/usr/include/NTL/ZZ_p.h is in libntl-dev 5.4.2-4.1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 | #ifndef NTL_ZZ_p__H
#define NTL_ZZ_p__H
#include <NTL/ZZ.h>
#include <NTL/ZZVec.h>
NTL_OPEN_NNS
// ZZ_p representation: each ZZ_p is represented by a ZZ in the range 0..p-1.
// The constructor for a ZZ_p pre-allocates space for the underlying ZZ,
// and initializes it to zero.
const int MAX_ZZ_p_TEMPS = 16;
class ZZ_p;
class ZZ_pInfoT {
private:
ZZ_pInfoT(); // disabled
ZZ_pInfoT(const ZZ_pInfoT&); // disabled
void operator=(const ZZ_pInfoT&); // disabled
public:
ZZ_pInfoT(const ZZ& NewP);
~ZZ_pInfoT();
long ref_count; // reference count for gargabge collection
ZZ p; // the modulus
long size; // p.size()
long ExtendedModulusSize;
// the following implement a "lazy" initialization strategy
long initialized; // flag if initialization really was done
void init();
void check() { if (!initialized) init(); }
long NumPrimes;
long MaxRoot;
long QuickCRT;
ZZ MinusMModP; // -M mod p, M = product of primes
void *crt_struct;
void *rem_struct;
// the following arrays are indexed 0..NumPrimes-1
// q = FFTPrime[i]
double *x; // u/q, where u = (M/q)^{-1} mod q
long *u; // u, as above
double **tbl; // table used for MultiRem; only with NTL_SINGLE_MUL
long **tbl1; // table used for MultiRem; only with NTL_TBL_REM
ZZ_p *temps[MAX_ZZ_p_TEMPS];
long temps_top;
};
extern ZZ_pInfoT *ZZ_pInfo; // info for current modulus, initially null
class ZZ_pContext {
private:
ZZ_pInfoT *ptr;
public:
void save();
void restore() const;
ZZ_pContext() { ptr = 0; }
ZZ_pContext(const ZZ& p);
ZZ_pContext(const ZZ_pContext&);
ZZ_pContext& operator=(const ZZ_pContext&);
~ZZ_pContext();
};
class ZZ_pBak {
private:
long MustRestore;
ZZ_pInfoT *ptr;
ZZ_pBak(const ZZ_pBak&); // disabled
void operator=(const ZZ_pBak&); // disabled
public:
void save();
void restore();
ZZ_pBak() { MustRestore = 0; ptr = 0; }
~ZZ_pBak();
};
struct ZZ_p_NoAlloc_type { ZZ_p_NoAlloc_type() { } };
const ZZ_p_NoAlloc_type ZZ_p_NoAlloc = ZZ_p_NoAlloc_type();
class ZZ_pTemp {
private:
long pos;
public:
ZZ_pTemp();
~ZZ_pTemp();
ZZ_p& val() const;
};
#define NTL_ZZ_pRegister(x) \
ZZ_pTemp ZZ_pTemp__ ## x; ZZ_p& x = ZZ_pTemp__ ## x . val()
class ZZ_p {
public:
ZZ _ZZ_p__rep;
static void init(const ZZ&);
typedef void (*DivHandlerPtr)(const ZZ_p& a); // error-handler for division
static DivHandlerPtr DivHandler;
// ****** constructors and assignment
ZZ_p();
ZZ_p(const ZZ_p& a) : _ZZ_p__rep(INIT_SIZE, ZZ_pInfo->size) { _ZZ_p__rep = a._ZZ_p__rep; }
ZZ_p(ZZ_p_NoAlloc_type) { } // allocates no space
~ZZ_p() { }
ZZ_p& operator=(const ZZ_p& a) { _ZZ_p__rep = a._ZZ_p__rep; return *this; }
inline ZZ_p& operator=(long a);
// You can always access the _ZZ_p__representation directly...if you dare.
ZZ& LoopHole() { return _ZZ_p__rep; }
ZZ_p(ZZ_p& x, INIT_TRANS_TYPE) : _ZZ_p__rep(x._ZZ_p__rep, INIT_TRANS) { }
static const ZZ& modulus() { return ZZ_pInfo->p; }
static long ModulusSize() { return ZZ_pInfo->size; }
static long storage() { return ZZ_storage(ZZ_pInfo->size); }
static const ZZ_p& zero();
ZZ_p(INIT_VAL_TYPE, const ZZ& a);
ZZ_p(INIT_VAL_TYPE, long a);
};
// read-only access to _ZZ_p__representation
inline const ZZ& rep(const ZZ_p& a) { return a._ZZ_p__rep; }
// ****** conversion
inline void conv(ZZ_p& x, const ZZ& a)
{ rem(x._ZZ_p__rep, a, ZZ_p::modulus()); }
inline ZZ_p to_ZZ_p(const ZZ& a)
{ return ZZ_p(INIT_VAL, a); }
void conv(ZZ_p& x, long a);
inline ZZ_p to_ZZ_p(long a)
{ return ZZ_p(INIT_VAL, a); }
// ****** some basics
inline void clear(ZZ_p& x)
// x = 0
{ clear(x._ZZ_p__rep); }
inline void set(ZZ_p& x)
// x = 1
{ set(x._ZZ_p__rep); }
inline void swap(ZZ_p& x, ZZ_p& y)
// swap x and y
{ swap(x._ZZ_p__rep, y._ZZ_p__rep); }
// ****** addition
inline void add(ZZ_p& x, const ZZ_p& a, const ZZ_p& b)
// x = a + b
{ AddMod(x._ZZ_p__rep, a._ZZ_p__rep, b._ZZ_p__rep, ZZ_p::modulus()); }
inline void sub(ZZ_p& x, const ZZ_p& a, const ZZ_p& b)
// x = a - b
{ SubMod(x._ZZ_p__rep, a._ZZ_p__rep, b._ZZ_p__rep, ZZ_p::modulus()); }
inline void negate(ZZ_p& x, const ZZ_p& a)
// x = -a
{ NegateMod(x._ZZ_p__rep, a._ZZ_p__rep, ZZ_p::modulus()); }
// scalar versions
void add(ZZ_p& x, const ZZ_p& a, long b);
inline void add(ZZ_p& x, long a, const ZZ_p& b) { add(x, b, a); }
void sub(ZZ_p& x, const ZZ_p& a, long b);
void sub(ZZ_p& x, long a, const ZZ_p& b);
// ****** multiplication
inline void mul(ZZ_p& x, const ZZ_p& a, const ZZ_p& b)
// x = a*b
{ MulMod(x._ZZ_p__rep, a._ZZ_p__rep, b._ZZ_p__rep, ZZ_p::modulus()); }
inline void sqr(ZZ_p& x, const ZZ_p& a)
// x = a^2
{ SqrMod(x._ZZ_p__rep, a._ZZ_p__rep, ZZ_p::modulus()); }
inline ZZ_p sqr(const ZZ_p& a)
{ ZZ_p x; sqr(x, a); NTL_OPT_RETURN(ZZ_p, x); }
// scalar versions
void mul(ZZ_p& x, const ZZ_p& a, long b);
inline void mul(ZZ_p& x, long a, const ZZ_p& b) { mul(x, b, a); }
// ****** division
void div(ZZ_p& x, const ZZ_p& a, const ZZ_p& b);
// x = a/b
// If b != 0 & b not invertible & DivHandler != 0,
// then DivHandler will be called with the offending b.
// In this case, of course, p is not really prime, and one
// can factor p by taking a gcd with rep(b).
// Otherwise, if b is not invertible, an error occurs.
void inv(ZZ_p& x, const ZZ_p& a);
// x = 1/a
// Error handling is the same as above.
inline ZZ_p inv(const ZZ_p& a)
{ ZZ_p x; inv(x, a); NTL_OPT_RETURN(ZZ_p, x); }
void div(ZZ_p& x, const ZZ_p& a, long b);
void div(ZZ_p& x, long a, const ZZ_p& b);
// operator notation:
inline ZZ_p operator+(const ZZ_p& a, const ZZ_p& b)
{ ZZ_p x; add(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }
inline ZZ_p operator+(const ZZ_p& a, long b)
{ ZZ_p x; add(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }
inline ZZ_p operator+(long a, const ZZ_p& b)
{ ZZ_p x; add(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }
inline ZZ_p& operator+=(ZZ_p& x, const ZZ_p& b)
{ add(x, x, b); return x; }
inline ZZ_p& operator+=(ZZ_p& x, long b)
{ add(x, x, b); return x; }
inline ZZ_p operator-(const ZZ_p& a, const ZZ_p& b)
{ ZZ_p x; sub(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }
inline ZZ_p operator-(const ZZ_p& a, long b)
{ ZZ_p x; sub(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }
inline ZZ_p operator-(long a, const ZZ_p& b)
{ ZZ_p x; sub(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }
inline ZZ_p& operator-=(ZZ_p& x, const ZZ_p& b)
{ sub(x, x, b); return x; }
inline ZZ_p& operator-=(ZZ_p& x, long b)
{ sub(x, x, b); return x; }
inline ZZ_p operator*(const ZZ_p& a, const ZZ_p& b)
{ ZZ_p x; mul(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }
inline ZZ_p operator*(const ZZ_p& a, long b)
{ ZZ_p x; mul(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }
inline ZZ_p operator*(long a, const ZZ_p& b)
{ ZZ_p x; mul(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }
inline ZZ_p& operator*=(ZZ_p& x, const ZZ_p& b)
{ mul(x, x, b); return x; }
inline ZZ_p& operator*=(ZZ_p& x, long b)
{ mul(x, x, b); return x; }
inline ZZ_p operator/(const ZZ_p& a, const ZZ_p& b)
{ ZZ_p x; div(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }
inline ZZ_p operator/(const ZZ_p& a, long b)
{ ZZ_p x; div(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }
inline ZZ_p operator/(long a, const ZZ_p& b)
{ ZZ_p x; div(x, a, b); NTL_OPT_RETURN(ZZ_p, x); }
inline ZZ_p& operator/=(ZZ_p& x, const ZZ_p& b)
{ div(x, x, b); return x; }
inline ZZ_p& operator/=(ZZ_p& x, long b)
{ div(x, x, b); return x; }
inline ZZ_p operator-(const ZZ_p& a)
{ ZZ_p x; negate(x, a); NTL_OPT_RETURN(ZZ_p, x); }
inline ZZ_p& operator++(ZZ_p& x) { add(x, x, 1); return x; }
inline void operator++(ZZ_p& x, int) { add(x, x, 1); }
inline ZZ_p& operator--(ZZ_p& x) { sub(x, x, 1); return x; }
inline void operator--(ZZ_p& x, int) { sub(x, x, 1); }
// ****** exponentiation
inline void power(ZZ_p& x, const ZZ_p& a, const ZZ& e)
{ PowerMod(x._ZZ_p__rep, a._ZZ_p__rep, e, ZZ_p::modulus()); }
inline ZZ_p power(const ZZ_p& a, const ZZ& e)
{ ZZ_p x; power(x, a, e); NTL_OPT_RETURN(ZZ_p, x); }
inline void power(ZZ_p& x, const ZZ_p& a, long e)
{ PowerMod(x._ZZ_p__rep, a._ZZ_p__rep, e, ZZ_p::modulus()); }
inline ZZ_p power(const ZZ_p& a, long e)
{ ZZ_p x; power(x, a, e); NTL_OPT_RETURN(ZZ_p, x); }
// ****** comparison
inline long IsZero(const ZZ_p& a)
{ return IsZero(a._ZZ_p__rep); }
inline long IsOne(const ZZ_p& a)
{ return IsOne(a._ZZ_p__rep); }
inline long operator==(const ZZ_p& a, const ZZ_p& b)
{ return a._ZZ_p__rep == b._ZZ_p__rep; }
inline long operator!=(const ZZ_p& a, const ZZ_p& b)
{ return !(a == b); }
long operator==(const ZZ_p& a, long b);
inline long operator==(long a, const ZZ_p& b) { return b == a; }
inline long operator!=(const ZZ_p& a, long b) { return !(a == b); }
inline long operator!=(long a, const ZZ_p& b) { return !(a == b); }
// ****** random numbers
inline void random(ZZ_p& x)
// x = random element in ZZ_p
{ RandomBnd(x._ZZ_p__rep, ZZ_p::modulus()); }
inline ZZ_p random_ZZ_p()
{ ZZ_p x; random(x); NTL_OPT_RETURN(ZZ_p, x); }
// ****** input/output
inline NTL_SNS ostream& operator<<(NTL_SNS ostream& s, const ZZ_p& a)
{ return s << a._ZZ_p__rep; }
NTL_SNS istream& operator>>(NTL_SNS istream& s, ZZ_p& x);
inline ZZ_p& ZZ_p::operator=(long a) { conv(*this, a); return *this; }
NTL_CLOSE_NNS
#endif
|