/usr/include/ql/termstructures/yield/bootstraptraits.hpp is in libquantlib0-dev 1.1-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2005, 2007 StatPro Italia srl
Copyright (C) 2007 Chris Kenyon
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file bootstraptraits.hpp
\brief bootstrap traits
*/
#ifndef ql_bootstrap_traits_hpp
#define ql_bootstrap_traits_hpp
#include <ql/termstructures/yield/discountcurve.hpp>
#include <ql/termstructures/yield/zerocurve.hpp>
#include <ql/termstructures/yield/forwardcurve.hpp>
#include <ql/termstructures/bootstraphelper.hpp>
namespace QuantLib {
namespace detail {
const Rate avgRate = 0.05;
}
//! Discount-curve traits
struct Discount {
// interpolated curve type
template <class Interpolator>
struct curve {
typedef InterpolatedDiscountCurve<Interpolator> type;
};
// helper class
typedef BootstrapHelper<YieldTermStructure> helper;
// start of curve data
static Date initialDate(const YieldTermStructure* c) {
return c->referenceDate();
}
// value at reference date
static DiscountFactor initialValue(const YieldTermStructure*) {
return 1.0;
}
// true if the initialValue is just a dummy value
static bool dummyInitialValue() { return false; }
// initial guess
static DiscountFactor initialGuess() {
return 1.0/(1.0+detail::avgRate*0.25);
}
// further guesses
static DiscountFactor guess(const YieldTermStructure* c,
const Date& d) {
return c->discount(d,true);
}
// possible constraints based on previous values
static DiscountFactor minValueAfter(Size,
const std::vector<Real>&) {
return QL_EPSILON;
}
static DiscountFactor maxValueAfter(Size i,
const std::vector<Real>& data) {
#if defined(QL_NEGATIVE_RATES)
// discount are not required to be decreasing--all bets are off.
// We choose as max a value very unlikely to be exceeded.
return 3.0;
#else
// discounts cannot increase
return data[i-1];
#endif
}
// update with new guess
static void updateGuess(std::vector<DiscountFactor>& data,
DiscountFactor discount,
Size i) {
data[i] = discount;
}
// upper bound for convergence loop
static Size maxIterations() { return 50; }
};
//! Zero-curve traits
struct ZeroYield {
// interpolated curve type
template <class Interpolator>
struct curve {
typedef InterpolatedZeroCurve<Interpolator> type;
};
// helper class
typedef BootstrapHelper<YieldTermStructure> helper;
// start of curve data
static Date initialDate(const YieldTermStructure* c) {
return c->referenceDate();
}
// dummy value at reference date
static Rate initialValue(const YieldTermStructure*) {
return detail::avgRate;
}
// true if the initialValue is just a dummy value
static bool dummyInitialValue() { return true; }
// initial guess
static Rate initialGuess() { return detail::avgRate; }
// further guesses
static Rate guess(const YieldTermStructure* c,
const Date& d) {
return c->zeroRate(d, c->dayCounter(),
Continuous, Annual, true);
}
// possible constraints based on previous values
static Rate minValueAfter(Size, const std::vector<Real>&) {
#if defined(QL_NEGATIVE_RATES)
// no constraints.
// We choose as min a value very unlikely to be exceeded.
return -3.0;
#else
return QL_EPSILON;
#endif
}
static Rate maxValueAfter(Size, const std::vector<Real>&) {
// no constraints.
// We choose as max a value very unlikely to be exceeded.
return 3.0;
}
// update with new guess
static void updateGuess(std::vector<Rate>& data,
Rate rate,
Size i) {
data[i] = rate;
if (i == 1)
data[0] = rate; // first point is updated as well
}
// upper bound for convergence loop
static Size maxIterations() { return 30; }
};
//! Forward-curve traits
struct ForwardRate {
// interpolated curve type
template <class Interpolator>
struct curve {
typedef InterpolatedForwardCurve<Interpolator> type;
};
// helper class
typedef BootstrapHelper<YieldTermStructure> helper;
// start of curve data
static Date initialDate(const YieldTermStructure* c) {
return c->referenceDate();
}
// dummy value at reference date
static Rate initialValue(const YieldTermStructure*) {
return detail::avgRate;
}
// true if the initialValue is just a dummy value
static bool dummyInitialValue() { return true; }
// initial guess
static Rate initialGuess() { return detail::avgRate; }
// further guesses
static Rate guess(const YieldTermStructure* c,
const Date& d) {
return c->forwardRate(d, d, c->dayCounter(),
Continuous, Annual, true);
}
// possible constraints based on previous values
static Rate minValueAfter(Size, const std::vector<Real>&) {
#if defined(QL_NEGATIVE_RATES)
// no constraints.
// We choose as min a value very unlikely to be exceeded.
return -3.0;
#else
return QL_EPSILON;
#endif
}
static Rate maxValueAfter(Size, const std::vector<Real>&) {
// no constraints.
// We choose as max a value very unlikely to be exceeded.
return 3.0;
}
// update with new guess
static void updateGuess(std::vector<Rate>& data,
Rate forward,
Size i) {
data[i] = forward;
if (i == 1)
data[0] = forward; // first point is updated as well
}
// upper bound for convergence loop
static Size maxIterations() { return 30; }
};
}
#endif
|