/usr/include/rheolef/geomap.h is in librheolef-dev 5.93-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 | #ifndef _RHEO_GEOMAP_H
#define _RHEO_GEOMAP_H
///
/// This file is part of Rheolef.
///
/// Copyright (C) 2000-2009 Pierre Saramito <Pierre.Saramito@imag.fr>
///
/// Rheolef is free software; you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation; either version 2 of the License, or
/// (at your option) any later version.
///
/// Rheolef is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with Rheolef; if not, write to the Free Software
/// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
///
/// =========================================================================
//
// Composition of a field by an interpolation
// or an advection operator defined on a space
// or on a lattice over a mesh.
//
// author: jocelyn.etienne@imag.fr
//
// date: 4 Apr 2002
#include "rheolef/field.h"
#include "rheolef/meshpoint.h"
#include "rheolef/hazel.h"
namespace rheolef {
/*Class:geomap
NAME: @code{geomap} - discrete mesh advection by a field: gh(x)=fh(x-dt*uh(x))
@cindex mesh
@cindex advection
@cindex method of characteristic
@clindex geomap
@clindex space
@clindex geo
SYNOPSYS:
The class geomap is a fundamental class used for the correspondance
between fields defined on different meshes or for advection problems.
This class is used for the method of characteristic.
EXAMPLE:
@noindent
The following code compute gh(x)=fh(x-dt*uh(x)):
@example
field uh = interpolate (Vh, u);
field fh = interpolate (Fh, f);
geomap X (Fh, -dt*uh);
field gh = compose (fh, X);
@end example
For a complete example, see @file{convect.cc} in the
example directory.
End: */
//! Maps the set of Vh space dof's or a lattice of quadrature points onto the meshpoints
//! obtained through the advection of the mesh.
//<geomap:
struct geomap_option_type {
size_t n_track_step; // loop while tracking: y = X_u(x)
geomap_option_type() : n_track_step(1) {}
};
class geomap : public Vector<meshpoint> {
public:
geomap () : advected(false), use_space(true) {}
//! Maps a quadrature-dependent lattice over Th_1 onto Th_2 triangulation.
geomap (const geo& Th_2, const geo& Th_1,
std::string quadrature="default", size_t order=0, bool allow_approximate_edges=true);
//! Maps a quadrature-dependent lattice over Th_1 onto Th_2 triangulation
//! thro' an offset vector field u to be defined on Th_1.
geomap (const geo& Th_2, const geo& Th_1, const field& advection_h_1,
std::string quadrature="default", size_t order=0) ;
//! TO BE REMOVED: backward compatibility
//! Maps space Vh_1 dof's onto the meshpoints of Th_2 triangulation
/*! geomap : ( Vh_1.dof's ) |--> ( Th_2 )
*/
geomap (const geo& Th_2, const space& Vh_1,
bool allow_approximate_edges=true );
//! Same but for P1d, using points inside the triangle to preserve discontinuity
geomap (const geo& Th_2, const space& Vh_1,
Float barycentric_weight );
//! TO BE REMOVED: backward compatibility
//! Maps space Vh_1 dof's onto the meshpoints of Th_2 triangulation
//! thro' an offset u to be defined on Vh_1 dof's.
/*! geomap : ( Vh_1.dof's ) |--> ( Th_2 )
*/
geomap (const geo& Th_2, const space& Vh_1, const field& advection_h_1);
//! Does the same, but assumes that Th_2 is the triangulation for Vh_1
geomap (const space& Vh_2, const field& advection_h_1, const geomap_option_type& opts = geomap_option_type());
~geomap () {};
//accessors
//! TO BE REMOVED: backward compatibility
const space&
get_space () const
{ if (!use_space) error_macro("Lattice-based geomaps use no space");
return _Vh_1;
};
const geo&
get_origin_triangulation () const
{ return _Th_1; };
const geo&
get_target_triangulation () const
{ return _Th_2; };
size_t
order () const
{
//! TO BE REMOVED: backward compatibility
if (!use_space)
return _order;
}
const std::string&
quadrature () const
{
//! TO BE REMOVED: backward compatibility
if (!use_space)
return _quadrature; }
bool is_inside (size_t dof) const { return _is_inside [dof]; }
bool no_barycentric_weight() const { return _barycentric_weight == Float(0); }
Float barycentric_weight() const { return _barycentric_weight; }
protected:
friend class fieldog;
//! use_space mode
void init (const field& advection);
//! non use_space mode
void init ();
meshpoint advect (const point& q, size_t iK_Th_1);
meshpoint robust_advect_1 (const point& x0, const point& va, bool& is_inside) const;
meshpoint robust_advect_N (const point& x0, const point& v0, const field& vh, size_t n, bool& is_inside) const;
// data:
geo _Th_1;
geo _Th_2;
field _advection;
bool advected;
std::string _quadrature;
size_t _order;
bool _allow_approximate_edges;
// TO BE REMOVED:
bool use_space;
space _Vh_1;
std::vector<point> quad_point;
std::vector<Float> quad_weight;
// flag when a dof go outside of the domain
std::vector<bool> _is_inside;
Float _barycentric_weight;
geomap_option_type _option;
};
inline
geomap::geomap (const geo& Th_2, const space& Vh_1, const field& advection) :
_Th_1 (Vh_1.get_geo()), _Th_2 (Th_2), _advection(advection), advected(true),
_quadrature("default"), _order(0),
_allow_approximate_edges(true), use_space(true), _Vh_1(Vh_1),
_is_inside(), _barycentric_weight(0)
{ init (advection); };
inline
geomap::geomap (const space& Vh_1, const field& advection, const geomap_option_type& opt) :
_Th_1 (Vh_1.get_geo()), _Th_2 (Vh_1.get_geo()), _advection(advection), advected(true),
_quadrature("default"), _order(0),
_allow_approximate_edges(true), use_space(true), _Vh_1(Vh_1),
_is_inside(), _barycentric_weight(0), _option(opt)
{ init (advection); };
inline
geomap::geomap (
const geo& Th_2,
const geo& Th_1,
const field& advection,
std::string quadrature,
size_t order)
:
_Th_1 (Th_1),
_Th_2 (Th_2),
_advection(advection),
advected(true),
_quadrature(quadrature),
_order(order),
_allow_approximate_edges(true),
use_space(false),
_Vh_1(),
_is_inside(),
_barycentric_weight(0),
_option()
{
if (_advection.get_geo() !=_Th_1)
error_macro("The advection field should be defined on the original mesh Th_1="
<< Th_1.name() << " and not " << _advection.get_geo().name());
init();
}
inline
geomap::geomap (
const geo& Th_2,
const geo& Th_1,
std::string quadrature,
size_t order,
bool allow_approximate_edges)
: _Th_1 (Th_1),
_Th_2 (Th_2),
_advection(),
advected(false),
_quadrature(quadrature),
_order(order),
_allow_approximate_edges(allow_approximate_edges),
use_space(false),
_Vh_1(),
_is_inside(),
_barycentric_weight(0),
_option()
{
init();
}
//! Composition with a field
/*! f being a field of space V, X a geomap on this space, foX=compose(f,X) is their
* composition.
*/
field compose (const field& f, const geomap& g);
/*! send also a callback function when advection goes outside a domain
* this is usefull when using upstream boundary conditions
*/
field compose (const field& f, const geomap& g, Float (*f_outside)(const point&));
template <class Func>
field compose (const field& f, const geomap& g, Func f_outside);
//>geomap:
//! Field seen through a composition with a lattice-based geomap.
/*! The composition remains a dynamic one, upon demand. */
//<fieldog:
class fieldog: public field // and friend of geomap.
{
public:
// Constructor
fieldog (const field& _f, const geomap& _g) : f(_f), g(_g) {};
// Accessors
Float
operator() (const point& x) const;
Float
operator() (const meshpoint& x) const;
Float
operator() (const point& x_hat, size_t e) const
{ return operator() (meshpoint(x_hat,e)); };
std::vector<Float>
quadrature_values (size_t iK) const;
std::vector<Float>
quadrature_d_dxi_values (size_t i, size_t iK) const;
const std::string&
quadrature() const
{ return g._quadrature; };
size_t
order() const
{ return g._order; };
const space&
get_space() const
{ return f.get_space(); };
protected:
field f;
geomap g;
};
//>fieldog:
template<class Function>
field compose (const field& f, const geomap& g, Function f_outside)
{
check_macro(g.no_barycentric_weight(), "Unsupported barycentric weight in geomap");
// multi-component: assume same approx for each component !
typedef field::size_type size_type;
const space& _Vh_1 =g.get_space();
check_macro (g.get_target_triangulation() == f.get_space().get_geo(),
"compose : Meshes do not match : " << g.get_target_triangulation().name()
<< " and " << f.get_space().get_geo().name() << ".");
field fog(_Vh_1);
size_type offset = 0;
for (size_type i_comp = 0; i_comp < _Vh_1.n_component(); i_comp++) {
geomap::const_iterator ig = g.begin();
size_type sz_comp = _Vh_1.size_component(i_comp);
check_macro (sz_comp == g.size(), "incompatible " << i_comp << "-th component size "
<< sz_comp << " and geomap size " << g.size());
for (size_type i_dof = 0; i_dof < sz_comp; i_dof++, ig++) {
Float value;
if (g.is_inside (i_dof)) {
value = f.evaluate (*ig, i_comp);
} else {
/* HAVE TO USE TARGET TRIANGULATION, NOT ORIGIN ! */
point x = g.get_target_triangulation().dehatter (*ig);
value = f_outside (x);
}
fog.at(offset+i_dof) = value;
}
offset += sz_comp;
}
return fog;
}
}// namespace rheolef
#endif // _RHEO_GEOMAP_H
|