().dump(s);
}
inline
void
space::check() const
{
    data().check();
}
inline
bool
space::operator == (const space& y) const
{
    return data().operator== (y.data());
}
inline
bool
space::operator != (const space& y) const
{
    return !operator== (y);
}
/* static */
inline
space::size_type
space::inquire_size(const geo& g, const numbering& numb)
{
    return spacerep::inquire_size(g,numb);
}
inline
meshpoint 
space::hatter (const point& x, size_type K) const
{
    return data().hatter(x,K);
}
inline
point 
space::dehatter (const meshpoint& S) const
{
    return data().dehatter(S);
}
inline
point
space::dehatter (const point& x_hat, size_type e) const
{
    return data().dehatter(meshpoint(e,x_hat));
}
}// namespace rheolef
# endif /* _RHEO_SPACE_H */