This file is indexed.

/usr/include/rheolef/piola_algo_v1.h is in librheolef-dev 5.93-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#ifndef _RHEO_PIOLA_ALGO_H
#define _RHEO_PIOLA_ALGO_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
/// 
#include "rheolef/tensor.h"
#include "rheolef/geo.h"
namespace rheolef { 
// ---------------------------------------------------------------------------
// piola transform and its inverse on simplex
// ---------------------------------------------------------------------------
// piola transformation
// F_K : hat_K --> K
//       hat_x --> x = F_K(hat_x)
// ------------------------------------------
// TODO: should be merged with
//    piola.h  = general piola on all elements (non-simplex)
// this file is actually used only by ZZ posteriori error estimators
//
inline
point
piola_e (
  const point& hat_x, 
  const point& a, 
  const point& b,
  bool is_a_vector = false) 
{
  return point((!is_a_vector?a[0]:0)
               + (b[0]-a[0])*hat_x[0]);
}
inline
point
piola_t (
  const point& hat_x, 
  const point& a, 
  const point& b,
  const point& c,
  bool is_a_vector = false)
{
  return ((!is_a_vector)?a:point(0,0))
          + (b-a)*hat_x[0]
	  + (c-a)*hat_x[1];
}
inline
point
piola_T (
  const point& hat_x, 
  const point& a, 
  const point& b,
  const point& c,
  const point& d,
  bool is_a_vector = false)
{
  return ((!is_a_vector)?a:point(0,0))
          + (b-a)*hat_x[0] 
          + (c-a)*hat_x[1]
          + (d-a)*hat_x[2];
}
// ------------------------------------------
// piola transformation matrix: M_K where
//  F_K(hat_x) = M_K*hat_x + t_K
// ------------------------------------------
inline
void
set_piola_matrix_e (
  tensor& m,
  const point& a, 
  const point& b)
{
  m(0,0) = b[0]-a[0];
}
inline
void
set_piola_matrix_t (
  tensor& m,
  const point& a, 
  const point& b,
  const point& c)
{
   m.set_column (b-a, 0, 2);
   m.set_column (c-a, 1, 2);
}
inline
void
set_piola_matrix_T (
  tensor& m,
  const point& a, 
  const point& b,
  const point& c,
  const point& d)
{
   m.set_column (b-a, 0, 3);
   m.set_column (c-a, 1, 3);
   m.set_column (d-a, 2, 3);
}
inline
void
set_piola_matrix (
  tensor& M_K,
  const geo& omega,
  const geo_element& K)
{
    switch (K.type()) {
      case reference_element::e:
	set_piola_matrix_e (M_K,
	   omega.vertex(K[0]),
	   omega.vertex(K[1]));
	break;
      case reference_element::t:
	set_piola_matrix_t (M_K,
	   omega.vertex(K[0]),
	   omega.vertex(K[1]),
	   omega.vertex(K[2]));
	break;
      case reference_element::T:
	set_piola_matrix_T (M_K,
	   omega.vertex(K[0]),
	   omega.vertex(K[1]),
	   omega.vertex(K[2]),
	   omega.vertex(K[3]));
	break;
      default:
	error_macro ("not yet supported element");
    }
}
// ------------------------------------------
// inverse piola transformation
// F_K^{-1} : K --> hat(K)
//            x --> hat(x)
// ------------------------------------------
inline
point 
inv_piola_e (
  const point& x, 
  const point& a, 
  const point& b) 
{
  return point((x[0]-a[0])/(b[0]-a[0]));
}
inline
point 
inv_piola_t (
  const point& x, 
  const point& a, 
  const point& b, 
  const point& c) 
{
  Float t9 = 1/(-b[0]*c[1]+b[0]*a[1]+a[0]*c[1]+c[0]*b[1]-c[0]*a[1]-a[0]*b[1]);
  Float t11 = -a[0]+x[0];
  Float t15 = -a[1]+x[1];
  return point((-c[1]+a[1])*t9*t11-(-c[0]+a[0])*t9*t15,
               (b[1]-a[1])*t9*t11-(b[0]-a[0])*t9*t15);
}
inline
point 
inv_piola_T (
  const point& x, 
  const point& a, 
  const point& b, 
  const point& c, 
  const point& d) 
{
  tensor A;
  point ax;
  for (size_t i = 0; i < 3; i++) {
    ax[i]  = x[i]-a[i];
    A(i,0) = b[i]-a[i];
    A(i,1) = c[i]-a[i];
    A(i,2) = d[i]-a[i];
  }
  tensor inv_A;
  bool is_singular = ! invert_3x3 (A, inv_A);
  check_macro(!is_singular, "inv_piola: singular transformation in tetrahedron");
  point hat_x = inv_A*ax;
  return hat_x; 
}
}// namespace rheolef
#endif // _RHEO_PIOLA_ALGO_H