/usr/include/rheolef/interpolate.h is in librheolef-dev 5.93-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 | #ifndef _RHEO_INTERPOLATE_H
#define _RHEO_INTERPOLATE_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
//
// interpolation with a class-function: scalar- or vector-valuated
//
#include "rheolef/tensor.h"
#include "rheolef/fem_helper.h"
namespace rheolef {
template <class Function>
field __interpolate_tag (const space& V, Function f, const Float&) {
typedef field::size_type size_type;
const geo& g = V.get_geo() ;
const basis& b = V.get_basis() ;
field u;
if (b.family()!=reference_element::Lagrange) u=field(V,0);
else u=field(V);
check_macro (V.n_component() == 1, "interpolate: expect scalar space, get "
<< V.n_component() << "D vector-valued space.");
std::vector<bool> marked (V.size(), false);
vec<Float>::iterator xu = u.u.begin();
vec<Float>::iterator xb = u.b.begin();
bool Lagrange=(b.family()==reference_element::Lagrange);
for (geo::const_iterator iter_K = g.begin(); iter_K != g.end(); iter_K++) {
const geo_element& K = *iter_K;
size_type nb_dof = b.size(K.type()) ;
if (!Lagrange) nb_dof=b.size(K.type(), reference_element::Lagrange);
tiny_vector<space::size_type> dof(nb_dof);
if (Lagrange) V.set_dof(K, dof, 0) ;
else V.set_dof(K, dof, 0, reference_element::Lagrange) ;
for(size_type i = 0; i < nb_dof; i++) {
size_type i_dof = dof[i];
if (marked [i_dof]) continue; else marked [i_dof] = true;
point x = V.x_dof (K, i);
Float value = f(x);
size_type idx = V.index(i_dof);
if (V.is_blocked(i_dof))
xb [idx] = value;
else
xu [idx] = value;
}
}
return u;
}
template <class Function>
field __interpolate_tag (const space& V, Function f, const point&) {
typedef field::size_type size_type;
field u(V);
const geo& g = V.get_geo() ;
const basis& b = V.get_basis() ;
size_type n_comp = V.n_component();
check_macro (n_comp > 0 && n_comp <= 3, "interpolate: expect a vector-valued functionnal space, get a "
<< n_comp << "D vector-valued one.");
check_macro (V.get_valued() == "vector", "interpolate: expect a vector-valued functionnal space, get a "
<< V.get_valued() << " one");
std::vector<bool> marked (V.size(), false);
vec<Float>::iterator xu = u.u.begin();
vec<Float>::iterator xb = u.b.begin();
tiny_vector<space::size_type> dof [n_comp];
for (geo::const_iterator iter_K = g.begin(); iter_K != g.end(); iter_K++) {
const geo_element& K = *iter_K;
size_type nb_dof = b.size(K.type()) ;
for (size_type i_comp = 0; i_comp < n_comp; i_comp++) {
dof[i_comp].resize(nb_dof);
V.set_dof(K, dof[i_comp], i_comp);
}
for(size_type i = 0; i < nb_dof; i++) {
size_type i_dof_0 = dof[0][i];
if (marked [i_dof_0]) continue; else marked [i_dof_0] = true;
point x = V.x_dof (K, i);
point value = f(x);
for (size_type i_comp = 0; i_comp < n_comp; i_comp++) {
size_type i_dof = dof[i_comp][i];
size_type idx = V.index(i_dof);
if (V.is_blocked(i_dof)) {
xb [idx] = value [i_comp];
} else {
xu [idx] = value [i_comp];
}
}
}
}
return u;
}
template <class Function>
field __interpolate_tag (const space& V, Function f, const tensor&) {
typedef field::size_type size_type;
field u(V);
const geo& g = V.get_geo() ;
const basis& b = V.get_basis() ;
size_type n_comp = V.n_component();
check_macro (n_comp > 0 && n_comp <= 9,
"interpolate: expect a tensor-valued functionnal space, get a "
<< n_comp << "D vector-valued one.");
std::string valued_name = V.get_valued();
check_macro (valued_name == "tensor" || valued_name == "unsymmetric_tensor",
"interpolate: expect a tensdor-valued functionnal space, get a "
<< valued_name << " one");
std::string sys_coord_name = V.coordinate_system();
fem_helper::coordinate_type sys_coord = fem_helper::coordinate_system(sys_coord_name);
fem_helper::valued_field_type valued = fem_helper::valued_field (valued_name);
std::vector<bool> marked (V.size(), false);
vec<Float>::iterator xu = u.u.begin();
vec<Float>::iterator xb = u.b.begin();
tiny_vector<space::size_type> dof [n_comp];
fem_helper::pair_size_type ij_comp;
for (geo::const_iterator iter_K = g.begin(); iter_K != g.end(); iter_K++) {
const geo_element& K = *iter_K;
size_type nb_dof = b.size(K.type()) ;
for (size_type i_comp = 0; i_comp < n_comp; i_comp++) {
dof[i_comp].resize(nb_dof);
V.set_dof(K, dof[i_comp], i_comp);
}
for(size_type i = 0; i < nb_dof; i++) {
size_type i_dof_0 = dof[0][i];
if (marked [i_dof_0]) continue; else marked [i_dof_0] = true;
point x = V.x_dof (K, i);
tensor value = f(x);
for (size_type i_comp = 0; i_comp < n_comp; i_comp++) {
size_type i_dof = dof[i_comp][i];
size_type idx = V.index(i_dof);
ij_comp = fem_helper::tensor_subscript (valued, sys_coord, i_comp);
if (V.is_blocked(i_dof)) {
xb [idx] = value (ij_comp.first, ij_comp.second);
} else {
xu [idx] = value (ij_comp.first, ij_comp.second);
}
}
}
}
return u;
}
template <class Func>
inline
field
interpolate (const space& V, Func f) {
typedef typename Func::result_type result_type ;
return __interpolate_tag (V, f, result_type());
}
// full specialization for functions:
template <>
inline
field
interpolate (const space& V, Float (*f)(const point&)) {
return __interpolate_tag (V, f, Float());
}
template <>
inline
field
interpolate (const space& V, point (*f)(const point&)) {
return __interpolate_tag (V, f, point());
}
template <>
inline
field
interpolate (const space& V, tensor (*f)(const point&)) {
return __interpolate_tag (V, f, tensor());
}
// spline interpolation
void calculate_spline(field& ih);
inline
field
spline (const space& V, const field& uh) {
check_macro(V.get_basis().family()==reference_element::Hermite,
"Only Hermite spaces allowed for spline interpoltion");
// interpolate Lagrange dofs
const space& W=uh.get_space();
space S(V.get_geo(), V.get_approx(), V.get_valued());
V.freeze();
if (V.n_blocked()!=0) error_macro("Boundary conditions not yet supported for spline interpolation");
S.block_Lagrange();
field ih;
if ((S.n_component() == 1) &&
(W.n_component() == 1) &&
(S.get_geo().familyname()==W.get_geo().familyname()) &&
(S.get_geo().version()==W.get_geo().version()) &&
(S.get_approx()==W.get_approx()) )
ih = field(S, uh);
else
// interpolate Lagrange dofs
field ih=interpolate (S, uh);
// calculate the Hermite ones and transfer the field
calculate_spline(ih);
// back to original space (without blocked Lagrange dofs)
return field(V, ih);
}
template <class T>
inline
field
spline (const space& V, T (*f)(const point&)) {
check_macro(V.get_basis().family()==reference_element::Hermite,
"Only Hermite spaces allowed for spline interpoltion");
// interpolate Lagrange dofs
space S(V.get_geo(), V.get_approx(), V.get_valued());
V.freeze();
if (V.n_blocked()!=0) error_macro("Boundary conditions not yet supported for spline interpolation");
S.block_Lagrange();
// interpolate Lagrange dofs
field ih=interpolate (S, f);
// calculate the Hermite ones and transfer the field
calculate_spline(ih);
// back to original space (without blocked Lagrange dofs)
return field(V, ih);
}
/*
template <>
inline
field
spline (const space& V, point (*f)(const point&)) {
return __spline_tag (V, f, point());
}
template <>
inline
field
spline (const space& V, tensor (*f)(const point&)) {
return __spline_tag (V, f, tensor());
}
*/
}// namespace rheolef
#endif // _RHEO_INTERPOLATE_H
|