This file is indexed.

/usr/include/m4ri/packedmatrix.h is in libm4ri-dev 0.0.20080521-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/**
 * \file packedmatrix.h
 * \brief Dense matrices over GF(2) represented as a bit field.
 *
 * \author Gregory Bard <bard@fordham.edu>
 * \author Martin Albrecht <M.R.Albrecht@rhul.ac.uk>
 */

#ifndef PACKEDMATRIX_H
#define PACKEDMATRIX_H
 /*******************************************************************
 *
 *            M4RI: Method of the Four Russians Inversion
 *
 *       Copyright (C) 2007, 2008 Gregory Bard <bard@fordham.edu>
 *       Copyright (C) 2008 Martin Albrecht <M.R.Albrecht@rhu.ac.uk>
 *
 *  Distributed under the terms of the GNU General Public License (GPL)
 *
 *    This code is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *    General Public License for more details.
 *
 *  The full text of the GPL is available at:
 *
 *                  http://www.gnu.org/licenses/
 *
 ********************************************************************/

#include "misc.h"
#include <stdio.h>

/**
 * \brief Dense matrices over GF(2). 
 * 
 * The most fundamental data type in this library.
 */

typedef struct {
  /**
   * Contains the actual values packed into words of size RADIX.
   */

  word *values;

  /**
   * Number of rows.
   */

  unsigned int nrows;

  /**
   * Number of columns.
   */

  unsigned int ncols;

  /**
   * width = ceil(nrows/RADIX)
   */
  unsigned int width; 

  /**
   * Offsets to each row, so e.g. the first word of the i-th row
   * is m->values[m->rowswap[i]]
   */

  unsigned int *rowswap;

} packedmatrix;

/**
 * \brief Create a new matrix of dimension r x c.
 *
 * Use mzd_free to kill it.
 *
 * \param r Number of rows
 * \param c Number of columns
 *
 */

packedmatrix *mzd_init(int r, int c);

/**
 * \brief Free a matrix created with mzd_init.
 * 
 * \param A Matrix
 */

void mzd_free(packedmatrix *A);

/**
 * \brief Create a window/view into the matrix M.
 *
 * A matrix window for m is a meta structure on the matrix M. It is
 * setup to point into the matrix so M \em must \em not be freed while the
 * matrix window is used.
 *
 * This function puts restrictions on the provided parameters which
 * are not enforced currently.
 *
 *  - lowc must be divisible by RADIX
 *  - highc must be divisible by RADIX
 *  - all parameters must be within range for M
 *
 * Use mzd_free_free to free the window.
 *
 * \param M Matrix
 * \param lowr Starting row (inclusive)
 * \param lowc Starting column (inclusive)
 * \param highr End row (exclusive)
 * \param highc End column (exclusive)
 *
 */

packedmatrix *mzd_init_window(packedmatrix *M, const int lowr, const int lowc, const int highr, const int highc);

/**
 * \brief Free a matrix window created with mzd_init_window.
 * 
 * \param A Matrix
 */

void mzd_free_window(packedmatrix *A);

/**
 * \brief Swap the two rows rowa and rowb.
 * 
 * \param M Matrix
 * \param rowa Row index
 * \param rowb Row index
 */
 
static inline void mzd_row_swap(packedmatrix *M, const int rowa, const int rowb) {
  int temp=M->rowswap[rowa];
  M->rowswap[rowa]=M->rowswap[rowb];
  M->rowswap[rowb]=temp;
}

/**
 * \brief Read the bit at position M[row,col]
 * 
 * \param M Matrix
 * \param row Row index
 * \param col Column index
 */

static inline BIT mzd_read_bit(const packedmatrix *M, const int row, const int col ) {
  return GET_BIT(M->values[ M->rowswap[row] + col/RADIX ], col%RADIX);
}

/**
 * \brief Write the bit value to position M[row,col]
 * 
 * \param M Matrix
 * \param row Row index
 * \param col Column index
 * \param value Either 0 or 1 
 */

static inline void mzd_write_bit(packedmatrix *M, const int row, const int col, const BIT value) {
  if (value==1)
    SET_BIT(M->values[ M->rowswap[row] + col/RADIX ], col % RADIX);
  else
    CLR_BIT(M->values[ M->rowswap[row] + col/RADIX ], col % RADIX);
}

/**
 * \brief Add value to the word at position M[row,col].
 *
 * \param M Matrix
 * \param row Row index
 * \param col Column index
 * \param value Word of BITs.
 *
 * \note Keep in mind that the row, col refer to a row and column (of
 *  bits), and you can address the block by any of the RADIX (usually
 *  64) & A[i,j] there.
 */

static inline void mzd_xor_block(packedmatrix *M, const int row, const int col, const word value) {
  int block=col/RADIX;
  int truerow=M->rowswap[row];

  word *entry=M->values + block + truerow;
  *entry ^= value;
}

/**
 * \brief Write value to the word at position M[row,col].
 *
 * \param M Matrix
 * \param row Row index
 * \param col Column index
 * \param value Word of BITs.
 *
 * \note Keep in mind that the row, col refer to a row and column (of
 * bits), and you can address the block by any of the RADIX (usually
 * 64) A[i,j] there.
 */

static inline void mzd_write_block(packedmatrix *M, const int row, const int col, const word value) {
  M->values[ M->rowswap[row] + col/RADIX ] = value;
}

/**
 * \brief Read the word  at position M[row,col].
 *
 * \param M Matrix
 * \param row Row index
 * \param col Column index
 *
 * \note Keep in mind that the row, col refer to a row and column (of
 * bits), and you can address the block by any of the RADIX (usually
 * 64) A[i,j] there.
 */

static inline word mzd_read_block(const packedmatrix *M, const int row, const int col ) {
  return M->values[ M->rowswap[row] + col/RADIX ];
}

/**
 * \brief Print a matrix to stdout. 
 *
 * The output will contain colons between  every 4-th column.
 *
 * \param M Matrix
 */

void mzd_print_matrix(const packedmatrix *M );

/**
 * \brief Print the matrix to stdout.
 *
 * \param M Matrix
 */

void mzd_print_matrix_tight(const packedmatrix *M );

/**
 * \brief Add the rows sourcerow and destrow and stores the total in the row
 * destrow, but only begins at the column coloffset.
 *
 * \param M Matrix
 * \param sourcerow Index of source row
 * \param destrow Index of target row
 * \param coloffset Column offset
 *
 * \note this can be done much faster with mzd_combine.
 */

void mzd_row_add_offset(packedmatrix *M, const int sourcerow, const int destrow, const int coloffset );

/**
 * \brief Clear the given row, but only begins at the column coloffset.
 *
 * \param M Matrix
 * \param row Index of row
 * \param coloffset Column offset
 *
 */

void mzd_row_clear_offset(packedmatrix *M, const int row, const int coloffset);

/**
 * \brief Add the rows sourcerow and destrow and stores the total in
 * the row destrow.
 *
 * \param M Matrix
 * \param sourcerow Index of source row
 * \param destrow Index of target row
 *
 * \note this can be done much faster with mzd_combine.
 */

void mzd_row_add(packedmatrix *M, const int sourcerow, const int destrow);

/**
 * \brief Transpose a matrix.
 *
 * This is not efficient, but it is quadratic time, so who cares?
 * Efficient, would be to use the fact that:
 *
\verbatim
   [ A B ]T    [AT CT]
   [ C D ]  =  [BT DT] 
 \endverbatim 
 * and thus rearrange the blocks recursively. 
 *
 * \param DST Preallocated return matrix, may be NULL for automatic creation.
 * \param A Matrix
 */

packedmatrix *mzd_transpose(packedmatrix *DST, const packedmatrix *A );

/**
 * \brief Naive cubic matrix multiplication.
 *
 * That is, compute C such that C == AB.
 *
 * \param C Preallocated product matrix, may be NULL for automatic creation.
 * \param A Input matrix A
 * \param B Input matrix B
 *
 * \note Normally, if you will multiply several times by b, it is
 * smarter to calculate bT yourself, and keep it, and then use the
 * function called matrixTimesMatrixTranspose
 */
packedmatrix *mzd_mul_naiv(packedmatrix *C, const packedmatrix *A, const packedmatrix *B);

/**
 * \brief Fill matrix M with uniformly distributed bits.
 *
 * \param M Matrix
 *
 * \todo Allow the user to provide a RNG callback.
 */

void mzd_randomize(packedmatrix *M );

/**
 * \brief Set the matrix M to the value equivalent to the integer
 * value provided.
 *
 * Specifically, this function does nothing if value%2 == 0 and
 * returns the identity matrix if value%2 == 1.
 *
 * If the matrix is not square then the largest possible square
 * submatrix is set to the identity matrix.
 *
 * \param M Matrix
 * \param value Either 0 or 1
 */

void mzd_set_ui(packedmatrix *M, const unsigned value);

/**
 * \brief Gaussian elimination.
 * 
 * This will do Gaussian elimination on the matrix m but will start
 * not at column 0 necc but at column startcol. If full=FALSE, then it
 * will do triangular style elimination, and if full=TRUE, it will do
 * Gauss-Jordan style, or full elimination.
 * 
 * \param M Matrix
 * \param startcol First column to consider for reduction.
 * \param full Gauss-Jordan style or upper triangular form only.
 */

int mzd_gauss_delayed(packedmatrix *M, const int startcol, const int full);

/**
 * \brief Gaussian elimination.
 * 
 * This will do Gaussian elimination on the matrix m.  If  full =
 *  FALSE, then it will do triangular style elimination, and if 
 *  full = TRUE, it will do Gauss-Jordan style, or full elimination.
 *
 * \param M Matrix
 * \param full Gauss-Jordan style or upper triangular form only.
 */
int mzd_reduce_naiv(packedmatrix *M, const int full);

/**
 * \brief Return TRUE if A == B.
 *
 * \param A Matrix
 * \param B Matrix
 */

BIT mzd_equal(const packedmatrix *A, const packedmatrix *B );

/**
 * \brief Return -1,0,1 if if A < B, A == B or A > B respectively.
 *
 * \param A Matrix.
 * \param B Matrix.
 *
 * \note This comparison is not well defined mathematically and
 * relatively arbitrary since elements of GF(2) don't have an
 * ordering.
 */

int mzd_cmp(const packedmatrix *A, const packedmatrix *B);

/**
 * \brief Copy matrix  A to DST.
 *
 * \param DST May be NULL for automatic creation.
 * \param A Source matrix.
 */

packedmatrix *mzd_copy(packedmatrix *DST, const packedmatrix *A);

/**
 * \brief Concatenate B to A and write the result to C.
 * 
 * That is,
 *
\verbatim
[ A ], [ B ] -> [ A  B ] = C
\endverbatim
 *
 * The inputs are not modified but a new matrix is created.
 *
 * \param C Matrix, may be NULL for automatic creation
 * \param A Matrix
 * \param B Matrix
 *
 * \note This is sometimes called augment.
 */
packedmatrix *mzd_concat(packedmatrix *C, const packedmatrix *A, const packedmatrix *B);

/**
 * \brief Stack A on top of B and write the result to C.
 *
 * That is, 
 *
\verbatim
[ A ], [ B ] -> [ A ] = C
                [ B ]
\endverbatim
 *
 * The inputs are not modified but a new matrix is created.
 *
 * \param C Matrix, may be NULL for automatic creation
 * \param A Matrix
 * \param B Matrix
 */

packedmatrix *mzd_stack(packedmatrix *C, const packedmatrix *A, const packedmatrix *B);

/**
 * \brief Copy a submatrix.
 * 
 * Note that the upper bounds are not included.
 *
 * \param S Preallocated space for submatrix, may be NULL for automatic creation.
 * \param M Matrix
 * \param lowr start rows
 * \param lowc start column
 * \param highr stop row (this row is \em not included)
 * \param highc stop column (this column is \em not included)
 */
packedmatrix *mzd_submatrix(packedmatrix *S, const packedmatrix *M, const int lowr, const int lowc, const int highr, const int highc);

/**
 * \brief Invert the matrix target using Gaussian elimination. 
 *
 * To avoid recomputing the identity matrix over and over again, I may
 * be passed in as identity parameter.
 *
 * \param INV Preallocated space for inversion matrix, may be NULL for automatic creation.
 * \param A Matrix to be reduced.
 * \param I Identity matrix.
 *
 */

packedmatrix *mzd_invert_naiv(packedmatrix *INV, packedmatrix *A, const packedmatrix *I);

/**
 * \brief Set C = A+B.
 *
 * C is also returned. If C is NULL then a new matrix is created which
 * must be freed by mzd_free.
 *
 * \param C Preallocated sum matrix, may be NULL for automatic creation.
 * \param A Matrix
 * \param B Matrix
 */

packedmatrix *mzd_add(packedmatrix *C, const packedmatrix *A, const packedmatrix *B);

/**
 * \brief Same as mzd_add but without any checks on the input.
 *
 * \param C Preallocated sum matrix, may be NULL for automatic creation.
 * \param A Matrix
 * \param B Matrix
 */

packedmatrix *_mzd_add_impl(packedmatrix *C, const packedmatrix *A, const packedmatrix *B);

/**
 * \brief Same as mzd_add.
 *
 * \param C Preallocated difference matrix, may be NULL for automatic creation.
 * \param A Matrix
 * \param B Matrix
 */

#define mzd_sub mzd_add

/**
 * \brief Same as mzd_sub but without any checks on the input.
 *
 * \param C Preallocated difference matrix, may be NULL for automatic creation.
 * \param A Matrix
 * \param B Matrix
 */

#define _mzd_sub_impl _mzd_add_impl

/**
 * \brief row3[col3:] = row1[col1:] + row2[col2:]
 * 
 * Adds row1 of SC1, starting with startblock1 to the end, to
 * row2 of SC2, starting with startblock2 to the end. This gets stored
 * in DST, in row3, starting with startblock3.
 *
 * \param DST destination matrix
 * \param row3 destination row for matrix dst
 * \param startblock3 starting block to work on in matrix dst
 * \param SC1 source matrix
 * \param row1 source row for matrix sc1
 * \param startblock1 starting block to work on in matrix sc1
 * \param SC2 source matrix
 * \param startblock2 starting block to work on in matrix sc2
 * \param row2 source row for matrix sc2
 */

void mzd_combine(packedmatrix * DST, const int row3, const int startblock3,
		 const packedmatrix * SC1, const int row1, const int startblock1, 
		 const packedmatrix * SC2, const int row2, const int startblock2);

#ifdef HAVE_SSE2
/**
 * Cutoff in words after which row length SSE2 instructions should be
 * used.
 */

#define SSE2_CUTOFF 20
#endif

/**
 * Defines the number of rows of the matrix A that are processed as
 * one block during the execution of a multiplication algorithm.
 */

#define MZD_MUL_BLOCKSIZE 768


#endif //PACKEDMATRIX_H